Dynamic Vibration Absorber with Negative Stiffness for Rotor System
Directory of Open Access Journals (Sweden)
Hongliang Yao
2016-01-01
Full Text Available To suppress the vibration of a rotor system, a vibration absorber combining negative stiffness with positive stiffness together is proposed in this paper. Firstly, the negative stiffness producing mechanism using ring type permanent magnets is presented and the characteristics of the negative stiffness are analyzed. Then, the structure of the absorber is proposed; the principles and nonlinear dynamic characteristics of the absorber-rotor system are studied numerically. Finally, experiments are carried out to verify the numerical conclusions. The results show that the proposed vibration absorber is effective to suppress the vibration of the rotor system, the nonlinearity of the negatives stiffness affects the vibration suppression effect little, and the negative stiffness can broaden the effective vibration control frequency range of the absorber.
Directory of Open Access Journals (Sweden)
HIDERALDO L. V. SANTOS
2013-08-01
Full Text Available Usually, electrical machines have a metallic cylinder made up of a compacted stack of thin metal plates (referred as laminated core assembled with an interference fit on the shaft. The laminated structure is required to improve the electrical performance of the machine and, besides adding inertia, also enhances the stiffness of the system. Inadequate characterization of this element may lead to errors when assessing the dynamic behavior of the rotor. The aim of this work was therefore to evaluate three beam models used to represent the laminated core of rotating electrical machines. The following finite element beam models are analyzed: (i an “equivalent diameter model”, (ii an “unbranched model” and (iii a “branched model”. To validate the numerical models, experiments are performed with nine different electrical rotors so that the first non-rotating natural frequencies and corresponding vibration modes in a free-free support condition are obtained experimentally. The models are evaluated by comparing the natural frequencies and corresponding vibration mode shapes obtained experimentally with those obtained numerically. Finally, a critical discussion of the behavior of the beam models studied is presented. The results show that for the majority of the rotors tested, the “branched model” is the most suitable
Dynamic behavior of a magnetic bearing supported jet engine rotor with auxiliary bearings
Flowers, George T.; Xie, Huajun; Sinha, S. C.
1995-01-01
This paper presents a study of the dynamic behavior of a rotor system supported by auxiliary bearings. The steady-state behavior of a simulation model based upon a production jet engine is explored over a wide range of operating conditions for varying rotor imbalance, support stiffness, and damping. Interesting dynamical phenomena, such as chaos, subharmonic responses, and double-valued responses, are presented and discussed.
Effect of a negative stiffness mechanism on the performance of the WEPTOS rotors
DEFF Research Database (Denmark)
Peretta, S; Ruol, P.; Martinelli, L.
2015-01-01
The WEPTOS is a well-known wave energy converter (www.weptos.com), formed by several rotors, with a shape that draws upon the reputable Salters Duck geometry. The WEPTOS has a large efficiency under waves of one particular frequency, i.e. when resonance conditions occur. In order to extend...... of Aalborg University, on a 1:30 scale model of one rotor of the WEPTOS. Three different configurations were analysed, providing different values of the negative stiffness. A set of 16 regular and 5 irregular wave conditions were tested, with maximum heights up to approximately 6 m at prototype scale...
Effect of a negative stiffness mechanism on the performance of the WEPTOS rotors
DEFF Research Database (Denmark)
Peretta, S; Ruol, P.; Martinelli, L.
2015-01-01
The WEPTOS is a well-known wave energy converter (www.weptos.com), formed by several rotors, with a shape that draws upon the reputable Salters Duck geometry. The WEPTOS has a large efficiency under waves of one particular frequency, i.e. when resonance conditions occur. In order to extend...... of Aalborg University, on a 1:30 scale model of one rotor of the WEPTOS. Three different configurations were analysed, providing different values of the negative stiffness. A set of 16 regular and 5 irregular wave conditions were tested, with maximum heights up to approximately 6 m at prototype scale...
Tuning the vibration of a rotor with shape memory alloy metal rubber supports
Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie
2015-09-01
The paper describes a novel smart rotor support damper with variable stiffness made with a new multifunctional material - the shape memory alloy metal rubber (SMA-MR). SMA-MR gives high load bearing capability (yield limit up to 100 MPa and stiffness exceeding 1e8 N/m), high damping (loss factor between 0.15 and 0.3) and variable stiffness (variation of 2.6 times between martensite and austenite phases). The SMA-MR has been used to replace a squeeze film damper and combined with an elastic support. The mechanical performance of the smart support damper has been investigated at room and high temperatures on a rotor test rig. The vibration tuning capabilities of the SMA-MR damper have been evaluated through FEM simulations and experimental tests. The study shows the feasibility of using the SMA-MR material for potential applications of active vibration control at different temperatures in rotordynamics systems.
Larsen, Jon S.; Santos, Ilmar F.
2015-06-01
The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.
Stability Limits of a PD Controller for a Flywheel Supported on Rigid Rotor and Magnetic Bearings
Kascak, Albert F.; Brown, Gerald V.; Jansen, Ralph H.; Dever, TImothy P.
2006-01-01
Active magnetic bearings are used to provide a long-life, low-loss suspension of a high-speed flywheel rotor. This paper describes a modeling effort used to understand the stability boundaries of the PD controller used to control the active magnetic bearings on a high speed test rig. Limits of stability are described in terms of allowable stiffness and damping values which result in stable levitation of the nonrotating rig. Small signal stability limits for the system is defined as a nongrowth in vibration amplitude of a small disturbance. A simple mass-force model was analyzed. The force resulting from the magnetic bearing was linearized to include negative displacement stiffness and a current stiffness. The current stiffness was then used in a PD controller. The phase lag of the control loop was modeled by a simple time delay. The stability limits and the associated vibration frequencies were measured and compared to the theoretical values. The results show a region on stiffness versus damping plot that have the same qualitative tendencies as experimental measurements. The resulting stability model was then extended to a flywheel system. The rotor dynamics of the flywheel was modeled using a rigid rotor supported on magnetic bearings. The equations of motion were written for the center of mass and a small angle linearization of the rotations about the center of mass. The stability limits and the associated vibration frequencies were found as a function of nondimensional magnetic bearing stiffness and damping and nondimensional parameters of flywheel speed and time delay.
Fleming, David P.; Poplawski, J. V.
2002-01-01
Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.
Flowers, George T.
1995-02-01
This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.
Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie
2014-12-01
The work describes the design, manufacturing and testing of a smart rotor support with shape memory alloy metal rubber (SMA-MR) elements, able to provide variable stiffness and damping characteristics with temperature, motion amplitude and excitation frequency. Differences in damping behavior and nonlinear stiffness between SMA-MR and more traditional metal rubber supports are discussed. The mechanical performance shown by the prototype demonstrates the feasibility of using the SMA-MR concept for active vibration control in rotordynamics, in particular at high temperatures and large amplitude vibrations.
Stiffness identification of four-point-elastic-support rigid plate
Institute of Scientific and Technical Information of China (English)
彭利平; 刘初升; 武继达; 王帅
2015-01-01
As the stiffness of the elastic support varies with the physical-chemical erosion and mechanical friction, model catastrophe of a single degree-of-freedom (DOF) isolation system may occur. A 3-DOF four-point-elastic-support rigid plate (FERP) structure is presented to describe the catastrophic isolation system. Based on the newly-established structure, theoretical derivation for stiffness matrix calculation by free response (SMCbyFR) and the method of stiffness identification by stiffness matrix disassembly (SIbySMD) are proposed. By integrating the SMCbyFR and the SIbySMD and defining the stiffness assurance criterion (SAC), the procedures for stiffness identification of a FERP structure (SIFERP) are summarized. Then, a numerical example is adopted for the SIFERP validation, in which the simulated tested free response data are generated by the numerical methods, and operation for filtering noise is conducted to imitate the practical application. Results in the numerical example demonstrate the feasibility and accuracy of the developed SIFERP for stiffness identification.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A metal rubber(MR) dry friction damper was designed based on the load supported by the rotor. An experimental apparatus for obtaining hysteresis loops of support under the precession load was designed. The elastic-damping characteristics of the ring-shaped MR damper used as a rotor support under variable loads were presented by studying the hysteresis loops of the damper. The vibration rigidity and the energy dissipation coefficient were calculated from the hysteresis loops, based on the description of the deformation process of the MR element with simple structure in a dimensionless coordinating system. The calculation results showed that the energy dissipation coefficient in the inner of MR element and on the boundary between the damper and the frame of the rotor support were approximately equal. The comparison of the hysteresis loops for a precession load and a one-axial load indicated a large difference when the coefficient of the energy dissipation and the stiffness of the MR damper were concerned.
Directory of Open Access Journals (Sweden)
Bangcheng Han
2013-01-01
Full Text Available We firstly report on an investigation into the unbalanced magnetic pull (UMP effect on the static stiffness models of radial active magnetic bearing (RAMB in brushless DC motor (BDCM in no-loaded and loaded conditions using the finite element method (FEM. The influences of the UMP on the force-control current, force-position, current stiffness, and position stiffness of RAMB are clarified in BDCM with 100 kW rated power. We found the position stiffness to be more susceptible to UMP. The primary source of UMP is the permanent magnets of BDCM. In addition, the performance of RAMB is affected by the UMP ripples during motor commutation and also periodically affected by the angular position of rotor. The characteristic curves of RAMB force versus control current (or rotor position and angular position of rotor affected by the UMP are given. The method is useful in design and optimization of RAMB in magnetically suspended BDCMs.
Ribeiro, Eduardo Afonso; Pereira, Jucélio Tomás; Alberto Bavastri, Carlos
2015-09-01
One of the major reasons for inserting damping into bearings is that rotating machines are often requested in critical functioning conditions having sometimes to function under dynamic instability or close to critical speeds. Hydrodynamic and magnetic bearings have usually been used for this purpose, but they present limitations regarding costs and operation, rendering the use of viscoelastic supports a feasible solution for vibration control in rotating machines. Most papers in the area use simple analytic or single degree of freedom models for the rotor as well as classic mechanical models of linear viscoelasticity for the support - like Maxwell, Kelvin-Voigt, Zenner, four-element, GHM models and even frequency independent models - but they lack the accuracy of fractional models in a large range of frequency and temperature regarding the same number of coefficients. Even in those works, the need to consider the addition of degrees of freedom to the support is evident. However, so far no paper has been published focusing on a methodology to determine the optimal constructive form for any viscoelastic support in which the rotor is discretized by finite elements associated to an accurate model for characterizing the viscoelastic material. In general, the support is meant to be a simple isolation system, and the fact the stiffness matrix is complex and frequency-temperature dependent - due to its viscoelastic properties - forces the traditional methods to require an extremely long computing time, thus rendering them too time consuming in an optimization environment. The present work presents a robust methodology based mainly on generalized equivalent parameters (GEP) - for an optimal design of viscoelastic supports for rotating machinery - aiming at minimizing the unbalance frequency response of the system using a hybrid optimization technique (genetic algorithms and Nelder-Mead method). The rotor is modeled based on the finite element method using Timoshenko's thick
Active vibration control of a rotor-bearing system based on dynamic stiffness
Directory of Open Access Journals (Sweden)
Andrés Blanco Ortega
2010-01-01
Full Text Available En este artículo se presenta un esquema de control activo de vibraciones para atenuar las amplitudes de vibración síncrona inducidas por el desbalance en un sistema rotorchumaceras; donde una de las chumaceras puede ser desplazada automáticamente para modificar la longitud efectiva del rotor, y como consecuencia, la rigidez del rotor. El control de la rigidez dinámica se basa en un análisis de la respuesta en frecuencia, control de velocidad y en el uso de esquemas de aceleración, para evadir las amplitudes de la vibración en la resonancia mientras el sistema rotatorio pasa (acelerado o desacelerado a través de una velocidad crítica. Se utiliza identificación algebraica para estimar el desbalance en línea, mientras el rotor es llevado a la velocidad de operación deseada. Algunas simulaciones numéricas y resultados experimentales son incluidos para mostrar las propiedades de la compensación del desbalance y la robustez del esquema de control activo de vibraciones propuesto, cuando el rotor se opera a una velocidad por encima de la primera velocidad crítica.
Dynamics of the rotor on elastic-damping supports under action of kinematic effects
Chernyshev, V.; Savin, L.; Fominova, O.
2017-08-01
The article describes the elements of the theory of dynamic analysis of rotor systems. The mathematical model of a gyroscopic rotor as an elementary object on elastic-damping supports. The results of simulation of the trajectories of the rotor under kinematic loading with amplitude commensurate with the clearance in bearing assemblies of fluid friction.
Transverse vibration of a rotor system driven by two cardan joints
Saigo, M.; Iwatsubo, T.
1987-05-01
The torque-induced transverse vibration of a rotor system driven by two Cardan joints is analyzed and the effects of the stiffness asymmetry of the rotor shaft supports, the damping force in the joints and the gyroscopic moment of the rotor on the dynamic stability of the system are evaluated. The analysis proves that both parametric and self-excited vibrations can occur due to the transmitted torque when the driving shaft and the driven shaft (rotor shaft) are inclined; the stiffness asymmetry of rotor supports does not always have the stabilizing effect which has been observed in a rotor system driven by a single Cardan joint [1
Dynamic analysis of squeeze film damper supported rotors using equivalent linearization
Energy Technology Data Exchange (ETDEWEB)
El-Shafei, A. (Cairo Univ., Giza (Egypt). Dept. of Mechanical Design and Production); Eranki, R.V. (Aluman Mill Products, Inc., Morris, IL (United States))
1994-07-01
The technique of equivalent linearization is presented in this paper as a powerful technique to perform nonlinear dynamic analysis of squeeze film damper (SFD) supported rotors using linear rotor-dynamic methods. Historically, it is customary to design SFDs for rotor-dynamic analysis by assuming circular-centered orbits, which is convenient in making the nonlinear damper coefficients time independent and thus can be used in an iterative approach to determine the rotor-dynamic characteristics. However, the general synchronous orbit is elliptic in nature due to possible asymmetry in the rotor support. This renders the nonlinear damper coefficients time dependent, which would require extensive numerical computation using numerical integration to determine the rotor dynamic characteristics. Alternatively, it is shown that the equivalent linearization, which is based on a least-squares approach, can be used to obtain time-independent damper coefficients for SFDs executing eccentric elliptic orbits, which are nonlinear in the orbit parameters. The resulting equivalent linear forces are then used in an iterative procedure to obtain the unbalance response of a rigid rotor-SFD system. Huge savings over numerical integration are reported for this simple rotor. The technique can be extended to be used in conjunction with currently available linear rotor-dynamic programs to determine the rotor-dynamic characteristics through iteration. It is expected that for multirotor multibearing systems this technique will result in even more economical computation.
Rotor Embedded with Shape Memory Alloy Wires
Directory of Open Access Journals (Sweden)
K. Gupta
2000-01-01
Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.
Adaptive gravity and joint stiffness compensation methods for force-controlled arm supports
Lobo Prat, J.; Keemink, Arvid Quintijn Leon; Koopman, Hubertus F.J.M.; Stienen, Arno; Veltink, Petrus H.; Braun, D.; Yu, H.; Campolo, D.
2015-01-01
People with muscular weakness can benefit from arm supports that compensate the weight of their arms. Due to the disuse of the arms, passive joint stiffness increases and providing only gravity compensation becomes insufficient to support the arm function. Hence, joint stiffness compensation is also
Zheng, Enlai; Jia, Fang; Lu, Changhui; Chen, He; Ji, Xin
With space-based adaptive performance of lower stiffness and greater deformation energy, the plane supporting spring finds its wide application in fields like aeronautics, astronautics, etc. In the current study, the radial stiffness formula of a single Archimedes spiral plane supporting spring is derived by means of energy approach, with three key parameters of the supporting spring as independent variables. A series of the supporting spring FEA models are established via APDL speedy modeling. According to the isolation requirements of electronic equipment for a fighter, an example is presented in the form of finite element analysis. The theoretical calculation and analysis data are studied and fitted by MATLAB using the least-square method to obtain the discipline of the radial stiffness of single spiral plane supporting spring with the changes of its three key parameters. The validity of energy-based radial stiffness formula of the spring is confirmed by the comparison between the theoretical calculation and finite element analysis results.
Design of plywood and paper flywheel rotors
Hagen, D. L.
Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Two bulb attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Plywood moisture equilibrium during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. Detailed measurements of the distribution of strengths, densities and specific energy of conventional Finnish Birch plywood and of custom made hexagonal Birch plywood are detailed. High resolution tensile tests were performed while monitoring the acoustic emissions with micoprocessor controlled data acquisition. Preliminary duration of load tests were performed on vacuum dried hexagonal birch plywood. Economics of cellulosic and conventional rotors were examined.
呼吸性椭圆裂纹转子弯曲刚度模型%Bending stiffness model of a breathing elliptical cracked rotor
Institute of Scientific and Technical Information of China (English)
刘政; 王建军
2016-01-01
Usually a fatigue crack on a rotor shaft has an elliptical tip,while the current literatures at home and abroad mostly focus on straight-tip crack rotors,very few articles built models to study elliptical-tip crack breathing behavior.Here,a new breathing model of an elliptical crack on a cylindrical shaft was proposed to modify the neutral axis's position and determine crack open area.Based on the crack strain energy,the elliptical crack's additional flexibility coefficient was calculated,and the bending stiffness model of the elliptical cracked rotor was also established.It was shown that the proposed crack's breathing laws agree well with those of literatures and the finite element results,the crack's additional flexibility and rotor's dimensionless deflection both meet the requirements of computing,the effectiveness and feasibility of the model are validated.%通常转子轴上的疲劳裂纹为椭圆形尖端，而国内外现有文献大多关注直裂纹转子，很少对椭圆裂纹呼吸行为建立模型。提出了新的圆柱轴椭圆裂纹呼吸模型，修正中性轴位置确定裂纹张开面积，并基于裂纹应变能计算出椭圆裂纹附加柔性系数，建立了该类裂纹转子弯曲刚度模型。进一步，与文献和有限元结果进行对比，裂纹呼吸规律完全符合，裂纹附加柔度、转子无量纲挠度满足计算要求，验证了该模型有效可行。
Energy Technology Data Exchange (ETDEWEB)
Inayat-Hussain, Jawaid I. [School of Engineering, Monash University Malaysia, No. 2, Jalan Kolej, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan (Malaysia)]. E-mail: jawaid.inayat-hussain@eng.monash.edu.my
2007-02-15
This work reports on a numerical study undertaken to investigate the response of an imbalanced rigid rotor supported by active magnetic bearings. The mathematical model of the rotor-bearing system used in this study incorporates nonlinearity arising from the electromagnetic force-coil current-air gap relationship, and the effects of geometrical cross-coupling. The response of the rotor is observed to exhibit a rich variety of dynamical behavior including synchronous, sub-synchronous, quasi-periodic and chaotic vibrations. The transition from synchronous rotor response to chaos is via the torus breakdown route. As the rotor imbalance magnitude is increased, the synchronous rotor response undergoes a secondary Hopf bifurcation resulting in quasi-periodic vibration, which is characterized by a torus attractor. With further increase in the rotor imbalance magnitude, this attractor is seen to develop wrinkles and becomes unstable resulting in a fractal torus attractor. The fractal torus is eventually destroyed as the rotor imbalance magnitude is further increased. Quasi-periodic and frequency-locked sub-synchronous vibrations are seen to appear and disappear alternately before the emergence of chaos in the response of the rotor. The magnitude of rotor imbalance where sub-synchronous, quasi-periodic and chaotic vibrations are observed in this study, albeit being higher than the specified imbalance level for rotating machinery, may possibly occur due to a gradual degradation of the rotor balance quality during operation.
Stiffness Characteristics Analysis of a Rotor With Slant Crack%斜裂纹转子刚度特性分析
Institute of Scientific and Technical Information of China (English)
李志农; 夏恒恒; 肖尧先
2016-01-01
The stiffness matrix of the slant crack was obtained based on material mechanics and fracture mechanics theory through the use of strain energy release rate method.While the crack is fully open,the influence of the crack angle,the axial slenderness ratio and the crack depth on the stiffness of the shaft was discussed.At the same time,the opening and closing conditions in the rotating state and the stiffness change law of the corresponding shaft were studied.The results show that,when the crack is in the fully open state,the stiffness of the crack decreases with the increase of the crack an-gle.And the shaft stiffness changes more significantly with the increase of the crack depth;when the crack is in the open-ing and closing state,with the increase of the crack depth,the shaft stiffness is no longer decreases,but there is a certain law of fluctuation,which is time-varying characteristics,in this case,the shaft coupling vibration also increases,the dy-namic characteristics of the rotor becomes increasingly complex.%在材料力学和断裂力学的基础上，运用应变能释放率的方法，得出斜裂纹的刚度矩阵。讨论在裂纹全开的状态时，裂纹倾角、轴细长比和裂纹深度对转轴刚度的影响，并对裂纹处于旋转时的开闭情况及相应轴的刚度变化规律进行研究。结果表明：当裂纹处于全开状态时，随着裂纹倾角的增大，裂纹的刚度随之减小，轴刚度的变化随着裂纹深度的增大更加显著；当裂纹处于开闭状态时，随着裂纹深度的增加，轴的刚度不再一直减小，而是有一定规律的波动，即时变特性，此时，轴的耦合振动随之增强，转子的动力特性变得愈加复杂。
Forces exciting generation roll at rotor vibrations when rotor-to-stator rubbing
Shatokhin, V. F.
2017-07-01
The consequences of emergencies of turbosets for different application are revealed, the cause of forced shutdown and even catastrophic destructions of which many researchers consider the rotor-to-stator rubbing and development—to a greater or lesser extent—of the phenomena of the rotor generation roll over the stator. The synchronous or asynchronous generation roll is determined by the rotor precession direction, coinciding or not coinciding with the self-rotation direction of the rotor. Asynchronous generation roll is the most dangerous form of the rotor-stator contact interaction with the vibrations with rubbing. The basic equations of rotor vibrations are presented: symmetric rotor fixed on two supports and that fixed on several supports after abrupt imbalance with and without rotor coming in contact with a flexible stator. The vibration process is considered as the rotor motion in a backlash with subsequent contact with the stator, loss of contact, or development of generation roll. The latter essentially depends on the properties of the "rotor-support-stator" dynamic system. The stator stiffness characteristic is specified in "force-deformation" coordinates that make it possible to take into account damping in the supports and power loss in the stator. The diagram of elastic-damping device was presented, which makes it possible to ensure a certain level of power loss at the stator displacements. The exciting forces promoting development of self-exciting vibrations of the rotor in the form of asynchronous generation roll were compared with the exciting forces of oil film of sliding bearings and forces of aerodynamic excitation in the turbine flow path and sealings. For the rotor systems of high and medium pressure of a 300 MW capacity turboset, the simulation results of the process of development of asynchronous generation roll at the vibrations with rubbing were revealed, and the basic characteristics of development of generation roll in a span between
Control system design for flexible rotors supported by actively lubricated bearings
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2008-01-01
This article presents a methodology for calculating the gains of an output feedback controller for active vibration control of flexible rotors. The methodology is based on modal reduction. The proportional and derivative gains are obtained by adjusting the first two damping factors of the system...... and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented...
Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches
DEFF Research Database (Denmark)
Larsen, Jon Steffen; Santos, Ilmar; von Osmanski, Alexander Sebastian
2016-01-01
High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is therefore important. This...
Nonlinear Analysis of Rotors Supported by Air Foil Journal Bearings – Theory and Experiments
DEFF Research Database (Denmark)
Larsen, Jon Steffen
Direct driven compressors supported by air foil bearings (AFB) are gaining increasing popularity, for example within the waste water treatment industry where the demand for larger machines up to 250 kW is growing. In order to keep production costs low, the shaft and bearing design need to be simple...... and allow manufacturing using conventional materials and production facilities. As a consequence, the assembled rotor weight can be up to 50 kg. The compressors are operated at variable speed and load and are subjected to several starts and stops per day. Therefore, the rotor bearing design must be robust...... with a good margin of rotordynamical stable operation. To ensure this, good mathematical models, capable of accurately predicting the dynamic behaviour of the rotor-bearing system, are required at the design stage. This thesis focuses on developing and improving existing mathematical models for predicting...
Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings
Bhore, Skylab P.; Darpe, Ashish K.
2013-09-01
Investigation on nonlinear dynamics of a flexible rotor supported on the gas foil journal bearings is attempted. A time domain orbit simulation is carried out that couples the equations of rotor motion, unsteady Reynolds equation and foil deformation. The unsteady Reynolds equation is solved using control volume formulation with power law hybrid scheme and Gauss-Seidel method. The nonlinear dynamic response is analyzed using disc center and journal center trajectories, Poincaré maps, Fast Fourier transforms and bifurcation plots. The analysis is carried out for different system parameters, namely, rotating speed, unbalance eccentricity, compliance and loss factor of gas foil bearing. The analysis reveals highly nonlinear behavior with periodic, multi-periodic and quasiperiodic motion of the disc and the journal center. The present analysis can be useful in designing and selection of suitable operating parameters of rotor bearing system.
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar
2013-01-01
This paper reports the dynamic study of a flexible rotor-bearing test rig which resembles a large overhung centrifugal compressor. The rotor is supported by an active tilting pad journal bearing (TPJB) able to perform the adjustable lubrication regime. Such a regime is obtained by injecting press...
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar
2013-01-01
This paper reports the dynamic study of a flexible rotor-bearing test rig which resembles a large overhung centrifugal compressor. The rotor is supported by an active tilting pad journal bearing (TPJB) able to perform the adjustable lubrication regime. Such a regime is obtained by injecting...
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Itakura, K.; Hirose, K. (Muroran Institute of Technology, Hokkaido (Japan))
1990-11-25
Powered supports were tentatively analyzed to establish a new index for evaluation of their performance. The new index was deduced by comparing the deformation characteristics of various powered supports mutually. The deformation characteristics of a powered support was able to be indicated in terms of a (2 {times} 2) global stiffness matrix. The global stiffness matrix depended on the mining height of powered support. The stiffness of hydraulic legs mainly determined the convergence component of the global stiffness, whereas the stiffness of caving shield determined its shear component. The convergence performance tended to sacrifice the shear deformation one, and vice versa. The principal direction of the global stiffness matrix allowed to select well-balanced deformation characteristics. To assure deformation performance as properly as possible, it was shown that the principal axis of the global matrix should be tilted by 15 to 25 degrees of the angle from the vertical towards the canopy tip. 4 refs., 13 figs., 2 tabs.
Energy Technology Data Exchange (ETDEWEB)
Silva Navarro, Gerardo; Cabrera Amado, Alvaro [Cinvestav, IPN, Mexico, D.F. (Mexico)
2007-11-15
This paper deals with the problem of semiactive balancing control of a rotor-bearing system, where one journal bearings is supported on two radial Magneto-Rheological (MR) dampers. The mathematical model of the rotor-bearing system results from an orthotropic Jeffcott-like model and the dynamics associated to the MR dampers, whose rheological properties depend on the current inputs. For control purposes we use the Choi-Lee-Park polynomial for the MR dampers, which is quite consistent with the tpical nonlinear and complex hysteresis behavior and also simplifies the physical implementation on an experimental setup. The semiactive control scheme for the unbalance reponse of the rotor-bearing system is synthesized using sliding-mode control techniques. Some numerical and experimental results are included to illustrate the dynamic performance and robustness of the overall system. [Spanish] En este trabajo se abora el problema de control semiactivo del desbalance en un sistema rotor-chumacera, donde una de las chumaceras convencionales se monta sobre una suspension con dos amortiguadores Magneto-Reologicos (MR) radiales. El modelo matematico del sistema rotorchumacera se obtiene de un modelo tipo Jefcott ortotropico y la dinamica de los amortiguadores MR, cuyas propiedades reologicas dependen de las corrientes electricas de alimentacion. Para propositos de control se emplea el modelo polinomial de Choi-Lee-Park para los dos amortiguadores MR, el cual es consistente con el tipico comportamiento no-lineal y de histeresis, permitiendo simplificar su implementacion fisica en una plataforma experimental. El esquema de control semiactivo de la respuesta al desbalance, en el sistema rotor-chumacera, se basa en las tecnicas de control por modos deslizantes. Se presentan algunos resultados de simulacion numerica y experimentos que utilizan el funcionamiento y robustez del sistema completo.
Transverse vibration of a rotor system driven by a Cardan joint
Iwatsubo, T.; Saigo, M.
1984-07-01
The transverse vibration of a rotor system driven by a Cardan joint is analyzed and the effect of the transmitted torque on the dynamic stability of the system evaluated. As a result of the analysis, the following facts are proved: when the driving shaft and driven shaft (rotor shaft) are included, both parametric and self-excited vibrations arise due to transmitted torque; asymmetrical stiffness of the rotor supports has the effect of stabilizing this self-excited vibration.
Institute of Scientific and Technical Information of China (English)
焦卫东; 郭红祥
2013-01-01
裂纹转子旋转过程中,由于裂纹的非线性开/合行为导致转子刚度的变化,进而导致转子复杂的非线性振动.文章研究存在横向表面裂纹转子的纵-弯-扭耦合振动建模,并对裂纹引发的转子变刚度特性进行综合分析.转子建模采用欧拉梁单元模型,并考虑了轴向力、截面剪力、弯矩以及扭矩作用下转子运动的六个方向的自由度.裂纹单元的刚度矩阵采用柔度系数法导出,而柔度系数则由应变能理论求得.在此基础上,对一些影响裂纹转子刚度变化的主要因素如裂纹深度,梁单元长度等进行了数值分析.所得研究结果,有助于理解和揭示具有横向表面裂纹转子的非线性振动响应特性.%During the rotation of a cracked rotor, its stiffness will change because of the nonlinear opening/closing behavior of the crack. Furthermore, the cracked rotor shows strong nonlinear vibration. In this paper, coupled longitudinal-bending-torsion vibration of the rotor with transverse surface crack is first modeled. Then, comprehensive analysis is made on crack-related stiffness variation characteristics of the cracked rotor. . In the modeling of the cracked rotor, Euler beam element is used. Especially, six degrees of freedom, including axial force, section shear, bending and the torque, are considered. Stiffness matrix of the cracked element is derived by the flexibility coefficients method, and these flexibility coefficients are computed by the strain energy theory. Based on the stiffness computation of the cracked rotor, numerical evaluation is made for some influence factors, such as length of beam element and depth of crack, etc. This study is helpful to understanding and revealing the nonlinear vibration characteristics of the rotor with transverse surface crack.
Support vector machine used to diagnose the fault of rotor broken bars of induction motors
DEFF Research Database (Denmark)
Zhitong, Cao; Jiazhong, Fang; Hongpingn, Chen
2003-01-01
The data-based machine learning is an important aspect of modern intelligent technology, while statistical learning theory (SLT) is a new tool that studies the machine learning methods in the case of a small number of samples. As a common learning method, support vector machine (SVM) is derived...... for the SVM. After a SVM is trained with learning sample vectors, so each kind of the rotor broken bar faults of induction motors can be classified. Finally the retest is demonstrated, which proves that the SVM really has preferable ability of classification. In this paper we tried applying the SVM...... from the SLT. Here we were done some analogical experiments of the rotor broken bar faults of induction motors used, analyzed the signals of the sample currents with Fourier transform, and constructed the spectrum characteristics from low frequency to high frequency used as learning sample vectors...
Directory of Open Access Journals (Sweden)
Stefan Groothuis
2014-06-01
Full Text Available In this paper, a novel variable stiffness mechanism is presented, which is capable of achieving an output stiffness with infinite range and an unlimited output motion, i.e., the mechanism output is completely decoupled from the rotor motion, in the zero stiffness configuration. The mechanism makes use of leaf springs, which are engaged at different positions by means of two movable supports, to realize the variable output stiffness. The Euler–Bernoulli leaf spring model is derived and validated through experimental data. By shaping the leaf springs, it is shown that the stiffness characteristic of the mechanism can be changed to fulfill different application requirements. Alternative designs can achieve the same behavior with only one leaf spring and one movable support pin.
Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.
2017-08-01
This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.
Direction of improvement of the radial-face seals of rotor supports of the aircraft engines
Directory of Open Access Journals (Sweden)
Petr Bondarchuk
2014-10-01
Full Text Available Today the radial-face contacts seals are the most wide-spread type of sealers of the aircraft engine rotor supports. In the paper the main shortcomings of the radial-face contact seals are specified the removal of which will result in increase in the operating range in terms of the pressure and temperature of the sealing air, reduction of leakages and extension of life-time. On the basis of the literature, patents and catalogues of the manufacturing companies the modern trends of improvement of the sealing structure are considered. The innovative technical solution for the radial-face contact seal with oil lubrication has been developed allowing increasing its efficiency. In order to increase the sealing reliability the hydrodynamic grooves of unique form made with the use of a laser are used. High sealing efficiency is ensured due to the simultaneous application of principles of hydrostatic and hydrodynamic lubrication. The method of calculation of seal properties has been suggested. The results of testing the new type of sealing for the engine rotor support as part of a moving-base simulator and aircraft gas-turbine engine have been presented.
Zhang, Yongfang; Hei, Di; Lü, Yanjun; Wang, Quandai; Müller, Norbert
2014-03-01
Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson- θ-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincaré map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
Xu, Yuanping; Zhou, Jin; Di, Long; Zhao, Chen
2017-01-01
Active magnetic bearings (AMBs) support rotors using electromagnetic force rather than mechanical forces. It is necessary to accurately identify the AMBs force coefficients since they play a critical role in the rotordynamic analysis including system stability, bending critical speeds and modes of vibrations. This paper proposes a rotor unbalance response based approach to identifying the AMBs stiffness and damping coefficients during rotation. First, a Timoshenko beam finite element (FE) rotor model is created. Second, an identification procedure based on the FE model is proposed. Then based on the experimental rotor unbalance response data from 1200 rpm to 30,000 rpm, the AMBs dynamic force parameters (stiffness and damping) are obtained. Finally, the identified results are verified by comparing the estimated and experimental rotor unbalance responses, which shows high accuracy.
Zapoměl, J.; Ferfecki, P.
2016-09-01
A frequently used technological solution for minimization of undesirable effects caused by vibration of rotating machines consists in placing damping devices in the rotor supports. The application of magnetorheological squeeze film dampers enables their optimum performance to be achieved in a wide range of rotating speeds by adapting their damping effect to the current operating conditions. The damping force, which is produced by squeezing the layer of magnetorheological oil, can be controlled by changing magnetic flux passing through the lubricant. The force acting between the rotor and its frame is transmitted through the rolling element bearing, the lubricating layer and the squirrel spring. The loading of the bearing produces a time variable friction moment, energy losses, uneven rotor running, and has an influence on the rotor service life and the current fluctuation in electric circuits. The carried out research consisted in the development of a mathematical model of a magnetorheological squeeze film damper, its implementation into the computational models of rotor systems, and in performing the study on the dependence of the energy losses and variation of the friction moment on the damping force and its control. The new and computationally stable mathematical model of a magnetorheological squeeze film damper, its implementation in the computational models of rigid rotors and learning more on the energy losses generated in the rotor supports in dependence on the damping effect are the principal contributions of this paper. The results of the computational simulations prove that a suitable control of the damping force enables the energy losses to be reduced in a wide velocity range.
Dynamic modelling of flexibly supported gears using iterative convergence of tooth mesh stiffness
Xue, Song; Howard, Ian
2016-12-01
This paper presents a new gear dynamic model for flexibly supported gear sets aiming to improve the accuracy of gear fault diagnostic methods. In the model, the operating gear centre distance, which can affect the gear design parameters, like the gear mesh stiffness, has been selected as the iteration criteria because it will significantly deviate from its nominal value for a flexible supported gearset when it is operating. The FEA method was developed for calculation of the gear mesh stiffnesses with varying gear centre distance, which can then be incorporated by iteration into the gear dynamic model. The dynamic simulation results from previous models that neglect the operating gear centre distance change and those from the new model that incorporate the operating gear centre distance change were obtained by numerical integration of the differential equations of motion using the Newmark method. Some common diagnostic tools were utilized to investigate the difference and comparison of the fault diagnostic results between the two models. The results of this paper indicate that the major difference between the two diagnostic results for the cracked tooth exists in the extended duration of the crack event and in changes to the phase modulation of the coherent time synchronous averaged signal even though other notable differences from other diagnostic results can also be observed.
Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches
Larsen, Jon S.; Santos, Ilmar F.; von Osmanski, Sebastian
2016-10-01
High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is therefore important. This paper compares two fundamental methods for predicting the OSI. One is based on a nonlinear time domain simulation and another is based on a linearised frequency domain method and a perturbation of the Reynolds equation. Both methods are based on equivalent models and should predict similar results. Significant discrepancies are observed leading to the question, is the classical frequency domain method sufficiently accurate? The discrepancies and possible explanations are discussed in detail.
DEFF Research Database (Denmark)
Larsen, Jon Steffen; Santos, Ilmar
2015-01-01
The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristi...
Directory of Open Access Journals (Sweden)
Josip Sertić
2014-01-01
Full Text Available The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.
Sertić, Josip; Kozak, Dražan; Samardžić, Ivan
2014-01-01
The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.
Analysis of a Gyroscope's Rotor Nonlinear Supported Magnetic Field Based on the B-Spline Wavelet-FEM
Institute of Scientific and Technical Information of China (English)
LIU Jian-feng; YUAN Gan-nan; HUANG Xu; YU Li
2005-01-01
A supported framework of a gyroscope′s rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedron. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.
Directory of Open Access Journals (Sweden)
Mustapha Lahmar
2015-04-01
Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.
Magnetostatic analysis of a rotor system supported by radial active magnetic bearings
Directory of Open Access Journals (Sweden)
Ferfecki P.
2009-06-01
Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.
Gehb, C. M.; Platz, R.; Melz, T.
2016-09-01
Load-bearing structures with kinematic functions enable and disable degrees of freedom and are part of many mechanical engineering applications. The relative movement between a wheel and the body of a car or a landing gear and an aircraft fuselage are examples for load-bearing systems with defined kinematics. In most cases, the load is transmitted through a predetermined load path to the structural support interfaces. However, unexpected load peaks or varying health condition of the system's supports, which means for example varying damping and stiffness characteristics, may require an active adjustment of the load path. However, load paths transmitted through damaged or weakened supports can be the reason for reduced comfort or even failure. In this paper a simplified 2D two mass oscillator with two supports is used to numerically investigate the potential of controlled adaptive auxiliary kinematic guidance elements in a load-bearing structure to adapt the load path depending on the stiffness change, representing damage of the supports. The aim is to provide additional forces in the auxiliary kinematic guidance elements for two reasons. On the one hand, one of the two supports that may become weaker through stiffness change will be relieved from higher loading. On the other hand, tilting due to different compliance in the supports will be minimized. Therefore, shifting load between the supports during operation could be an effective option.
Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness
Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon
2015-09-01
In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.
Directory of Open Access Journals (Sweden)
Rob Eling
2017-03-01
Full Text Available Floating ring bearings are the commonly used type of bearing for automotive turbochargers. The automotive industry continuously investigates how to reduce the bearing friction losses and how to create silent turbochargers. Many of these studies involve creating a numerical model of the rotor-bearing system and performing validation on a test bench on which a turbocharger is driven by hot gases. This approach, however, involves many uncertainties which diminish the validity of the measurement results. In this study, we present a test setup in which these uncertainties are minimized. The measurement results show the behavior of the floating ring bearing as a function of oil feed pressure, oil feed temperature, rotor unbalance and bearing clearances. Next to an increased validity, the test setup provides measurement data with good repeatability and can therefore represent a case study which can be used for validation of rotor-bearing models.
Institute of Scientific and Technical Information of China (English)
黄晓东; 王卫卫; 蒋玮光
2012-01-01
直升机旋翼系统是直升机的核心部件,弹性轴承将桨叶与桨毂相连,提供桨叶的挥舞、摆振和变距自由度,刚度特性是其主要的力学性能.通过采用松紧螺套驱动半圆形夹具转动来测试弹性轴承压缩、扭转和弯曲刚度特性,结果表明该试验方法新颖独特,具有一定的通用性,能准确判定弹性轴承是否合格,可为不同机型的弹性轴承提供装机前试验的方法.%Rotor system is the core component of the helicopter, flexible blade with the spherical thrust bearing connected to provide the wielding, shimmy and pitch degrees of freedom, the stiffness characteristics is one of the main mechanical properties. Test the spherical thrust bearing compression, torsion and bending stiffness characteristics by twisting the screw to drive the semicircular fixture. These results indicated that the test method is distinctive and general. It can accurately determine whether the spherical thrust bearing is qualified and provide a test before installing for different type of spherical thrust bearings.
Energy Technology Data Exchange (ETDEWEB)
Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)
1997-12-31
The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.
Directory of Open Access Journals (Sweden)
Sang-Young Kim
2015-07-01
Full Text Available This article aims to study the in-plane stiffness estimation of heat pipe supporter (a large lattice structure using experimental and numerical methods. The in-plane stiffness of heat pipe supporter for nuclear power plant is very important because of the safety against natural disasters, such as seismic load or tsunami, and has to be evaluated because it greatly affects the durability of the heat exchanger. However, the modeling process of the whole lattice structure for finite element analysis increases resources needed caused by too many nodes and elements. In this study, the mechanical properties of large lattice structures are determined by a unit cell finite element analysis. The mechanical behavior of a large lattice structure has been estimated by finite element analysis through a homogenization process for reducing analysis time and efforts. The finite element analysis results have been verified and show a good agreement with the experimental results.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The difference discrete system of Euler-beam with arbitrary supports was constructed by using the two order central difference formulas. This system is equivalent to the spring-mass-rigidrod model. By using the theory of oscillatory matrix, the signoscillatory property of stiffness matrices of this system was proved, and the necessary and sufficient condition for the system to be positive was obtained completely.
Support vector machine used to diagnose the fault of rotor broken bars of induction motors
DEFF Research Database (Denmark)
Zhitong, Cao; Jiazhong, Fang; Hongpingn, Chen
2003-01-01
from the SLT. Here we were done some analogical experiments of the rotor broken bar faults of induction motors used, analyzed the signals of the sample currents with Fourier transform, and constructed the spectrum characteristics from low frequency to high frequency used as learning sample vectors...... for the SVM. After a SVM is trained with learning sample vectors, so each kind of the rotor broken bar faults of induction motors can be classified. Finally the retest is demonstrated, which proves that the SVM really has preferable ability of classification. In this paper we tried applying the SVM...... to diagnose the faults of induction motors, and the results suggested that the SVM could yet be regarded as a new method in the fault diagnosis....
DEFF Research Database (Denmark)
Pierart Vásquez, Fabián Gonzalo
Gas journal bearings have been increasingly adopted in modern turbo-machinery due to their numerous indisputable advantages. They can operate at higher speed than most bearing designs, almost without noise or heat generation and in most cases, as in this work, the gas used is air which is cheap...... work, the control signal design is based on a theoretical model. This approach enables easy modifications of any of the numerous physical parameters in the system if needed. The theoretical model used is based on a modifed version of Reynolds equation where an extra term is added in order to include...... frequencies and damping ratios of the rotor-bearing system) is performed and finally to design controllers that allows improvement of the dynamic properties of the rotor-active gas bearings system and lets the systemto safely cross the critical speeds, using the theoretical model as a design tool. The results...
Licht, L.
1978-01-01
Flexible surface thrust and journal foil bearings were fabricated, and their performance was demonstrated, both individually and jointly as a unified rotor support system. Experimental results are documented with graphs and oscilloscopic data of trajectories, waveforms, and scans of amplitude response. At speeds of 40,000 to 45,000 rpm and a mean clearance of the order of 15 to 20 micrometers (600 to 800 micrometers, the resilient, air lubricated, spiral groove thrust bearings support a load of 127 N (29 lb; 13 kgf), equivalent to 3.0 N/sq cm (4.5 lb/sq in 0.31 kgf sq cm). Journal bearings with polygonal sections provided stable and highly damped supports at speeds up to 50,000 rpm.
Directory of Open Access Journals (Sweden)
Hector A. Tinoco
2017-06-01
Full Text Available In this paper, an experimental method is described to identify the stiffness variations produced by drillings done in different supporting substances of a human canine tooth. To measure the supporting substances parameters through of a canine, a sensor-actuator system was developed. The sensor-actuator device was composed of a stainless steel bracket bonded to a steel wire attached to two piezoelectric transducers, with a concentrated mass attached to the end of the wire. To excite the device, high frequency voltage (between 5 and 10 KHz was applied through the piezo-transducers, which affects the tooth by means of the vibration of the wire. High frequency mechanical vibrations allowed the appraisal of the mechanical response from the supporting substances. Mechanical responses associated with the stiffness of the support were quantified with the electrical impedance of the piezo-transducers. The device was coupled to the crown of a canine tooth simulating a condition of fixing as in the bone, the tooth was fastened by the root portion inside the supporting substance. Four supporting substances were characterized for the tests. After establishing base values of the stiffness of each supporting substance, the stiffness variations were assessed in two stages (two drillings; these were made perpendicularly to the longitudinal axis of the tooth, Results show that it is possible to assess stiffness variations with the proposed methodology as well as to quantify the stiffness differences, by means of variation indexes.
Active tilting-pad journal bearings supporting flexible rotors: Part I – The hybrid lubrication
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2017-01-01
This is part I of a twofold paper series, of theoretical and experimental nature, presenting the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting-pad journal bearings (active TPJBs......). In part I, the flexible rotor-active TPJB modelling is thoroughly covered by establishing the link between the mechanical and hydraulic systems for all regimes. The hybrid lubrication is herein covered in depth; from a control viewpoint, an integral controller to aid such a regime is designed using model......-based standard tools. Results show slight improvement on the system dynamic performance by using the hybrid lubrication instead of the passive one. Further improvements are pursued with the active lubrication in part II....
Institute of Scientific and Technical Information of China (English)
LU Yanjun; LIU Heng; YU Lie; LI Qi; ZHANG Zhiyu; JIANG Ming
2007-01-01
Based on the variational constraint approach, the variational form of Reynolds equation in hydrodynamic lubrication is revised continuously to satisfy certain con- straints in the cavitation zone of oil film field. According to the physical characteristic of oil film, an eight-node isopara- metric finite element method is used to convert the revised variational form of Reynolds equation to a discrete form of finite dimensional algebraic variational equation. By this approach, a perturbance equation can be obtained directly on the finite element equation. Consequently, nonlinear oil film forces and their Jacobian matrices are calculated simul- taneously, and compatible accuracy is obtained without increasing the computational costs. A method, which is a combination ofpredictor-corrector mechanism and Newton- Raphson method, is presented to calculate equilibrium posi- tion and critical speed corresponding to Hopf bifurcation point of bearing-rotor system, as by-product dynamic coe- fficients of bearing are obtained. The timescale, i.e., the unknown whirling period of Hopf bifurcation solution of bearing-rotor system is drawn into the iterative process using Poincaré-Newton-Floquet method. The stability of the Hopf bifurcation solution can be detected when estimating Hopf bifurcation solution and its periods. The nonlinear unbalanced Tperiodic responses of the system are obtained by using PNF method and path-following technique. The local stability and bifurcation behaviors of T periodic motions are analyzed by Floquet theory. Chaotic motions are analyzed by Lyapunov exponents. The numerical results revealed the rich and complex nonlinear behavior of the system, such as periodic, quasiperiodic, jumped solution, chaos, and coexistence of multisolution, and so on.
Bifurcation onset delay in magnetic bearing systems by time varying stiffness
Ghazavi, M. R.; Sun, Q.
2017-06-01
We study the nonlinear dynamics behaviours of a rigid rotor supported by magnetic bearings. In particular, we consider the effect of rotor unbalanced mass and geometric coupling. Existing works in literature have mostly focused on a single value of parameter or a smaller range of the nonlinearities introduced by rotor imbalance and geometric coupling. This is partly due to the use of a linear PD controller which limits the system performance. In this paper, we use a nonlinear PD controller by adopting a time varying stiffness term. The control gains are chosen according to the stability chart for a Mathieu's equation. Consequently, we observe a delay in the onset of bifurcation indicating an improved rotor performance.
Preventing the oil film instability in rotor-dynamics
Sorge, F.
2016-09-01
Horizontal rotor systems on lubricated journal bearings may incur instability risks depending on the load and the angular speed. The instability is associated with the asymmetry of the stiffness matrix of the bearings around the equilibrium position, in like manner as the internal hysteretic instability somehow, where some beneficial effect is indeed obtainable by an anisotropic configuration of the support stiffness. Hence, the idea of the present analysis is to check if similar advantages are also obtainable towards the oil film instability. The instability thresholds are calculated by usual methods, such as the Routh criterion or the direct search for the system eigenvalues. The results indicate that the rotor performances may be improved in the range of low Sommerfeld numbers by softening the support stiffness in the vertical plane, and hardening it on the horizontal one, up to the complete locking, though this advantage has to be paid by rather lower instability thresholds for large Sommerfeld numbers. Nevertheless, a "two-mode" arrangement is conceivable, with some vertical flexibility of the supports for large journal eccentricity, and complete locking for small eccentricity. As another alternative, the support anisotropy may be associated with the use of step bearings, whose particular characteristic is to improve the stability for small eccentricities.
Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D
2015-03-01
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.
Rotor damage detection by using piezoelectric impedance
Qin, Y.; Tao, Y.; Mao, Y. F.
2016-04-01
Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
Directory of Open Access Journals (Sweden)
Haifeng Gao
2015-04-01
Full Text Available This research article analyzes the resonant reliability at the rotating speed of 6150.0 r/min for low-pressure compressor rotor blade. The aim is to improve the computational efficiency of reliability analysis. This study applies least squares support vector machine to predict the natural frequencies of the low-pressure compressor rotor blade considered. To build a more stable and reliable least squares support vector machine model, leave-one-out cross-validation is introduced to search for the optimal parameters of least squares support vector machine. Least squares support vector machine with leave-one-out cross-validation is presented to analyze the resonant reliability. Additionally, the modal analysis at the rotating speed of 6150.0 r/min for the rotor blade is considered as a tandem system to simplify the analysis and design process, and the randomness of influence factors on frequencies, such as material properties, structural dimension, and operating condition, is taken into consideration. Back-propagation neural network is compared to verify the proposed approach based on the same training and testing sets as least squares support vector machine with leave-one-out cross-validation. Finally, the statistical results prove that the proposed approach is considered to be effective and feasible and can be applied to structural reliability analysis.
Modeling and Analysis of a Micromotor with an Electrostatically Levitated Rotor
Institute of Scientific and Technical Information of China (English)
HAN Fengtian; WU Qiuping; ZHANG Rong
2009-01-01
The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor and further optimize the device geometry. The analytical torque model is obtained based on the principle of a planar variable-capacitance electrostatic motor while the viscous damping caused by air film between the stator and rotor is derived using laminar Couette flow model.Simulation results of the closed-loop drive motor, based on the developed dynamic model after eliminating mechanical friction torque via electrostatic suspension, are presented. The effects of the high-voltage drive, required for rotation of the rotor, on overload capacity and suspension stiffness of the electrostatic bearing system are also analytically evaluated in an effort to determine allowable drive voltage and attainable rotor speed in operation. The analytical results show that maximum speed of the micromotor is limited mainly by viscous drag torque and stiffness of the bearing system. Therefore, it is expected to operate the device in vacuum so as to increase the rotor speed significantly, especially for those electrostatically levitated micromotors to be used as an angular rate micro-gyroscope.
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2014-01-01
In this work, the feedback-controlled lubrication regime, based on a model-free designed proportional-derivative (PD) controller, is studied and experimentally tested in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing (active TPJB). With such a lubrication regime......-controlled lubrication regime featured via PD controllers. Good experimental results are obtained, and a significant improvement of the flexible rotor-bearing system dynamic performance can be experimentally demonstrated....
Directory of Open Access Journals (Sweden)
Chaowu Jin
2016-01-01
Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.
Institute of Scientific and Technical Information of China (English)
沈那伟; 陈照波; 焦映厚; 马文生
2012-01-01
The rotor dynamic performance of an overhung rotor supported on floating ring bearings (FRBs) was analysed. The Reynolds equation and bushing motive regulation of FRB were established. The forces of two oil films were calculated by using 4 - node isoperimetric h-version refining FEA method linking with Galerkin approximation. The equivalent stiffness and damping coefficients of the FRB were obtained combining and solving the dynamic equations. Rotodynamic simulations were carried out to discuss the critical speed and unbalance response by using the commercial software Ansys 12. 1. As compared with test results, the proposed model of overhung rotor system is of good validity and practicability in design.%对浮环轴承支承的悬臂转子系统的动力学特性进行分析,建立了浮环轴承双层油膜Reynolds方程和浮环运动方程.采用4节点等参h-精细有限元网格,通过Galerkin方法求解系统Reynolds方程得到双层油膜压力.在小摄动范围内,联合悬臂转子系统的动力学方程、浮环运动方程求出浮环轴承的等效刚度和阻尼系数.应用商业有限元软件ANSYS12.1对实际微型燃气轮机用浮环轴承-悬臂转子系统进行临界转速、谐响应及不平衡响应等转子动力学仿真计算.通过与实验结果对比,验证了此物理计算模型的正确性,并证明了用此方法分析浮环轴承-悬臂转子转子动力学问题具有实际意义.
2006-10-31
Molecular Dipolar Rotors on Insulating Surfaces," Salamanca , Spain. Trends in Nanotechnology Conference. September 5-9, 2003 [86] Laura I. Clarke, Mary Beth...Horansky at the Trends in Nanotechnology Conference, Salamanca , Spain (September 5-9, 2003). [145] Michl, J. “Unusual Molecules: Artificial Surface...temperature and frequency for difluorophenylene rotor crystal. Figure JP6. Monte Carlo results for the local potential asymmetry at
Model updating of rotor systems by using Nonlinear least square optimization
Jha, A. K.; Dewangan, P.; Sarangi, M.
2016-07-01
Mathematical models of structure or machineries are always different from the existing physical system, because the approach of numerical predictions to the behavior of a physical system is limited by the assumptions used in the development of the mathematical model. Model updating is, therefore necessary so that updated model should replicate the physical system. This work focuses on the model updating of rotor systems at various speeds as well as at different modes of vibration. Support bearing characteristics severely influence the dynamics of rotor systems like turbines, compressors, pumps, electrical machines, machine tool spindles etc. Therefore bearing parameters (stiffness and damping) are considered to be updating parameters. A finite element model of rotor systems is developed using Timoshenko beam element. Unbalance response in time domain and frequency response function have been calculated by numerical techniques, and compared with the experimental data to update the FE-model of rotor systems. An algorithm, based on unbalance response in time domain is proposed for updating the rotor systems at different running speeds of rotor. An attempt has been made to define Unbalance response assurance criterion (URAC) to check the degree of correlation between updated FE model and physical model.
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2015-01-01
The feedback-controlled lubrication regime, based on a model-free designed proportional–derivative controller, is experimentally investigated in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing. With such a lubrication regime, both the resulting pressure distribution......-controlled lubrication regime featured via proportional–derivative controllers....
Directory of Open Access Journals (Sweden)
Fawzi M.A. El-Saeidy
2011-01-01
Full Text Available A lagrangian formulation is presented for the total dynamic stiffness and damping matrices of a rigid rotor carrying noncentral rigid disk and supported on angular contact ball bearings (ACBBs. The bearing dynamic stiffness/damping marix is derived in terms of the bearing motions (displacements/rotations and then the principal of virtual work is used to transfer it from the bearing location to the rotor mass center to obtain the total dynamic stiffness/damping matrix. The bearing analyses take into account the bearing nonlinearities, cage rotation and bearing axial preload. The coefficients of these time-dependent matrices are presented analytically. The equations of motion of a rigid rotor-ACBBs assembly are derived using Lagrange's equation. The proposed analyses on deriving the bearing stiffness matrix are verified against existing bearing analyses of SKF researchers that, in turn, were verified using both SKF softwares/experiments and we obtained typical agreements. The presented total stiffness matrix is applied to a typical grinding machine spindle studied experimentally by other researchers and excellent agreements are obtained between our analytical eigenvalues and the experimental ones. The effect of using the total full stiffness matrix versus using the total diagonal stiffness matrix on the natural frequencies and dynamic response of the rigid rotor-bearings system is studied. It is found that using the diagonal matrix affects natural frequencies values (except the axial frequency and response amplitudes and pattern and causes important vibration tones to be missig from the response spectrum. Therefore it is recommended to use the full total stiffness matrix and not the diagonal matrix in the design/vibration analysis of these rotating machines. For a machine spindle-ACBBs assembly under mass unbalnce and a horizontal force at the spindle cutting nose when the bearing time-varying stiffness matrix (bearing cage rotation is considered
Directory of Open Access Journals (Sweden)
Zapoměl J.
2011-06-01
Full Text Available Lateral vibration of rotors can be significantly reduced by inserting the damping elements between the shaft and the casing. The theoretical analysis, confirmed by computational simulations, shows that to achieve the optimum compromise between attenuation of the oscillation amplitude and magnitude of the forces transmitted through the coupling elements between the rotor and the stationary part, the damping effect must be controllable. For this purpose, the squeeze film dampers lubricated by magnetorheological fluid can be applied. The damping effect is controlled by the change of intensity of the magnetic field in the lubricating film. This article presents a procedure developed for investigation of the steady state response of rigid rotors coupled with the casing by flexible elements and short magnetorheological dampers. Their lateral vibration is governed by nonlinear (due to the damping forces equations of motion. The steady state solution is obtained by application of a collocation method, which arrives at solving a set of nonlinear algebraic equations. The pressure distribution in the oil film is described by a Reynolds equation modified for the case of short dampers and Bingham fluid. Components of the damping force are calculated by integration of the pressure distribution around the circumference and along the length of the damper. The developed procedure makes possible to determine the steady state response of rotors excited by their unbalance, to determine magnitude of the forces transmitted through the coupling elements in the supports into the stationary part and is intended for proposing the control of the damping effect to achieve optimum performance of the dampers.
Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao
2015-07-01
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).
Directory of Open Access Journals (Sweden)
Ravi Mittal
2017-01-01
Full Text Available Posttraumatic stiff elbow is a frequent and disabling complication and poses serious challenges for its management. In this review forty studies were included to know about the magnitude of the problem, causes, pathology, prevention, and treatment of posttraumatic stiff elbow. These studies show that simple measures such as internal fixation, immobilization in extension, and early motion of elbow joint are the most important steps that can prevent elbow stiffness. It also supports conservative treatment in selected cases. There are no clear guidelines about the choice between the numerous procedures described in literature. However, this review article disproves two major beliefs-heterotopic ossification is a bad prognostic feature, and passive mobilization of elbow causes elbow stiffness.
Mittal, Ravi
2017-01-01
Posttraumatic stiff elbow is a frequent and disabling complication and poses serious challenges for its management. In this review forty studies were included to know about the magnitude of the problem, causes, pathology, prevention, and treatment of posttraumatic stiff elbow. These studies show that simple measures such as internal fixation, immobilization in extension, and early motion of elbow joint are the most important steps that can prevent elbow stiffness. It also supports conservative treatment in selected cases. There are no clear guidelines about the choice between the numerous procedures described in literature. However, this review article disproves two major beliefs-heterotopic ossification is a bad prognostic feature, and passive mobilization of elbow causes elbow stiffness.
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2017-01-01
This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical and experimen......This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical...... and experimental analyses are presented with focus on the reduction of rotor lateral vibration. This part is devoted to synthesising model-based LQG optimal controllers (LQR regulator + Kalman Filter) for the feedback-controlled lubrication and is based upon the mathematical model of the rotor-bearing system...... derived in part I. Results show further suppression of resonant vibrations when using the feedback-controlled or active lubrication, overweighting the reduction already achieved with hybrid lubrication, thus improving the whole machine dynamic performance....
Instability analysis procedure for 3-level multi-bearing rotor-foundation systems
Zhou, S.; Rieger, N. F.
1985-01-01
A procedure for the instability analysis of a three-level multispan rotor systems is described. This procedure is based on a distributed mass elastic representation of the rotor system in several eight-coefficient bearings. Each bearing is supported from an elastic foundation on damped, elastic pedestals. The foundation is represented as a general distributed mass elastic structure on discrete supports, which may have different stiffness and damping properties in the horizontal and vertical directions. This system model is suited to studies of instability threshold conditions for multirotor turbomachines on either massive or flexible foundations. The instability conditions is found by obtaining the eigenvalues of the system determinant, which is obtained by the transfer matrix method from the three-level system model. The stability determinant is solved for the lowest rotational speed at which the system damping becomes zero in the complex eigenvalue, and for the whirl frequency corresponding to the natural frequency of the unstable mode. An efficient algorithm for achieving this is described. Application of this procedure to a rigid rotor in two damped-elastic bearings and flexible supports is described. A second example discusses a flexible rotor with four damped-elastic bearings. The third case compares the stability of a six-bearing 300 Mw turbine generator unit, using two different bearing types. These applications validate the computer program and various aspects of the analysis.
Weldon, W. F.; Bacon, J. L.; Weeks, D. A.; Zowarka, R. C., Jr.
1991-01-01
Stiff guns have been operated with both plasma and solid armatures. A performance gain was seen in the plasma railgun as stiffness was increased. A stiff gun will help to maintain the bore shape and preserve the integrity of the seam between rail and insulator under the extreme asymmetric loads sustained during high-pressure operation. The hydraulically preloaded moly and ceramic gun has been fired six times at pressures as high as 87 ksi, and the bore still holds roughing vacuum up to two hours after the test. The elimination of seam leakage helps control bore erosion associated with plasma reconstitution from the rail and plasma perturbation that might result in loss-initiating instabilities. Reduced rail deflection allows solid and transitioning armatures to track the bore surface. An analysis of the strain energy associated with the deflection of the railgun structure is presented, and this mechanism is found to be a small fraction of the energy associated with armature loss and the rail resistive loss.
Avolio, Alberto
2013-04-01
Stiffness of large arteries has been long recognized as a significant determinant of pulse pressure. However, it is only in recent decades, with the accumulation of longitudinal data from large and varied epidemiological studies of morbidity and mortality associated with cardiovascular disease, that it has emerged as an independent predictor of cardiovascular risk. This has generated substantial interest in investigations related to intrinsic causative and associated factors responsible for the alteration of mechanical properties of the arterial wall, with the aim to uncover specific pathways that could be interrogated to prevent or reverse arterial stiffening. Much has been written on the haemodynamic relevance of arterial stiffness in terms of the quantification of pulsatile relationships of blood pressure and flow in conduit arteries. Indeed, much of this early work regarded blood vessels as passive elastic conduits, with the endothelial layer considered as an inactive lining of the lumen and as an interface to flowing blood. However, recent advances in molecular biology and increased technological sophistication for the detection of low concentrations of biochemical compounds have elucidated the highly important regulatory role of the endothelial cell affecting vascular function. These techniques have enabled research into the interaction of the underlying passive mechanical properties of the arterial wall with the active cellular and molecular processes that regulate the local environment of the load-bearing components. This review addresses these emerging concepts.
Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft
Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.
1981-01-01
Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.
Wind Turbine Rotors with Active Vibration Control
DEFF Research Database (Denmark)
Svendsen, Martin Nymann
are assumed to be proportional to the relative inflow angle, which also gives a linear form with equivalent stiffness and damping terms. Geometric stiffness effects including the important stiffening from tensile axial stresses in equilibrium with centrifugal forces are included via an initial stress......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...
Eigenfrequency sensitivity analysis of flexible rotors
Directory of Open Access Journals (Sweden)
Šašek J.
2007-10-01
Full Text Available This paper deals with sensitivity analysis of eigenfrequencies from the viewpoint of design parameters. The sensitivity analysis is applied to a rotor which consists of a shaft and a disk. The design parameters of sensitivity analysis are the disk radius and the disk width. The shaft is modeled as a 1D continuum using shaft finite elements. The disks of rotating systems are commonly modeled as rigid bodies. The presented approach to the disk modeling is based on a 3D flexible continuum discretized using hexahedral finite elements. The both components of the rotor are connected together by special proposed couplings. The whole rotor is modeled in rotating coordinate system with considering rotation influences (gyroscopic and dynamics stiffness matrices.
Fan, Feng; Sun, Menghan; Zhi, Xudong
2016-06-01
Static and dynamic force performance of two types of space truss structures i.e. square pyramid space truss (SPST) and diagonal on square pyramid space truss (DSPST), are studied to determine the effect of stiffness of their lower supporting members. A simplified model for the supporting columns and the equivalent spring mass system are presented. Furthermore, the feasibility of the simplified model is demonstrated through theoretical analysis and examples of comparative analysis of the simplified model with the entire model. Meanwhile, from the elastic analysis under frequently occurring earthquakes and elasto-plastic analysis under seldom occurring earthquakes subjected to TAFT and EL-Centro seismic oscillation it is shown that the simplified method can be encompassed in the results from the normal model. It also showed good agreement between the two methods, as well as greatly improved the computational efficiency. This study verified that the dynamic effect of the supporting structures was under considered in space truss design in the past. The method proposed in the paper has important significance for other space truss structures.
Stable levitation of steel rotors using permanent magnets and high-temperature superconductors
Hull, J. R.; Passmore, J. L.; Mulcahy, T. M.; Rossing, T. D.
1994-07-01
Individual freely spinning magnetic steel rotors were levitated by combining the attractive force between permanent magnets and the rotor with the repulsive force between high-temperature superconductors and the steel. The levitation force and stiffness of several configurations are presented, and the application of this levitation method to high-speed bearings is discussed.
Van Zante, Dale E.; Rizzi, Stephen A.
2016-01-01
The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.
Institute of Scientific and Technical Information of China (English)
李学军; 蒋玲莉; 刘德顺
2005-01-01
回转窑是冶金、水泥、耐火材料生产中的核心设备,是一种重载、大扭矩、多支点、静不定运行系统,由于其载荷和刚度分布复杂、各支承存在偏移,作用在它托轮上的支承载荷分配严重不均.本文针对回转窑载荷和刚度分布的特点,建立支承载荷求解的力学模型和线性方程组,导出支承载荷分配与支承偏差的关系式;用该方法对现场回转窑进行计算,得出该窑支承载荷分配的线性公式和一些分析结论,为生产中回转窑的状态分析、优化调控提供依据.%Kiln are the key equipment in the production of metallurgy, cement and material of fire-fast. It is the statically indeterminate system with over load, large torque and multi-support. Because of the complexity of load and stiffness distribution of the rotary kiln, the deflection of supporting center, the supporting load distribution will become seriously non-uniform. To the characters of load and stiffness distribution of the rotary kiln, the mechanical model and equation group are established, which are used to solve the variable-stiffness beam upon complex load for kiln. The relation between the supporting load distribution and deflection is derived. Accordingly, the liner formulas for calculating the support force of the support wheels fixing on the rotate kiln are obtained from the practical calculation of rotary kilns, and some useful analysis conclusions are obtained. This will provide helpful guide to condition analysis and optimization control of rotary kiln.
Directory of Open Access Journals (Sweden)
Hamidreza Heidari
2016-12-01
Full Text Available One of the main challenges in the design of rotating machinery is the occurrence of undesirable vibration. In this paper, stability and bifurcation of the unbalance response of a rigid rotor supported by squeeze film damper with asymmetry in centralizing spring are investigated. The unbalanced rotor response is determined by the shooting method and the stability of these solutions is examined by using the Floquet theorem. Numerical examples are given for both symmetric (Kx=Ky and asymmetry (Kx≠Ky centralizing springs in x or y direction. Jump phenomenon and subharmonic and quasi-periodic vibrations are predicted for a range of design and operating parameters such as the unbalancing (U, gravity (W, bearing (B and spring (K. The results show that increasing the spring stiffness asymmetry parameter in y direction has no influence on the nature of system response and occurrence of bifurcation. But, examining the effect of increase in stiffness parameter in x direction leads to occurrence instability and period-doubling bifurcation in response to the system. Our findings show that this phenomena are due to the weight force in the y direction. Finally, it is shown that the unsymmetrical stiffness of squeeze film dampers in the presence of cavitation promoting the chance of undesirable nonsynchronous vibrations.
Sinha, Sunil K.
2013-04-01
Loss of a blade from a running turbofan rotor introduces not only huge imbalance into the dynamical system rather it makes the entire rotor asymmetric as well. In a nonsymmetric rotor, the various terms of mass, gyroscopic and stiffness matrices also become time-dependent. In this paper, all the dynamical equations include the effect of the rotary inertia and gyroscopic moments as a result of both shaft bending as well as staggered blades flexing in-and-out of the plane of the disk. The governing equations also account for internal material damping in the shaft and the external damping in the support bearing system. In addition to the unbalance load at the disk location, the shaft may also be subjected to a torque and axial forces. Here, the fan blades are modeled as pre-twisted thin shallow shells. They have coupled flexural-torsional motion in the lateral out-of-plane direction as well as extensional degrees-of-freedom in the longitudinal spanwise direction of the blade airfoil. The effect of blade tip rub forces being transmitted to the shaft are analyzed in terms of the dynamic stability of the rotor, especially during windmilling.
Synchronous b ehavior of a rotor-p endulum system%转子耦合摆系统的同步行为理论研究∗
Institute of Scientific and Technical Information of China (English)
方潘; 侯勇俊; 张丽萍; 杜明俊; 张梦媛
2016-01-01
Rotor-pendulum systems are widely applied to aero-power plants, mining screening machineries, parallel robots, and other high-speed rotating equipment. However, the investigation for synchronous behavior (the computation for stable phase difference between the rotors) of a rotor-pendulum system has been reported very little. The synchronous behavior usually affects the performance precision and quality of a mechanical system. Based on the special background, a simplified physical model for a rotor-pendulum system is introduced. The system consists of a rigid vibrating body, a rigid pendulum rod, a horizontal spring, a torsion spring, and two unbalanced rotors. The vibrating body is elastically supported via the horizontal spring. One of unbalanced rotors in the system is directly mounted in the vibrating body, and the other is fixed at the end of the pendulum rod connected with the vibrating body by the torsion spring. In addition, the rotors are actuated with the identical induction motors. In this paper, we investigate the synchronous state of the system based on Poincaré method, which further reveals the essential mechanism of synchronization phenomenon of this system. To determine the synchronous state of the system, the following computation technologies are implemented. Firstly, the dynamic equation of the system is derived based on the Lagrange equation with considering the homonymous and reversed rotation of the two rotors, then the equation is converted into a dimensionless equation. Further, the dimensionless equation is decoupled by the Laplace method, and the approximated steady solution and coupling coeﬃcient of each degree of freedom are deduced. Afterwards, the balanced equation and the stability criterion of the system are acquired. Only should the values of physical parameters of the system satisfy the balanced equation and the stability criterion, the rotor-pendulum system can implement the synchronous operation. According to the theoretical
... include: Arthritis Fractures Dislocations Bad sprains Tendon and muscle injuries Evaluating Hand Stiffness Your doctor will ask when the stiffness ... scan. CAUSES SIGNS AND ... stretching exercises for the joints and muscles to help loosen them. Different types of splints ...
Improving Performance of Cantilevered Momentum Wheel Assemblies by Soft Suspension Support
Directory of Open Access Journals (Sweden)
Weiyong Zhou
2013-01-01
Full Text Available This paper focuses on improving the performance of the rigid support cantilevered momentum wheel assemblies (CMWA by soft suspension support. A CMWA, supported by two angular contact ball bearings, was modeled as a Jeffcott rotor. The support stiffness, before and after in series with a linear soft suspension support, were simplified as two Duffing's type springs respectively. The result shows that the rigid support CMWA produces large disturbance force at the resonance speed range. The soft suspension CMWA can effectively reduce the force on the bearing (also disturbance forces produced by the CMWA at high rotational speed, and also reduce the nonlinear characteristic of the stiffness. However, the instability of the soft suspension CMWA will limit the maximum rotational speed of the CMWA. Thus, a "proper" stiffness of the soft suspension system is a trade-off strategy between reduction of the force and extension of the speed range simultaneously.
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Timin, A. V.; Boichenko, S. N.
2017-09-01
Examples of using the method developed for the earlier proposed concept of the monitoring system of the technical condition of a turbounit are presented. The solution methods of the inverse problem—the calculation of misalignments of supports based on the measurement results of positions of rotor pins in the borings of bearings during the operation of a turbounit—are demonstrated. The results of determination of static responses of supports at operation misalignments are presented. The examples of simulation and calculation of misalignments of supports are made for the three-bearing "high-pressure rotor-middle-pressure rotor" (HPR-MPR) system of a turbounit with 250 MW capacity and for 14-supporting shafting of a turbounit with 1000 MW capacity. The calculation results of coefficients of the stiffness matrix of shaftings and testing of methods for solving the inverse problem by modeling are presented. The high accuracy of the solution of the inverse problem at the inversion of the stiffness matrix of shafting used for determining the correcting centerings of rotors of multisupporting shafting is revealed. The stiffness matrix can be recommended to analyze the influence of displacements of one or several supports on changing the support responses of shafting of the turbounit during adjustment after assembling or repair. It is proposed to use the considered methods of evaluation of misalignments in the monitoring systems of changing the mutual position of supports and centerings of rotors by half-couplings of turbounits, especially for seismically dangerous regions and regions with increased sagging of foundations due to watering of soils.
Dynamic behavior of aero-engine rotor with fusing design suffering blade off
Directory of Open Access Journals (Sweden)
Cun WANG
2017-06-01
Full Text Available Fan blade off (FBO from a running turbofan rotor will introduce sudden unbalance into the dynamical system, which will lead to the rub-impact, the asymmetry of rotor and a series of interesting dynamic behavior. The paper first presents a theoretical study on the response excited by sudden unbalance. The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball, journal sticking, high stress on the other components and some other failures to endanger the safety of engine in FBO event. Therefore, the dynamic influence of a safety design named “fusing” is investigated by mechanism analysis. Meantime, an explicit FBO model is established to simulate the FBO event, and evaluate the effectiveness and potential dynamic influence of fusing design. The results show that the fusing design could reduce the vibration amplitude of rotor, the reaction force on most bearings and loads on mounts, but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance. Therefore, the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.
Ciccoto, Giuseppe; Blaya, Maike; Kelley, Roger E
2013-02-01
Recognizing stiff person syndrome is clinically important. It is uncommon, characterized by body stiffness associated with painful muscle spasms, and varies in location and severity. It is subdivided into stiff trunk versus stiff limb presentation, and as a progressive encephalomyelitis. Stiff person-type syndrome also reflects a paraneoplastic picture. Most patients demonstrate exaggerated lumbar lordosis. Roughly 60% of patients have antiglutamic acid decarboxylase antibodies in the blood and the cerebrospinal fluid. The differential diagnosis includes many severe conditions. There are reports of response to muscle relaxants, immunosuppressants, intravenous gamma globulin, plasma exchange, a number of anticonvulsants, and botulinum toxin.
Schmied, J.; Pradetto, J. C.
1994-01-01
The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.
Directory of Open Access Journals (Sweden)
FENG HE
2017-03-01
Full Text Available In this paper, an effective tool based on harmonic balance method to assess the forced response of these systems under parametric changes is developed. A flexible rotor with multiple masses supported on a squeeze film damper at one end is investigated and modeled using finite element method. The forced response of this asymmetrically supported system is calculated using the harmonic balance method with a predictor-corrector procedure by changing unidirectional loads, stiffness of centering spring of the damper and the gyroscopic effects of the disks. It is observed that under large unbalance forces, jump phenomenon occurs due to the nonlinear forces of SFD which indicates the presence of multiple harmonics within the response of the SFD operating at high eccentricity ratios and shows the insensitivity of the damper to surrounding gyroscopic variation.
Directory of Open Access Journals (Sweden)
Jirar Topouchian
2007-09-01
Full Text Available Jirar Topouchian1, Ramzi El Feghali1, Bruno Pannier1, Shuyu Wang2, Feng Zhao3, Karel Smetana4, Koon Teo3, Roland Asmar11The CardioVascular Institute, Paris, France; 2Beijing Clinical Trial and Research Center, Beijing, China; 3Population Health Research Institute, Hamilton, Canada; 4Vojenska nemocnice Plzen, Pizen, Czech RepublicAbstract: The degree of arterial stiffness is correlated with the risk of cardiovascular diseases and it is a powerful predictor for morbidity and mortality. Studies have shown that arterial stiffness reduction is associated with an improvement in survival. Reduction of arterial stiffness by pharmacological drugs varies according to the drugs and doses used and duration of treatment. This effect on the arteries differs among the various classes of drugs and among individual drugs in the same class. Quantification of the stiffness and other properties of the arterial wall can be used to monitor the responses to therapy in individuals with hypertension and other cardiovascular diseases. These measures can then be used as surrogate markers for the risk of clinical events. Inhibition of the renin-angiotensin system (RAS is associated with an important decrease in cardiovascular risk. Findings from clinical trials support the hypothesis that the protective effects of RAS inhibition are partly independent from blood pressure reduction and related to several mechanisms including vascular protective effects. The aim of the TRanscend Arterial stiffNess Substudy (TRANS is to assess the effect of an angiotensin II receptor blocker (ARB, telmisartan, on the arterial stiffness in a subgroup of patients from the Telmisartan Randomized Assessment Study in aCE iNtolerant subjects with cardiovascular Disease (TRANSCEND trial. The TRANSCEND trial is an international, multicenter, randomized double blind placebo controlled trial of telmisartan that enrolled patients at high risk for cardiovascular events. Some clinical baseline data of the
Open Rotor Aeroacoustic Modelling
Envia, Edmane
2012-01-01
Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.
Study to Improve Turbine Engine Rotor Blade Containment
1977-08-01
compressor stages, two low turbine stages, two high turbine stages, and two intershaft locations. The clearance at each possible ub location was aet to...for a fan rotor failure which were: engine mounts, low rotor bearings and bearing supports, fan coupling nut, low shaft, low turbine tierods, and all
Estimating Gear Teeth Stiffness
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2013-01-01
The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffness’s of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact length is constant....
Stiffness of compression devices
Directory of Open Access Journals (Sweden)
Giovanni Mosti
2013-03-01
Full Text Available This issue of Veins and Lymphatics collects papers coming from the International Compression Club (ICC Meeting on Stiffness of Compression Devices, which took place in Vienna on May 2012. Several studies have demonstrated that the stiffness of compression products plays a major role for their hemodynamic efficacy. According to the European Committee for Standardization (CEN, stiffness is defined as the pressure increase produced by medical compression hosiery (MCH per 1 cm of increase in leg circumference.1 In other words stiffness could be defined as the ability of the bandage/stockings to oppose the muscle expansion during contraction.
Dynamic Analysis of a Helicopter Rotor by Dymore Program
Doğan, Vedat; Kırca, Mesut
The dynamic behavior of hingeless and bearingless blades of a light commercial helicopter which has been under design process at ITU (İstanbul Technical University, Rotorcraft Research and Development Centre) is investigated. Since the helicopter rotor consists of several parts connected to each other by joints and hinges; rotors in general can be considered as an assembly of the rigid and elastic parts. Dynamics of rotor system in rotation is complicated due to coupling of elastic forces (bending, torsion and tension), inertial forces, control and aerodynamic forces on the rotor blades. In this study, the dynamic behavior of the rotor for a real helicopter design project is analyzed by using DYMORE. Blades are modeled as elastic beams, hub as a rigid body, torque tubes as rigid bodies, control links as rigid bodies plus springs and several joints. Geometric and material cross-sectional properties of blades (Stiffness-Matrix and Mass-Matrix) are calculated by using VABS programs on a CATIA model. Natural frequencies and natural modes of the rotating (and non-rotating) blades are obtained by using DYMORE. Fan-Plots which show the variation of the natural frequencies for different modes (Lead-Lag, Flapping, Feathering, etc.) vs. rotor RPM are presented.
Studies on dynamic characteristics of the joint in the aero-engine rotor system
Shuguo, Liu; Yanhong, Ma; Dayi, Zhang; Jie, Hong
2012-05-01
The joint as a major part of the aero-engine rotating shafts directly influences its rotordynamics and state stability. This paper studies the dynamic effects of structure parameters and the external load on the stiffness and contact state of the rotor joints with nonlinear finite-element method and experiments. And a sensitivity analysis of critical speeds and vibration modes with respect to typical parameters (stiffness of the spline joints) is performed with finite difference methods, through two approaches, i.e. relative sensitivity analysis and absolute sensitivity analysis. The study results show that the stiffness and contact state of joints vary with external loads and geometry structures, and affect the rotor system operating. It is advisable to consider the influence of the position, structural parameter and external load of the rotor joints on aero-engine structure dynamics design.
Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...
Structural characterization of rotor blades through photogrammetry
Bernardini, Giovanni; Serafini, Jacopo; Enei, Claudio; Mattioni, Luca; Ficuciello, Corrado; Vezzari, Valerio
2016-06-01
This paper deals with the use of photogrammetry for the experimental identification of structural and inertial properties of helicopter rotor blades4. The identification procedure is based upon theoretical/numerical algorithms for the evaluation of mass and flexural stiffness distributions which are an extension of those proposed in the past by Larsen, whereas the torsional properties (stiffness and shear center position) are determined through the Euler-Bernoulli beam theory. The identification algorithms require the knowledge of the blade displacement field produced by known steady loads. These data are experimentally obtained through photogrammetric detection technique, which allows the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D digital photos. Indeed, the displacement field is simply evaluated by comparing the markers positions on the loaded configuration with those on the reference one. The proposed identification procedure, numerically and experimentally validated in the past by the authors, has been here applied to the structural characterization of two main rotor blades, designed for ultra-light helicopters. Strain gauges measurements have been used to assess the accuracy of the identified properties through natural frequencies comparison as well as to evaluate the blades damping characteristics.
Efficient Beam-Type Structural Modeling of Rotor Blades
DEFF Research Database (Denmark)
Couturier, Philippe; Krenk, Steen
2015-01-01
The present paper presents two recently developed numerical formulations which enable accurate representation of the static and dynamic behaviour of wind turbine rotor blades using little modeling and computational effort. The first development consists of an intuitive method to extract fully...... coupled six by six cross-section stiffness matrices with limited meshing effort. Secondly, an equilibrium based beam element accepting directly the stiffness matrices and accounting for large variations in geometry and material along the blade is presented. The novel design tools are illustrated...
Stiff substrates enhance cultured neuronal network activity.
Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng
2014-08-28
The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.
Solution of the Lyapunov matrix equation for a system with a time-dependent stiffness matrix
DEFF Research Database (Denmark)
Pommer, Christian; Kliem, Wolfhard
2004-01-01
The stability of the linearized model of a rotor system with non-symmetric strain and axial loads is investigated. Since we are using a fixed reference system, the differential equations have the advantage to be free of Coriolis and centrifugal forces. A disadvantage is nevertheless the occurrenc...... of time-dependent periodic terms in the stiffness matrix. However, by solving the Lyapunov matrix equation we can formulate several stability conditions for the rotor system. Hereby the positive definiteness of a certain averaged stiffness matrix plays a crucial role....
Rotor Systems of Aircraft Jet Engines
Directory of Open Access Journals (Sweden)
Ján Kamenický
2000-01-01
engine's both coaxial rotors, their supports (including their hydrodynamic dampers, and its casing as well. Besides the short description of the engine design peculiarities and of its calculating model, there is also a short description of the used method of calculations, with focus on its peculiarities as well. Finally, some results of calculations and conclusions that follow from them are presented.
STABILITY OF ROTOR-BEARING SYSTEMS
Directory of Open Access Journals (Sweden)
Uğur YÜCEL
2003-03-01
Full Text Available In various industrial applications there is a need for higher speed, yet reliably operating rotating machinery. A key factor in achieving this type of machinery continues to be the ability to accurately predict the dynamic response and stability of a rotor-bearing system. This paper introduces and explains the nature of rotordynamic phenomena from comparatively simple analytic models. Starting with the most simple rotor model that is supported in two rigid bearings at its ends, the more realistic and more involved cases are considered by incorporating the effects of flexible bearings. Knowledge of these phenomena is fundamental to an understanding of the behavior of complex models, which corresponds to the real rotors of turbomachines.
Rotor balancing apparatus and system
Lyman, Frank (Inventor); Lyman, Joseph (Inventor)
1976-01-01
Rotor balancing apparatus and a system comprising balance probes for measuring unbalance at the ends of a magnetically suspended rotor are disclosed. Each balance probe comprises a photocell which is located in relationship to the magnetically suspended rotor such that unbalance of the rotor changes the amount of light recorded by each photocell. The signal from each photocell is electrically amplified and displayed by a suitable device, such as an oscilloscope.
Vascular Stiffness in Insulin Resistance and Obesity
Directory of Open Access Journals (Sweden)
Guanghong eJia
2015-08-01
Full Text Available Obesity, insulin resistance, and type 2 diabetes are associated with a substantially increased prevalence of vascular fibrosis and stiffness, with attendant increased risk of cardiovascular and chronic kidney disease. Although the underlying mechanisms and mediators of vascular stiffness are not well understood, accumulating evidence supports the role of metabolic and immune dysregulation related to increased adiposity, activation of the renin angiotensin aldosterone system, reduced bioavailable nitric oxide, increased vascular extracellular matrix (ECM and ECM remodeling in the pathogenesis of vascular stiffness. This review will give a brief overview of the relationship between obesity, insulin resistance and increased vascular stiffness to provide a contemporary understanding of the proposed underlying mechanisms and potential therapeutic strategies.
Energy Technology Data Exchange (ETDEWEB)
John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son
2003-05-01
The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.
Effect of fluid damping on vibration response of immersed rotors
Directory of Open Access Journals (Sweden)
Mahmud Rasheed Ismail, Mustafa Asaad Hussein
2016-01-01
Full Text Available As immersed rotors vibrate in a viscous media such as fluid, a considerable amount of damping may be generated due to the interaction phenomena between the rotor components and the fluid media.Such damping is depending on many factors such as; fluid drag,fluid friction,turbulence, vortex and so on. Immersed rotors find their application in many engineering fields such as Marines machines, gear box, turbine and pumps.In the presentwork, a mathematical modelis attempted to investigate the dynamical behaviorimmersed rotor.The model takes into account the effects of the most rotordynamic parameters, namely; fluid drag,damping and stiffness of bearing,unbalance and gyroscopic effects of the attacheddisc, and elastic bending and internal damping of rotor shaft.Four types of fluid are employed as a fluid immersing media which are; Air, Water, SAE 20 andSAE 40oils.The experimental apparatus includes a sample rotor with single disc and plastic fluid container.Two proximate sensors are employed for measuring the unbalance response and orbits shapes under different rotor speeds, and discs size and locations.Modal analysis is employed for solving the governing equation of vibration motion. To check the validity of the mathematical model the theoretical results are compared with the experimental results. It is found that; the theoretical results are in a good agreement with the experimental ones, where the maximum error is not exceeded (6.8 %, and that;the fluid damping can highly reduce the peak amplitude of the unbalance response (up to 60 % however, it has slight effect on the critical speeds which are highly affected by the size and location of the attached disc.
Institute of Scientific and Technical Information of China (English)
罗贵火; 周海仑; 王飞; 杨喜关
2012-01-01
The dual rotor-hall bearing-stator coupling dynamic model was established for the aero-engine with dual rotor as to research object. The model concerned the coupling effect of inter-rotor bearing between the low pressure rotor and high pressure rotor, between the outer race of ball bearing and bearing housing, and between the flexible support and squeeze film damper. In the model of ball bearings, the clearance of bearing, nonlinear Hertzian contract force between balls and races and the varying compliance vibration were considered. The beat vibration response and whirl orbit of co-rotating or counter-rotating dual-rotor system were analyzed by using the model. The results show that the beat vibration response occurs obviously when two rotors operate at approximate speed, the whirl orbit of the counter-rotating dual-rotor system will be the petal shape. Finally, the results of numerical integral and the model were validated with the experiments of the dual rotor rig.%以双转子航空发动机为研究对象，建立了航空发动机双转子一滚动轴承一机匣耦合动力学模型．模型中考虑了低压转子与高压转子的中介轴承耦合作用，滚动轴承模型中考虑了滚动轴承间隙、非线性赫兹接触力以及变柔性VC（varying compliance）振动等因素．利用仿真模型，进行了同向和反向旋转双转子系统的拍振响应分析，结果表明当高低压转子的转速差较小时，双转子系统的拍振响应明显．同时研究了同转和反转双转子系统轴心轨迹响应的差异，研究表明反向旋转双转子系统的轴心轨迹会形成“花瓣”状．最后，利用双转子试验器验证了仿真结果的正确性，进一步验证本文所建模型的正确性．
Design of the Active Elevon Rotor for Low Vibration
Fulton, Mark V.; Rutkowski, Michael (Technical Monitor)
2000-01-01
's ability to reduce all six components of the nonrotating 4/rev hub loads. Some design parameters have been kept fixed in this study, while others have been varied to determine their influence - on elevon effectiveness. The fixed parameters include all blade structural properties except for torsion stiffness; the varied parameters include torsion stiffness, elevon aerodynamic location, and the number and individual authority of elevon aerodynamic surfaces. This paper describes the preliminary design process being used for the AER, and describes and quantifies the emerging active rotor characteristics.
Reference Model 2: %22Rev 0%22 Rotor Design.
Energy Technology Data Exchange (ETDEWEB)
Barone, Matthew F.; Berg, Jonathan Charles; Griffith, Daniel
2011-12-01
The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd
Leg stiffness primarily depends on ankle stiffness during human hopping.
Farley, C T; Morgenroth, D C
1999-03-01
When humans hop in place or run forward, they adjust leg stiffness to accommodate changes in stride frequency or surface stiffness. The goal of the present study was to determine the mechanisms by which humans adjust leg stiffness during hopping in place. Five subjects hopped in place at 2.2 Hz while we collected force platform and kinematic data. Each subject completed trials in which they hopped to whatever height they chose ("preferred height hopping") and trials in which they hopped as high as possible ("maximum height hopping"). Leg stiffness was approximately twice as great for maximum height hopping as for preferred height hopping. Ankle torsional stiffness was 1.9-times greater while knee torsional stiffness was 1.7-times greater in maximum height hopping than in preferred height hopping. We used a computer simulation to examine the sensitivity of leg stiffness to the observed changes in ankle and knee stiffness. Our model consisted of four segments (foot, shank, thigh, head-arms-trunk) interconnected by three torsional springs (ankle, knee, hip). In the model, increasing ankle stiffness by 1.9-fold, as observed in the subjects, caused leg stiffness to increase by 2.0-fold. Increasing knee stiffness by 1.7-fold had virtually no effect on leg stiffness. Thus, we conclude that the primary mechanism for leg stiffness adjustment is the adjustment of ankle stiffness.
Finite element analysis of two disk rotor system
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Resonant vibration control of three-bladed wind turbine rotors
DEFF Research Database (Denmark)
Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker
2012-01-01
Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...
Falls, Jaye
This work studies the design of trailing edge controls for swashplateless helicopter primary control, and examines the impact of those controls on the performance of the rotor. The objective is to develop a comprehensive aeroelastic analysis for swashplateless rotors in steady level flight. The two key issues to be solved for this swashplateless control concept are actuation of the trailing edge controls and evaluating the performance of the swashplateless rotor compared to conventionally controlled helicopters. Solving the first requires simultaneous minimization of trailing flap control angles and hinge moments to reduce actuation power. The second issue requires not only the accurate assessment of swashplateless rotor power, but also similar or improved performance compared to conventional rotors. The analysis consists of two major parts, the structural model and the aerodynamic model. The inertial contributions of the trailing edge flap and tab are derived and added to the system equations in the structural model. Two different aerodynamic models are used in the analysis, a quasi-steady thin airfoil theory that includes arbitrary hinge positions for the flap and the tab, and an unsteady lifting line model with airfoil table lookup based on wind tunnel test data and computational fluid dynamics simulation. The design aspect of the problem is investigated through parametric studies of the trailing edge flap and tab for a Kaman-type conceptual rotor and a UH-60A swashplateless variant. The UH-60A model is not changed except for the addition of a trailing edge flap to the rotor blade, and the reduction of pitch link stiffness to imitate a soft root spring. Study of the uncoupled blade response identifies torsional stiffness and flap hinge stiffness as important design features of the swashplateless rotor. Important trailing edge flap and tab design features including index angle, aerodynamic overhang, chord and length are identified through examination of coupled
Tang, Jiqiang; Xiang, Biao; Wang, Chun'e
2015-09-01
A novel Vernier-gimballing magnetically suspended flywheel with conical magnetic bearing (conical MB) can generate great gyroscopic moment by tilting the high-speed rotor. To output the gyroscopic moment, the high-speed rotor must be suspended stably and can be tilted. But when the rotor tilts, the gap between the stator and rotor of conical MB changes nonlinearly, what will cause the magnetic force and current stiffness of this conical MB to be serious nonlinear. To solve these problems, one kind of adaptive controller based on Lyapunov stability theory is designed by regarding the current stiffness of this conical MB as uncertain parameter. The validity of this adaptive control method is verified on a Vernier-gimballing MSFW with 68 Nms angular momentum and 1.7° maximum tilting angle. All experimental results indicated that this adaptive control has better performances on controlling rotor's stable suspension than existing PID control when the rotor translates or tilts. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhiwei; Zhou, Jianzhong; Yang, Mengqi; Zhang, Yongchuan [Huazhong University of Science and Technology, College of Hydraulic and Digitalization Engineering, Wuhan, Hubei Province (China)
2011-07-15
The object of this research aims at the hydraulic generator unit rotor system. According to fault problems of the generator rotor local rubbing caused by the parallel misalignment and mass eccentricity, a dynamic model for the rotor system coupled with misalignment and rub-impact is established. The dynamic behaviors of this system are investigated using numerical integral method, as the parallel misalignment, mass eccentricity and bearing stiffness vary. The nonlinear dynamic responses of the generator rotor and turbine rotor with coupling faults are analyzed by means of bifurcation diagrams, Poincare maps, axis orbits, time histories and amplitude spectrum diagrams. Various nonlinear phenomena in the system, such as periodic, three-periodic and quasi-periodic motions, are studied with the change of the parallel misalignment. The results reveal that vibration characteristics of the rotor system with coupling faults are extremely complex and there are some low frequencies with large amplitude in the 0.3-0.4 x components. As the increase in mass eccentricity, the interval of nonperiodic motions will be continuously moved forward. It suggests that the reduction in mass eccentricity or increase in bearing stiffness could preclude nonlinear vibration. These might provide some important theory references for safety operating and exact identification of the faults in rotating machinery. (orig.)
Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system
Spera, D. A.
1976-01-01
Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.
Experimental Investigation of a Shrouded Rotor Micro Air Vehicle in Hover and in Edgewise Gusts
Hrishikeshavan, Vikram
Due to the hover capability of rotary wing Micro Air Vehicles (MAVs), it is of interest to improve their aerodynamic performance, and hence hover endurance (or payload capability). In this research, a shrouded rotor configuration is studied and implemented, that has the potential to offer two key operational benefits: enhanced system thrust for a given input power, and improved structural rigidity and crashworthiness of an MAV platform. The main challenges involved in realising such a system for a lightweight craft are: design of a lightweight and stiff shroud, and increased sensitivity to external flow disturbances that can affect flight stability. These key aspects are addressed and studied in order to assess the capability of the shrouded rotor as a platform of choice for MAV applications. A fully functional shrouded rotor vehicle (disk loading 60 N/ m2) was designed and constructed with key shroud design variables derived from previous studies on micro shrouded rotors. The vehicle weighed about 280 g (244 mm rotor diameter). The shrouded rotor had a 30% increase in power loading in hover compared to an unshrouded rotor. Due to the stiff, lightweight shroud construction, a net payload benefit of 20-30 g was achieved. The different components such as the rotor, stabilizer bar, yaw control vanes and the shroud were systematically studied for system efficiency and overall aerodynamic improvements. Analysis of the data showed that the chosen shroud dimensions was close to optimum for a design payload of 250 g. Risk reduction prototypes were built to sequentially arrive at the final configuration. In order to prevent periodic oscillations in ight, a hingeless rotor was incorporated in the shroud. The vehicle was successfully ight tested in hover with a proportional-integralderivative feedback controller. A flybarless rotor was incorporated for efficiency and control moment improvements. Time domain system identification of the attitude dynamics of the flybar and
Rotor for a pyrolysis centrifuge reactor
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....
Dynamic stiffness of suction caissons
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars
The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated....... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...
Kleinert, H
2007-01-01
At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.
Suppression of Base Excitation of Rotors on Magnetic Bearings
2007-01-01
This paper deals with rotor systems that suffer harmonic base excitation when supported on magnetic bearings. Magnetic bearings using conventional control techniques perform poorly in such situations mainly due to their highly nonlinear characteristics. The compensation method presented here is a novel optimal control procedure with a combination of conventional, proportional, and differential feedback control. A four-degree-of-freedom model is used for the rotor system, and the bearings a...
Institute of Scientific and Technical Information of China (English)
J.D.Denton
1997-01-01
NASA rotor 37 was used as a blind test case for turbomachinery CFD by the Turbomachinery Committee of the IGTI.The rotor is a transonic compressor with a tip speed of 454 m/s(1500ft/s)and a relatively high pressure ratio of 2.1.It was tested in isolation with a circumferentially uniform inlet flow so that the flow through it should be steady apart from and effects of passage to passage geometry variation and mechanical vibration.As such it represents the simplest possible type of test for three-dimensional turbomachinery flow solvers.Howerver,the rotor still presents a real challenge to 3D viscous flow solvers because the shock wave-boudary layer interaction is strong and the effects of viscosity are dominant in determining the flow deviation and hence the pressure ration.Eleven blind solutions were submittewd and in addition a non-blind solution was used to prepare for the exercies.This paper reviews the flow in the test case and the comparisons of the CFD solutions with the test data.Lessons for both the Flow physics in transonic fans and for the application of CFD to such machines are pointed out.
Bab, Saeed; Khadem, S. E.; Shahgholi, Majid; Abbasi, Amirhassan
2017-02-01
The current paper investigates the effects of a number of smooth nonlinear energy sinks (NESs) located on the disk and bearings on the vibration attenuation of a rotor-blisk-journal bearing system under excitation of a mass eccentricity force. The blade and rotor are modeled using the Euler-Bernoulli beam theory. The nonlinear energy sinks on the bearing have a linear damping and an essentially nonlinear stiffness. The nonlinear energy sinks on the disk have a linear damping, linear stiffness, and an essentially nonlinear stiffness. It can be seen that the linear stiffness of the NESs on the disk is eliminated by the negative stiffness induced by the centrifugal force, and the collection of the NESs can be tuned to a required rotational speed of the rotor by varying the linear stiffness of the NESs. Furthermore, the remained stiffness of the NESs on the disk after elimination of their linear stiffness, would be essentially a nonlinear (nonlinearizable) one. Two nonlinear energy sinks in the vertical axes are positioned on the bearing housing and nnd NESs are located on the perimeter of the disk. The equations of motion are extracted using the extended Hamilton principle. The modal coordinates and complex transformations are employed to decrease the number of equations of motion. A genetic algorithm is used to optimize the parameters of the nonlinear energy sinks and its objective function is considered as minimizing the vibration of the rotating system within an operating speed range. In order to examine the periodic and non-periodic solutions of the system, time history, bifurcation diagram, Poincaré map, phase portrait, Lyapunov exponent, and power spectra analyses are performed. System shows periodic and quasi-periodic motions for different values of the system parameters. It is shown that the NESs on the disk and bearings have almost local effects on vibration reduction of rotating system. In addition, the optimum NESs remove the instability region from the
Directory of Open Access Journals (Sweden)
H. F. Wang
2014-01-01
Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.
Depression, Anxiety, and Arterial Stiffness
Seldenrijk, Adrie; van Hout, Hein P. J.; van Marwijk, Harm W. J.; de Groot, Eric; Gort, Johan; Rustemeijer, Cees; Diamant, Michaela; Penninx, Brenda W. J. H.
2011-01-01
Background: Arterial stiffness gains attention as a potential mechanism underlying the frequently found association between depression or anxiety and cardiovascular disease. However, observations regarding stiffness and psychopathology were often based on small samples. The current study aimed to
Genetics of Stiff Child Syndrome
Directory of Open Access Journals (Sweden)
J Gordon Millichap
2005-11-01
Full Text Available A Chinese boy with a DYT1 gene mutation presented with muscle stiffness, painful muscle spasms, myoclonus, and dystonia, compatible with stiff child syndrome, and is reported from Queen Mary Hospital, the University of Hong Kong.
Homopolar motor with dual rotors
Energy Technology Data Exchange (ETDEWEB)
Hsu, John S. (Oak Ridge, TN)
1998-01-01
A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.
Homopolar motor with dual rotors
Energy Technology Data Exchange (ETDEWEB)
Hsu, J.S.
1998-12-01
A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.
Rotor/body aerodynamic interactions
Betzina, M. D.; Smith, C. A.; Shinoda, P.
1985-01-01
A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.
Variable Speed Rotor System Project
National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...
Fault Feature Analysis of a Cracked Gear Coupled Rotor System
Directory of Open Access Journals (Sweden)
Hui Ma
2014-01-01
Full Text Available Considering the misalignment of gear root circle and base circle and accurate transition curve, an improved mesh stiffness model for healthy gear is proposed, and it is validated by comparison with the finite element method. On the basis of the improved method, a mesh stiffness model for a cracked gear pair is built. Then a finite element model of a cracked gear coupled rotor system in a one-stage reduction gear box is established. The effects of crack depth, width, initial position, and crack propagation direction on gear mesh stiffness, fault features in time domain and frequency domain, and statistical indicators are investigated. Moreover, fault features are also validated by experiment. The results show that the improved mesh stiffness model is more accurate than the traditional mesh stiffness model. When the tooth root crack appears, distinct impulses are found in time domain vibration responses, and sidebands appear in frequency domain. Amplitudes of all the statistical indicators ascend gradually with the growth of crack depth and width, decrease with the increasing crack initial position angle, and firstly increase and then decrease with the growth of propagation direction angle.
Wakabayashi, N; Anusavice, K J
2000-06-01
We hypothesize that the fracture resistance of alumina core/porcelain veneer disks increases and that crack initiation shifts from veneer to core as the core/veneer thickness ratio (t(C)/t(V)) increases from 0.5/1.0 to 1.3/0.2, or as the elastic modulus of the supporting substrate (E(S)) to which it is resin-bonded increases from 5.1 to 226 GPa. When supported by a low-modulus substrate, disks with low t(C)/t(V) ratios exhibited cracks in the veneer and within the core, while those with high t(C)/t(V) ratios demonstrated core cracks, but not veneer cracks. None of the disks supported by Ni-Cr alloy (E = 226 GPa) exhibited core cracks. These results support the hypothesis that the crack initiation site shifts as the t(C)/t(V) ratio increases, but the increase in E(S) did not affect the crack initiation site. This study suggests that the t(C)/t(V) ratio is the dominant factor that controls the failure initiation site in bilayered ceramic disks.
Numerical modeling of a rotor misalignment; Modelado numerico del desalineamiento de un rotor
Energy Technology Data Exchange (ETDEWEB)
Leon Pina, Roberto
2009-12-15
In the turbo-machinery area after an unbalancing, the misalignment is the fault that most frequently appears, and this one has been little studied compared to the unbalance. The misalignment appears when the geometric centers of two shafts and/or bearings do not coincide, these differences take place by different factors such as: incorrect installation of the bearings or rotors, thermal effects, or rotor weight, to mention some of them. The of the misalignment diagnosis continues being an area little studied, since the effects it generates are complex and include diverse physical processes reason why it presents/displays similar symptoms to those of other faults; thus, one of the methods that are used to diagnose this fault, is based on analyzing the vibration phantoms but this works only under particular conditions. In order to reproduce the dynamic behavior of a misaligned rotor, in the present work non-linear simplified models of the supports are used, whose objective is to contribute to facilitate future studies of the flow-dynamic behavior of the bearing, helping to identify the type and magnitude of the existing non-linearity in the supports and leaning in the analysis of the vibratory behavior of misaligned rotors observed in the field. [Spanish] En el area de turbomaquinaria despues del desbalance, el desalineamiento es la falla que se presenta con mayor frecuencia, y esta se ha estudiado poco comparada con el desbalance. El desalineamiento se presenta cuando los centros geometricos de dos flechas y/o chumaceras no coinciden, estas diferencias se producen por diferentes factores como: instalacion incorrecta de las chumaceras o rotores, efectos termicos, o el peso del rotor, por mencionar algunos. El diagnostico del desalineamiento sigue siendo una area poco estudiada, ya que los efectos que genera son complejos y abarcan diversos procesos fisicos por lo que presenta sintomas similares a los de otras fallas; asi, uno de los metodos que se utilizan para
Kottapalli, Sesi; Meza, Victor
1992-01-01
A rotorcraft analysis is conducted to assess tilt-rotor stability and conversion loads for the XV-15 rotor with metal blades within its specified test envelope. A 38-DOF flutter analysis based on the code by Johnson (1988) is developed to simulate a wind-tunnel test in which the rotor torque is constant and thereby study stability. The same analytical model provides the simulated loads including hub loads, blade loads, and oscillatory pitch-link loads with attention given to the nonuniform inflow through the proprotor in the presence of the wing. Tilt-rotor stability during the cruise mode is found to be sensitive to coupling effects in the control system stiffness, and a stability problem is identified in the XV-15 Advanced Technology Blades. The present analysis demonstrates that the tilt-rotor is stable within the specified test envelope of the NASA 40 x 80-ft wind tunnel.
Instability analysis of unsymmetrical rotor-bearing systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents the instability analysis of unsymmetricalrotor-bearing system in accordance with the Campbell diagrams of the system, and concludes that the unstable regions stay in high speed regions with the increase of supporting stiffness and they decrease or disappear with the decrease of the inequality diametrical moments of the inertia and stiffness of shaft.
Assessment of Scaled Rotors for Wind Tunnel Experiments.
Energy Technology Data Exchange (ETDEWEB)
Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chiu, Phillip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-07-01
Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor, the G1, designed and built by researchers at the Technical University of München.
Effects of Material Properties on the Total Stored Energy of a Hybrid Flywheel Rotor
Energy Technology Data Exchange (ETDEWEB)
Ha, S.K.; Yoon, Y.B. [Hanyang University, Seoul (Korea); Han, S.C. [Korea Electric Power Research Institute, Taejon (Korea)
2000-05-01
A numerical method based on an assumption of a generalized plane strain (GPS) state is presented for calculating the stress and strength ratio distributions of the rotating composite flywheel rotor of varying material properties in the radial direction. The rotor is divided into many rings and each ring has constant material properties. All the rings are assumed to expand and have the same axial strain. A three-dimensional finite element method is then used to verify the accuracy of the present method for various height ratios and ply angles. This method gives a better solution for most of the rotors than other methods of a plane stress or plane strain state. After verification, the effects of material properties on the total stored energy (TSE) of the composite flywheel rotor are investigated. For this purpose, the material properties of the rotor, i.e., circumferential and radial Youngs moduli, ply angles and mass densities, are expressed by power functions of the radius and the rotor is analyzed. The analysis shows that TSE can be most effectively increased by changing the circumferential Youngs moduli along the radius, which amounts to over 300% of TSE of the constant material properties. The variation of ply angles along the radius can increase TSE by about 30% at most. The method of changing the mass densities along the radius could be also effective but its effects are not so noticeable in the rotor where the circumferential stiffness is properly arranged. (author). 24 refs., 7 figs.
Institute of Scientific and Technical Information of China (English)
吴立明; 初世明
2015-01-01
Use the equivalent stiffness and damping coefficient to describe the turbine steam force between the rotor and labyrinth seal,summarize the law of the stiffness and damping coefficient at the different position of rotor ’ s steam seal. Then the stability effects of the parameter variation are analyzed ,and provide technical support for safe and stable operation of the unit.It is found that the stiffness and damping coefficient variation has a law at the different position of rotor ’s steam seal,and change the steam seal ’ s clearance is not a valid method to improve the stability of the rotor .%用等效刚度和阻尼系数对某汽轮机迷宫汽封蒸汽对转子的流体力进行描述，归纳汽轮机转子各位置处汽封等效刚度与阻尼系数的变化规律，进而分析参数变化对机组稳定性的影响，为机组的安全稳定运行提供技术支持。分析表明：汽轮机转子不同位置处的汽封等效刚度与阻尼系数存在一定的变化规律，单纯更改汽封间隙不是提高机组转子稳定性的有效办法。
DEFF Research Database (Denmark)
Andersen, Søren Bøgh; Enemark, Søren; Santos, Ilmar
2013-01-01
A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. ...
Energy Technology Data Exchange (ETDEWEB)
Garcia Illescas, Rafael
2001-07-01
A theoretical numerical and experimental analysis of the dynamics and vibratory stability of a rotor-bearing system with a cracked shaft is presented. A new mathematical model was built to simulate the system, incorporating all possible conditions existing in reality. The presence of a transverse crack is taken into account by considering a structural rotating stiffness variation as a time-function (angular dependent). The damping of the system includes the effect of the external fluid (steam) where the shaft is rotating and, the most significant, the viscous damping of the journal bearings due to the oil film. The present problem consists in a cracked flexible Jeffcott rotor supported on identical journal bearings, which has a mass disk and a crack at the midspan of the shaft. An innovator aspect that complicates the analysis is that the mass effect of the journal bearings is also considered. A linear stability analysis of the system is accomplished including all aspects mentioned using the Floquet Theory. Some results are compared with previous work obtained by other researchers in the field like Gasch, Meng, et cetera. The resulting parametrically excited system is analyzed using a perturbation solution. The system equations are written in terms of complex variables and an associated computer code in MATLAB has been developed by the author for numerical simulation studies. A simple rotor system is studied in order to illustrate the basic properties of rotors with cracks of real machines. The experimental results were obtained in the Vibrations and Rotor dynamics Laboratory of the SEPI ESIME IPN to complement numerical analysis. The option of including the non-linear effect of the bearings is presented. The latter is under research by Dr. Gonzalez Mancilla who has implemented this non-linear model in his program called MAQUI. Proper calculation of nonlinear coefficients impact numerical simulation results and can produce adequate or inaccurate frequency spectrum
On gear tooth stiffness evaluation
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard; Jørgensen, Martin Felix
2014-01-01
The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffnesses of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact width is constant. © 2014...
Directory of Open Access Journals (Sweden)
Kang L. Wang
2012-08-01
Full Text Available The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P^{+} Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 10^{4}, a read window of about 2.5 V, and a retention time of greater than 10^{4} s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V revealed a temperature-dependent negative differential resistance (NDR associated with the device. The analysis of the device
Robust stabilization of rotor-active magnetic bearing systems
Li, Guoxin
Active magnetic bearings (AMBs) are emerging as a beneficial technology for high-speed and high-performance suspensions in rotating machinery applications. A fundamental feedback control problem is robust stabilization in the presence of uncertain destabilizing mechanisms in aeroelastic, hydroelastic dynamics, and AMB feedback. As rotating machines are evolving in achieving high speed, high energy density, and high performance, the rotor and the support structure become increasingly flexible, and highly coupled. This makes rotor-AMB system more challenging to stabilize. The primary objective of this research is to develop a systematic control synthesis procedure for achieving highly robust stabilization of rotor-AMB systems. Of special interest is the stabilization of multivariable systems such as the AMB supported flexible rotors and gyroscopic rotors, where the classical control design may encounter difficulties. To this end, we first developed a systematic modeling procedure. This modeling procedure exploited the best advantages of technology developed in rotordynamics and the unique system identification tool provided by the AMBs. A systematic uncertainty model for rotor-AMB systems was developed, eliminating the iterative process of selecting uncertainty structures. The consequences of overestimation or underestimation of uncertainties were made transparent to control engineers. To achieve high robustness, we explored the fundamental performance/robustness limitations due to rotor-AMB system unstable poles. We examined the mixed sensitivity performance that is closely related to the unstructured uncertainty. To enhance transparency of the synthesis, we analyzed multivariable controllers from classical control perspectives. Based on these results, a systematic robust control synthesis procedure was established. For a strong gyroscopic rotor over a wide speed range, we applied the advanced gain-scheduled synthesis, and compared two synthesis frameworks in
Liu, Jing; Shao, Yimin
2017-06-01
Rotor bearing systems (RBSs) play a very valuable role for wind turbine gearboxes, aero-engines, high speed spindles, and other rotational machinery. An in-depth understanding of vibrations of the RBSs is very useful for condition monitoring and diagnosis applications of these machines. A new twelve-degree-of-freedom dynamic model for rigid RBSs with a localized defect (LOD) is proposed. This model can formulate the housing support stiffness, interfacial frictional moments including load dependent and load independent components, time-varying displacement excitation caused by a LOD, additional deformations at the sharp edges of the LOD, and lubricating oil film. The time-varying displacement model is determined by a half-sine function. A new method for calculating the additional deformations at the sharp edges of the LOD is analytical derived based on an elastic quarter-space method presented in the literature. The proposed dynamic model is utilized to analyze the influences of the housing support stiffness and LOD sizes on the vibration characteristics of the rigid RBS, which cannot be predicted by the previous dynamic models in the literature. The results show that the presented method can give a new dynamic modeling method for vibration formulation for a rigid RBS with and without the LOD on the races.
Ground and air resonance of bearingless rotors in hover
Jang, Jinseok; Chopra, Inderjit
1987-01-01
A finite element formulation is used to investigate ground and air resistence in hover for a bearingless rotor. Aerodynamic forces are studied using quasi-steady strip theory, and unsteady aerodynamic effects are introduced through an inflow dynamics model. Reasonable correlation was found between predicted ground and air resonance results and data obtained from measurements using a 1/8th Froude-scaled dynamic model. Systematic parametric studies of the effects of various design parameters were performed, and lag frequency was found to significantly influence ground resonance stability, whereas pitch-lag coupling, blade sweep and pitch link stiffness had powerful effects on air resonance stability.
Stiff directed lines in random media.
Boltz, Horst-Holger; Kierfeld, Jan
2013-07-01
We investigate the localization of stiff directed lines with bending energy by a short-range random potential. We apply perturbative arguments, Flory scaling arguments, a variational replica calculation, and functional renormalization to show that a stiff directed line in 1+d dimensions undergoes a localization transition with increasing disorder for d>2/3. We demonstrate that this transition is accessible by numerical transfer matrix calculations in 1+1 dimensions and analyze the properties of the disorder-dominated phase in detail. On the basis of the two-replica problem, we propose a relation between the localization of stiff directed lines in 1+d dimensions and of directed lines under tension in 1+3d dimensions, which is strongly supported by identical free-energy distributions. This shows that pair interactions in the replicated Hamiltonian determine the nature of directed line localization transitions with consequences for the critical behavior of the Kardar-Parisi-Zhang equation. We support the proposed relation to directed lines via multifractal analysis, revealing an analogous Anderson transition-like scenario and a matching correlation length exponent. Furthermore, we quantify how the persistence length of the stiff directed line is reduced by disorder.
Stiffness, resilience, compressibility
Energy Technology Data Exchange (ETDEWEB)
Leu, Bogdan M. [Argonne National Laboratory, Advanced Photon Source (United States); Sage, J. Timothy, E-mail: jtsage@neu.edu [Northeastern University, Department of Physics and Center for Interdisciplinary Research on Complex Systems (United States)
2016-12-15
The flexibility of a protein is an important component of its functionality. We use nuclear resonance vibrational spectroscopy (NRVS) to quantify the flexibility of the heme iron environment in the electron-carrying protein cytochrome c by measuring the stiffness and the resilience. These quantities are sensitive to structural differences between the active sites of different proteins, as illustrated by a comparative analysis with myoglobin. The elasticity of the entire protein, on the other hand, can be probed quantitatively from NRVS and high energy-resolution inelastic X-ray scattering (IXS) measurements, an approach that we used to extract the bulk modulus of cytochrome c.
Detection of a fatigue crack in a rotor system using full-spectrum based estimation
Indian Academy of Sciences (India)
C Shravankumar; Rajiv Tiwari
2016-02-01
The force due to crack switching has multiple harmonic components of the spin speed. These components excite the rotor both in the same and reverse directions of the rotor spin. A full-spectrum method using complex Fast Fourier transform equations is developed to obtain force coefficients and displacement coefficients (forward and reverse). These coefficients are then used as an input to developed identification algorithms. Fault parameters identified are the additive stiffness due to crack, disc eccentricity due to unbalance, and system viscous damping. An extended algorithm estimates the crack forces. The algorithms are numerically tested.
Random gust response statistics for coupled torsion-flapping rotor blade vibrations.
Gaonkar, G. H.; Hohenemser, K. H.; Yin, S. K.
1972-01-01
An analysis of coupled torsion-flapping rotor blade vibrations in response to atmospheric turbulence revealed that at high rotor advance ratios anticipated for future high speed pure or convertible rotorcraft both flapping and torsional vibrations can be severe. While appropriate feedback systems can alleviate flapping, they have little effect on torsion. Dynamic stability margins have also no substantial influence on dynamic torsion loads. The only effective means found to alleviate turbulence caused torsional vibrations and loads at high advance ratio was a substantial torsional stiffness margin with respect to local static torsional divergence of the retreating blade.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...
Performance tests on helical Savonius rotors
Energy Technology Data Exchange (ETDEWEB)
Kamoji, M.A.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay (India)
2009-03-15
Conventional Savonius rotors have high coefficient of static torque at certain rotor angles and a negative coefficient of static torque from 135 to 165 and from 315 to 345 in one cycle of 360 . In order to decrease this variation in static torque from 0 to 360 , a helical Savonius rotor with a twist of 90 is proposed. In this study, tests on helical Savonius rotors are conducted in an open jet wind tunnel. Coefficient of static torque, coefficient of torque and coefficient of power for each helical Savonius rotor are measured. The performance of helical rotor with shaft between the end plates and helical rotor without shaft between the end plates at different overlap ratios namely 0.0, 0.1 and 0.16 is compared. Helical Savonius rotor without shaft is also compared with the performance of the conventional Savonius rotor. The results indicate that all the helical Savonius rotors have positive coefficient of static torque at all the rotor angles. The helical rotors with shaft have lower coefficient of power than the helical rotors without shaft. Helical rotor without shaft at an overlap ratio of 0.0 and an aspect ratio of 0.88 is found to have almost the same coefficient of power when compared with the conventional Savonius rotor. Correlation for coefficient of torque and power is developed for helical Savonius rotor for a range of Reynolds numbers studied. (author)
IDENTIFICATION OF CRACKED ROTOR BY WAVELET TRANSFORM
Institute of Scientific and Technical Information of China (English)
邹剑; 陈进; 蒲亚鹏
2002-01-01
The dynamic equation of cracked rotor in rotational frame was modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor were obtained. By the wavelet transform, the time-frequency properties of the cracked rotor and the uncracked rotor were discussed, the difference of the time-frequency properties between the cracked rotor and the uncracked rotor was compared. A new detection algorithm using wavelet transform to identify crack was proposed. The experiments verify the availability and validity of the wavelet transform in identification of crack.
Pharmacological modulation of arterial stiffness.
LENUS (Irish Health Repository)
Boutouyrie, Pierre
2011-09-10
Arterial stiffness has emerged as an important marker of cardiovascular risk in various populations and reflects the cumulative effect of cardiovascular risk factors on large arteries, which in turn is modulated by genetic background. Arterial stiffness is determined by the composition of the arterial wall and the arrangement of these components, and can be studied in humans non-invasively. Age and distending pressure are two major factors influencing large artery stiffness. Change in arterial stiffness with drugs is an important endpoint in clinical trials, although evidence for arterial stiffness as a therapeutic target still needs to be confirmed. Drugs that independently affect arterial stiffness include antihypertensive drugs, mostly blockers of the renin-angiotensin-aldosterone system, hormone replacement therapy and some antidiabetic drugs such as glitazones. While the quest continues for \\'de-stiffening drugs\\
Rotor blade assembly having internal loading features
Energy Technology Data Exchange (ETDEWEB)
Soloway, Daniel David
2017-05-16
Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.
Wet Steam Test Turbine of Dual-rotors by Elastic Support%双转子浮动支撑湿蒸汽透平试验台设计开发
Institute of Scientific and Technical Information of China (English)
于忠斌; 孙奇; 严倪; 江生科
2014-01-01
Wet steam test turbine is usually used for studying on dehumidification and optimization of flow pattern, improvement of the aerodynamic performance of wet steam flow path, and data acquisition of vibration characteristic and dynamic stress of long blade on small volume flow. This test turbine is the first domestic experimental test rig on wet steam study. This paper introduces the components, characteristics, rotor and elastic support, casing by special design, bearing box and baseplate of the new test turbine, which has been developed by Dongfang Steam Turbine Co. , Ltd. and the 703 Research Institute, along with an analysis of the key technology of test turbine.%湿蒸汽透平试验台是用于研究去湿效果、优选流型，提高湿蒸汽通流效率、研究长叶片的振动特性和小容积流量工况下长叶片动应力特性，国内还未有此类湿蒸汽透平试验台。本文介绍了东方汽轮机有限公司和703所联合开发的双转子浮动支撑湿蒸汽透平试验台，对试验收台的主要功能和参数、总体特点、轴系及浮动支撑、特殊设计的汽缸、轴承箱及机架进行了阐述，对试验台的主要技术特点和技术难点进行了分析说明。
Vibration control via stiffness switching of magnetostrictive transducers
Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.
2016-04-01
In this paper, a computational study is presented of structural vibration control that is realized by switching a magneto-strictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magneto-strictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magneto-strictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magneto-strictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magneto-strictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.
Directory of Open Access Journals (Sweden)
Shilin Chen
1994-01-01
Full Text Available An exact and direct modeling technique is proposed for modeling of rotor-bearing systems with arbitrary selected degrees-of-freedom. This technique is based on the combination of the transfer and dynamic stiffness matrices. The technique differs from the usual combination methods in that the global dynamic stiffness matrix for the system or the subsystem is obtained directly by rearranging the corresponding global transfer matrix. Therefore, the dimension of the global dynamic stiffness matrix is independent of the number of the elements or the substructures. In order to show the simplicity and efficiency of the method, two numerical examples are given.
Feedback Control of Rotor Overspeed
Churchill, G. B.
1984-01-01
Feedback system for automatically governing helicopter rotor speed promises to lessen pilot's workload, enhance maneuverability, and protect airframe. With suitable modifications, concept applied to control speed of electrical generators, automotive engines and other machinery.
Design of composite flywheel rotor
Institute of Scientific and Technical Information of China (English)
Yue BAI; Qingjia GAO; Haiwen LI; Yihui WU; Ming XUAN
2008-01-01
A design method for a flywheel rotor com-posed of a composite rim and a metal hub is proposed by studying the connection between the rotor and the driving machine. The influence of some factors such as the rotor material, configuration, connection, and frac-ture techniques on energy density is analyzed. The results show that the ratio of the inner radius to outer radius of the rim is the key factor, and is determined by the rim material. Optimizing the hub can further efficiently improve energy density. The composite flywheel rotor is produced and its rotation stress has been tested at the speed of 20 krpm. The emulation results are consistent with testing results, which proves that the introduced design method is useful.
On Cup Anemometer Rotor Aerodynamics
Santiago Pindado; Sergio Avila-Sanchez; Javier Pérez
2012-01-01
The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a lin...
Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin
2014-07-01
For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Photogrammetric detection technique for rotor blades structural characterization
Enei, C.; Bernardini, G.; Serafini, J.; Mattioni, L.; Ficuciello, C.; Vezzari, V.
2015-11-01
This paper describes an innovative use of photogrammetric detection techniques to experimentally estimate structural/inertial properties of helicopter rotor blades. The identification algorithms for the evaluation of mass and flexural stiffness distributions are an extension of the ones proposed by Larsen, whereas the procedure for torsional properties determination (stiffness and shear center position) is based on the Euler-Prandtl beam theory. These algorithms rely on measurements performed through photogrammetric detection, which requires the collection of digital photos allowing the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D pictures. The displacements are evaluated by comparing the positions of markers in loaded and reference configuration. Being the applied loads known, the structural characteristics can be directly obtained from the measured displacements. The accuracy of the proposed identification algorithms has been firstly verified by comparison with numerical and experimental data, and then applied to the structural characterization of two main rotor blades, designed for ultra-light helicopter applications.
Liquid Self-Balancing Device Effects on Flexible Rotor Stability
Directory of Open Access Journals (Sweden)
Leonardo Urbiola-Soto
2013-01-01
Full Text Available Nearly a century ago, the liquid self-balancing device was first introduced by M. LeBlanc for passive balancing of turbine rotors. Although of common use in many types or rotating machines nowadays, little information is available on the unbalance response and stability characteristics of this device. Experimental fluid flow visualization evidences that radial and traverse circulatory waves arise due to the interaction of the fluid backward rotation and the baffle boards within the self-balancer annular cavity. The otherwise destabilizing force induced by trapped fluids in hollow rotors, becomes a stabilizing mechanism when the cavity is equipped with adequate baffle boards. Further experiments using Particle Image Velocimetry (PIV enable to assess the active fluid mass fraction to be one-third of the total fluid mass. An analytical model is introduced to study the effects of the active fluid mass fraction on a flexible rotor supported by flexible supports excited by bwo different destabilizing mechanisms; rotor internal friction damping and aerodynamic cross-coupling. It is found that the fluid radial and traverse forces contribute to the balancing action and to improve the rotor stability, respectively.
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor
Dynamic Model and Fault Feature Research of Dual-Rotor System with Bearing Pedestal Looseness
Directory of Open Access Journals (Sweden)
Nanfei Wang
2016-01-01
Full Text Available The paper presents a finite element model of dual-rotor system with pedestal looseness stemming from loosened bolts. Dynamic model including bearing pedestal looseness is established based on the dual-rotor test rig. Three-degree-of-freedom (DOF planar rigid motion of loose bearing pedestal is fully considered and collision recovery coefficient is also introduced in the model. Based on the Timoshenko beam elements, using the finite element method, rigid body kinematics, and the Newmark-β algorithm for numerical simulation, dynamic characteristics of the inner and outer rotors and the bearing pedestal plane rigid body motion under bearing pedestal looseness condition are studied. Meanwhile, the looseness experiments under two different speed combinations are carried out, and the experimental results are basically the same. The simulation results are compared with the experimental results, indicating that vibration displacement waveforms of loosened rotor have “clipping” phenomenon. When the bearing pedestal looseness fault occurs, the inner and outer rotors vibration spectrum not only contains the difference and sum frequency of the two rotors’ fundamental frequency but also contains 2X and 3X component of rotor with loosened support, and so forth; low frequency spectrum is more, containing dividing component, and so forth; the rotor displacement spectrums also contain fewer combination frequency components, and so forth; when one side of the inner rotor bearing pedestal is loosened, the inner rotor axis trajectory is drawn into similar-ellipse shape.
Dynamic Characteristics and Experimental Research of Dual-Rotor System with Rub-Impact Fault
Directory of Open Access Journals (Sweden)
Hongzhi Xu
2016-01-01
Full Text Available Rub-impact fault model for dual-rotor system was further developed, in which rubbing board is regarded as elastic sheet. Sheet elastic deformation, contact penetration, and elastic damping support during rubbing of sheet and wheel disk were considered. Collision force and friction were calculated by utilizing Hertz contact theory and Coulomb model and introducing nonlinear spring damping model and friction coefficient. Then kinetic differential equations of rub-impact under dry rubbing condition were established. Based on one-dimensional finite element model of dual-rotor system, dynamic transient response of overall structure under rub-impact existing between rotor wheel and sheet was obtained. Meanwhile, fault dynamic characteristics and impact of rubbing clearance on rotor vibration were analyzed. The results show that, during the process of rub-impact, the spectrums of rotor vibration are complicated and multiple combined frequency components of inner and outer rotor fundamental frequencies are typical characteristic of rub-impact fault for dual-rotor system. It also can be seen from rotor vibration response that the rubbing rotor’s fundamental frequency is modulated by normal rotor double frequency.
Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system
Hu, Zehua; Tang, Jinyuan; Zhong, Jue; Chen, Siyu; Yan, Haiyan
2016-08-01
A finite element node dynamic model of a high speed gear-rotor-bearing system considering the time-varying mesh stiffness, backlash, gyroscopic effect and transmission error excitation is developed. Different tooth profile modifications are introduced into the gear pair and corresponding time-varying mesh stiffness curves are obtained. Effects of the tooth profile modification on mesh stiffness are analyzed, and the natural frequencies and mode shapes of the gear-rotor-bearing transmission system are given. The dynamic responses with respect to a wide input speed region including dynamic factor, vibration amplitude near the bearing and dynamic transmission error are obtained by introducing the time-varying mesh stiffness in different tooth profile modification cases into the gear-rotor-bearing dynamic system. Effects of the tooth profile modification on the dynamic responses are studied in detail. The numerical simulation results show that both the short profile modification and the long profile modification can affect the mutation of the mesh stiffness when the number of engaging tooth pairs changes. A short profile modification with an appropriate modification amount can improve the dynamic property of the system in certain work condition.
DEFF Research Database (Denmark)
Enemark, Søren; Santos, Ilmar
2014-01-01
Passive magnetic bearings are known due to the excellent characteristics in terms of friction and no requirement of additional energy sources to work. However, passive magnetic bearings do not provide damping, are not stable and, depending on their design, may also introduce magnetic eccentricity....... Such magnetic eccentricities are generated by discrepancies in magnet fabrication. In this framework the main focus of the work is the theoretical as well as experimental investigation of the nonlinear dynamics of a rotor-bearing system with strong emphasis on the magnetic eccentricities and non......-linear stiffness. In this investigation passive magnetic bearings using axially- aligned neodymium cylinder magnets are investigated. The cylinder magnets are axially magnetised for rotor as well as bearings. Compared to bearings with radial magnetisation, the magnetic stiffness of axially-aligned bearings...
Institute of Scientific and Technical Information of China (English)
邱希望; 琚亚平; 秦瑞鸿; 李振华; 张楚华
2015-01-01
面向高速无油节能环保型流体机械技术的实际需求，重点对某一电磁轴承-空心轴-离心叶轮转子系统的支撑刚度、临界转速和叶轮强度进行了有限元分析。研究表明：该电磁轴承的支撑刚度为813000~7317000 N/m；在设计转速下，转轴为刚性轴，可采用刚性轴的电磁轴承控制方案，离心叶轮强度满足材料要求。%Aiming at the practical requirement of high speed, oil free, energy saving and environment conservation fluid machinery technology, this paper is focused on the supporting stiffness of magnetic bearing, the critical speed of rotor system and the strength of rotating impeller based on finite element method. The results show that the stiffness of the designed magnetic bearing ranges within 813 000~7 317 000 N/m. At the design speed, the rotor system is a rigid one and the electronic- magnetic control strategy for rigid shaft can be used. The stress of the centrifugal impeller meets the requirement of material strength.
Unified continuum damage model for matrix cracking in composite rotor blades
Energy Technology Data Exchange (ETDEWEB)
Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)
2015-03-10
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.
The Dynamic Stiffness of Surface Footings for Offshore Wind Turbines
DEFF Research Database (Denmark)
Vahdatirad, Mohammadjavad; Andersen, Lars; Clausen, Johan;
2011-01-01
This study concerns the dynamic stiffness of foundations for large offshore wind turbines. Especially, the purpose of the analysis is to quantify the uncertainties related to the first natural frequency of a turbine supported by a surface footing on layered soil. The dynamic properties...... due to sediment transportation. Further, the stiffness and density of the materials within a single layer is subject to uncertainties. This leads to uncertainties of the dynamic stiffness of the foundation and therefore the natural frequencies. The aim of the study is to quantify the level...... of uncertainties and discuss the utilization of reliability-based design of surface footings for wind turbines....
Loads and Performance Data from a Wind-Tunnel Test of Generic Model Helicopter Rotor Blades
Yeager, William T., Jr.; Wilbur, Matthew L.
2005-01-01
An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to acquire data for use in assessing the ability of current and future comprehensive analyses to predict helicopter rotating-system and fixed-system vibratory loads. The investigation was conducted with a generic model helicopter rotor system using blades with rectangular planform, no built-in twist, uniform radial distribution of mass and stiffnesses, and a NACA 0012 airfoil section. Rotor performance data, as well as mean and vibratory components of blade bending and torsion moments, fixed-system forces and moments, and pitch link loads were obtained at advance ratios up to 0.35 for various combinations of rotor shaft angle-of-attack and collective pitch. The data are presented without analysis.
Rotor-Router Aggregation on the Comb
Huss, Wilfried; Sava, Ecaterina
2011-01-01
We prove a shape theorem for rotor-router aggregation on the comb, for a specific initial rotor configuration and clockwise rotor sequence for all vertices. Furthermore, as an application of rotor-router walks, we describe the harmonic measure of the rotor-router aggregate and related shapes, which is useful in the study of other growth models on the comb. We also identify the shape for which the harmonic measure is uniform. This gives the first known example where the rotor-router cluster ha...
Structural Considerations of a 20MW Multi-Rotor Wind Energy System
Jamieson, P.; Branney, M.
2014-12-01
The drive to upscale offshore wind turbines relates especially to possiblereductions in O&M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept.
Petty, Richard E.; And Others
1987-01-01
Addresses the major errors and misconceptions perpetuated by Stiff and Boster's response to criticism of Stiff's 1986 article. Focuses on the major conceptual and methodological issues of Stiff's model. (NKA)
Decoupling Control of Micromachined Spinning-Rotor Gyroscope with Electrostatic Suspension.
Sun, Boqian; Wang, Shunyue; Li, Haixia; He, Xiaoxia
2016-10-20
A micromachined gyroscope in which a high-speed spinning rotor is suspended electrostatically in a vacuum cavity usually functions as a dual-axis angular rate sensor. An inherent coupling error between the two sensing axes exists owing to the angular motion of the spinning rotor being controlled by a torque-rebalance loop. In this paper, a decoupling compensation method is proposed and investigated experimentally based on an electrostatically suspended micromachined gyroscope. In order to eliminate the negative spring effect inherent in the gyroscope dynamics, a stiffness compensation scheme was utilized in design of the decoupled rebalance loop to ensure loop stability and increase suspension stiffness. The experimental results show an overall stiffness increase of 30.3% after compensation. A decoupling method comprised of inner- and outer-loop decoupling compensators is proposed to minimize the cross-axis coupling error. The inner-loop decoupling compensator aims to attenuate the angular position coupling. The experimental frequency response shows a position coupling attenuation by 14.36 dB at 1 Hz. Moreover, the cross-axis coupling between the two angular rate output signals can be attenuated theoretically from -56.2 dB down to -102 dB by further appending the outer-loop decoupling compensator. The proposed dual-loop decoupling compensation algorithm could be applied to other dual-axis spinning-rotor gyroscopes with various suspension solutions.
Stiffness of desiccating insect wings
Energy Technology Data Exchange (ETDEWEB)
Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)
2011-03-15
The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)
Design of a Bearingless Outer Rotor Induction Motor
Directory of Open Access Journals (Sweden)
Yuxin Sun
2017-05-01
Full Text Available A bearingless induction (BI motor with an outer rotor for flywheel energy storage systems is proposed due to the perceived advantages of simple rotor structure, non-contact support and high speed operation. Firstly, the configuration and operation principle of the proposed motor are described. Then several leading dimensional parameters are optimally calculated for achieving the maximum average values and the minimum ripples of torque output and suspension force. Finally, by using the finite element method, the characteristics and performance of the proposed machine are analyzed and verified.
QUANTITATIVE METHODOLOGY FOR STABILITY ANALYSIS OF NONLINEAR ROTOR SYSTEMS
Institute of Scientific and Technical Information of China (English)
ZHENG Hui-ping; XUE Yu-sheng; CHEN Yu-shu
2005-01-01
Rotor-bearings systems applied widely in industry are nonlinear dynamic systems of multi-degree-of-freedom. Modem concepts on design and maintenance call for quantitative stability analysis. Using trajectory based stability-preserving and dimensional-reduction, a quanttative stability analysis method for rotor systems is presented. At first, an n-dimensional nonlinear non-autonomous rotor system is decoupled into n subsystems after numerical integration. Each of them has only onedegree-of-freedom and contains time-varying parameters to represent all other state variables. In this way, n-dimensional trajectory is mapped into a set of one-dimensional trajectories. Dynamic central point (DCP) of a subsystem is then defined on the extended phase plane, namely, force-position plane. Characteristics of curves on the extended phase plane and the DCP's kinetic energy difference sequence for general motion in rotor systems are studied. The corresponding stability margins of trajectory are evaluated quantitatively. By means of the margin and its sensitivity analysis, the critical parameters of the period doubling bifurcation and the Hopf bifurcation in a flexible rotor supported by two short journal beatings with nonlinear suspensionare are determined.
Control of flexible rotor systems with active magnetic bearings
Lei, Shuliang; Palazzolo, Alan
2008-07-01
An approach is presented for the analysis and design of magnetic suspension systems with large flexible rotordynamics models including dynamics, control, and simulation. The objective is to formulate and synthesize a large-order, flexible shaft rotordynamics model for a flywheel supported with magnetic bearings. A finite element model of the rotor system is assembled and then employed to develop a magnetic suspension compensator to provide good reliability and disturbance rejection. Stable operation over the complete speed range and optimization of the closed-loop rotordynamic properties are obtained via synthesis of eigenvalue analysis, Campbell plots, waterfall plots, and mode shapes. The large order of the rotor model and high spin speed of the rotor present a challenge for magnetic suspension control. A flywheel system is studied as an example for realizing a physical controller that provides stable rotor suspension and good disturbance rejection in all operating states. The baseline flywheel system control is determined from extensive rotordynamics synthesis and analysis for rotor critical speeds, mode shapes, frequency responses, and time responses.
Analytical theory for shape stiffness
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The shape stiffness of mill m is defined as the crosswise rigidity of the unit width of steel plate, that is, m=k/b. By differentiating the steel plate crown equation in the vector model of steel plate shape, a new concise equation for the shape stiffness, kc=m+q, is obtained. Furthermore, by combining the calculation equation for steel plate crown derived from Castigliano's theorem, an analytical calculation equation for the shape rigidity of rolled steel plate is derived. The correctness and practicability of the theory for the shape stiffness are demonstrated by comparing the results from the numerical calculation with the practical data of a rolling mill.
Analytical theory for shape stiffness
Institute of Scientific and Technical Information of China (English)
张进之
2000-01-01
The shape stiffness of mill m is defined as the crosswise rigidity of the unit width of steel plate, that is, m = k/b. By differentiating the steel plate crown equation in the vector model of steel plate shape, a new concise equation for the shape stiffness, kc = m + q, is obtained. Furthermore, by combining the calculation equation for steel plate crown derived from Castigliano’s theorem, an analytical calculation equation for the shape rigidity of rolled steel plate is derived. The correctness and practicability of the theory for the shape stiffness are demonstrated by comparing the results from the numerical calculation with the practical data of a rolling mill.
Fabrication of Janus hydrogels with stiffness gradient using drop coalescence
Lee, Donghee; Golden, Kale; Ryu, Sangjin
2016-11-01
The stiffness of the extracellular matrix (ECM) regulates cellular behaviors, and polyacrylamide (PAAM) gels with stiffness gradient have been used to simulate inhomogeneous ECM and to study the effects of the ECM stiffness on cells. Such hydrogel substrates with stiffness gradient can be fabricated with relatively complicated methods using microfluidics and moving masks. In our study, we develop a simpler method for fabricating Janus hydrogel which has a gradient of stiffness. Two prepolymer solutions were prepared for soft and stiff gel compositions, respectively, and one drop of each solution was placed on a hydrophobic patterned glass. Then, these two drops were gently squeezed by another glass being slowly lowered until coalescence, and gel polymerization was initiated after a certain time period for mixing. The motion of the drops was guided by the hydrophobic pattern. AFM nano-indentation showed that the fabricated Janus PAAM gels have a stiffness gradient which could be controlled by increasing mixing time. This study was supported by Bioengineering for Human Health Grant from UNL and UNMC.
Rotor/Wing Interactions in Hover
Young, Larry A.; Derby, Michael R.
2002-01-01
Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.
Institute of Scientific and Technical Information of China (English)
蒋科坚; 祝长生
2011-01-01
为了抑制振动,提高转子旋转精度,提出一种基于振动识别的不平衡补偿控制方法.该方法无需控制对象的传递函数,通过对主动电磁轴承施加试探性补偿信号,同时检测转子位移响应中不平衡振动的幅值和相位变化,直接计算出不平衡振动的Fourier系数,产生精确的补偿电磁力,实现不平衡补偿控制.在控制性能测试的实验中,振动响应的功率谱显示转速频率的振动能量有近30 dB的下降.实验结果表明,该方法对不平衡振动的抑制效果是显著的.%For suppressing vibrations and improving the rotor's rotating precision, a novel unbalance compensation method was proposed, which does not need the transfer function of plant model. The proposed method can directly obtain the Fourier coefficients of unbalance vibration and generate the accurate magnetic force to achieve unbalance compensation by injecting a trial signal into the active magnetic bearing (AMB) and meanwhile measuring the variety in magnitude and phase of the rotor's displacement response.Finally, in an experiment for testing the algorithm's efficiency and precision, approximately 30 dB reduction in unbalance vibrations was obtained in the power spectrum of rotor vibration. The experimental results indicate that the proposed algorithm is effective for suppressing rotor unbalance vibration.
Bharadwaj, Sudarsh; Dullin, Holger R; Leung, Karen; Tong, William
2015-01-01
We present and analyse a simple model for the twisting somersault. The model is a rigid body with a rotor attached which can be switched on and off. This makes it simple enough to devise explicit analytical formulas whilst still maintaining sufficient complexity to preserve the shape-changing dynamics essential for twisting somersaults in springboard and platform diving. With `rotor on' and with `rotor off' the corresponding Euler-type equations can be solved, and the essential quantities characterising the dynamics, such as the periods and rotation numbers, can be computed in terms of complete elliptic integrals. Thus we arrive at explicit formulas for how to achieve a dive with m somersaults and n twists in a given total time. This can be thought of as a special case of a geometric phase formula due to Cabrera 2007.
On cup anemometer rotor aerodynamics.
Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio
2012-01-01
The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.
Transonic Axial Splittered Rotor Tandem Stator Stage
2016-12-01
compressor rotor was designed incorporating a splitter vane between the principal blades . Historical experiments conducted by Dr. Arthur J...conventional rotor design . The stage is composed of the rotor and stator. The flow of the air passing through the rotor is turned, and the flow is required...derived results achieved the best blade geometry for design continuation. The best circumferential and axial placement for the splitter blade was
Energy Technology Data Exchange (ETDEWEB)
Inayat-Hussain, J I [School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan (Malaysia)], E-mail: jawaid.inayat-hussain@eng.monash.edu.my
2008-02-15
Numerical results on the response of a flexible rotor supported by nonlinear active magnetic bearings are presented. Nonlinearity arising from the magnetic actuator forces that are nonlinear functions of the coil current and the air gap between the rotor and the stator, and from the geometric coupling of the magnetic actuators is incorporated into the mathematical model of the flexible rotor - active magnetic bearing system. For relatively large values of the geometric coupling parameter, the response of the rotor with the variation of the speed parameter within the range 0.05 {<=}{omega} {<=} 5.0 displayed a rich variety of nonlinear dynamical phenomena including sub-synchronous vibrations of periods -2, -3, -6, -9, and -17, quasi-periodicity and chaos. Numerical results also reveal the occurrence of bi-stable operation within certain ranges of the speed parameter where multiple attractors may co-exist at the same speed parameter value depending on the operating speed of the rotor.
Analysis on Dynamic Performance for Active Magnetic Bearing—Rotor System
Institute of Scientific and Technical Information of China (English)
YANHui－yan; WANGXi－ping; 等
2001-01-01
In the application of active magnetic bearings(AMB),one of the key problems to be solved is the safety and stabiltiy in the sense of rotor dynamics,The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings,and studies its rotor dynamics performance,including calculation of the natural frequencies with their distribution characteristics,and the critical speeds of the system.one of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magntic bearing-rotor systemby combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.
Level Classifications of Foundation Stiffness
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten
2007-01-01
This article describes a foundation module developed and implemented in both HAWC and FLEX capable of to simulate the frequency dependent stiffness and damping of foundations e.g. pile, gravitation and bucket foundations.......This article describes a foundation module developed and implemented in both HAWC and FLEX capable of to simulate the frequency dependent stiffness and damping of foundations e.g. pile, gravitation and bucket foundations....
Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions
Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.
2015-01-01
Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.
Genetics Home Reference: Rotor syndrome
... of these proteins. Without the function of either transport protein, bilirubin is less efficiently taken up by the ... Schinkel AH. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into ...
Method for predicting impulsive noise generated by wind turbine rotors
Viterna, L. A.
1982-01-01
Large wind turbines can generate both broad band and impulsive noises. These noises can be controlled by proper choice of rotor design parameters such as rotor location with respect to the supporting tower, tower geometry and tip speed. A method was developed to calculate the impulsive noise generated when the wind turbine blade experiences air forces that are periodic functions of the rotational frequency. This phenomenon can occur when the blades operate in the wake of the support tower and the nonuniform velocity field near the ground due to wind shear. Results from this method were compared with measured sound spectra taken at locations of one to two rotor diameters from the DOE/NASA Mod-1 wind turbine. The calculated spectra generally agreed with the measured data in both the amplitude of the predominant harmonics and the roll of rate with frequency. Measured sound pressure levels far from the Mod-1 (15 rotor diameters), however, were higher than predicted. Simultaneous measurements in the near and far field indicated that the propagation effects could enhance the sound levels by more than 10 dB above that expected by spherical dispersion. These propagation effects are believed to be due to terrain and atmospheric characteristics of the Mod-1 site.
Advances in tilt rotor noise prediction
George, A. R.; Coffen, C. D.; Ringler, T. D.
The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.
2014-01-01
The report presents a methodology to determine the directions of the stiffness principal axis (in this case subject to the linear displacement and forced rotation angle) of a solid object interact with the surrounding environment by resilient bearing supports. The results also show that determining the coordinates of the stiffness center in the vibrating system with damping factors is necessary in our research.
Energy Technology Data Exchange (ETDEWEB)
El Arem, S.
2006-01-15
The aim of this work is to study the dynamic response of a cracked rotor to establish some possibilities for early on line crack detection. First, a review on experimental, numerical and analytical works on the dynamics of cracked rotors is given. Then, an original method of calculating the behavior of a cracked beam section in bending with shearing effects is presented. The nonlinear behavior relations are derived from a three-dimensional model taking into account the unilateral contact conditions on the crack's lips. Based on an energy formulation, this method could be applied to any geometry of crack. The exploration by different numerical integration methods of the vibratory response of some models of cracked rotors is presented in the third chapter of this thesis. The un-cracked parts of a rotor are represented by elements of bar or beam type, and the cracked section by a nonlinear spring taking into account the breathing mechanism of the cracks. At the end of this part, an original method of construction of a finite element of a cracked beam is presented. The final chapter is devoted to the analytical study of the system with 2 degrees of freedom. The breathing mechanism of the crack is taken into account by considering specific periodic variation of the global stiffness of the system. The differential equations system is solved using the harmonic balance method. The linear stability of the periodic solutions is studied by the Floquet theory. Some vibratory parameters are proposed as crack indicators. (author)
Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi
2017-03-01
Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.
Directory of Open Access Journals (Sweden)
Liang Hu
2016-10-01
Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.
Hi-Q Rotor - Low Wind Speed Technology
Energy Technology Data Exchange (ETDEWEB)
Todd E. Mills; Judy Tatum
2010-01-11
The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data
DEFF Research Database (Denmark)
Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar
2016-01-01
The lack of damping of radial gas bearings leads to high vibration levels of a rotor supported by this type of bearing when crossing resonant areas. This is even more relevant for flexible rotors, as studied in this work. In order to reduce these high vibration levels, an active gas bearing is pr...
REDUCING VIBRATION WITH FRICTION-DAMPING IN HIGH-SPEED ROTOR SYSTEM%高速滚动轴承-转子系统的摩擦阻尼减振
Institute of Scientific and Technical Information of China (English)
王黎钦; 李文忠; 古乐; 郑德志
2007-01-01
为了抑制高速滚动轴承-转子系统在通过临界转速时的过大振动,本文采用了摩擦阻尼弹性支承结构.分析了该支承的减振机理和支承特性,设计了摩擦阻尼器,研究了其对转子系统不平衡响应的影响.结果表明,采用适当的机械结构,阻尼器的刚度因子和摩阻因子只与内环的锥角和接触面摩擦因数有关.通过改变这两个参数和外壳轴向刚度,可改变其刚度和阻尼特性.在转子系统支承中引入摩擦阻尼器能够降低支承刚度,从而降低系统的临界转速,避开工作转速.此外,还可增大支承阻尼,抑制临界振幅,减小系统的振动外传力.%To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics are analyzed and a friction damper is designed. The effect on an unbalanced response is studied. Results show that the stiffness factor and the friction-damping factor of the damper are related to the cone angle and the friction factor of the inner-ring when adopting a proper structure. By changing these parameters and the Z-directional stiffness of the outer-ring, the stiffness and the damping characteristic of the damper can be varied. Introducing a friction damper into the support can reduce the stiffness and increase the damping of the support, thus decreasing the critical speed to avoid the operating speed, suppress the resonant response of a rotor system, and attenuate vibration forces to the outside.
Arterial Stiffness: Recommendations and Standardization
Townsend, Raymond R.
2017-01-01
The use of arterial stiffness measurements in longitudinal cohorts of normal populations, hypertensive patients, diabetic patients, healthy elderly, and patients on hemodialysis have confirmed the value of this important measure of arterial health, and established its complementary role to measures of blood pressure. Its contribution to understanding cardiovascular and mortality risk beyond blood pressure measurements has moved measures of arterial stiffness into the ranks of factors such as elevated cholesterol, diabetes, and left ventricular hypertrophy in considering cardiovascular risk. The recent international collaboration's publication of reference ranges for normal people and those with hypertension, along with the American Heart Association's recent scientific statement on standardizing arterial stiffness measurements are important aspects to consider in future studies employing these valuable methods, particularly as interventions that not only lower blood pressure but improve arterial function are tested in the clinical arena. PMID:28275588
Lase Ultrasonic Web Stiffness tester
Energy Technology Data Exchange (ETDEWEB)
Tim Patterson, Ph.D., IPST at Ga Tech
2009-01-12
The objective is to provide a sensor that uses non-contact, laser ultrasonics to measure the stiffness of paper during the manufacturing process. This will allow the manufacturer to adjust the production process in real time, increase filler content, modify fiber refining and as result produce a quality product using less energy. The sensor operates by moving back and forth across the paper web, at pre-selected locations firing a laser at the sheet, measuring the out-of-plane velocity of the sheet then using that measurement to calculate sheet stiffness.
Dynamic stiffness of suction caissons
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars
This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding...... soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients...
A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research
Coleman, Colin P.
1997-01-01
The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.
Model and Stability Analysis of a Flexible Bladed Rotor
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available This paper presents a fully bladed flexible rotor and outlines the associated stability analysis. From an energetic approach based on the complete energies and potentials for Euler-Bernoulli beams, a system of equations is derived, in the rotational frame, for the rotor. This later one is made of a hollow shaft modelled by an Euler-Bernoulli beam supported by a set of bearings. It is connected to a rigid disk having a rotational inertia. A full set of flexible blades is also modelled by Euler-Bernoulli beams clamped in the disk. The flexural vibrations of the blades as well as those of the shaft are considered. The evolution of the eigenvalues of this rotor, in the corotational frame, is studied. A stability detection method, bringing coalescence and loci separation phenomena to the fore, in case of an asymmetric rotor, is undertaken in order to determine a parametric domain where turbomachinery cannot encounter damage. Finally, extensive parametric studies including the length and the stagger angle of the blades as well as their flexibility are presented in order to obtain robust criteria for stable and unstable areas prediction.
On Cup Anemometer Rotor Aerodynamics
Directory of Open Access Journals (Sweden)
Santiago Pindado
2012-05-01
Full Text Available The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal, tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.
Preliminary analysis of turbochargers rotors dynamic behaviour
Monoranu, R.; Ştirbu, C.; Bujoreanu, C.
2016-08-01
Turbocharger rotors for the spark and compression ignition engines are resistant steels manufactured in order to support the exhaust gas temperatures exceeding 1200 K. In fact, the mechanical stress is not large as the power consumption of these systems is up to 10 kW, but the operating speeds are high, ranging between 30000 ÷ 250000 rpm. Therefore, the correct turbochargers functioning involves, even from the design stage, the accurate evaluation of the temperature effects, of the turbine torque due to the engine exhaust gases and of the vibration system behaviour caused by very high operating speeds. In addition, the turbocharger lubrication complicates the model, because the classical hydrodynamic theory cannot be applied to evaluate the floating bush bearings. The paper proposes a FEM study using CATIA environment, both as modeling medium and as tool for the numerical analysis, in order to highlight the turbocharger complex behaviour. An accurate design may prevent some major issues which can occur during its operation.
Active vibration control for flexible rotor by optimal direct-output feedback control
Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.
1989-01-01
Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.
Elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors
Energy Technology Data Exchange (ETDEWEB)
Werner, U. [Siemens AG, Nuernberg (Germany). Industry, Drive Technologies, Large Drives, Products R and D
2011-12-15
The paper presents an elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors supported in sleeve bearings, considering mechanical unbalances and electromagnetic forces. This model has been especially developed for flexible electrical rotors, which operate near below or near above the first critical bending speed of the rotor. Using this simplified model, a static rotor active part eccentricity can be simulated and the orbital movement of the rotor can be calculated. Additionally, the influence of different balancing concepts - elastic balancing versus rigid balancing - on the shaft vibrations is analyzed. To verify the model, a finite element analysis was performed, which indicates a satisfactory match. On the one hand, the aim of the paper is to derive an elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors for special boundary conditions. On the other hand, the aim is to show the mathematical coherences - based on a simplified model - between the rotordynamics, the oil film characteristics of the sleeve bearings, the elasticity of the rotor structure, the electromagnetics and the balancing concept. (orig.)
Chaos control and impact suppression in rotor-bearing system using magnetorheological fluid
Piccirillo, V.; Balthazar, J. M.; Tusset, A. M.
2015-11-01
In this paper a general dynamic model of a rotor-bearing system using magnetorheological fluid (MR) is presented. The mathematical model of the rotor-bearing system results from a Jeffcott rotor with two-degrees of freedom and discontinuous supports. The effect of magnetorheological fluid on vibration is investigated based on a model of a modified LuGre dynamical friction model. A comparison with equivalent rotor-bearing system is made to verify the contribution of MR in this system. In this study two different implementations of the control procedure are presented, one eliminating the chaotic behavior and the second suppressing the unbalancing vibration so as to avoid impact in rotor-bearing system. First, to control the undesirable chaos in rotor-bearing system a damped passive control methodology is used. On the other hand, to suppressing the impact vibration, the Fuzzy Logic Control is considered. Results demonstrate that undesirable behaviors of rotor can be avoided by varying the damping force.
The use of a curtain design to increase the performance level of a Savonius wind rotors
Energy Technology Data Exchange (ETDEWEB)
Altan, Burcin Deda; Atilgan, Mehmet [Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Kinikli 20070 Denizli (Turkey)
2010-04-15
In this study, a curtain design has been arranged so as to improve the low performance levels of the Savonius wind rotors. Designed to prevent the negative torque on the convex blade of the rotor, this curtain has been placed in front of the rotor, and performance experiments have been carried out when the rotor is with and without curtain. It has been determined from here that a significant increase can be achieved in the rotor performance by means of the curtain design. Experiments of the curtain design have been conducted in three different dimensions when the Savonius wind rotor is static, and the highest values have been obtained with the curtain 1. Therefore, the curtain designs and curtain angles in which the highest values obtained have been analyzed numerically with Fluent 6.0 program and the results obtained experimentally have been supported with numerical analysis. Moreover, performance experiments have been made for the curtain 1 with which the best performance values have been obtained when the rotor is in its dynamic position, and the results obtained have been given in figures. (author)
DEFF Research Database (Denmark)
Santos, Ilmar; Watanabe, F.Y.
2004-01-01
journal bearings (HJB). When part of hydrostatic pressure is also dynamically modified by means of hydraulic control systems, one refers to the active lubrication. The main contribution of the present theoretical work is to show that it is possible to reduce cross-coupling stiffness and increase...... the direct damping coefficients by means of the active lubrication, what leads to rotor-bearing systems with larger threshold of stability....
A New Hybrid Gyroscope with Electrostatic Negative Stiffness Tuning
Directory of Open Access Journals (Sweden)
Xian Chu
2013-05-01
Full Text Available A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG which combines the traditional Dynamically Tuned Gyroscope (DTG with silicon micromachined technology is investigated. The HG not only has the potentiality of achieving the same high precision as the traditional DTG, but also features a small size and low cost. The theoretical mechanism of the HG with a capacitance transducer and an electrostatic torquer is derived and the influence of the installation errors from the capacitance plate and the disc rotor module is investigated. A new tuning mechanism based on negative stiffness rather than the traditional dynamic tuning is proposed. The experimental results prove that the negative stiffness tuning is practicable and a tuning voltage of as high as 63 V is demonstrated. Due to the decreased installation error, the non-linearity of the scale factor is reduced significantly from 11.78% to 0.64%, as well as the asymmetry from 93.3% to 1.56% in the open loop condition. The rebalancing close-loop control is simulated and achieved experimentally, which proves that the fundamental principle of the HG is feasible.
A new hybrid gyroscope with electrostatic negative stiffness tuning.
Yang, Bo; Guan, Yumei; Wang, Shourong; Zou, Qi; Chu, Xian; Xue, Haiyan
2013-01-01
A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG) which combines the traditional Dynamically Tuned Gyroscope (DTG) with silicon micromachined technology is investigated. The HG not only has the potentiality of achieving the same high precision as the traditional DTG, but also features a small size and low cost. The theoretical mechanism of the HG with a capacitance transducer and an electrostatic torquer is derived and the influence of the installation errors from the capacitance plate and the disc rotor module is investigated. A new tuning mechanism based on negative stiffness rather than the traditional dynamic tuning is proposed. The experimental results prove that the negative stiffness tuning is practicable and a tuning voltage of as high as 63 V is demonstrated. Due to the decreased installation error, the non-linearity of the scale factor is reduced significantly from 11.78% to 0.64%, as well as the asymmetry from 93.3% to 1.56% in the open loop condition. The rebalancing close-loop control is simulated and achieved experimentally, which proves that the fundamental principle of the HG is feasible.
Energy Technology Data Exchange (ETDEWEB)
Mitsch, Franz [ESM GmbH, Rimbach (Germany)
2010-07-01
In the last years, the performance of wind power plants has increased enormously. Thus, within the last 15 years the average performance of wind power plants increased by a factor of nearly 10 and actually amounts more than 2 MW. The tendency still is rising. Due to the enhanced performance and thus due to the smaller frequencies, the moments and forces at the rotor blade and in power train increase extra proportionally. Due to economic and technical reasons, the supporting structure of the power train of large plants cannot be built infinitely rigid. Larger deformations of the supporting structure must be accepted. At the same time, too high additional loads shall not be transferred to the rotating mechanical engineering parts such as generator, transmission, bearings and clutches. The contribution under consideration describes new elastomeric construction units which minimize the additional forces due to deformations of the machine support and power train.
Bifurcations in the response of a flexible rotor in squeeze-film dampers with retainer springs
Energy Technology Data Exchange (ETDEWEB)
Inayat-Hussain, Jawaid I. [School of Engineering, Monash University Malaysia, No. 2, Jalan Kolej, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan (Malaysia)], E-mail: jawaid.inayat-hussain@eng.monash.edu.my
2009-01-30
Squeeze-film dampers are commonly used in conjunction with rolling-element or hydrodynamic bearings in rotating machinery. Although these dampers serve to provide additional damping to the rotor-bearing system, there have however been some cases of rotors mounted in these dampers exhibiting non-linear behaviour. In this paper a numerical study is undertaken to determine the effects of design parameters, i.e., gravity parameter, W, mass ratio, {alpha}, and stiffness ratio, K, on the bifurcations in the response of a flexible rotor mounted in squeeze-film dampers with retainer springs. The numerical simulations were undertaken for a range of speed parameter, {omega}, between 0.1 and 5.0. Numerical results showed that increasing K causes the onset speed of bifurcation to increase, whilst an increase of {alpha} reduces the onset speed of bifurcation. For a specific combination of K and {alpha} values, the onset speed of bifurcation appeared to be independent of W. The instability of the rotor response at this onset speed was due to a saddle-node bifurcation for all the parameter values investigated in this work with the exception of the combination of {alpha} = 0.1 and K = 0.5, where a secondary Hopf bifurcation was observed. The speed range of non-synchronous response was seen to decrease with the increase of {alpha}; in fact non-synchronous rotor response was totally absent for {alpha}=0.4. With the exception of the case {alpha} = 0.1, the speed range of non-synchronous response was also seen to decrease with the increase of K. Multiple responses of the rotor were observed at certain values of {omega} for various combinations of parameters W, {alpha} and K, where, depending on the values of the initial conditions the rotor response could be either synchronous or quasi-periodic. The numerical results presented in this work were obtained for an unbalance parameter, U, value of 0.1, which is considered as the upper end of the normal unbalance range of most practical
Dynamic stiffness testing-based flutter analysis of a fin with an actuator
Institute of Scientific and Technical Information of China (English)
Zhang Renjia; Wu Zhigang; Yang Chao
2015-01-01
Engineering-oriented modeling and synthesized modeling of the fin-actuator system of a missile fin are introduced, including mathematical modeling of the fin, motor and multi-stage gear reducer. The fin-actuator model is verified using dynamic stiffness testing. Good agreement is achieved between the test and theoretical results. The parameter-variable analysis indicates that the inertia of the motor rotor, reduction ratio of the reducer, connection stiffness and damping between the actuator and fin shaft have significant impacts on the dynamic stiffness characteristics. In flutter analysis, test data are directly used in the frequency domain method and indirectly used in the time domain method through the updated fin-actuator model. The two methods play different roles in engineering applications but are of equal importance. The results indicate that dynamic stiffness and constant stiffness treatments may lead to completely different flutter characteristics. Attention should be paid to the design of the fin-actuator system of a missile.
Flywheel Rotor Safe-Life Technology
Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)
2002-01-01
Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options
Optimization of wind turbine rotors
Energy Technology Data Exchange (ETDEWEB)
Nygaard, Tor Anders
1999-07-01
The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest
Barlas, Thanasis; Jost, Eva; Pirrung, Georg; Tsiantas, Theofanis; Riziotis, Vasilis; Navalkar, Sachin T.; Lutz, Thorsten; van Wingerden, Jan-Willem
2016-09-01
Simulations of a stiff rotor configuration of the DTU 10MW Reference Wind Turbine are performed in order to assess the impact of prescribed flap motion on the aerodynamic loads on a blade sectional and rotor integral level. Results of the engineering models used by DTU (HAWC2), TUDelft (Bladed) and NTUA (hGAST) are compared to the CFD predictions of USTUTT-IAG (FLOWer). Results show fairly good comparison in terms of axial loading, while alignment of tangential and drag-related forces across the numerical codes needs to be improved, together with unsteady corrections associated with rotor wake dynamics. The use of a new wake model in HAWC2 shows considerable accuracy improvements.
Energy from Swastika-Shaped Rotors
Directory of Open Access Journals (Sweden)
McCulloch M. E.
2015-04-01
Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.
Rotor thermal stress monitoring in steam turbines
Antonín, Bouberle; Jan, Jakl; Jindřich, Liška
2015-11-01
One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.
Microtubules regulate GEF-H1 in response to extracellular matrix stiffness
Heck, Jessica N.; Ponik, Suzanne M.; Garcia-Mendoza, Maria G.; Pehlke, Carolyn A.; Inman, David R.; Eliceiri, Kevin W.; Keely, Patricia J.
2012-01-01
Breast epithelial cells sense the stiffness of the extracellular matrix through Rho-mediated contractility. In turn, matrix stiffness regulates RhoA activity. However, the upstream signaling mechanisms are poorly defined. Here we demonstrate that the Rho exchange factor GEF-H1 mediates RhoA activation in response to extracellular matrix stiffness. We demonstrate the novel finding that microtubule stability is diminished by a stiff three-dimensional (3D) extracellular matrix, which leads to the activation of GEF-H1. Surprisingly, activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway did not contribute to stiffness-induced GEF-H1 activation. Loss of GEF-H1 decreases cell contraction of and invasion through 3D matrices. These data support a model in which matrix stiffness regulates RhoA through microtubule destabilization and the subsequent release and activation of GEF-H1. PMID:22593214
Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network
Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.
2013-01-01
The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for
Explicit Time-Stepping for Stiff ODEs
Eriksson, Kenneth; Logg, Anders; 10.1137/S1064827502409626
2012-01-01
We present a new strategy for solving stiff ODEs with explicit methods. By adaptively taking a small number of stabilizing small explicit time steps when necessary, a stiff ODE system can be stabilized enough to allow for time steps much larger than what is indicated by classical stability analysis. For many stiff problems the cost of the stabilizing small time steps is small, so the improvement is large. We illustrate the technique on a number of well-known stiff test problems.
Directory of Open Access Journals (Sweden)
Ronald M. Barrett
2012-01-01
Full Text Available This paper is centered on a new actuation mechanism which is integrated on a solid state rotor. This paper outlines the application of such a system via a Post-Buckled Precompression (PBP technique at the end of a twist-active piezoelectric rotor blade actuator. The basic performance of the system is handily modeled by using laminated plate theory techniques. A dual cantilevered spring system was used to increasingly null the passive stiffness of the root actuator along the feathering axis of the rotor blade. As the precompression levels were increased, it was shown that corresponding blade pitch levels also increased. The PBP cantilever spring system was designed so as to provide a high level of stabilizing pitch-flap coupling and inherent resistance to rotor propeller moments. Experimental testing showed pitch deflections increasing from just 8° peak-to-peak deflections at 650 V/mm field strength to more than 26° at the same field strength with design precompression levels. Dynamic testing showed the corner frequency of the linear system coming down from 63 Hz (3.8/rev to 53 Hz (3.2/rev. Thrust coefficients manipulation levels were shown to increase from 0.01 to 0.028 with increasing precompression levels. The paper concludes with an overall assessment of the actuator design.
Influence of the Mechanical Seals on the Dynamic Performance of Rotor-Bearing Systems
Institute of Scientific and Technical Information of China (English)
XU Hua; ZHU Jun
2006-01-01
In this Paper,to consider the effects of mechanical seals.a lumped-mass modeJ and the transfer matric method are used to establish the equations for the dynamics performance of rotor-bearing system.The general inverted iteration method is also used to solve the eigenvalue problem of these equations.To check the response of the rotorbearing system under unbalance motivation,the Gauss method is used to calculate the dynamic response of the constrained vibration.The results,based on the dynamic properties calculation of a typical mechanical spiral seal,such as stiffness coefficients and damping coefficients.exert the influence of the mechanical seal on the rotorbeating system of the high-speed machinery.Meanwhile,some structure parameters that may affect the dynamic performance and forced vibration under unbalance motiVation of the rotor-bearing system considering mechanical seals are analyzed in the Paper.The analysis results show that the mechanical seal more or less has effects on the rotor-bearing system.The mechanical seal has much more effects on the flexible rotor-bearing system than on the rigid one.For instance,in a certain case,ifthe effects of the mechanical seal were taken into account,the system's critical speed may increase by 70-80%.
Meshing Force of Misaligned Spline Coupling and the Influence on Rotor System
Directory of Open Access Journals (Sweden)
Guang Zhao
2008-01-01
Full Text Available Meshing force of misaligned spline coupling is derived, dynamic equation of rotor-spline coupling system is established based on finite element analysis, the influence of meshing force on rotor-spline coupling system is simulated by numerical integral method. According to the theoretical analysis, meshing force of spline coupling is related to coupling parameters, misalignment, transmitting torque, static misalignment, dynamic vibration displacement, and so on. The meshing force increases nonlinearly with increasing the spline thickness and static misalignment or decreasing alignment meshing distance (AMD. Stiffness of coupling relates to dynamic vibration displacement, and static misalignment is not a constant. Dynamic behaviors of rotor-spline coupling system reveal the following: 1X-rotating speed is the main response frequency of system when there is no misalignment; while 2X-rotating speed appears when misalignment is present. Moreover, when misalignment increases, vibration of the system gets intricate; shaft orbit departs from origin, and magnitudes of all frequencies increase. Research results can provide important criterions on both optimization design of spline coupling and trouble shooting of rotor systems.
Shoulder Stiffness : Current Concepts and Concerns
Itoi, Eiji; Arce, Guillermo; Bain, Gregory I.; Diercks, Ronald L.; Guttmann, Dan; Imhoff, Andreas B.; Mazzocca, Augustus D.; Sugaya, Hiroyuki; Yoo, Yon-Sik
2016-01-01
Shoulder stiffness can be caused by various etiologies such as immobilization, trauma, or surgical interventions. The Upper Extremity Committee of ISAKOS defined the term "frozen shoulder" as idiopathic stiff shoulder, that is, without a known cause. Secondary stiff shoulder is a term that should be
Energy-Efficient Variable Stiffness Actuators
Visser, Ludo C.; Carloni, Raffaella; Stramigioli, Stefano
2011-01-01
Variable stiffness actuators are a particular class of actuators that is characterized by the property that the apparent output stiffness can be changed independent of the output position. To achieve this, variable stiffness actuators consist of a number of elastic elements and a number of actuated
Institute of Scientific and Technical Information of China (English)
Cai-Wan Chang-Jian; Her-Terng Yau
2007-01-01
This study performs a dynamic analysis of a rotor supported by two squeeze couple stress fluid film journal bearings with nonlinear suspension. The numerical results show that the stability of the system varies with the non-dimensional speed ratios and the dimensionless parameter l*. It is found that the system is more stable with higher dimensionless parameter l*.Thus it can conclude that the rotor-bearing system lubricated with the couple stress fluid is more stable than that with the conventional Newtonian fluid. The modeling results thus obtained by using the method proposed in this paper can be used to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided.
Finite element analysis of misaligned rotors on oil-ﬁlm bearings
Indian Academy of Sciences (India)
S Sarkar; A Nandi; S Neogy; J K Dutt; T K Kundra
2010-02-01
The present work deals with a two-step nonlinear ﬁnite element analysis for misaligned multi-disk rotors on short oil-ﬁlm bearings of various types (cylindrical, pocket, symmetrical three-lobed, unsymmetrical three-lobed). As a ﬁrst step, the conventional parallel, angular and combined parallel and angular misalignments are modelled using Lagrange multipliers. The static equilibrium position of the journal within the bearing is determined using an iterative nonlinear static ﬁnite element analysis. The present work proposes a method for computing the displacement-dependent stiffness terms from the experimental static loaddisplacement data. Finally, the orbit of the rotor around the static equilibrium is determined using a time-integration scheme.
Ghasemalizadeh, Omid; Sadeghi, Hossein; Ahmadian, Mohammad Taghi
2013-01-01
One of the methods to find the natural frequencies of rotating systems is the application of the transfer matrix method. In this method the rotor is modeled as several elements along the shaft which have their own mass and moment of inertia. Using these elements, the entire continuous system is discretized and the corresponding differential equation can be stated in matrix form. The bearings at the end of the shaft are modeled as equivalent spring and dampers which are applied as boundary conditions to the discretized system. In this paper the dynamics of a rotor-bearing system is analyzed, considering the gyroscopic effect. The thickness of the disk and bearings is also taken into account. Continuous model is used for shaft. Results Show that, the stiffness of the shaft and the natural frequencies of the system increase, while the amplitude of vibration decreases as a consequence of increasing the thickness of the bearing.
Performance tests of a Benesh wind turbine rotor and a Savonius rotor
Energy Technology Data Exchange (ETDEWEB)
Moutsoglou, A.; Yan Weng [South Dakota State Univ., Brookings, SD (United States). Dept. of Mechanical Engineering
1995-12-31
A study was conducted to compare the performance of a Benesh rotor against a Savonius rotor as a wind power generating device. Rotors of similar dimensions were tested at the exit of a 1.22 m x 0.91 wind tunnel, at two different shaft heights above the ground. In all the tests, the maximum power coefficient for the Benesh rotor was considerably greater than for the Savonius and occurred at a lower tip speed ratio. The Benesh rotor also displayed better starting characteristics throughout. Finally, the present data compared very favourably with the experimental data of Backwell et al. (Author)
Negative stiffness in gear contact
Directory of Open Access Journals (Sweden)
Půst L.
2015-12-01
Full Text Available The tooth contact stiffness is very often included in dynamic mathematical models of gear drives. It is an important value for calculation of torsion eigenfrequencies as well as the dynamic properties of the whole transmission systems. Planetary gear drives have several advantages over simple parallel axis gears, especially due to theirs compact design and great torque-to-weight ratio caused by multiple parallel paths. However, the dimensional or mounting errors can cause that some planets have the tendency to take more load than the others. One of the ways how to improve load sharing is the application of flexible planetary pins or by using a free central wheel. However in such cases, the wheels motion is defined in one rotation coordinate and two translation coordinates — tangential and radial. The reaction force at radial change of axis distance is usually neglected. The focus of this contribution is to derive the stiffness of this radial connection and to analyse the influence of radial stiffness on planetary gear dynamics.
Innovative multi rotor wind turbine designs
Energy Technology Data Exchange (ETDEWEB)
Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)
2012-07-01
Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)
Rotor theories by Professor Joukowsky: Momentum theories
DEFF Research Database (Denmark)
van Kuik, G. A. M.; Sørensen, Jens Nørkær; Okulov, V. L.
2015-01-01
This paper is the first of two papers on the history of rotor aerodynamics with special emphasis on the role of Joukowsky. The present one focuses on the development of the momentum theory while the second one surveys the development of vortex theory for rotors. Joukowsky has played a major role ...
Pneumatic boot for helicopter rotor deicing
Blaha, B. J.; Evanich, P. L.
1981-01-01
Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.
Analysis on stability of pillar and stiff roof system in the gob area
Institute of Scientific and Technical Information of China (English)
LIU Hong; HU Qian-ting; WANG Jin-an; LI Jian-gong
2009-01-01
Based on the open stope method, the stability of the gob area was decided by pillars and stiff roof. Therefore, it was dispensable to leave pillars with long-term strength and enough size to support the stiff roof during mining activities. Based on the mining conditions of Baixiang wollastonite mine in Changxing County of Zhejiang, while consider-ing pillars with different shape, irregular size, and distribution, the load imposed on the pil-lars was analyzed, and the safety coefficient was calculated in order to determine their support status. The strength of stiff roof was calculated by means of analytical solu-tion-theory of rectangle thin plate rested on elastic foundation. The system stability of pillar and stiff roof was analyzed according to the proportion of the total cross section area of pillars to the stiff roof area above the mined area.
Measurement and Treatment of Passive Muscle Stiffness
DEFF Research Database (Denmark)
Kirk, Henrik
This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies...... stiffness. I introduce how to evaluate and distinguish between passive muscle stiffness and reflex-mediated stiffness in research and in clinical practice. Furthermore, I present ”the Portable Spasticity Assessment Device”, which was developed as a part of the PhD study. I discuss the validity......-mediated stiffness was considered a major problem. However, this study shows that significantly reduced RFD and increased passive muscle stiffness, rather than reflex-mediated stiffness, are the major contributors to impaired gait function in adults with CP, compared with neurologically healthy subjects. The third...
Computational Analysis of Multi-Rotor Flows
Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.
2016-01-01
Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.
Open Rotor - Analysis of Diagnostic Data
Envia, Edmane
2011-01-01
NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.
Sweep-twist adaptive rotor blade : final project report.
Energy Technology Data Exchange (ETDEWEB)
Ashwill, Thomas D.
2010-02-01
Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.
Nonlinear dynamic behaviors of ball bearing rotor system
Institute of Scientific and Technical Information of China (English)
WANG Li-qin; CUI Li; ZHENG De-zhi; GU Le
2009-01-01
Nonlinear forces and moments caused by ball bearing were calculated based on relationship of displacement and deflection and quasi-dynamic model of bearing. Five-DOF dynamic equations of rotor supported by ball bearings were estimated. The Newmark-β method and Newton-Laphson method were used to solve the equations. The dynamic characteristics of rotor system were studied through the time response, the phase portrait, the Poincar? maps and the bifurcation diagrams. The results show that the system goes through the quasiperiodic bifurcation route to chaos as rotate speed increases and there are several quasi-periodic regions and chaos regions. The amplitude decreases and the dynamic behaviors change as the axial load of ball bearing increases; the initial contact angle of ball bearing affects dynamic behaviors of the system obviously. The system can avoid non-periodic vibration by choosing structural parameters and operating parameters reasonably.
Directory of Open Access Journals (Sweden)
Timothy Dimond
2012-01-01
Full Text Available Most industrial rotors supported in active magnetic bearings (AMBs are operated well below the first bending critical speed. Also, they are usually controlled using proportional, integral and derivative controllers, which are set up as modally uncoupled parallel and tilt rotor axes. Gyroscopic effects create mode splitting and a speed-dependent plant. Two AMBs with four axes of control must simultaneously control and stabilize the rotor/AMB system. Various analyses have been published considering this problem for different rotor/AMB configurations. There has not been a fully dimensionless analysis of these rigid rotor AMB systems. This paper will perform this analysis with a modal PD controller in terms of translation mode and tilt mode dimensionless eigenvalues and eigenvectors. The number of independent system parameters is significantly reduced. Dimensionless PD controller gains, the ratio of rotor polar to transverse moments of inertia and a dimensionless speed ratio are used to evaluate a fully general system stability rigid rotor analysis. An objective of this work is to quantify the effects of gyroscopics on rigid rotor AMB systems. These gyroscopic forces reduce the system stability margin. The paper is also intended to help provide a common framework for communication between rotating machinery designers and controls engineers
Lim, T. C.; Singh, R.
1990-01-01
How vibratory motion can be transmitted from the rotating shaft to the casing and other connecting structures in rotating mechanical equipment is addressed here by developing a new mathematical model of precision rolling element bearings. A new grating stiffness matrix is proposed in order to demonstrate a coupling between the shaft bending motion and the flexural motion of the casing plate. It is shown that the translational bearing stiffness coefficients currently used in rotor dynamic models are a small subset of the proposed matrix. The theory is validated by examples, and the proposed bearing formulation is then extended to demonstrate its superiority over existing models in vibration transmission analyses. It is shown that the model can easily be incorporated into analytical or numerical models typically used for dynamic analyses.
An evaluation of free- and fixed-vane flowmeters with curved- and flat-bladed Savonius rotors
Joseph, Antony; Desa, Ehrlich
1994-04-01
Speed and direction performances of flowmeters, designed by the authors for in-house use, employing an Aanderaa-type curved-bladed Savonius rotor and a free vane and an Aanderaa-type flat-bladed Savonius rotor and a fixed vane, are discussed. It has been observed that accuracy, linearity, and tilt response of a meter using the Aanderaa curved-bladed rotor is superior to those of a meter using the Aanderaa flat-bladed rotor. Analysis showed that the azimuth response of a flowmeter is affected by the presence of support rods surrounding its rotor. The change in azimuth response arises from flow pattern modifications in the vicinity of the rotor, imposed by the changes in the horizontal angle of the support rods of the rotor relative to the flow streamlines. While the use of two support rods may be suitable for a fixed-vane system, it is undesirable for a free-vane system where the meter's orientation with respect to the flow direction is not defined. Flow direction calibration results indicated that a fixed-vane system exhibits superior direction performance compared to a free-vane system. The comparatively poor direction performance of the free-vane system stems from the poor coupling to the 'vane-follower' magnet from the external vane.
Rotors stress analysis and design
Vullo, Vincenzo
2013-01-01
Stress and strain analysis of rotors subjected to surface and body loads, as well as to thermal loads deriving from temperature variation along the radius, constitutes a classic subject of machine design. Nevertheless attention is limited to rotor profiles for which governing equations are solvable in closed form. Furthermore very few actual engineering issues may relate to structures for which stress and strain analysis in the linear elastic field and, even more, under non-linear conditions (i.e. plastic or viscoelastic conditions) produces equations to be solved in closed form. Moreover, when a product is still in its design stage, an analytical formulation with closed-form solution is of course simpler and more versatile than numerical methods, and it allows to quickly define a general configuration, which may then be fine-tuned using such numerical methods. In this view, all subjects are based on analytical-methodological approach, and some new solutions in closed form are presented. The analytical formul...
Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings
Pennacchi, Paolo; Vania, Andrea; Chatterton, Steven
2012-07-01
Misalignment is one of the most common sources of trouble of rotating machinery when rigid couplings connect the shafts. Ideal alignment of the shafts is difficult to be obtained and rotors may present angular and/or parallel misalignment (defined also as radial misalignment or offset). During a complete shaft revolution, a periodical change of the bearings load occurs in hyperstatic shaft-lines, if coupling misalignment between the shafts is excessive. If the rotating machine is equipped with fluid-film journal bearings, the change of the loads on the bearing causes also the variation of their instantaneous dynamic characteristics, i.e. damping and stiffness, and the complete system cannot be considered any longer as linear. Despite misalignment is often observed in the practice, there are relatively few studies about this phenomenon in literature and their results are sometimes conflicting. The authors aim at modeling accurately this phenomenon, for the first time in this paper, and giving pertinent diagnostic information. The proposed method is suitable for every type of shaft-line supported by journal bearings. A finite element model is used for the hyperstatic shaft-line, while bearing characteristics are calculated by integrating Reynolds equation as a function of the instantaneous load acting on the bearings, caused also by the coupling misalignment. The results obtained by applying the proposed method are shown by means of the simulation, in the time domain, of the dynamical response of a hyperstatic shaft-line. Nonlinear effects are highlighted and the spectral components of the system response are analyzed, in order to give diagnostic information about the signature of this type of fault.
Energy Technology Data Exchange (ETDEWEB)
Ramirez Solis, Jose Antonio; Munoz Quezada, Rodolfo; Franco Nava, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1993-01-01
At the Instituto de Investigaciones Electricas (IIE), the experimental modal tests were initiated in order to validate the numerical models used by computer programs for the study of the rotor dynamic behavior. In order to contribute to the application of the rotor balancing methods based in the calculation of their modal forms, currently the capacity to determine these modal forms and the natural frequencies of turbogenerator rotors, is being developed, through experimental modal tests. In this paper a short description is made of the technique and the results of its application in an experimental rotor and in one of the rotors of a turbogenerator, are presented. [Espanol] En el Instituto de Investigaciones Electricas (IIE), las pruebas modales experimentales se iniciaron con la finalidad de validar los modelos numericos empleados por programas de computo para el estudio del comportamiento dinamico de rotores. Con objeto de contribuir a la aplicacion de los metodos de balanceo de rotores basados en el calculo de sus formas modales, actualmente esta desarrollandose la capacidad para determinar esas formas modales y las frecuencias naturales de rotores de turbogeneradores, a traves de las pruebas modales experimentales. En este trabajo se describe brevemente la tecnica y se presentan los resultados de su aplicacion en un rotor experimental y en uno de los tres rotores de un turbogenerador.
Investigation of the effect of controllable dampers on limit states of rotor systems
Directory of Open Access Journals (Sweden)
Zapoměl J.
2012-06-01
Full Text Available The unbalance and time varying loading are the principal sources of lateral vibrations of rotors and of increase of forces transmitted through the coupling elements into the stationary part. These oscillations and force effects can be considerably reduced if damping devices are added to the coupling elements placed between the rotor and its casing. The theoretical studies and practical experience show that to achieve their optimum performance their damping effect must be controllable. This article focuses on investigation of influence of controlled damping in the rotor supports on its limit state of deformation, fatigue failure and on magnitude of the forces transmitted into the stationary part. The analysed system is a flexible rotor with one disc driven by an electric DC motor and loaded by the disc unbalance and by technological forces depending on the rotor angular position. In the computational model the system vibration is governed by a set of nonlinear differential equations of the first and second orders. To evaluate the fatigue failure both the flexural and torsional oscillations are taken into account. The analysis is aimed at searching for the intervals of angular speeds, at which the rotor can be operated without exceeding the limit states.
The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine
Somoano, Miguel; Huera-Huarte, Francisco
2016-11-01
In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.
Liu, Shibing; Yang, Bingen
2017-10-01
Flexible multistage rotor systems with water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Filling a technical gap in the literature, this effort proposes a method of optimal bearing placement that minimizes the vibration amplitude of a WLRB-supported flexible rotor system with a minimum number of bearings. In the development, a new model of WLRBs and a distributed transfer function formulation are used to define a mixed continuous-and-discrete optimization problem. To deal with the case of uncertain number of WLRBs in rotor design, a virtual bearing method is devised. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and lengths of water-lubricated rubber bearings, by which the prescribed operational requirements for the rotor system are satisfied. The proposed method is applicable either to preliminary design of a new rotor system with the number of bearings unforeknown or to redesign of an existing rotor system with a given number of bearings. Numerical examples show that the proposed optimal bearing placement is efficient, accurate and versatile in different design cases.
A 5-DOF Model for Aeroengine Spindle Dual-rotor System Analysis
Institute of Scientific and Technical Information of China (English)
HU Qinghua; DENG Sier; TENG Hongfei
2011-01-01
This paper develops a five degrees of freedom (5-DOF) model for aeroengine spindle dual-rotor system dynamic analysis.In this system, the dual rotors are supported on two angular contact ball bearings and two deep groove ball bearings, one of the latter-mentioned bearings works as the inter-shaft bearing.Driven by respective motors, the dual rotors have different co-rotating speeds.The proposed model mathematically formulates the nonlinear displacements, elastic deflections and contact forces of beatings with consideration of 5-DOF and coupling of dual rotors.The nonlinear equations of motions of dual rotors with 5-DOF are solved using Runge-Kutta-Fehlberg algorithm.In order to investigate the effect of the introduced 5-DOF and nonlinear dynamic bearing model, we compare the proposed model with two models: the 3-DOF model of this system only considering three translational degrees of freedom (Gupta, 1993, rotational freedom is neglected); the 5-DOF model where the deep groove ball bearings are simplified as linear elastic spring (Guskov, 2007).The simulation results verify Gupta's prediction (1993) and show that the rotational freedom of rotors and nonlinear dynamic model of bearings have great effect on the system dynamic simulation.The quantitative results are given as well.
Voluntary control of human jaw stiffness.
Shiller, Douglas M; Houle, Guillaume; Ostry, David J
2005-09-01
Recent studies of human arm movement have suggested that the control of stiffness may be important both for maintaining stability and for achieving differences in movement accuracy. In the present study, we have examined the voluntary control of postural stiffness in 3D in the human jaw. The goal is to address the possible role of stiffness control in both stabilizing the jaw and in achieving the differential precision requirements of speech sounds. We previously showed that patterns of kinematic variability in speech are systematically related to the stiffness of the jaw. If the nervous system uses stiffness control as a means to regulate kinematic variation in speech, it should also be possible to show that subjects can voluntarily modify jaw stiffness. Using a robotic device, a series of force pulses was applied to the jaw to elicit changes in stiffness to resist displacement. Three orthogonal directions and three magnitudes of forces were tested. In all conditions, subjects increased the magnitude of jaw stiffness to resist the effects of the applied forces. Apart from the horizontal direction, greater increases in stiffness were observed when larger forces were applied. Moreover, subjects differentially increased jaw stiffness along a vertical axis to counteract disturbances in this direction. The observed changes in the magnitude of stiffness in different directions suggest an ability to control the pattern of stiffness of the jaw. The results are interpreted as evidence that jaw stiffness can be adjusted voluntarily, and thus may play a role in stabilizing the jaw and in controlling movement variation in the orofacial system.
DEFF Research Database (Denmark)
Barlas, Thanasis K.; Zahle, Frederik; Sørensen, Niels N.;
2012-01-01
. In this study, a comparison between aerodynamic predictions of the aeroelastic code HAWC2 and the Navier-Stokes code EllipSys3D for the NREL 5MW reference wind turbine rotor in a stiff configuration equipped with a deformable trailing edge flap is performed. A case where the half rotor plane experiences...... an inflow resembling the wake from an upstream wind turbine is investigated, which is appropriate for comparing the predictions of the two codes related to the abrupt aerodynamic response and the influence of the controllable flap. The trailing edge flap is actuated to alleviate the added loads from a non...
Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine
Energy Technology Data Exchange (ETDEWEB)
Ichter, Brian; Steele, Adam; Loth, Eric; Moriarty, Patrick; Selig, Michael
2016-04-01
To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degrees at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.
14 CFR 27.1461 - Equipment containing high energy rotors.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...
14 CFR 29.1461 - Equipment containing high energy rotors.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...
14 CFR 25.1461 - Equipment containing high energy rotors.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...
Wind rotor with vertical axis. Vindrotor med vertikal axel
Energy Technology Data Exchange (ETDEWEB)
Colling, J.; Sjoenell, B.
1987-06-15
This rotor is of dual type i.e. a paddle wheel shaped rotor close to the vertical axis and a second rotor consisting of vertical blades with wing profile and attached to radial spokes which are fixed to the axis together with the paddle wheel rotor. (L.F.).
Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system
Kahraman, A.; Singh, R.
1991-04-01
Frequency response characteristics of a non-linear geared rotor-bearing system with time-varying mesh stiffness k h( overlinet) are examined in this paper. First, the single-degree-of-freedom spur gear pair model with backlash is extended to include sinusoidal or periodic mesh stiffness k h( overlinet) . Second, a three-degree-of-freedom model with k h( overlinet) and clearance non-lineariries associated with gear backlash and rolling element bearings, as excited by the static transmission error overlinee( overlinet) under a mean torque load, is developed. The governing equations are solved using digital simulation technique and only the primary resonances are studied. Resonances of the corresponding linear time-varying system associated with parametric and external excitations are identified using the method of multiple scales and digital simulation. Interactions between the mesh stiffness variation and clearance non-linearities have been investigated; a strong interaction between time-varying mesh stiffness k h( overlinet) and gear backlash is found, whereas the coupling between k h( overlinet) and bearing non-linearities is weak. Finally, our time-varying non-linear formulations yield reasonably good predictions when compared with the benchmark experimental results available in the literature.
On the torque mechanism of Savonius rotors
Energy Technology Data Exchange (ETDEWEB)
Fujisawa, N. (Dept. of Mechanical Univ., Kiryu (Japan))
1992-07-01
The aerodynamic performance and the flow fields of Savonius rotors at various overlap ratios have been investigated by measuring the pressure distributions on the blades and by visualizing the flow fields in and around the rotors with and without rotation. Experiments have been performed on four rotors having two semicircular blades but with different overlap ratios ranging 0 to 0.5. The static torque performance is improved by increasing the overlap ratio especially on the returning blade, which is due to the pressure recovery effect by the flow through the overlap. On the other hand, the torque and the power performance of the rotating rotor reaches a maximum at an overlap of 0.15. This effect is largely created by the Coanda-like flow on the convex side of the advancing blade, which is strengthened by the flow through the overlap at this small overlap ratio. However, this phenomena is weakened as the overlap ratio is further increased, suggesting a deteriorated performance of the rotor. Observations of the flow inside the rotor indicate an increased recirculation region at such large overlap ratios, which also suggests a reduced aerodynamic efficiency for rotors with large overlap. 11 figs., 16 refs.
Schrader, Jörg; Gordon-Walker, Timothy T; Aucott, Rebecca L; van Deemter, Mariëlle; Quaas, Alexander; Walsh, Shaun; Benten, Daniel; Forbes, Stuart J; Wells, Rebecca G; Iredale, John P
2010-01-01
There is increasing evidence that the physical environment is a critical mediator of tumor behavior. Hepatocellular carcinoma (HCC) develops within an altered biomechanical environment and increasing matrix stiffness is a strong predictor of HCC development. The aim of this study was to establish whether changes in matrix stiffness, which are characteristic of inflammation and fibrosis, regulate HCC cell proliferation and chemotherapeutic response. Using an in vitro system of “mechanically-tunable” matrix-coated polyacrylamide gels, matrix stiffness was modeled across a pathophysiologically-relevant range, corresponding to values encountered in normal and fibrotic livers. Results Increasing matrix stiffness was found to promote HCC cell proliferation. The proliferative index (assessed by Ki67 staining) of Huh7 and HepG2 cells was 2.7-fold and 12.2-fold higher, respectively, when the cells were cultured on stiff (12kPa) versus soft (1kPa) supports. This was associated with stiffness-dependent regulation of basal and HGF-stimulated mitogenic signaling through extracellular regulated kinase (ERK), protein kinase B (PKB/Akt) and signal transducer and activator of transcription 3 (STAT3). β1-integrin and focal adhesion kinase (FAK) were found to modulate stiffness-dependent HCC cell proliferation. Following treatment with cisplatin, we observed reduced apoptosis in HCC cells cultured on a stiff versus soft (physiological) supports. Interestingly, however, surviving cells from soft supports had significantly higher clonogenic capacity than surviving cells from a stiff microenvironment. This was associated with enhanced expression of cancer stem cell markers, including CD44, CD133, c-kit, CXCR4, octamer-4 (OCT4) and NANOG. Conclusion Increasing matrix stiffness promotes proliferation and chemotherapeutic resistance, whereas a soft environment induces reversible cellular dormancy and stem cell characteristics in HCC. This has implications for both the treatment of
Enhanced Correlation of SMART Active Flap Rotor Loads
Kottapalli, Sesi
2011-01-01
This is a follow-on study to a 2010 correlation effort. Measured data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. As background, during the wind tunnel test, unexpectedly high inboard loads were encountered, and it was hypothesized at that time that due to changes in the flexbeams over the years, the flexbeam properties used in the analysis needed updating. Boeing Mesa, recently updated these properties. This correlation study uses the updated flexbeam properties. Compared to earlier studies, the following two enhancements are implemented: i) the inboard loads (pitchcase and flexbeam loads) correlation is included for the first time (reliable prediction of the inboard loads is a prerequisite for any future anticipated flight-testing); ii) the number of blade modes is increased to better capture the flap dynamics and the pitchcase-flexbeam dynamics. Also, aerodynamically, both the rolled-up wake model and the more complex, multiple trailer wake model are used, with the latter slightly improving the blade chordwise moment correlation. This sensitivity to the wake model indicates that CFD is needed. Three high-speed experimental cases, one uncontrolled free flap case and two commanded flap cases, are considered. The two commanded flap cases include a 2o flap deflection at 5P case and a 0o flap deflection case. For the free flap case, selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the commanded 2o flap case, the experimental flap variation is approximately matched by increasing the analytical flap hinge stiffness. This increased flap hinge stiffness is retained for the commanded 0o flap case also, which is treated as a free flap case, but with larger flap hinge stiffness. The change in the mid-span and outboard loads correlation due to the updating of the flexbeam properties is not significant. Increasing the number of blade modes results in an
Stiffness estimation of a parallel kinematic machine
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents a simple yet comprehensive approach to quickly estimating the stiff-ness of a tripod-based parallel kinematic machine. This approach can be implemented in two steps. Inthe first step, the machine structure is decomposed into two substructures associated with the machineframe and parallel mechanism. The stiffness models of these two substructures are formulated bymeans of virtual work principle. This is followed by the second step that enables the stiffness model ofthe machine structure as a whole to be achieved by linear superposition. The 3D representations of themachine stiffness within the usable workspace are depicted and the contributions of different componentrigidities to the machine stiffness are discussed. The result is compared with that obtained through finiteelement analysis.
Measurement and Treatment of Passive Muscle Stiffness
DEFF Research Database (Denmark)
Kirk, Henrik
This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies......, which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements. 2) The association between increased...... passive muscle, muscle strength and gait function in adults with CP 3) The effect of resistance training and gait training accordingly on muscle strength, passive muscle stiffness and functional gait in adults with CP. The first part of the thesis defines reflex mediated stiffness and passive muscle...
Discrete analog computing with rotor-routers.
Propp, James
2010-09-01
Rotor-routing is a procedure for routing tokens through a network that can implement certain kinds of computation. These computations are inherently asynchronous (the order in which tokens are routed makes no difference) and distributed (information is spread throughout the system). It is also possible to efficiently check that a computation has been carried out correctly in less time than the computation itself required, provided one has a certificate that can itself be computed by the rotor-router network. Rotor-router networks can be viewed as both discrete analogs of continuous linear systems and deterministic analogs of stochastic processes.
Cyclic Control Optimization for a Smart Rotor
DEFF Research Database (Denmark)
Bergami, Leonardo; Henriksen, Lars Christian
2012-01-01
The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic...
A soft rotor concept - design, verification and potentials
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, F.; Thirstrup Petersen, J. [Risoe National Lab., Roskilde (Denmark)
1999-03-01
This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)
Directory of Open Access Journals (Sweden)
Dang Xuan Truong
2014-12-01
Full Text Available The report presents a methodology to determine the directions of the stiffness principal axis (in this case subject to the linear displacement and forced rotation angle of a solid object interact with the surrounding environment by resilient bearing supports. The results also show that determining the coordinates of the stiffness center in the vibrating system with damping factors is necessary in our research.
Multiple piece turbine rotor blade
Energy Technology Data Exchange (ETDEWEB)
Kimmel, Keith D.; Plank, William L.
2016-07-19
A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.
Study on wave rotor refrigerators
Institute of Scientific and Technical Information of China (English)
Yuqiang DAI; Dapeng HU; Meixia DING
2009-01-01
As a novel generation of a rotational gas wave machine, the wave rotor refrigerator (WRR) is an unsteady flow device used for refrigeration, in whose passages pressured streams directly contact and exchange energy due to the movement of pressure waves. In this paper, the working mechanism and refrigeration principle are inves-tigated based on the one-dimensional unsteady flow theory.A basic limitation on main structural parameters and operating parameters is deduced and the wave diagram of WRR to guide designing is sketched. The main influential factors are studied through an experiment. In the DUT Gas Wave Refrigeration Studying and Development Center (GWRSDC) lab, the isentropic efficiency can now reach about 65%. The results show that the WRR is a feasible and promising technology in pressured gas refrigeration cases.
Numerical Analysis of Plastic Gear Stiffness
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper established practical 3-D gear models to study the stiffness influencing factors of a loaded gear by finite element method, such as friction parameters, material properties, and gear structures. The research shows that, in elastic deformation, gear stiffness increases when sliding friction ability of contact pair decreases;meanwhile, the gear structure, especially asymmetric design in gear's shaft direction will also decrease gear stiffness.
Ambulatory arterial stiffness index: rationale and methodology
Dolan, Eamon; Li,Yan; Thijs, Lutgarde; McCormack, Patricia; Staessen, Jan A; O'Brien, Eoin; Stanton, Alice
2006-01-01
OBJECTIVES: Increased arterial stiffness is associated with the development of cardiovascular disease and may even predict its development at an early stage. Increased pulse pressure is seen as a marker of increased arterial stiffness and can be readily measured by ambulatory blood pressure monitoring. We propose another surrogate measure of arterial stiffness derived from ambulatory blood pressure monitoring that may predict cardiovascular mortality over and above pulse pressure, namely, the...
An improved spinning lens test to determine the stiffness of the human lens
Burd, H.J.; Wilde, G.S.; Judge, S.J.
2011-01-01
It is widely accepted that age-related changes in lens stiffness are significant for the development of presbyopia. However, precise details on the relative importance of age-related changes in the stiffness of the lens, in comparison with other potential mechanisms for the development of presbyopia, have not yet been established. One contributing factor to this uncertainty is the paucity and variability of experimental data on lens stiffness. The available published data generally indicate that stiffness varies spatially within the lens and that stiffness parameters tend to increase with age. However, considerable differences exist between these published data sets, both qualitatively and quantitatively. The current paper describes new and improved methods, based on the spinning lens approach pioneered by Fisher, R.F. (1971) ‘The elastic constants of the human lens’, Journal of Physiology, 212, 147–180, to make measurements on the stiffness of the human lens. These new procedures have been developed in an attempt to eliminate, or at least substantially reduce, various systematic errors in Fisher’s original experiment. An improved test rig has been constructed and a new modelling procedure for determining lens stiffness parameters from observations made during the test has been devised. The experiment involves mounting a human lens on a vertical rotor so that the lens spins on its optical axis (typically at 1000 rpm). An automatic imaging system is used to capture the outline of the lens, while it is rotating, at pre-determined angular orientations. These images are used to quantify the deformations developed in the lens as a consequence of the centripetal forces induced by the rotation. Lens stiffness is inferred using axisymmetric finite element inverse analysis in which a nearly-incompressible neo-Hookean constitutive model is used to represent the mechanics of the lens. A numerical optimisation procedure is used to determine the stiffness parameters
A new approach to determine press stiffness
DEFF Research Database (Denmark)
Arentoft, Mogens; Wanheim, Tarras
2004-01-01
A new procedure is proposed for measuring press stiffness, including separated horizontal and vertical loading of the press frame. The load can be eccentrically positioned for measuring rotational stiffnesses. Two loading devices and corresponding measuring equipment for registration of press...... deflections are designed. The press stiffness is presented as a 6 by 6 flexibility matrix. The approach has been tested by measuring the stiffness of a 5000 kN O-frame, ring element, hydraulic press, a 10000 kN O-frame, pillar element, hydraulic press and a 10000 kN O-frame, ring element mechanical press...
WAY TO DETERMINE STIFFNESS FUNCTION OF STRUCTURE
Institute of Scientific and Technical Information of China (English)
WANG De-ming; GAI Bing-zheng
2005-01-01
For calculating the stiffness function of a structure, the differential equation of the vibration of the structure was divided into the differential equation on the original stiffness function that was known, and Fredholm integral equation of the first kind on the undetermined stiffness function that was unknown. And the stable solutions of the integral equation, when the smooth factor was equal to zero, was solved by the extrapolation with p smooth factors. So the stiffness function of the structure is obtained. Applied examples show that the method is feasible and effective.
HARP model rotor test at the DNW. [Hughes Advanced Rotor Program
Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou
1989-01-01
Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.
The Savonius rotor. A construction guide. 11. ed.; Der Savonius-Rotor. Eine Bauanleitung
Energy Technology Data Exchange (ETDEWEB)
Schulz, Heinz
2009-07-01
The Savonius rotor is particularly suited for medium and low wind velocities and low capacities (up to 500 W). It can be constructed of commercial components and using simple techniques. It requires little wind to start, and the useful energy is transmitted via a shaft. In this lavishly illustrated book, the author describes the construction and operation of a robust Savonius rotor. He also shows how this rotor can be developed into a flow-through rotor for bigger plants, and he presents recommendations for appropriate machinery like pumps and slow generators.
Rotor scale model tests for power conversion unit of GT-MHR
Energy Technology Data Exchange (ETDEWEB)
Baxi, C.B., E-mail: baxicb1130@hotmail.com [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Telengator, A.; Razvi, J. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)
2012-10-15
The gas turbine modular helium reactor (GT-MHR) combines a modular high-temperature gas-cooled reactor (HTGR) nuclear heat source with a closed Brayton gas-turbine cycle power conversion unit (PCU) for thermal to electric energy conversion. The PCU has a vertical orientation and is supported on electromagnetic bearings (EMB). The rotor scale model (RSM) tests are intended to directly model the control of EMB and rotor dynamic characteristics of the full-scale GT-MHR turbo-machine (TM). The objectives of the RSM tests are to: Bullet Confirm the EMB control system design for the GT-MHR turbo machine over the full-range of operation. Bullet Confirm the redundancy and on-line maintainability features that have been specified for the EMBs. Bullet Provide a benchmark for validation of analytical tools that will be used for independent analyses of the EMB subsystem design. Bullet Provide experience with the installation, operation and maintenance of EMBs supporting multiple rotors with flexible couplings. As with the full-scale TM, the RSM incorporates two rotors that are joined by a flexible coupling. Each of the rotors is supported on one axial and two radial EMBs. Additional devices, similar in concept to radial EMBs, are installed to simulate magnetic and/or mechanical forces representing those that would be seen by the exciter, generator, compressors and turbine. Overall, the lengths of the RSM rotor is about 1/3rd that of the full-scale TM, while the diameters are approximately 1/5th scale. The design and sizing of the rotor is such that the number and values of critical speeds in the RSM are the same as in the full-scale TM. The EMBs are designed such that their response to rotor dynamic forces is representative of the full-scale TM. The fabrication and assembly of the RSM was completed at the end of 2008. All start up adjustments were finished in December 2009. To-date the generator rotor has been supported in the EMBs and rotated up to 1800 rpm. Final tests are
Institute of Scientific and Technical Information of China (English)
崔立; 郑建荣; 周炜
2012-01-01
Considering coupling effects of dynamic performances of rolling bearings and a rotor system, dynamic equations were constructed by using the finite element method, the rolor system contained a shaft, bearings, and discs. The dynamic performances of rolling bearings were calculated with a quasi-dynamic model after the rotor system response reached a stable state. Taking dynamic load, stiffness, and spin-to-roll ratio as objectives, a multi-objective optimization design was developed based on the genetic algorithm NSGA Ⅱ, the effect of structural parameters on bearing dynamic performances was analyzed. Taking a rotor system supported with ball bearings as an example, the results showed that the dynamic load decreases, radial stiffness increases and spin-to-roll ratio increases when the outer groove curvature radius increases; the dynamic load decreases, radial stiffness decreases and spin-to-roll ratio decreases as the inner groove curvature radius increases; the dynamic load increases, radial stiffness increases and spin-to-roll ratio increases when the diameter of balls increases; the largest effect on the dynamic performance optimization results is inner groove curvature radius; in a high-speed rotor system, in order to obtain better support dynamic performance, the coupling effect of the rotor system should be considered in multi-objective optimization design of its bearings.%考虑滚动轴承与转子系统动态性能的耦合影响,使用有限单元法建立包含转轴、轴承、圆盘等单元的动力学方程组,转子响应达到稳定值后,再根据滚动轴承拟动力学模型计算滚动轴承的动态性能参数.以额定动负荷、支承刚度、旋滚比为目标,基于NSGA Ⅱ遗传算法进行多目标优化设计,分析结构参数对轴承动态性能的影响.以某转子系统的支承轴承为例进行计算,结果表明外圈沟曲率半径系数增大则额定动负荷减小、径向刚度增大、旋滚比增大；内圈沟曲率
Aerodynamics of Rotor Blades for Quadrotors
Bangura, Moses; Naldi, Roberto; Mahony, Robert
2016-01-01
In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...
Valve-aided twisted Savonius rotor
Energy Technology Data Exchange (ETDEWEB)
Jaya Rajkumar, M.; Saha, U.K.
2006-05-15
Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The squirrel-cage elastic support is one of the most important components of an aero-engine rotor system.A proper structural design will favor the static and dynamic performances of the system.In view of the deficiency of the current shape optimization techniques,a new mapping approach is proposed to define shape design variables based on the parametric equations of 3D curves and surfaces.It is then applied for the slot shape optimization of a squirrel-cage elastic support.To this end,an automatic design procedure that integrates the Genetic Algorithm (GA) is developed to solve the problem.Two typical examples with different shape constraints are considered.Numerical results provide reasonable optimum designs for the improvement of stiffness and strength of the squirrel-cage elastic support.
Intraventricular filling under increasing left ventricular wall stiffness and heart rates
Samaee, Milad; Lai, Hong Kuan; Schovanec, Joseph; Santhanakrishnan, Arvind; Nagueh, Sherif
2015-11-01
Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. HFNEF patients show increased left ventricle (LV) wall stiffness and clinical diagnosis is difficult using ejection fraction (EF) measurements. We hypothesized that filling vortex circulation strength would decrease with increasing LV stiffness irrespective of heart rate (HR). 2D PIV and hemodynamic measurements were acquired on LV physical models of varying wall stiffness under resting and exercise HRs. The LV models were comparatively tested in an in vitro flow circuit consisting of a two-element Windkessel model driven by a piston pump. The stiffer LV models were tested in comparison with the least stiff baseline model without changing pump amplitude, circuit compliance and resistance. Increasing stiffness at resting HR resulted in diminishing cardiac output without lowering EF below 50% as in HFNEF. Increasing HR to 110 bpm in addition to stiffness resulted in lowering EF to less than 50%. The circulation strength of the intraventricular filling vortex diminished with increasing stiffness and HR. The results suggest that filling vortex circulation strength could be potentially used as a surrogate measure of LV stiffness. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).
Biomechanics of uphill walking using custom ankle-foot orthoses of three different stiffnesses.
Haight, Derek J; Russell Esposito, Elizabeth; Wilken, Jason M
2015-03-01
Ankle-foot orthoses (AFOs) can provide support and improve walking ability in individuals with plantarflexor weakness. Passive-dynamic AFO stiffness can be optimized for over-ground walking, however little research exists for uphill walking, when plantarflexor contributions are key. Compare uphill walking biomechanics (1) between dynamic AFO users and able-bodied control subjects. (2) between injured and sound limbs (3) across different AFO stiffnesses. Twelve patients with unilateral limb-salvage and twelve matched, able-bodied controls underwent biomechanical gait analysis when walking up a 10° incline. Three AFO stiffnesses were tested in the patient group: Nominal (clinically prescribed), Compliant (20% less stiff), and Stiff (20% more stiff). AFO users experienced less ankle motion and power generation, lower knee extensor moments, and greater hip flexion and power generation than controls during uphill walking. Despite these deviations, they walked at equivalent self-selected velocities and stride lengths. Asymmetries were present at the ankle and knee with decreased ankle motion and power, and lower knee extensor moments on the AFO limb. Stiffer AFOs increased knee joint flexion but a 40% range in AFO stiffness had few other effects on gait. Therefore, a wide range of clinically prescribed AFO stiffnesses may adequately assist uphill walking. Published by Elsevier B.V.
Torsional stiffness degradation and aerostatic divergence of suspension bridge decks
Zhang, Z. T.; Ge, Y. J.; Yang, Y. X.
2013-07-01
The mechanism of aerostatic torsional divergence (ATD) of long-span suspension bridges is investigated. A theoretical analysis on the basis of a generalized model is presented, showing that the vertical motion of a bridge deck is crucial to the torsional stiffness of the whole suspended system, and that the vertical motion of either cable with a magnitude beyond a certain threshold could result in a sudden degradation of the torsional stiffness of the system. This vertical motion-induced degradation of stiffness is recognized as the main reason for the ATD. Long-span suspension bridges are susceptible to such a type of divergence, especially when they are immersed in turbulent wind fields. The divergences that occur in turbulent wind fields differ significantly from those in smooth wind fields, and the difference is well explained by the generalized model that the loosening of any one cable could result in the vanishing of the part of stiffness provided by the whole cable system. The mechanism revealed in this paper leads to a definition of the critical wind speed of the ATD in a turbulent flow; that is, the one resulting in a vertical motion so large as to loosen either cable to a stressless state. Numerical results from the nonlinear finite-element (FE) analysis of the Xihoumen suspension bridge, in conjunction with observations from wind tunnel tests on an aero-elastic full bridge model, are in support of the viewpoint presented in this study.
Edge states of periodically kicked quantum rotors
Floß, Johannes
2015-01-01
We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.
Rotor dynamic analysis of main coolant pump
Energy Technology Data Exchange (ETDEWEB)
Lee, Chong Won; Seo, Jeong Hwan; Kim, Choong Hwan; Shin, Jae Chul; Wang, Lei Tian [Korea Advanced Institute of Science and Technology, Taejon (Korea)
1999-03-01
A rotor dynamic analysis program DARBS/MCP, for the main coolant pump of the integral reactor, has been developed. The dynamic analysis model of the main coolant pump includes a vertical shaft, three grooved radial journal bearings and gaps that represent the structure-fluid interaction effects between the rotor and the lubricant fluid. The electromagnetic force from the motor and the hydro-dynamic force induced by impeller are the major sources of vibration that may affect the rotor system stability. DARBS/MCP is a software that is developed to effectively analyze the dynamics of MCP rotor systems effectively by applying powerful numerical algorithms such as FEM with modal truncation and {lambda}-matrix method for harmonic analysis. Main design control parameters, that have much influence to the dynamic stability, have been found by Taguchi's sensitivity analysis method. Design suggestions to improve the stability of MCP rotor system have been documented. The dynamic bearing parameters of the journal bearings used for main coolant pump have been determined by directly solving the Reynolds equation using FDM method. Fluid-structure interaction effect that occurs at the small gaps between the rotor and the stator were modeled as equivalent seals, the electromagnetic force effect was regarded as a linear negative radial spring and the impeller was modeled as a rigid disk with hydrodynamic and static radial force. Although there exist critical speeds in the range of operational speeds for type I and II rotor systems, the amplitude of vibration appears to be less than the vibration limit set by the API standards. Further more, it has been verified that the main design parameters such as the clearance and length of journal bearings, and the static radial force of impeller should be properly adjusted, in order to the improve dynamic stability of the rotor system. (author). 39 refs., 81 figs., 17 tabs.
Directory of Open Access Journals (Sweden)
H. P. Jagadish
2013-01-01
Full Text Available Squeeze film dampers are novel rotor dynamic devices used to alleviate small amplitude, large force vibrations and are used in conjunction with antifriction bearings in aircraft jet engine bearings to provide external damping as these possess very little inherent damping. Electrorheological (ER fluids are controllable fluids in which the rheological properties of the fluid, particularly viscosity, can be controlled in accordance with the requirements of the rotor dynamic system by controlling the intensity of the applied electric field and this property can be utilized in squeeze film dampers, to provide variable stiffness and damping at a particular excitation frequency. The paper investigates the effect of temperature and electric field on the apparent viscosity and dynamic (stiffness and damping characteristics of ER fluid (suspension of diatomite in transformer oil using the available literature. These characteristics increase with the field as the viscosity increases with the field. However, these characteristics decrease with increase in temperature and shear strain rate as the viscosity of the fluid decreases with temperature and shear strain rate. The temperature is an important parameter as the aircraft jet engine rotors are located in a zone of high temperature gradients and the damper fluid is susceptible to large variations in temperature.
Directory of Open Access Journals (Sweden)
Jivkov Venelin S.
2016-12-01
Full Text Available The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process.
Investigation of rotor control system loads
Institute of Scientific and Technical Information of China (English)
Sun Tao; Tan Jianfeng; Wang Haowen
2013-01-01
This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.
Dynamic Gust Load Analysis for Rotors
Directory of Open Access Journals (Sweden)
Yuting Dai
2016-01-01
Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.
Dong, Guangxu; Zhang, Xinong; Xie, Shilin; Yan, Bo; Luo, Yajun
2017-03-01
For the purpose of isolating the low frequency vibration, a magnetic vibration isolator with the feature of high-static-low-dynamic stiffness (HSLDS) is developed in this paper, which is constructed by combining a magnetic negative stiffness spring (MNSS) with a spiral flexure spring (SFS) in parallel. The MNSS comprises three magnetic rings configured in attraction and is utilized to reduce the resonant frequency of the isolator. Then an analytical expression of magnetic negative stiffness (MNS) of the MNSS is deduced in terms of the current model, and an approximation to the MNS is further sought. To support the object, the axial positive stiffness of SFSs, which can behave with a smaller static deformation if a specified weight is applied, is analyzed with finite element method (FEM). After that, the governing equation of the isolator is established and solved via harmonic balance method (HBM). Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the MNSS can reduce the resonant frequency of the isolator to expand the isolation frequency band to low frequency range; and the theoretical calculations and experimental results shows a good agreement.
Stiff person syndrome: a case report.
Kelly, Patricia A; Kuberski, Carolyn
2014-08-01
The case report features a patient who had a diagnosis of a common type of breast cancer with an uncommon neurologic syndrome. She had extreme pain and progressive stiffness with cognitive and functional decline. This article includes the pathogenesis and treatment options for a rare, but treatable, autoimmune disorder of malignancy called stiff person syndrome.
Arterial Stiffness and Dialysis Calcium Concentration
Directory of Open Access Journals (Sweden)
Fabrice Mac-Way
2011-01-01
Full Text Available Arterial stiffness is the major determinant of isolated systolic hypertension and increased pulse pressure. Aortic stiffness is also associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, hypertension, and general population. Hemodynamically, arterial stiffness results in earlier aortic pulse wave reflection leading to increased cardiac workload and decreased myocardial perfusion. Although the clinical consequence of aortic stiffness has been clearly established, its pathophysiology in various clinical conditions still remains poorly understood. The aim of the present paper is to review the studies that have looked at the impact of dialysis calcium concentration on arterial stiffness. Overall, the results of small short-term studies suggest that higher dialysis calcium is associated with a transient but significant increase in arterial stiffness. This calcium dependant increase in arterial stiffness is potentially explained by increased vascular smooth muscle tone of the conduit arteries and is not solely explained by changes in mean blood pressure. However, the optimal DCa remains to be determined, and long term studies are required to evaluate its impact on the progression of arterial stiffness.
Synchronization of the four identical unbalanced rotors in a vibrating system of plane motion
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A new mechanism is proposed to implement the synchronization of the four unbalanced rotors in a vibrating system, which consists of a main rigid frame (MRF) and two accessorial rigid frames (ARF). An analytical approach is developed to study the coupling dynamic characteristics of the four unbalanced rotors, which converts the problem of synchronization of the four unbalanced rotors into the existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters (NDDEDP). The stability of zero solutions of the NDDEDP is decomposed into that of its generalized system and a system of the three first order differential equations for the disturbance parameters of the phase differences. The coupling dynamic characteristic of the four unbalanced rotors includes the inertia coupling, the stiffness coupling of angular velocity and the load torque coupling. The non-dimensional inertia coupling matrix is symmetric, the non dimensional matrix of the stiffness coupling of angular velocity is antisymmetric and its diagonal elements are all negative. Hence, the general system of the NDDEDP automatically satisfies the generalized Lyapunov equations when the non-dimensional inertia coupling matrix is positive definite and its elements are all positive. Using Routh-Hurwitz criterion the condition of stability of differential equations for the disturbance parameters of the phase differences is obtained. The load torque coupling makes the vibrating system have the dynamic characteristic of selecting motions and self-synchronization of the four unbalanced rotors arises from the dynamic characteristic of selecting motion of the vibrating system. When the two coefficients of coupling cosine effect of phase angles are all greater than 0 and the three indexes of synchronization are all far greater than 1, the vibrating system can implement an elliptical motion of the main rigid frame required in engineering. Numeric
Saxena, Anand
The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor
Determination of 6 stiffnesses for a press
DEFF Research Database (Denmark)
Arentoft, Mogens; Eriksen, Morten; Wanheim, Tarras
2000-01-01
the workpiece will result in deflections of the press, which will decrease the tolerances of the component. At present, it is possible to measure the reaction forces from the workpiece, for instance by use of the model material technique as described in [1-2]. If the stiffness and clearances of the press...... is known too, the final dimensions can be predicted by divide the force by the stiffness and add the clearance. If the stiffness of the press is known, it is possible to optimize the orientation of the workpiece too, so the direction, in which the best tolerances is demanded, is equal to the direction...... in which the press has the highest stiffness. Furthermore, knowledge about the stiffnesses of all presses in a production system makes it possible to choose the press which best fit to a specific process....
Measurement and Treatment of Passive Muscle Stiffness
DEFF Research Database (Denmark)
Kirk, Henrik
2016-01-01
This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies......, which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements 2) The association between increased......, and good correlation to measurements from a stationary dynamometer. The second part of the thesis discusses the finding of a significant correlation between gait function, reduced rate of force development (RFD), and increased passive muscle stiffness in adults with CP. Previously, the reflex...
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.
Stiffness Control of Surgical Continuum Manipulators
Mahvash, Mohsen; Dupont, Pierre E.
2013-01-01
This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466
A rotor for a high-rise building; Ein Rotor fuer das Hochhaus
Energy Technology Data Exchange (ETDEWEB)
Zastrow, F. [Hochschule Bremerhaven (Germany). Inst. fuer Automatisierungs- und Elektrotechnik; Okoth, G.; Boehm, K.; El Naggar, S. [Alfred-Wegener Inst. fuer Polar- und Meeresforschung, Bremerhaven (Germany)
2004-08-30
The typical characteristics of the H rotor recommend it not only for use in extreme climate zones but also for installation on buildings and in built-on terrain. It is difficult, however, to make small H rotors efficient and economical. (orig.)
DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well
2013-01-01
This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean
Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation
Zhu, Tao; Cazzolato, Benjamin; Robertson, William S. P.; Zander, Anthony
2015-12-01
In laboratories and high-tech manufacturing applications, passive vibration isolators are often used to isolate vibration sensitive equipment from ground-borne vibrations. However, in traditional passive isolation devices, where the payload weight is supported by elastic structures with finite stiffness, a design trade-off between the load capacity and the vibration isolation performance is unavoidable. Low stiffness springs are often required to achieve vibration isolation, whilst high stiffness is desired for supporting payload weight. In this paper, a novel design of a six degree of freedom (six-dof) vibration isolator is presented, as well as the control algorithms necessary for stabilising the passively unstable maglev system. The system applies magnetic levitation as the payload support mechanism, which realises inherent quasi-zero stiffness levitation in the vertical direction, and zero stiffness in the other five dofs. While providing near zero stiffness in multiple dofs, the design is also able to generate static magnetic forces to support the payload weight. This negates the trade-off between load capacity and vibration isolation that often exists in traditional isolator designs. The paper firstly presents the novel design concept of the isolator and associated theories, followed by the mechanical and control system designs. Experimental results are then presented to demonstrate the vibration isolation performance of the proposed system in all six directions.
Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic
Directory of Open Access Journals (Sweden)
C. Ben Regaya
2014-01-01
Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.
Optimum blade loading for a powered rotor in descent
Institute of Scientific and Technical Information of China (English)
Ramin Modarres; David A. Peters
2016-01-01
The optimum loading for rotors has previously been found for hover, climb and wind turbine conditions;but, up to now, no one has determined the optimum rotor loading in descent. This could be an important design consideration for rotary-wing parachutes and low-speed des-cents. In this paper, the optimal loading for a powered rotor in descent is found from momentum theory based on a variational principle. This loading is compared with the optimal loading for a rotor in hover or climb and with the Betz rotor loading (which is optimum for a lightly-loaded rotor). Wake contraction for each of the various loadings is also presented.
THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS
Directory of Open Access Journals (Sweden)
Ali BEAZIT
2010-06-01
Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.
Rotor Wake Development During the First Revolution
McAlister, Kenneth W.
2003-01-01
The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.
Dynamics of High-Speed Precision Geared Rotor Systems
Directory of Open Access Journals (Sweden)
Lim Teik C.
2014-07-01
Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.
Genetic determinants of arterial stiffness: Results from the Rotterdam Study
M.P.S. Sie (Mark)
2007-01-01
textabstractArterial stiffness increases with age. It is also associated with various diseases, such as diabetes mellitus and hypertension. Recently, arterial stiffness has also been found to independently predict cardiovascular disease. The pathogenesis of arterial stiffness, however, has n
Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2004-01-01
In the present paper, the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserte...
Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps
Bergami, Leonardo
2014-01-01
A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam
Dynamic stiffness of suction caissons - vertical vibrations
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars
2006-12-15
The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)
Damping by parametric excitation in a set of reduced-order cracked rotor systems
Kulesza, Zbigniew; Sawicki, Jerzy T.
2015-10-01
A common tool utilized for the stability analysis of parametrically excited linear systems, such as rotors with cracked shafts, is Floquet's method. The disadvantage is a long calculation time needed to evaluate the monodromy matrix and instability zones. An efficient alternative is the generalized Bolotin's method, where the instability zones are evaluated quickly, yet the matrices that must be calculated are of large dimensions. In the present paper, the stability analysis is conducted with both Floquet's method and the generalized Bolotin's method. However, the order of the model is reduced to two modes only and stability analyses are performed for the second-order systems obtained with various combinations of the reducing modes. Then, the results of such analyses are collected in an overall stability map. The stability map obtained in this way closely reconstructs the stability map calculated with the full-order model of the rotor, yet the calculation time needed to generate the collected map as well as the dimension of the problem are considerably reduced. The approach is demonstrated with a mathematical model of the machine with the breathing crack modeled using the rigid finite element method. The rotor is not rotating, yet the stiffness of the shaft is varied periodically to simulate the parametric excitation. An interesting indication of the developing shaft crack observed in the generated stability maps is the presence of anti-resonant zones, where the rotor vibration amplitudes quickly decay. It is anticipated that this phenomenon of increased damping at specific excitation frequencies may have potential application for shaft crack detection.
Shape Optimization of Rotor Blade for Pulp Pressure Screen Based on FLUENT
Directory of Open Access Journals (Sweden)
Qu Qingwen
2013-10-01
Full Text Available The study got two modified blades by changing the structure and shape of the rotor blade of the pressure screen. Pulp flow field in the same condition is numerically simulated by the fluid dynamics software FLUENT. The pressure distribution is showed especially in the location of the sieve drum circle. The ideal blade structure is obtained by the pressure field compared with conventional blades. It has strong cleaning ability and not easy to blockage sieve drum. The shape of the rotor blade is optimized. The blade shape is analyzed to the influence law of energy consumption. It is proved that the new rotor has energy-saving advantages. It is significant to improve the performance of pulp screening equipment. The theoretical support for select of blade shape of bars is provided by analysis of flow field.
Inlet Guide Vane Wakes Including Rotor Effects
Johnston, R. T.; Fleeter, S.
2001-02-01
Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.
Performance investigation of the S-Rotors
Bhayo, B. A.; Al-Kayiem, H. H.; Yahaya, N. Z.
2015-12-01
This paper presents and discusses results from an experimental investigation of three models of wind S-rotors. Models 1 is modified from conventional Savonius rotor with a single stage and zero offsets zero overlaps; model 2 is three blade single stage wind rotor; and model 3 is double stage conventional Savonius rotor. The three models were designed, fabricated and characterized in terms of their coefficient of performance and dynamic torque coefficient. A special open wind simulator was designed for the test. The optimum parameters for the models were based on previous studies. The results showed that the model 1, model 2 and model 3 has the maximum power coefficient of 0.26, 0.17, and 0.21 at the correspondence tip speed ratio (TSR) of 0.42, 0.39 and 0.46, respectively. Model 1 is further optimized in terms of the aspect ratio resulting in improved power coefficient by 24%. The maximum dynamic torque coefficient of model 1, model 2 and model 3 was found as 0.81, 0.56 and 0.67 at the correspondence minimum TSR of 0.28, 0.21 and 0.17, respectively. It was noted that the all three models have high torque coefficient because the models were tested at higher applied torque on the rotors.
Rhabdomyolysis and Autoimmune Variant Stiff-Person Syndrome.
Gangadhara, Shreyas; Gangadhara, Suhas; Gandhy, Chetan; Robertson, Derrick
2016-10-24
Stiff-person syndrome (SPS) is a rare neurologic disorder characterized by waxing and waning muscular rigidity, stiffness and spasms. Three subtypes have been described: paraneoplastic, autoimmune and idiopathic. Rhabdomyolysis has been described in the paraneoplastic variant, but to our knowledge no case has been reported involving the autoimmune variant. We report a case report of a 50-year-old man with history of SPS who presented with recurrent episodes of severe limb and back spasms. He was hospitalized on two separate occasions for uncontrollable spasms associated with renal failure and creatinine phosphokinase elevations of 55,000 and 22,000 U/L respectively. Laboratory tests were otherwise unremarkable. The acute renal failure resolved during both admissions with supportive management. Rhabdomyolysis has the potential to be fatal and early diagnosis is essential. It should be considered in patients who have SPS and are experiencing an exacerbation of their neurologic condition.
Rhabdomyolysis and Autoimmune Variant Stiff-Person Syndrome
Gangadhara, Shreyas; Gangadhara, Suhas; Gandhy, Chetan; Robertson, Derrick
2016-01-01
Stiff-person syndrome (SPS) is a rare neurologic disorder characterized by waxing and waning muscular rigidity, stiffness and spasms. Three subtypes have been described: paraneoplastic, autoimmune and idiopathic. Rhabdomyolysis has been described in the paraneoplastic variant, but to our knowledge no case has been reported involving the autoimmune variant. We report a case report of a 50-year-old man with history of SPS who presented with recurrent episodes of severe limb and back spasms. He was hospitalized on two separate occasions for uncontrollable spasms associated with renal failure and creatinine phosphokinase elevations of 55,000 and 22,000 U/L respectively. Laboratory tests were otherwise unremarkable. The acute renal failure resolved during both admissions with supportive management. Rhabdomyolysis has the potential to be fatal and early diagnosis is essential. It should be considered in patients who have SPS and are experiencing an exacerbation of their neurologic condition. PMID:28028432
Analysis of Brace Stiffness Influence on Stability of the Truss
Directory of Open Access Journals (Sweden)
Krajewski M.
2015-02-01
Full Text Available The paper is devoted to the numerical and experimental research of stability of a truss with side elastic supports at the top chord. The structure is a model of a real roof truss scaled by factor ¼. The linear buckling analysis and non-linear static analysis were carried out. The buckling length factor for the compressed top chord was calculated and the limit load for the imperfect truss shell model with respect to brace stiffness was obtained. The relation between brace normal force and loading of the truss is presented. The threshold stiffness of braces necessary to obtain the maximum buckling load was found. The truss load bearing capacity obtained from numerical analysis was compared with Eurocode 3 requirements.
Accelerated Solutions for Transcendental Stiffness Matrix Eigenproblems
Directory of Open Access Journals (Sweden)
F.W. Williams
1996-01-01
Full Text Available This article outlines many existing and forthcoming methods that can be used alone, or in various combinations, to accelerate the solutions of the transcendental stiffness matrix eigenproblems that arise when the stiffness matrix is assembled from exact member stiffnesses, which are obtained by solving the member differential equations exactly. Thus distributed member mass and/or the flexural effect of axial loading are incorporated exactly, and the solutions are the natural frequencies for vibration problems or the critical load factors for buckling problems.
RESEARCH ON KNOWLEDGE-BASED CAPP SYSTEM FOR ROTOR FORGING
Institute of Scientific and Technical Information of China (English)
Wang Leigang; Deng Dongrnei; Liu Zhubai
2000-01-01
Guided by developing forging technology theory,designing rules on rotor forging process are summed up.Knowledge-based CAPP system for rotor forging is created.The system gives a rational and optimum process.
Duval, R. W.; Bahrami, M.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.
Vascular Aging and Arterial Stiffness.
Mikael, Luana de Rezende; Paiva, Anelise Machado Gomes de; Gomes, Marco Mota; Sousa, Ana Luiza Lima; Jardim, Paulo César Brandão Veiga; Vitorino, Priscila Valverde de Oliveira; Euzébio, Maicon Borges; Sousa, Wátila de Moura; Barroso, Weimar Kunz Sebba
2017-06-29
Cardiovascular diseases (CVD) account annually for almost one third of all deaths worldwide. Among the CVD, systemic arterial hypertension (SAH) is related to more than half of those outcomes. Type 2 diabetes mellitus is an independent risk factor for SAH because it causes functional and structural damage to the arterial wall, leading to stiffness. Several studies have related oxidative stress, production of free radicals, and neuroendocrine and genetic changes to the physiopathogenesis of vascular aging. Indirect ways to analyze that aging process have been widely studied, pulse wave velocity (PWV) being considered gold standard to assess arterial stiffness, because there is large epidemiological evidence of its predictive value for cardiovascular events, and it requires little technical knowledge to be performed. A pulse wave is generated during each cardiac contraction and travels along the arterial bed until finding peripheral resistance or any bifurcation point, determining the appearance of a reflected wave. In young individuals, arteries tend to be more elastic, therefore, the reflected wave occurs later in the cardiac cycle, reaching the heart during diastole. In older individuals, however, the reflected wave occurs earlier, reaching the heart during systole. Because PWV is an important biomarker of vascular damage, highly valuable in determining the patient's global cardiovascular risk, we chose to review the articles on vascular aging in the context of cardiovascular risk factors and the tools available to the early identification of that damage. Resumo As doenças cardiovasculares são anualmente responsáveis por quase um terço do total de mortes no mundo. Dentre elas, a hipertensão arterial sistêmica (HAS) está relacionada com mais da metade desses desfechos. O diabetes mellitus tipo 2 é visto com um fator de risco independente para HAS por causar lesões funcionais e estruturais na parede arterial, ocasionando-lhe enrijecimento. Diversos estudos
Bifurcations of a flexible rotor response in squeeze-film dampers without centering springs
Energy Technology Data Exchange (ETDEWEB)
Inayat-Hussain, Jawaid I. [School of Engineering, Monash University Malaysia, No. 2, Jalan Kolej, Bandar Sunway, Petaling Jaya 46150, Selangor Darul Ehsan (Malaysia)]. E-mail: jawaid.inayat-hussain@eng.monash.edu.my
2005-04-01
Squeeze-film dampers are often utilized in high-speed rotating machinery to provide additional external damping to the rotor-bearing system for the purpose of reducing the synchronous response of the rotor especially while traversing critical speeds, or to eliminate rotor instability problems. The application of these dampers are widely found in aircraft gas turbine engines that are usually mounted on rolling element bearings, which are known to provide almost negligible damping to the system. Although the squeeze-film damper is an inherently stable machine element, its operation at certain parameters may give rise to undesirable non-synchronous vibration. The effects of the design and operating parameters, namely the bearing parameter, B, gravity parameter, W, and mass ratio, {alpha}, on the bifurcations in the response of a flexible rotor supported by squeeze-film dampers without centering springs were examined using direct numerical integration. Specifically, the effects of these parameters on the onset speed of bifurcation and the extent of non-synchronous response of the rotor within the range of speed parameter, {omega}, between 0.5 and 5.0 were determined. Numerical simulation results showed the occurrence of period-2, period-4 and quasi-periodic vibrations in the response of the rotor as the speed parameter, {omega}, was varied from 0.5 to 5. The results further showed that increasing B resulted in the increase of the onset speed of bifurcation, and a decrease in the range of {omega} where non-synchronous response was observed. With the exception of the case of W = 0.0, the increase of W was found to increase the onset speed of bifurcation and also the range of {omega} where non-synchronous response was observed. The effect of increasing {alpha} resulted in a decrease in the range of {omega} where non-synchronous response existed. The increase of {alpha} also caused the onset speed of bifurcation to increase, except for the case of B = 0.05, W = 0.0, where
Gaonkar, G. H.; Subramanian, S.
1996-01-01
Since the early 1990s the Aeroflightdynamics Directorate at the Ames Research Center has been conducting tests on isolated hingeless rotors in hover and forward flight. The primary objective is to generate a database on aeroelastic stability in trimmed flight for torsionally soft rotors at realistic tip speeds. The rotor test model has four soft inplane blades of NACA 0012 airfoil section with low torsional stiffness. The collective pitch and shaft tilt are set prior to each test run, and then the rotor is trimmed in the following sense: the longitudinal and lateral cyclic pitch controls are adjusted through a swashplate to minimize the 1/rev flapping moment at the 12 percent radial station. In hover, the database comprises lag regressive-mode damping with pitch variations. In forward flight the database comprises cyclic pitch controls, root flap moment and lag regressive-mode damping with advance ratio, shaft angle and pitch variations. This report presents the predictions and their correlation with the database. A modal analysis is used, in which nonrotating modes in flap bending, lag bending and torsion are computed from the measured blade mass and stiffness distributions. The airfoil aerodynamics is represented by the ONERA dynamic stall models of lift, drag and pitching moment, and the wake dynamics is represented by a state-space wake model. The trim analysis of finding, the cyclic controls and the corresponding, periodic responses is based on periodic shooting with damped Newton iteration; the Floquet transition matrix (FTM) comes out as a byproduct. The stabillty analysis of finding the frequencies and damping levels is based on the eigenvalue-eigenvector analysis of the FTM. All the structural and aerodynamic states are included from modeling to trim analysis. A major finding is that dynamic wake dramatically improves the correlation for the lateral cyclic pitch control. Overall, the correlation is fairly good.
Diagnosis of wind turbine rotor system
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian
2016-01-01
This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...... is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor...... system that can be diagnosed and monitored are: actuator faults, sensor faults and internal blade changes as e.g. change in mass of a blade....
Identification of helicopter rotor dynamic models
Molusis, J. A.; Bar-Shalom, Y.; Warmbrodt, W.
1983-01-01
A recursive, extended Kalman-filter approach is applied to the identifiction of rotor damping levels of representative helicopter dynamic systems. The general formulation of the approach is presented in the context of a typically posed stochastic estimation problem, and the method is analytically applied to determining the damping levels of a coupled rotor-body system. The identified damping covergence characteristics are studied for sensitivity to both constant-coefficient and periodic-coefficient measurement models, process-noise covariance levels, and specified initial estimates of the rotor-system damping. A second application of the method to identifying the plant model for a highly damped, isolated flapping blade with a constant-coefficient state model (hover) and a periodic-coefficient state model (forward flight) is also investigated. The parameter-identification capability is evaluated for the effect of periodicity on the plant model coefficients and the influence of different measurement noise levels.
Analysis on structural characteristics of rotors in twin-rotor cylinder-embedded piston engine
Institute of Scientific and Technical Information of China (English)
陈虎; 潘存云; 徐海军; 邓豪; 韩晨
2014-01-01
Twin-rotor cylinder-embedded piston engine is proposed for dealing with the sealing problems of rotors in twin-rotor piston engine where the existent mature sealing technologies for traditional reciprocating engine can be applied. The quantity and forms of its sealing surfaces are reduced and simplified, and what’s more, the advantages of twin-rotor piston engine are inherited, such as high power density and no valve mechanism. Given the motion law of two rotors, its kinematic model is established, and the general expression for some parameters related to engine performance, such as the trajectory, displacement, velocity and acceleration of the piston and centroid trajectory, angular displacement, velocity and acceleration of the rod are presented. By selecting different variation patterns of relative angle of two rotors, the relevant variables are compared. It can be concluded that by designing the relative angle function of two rotors, the volume variation of working chamber can be changed. However, a comprehensive consideration for friction and vibration is necessary because velocity and acceleration are quite different in the different functions, the swing magnitude of rod is proportional to link ratioλ, and the position of rod swing center is controlled by eccentricitye. In order to reduce the lateral force, a smaller value ofλshould be selected in the case of the structure, and the value ofe should be near 0.95. There is no relationship between the piston stroke and the variation process of relative angle of two rotors, the former is only proportional to the amplitude of relative angle of two rotors.
A Study of Coaxial Rotor Performance and Flow Field Characteristics
2016-01-22
A Study of Coaxial Rotor Performance and Flow Field Characteristics Natasha L. Barbely Aerospace Engineer NASA Ames Research Center Moffett Field...The pressure field generated by the two airfoils aided our interpretation of the more complex coaxial rotor system flow field. The pressure fields...velocity (ft/sec) Z vertical distance between rotors (ft) αS pitch angle (deg), negative pitch down κint coaxial rotor induced power interference
On aerodynamic design of the Savonius windmill rotor
Mojola, O. O.
This paper examines under field conditions the performance characteristics of the Savonius windmill rotor. Test data were collected on the speed, torque and power of the rotor at a large number of wind speeds for each of seven values of the rotor overlap ratio. Field testing procedures are critically appraised and a unified approach is suggested. The performance data of the Savonius rotor are also fully discussed and design criteria established.
主动电磁轴承系统的动力学性能分析%Analysis on Dynamic Performance for Active Magnetic Bearing-Rotor System
Institute of Scientific and Technical Information of China (English)
严慧燕; 汪希平; 朱礼进; 张直明; 万金贵
2001-01-01
In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings, and studies its rotor dynamics performance, including calculation of the natural frequencies with their distribution characteristics, and the critical speeds of the system. One of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magnetic bearing-rotor system by combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.
Stiff Neck, Torticollis, and Pseudotumor Cerebri
Directory of Open Access Journals (Sweden)
J Gordon Millichap
2002-05-01
Full Text Available Three prepubertal children diagnosed with pseudotumor cerebri and presenting with stiff neck and torticollis are reported from Schneider Children’s Medical Center, Sackler School of Medicine, Tel Aviv, Israel.
Observed variations of monopile foundation stiffness
DEFF Research Database (Denmark)
Kallehave, Dan; Thilsted, C.L.; Diaz, Alberto Troya
2015-01-01
The soil-structure stiffness of monopile foundations for offshore wind turbines has a high impact on the fatigue loading during normal operating conditions. Thus, a robust design must consider the evolution of pile-soil stiffness over the lifetime of the wind farm. This paper present and discuss...... full-scale measurements obtained from one offshore wind turbine structure located within Horns Reef II offshore wind farm. Data are presented for a 2.5 years period and covers normal operating conditions and one larger storm event. A reduction of the pile-soil stiffness was observed during the storm...... events, followed by a complete regain to a pre-storm level when the storm subsided. In additional, no long term variations of the pile-soil stiffness was observed. The wind turbine is located in dense to very dense sand deposits....
Strength and stiffness of engineering systems
Leckie, Frederick A
2009-01-01
This book on the stiffness and strength of engineering systems integrates a wide array of topics into a unified text, including plasticity, fracture, composite materials, energy approaches, and mechanics of microdevices (MEMs)..
Stiff person syndrome and myasthenia gravis.
Directory of Open Access Journals (Sweden)
Saravanan P
2002-01-01
Full Text Available Association of stiff person syndrome, an immune related disorder of anterior horn cells and myasthenia gravis an endplate disorder with similar pathogenesis, is rare. This communication documents this association in the Indian literature for the first time.
Determination of 6 stiffnesses for a press
DEFF Research Database (Denmark)
Arentoft, Mogens; Eriksen, Morten; Wanheim, Tarras
2000-01-01
The industry is increasingly demanding for better tolerances at cold forged products caused by the tough competition at the market. Near net-shape or net-shape production save resources for machining and reduce therefore also the material costs. During the forming process, the reaction forces fro...... in which the press has the highest stiffness. Furthermore, knowledge about the stiffnesses of all presses in a production system makes it possible to choose the press which best fit to a specific process....... is known too, the final dimensions can be predicted by divide the force by the stiffness and add the clearance. If the stiffness of the press is known, it is possible to optimize the orientation of the workpiece too, so the direction, in which the best tolerances is demanded, is equal to the direction...
Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor
DEFF Research Database (Denmark)
Gaunaa, Mac; Zahle, Frederik; Sørensen, Niels N.
2013-01-01
The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...
Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor
DEFF Research Database (Denmark)
The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...
APPLICATION OF MECHANIZED MATHEMATICS TO ROTOR DYNAMICS
Institute of Scientific and Technical Information of China (English)
胡超; 王岩; 王立国; 黄文虎
2002-01-01
Based on the mechanized mathematics and WU Wen-tsun elimination method,using oil film forces of short-bearing model and Muszynska's dynamic model, the dynamical behavior of rotor-bearing system and its stability of motion are investigated. As example,the concept of Wu characteristic set and Maple software, whirl parameters of short- bearing model, which is usually solved by the numerical method, are analyzed. At the same time,stability of zero solution of Jeffcott rotor whirl equation and stability of self-excited vibration are studied. The conditions of stable motion are obtained by using theory of nonlinear vibration.
Rotor Vibration Reduction via Active Hybrid Bearings
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2002-01-01
The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...
Fine tuning of molecular rotor function in photochemical molecular switches
ter Wiel, Matthijs K. J.; Feringa, Ben L.
2009-01-01
Molecular switches are used as scaffolds for the construction of controlled molecular rotors. The internal position of the switching entity in the molecule controls the dynamic behaviour of the rotor moiety in the molecule. Six new molecular motors with o-xylyl rotor moieties were prepared on the ba
14 CFR 23.1461 - Equipment containing high energy rotors.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...
Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network
Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.
2013-01-01
The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understandi
14 CFR 33.92 - Rotor locking tests.
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued rotation is prevented by a means to lock the rotor(s), the engine must be subjected to a test that...
On the Classification of Universal Rotor-Routers
He, Xiaoyu
2011-01-01
The combinatorial theory of rotor-routers has connections with problems of statistical mechanics, graph theory, chaos theory, and computer science. A rotor-router network defines a deterministic walk on a digraph G in which a particle walks from a source vertex until it reaches one of several target vertices. Motivated by recent results due to Giacaglia et al., we study rotor-router networks in which all non-target vertices have the same type. A rotor type r is universal if every hitting sequence can be achieved by a homogeneous rotor-router network consisting entirely of rotors of type r. We give a conjecture that completely classifies universal rotor types. Then, this problem is simplified by a theorem we call the Reduction Theorem that allows us to consider only two-state rotors. A rotor-router network called the compressor, because it tends to shorten rotor periods, is introduced along with an associated algorithm that determines the universality of almost all rotors. New rotor classes, including boppy ro...
A Recurrent Rotor-Router Configuration in Z^3
A, Tulasi Ram Reddy
2010-01-01
Rotor Router models were first introduced by James Propp in 2002. A recurrent Rotor configuration is the one in which every state is visited infinitely often. In this project we investigated whether there is a recurrent Rotor configuration in Z^d (d>2).
14 CFR 29.547 - Main and tail rotor structure.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main and tail rotor structure. 29.547 Section 29.547 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Requirements § 29.547 Main and tail rotor structure. (a) A rotor is an assembly of rotating components, which...
Institute of Scientific and Technical Information of China (English)
郭俊贤; 向锦武; 覃海鹰
2011-01-01
旋翼阻尼特性是直升机动力学问题的要素之一，根据全机动力学设计要求，进行地面共振和旋翼／动力／传动扭振系统稳定性分析，并据此提出旋翼系统阻尼特性参数设计要求．分析了粘弹性阻尼器和液压阻尼器的特点，研究了阻尼器刚度和阻尼对全机耦合动力学的影响；通过比较不同孔径节流孔的阻尼特性，确定了阻尼器设计方案．计算分析结果以及阻尼器样件的性能试验和机上试验验证结果表明：阻尼特性能够满足地面共振和旋翼／动力／传动扭振系统稳定性要求，并可实现其用于桨叶折叠的功能要求．%The rotor damping is one of the key points for a helicopter dynamic design. An introduction to the theoretical and practical study of one of the helicopter dynamic problems, which describesd the development of the rotor damping based on the helicopter dynamic with rotor/fuselage coupling that contains the stability analysis of ground resonance and the stability of rotor/power/transmission coherent was given. Based on the dynamic requirement of rotor/frame, damping analysis of the elasto-damper and the fluid-damper, which considered the effect of the stiffness and the damping was presented. The parametric sensitivity of the damper stiffness and damping was estimated. With constraints from engine control and ground resonance, the different effect was given with various available designs. Calculating and testing results performed demonstrating that, as solution to the dynamic problem, the damping with suitable orifice design for a variable liquid damper is reasonable for the helicopter dynamic problem solution and rotor blade folding.
Friedmann, P. P.; Robinson, L. H.
1988-01-01
This paper describes the incorporation of finite-state, time-domain aerodynamics in a flag-lag-torsional aeroelastic stability and response analysis in forward flight. Improvements to a previous formulation are introduced which eliminate spurious singularities. The methodology for solving the aeroelastic stability and response problems with augmented states, in the time domain, is presented using an implicit formulation. Results describing the aeroelastic behavior of soft and stiff in-plane hingeless rotor blades, in forward flight, are presented to illustrate the sensitivity of both the stability and response problems to time domain unsteady aerodynamics.
Friedmann, P. P.; Robinson, L. H.
1988-01-01
This paper describes the incorporation of finite-state, time-domain aerodynamics in a flag-lag-torsional aeroelastic stability and response analysis in forward flight. Improvements to a previous formulation are introduced which eliminate spurious singularities. The methodology for solving the aeroelastic stability and response problems with augmented states, in the time domain, is presented using an implicit formulation. Results describing the aeroelastic behavior of soft and stiff in-plane hingeless rotor blades, in forward flight, are presented to illustrate the sensitivity of both the stability and response problems to time domain unsteady aerodynamics.
Numerical assessment of the stiffness index.
Epstein, Sally; Vergnaud, Anne-Claire; Elliott, Paul; Chowienczyk, Phil; Alastruey, Jordi
2014-01-01
Elevated systemic vascular stiffness is associated with increased risk of cardiovascular disease. It has been suggested that the time difference between the two characteristic peaks of the digital volume pulse (DVP) measured at the finger using photoplethysmography is related to the stiffness of the arterial tree, and inversely proportional to the stiffness index (SI). However, the precise physical meaning of the SI and its relation to aortic pulse wave velocity (aPWV) is yet to be ascertained. In this study we investigated numerically the effect of changes in arterial wall stiffness, peripheral resistances, peripheral compliances or peripheral wave reflections on the SI and aPWV. The SI was calculated from the digital area waveform simulated using a nonlinear one-dimensional model of pulse wave propagation in a 75-artery network, which includes the larger arteries of the hand. Our results show that aPWV is affected by changes in aortic stiffness, but the SI is primarily affected by changes in the stiffness of all conduit vessels. Thus, the SI is not a direct substitute for aPWV. Moreover, our results suggest that peripheral reflections in the upper body delay the time of arrival of the first peak in the DVP. The second peak is predominantly caused by the impedance mismatch within the 75 arterial segments, rather than by peripheral reflections.
Stiffness of Railway Soil-Steel Structures
Machelski, Czesław
2015-12-01
The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.
Directory of Open Access Journals (Sweden)
Vaibhavi Umesh
Full Text Available The aggressive and rapidly lethal brain tumor glioblastoma (GBM is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.
Dynamic stiffness matrix development and free vibration analysis of a moving beam
Banerjee, J. R.; Gunawardana, W. D.
2007-06-01
The dynamic stiffness matrix of a moving Bernoulli-Euler beam is developed and used to investigate its free flexural vibration characteristics. In order to develop the dynamic stiffness matrix, it is necessary to derive and solve the governing differential equation of motion of the moving beam in closed analytical form. The solution is then used to obtain the general expressions for both responses and loads. Boundary conditions are applied to determine the constants in the general solution, leading to the formation of the frequency dependent dynamic stiffness matrix of the moving beam, relating the amplitudes of the harmonically varying loads to those of the corresponding responses. The application of the resulting dynamic stiffness matrix using the Wittrick-Williams algorithm is demonstrated by some illustrative examples. Numerical results for both simply supported and fixed-fixed end conditions of the beam are discussed, and wherever possible, some are compared with those available in the literature.
Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model
Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.
2016-04-01
Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.
Response studies of rotors and rotor blades with application to aeroelastic tailoring
Friedmann, P. P.
1982-01-01
Various tools for the aeroelastic stability and response analysis of rotor blades in hover and forward flight were developed and incorporated in a comprehensive package capable of performing aeroelastic tailoring of rotor blades in forward flight. The results indicate that substantial vibration reductions, of order 15-40%, in the vibratory hub shears can be achieved by relatively small modifications of the initial design. Furthermore the optimized blade can be up to 20% lighter than the original design. Accomplishments are reported for the following tasks: (1) finite element modeling of rotary-wing aeroelastic problems in hover and forward flight; (2) development of numerical methods for calculating the aeroelastic response and stability of rotor blades in forward fight; (3) formulation of the helicopter air resonance problem in hover with active controls; and (4) optimum design of rotor blades for vibration reduction in forward flight.
Computational Study of Flow Interactions in Coaxial Rotors
Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.
2016-01-01
Although the first idea of coaxial rotors appeared more than 150 years ago, most helicopters have used single main-rotor/tail-rotor combination. Since reactive moments of coaxial rotors are canceled by contra-rotation, no tail rotor is required to counter the torque generated by the main rotor. Unlike the single main rotor design that distributes power to both main and tail rotors, all of the power for coaxial rotors is used for vertical thrust. Thus, no power is wasted for anti-torque or directional control. The saved power helps coaxial rotors reach a higher hover ceiling than single rotor helicopters. Another advantage of coaxial rotors is that the overall rotor diameter can be reduced for a given vehicle gross weight because each rotor provides a maximum contribution to vertical thrust to overcome vehicle weight. However, increased mechanical complexity of the hub has been one of the challenges for manufacturing coaxial rotorcraft. Only the Kamov Design Bureau of Russia had been notably successful in production of coaxial helicopters until Sikorsky built X2, an experimental compound helicopter. Recent developments in unmanned aircraft systems and high-speed rotorcraft have renewed interest in the coaxial configuration. Multi-rotors are frequently used for small electric unmanned rotorcraft partly due to mechanical simplicity. The use of multiple motors provides redundancy as well as cost-efficiency. The multi-rotor concept has rarely been used until recently because of its inherent stability and control problems. However, advances in inexpensive electronic flight control systems have opened the floodgates for small drones using multirotors. Coaxial rotors have started to appear in some multi-rotor configurations. Small coaxial rotors have often been designed using a hundred year old approach that is "sketch, build, fly, and iterate." In that approach, there is no systematic way to explore trade-offs or determine logical next steps. It is neither possible to
Arterial Stiffness in Patients Taking Second-generation Antipsychotics
Fındıklı, Ebru; Gökçe, Mustafa; Nacitarhan, Vedat; Camkurt, Mehmet Akif; Fındıklı, Hüseyin Avni; Kardaş, Selçuk; Şahin, Merve Coşgun; Karaaslan, Mehmet Fatih
2016-01-01
Objective That treatment with second-generation antipsychotics (SGAs) causes metabolic side effects and atherosclerosis in patients with schizophrenia and bipolar disorder (BD) is well-known. Increased arterial stiffness is an important marker of arteriosclerosis and has been identified as an independent risk factor for cardiovascular diseases. We measured pulse wave velocity (PWV) as a marker of arteriosclerosis in patients with schizophrenia and BD who use SGAs. Methods Patients and controls were collected from our psychiatry outpatient clinics or family medicine. Mental illness was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition. Mean age, gender, systolic and diastolic blood pressure, body mass index, Framingham risk score (FRS), etc. were determined. Simultaneous electrocardiography and pulse wave were recorded with an electromyography device. The photo-plethysmographic method was used to record the pulse wave. Inclusion criteria included use of SGAs for at least the last six months. Patients with diseases that are known to cause stiffness and the use of typical antipsychotics were excluded. Results Ninety-six subject (56 patients, 40 controls) were included in our study. There were 49 females, 47 males. Patients had schizophrenia (n=17) and BD (n=39). Their treatments were quetiapine (n=15), risperidone (n=13), olanzapine (n=15), and aripiprazole (n=13). Although differences in mean age, gender, and FRS in the patient and control groups were not statistically significant (p=1), PWV was greater in patients in the antipsychotic group (p=0.048). Conclusion This study supported the liability to stiffness in patients with schizophrenia and BD. Using SGAs may contribute to arterial stiffness in these patients. PMID:27776389
Joint stiffness of the ankle and the knee in running.
Günther, Michael; Blickhan, Reinhard
2002-11-01
The spring-mass model is a valid fundament to understand global dynamics of fast legged locomotion under gravity. The underlying concept of elasticity, implying leg stiffness as a crucial parameter, is also found on lower motor control levels, i.e. in muscle-reflex and muscle-tendon systems. Therefore, it seems reasonable that global leg stiffness emerges from local elasticity established by appropriate joint torques. A recently published model of an elastically operating, segmented leg predicts that proper adjustment of joint elasticities to the leg geometry and initial conditions of ground contact provides internal leg stability. Another recent study suggests that in turn the leg segmentation and the initial conditions may be a consequence of metabolic and bone stress constraints. In this study, the theoretical predictions were verified experimentally with respect to initial conditions and elastic joint characteristics in human running. Kinematics and kinetics were measured and the joint torques were estimated by inverse dynamics. Stiffnesses and elastic nonlinearities describing the resulting joint characteristics were extracted from parameter fits. Our results clearly support the theoretical predictions: the knee joint is always stiffer and more extended than the ankle joint. Moreover, the knee torque characteristic on the average shows the higher nonlinearity. According to literature, the leg geometry is a consequence of metabolic and material stress limitations. Adapted to this given geometry, the initial joint angle conditions in fast locomotion are a compromise between metabolic and control effort minimisation. Based on this adaptation, an appropriate joint stiffness ratio between ankle and knee passively safeguards the internal leg stability. The identified joint nonlinearities contribute to the linearisation of the leg spring.
The stable stiffness triangle - drained sand during deformation cycles
DEFF Research Database (Denmark)
Sabaliauskas, Tomas; Ibsen, Lars Bo
2017-01-01
Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...
Nonlinear Vibration of Rotor Rubbing Stator Caused by Initial Perturbation
Institute of Scientific and Technical Information of China (English)
张小章; 隆锦胜; 李正光
2001-01-01
The vibration of a rotor rubbing a stator caused by an initial perturbation was studied analytically.The analytical model consists of a simple disc shaft rotor and a fixed stator. The perturbation is aninstantaneous change of the radial velocity when the rotor is operating in its normal steady state. The analysisshowed that the rotor may continue rubbing the stator for small clearance, even if the initial perturbation nolonger exists. For the interest of engineering applications, we investigated various rotating speeds,perturbation amplitudes and clearances between the rotor and the stator. Various friction coefficients on thecontact surface were also considered. The graphical results can be used for the design of rotating machines.``
Time Frequency Features of Rotor Systems with Slowly Varying Mass
Directory of Open Access Journals (Sweden)
Tao Yu
2011-01-01
Full Text Available With the analytic method and numerical method respectively, the asymptotic solutions and finite element model of rotor system with single slowly varying mass is obtained to investigate the time frequency features of such rotor system; furthermore, with given model of slowly varying mass, the rotor system with dual slowly varying mass is studied. For the first order approximate solution is used, there exists difference between the results with analytic method and numerical method. On the base of common characteristics of rotor system with dual slowly varying mass, the general rules and formula describing the frequency distribution of rotor system with multiple slowly varying mass are proposed.
Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor
Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.
2016-06-01
Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.
Numerical evaluation of tandem rotor for highly loaded transonic fan
Institute of Scientific and Technical Information of China (English)
ZHAO Bin; LIU Bao-jie
2011-01-01
Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-dimensional (3-D) numerical simulation. The aft blade solidity and its impact on total loading level were studied in depth. The result indicates that tandem rotor has potential to achieve higher loading level and attain favorable aerodynamic performance in a wide range of loading coefficient 0. 55 ～ 0.68, comparing with the conventional rotor which produced a total pressure ratio of 2.0 and loading coefficient of 0. 42.
T700 power turbine rotor multiplane/multispeed balancing demonstration
Burgess, G.; Rio, R.
1979-01-01
Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.
On the flow field around a Savonius rotor
Bergeles, G.; Athanassiadis, N.
A model of a two-bucket Savonius rotor windmill was constructed and tested in a wind tunnel. The flow field around the rotor was examined visually and also quantitatively with the use of a hot wire. The flow visualization revealed an upstream influence on the flow field up to 3 rotor diameters away and a strong downwash downstream. Hot wire measurements showed a large velocity deficit behind the rotor and a quick velocity recovery downstream due to strong mixing; the latter was associated with high levels of turbulence. Energy spectra revealed that all turbulence was concentrated in a single harmonic corresponding to twice the rotational speed of the rotor.
Downwind rotor horizontal axis wind turbine noise prediction
Metzger, F. B.; Klatte, R. J.
1981-01-01
NASA and industry are currently cooperating in the conduct of extensive experimental and analytical studies to understand and predict the noise of large, horizontal axis wind turbines. This effort consists of (1) obtaining high quality noise data under well controlled and documented test conditions, (2) establishing the annoyance criteria for impulse noise of the type generated by horizontal axis wind turbines with rotors downwind of the support tower, (3) defining the wake characteristics downwind of the axial location of the plane of rotation, (4) comparing predictions with measurements made by use of wake data, and (5) comparing predictions with annoyance criteria. The status of work by Hamilton Standard in the above areas which was done in support of the cooperative NASA and industry studies is briefly summarized.
Rotor Design for Diffuser Augmented Wind Turbines
Directory of Open Access Journals (Sweden)
Søren Hjort
2015-09-01
Full Text Available Diffuser augmented wind turbines (DAWTs can increase mass flow through the rotor substantially, but have often failed to fulfill expectations. We address high-performance diffusers, and investigate the design requirements for a DAWT rotor to efficiently convert the available energy to shaft energy. Several factors can induce wake stall scenarios causing significant energy loss. The causality between these stall mechanisms and earlier DAWT failures is discussed. First, a swirled actuator disk CFD code is validated through comparison with results from a far wake swirl corrected blade-element momentum (BEM model, and horizontal-axis wind turbine (HAWT reference results. Then, power efficiency versus thrust is computed with the swirled actuator disk (AD code for low and high values of tip-speed ratios (TSR, for different centerbodies, and for different spanwise rotor thrust loading distributions. Three different configurations are studied: The bare propeller HAWT, the classical DAWT, and the high-performance multi-element DAWT. In total nearly 400 high-resolution AD runs are generated. These results are presented and discussed. It is concluded that dedicated DAWT rotors can successfully convert the available energy to shaft energy, provided the identified design requirements for swirl and axial loading distributions are satisfied.
Eigenvalue assignment strategies in rotor systems
Youngblood, J. N.; Welzyn, K. J.
1986-01-01
The work done to establish the control and direction of effective eigenvalue excursions of lightly damped, speed dependent rotor systems using passive control is discussed. Both second order and sixth order bi-axis, quasi-linear, speed dependent generic models were investigated. In every case a single, bi-directional control bearing was used in a passive feedback stabilization loop to resist modal destabilization above the rotor critical speed. Assuming incomplete state measurement, sub-optimal control strategies were used to define the preferred location of the control bearing, the most effective measurement locations, and the best set of control gains to extend the speed range of stable operation. Speed dependent control gains were found by Powell's method to maximize the minimum modal damping ratio for the speed dependent linear model. An increase of 300 percent in stable speed operation was obtained for the sixth order linear system using passive control. Simulations were run to examine the effectiveness of the linear control law on nonlinear rotor models with bearing deadband. The maximum level of control effort (force) required by the control bearing to stabilize the rotor at speeds above the critical was determined for the models with bearing deadband.
14 CFR 33.34 - Turbocharger rotors.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34...
Flywheel system using wire-wound rotor
Energy Technology Data Exchange (ETDEWEB)
Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.
2016-06-07
A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.
Development of the optimum rotor theories
DEFF Research Database (Denmark)
Okulov, Valery; Sørensen, Jens Nørkær; van Kuik, Gijs A.M.
The purpose of this study is the examination of optimum rotor theories with ideal load distributions along the blades, to analyze some of the underlying ideas and concepts, as well as to illuminate them. The book gives the historical background of the issue and presents the analysis of the proble...
rotor of the SC rotating condenser
1974-01-01
The rotor of the rotating condenser was installed instead of the tuning fork as the modulating element of the radiofrequency system, when the SC accelerator underwent extensive improvements between 1973 to 1975 (see object AC-025). The SC was the first accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990.
A VORTEX MODEL OF A HELICOPTER ROTOR
Directory of Open Access Journals (Sweden)
Valentin BUTOESCU
2009-06-01
Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.
Wind rotors and birds; Windraeder: neue Vogelperspektiven
Energy Technology Data Exchange (ETDEWEB)
Loenker, O.; Jensen, D.
2005-01-01
Although most birds are not shy of wind rotors, authorities tend to use environmental protection arguments in their attempt to prevent wind power projects. Planners should be careful to establish ecological expert opinions for envisaged sites at an early stage. (orig.)
MODIFIED SAVONIUS ROTOR FOR DOMESTIC POWER PRODUCTION
Directory of Open Access Journals (Sweden)
VINAY P V
2012-07-01
Full Text Available Conventional fuels which are fast depleting, have ever fluctuating price and polluting characteristic of theirs is pushing mankind towards energies which are renewable and green. Wind being one of the renewable energies among solar, geothermal, biomass, ocean and others is being more patronized in places where wind is copious by governmental and with private partnership to generate electricity. Vertical axis rotor was selected over the horizontal ones due to its simplicity and reliability. At a selected location a prototype was built and installed. The design and development process and the need of the new type of machine will be described in this paper. This paper produces an investigational exploration of a vertical axis rotor (Savonius rotor wind turbine adapted for household/domestic electricity generation. The model machine collects wind energy and generates a 12 volt output which is used to charge one heavy duty battery. As a result, the home is served simultaneously by the wind turbine and the utility. The wind turbine responds well to low wind velocities and also various materials for vanes, various transmission mechanisms were also tried to evaluate the performance of the rotor.
Energy Technology Data Exchange (ETDEWEB)
Romero Navarrete, Jose Antonio
1988-09-01
example. The basic formulations as well as the particular ones are presented in the work. The formulation for velocity sensitivity is obtained at the parameters set out of the proximity to the critical speeds, reflected this by the values by the border conditions obtained, in comparison with the real ones. The formulation for the response to the lubricating oil conditions as far as its pressure, takes place in regards to the influence that this variable has on the bending moments derived from the deflection of the rotor inside the bearing, and taking into account the tendency of the hydrodynamics bearing considers here to approximate its behavior to the one of a hydrostatic bearing. As far as the oil temperature, the formulation is based on the diminution of the external parametric shearing moments applied, as a result of the different resistance of the trunnion in moving inside the bearing. The formulation for the environmental conditions as far as the metal temperature is established on the base of the general behavior of metals when losing hardness with temperature, setting out parameters for the response on the base of the temperature ranges commonly found in these machines. The misalignments have been formulated based on the distribution along the rotor of the shearing moments resulting from the supports misalignment, with which the applied parametric moments undergo variations. With the purpose that by comparison the scope of the work is inferred, is provided typified, the universe of circumstances that influence the rotor response, including in this since the types of load susceptible to appear. The importance this work results, consists of the versatility gained in the simulation in real time of these phenomena, as well as the latent possibility of carrying out analysis of big rotors by means of obtaining experimental correlations that would be used to 'adjust' the model, noticing its use for the on line rotor fissures diagnosis. [Spanish] En la
Simplified rotor load models and fatigue damage estimates for offshore wind turbines.
Muskulus, M
2015-02-28
The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations.
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
Energy Technology Data Exchange (ETDEWEB)
Blaylock, Myra L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Thermal/ Fluid Sciences & Engineering Dept.; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.; Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.
The Effect of Rib Shape on Stiffness.
Holcombe, Sven A; Wang, Stewart C; Grotberg, James B
2016-11-01
This study investigates the isolated effect of rib shape on the mechanical characteristics of ribs subjected to multiple forms of loading. It aims to measure the variation in stiffness due to shape that is seen throughout the population and, in particular, provide a tool for researchers to better understand the influence of shape on resulting stiffness. A previously published six-parameter shape model of the central axis of human ribs was used. It has been shown to accurately model the overall rib path using intrinsic geometric properties such as size, aspect ratio, and skewness, through shapes based on logarithmic spirals with high curvature continuity. In this study the model was fitted to 19,500 ribs from 989 adult female and male CT scans having demographic distributions matching the US adult population. Mechanical loading was simulated through a simplified finite element model aimed at isolating rib shape from other factors influencing mechanical response. Four loading scenarios were used representing idealized free and constrained loading conditions in axial (body-anterior) and lateral directions. Characteristic rib stiffness and maximum stress location were tracked as simulation output measures. Regression models of rib stiffness found that all shape model parameters added information when predicting stiffness under each loading condition, with their linear combination able to account for 95% of the population stiffness variation due to shape in midlevel ribs for free axial loading, and 92%-98% in other conditions. Full regression models including interactive terms explained up to 99% of population variability. Results allow researchers to better evaluate the differences in stiffness results that are obtained from physical testing by providing a framework with which to explain variation due to rib shape.
Physical inactivity and arterial stiffness in COPD
Directory of Open Access Journals (Sweden)
Sievi NA
2015-09-01
Full Text Available Noriane A Sievi,1 Daniel Franzen,1 Malcolm Kohler,1,2 Christian F Clarenbach1 1Division of Pulmonology, University Hospital of Zurich, 2Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland Background: Arterial stiffness is an important predictor of cardiovascular risk besides classic cardiovascular risk factors. Previous studies showed that arterial stiffness is increased in patients with COPD compared to healthy controls and exercise training may reduce arterial stiffness. Since physical inactivity is frequently observed in patients with COPD and exercise training may improve arterial stiffness, we hypothesized that low daily physical activity may be associated with increased arterial stiffness. Methods: In 123 patients with COPD (72% men; mean [standard deviation] age: 62 [7.5] years; median [quartile] forced expiratory volume in 1 second 35 [27/65] %predicted, arterial stiffness was assessed by augmentation index (AI. Daily physical activity level (PAL was measured by an activity monitor (SenseWear Pro™ >1 week. The association between AI and PAL was investigated by univariate and multivariate regression analysis, taking into account disease-specific characteristics and comorbidities. Results: Patients suffered from moderate (35%, severe (32%, and very severe (33% COPD, and 22% were active smokers. Median (quartile PAL was 1.4 (1.3/1.5 and mean (standard deviation AI 26% (9.2%. PAL showed a negative association with AI (B=-9.32, P=0.017 independent of age, sex, blood pressure, and airflow limitation. Conclusion: In COPD patients, a higher PAL seems to favorably influence arterial stiffness and therefore may reduce cardiovascular risk. Clinical Trial Registration: www.ClinicalTrials.gov, NCT01527773 Keywords: activity monitor, airflow limitation, COPD, physical activity level
Waves in geomaterials exhibiting negative stiffness behaviour
Esin, Maxim; Dyskin, Arcady; Pasternak, Elena
2016-04-01
Negative stiffness denotes the type of material behaviour when the force applied to the body decreases the body's deformation increases. Some geomaterials, for instance, rocks, demonstrate behaviour of this type at certain loads: during the compression tests the loading curves exhibit descending branch (post-peak softening). One of the possible mechanisms of the negative stiffness appearance in geomaterials is rotation of non-spherical grains. It is important to emphasize that in this case the descending branch may be reversible given that the testing machine is stiff enough (in general case it means an importance of boundary conditions). Existence of geomaterials with a negative modulus associated with rotations may have significant importance. In particular, important is understanding of the wave propagation in such materials. We study the stability of geomaterials with negative stiffness inclusions and wave propagation in it using two approaches: Cosserat continuum and discrete mass-spring models. In both cases we consider the rotational degrees of freedom in addition to the conventional translational ones. We show that despite non positiveness of the energy the materials with negative stiffness elements can be stable if certain conditions are met. In the case of Cosserat continuum the Cosserat shear modulus (the modulus relating the non-symmetrical part of shear stress and internal rotations) is allowed to assume negative values as long as its value does not exceed the value of the standard (positive) shear modulus. In the case of discrete mass-spring systems (with translational and rotational springs) the concentration of negative stiffness springs and the absolute values of negative spring stiffness are limited. The critical concentration when the system loses stability and the amplitude of the oscillations tends to infinity is equal to 1/2 and 3/5 for two- and three-dimensional cases respectively.
Institute of Scientific and Technical Information of China (English)
王国新; 陈光雄; 邬平波
2011-01-01
According to Brockley's theory that friction-induced vibration causes rail corrugation, an elastic vibration model of a wheelset-track system when a vehicle passed steadily through a tight curve was established. The model included a wheelset, two rails and a series of sleeper support springs and dampers. In the model, the creep forces between wheels and rails were assumed to be saturated and equal to the normal contact forces multiplied by a friction coefficient. The motion stability of the model was analyzed using ABAQUS package. It was found that when the friction coefficient μ ＞0.28, there are propensities of unstable self-excited vibration which is a possible cause to lead to the short-pitch corrugation on the low rail. The influence of the sleeper support stiffness and damping on rail corrugation was studied with the model.The results showed that softer sleeper support stiffness and appropriate damping may suppress rail corrugation. It was also found that similar to the discrete sleeper support, the continuous sleeper support can not eliminate wear-type rail corrugation fully.%基于Brockley轮轨系统的摩擦自激振动引起钢轨的磨耗型波磨的理论,建立了车辆稳态通过小半径曲线时由轮对-钢轨-轨枕弹簧组成的系统有限元弹性振动模型,在模型中假设轮轨蠕滑力饱和且等于法向力与摩擦系数的乘积,应用有限元软件ABAQUS分析该模型的运动稳定性.计算结果显示,当摩擦系数μ>0.28时,轮轨系统在饱和蠕滑力作用下存在很强的自激振动趋势.这种自激振动可能是引起小半径曲线线路上内轨短波波磨的原因.研究了轨枕支撑弹簧刚度和阻尼对钢轨波磨的影响,发现较软的轨枕支撑弹簧刚度和合适的轨枕支撑阻尼可以抑制曲线线路上内轨的短波波磨.研究也发现,把离散轨枕弹簧支撑改为连续弹簧支撑,仍然不能完全消除这种磨耗型钢轨波磨.
Variable stiffness design of redundantly actuated planar rotational parallel mechanisms
Institute of Scientific and Technical Information of China (English)
Li Kangkang; Jiang Hongzhou; Cui Zuo; Huang Qun
2017-01-01
Redundantly actuated planar rotational parallel mechanisms (RAPRPMs) adapt to the requirements of robots under different working conditions by changing the antagonistic internal force to tune their stiffness. The geometrical parameters of the mechanism impact the performances of modulating stiffness. Analytical expressions relating stiffness and geometrical parameters of the mechanism were formulated to obtain the necessary conditions of variable stiffness. A novel method of variable stiffness design was presented to optimize the geometrical parameters of the mechanism. The stiffness variation with the internal force was maximized. The dynamic change of stiffness with the dynamic location of the mechanism was minimized, and the robustness of stiff-ness during the motion of the mechanism was ensured. This new approach to variable stiffness design can enable off-line planning of the internal force to avoid the difficulties of on-line control of the internal force.
Utilization of rotor kinetic energy storage for hybrid vehicles
Hsu, John S.
2011-05-03
A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.
Rotor for a line start permanent magnet machine
Energy Technology Data Exchange (ETDEWEB)
Melfi, Mike; Schiferl, Rich; Umans, Stephen
2017-07-11
A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.
Experimental Dynamic Analysis of a Breathing Cracked Rotor
Guo, Chao-Zhong; Yan, Ji-Hong; Bergman, Lawrence A.
2017-09-01
Crack fault diagnostics plays a critical role for rotating machinery in the traditional and Industry 4.0 factory. In this paper, an experiment is set up to study the dynamic response of a rotor with a breathing crack as it passes through its 1/2, 1/3, 1/4 and 1/5 subcritical speeds. A cracked shaft is made by applying fatigue loads through a three-point bending apparatus and then placed in a rotor testbed. The vibration signals of the testbed during the coasting-up process are collected. Whirl orbit evolution at these subcritical speed zones is analyzed. The Fourier spectra obtained by FFT are used to investigate the internal frequencies corresponding to the typical orbit characteristics. The results show that the appearance of the inner loops and orientation change of whirl orbits in the experiment are agreed well with the theoretical results obtained previously. The presence of higher frequencies 2X, 3X, 4X and 5X in Fourier spectra reveals the causes of subharmonic resonances at these subcritical speed zones. The experimental investigation is more systematic and thorough than previously reported in the literature. The unique dynamic behavior of the orbits and frequency spectra are feasible features for practical crack diagnosis. This paper provides a critical technology support for the self-aware health management of rotating machinery in the Industry 4.0 factory.
Dynamical localization of coupled relativistic kicked rotors
Rozenbaum, Efim B.; Galitski, Victor
2017-02-01
A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.
Groothuis, S.S.; Carloni, R.; Stramigioli, S.
2016-01-01
This paper presents a proof of concept of a variable stiffness actuator (VSA) that uses only one (high power) input motor. In general, VSAs use two (high power) motors to be able to control both the output position and the output stiffness, which possibly results in a heavy, and bulky system. In thi
Non-linear dynamics of a geared rotor-bearing system with multiple clearances
Kahraman, A.; Singh, R.
1991-02-01
Non-linear frequency response characteristics of a geared rotor-bearing system are examined in this paper. A three-degree-of-freedom dynamic model is developed which includes non-linearities associated with radial clearances in the radial rolling element bearings and backlash between a spur gear pair; linear time-invariant gear meshing stiffness is assumed. The corresponding linear system problem is also solved, and predicted natural frequencies and modes match with finite element method results. The bearing non-linear stiffness function is approximated for the sake of convenience by a simple model which is identical to that used for the gear mesh. This approximate bearing model has been verified by comparing steady state frequency spectra. Applicability of both analytical and numerical solution techniques to the multi-degree-of-freedom non-linear problem is investigated. Satisfactory agreement has been found between our theory and available experimental data. Several key issues such as non-linear modal interactions and differences between internal static transmission error excitation and external torque excitation are discussed. Additionally, parametric studies are performed to understand the effect of system parameters such as bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion used to classify the steady state solutions is presented, and the conditions for chaotic, quasi-periodic and subharmonic steady state solutions are determined. Two typical routes to chaos observed in this geared system are also identified.
[Stiff-person syndrome and related autoantibodies].
Tomioka, Ryo; Tanaka, Keiko
2013-04-01
Central nervous system hyperexcitability disorders, known as stiff-man/person syndrome (SPS), are thought to be related to the regulatory disturbance of inhibitory synaptic transmission of motor neurons in the brainstem and spinal cord. SPS is characterized by stiffness and spasms of the axis and limbs and is divided into two clinical subgroups: classic SPS, which affects the lumbar, trunk, and proximal limb muscles, and SPS-plus syndrome. The latter comprises (1) the stiff-limb subtype, in which symptom is limited to the lower limbs; (2) jerking stiff-man syndrome, characterized by chronically progressive stiffness and myoclonus; and (3) acute-onset and progressive encephalomyelitis with rigidity and myoclonus. Almost 80% of patients with classic SPS harbor autoantibodies against glutamic acid decarboxylase 65 (GAD65). In approximately 30-40% of patients, SPS accompanies type I diabetes, and anti-GAD65 antibodies are detected frequently in type I diabetes. However, the antibody-recognizing epitopes might be different between SPS and diabetes. Other autoantibodies against glycine receptor α1 (12% of patients with SPS) and GABA(A)-receptor associated protein (70% of patients with SPS) have been reported. In paraneoplastic SPS, anti-amphiphysin antibodies have been shown in patients with breast cancer or small cell lung cancer. One case of mediastinal tumor with anti-gephyrin antibodies has also been reported. However, the roles of these autoantibodies in the pathomechanisms of SPS have not yet been elucidated.
Big Bang nucleosynthesis with a stiff fluid
Dutta, Sourish
2010-01-01
Models that lead to a cosmological stiff fluid component, with a density $\\rho_S$ that scales as $a^{-6}$, where $a$ is the scale factor, have been proposed recently in a variety of contexts. We calculate numerically the effect of such a stiff fluid on the primordial element abundances. Because the stiff fluid energy density decreases with the scale factor more rapidly than radiation, it produces a relatively larger change in the primordial helium-4 abundance than in the other element abundances, relative to the changes produced by an additional radiation component. We show that the helium-4 abundance varies linearly with the density of the stiff fluid at a fixed fiducial temperature. Taking $\\rho_{S10}$ and $\\rho_{R10}$ to be the stiff fluid energy density and the standard density in relativistic particles, respectively, at $T = 10$ MeV, we find that the change in the primordial helium abundance is well-fit by $\\Delta Y_p = 0.00024(\\rho_{S10}/\\rho_{R10})$. The changes in the helium-4 abundance produced by ad...
Torso flexion modulates stiffness and reflex response.
Granata, K P; Rogers, E
2007-08-01
Neuromuscular factors that contribute to spinal stability include trunk stiffness from passive and active tissues as well as active feedback from reflex response in the paraspinal muscles. Trunk flexion postures are a recognized risk factor for occupational low-back pain and may influence these stabilizing control factors. Sixteen healthy adult subjects participated in an experiment to record trunk stiffness and paraspinal muscle reflex gain during voluntary isometric trunk extension exertions. The protocol was designed to achieve trunk flexion without concomitant influences of external gravitational moment, i.e., decouple the effects of trunk flexion posture from trunk moment. Systems identification analyses identified reflex gain by quantifying the relation between applied force disturbances and time-dependent EMG response in the lumbar paraspinal muscles. Trunk stiffness was characterized from a second order model describing the dynamic relation between the force disturbances versus the kinematic response of the torso. Trunk stiffness increased significantly with flexion angle and exertion level. This was attributed to passive tissue contributions to stiffness. Reflex gain declined significantly with trunk flexion angle but increased with exertion level. These trends were attributed to correlated changes in baseline EMG recruitment in the lumbar paraspinal muscles. Female subjects demonstrated greater reflex gain than males and the decline in reflex gain with flexion angle was greater in females than in males. Results reveal that torso flexion influences neuromuscular factors that control spinal stability and suggest that posture may contribute to the risk of instability injury.
Stiffness Characteristics of Fibre-reinforced Composite Shaft Embedded with Shape Memory Alloy Wires
Directory of Open Access Journals (Sweden)
K. Gupta
2003-04-01
Full Text Available Frequent coast up/coast down operations of rotating shafts in the power and aerospace industry expose the flexible rotors to the risk of fatigue failures. Resonant vibrations during passage through critical speeds induce large stresses that may lead to failures. In this paper, the use of nitinol [shape memory alloy (SMA] wires in the fibre-reinforced composite shaft, for the purpose ofmodifying shaft stiffness properties to avoid such failures, is discussed. A setup has been developed to fabricate the composite shaft (made of fibre glass and epoxy resin embedded with pre-stressed SMA wires. Experiments have been carried out on the shaft to estimate the changes in the natural frequency of the composite shaft due to activation and deactivation ofSMA wires. The comparisonofthe experimental results with the established analytical results indicates feasibility ofvibration control using the special properties of SMA wires.
Balch, D. T.; Lombardi, J.
1985-01-01
A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.
Robertson, G A J; Coleman, S G S; Keating, J F
2009-08-01
We reviewed 100 patients retrospectively following primary ACL reconstruction with quadruple hamstring autografts to evaluate the incidence and factors associated with postoperative stiffness. Stiffness was defined as any loss of motion using the contra-lateral leg as a control. The median delay between injury and operation was 15 months. The incidence of stiffness was 12% at 6 months post-reconstruction. Both incomplete attendance at physiotherapy (pAnterior knee pain was also associated with the stiffness (p<0.029). Factors that failed to show a significant association with the stiffness included associated MCL sprain at injury (p=0.32), post-injury stiffness (p=1.00) and concomitant menisectomy at reconstruction (p=0.54). Timing of surgery also did not appear to influence the onset of stiffness (median delays: 29 months for stiff patients; 14 months for non-stiff patients). The rate of stiffness fell to 5% at 12 months postreconstruction, without operative intervention.
Dynamic stiffness matrix of a rectangular plate for the general case
Banerjee, J. R.; Papkov, S. O.; Liu, X.; Kennedy, D.
2015-04-01
The dynamic stiffness matrix of a rectangular plate for the most general case is developed by solving the bi-harmonic equation and finally casting the solution in terms of the force-displacement relationship of the freely vibrating plate. Essentially the frequency dependent dynamic stiffness matrix of the plate when all its sides are free is derived, making it possible to achieve exact solution for free vibration of plates or plate assemblies with any boundary conditions. Previous research on the dynamic stiffness formulation of a plate was restricted to the special case when the two opposite sides of the plate are simply supported. This restriction is quite severe and made the general purpose application of the dynamic stiffness method impossible. The theory developed in this paper overcomes this long-lasting restriction. The research carried out here is basically fundamental in that the bi-harmonic equation which governs the free vibratory motion of a plate in harmonic oscillation is solved in an exact sense, leading to the development of the dynamic stiffness method. It is significant that the ingeniously sought solution presented in this paper is completely general, covering all possible cases of elastic deformations of the plate. The Wittrick-Williams algorithm is applied to the ensuing dynamic stiffness matrix to provide solutions for some representative problems. A carefully selected sample of mode shapes is also presented.
Electrochemical stiffness in lithium-ion batteries
Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.
2016-11-01
Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.
Red wine, arterial stiffness and central hemodynamics.
Karatzi, Kalliopi; Papaioannou, Theodore G; Papamichael, Christos; Lekakis, John; Stefanadis, Christodoulos; Zampelas, Antonis
2009-01-01
Red wine is considered to reduce cardiovascular risk and decrease peripheral systolic and diastolic blood pressure. Central aortic pressures are often more sensitive clinical and prognostic factors than peripheral pressures, while arterial stiffness is an independent prognostic factor for cardiovascular events. Great efforts are being made to find natural sources of improving health. In order to clarify the mechanisms under which a widely used drink, like red wine, is affecting heart and vessels, we aimed to review the available data regarding the effects of red wine on arterial stiffness, wave reflections and central blood pressures. The effect of red wine on central hemodynamics has been poorly explored with divergent results. Possible consequences of acute and long-term intake on arterial stiffness, wave reflections and central pressures are not clear. This might make someone skeptical when suggesting the consumption of a glass of red wine, although its cardioprotective actions (when moderately consumed) are already shown from epidemiological studies.
Dynamic stiffness model of spherical parallel robots
Cammarata, Alessandro; Caliò, Ivo; D`Urso, Domenico; Greco, Annalisa; Lacagnina, Michele; Fichera, Gabriele
2016-12-01
A novel approach to study the elastodynamics of Spherical Parallel Robots is described through an exact dynamic model. Timoshenko arches are used to simulate flexible curved links while the base and mobile platforms are modelled as rigid bodies. Spatial joints are inherently included into the model without Lagrangian multipliers. At first, the equivalent dynamic stiffness matrix of each leg, made up of curved links joined by spatial joints, is derived; then these matrices are assembled to obtain the Global Dynamic Stiffness Matrix of the robot at a given pose. Actuator stiffness is also included into the model to verify its influence on vibrations and modes. The latter are found by applying the Wittrick-Williams algorithm. Finally, numerical simulations and direct comparison to commercial FE results are used to validate the proposed model.
Integration of Shape Memory Alloys into Low-Damped Rotor-Bearing Systems
DEFF Research Database (Denmark)
Enemark, Søren
2015-01-01
to use passive adaptive control through smart materials. Shape Memory Alloys (SMAs) are interesting candidates in that relation, because of their highly temperature sensitive stiffness and mechanical hysteresis, which can be used for damping purposes. The thesis focuses on three main aspects related...... to the feasibility of integrating SMAs into rotor-bearing systems. The first one involves modelling of the constitutive relations of the metals with emphasis on stabilized cyclic behaviour under controlled temperature conditions. Two well-established phenomenological thermo-mechanical models are employed...... and identifiability, and to call attention to the inherent uncertainties of model predictions. The second aspect concerns design and modelling of machine elements made from SMAs. Different actuation principles of SMAs are covered, and pseudoelastic elements in pre-tension are found to have the most promising...
Directory of Open Access Journals (Sweden)
K. Siva Kumar
2012-01-01
Full Text Available Problem statement: The Rotor reactance control by inclusion of external capacitance in the rotor circuit has been in recent research for improving the performances of Wound Rotor Induction Motor (WRIM. The rotor capacitive reactance is adjusted such that for any desired load torque the efficiency of the WRIM is maximized. The rotor external capacitance can be controlled using a dynamic capacitor in which the duty ratio is varied for emulating the capacitance value. This study presents a novel technique for tracking maximum efficiency point in the entire operating range of WRIM using Artificial Neural Network (ANN. The data for ANN training were obtained on a three phase WRIM with dynamic capacitor control and rotor short circuit at different speed and load torque values. Approach: A novel neural network model based on the back-propagation algorithm has been developed and trained in determining the maximum efficiency of the motor with no prior knowledge of the machine parameters. The input variables to the ANN are stator current (Is, Speed (N and Torque (Tm and the output variable is the duty ratio (D. Results: The target is pre-set and the accuracy of the ANN model is measured using Mean Square Error (MSE and R2 parameters. The result of R2 value of the proposed ANN model is found to be 0.99980. Conclusion: The optimal duty ratio and corresponding optimal rotor capacitance for improving the performances of the motor are predicted for low, medium and full loads by using proposed ANN model.
Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A
2015-02-01
Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging.
Variable stiffness and damping magnetorheological isolator
Institute of Scientific and Technical Information of China (English)
Yang ZHOU; Xingyu WANG; Xianzhou ZHANG; Weihua LI
2009-01-01
This paper presents the development and characterization of a magnetorheological (MR) fluid-based variable stiffness and damping isolator. The prototype of the MR fluid isolator is fabricated, and its dynamic behavior is measured under various applied magnetic fields. The parameters of the model under various magnetic fields are identified, and the dynamic perfor-mance of the isolator is evaluated in simulation. Experi-mental results indicate that both the stiffness and damping capability of the developed MR isolator can be controlled by an external magnetic field.
[Treatment of organic waste gas by adsorption rotor].
Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De
2013-12-01
The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.
Jivkov, Venelin S.; Zahariev, Evtim V.
2016-12-01
The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process. Nonlinear and transitional effects are analyzed and compared to the analytical results. External excitations, as wave propagation and earthquakes, are discussed. Finite elements in relative and absolute coordinates are applied to model the flexible column and the high speed rotating machine. Generalized Newton - Euler dynamics equations are used to derive the precise dynamics equations. Examples of simulation of the system vibrations and nonstationary behaviour are presented.
NONLINEAR DYNAMIC CHARACTERISTICS OF HYDRODYNAMIC JOURNAL BEARING-FLEXIBLE ROTOR SYSTEM
Institute of Scientific and Technical Information of China (English)
Lu Yanjun; Yu Lie; Liu Heng
2005-01-01
The nonlinear dynamic behaviors of flexible rotor system with hydrodynamic bearing supports are analyzed. The shaft is modeled by using the finite element method that takes the effect of inertia and shear into consideration. According to the nonlinearity of the hydrodynamic journal bearing-flexible rotor system, a modified modal synthesis technique with free-interface is represented to reduce degrees-of-freedom of model of the flexible rotor system. According to physical character of oil film, variational constrain approach is introduced to continuously revise the variational form of Reynolds equation at every step of dynamic integration and iteration. Fluid lubrication problem with Reynolds boundary is solved by the isoparametric finite element method without the increasing of computing efforts. Nonlinear oil film forces and their Jacobians are simultaneously calculated and -Newton-Floquet (PNF) method. A method, combining the predictor-corrector mechanism to the PNF method, is presented to calculate the bifurcation point of periodic motions to be subject to change of system parameters. The local stability and bifurcation behaviors of periodic motions are obtained by Floquet theory. The chaotic motions of the beating-rotor system are investigated by power spectrum.The numerical examples show that the scheme of this study saves computing efforts but also is of good precision.
An analytical investigation of the performance of wind-turbines with gyrocopter-like rotors
Energy Technology Data Exchange (ETDEWEB)
Kentfield, J.A.C.; Brophy, D.C. [Univ. of Calgary, Alberta (Canada)
1997-12-31
The performance was predicted of a wind-turbine, intended for electrical power generation, the rotor of which is similar in configuration to the rotor of an autogyro or gyrocopter as originated by Cierva. Hence the rotor axis of spin is tilted downwind, for maximum power production, by an angle of 40{degrees} to 50{degrees} relative to the vertical with power regulation by modulation of the tilt angle. Because the rotor of a Cierva turbine generates lift the simple, non-twisted, fixed-pitch blades {open_quotes}fly{close_quotes} and are self supporting thereby eliminating flap-wise bending moments when the blades are hinged at their roots. It was found from the analysis that it is possible to reduce tower bending moments substantially relative to a conventional horizontal axis turbine of equal power output and also, for equal maximum hub heights and blade tip altitudes, a Cierva turbine is capable, at a prescribed wind speed, of a greater power output than a conventional horizontal axis machine.
Venkatesan, C.; Friedmann, P. P.
1987-01-01
This report is a sequel to the earlier report titled, Aeroelastic Effects in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part 1: Formulation of Equations of Motion (NASA CR-3822). The trim and stability equations are presented for a twin rotor system with a buoyant envelope and an underslung load attached to a flexible supporting structure. These equations are specialized for the case of hovering flight. A stability analysis, for such a vehicle with 31 degrees of freedom, yields a total of 62 eigenvalues. A careful parametric study is performed to identify the various blade and vehicle modes, as well as the coupling between various modes. Finally, it is shown that the coupled rotor/vehicle stability analysis provides information on both the aeroelastic stability as well as complete vehicle dynamic stability. Also presented are the results of an analytical study aimed at predicting the aeromechanical stability of a single rotor helicopter in ground resonance. The theoretical results are found to be in good agreement with the experimental results, thereby validating the analytical model for the dynamics of the coupled rotor/support system.
System Noise Assessment of Blended-Wing-Body Aircraft With Open Rotor Propulsion
Guo, Yueping; Thomas, Russell H.
2015-01-01
An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations of a possible Stage 5 in the next decade or so, the design will likely meet stiff competitions from aircraft with turbofan engines. It is shown that the noise levels of the BWB design are held up by the inherently high noise levels of the open rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the BWB design has high levels of noise from the main landing gear, due to their exposure to high speed flow at the junction between the center body and outer wing. These are also the reasons why this baseline BWB design does not meet the NASA N+2 noise goal of 42 dB below Stage 4. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise but they are only at the conceptual stage.
Stringer, David Blake
The overarching objective in this research is the development of a robust, rotor dynamic, physics based model of a helicopter drive train as a foundation for the prognostic modeling for rotary-wing transmissions. Rotorcrafts rely on the integrity of their drive trains for their airworthiness. Drive trains rely on gear technology for their integrity and function. Gears alter the vibration characteristics of a mechanical system and significantly contribute to noise, component fatigue, and personal discomfort prevalent in rotorcraft. This research effort develops methodologies for generating a rotor dynamic model of a rotary-wing transmission based on first principles, through (i) development of a three-dimensional gear-mesh stiffness model for helical and spur gears and integration of this model in a finite element rotor dynamic model, (ii) linear and nonlinear analyses of a geared system for comparison and validation of the gear-mesh model, (iii) development of a modal synthesis technique for potentially providing model reduction and faster analysis capabilities for geared systems, and (iv) extension of the gear-mesh model to bevel and epicyclic configurations. In addition to model construction and validation, faults indigenous to geared systems are presented and discussed. Two faults are selected for analysis and seeded into the transmission model. Diagnostic vibration parameters are presented and used as damage indicators in the analysis. The fault models produce results consistent with damage experienced during experimental testing. The results of this research demonstrate the robustness of the physics-based approach in simulating multiple normal and abnormal conditions. The advantages of this physics-based approach, when combined with contemporary probabilistic and time-series techniques, provide a useful method for improving health monitoring technologies in mechanical systems.
Rotor-rotor interaction for counter-rotating fans. Part 1: Three-dimensional flowfield measurements
Shin, Hyoun-Woo; Whitfield, Charlotte E.; Wisler, David C.
1994-11-01
The rotor wake/vortex flowfield generated in a scale model simulator of General Electric's counter-rotating unducted fan (UDF) engine was investigated using three-dimensional hot-wire anemometry. The purpose was to obtain a set of benchmark experimental aerodynamic data defining the rotor wake and vortex structure, particularly in the tip region, and to relate this observed flow structure to its acoustic signature. The tests were conducted in a large, freejet anechoic chamber. Measurements of the three components of velocity were made at axial stations upstream and downstream of each rotor for conditions that simulate takeoff, cutback, and approach power. Two different forward blade designs were evaluated. The tip vortices, the axial velocity defect in the vortex core, and differences in the interaction of the wakes and vortices generated by the forward and aft rotor are used to explain differences in noise generated by the two different rotor designs. Part 1 presents the three-dimensional flowfield measurements. Part 2 (aeroacoustic prediction and analysis), which will be presented later, will give an acoustic prediction using the measured data.
Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing.
Bartnikowski, Nicole; Claes, Lutz E; Koval, Lidia; Glatt, Vaida; Bindl, Ronny; Steck, Roland; Ignatius, Anita; Schuetz, Michael A; Epari, Devakara R
2016-11-14
Background and purpose - Constant fixator stiffness for the duration of healing may not provide suitable mechanical conditions for all stages of bone repair. We therefore investigated the influence of stiffening fixation on callus stiffness and morphology in a rat diaphyseal osteotomy model to determine whether healing time was shortened and callus stiffness increased through modulation of fixation from flexible to stiff. Material and methods - An external unilateral fixator was applied to the osteotomized femur and stiffened by decreasing the offset of the inner fixator bar at 3, 7, 14, and 21 days after operation. After 5 weeks, the rats were killed and healing was evaluated with mechanical, histological, and microcomputed tomography methods. Constant fixation stiffness control groups with either stiff or flexible fixation were included for comparison. Results - The callus stiffness of the stiff group and all 4 experimental groups was greater than in the flexible group. The callus of the flexible group was larger but contained a higher proportion of unmineralized tissue and cartilage. The stiff and modulated groups (3, 7, 14, and 21 days) all showed bony bridging at 5 weeks, as well as signs of callus remodeling. Stiffening fixation at 7 and 14 days after osteotomy produced the highest degree of callus bridging. Bone mineral density in the fracture gap was highest in animals in which the fixation was stiffened after 14 days. Interpretation - The predicted benefit of a large robust callus formed through early flexible fixation could not be shown, but the benefits of stabilizing a flexible construct to achieve timely healing were demonstrated at all time points.
Dynamics of large rotors on spring supported foundations
Energy Technology Data Exchange (ETDEWEB)
Puttonen, J. [IVO Power Engineering Ltd., Vantaa (Finland)] Luukkanen, P. [Imatran Voima Oy, Vantaa (Finland)
1997-12-31
This article presents some case studies relating to the dynamics of the large machines on spring isolated foundations. The studies comprise both vibration calculations and measurements also introducing the accuracy of numerical methods available in practical engineering. A summary of the pros and cons of spring isolated foundations in power plants is included. The cases described are from the lately built power plants of the IVO-group. The auxiliary feed water pump analysed consists of an electric motor (7 MW), a gear and two pumps. During the trial runs, severe vibrations were observed calling for thorough vibration measurements. The modelling of the whole vibrating entity in the rotating machinery, including the shaft train, oil films of bearings and the foundation is demonstrated by a turbine generator set of 100 MW. Finally, some results of a test comparing the acoustic emission and traditional vibration measurements for recognizing the rub between the shaft and the hydrodynamic bearing are presented. (orig.) 6 refs.
Aerodynamic design of the National Rotor Testbed.
Energy Technology Data Exchange (ETDEWEB)
Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-01
A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.
The Dynamics of Rotor with Rubbing
Directory of Open Access Journals (Sweden)
Jerzy T. Sawicki
1999-01-01
characteristics of rub-induced rotor response, initial conditions, as well as appropriate ranges of system parameters. Of special interest are the changes in the apparent nonlinearity of the system dynamics as rubs are induced at different rotor speeds. In particular, starting with 2nd order sub/superharmonics, which are symptomatic of quadratic nonlinearity, progressively higher order polynomial behavior is excited, i.e., cubic, giving rise to 3rd order sub/superharmonics. As the speed is transitioned between such apparent nonlinearities, chaotic like behavior is induced because of the lack of whole or rational tone tuning between the apparent system frequency and the external source noise. The cause of such behavior will be discussed in detail along with the results of several parametric studies.
CFD simulations of the MEXICO rotor
DEFF Research Database (Denmark)
Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik
2011-01-01
The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...... the experimental results using the Reynold‐Averaged Navier‐Stokes method. Second, three‐dimensional airfoil characteristics are extracted that allow simulations with simpler wake models. Copyright © 2011 John Wiley & Sons, Ltd....
Vortex shedding by a Savonius rotor
Botrini, M.; Beguier, C.; Chauvin, A.; Brun, R.
1984-05-01
A series of flow visualizations was performed to characterize the wake vortices of a Savonius rotor. The trials were undertaken in an attempt to account for discrepancies between theoretical and experimentally-derived power coefficients. The Savonius examined was two-bladed with a center offset. All tests were made in a water tunnel. Dye injection provided the visualization, and average velocities and velocity fluctuations were measured using a laser Doppler anemometer. A system of three vortices was found to be periodically shed by the rotor. Flow velocity fluctuation intensity peaked as a vortex was shed. The vortex shedding alternated from blade to blade, so that one was shed from a blade moving upstream.
Simulation of flow around rotating Savonius rotors
Ishimatsu, Katsuya; Shinohara, Toshio
1993-09-01
Flow around Savonius rotors was simulated by solving 2-D (two-dimensional) Navier-Stokes equations. The equations were discretized by finite volume method for space and fractional step method for time. Convection terms were specially discretized by an upwinding scheme for unstructured grid. Only rotating rotors were simulated in this report. The values of parameters were as follows: Reynolds number, 10(exp 5); overlap ratio, zero and 0.16; and tip speed ratio, 0.25 to 1.75. Results showed good agreement with experimental data for the following points: optimum tip speed ratio is 0.75 to 1.0; overlapping is effective to increase power coefficient. Moreover, simulated flow fields showed that vortex shedding occur at not only tips of bucket but back of bucket and the shed vortex decrease torque.
Balch, D. T.; Lombardi, J.
1985-01-01
A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.
Balancing of Rigid and Flexible Rotors
1986-01-01
converters Turbine wheels Turbinas (steam, gas , hydraulic), high speed > 10,000 rpm Turbines (steam, gas , hydraulic), medium speed 1000-10,000 rpm...MOUNTED ON CASINGD AI GA - + SIGNALS PROCESSED BY TRACKING FILTERS AND TIME-AVERAGED TO IDENTIFY PRINCIPAL FREQUENCY COMPONENTS Fig. 1.10, Noncontactlng...balanrcng of gas -turbine engines; by Little [121, whose thesis on flexible-rotor balancing contains selected refer- ences on this subject; and by Kendig
Dark rotors in the late universe.
Mayer, Frederick J
2015-11-01
The tresino phase-transition that took place about 300 years after the big-bang, converted most baryons into almost equal numbers of protons and tresinos. Many of these become oppositely-charged rotating pairs or "rotors". This paper examines the formation, evolution, disposition and observations of the protons and tresinos from the phase-transition to the present era. The solar corona is further examined within the same tresino phase-transition picture.
Stopped-Rotor Cyclocopter for Venus Exploration
Husseyin, Sema; Warmbrodt, William G.
2016-01-01
The cyclocopter system can use two or more rotating blades to create lift, propulsion and control. This system is explored for its use in a mission to Venus. Cyclocopters are not limited to speed and altitude and can provide 360 degrees of vector thrusting which is favorable for good maneuverability. The novel aspect of this study is that no other cyclocopter configuration has been previously proposed for Venus or any (terrestrial or otherwise) exploration application where the cyclocopters rotating blades are stopped, and act as fixed wings. The design considerations for this unique planetary aerial vehicle are discussed in terms of implementing the use of a cyclorotor blade system combined with a fixed wing and stopped rotor mechanism. This proposed concept avoids many of the disadvantages of conventional-rotor stopped-rotor concepts and accounts for the high temperature, pressure and atmospheric density present on Venus while carrying out the mission objectives. The fundamental goal is to find an ideal design that implements the combined use of cyclorotors and fixed wing surfaces. These design concepts will be analyzed with the computational fluid dynamics tool RotCFD for aerodynamic assessment. Aspects of the vehicle design is 3D printed and tested in a small water tunnel or wind tunnel.
Orbai, Ana-Maria; Smith, Katherine C; Bartlett, Susan J; De Leon, Elaine; Bingham, Clifton O
2014-11-01
Stiffness is a well-recognized symptom of rheumatoid arthritis (RA). It is frequently queried during clinic visits as an indicator of disease activity and was included in the 1961 and 1987 RA classification criteria. Little is known about how people with RA experience stiffness and its impact on their lives. We conducted 4 focus groups including 20 people with RA (4-6 participants per group) from 1 academic clinical practice and 1 private practice to generate accounts of stiffness experiences. Qualitative inductive thematic data analysis was conducted. Five overarching themes were identified: relationship of stiffness with other symptoms, exacerbating or alleviating factors and self-management, stiffness timing and location, individual meanings of stiffness experiences, and impact of stiffness on daily life. Focus group discussions revealed individual stiffness experiences as diverse and complex. Several stiffness features were endorsed by a majority of participants, but few, if any, were universally experienced; thus, the significance of stiffness as an expression of the disease varied widely. Discussions yielded descriptions of how individual limits imposed by RA in general and stiffness in particular may change over time and were intertwined with adaptations to preserve participation in valued life activities. These results concerning the diversity of the stiffness experience, consequential adaptations, and its impact suggest that a more individualized approach to stiffness measurement may be needed to improve stiffness assessments. Copyright © 2014 by the American College of Rheumatology.
Plant fibre composites - porosity and stiffness
DEFF Research Database (Denmark)
Madsen, Bo; Thygesen, Anders; Lilholt, Hans
2009-01-01
Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition of the co......Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...
[Anaesthetic management of Stiff Man syndrome].
Marín, T; Hernando, D; Kinast, N; Churruca, I; Sabate, S
2015-04-01
Stiff Man syndrome or stiff-person syndrome is a rare autoimmune disorder. It is characterized by increased axial muscular tone and limb musculature, and painful spasms triggered by stimulus. The case is presented of a 44-year-old man with stiff-person syndrome undergoing an injection of botulinum toxin in the urethral sphincter under sedation. Before induction, all the surgical team were ready in order to minimise the anaesthetic time. The patient was monitored by continuous ECG, SpO2 and non-invasive blood pressure. He was induced with fractional dose of propofol 150 mg, fentanyl 50 μg and midazolam 1mg. Despite careful titration, the patient had an O2 saturation level of 90%,which was resolved by manual ventilation. There was no muscle rigidity or spasm during the operation. Post-operative recovery was uneventful and the patient was discharged 2 days later. A review of other cases is presented. The anaesthetic concern in patients with stiff-person syndrome is the interaction between the anaesthetic agents, the preoperative medication, and the GABA system. For a safe anaesthetic management, total intravenous anaesthesia is recommended instead of inhalation anaesthetics, as well as the close monitoring of the respiratory function and the application of the electrical nerve stimulator when neuromuscular blockers are used.
Non-singular inhomogeneous stiff fluid cosmology
Fernández-Jambrina, L
2009-01-01
In this talk we show a stiff fluid solution of the Einstein equations for a cylindrically symmetric spacetime. The main features of this metric are that it is non-separable in comoving coordinates for the congruence of the worldlineS of the fluid and that it yields regular curvature invariants.
Monitoring the Bending Stiffness of DNA
Yuan, Chongli; Lou, Xiongwen; Rhoades, Elizabeth; Chen, Huimin; Archer, Lynden
2007-03-01
In eukaryotic cells, the accessibility of genomic sequences provides an inherent regulation mechanism for gene expression through variations in bending stiffness encoded by the nucleic acid sequence. Cyclization of dsDNA is the prevailing method for determining DNA bending stiffness. Recent cyclization data for short dsDNA raises several fundamental questions about the soundness of the cyclization method, particularly in cases where the probability of highly bent DNA conformations is low. We herein evaluate the role of T4 DNA ligase in the cyclization reaction by inserting an environmental sensitive base analogue, 2-amino purine, to the DNA molecule. By monitoring the 2-AP fluorescence under standard cyclization conditions, it is found that in addition to trapping highly-bent cyclic DNA conformations, T4 DNA ligase enhances the apparent base pair flip out rate, thus exaggerating the measured flexibility. This result is further confirmed using fluorescence anisotropy experiments. We show that fluorescence resonance energy transfer (FRET) measurements on suitably labeled dsDNA provides an alternative approach for quantifying the bending stiffness of short fragments. DNA bending stiffness results obtained using FRET are compared with literature values.
Measurement and Treatment of Passive Muscle Stiffness
DEFF Research Database (Denmark)
Kirk, Henrik
This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies...
Influence of footings stiffness on punching resistance
Directory of Open Access Journals (Sweden)
Ĺudovít Fillo
2016-03-01
Full Text Available The presented paper brings new aspects of punching resistance due to influence of footing stiffness and consequential ground stresses distribution. Diagrams of design load versus effective depth were created coming from new design criteria which depend on the maximum punching resistance defined from shear-bending failure and on the maximum punching resistance defined from crushing of concrete struts.
Improved Stiff ODE Solvers for Combustion CFD
Imren, A.; Haworth, D. C.
2016-11-01
Increasingly large chemical mechanisms are needed to predict autoignition, heat release and pollutant emissions in computational fluid dynamics (CFD) simulations of in-cylinder processes in compression-ignition engines and other applications. Calculation of chemical source terms usually dominates the computational effort, and several strategies have been proposed to reduce the high computational cost associated with realistic chemistry in CFD. Central to most strategies is a stiff ordinary differential equation (ODE) solver to compute the change in composition due to chemical reactions over a computational time step. Most work to date on stiff ODE solvers for computational combustion has focused on backward differential formula (BDF) methods, and has not explicitly considered the implications of how the stiff ODE solver couples with the CFD algorithm. In this work, a fresh look at stiff ODE solvers is taken that includes how the solver is integrated into a turbulent combustion CFD code, and the advantages of extrapolation-based solvers in this regard are demonstrated. Benefits in CPU time and accuracy are demonstrated for homogeneous systems and compression-ignition engines, for chemical mechanisms that range in size from fewer than 50 to more than 7,000 species.
Varney, Philip; Green, Itzhak
2014-11-01
Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM
FUNCTIONAL AORTIC STIFFNESS:ROLE OF CD4+ T LYMPHOCYTES
Directory of Open Access Journals (Sweden)
Beenish A. Majeed
2015-08-01
Full Text Available The immune system is suggested to be essential in vascular remodeling and stiffening. To study the dependence upon lymphocytes in vascular stiffening, we compared an angiotensin II-model of vascular stiffening in normal C57BL/6J mice with lymphocyte-deficient RAG 1-/- mice and additionally characterized the component of vascular stiffness due to vasoconstriction versus vascular remodeling. Chronic angiotensin II increased aortic pulse wave velocity, effective wall stiffness, and effective Young’s modulus in C57BL/6J mice by 3-fold but caused no change in the RAG 1-/- mice. These functional measurements were supported by aortic morphometric analysis. Adoptive transfer of CD4+ T helper lymphocytes restored the angiotensin II-mediated aortic stiffening in the RAG 1-/- mice. In order to account for the hydraulic versus material effects of angiotensin II on pulse wave velocity, subcutaneous osmotic pumps were removed after 21 days of angiotensin II-infusion in the WT mice to achieve normotensive values. The pulse wave velocity decreased from 3- to 2-fold above baseline values up to 7 days following pump removal. This study supports the pivotal role of the CD4+ T-lymphocytes in angiotensin II-mediated vascular stiffening and that angiotensin II-mediated aortic stiffening is due to the additive effect of active vascular smooth muscle vasoconstriction and vascular remodeling.
Turbine flowmeter for liquid helium with the rotor magnetically levitated
Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.
A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.
Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine
Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko
The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine. A model of a two-bucket Savonius type hydraulic turbine was constructed and tested in a water tunnel to arrive at an optimum installation condition. Effects of two installation parameters, namely a distance between a rotor and a bottom wall of the tunnel, a rotation direction of the rotor, on the power performance were studied. A flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of these parameters. From this study it was found that the power performances of Savonius hydraulic turbine were changed with the distance between the rotor and the bottom wall of the tunnel and with a rotation direction of the rotor.
An experimental study on improvement of Savonius rotor performance
Directory of Open Access Journals (Sweden)
N.H. Mahmoud
2012-03-01
In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.
ON THE STIFFNESS OF DEMINERALIZED DENTIN MATRICES
Ryou, Heonjune; Turco, Gianluca; Breschi, Lorenzo; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne
2015-01-01
Resin bonding to dentin requires the use of self-etching primers or acid etching to decalcify the surface and expose a layer of collagen fibrils of the dentin matrix. Acid-etching reduces the stiffness of demineralized dentin from approximately 19 GPa to 1 MPa, requiring that it floats in water to prevent it from collapsing during bonding procedures. Several publications show that crosslinking agents like gluteraladehyde, carbodiimide or grape seed extract can stiffen collagen and improve resin-dentin bond strength. Objective The objective was to assess a new approach for evaluating the changes in stiffness of decalcified dentin by polar solvents and a collagen cross-linker. Methods Fully demineralized dentin beams and sections of etched coronal dentin were subjected to indentation loading using a cylindrical flat indenter in water, and after treatment with ethanol or ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The stiffness was measured as a function of strain and as a function of loading rate from 1 to 50 µm/sec. Results At a strain of 0.25% the elastic modulus of the fully demineralized dentin was approximately 0.20 MPa. It increased to over 0.90 MPa at strains of 1%. Exposure to ethanol caused an increase in elastic modulus of up to four times. Increasing the loading rate from 1 to 50 µm/sec caused an increase in the apparent modulus of up to three times in both water and ethanol. EDC treatment caused increases in the stiffness in fully demineralized samples and in acid-etched demineralized dentin surfaces in situ. Significance Changes in the mechanical behavior of demineralized collagen matrices can be measured effectively under hydration via indentation with cylindrical flat indenters. This approach can be used for quantifying the effects of bonding treatments on the properties of decalcified dentin after acid etching, as well as to follow the loss of stiffness over time due to enzymatic degradation. PMID:26747822
Stiffness of lipid monolayers with phase coexistence.
Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia
2013-08-27
The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.
Abrasion Resistance Comparison between Rotor and Ring Spun Yarn
Institute of Scientific and Technical Information of China (English)
YANG Jian-ping; YU Chong-wen
2002-01-01
On the base of literature review and the analysis of yarn properties, yarn structure and some other facts, the abrasion resistance of both rotor spun yarn and ring spun yarns are discussed. The results show that with the same raw material and twist, the rotor spun yarn has lower abrasion resistance than that of ring spun yarn, because of the higher twist employed, the abrasion resistance of rotor spun yarn is higher than that of ring spun yarn.
Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting
Jinxiang Xi; Rhode, David L.
2006-01-01
Rotors in high-performance steam turbines experience a significant axial shifting during starting and stopping processes due to thermal expansion, for example. This axial shifting could significantly alter the flow pattern and the flow-induced rotordynamic forces in labyrinth seals, which in turn, can considerably affect the rotor-seal system performance. This paper investigates the influence of the rotor axial shifting on leakage rate as well as rotordynamic forces in hi...
Theoretical study on the flow about Savonius rotor
Ogawa, T.
1984-03-01
A method for the two-dimensional analysis of the separated flow about Savonius rotors is presented. Calculations are performed by combining the singularity method and the discrete vortex method. The method is applied to the simulation of flows about a stationary rotor and a rotating rotor. Moreover, torque and power coefficients are computed and compared with the experimental results presented by Sheldahl et al. Theoretical and experimental results agree well qualitatively.
Allred, Charles Jefferson
Since the advent of Health and Usage Monitoring Systems (HUMS) in the early 1990's, there has been a steady decrease in the number of component failure related helicopter accidents. Additionally, measurable cost benefits due to improved maintenance practices based on HUMS data has led to a desire to expand HUMS from its traditional area of helicopter drive train monitoring. One of the areas of greatest interest for this expansion of HUMS is monitoring of the helicopter rotor head loads. Studies of rotor head load and blade motions have primarily focused on wind tunnel testing with technology which would not be applicable for production helicopter HUMS deployment, or measuring bending along the blade, rather than where it is attached to the rotor head and the location through which all the helicopter loads pass. This dissertation details research into finding methods for real time methods of estimating rotor blade motion which could be applied across helicopter fleets as an expansion of current HUMS technology. First, there is a brief exploration of supporting technologies which will be crucial in enabling the expansion of HUMS from the fuselage of helicopters to the rotor head: wireless data transmission and energy harvesting. A brief overview of the commercially available low power wireless technology selected for this research is presented. The development of a relatively high-powered energy harvester specific to the motion of helicopter rotor blades is presented and two different prototypes of the device are shown. Following the overview of supporting technologies, two novel methods of monitoring rotor blade motion in real time are developed. The first method employs linear displacement sensors embedded in the elastomer layers of a high-capacity laminate bearing of the type commonly used in fully articulated rotors throughout the helicopter industry. The configuration of these displacement sensors allows modeling of the sensing system as a robotic parallel
Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations
DEFF Research Database (Denmark)
Kallesøe, Bjarne Skovmose
2007-01-01
This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...
Experimental study on the aerodynamic performance of a Savonius rotor
Energy Technology Data Exchange (ETDEWEB)
Fujisawa, Nobuyuki; Gotoh, Futoshi (Gunma Univ., Kiryu (Japan). Dept. of Mechanical Engineering)
1994-08-01
The aerodynamic performance of a Savonius rotor has been studied by measuring the pressure distributions on the blade surfaces at various rotor angles and tip-speed ratios. It is found that the pressure distributions on the rotating rotor differ remarkably from those on the still rotor especially on the convex side of the advancing blade, where a low pressure region is formed by the moving wall effect of the blade. The torque and power performances, evaluated by integrating the pressure, are in close agreement with those by the direct torque measurement. The drag and side force performance is also studied.
Open Rotor Noise Shielding by Blended-Wing-Body Aircraft
Guo, Yueping; Czech, Michael J.; Thomas, Russell H.
2015-01-01
This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.
Rotor dynamic considerations for large wind power generator systems
Ormiston, R. A.
1973-01-01
Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.
Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors
Lobitz, D. W.
1981-01-01
The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.
THEORY OF MUM FOR METAL SPHERICAL ROTOR WITH CONTACTLESS SUSPENSION
Institute of Scientific and Technical Information of China (English)
He Xiaoxia; Gao Zhongyu; Wang Yongliang
2004-01-01
Based on the motion equations of an unbalanced spherical rotor with contactless suspension,three methods of MUM (mass unbalance measurement) are put forward to measure the total mass unbalance,radical mass unbalance and radical mass unbalance of the rotor.Total mass unbalance is obtained when the unbalanced rotor plays as a simple pendulum in static situation.The pendulant period and pendulant midpoint indicate magnitude and direction of total mass unbalance of the rotor respectively.Analysis of the motion equations by using the averaging method yields that the rotor will do a special side oscillation when an auxiliary system makes the rotor spin about its pole axis which is orientating toward the local vertical.The radical mass unbalance can be obtained by building a proper displacement sensor to sense the amplitude of the side oscillation.Necessary analysis of the motion equations also shows that when the rotor spins at a small angular velocity and the rotary axis is perpendicular to the vertical,the pole axis of the rotor will precess slowly about the vertical by virtue of the axial mass unbalance.The axial mass unbalance can be estimated from the time history of the spin vector of the rotor.Finally,measurement precision of the three methods is compared and how the external torque affects the measurement precision for the three methods are examined.
Numerical Analysis of Nonlinear Rotor-bearing-seal System
Institute of Scientific and Technical Information of China (English)
CHENG Mei; MENG Guang; JING Jian-ping
2008-01-01
The system state trajectory, Poincaré maps, largest Lyapunov exponents, frequency spectra and bifurcation diagrams were used to investigate the non-linear dynamic behaviors of a rotor-bearing-seal coupled system and to analyze the influence of the seal and bearing on the nonlinear characteristics of the rotor system. Various nonlinear phenomena in the rotor-bearing-seal system, such as periodic motion, double-periodicmotion, multi-periodic motion and quasi-periodic motion were investigated. The results may contribute to a further understanding of the non-linear dynamics of the rotor-bearing-seal coupled system.
Stability of Rotor Systems: A Complex Modelling Approach
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob
1996-01-01
A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared with the resu......A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...
Mechanical coupling for a rotor shaft assembly of dissimilar materials
Shi, Jun; Bombara, David; Green, Kevin E.; Bird, Connic; Holowczak, John
2009-05-05
A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.
Position Sensing for Rotor in Hybrid Stepper Motor
Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)
2011-01-01
A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.
NONLINEAR DYNAMICS OF A CRACKED ROTOR IN A MANEUVERING AIRCRAFT
Institute of Scientific and Technical Information of China (English)
LIN Fu-sheng 林富生; MENG Guang 孟光; Eric Hahn
2004-01-01
The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated. The influence of the aircraft climbing angle on the cracked rotor system response is of particular interest and the results show that the climbing angle can markedly affect the parameter range for bifurcation, for quasi-periodic response and for chaotic response as well as for system stability. Aircraft acceleration is also shown to significantly affect the nonlinear behavior of the cracked rotor system, illustrating the possibility for on-line rotor crack fault diagnosis.
Coupled Thermal Field of the Rotor of Liquid Floated Gyroscope
Directory of Open Access Journals (Sweden)
Wang Zhengjun
2015-01-01
Full Text Available Inertial navigation devices include star sensor, GPS, and gyroscope. Optical fiber and laser gyroscopes provide high accuracy, and their manufacturing costs are also high. Magnetic suspension rotor gyroscope improves the accuracy and reduces the production cost of the device because of the influence of thermodynamic coupling. Therefore, the precision of the gyroscope is reduced and drift rate is increased. In this study, the rotor of liquid floated gyroscope, particularly the dished rotor gyroscope, was placed under a thermal field, which improved the measurement accuracy of the gyroscope. A dynamic theory of the rotor of liquid floated gyroscope was proposed, and the thermal field of the rotor was simulated. The maximum stress was in x, 1.4; y, 8.43; min 97.23; and max 154.34. This stress occurred at the border of the dished rotor at a high-speed rotation. The secondary flow reached 5549 r/min, and the generated heat increased. Meanwhile, the high-speed rotation of the rotor was volatile, and the dished rotor movement was unstable. Thus, nanomaterials must be added to reduce the thermal coupling fluctuations in the dished rotor and improve the accuracy of the measurement error and drift rate.
Optimum design configuration of Savonius rotor through wind tunnel experiments
Energy Technology Data Exchange (ETDEWEB)
Saha, U.K.; Thotla, S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Maity, D. [Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039 (India)
2008-08-15
Wind tunnel tests were conducted to assess the aerodynamic performance of single-, two- and three-stage Savonius rotor systems. Both semicircular and twisted blades have been used in either case. A family of rotor systems has been manufactured with identical stage aspect ratio keeping the identical projected area of each rotor. Experiments were carried out to optimize the different parameters like number of stages, number of blades (two and three) and geometry of the blade (semicircular and twisted). A further attempt was made to investigate the performance of two-stage rotor system by inserting valves on the concave side of blade. (author)
Performance testing of a Savonius windmill rotor in shear flows
Mojola, O. O.; Onasanya, O. E.
The effects of flow shear and/or unsteady behavior on the power generation capability of a Savonius wind turbine rotor are assessed in view of measurements conducted, both in two statistically steady shear flows and in the wind, of rotor tip speed and torque at a number of streamwise stations for each of four values of the rotor bucket overlap ratio. It is found that, even in the absence of shear, the power coefficient of a Savonius wind turbine rotor is most strongly dependent on tip speed ratio.
Vibration transmission through rolling element bearings. Part III: Geared rotor system studies
Lim, T. C.; Singh, R.
1991-11-01
This paper extends the proposed bearing matrix formulation of Parts I and II to analyze the overall dynamics of a geared rotor system which includes a spur gear pair, shafts, rolling element bearing, a prime mover and a load (attached to the geared rotor system through flexible torsional couplings), a rigid or flexible casing, and compliant or massive mounts. Linear time-invariant, discrete dynamic models of a generic geared rotor system with proportional viscous damping are developed, by using lumped parameter and dynamic finite element techniques, which are then used to predict the vibration transmissibility through bearings and mounts, casing vibration motion, and dynamic response of the internal rotating system. Each rotating shaft is modeled as an Euler beam in the lumped parameter model and as a Timoshenko beam in the dynamic finite element model, but the gyroscopic moment is not included. Eigensolution and forced harmonic response studies due to rotating mass unbalance or kinematic transmission error excitation for the following example cases are obtained by using the formulation, and the results are compared with those of simple models currently available in the literature and/or experiment: case I, a single-stage rotor system with flexibly mounted rigid casing consisting of two bearings as a special case of the geared rotor system; case II, a spur gear pair drive supported by four bearings installed in a flexibly mounted rigid casing; and case III, an experimental set-up consisting of a high-precision gear and pinion, and four identical rolling element bearings contained in a flexible casing mounted rigidly on a massive foundation. Analytical predictions show that the theory is indeed capable of predicting bearing and mount moment transmissibilities in addition to the force transmissibilities. Also, flexural vibrations of the casing plate are predicted well as the theory is in good agreement with measurements made on case III; such predictions are not
Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness.
Diederich, Vincent E G; Studer, Peter; Kern, Anita; Lattuada, Marco; Storti, Giuseppe; Sharma, Ram I; Snedeker, Jess G; Morbidelli, Massimo
2013-05-01
We propose a novel, single step method for the production of polyacrylamide hydrogels with a gradient in mechanical properties. In contrast to already existing techniques such as UV photo-polymerization with photomasks (limited penetration depth) or microfluidic gradient mixers (complex microfluidic chip), this technique is not suffering such limitations. Young's modulus of the hydrogels was varied by changing the total monomer concentration of the hydrogel precursor solution. Using programmable syringe pumps, the total monomer concentration in the solution fed to the hydrogel mold was varied from 16 wt% down to 5 wt% over the feeding time to obtain a gradient in compliance ranging from 150 kPa down to 20 kPa over a length of 10 mm down to 2.5 mm. Polymerization was achieved with the dual initiation system composed of ammonium persulfate and N,N,N',N'-tetramethylethylenediamine, which were both fed through separate capillaries to avoid premature polymerization. Functionalized with the model ligand collagen I, the substrates were bioactive and supported the attachment of human foreskin fibroblasts (around 30% of the cells seeded attached after 1 h). A kinetic morphology study on homogeneous hydrogels of different stiffness's indicated that fibroblasts tend to spread to their final size within 2 h on stiff substrates, while the spreading time was much longer (ca. 4-5 h) on soft substrates. These trends were confirmed on hydrogels with compliance gradients, showing well spread fibroblasts on the stiff end of the hydrogel after 2 h, while the cells on the soft end still had small area and rounded morphology.
Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness
Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.
2017-02-01
A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin–Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin–Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple
A magnetic damper for first mode vibration reduction in multimass flexible rotors
Kasarda, M. E. F.; Allaire, P. E.; Humphris, R. R.; Barrett, L. E.
1989-01-01
Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.
A review on in situ stiffness adjustment methods in MEMS
de Laat, M. L. C.; Pérez Garza, H. H.; Herder, J. L.; Ghatkesar, M. K.
2016-06-01
In situ stiffness adjustment in microelectromechanical systems is used in a variety of applications such as radio-frequency mechanical filters, energy harvesters, atomic force microscopy, vibration detection sensors. In this review we provide designers with an overview of existing stiffness adjustment methods, their working principle, and possible adjustment range. The concepts are categorized according to their physical working principle. It is concluded that the electrostatic adjustment principle is the most applied method, and narrow to wide ranges in stiffness can be achieved. But in order to obtain a wide range in stiffness change, large, complex devices were designed. Mechanical stiffness adjustment is found to be a space-effective way of obtaining wide changes in stiffness, but these methods are often discrete and require large tuning voltages. Stiffness adjustment through stressing effects or change in Young’s modulus was used only for narrow ranges. The change in second moment of inertia was used for stiffness adjustment in the intermediate range.
Laterality and imbalance of muscle stiffness relate to personality.
Nakaya, Naoki; Kumano, Hiroaki; Minoda, Keiji; Kanazawa, Motoyori; Fukudo, Shin
2004-01-01
The authors' purpose in this study was to test the hypothesis that laterality and imbalance of muscle stiffness relate to personality. The authors selected 23 healthy volunteers and divided them into two groups based on the predominance of muscle stiffness on the left or right side. Imbalance of muscle stiffness was calculated as the absolute value of the difference of muscle stiffness between the right and left sides. The authors evaluated personality with the Japanese version of the Eysenck Personality Questionnaire. Subjects with left predominant muscle stiffness of the rectal abdominis had significantly higher neuroticism score than those with right predominant muscle stiffness. Subjects with more imbalance of muscle stiffness in the latissimus dorsi and in the trapezius had significantly higher neuroticism and psychoticism scores than those with less imbalance. The findings suggest that laterality and imbalance of muscle stiffness relate to personality.
Jenks, Mark; Haslim, Leonard
1988-01-01
The final results of the Advanced Flight Research Rotor (AFRR) study, a NASA sponsored research program, are summarized. First, the results of the initial phase of the AFRR program, consisting of the definition of a conventional rotor with planform and prescribed twist distributions, are briefly reviewed. The mechanism of the calculated performance benefit is then explained, and a detailed analysis of the prescribed twist distribution is presented. Recommendations are made on the practical means of approximating the prescribed twist on the actual rotor.
Directory of Open Access Journals (Sweden)
Xiangbo Xu
2015-08-01
Full Text Available Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs, offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.
Xu, Xiangbo; Chen, Shao
2015-08-31
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.
Institute of Scientific and Technical Information of China (English)
黄梓嫄; 韩邦成; 周银锋
2014-01-01
According to the large error problem of modal analysis of the rotor system for magnetic levitation motors, the nonlinear contact behavior between rotor components was considered. The flexible rotor system modal can be analyzed accurately based on the penalty method by optimizing the contact stiffness factor. Through the establishment of the rotor-bearing system finite element analysis model, the ten order natural frequencies and variations of the rotor system under different bearing stiffness were obtained. The simulation results are in good agreement with the test values. This article also analyzed the rotor system with the dynamic balancing ring. The accuracy of results has been proved by the critical speed tests of the experimental prototype.%针对磁悬浮电机转子系统模态分析误差较大的问题，提出考虑转子组件间的非线性接触行为，基于罚函数方法通过修正优化接触刚度因子实现对电机柔性转子系统模态的精确分析。通过建立弹性支承转子-轴承系统有限元分析模型，得到了在不同的支承刚度下转子系统前10阶固有频率的仿真值及变化规律。进行模态测试实验验证，结果表明仿真分析和测试值吻合较好，并对加动平衡环后的转子系统进行固有频率的仿真，其结果的准确性在试验样机穿越临界转速时得到了验证。
Performance optimization of large stroke flexure hinges for high stiffness and eigenfrequency
Gunnink, K.; Aarts, R.G.K.M.; Brouwer, D.M.
2013-01-01
Two flexure hinge types are optimized for high support stiffness and high first unwanted eigenfrequency for two different working ranges, ±5.7° and ±20°. We show how multiple performance specifications lead to different designs with different performance. The optimization uses efficient parameterize
Design of Low-Torque-Ripple Synchronous Reluctance Motor with External Rotor
Directory of Open Access Journals (Sweden)
Lavrinovicha L.
2017-02-01
Full Text Available The paper presents new designs for synchronous reluctance motors that have external rotor (segment-shaped rotor, rotor with additional non-magnetic space to the quadrature axis of the rotor, and rotor with several flux barriers. Impact of the external rotor configuration on the electromagnetic torque and torque ripple is analysed. Electromagnetic torque ripple factor is calculated for each studied motor using the results of magnetic field numerical calculations.
Active damping of flexible rotor blade dynamics using electrorheological-fluid-based actuators
Wereley, Norman M.
1994-05-01
Advanced rotor systems including hingeless and bearingless rotors have air and ground resonance instabilities due to coalescence of low-frequency rotor modes with landing gear and fuselage modes, respectively. This coalescence is of difficulty due to the direct connection of the rotor blade in these advanced rotor systems to the rotor hub using a flexure or flexbeam. We are currently exploring the mitigation of this modal coalescence through the use of active damping techniques and electro-rheological fluid technology.
Welch, Gerard E.
2011-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range, from 100% at take-off to 54% at cruise. The variable-speed power turbine offers one approach by which to effect this speed variation. Key aero-challenges include high work factors at cruise and wide (40 to 60 deg.) incidence variations in blade and vane rows over the speed range. The turbine design approach must optimize cruise efficiency and minimize off-design penalties at take-off. The accuracy of the off-design incidence loss model is therefore critical to the turbine design. In this effort, 3-D computational analyses are used to assess the variation of turbine efficiency with speed change. The conceptual design of a 4-stage variable-speed power turbine for the Large Civil Tilt-Rotor application is first established at the meanline level. The design of 2-D airfoil sections and resulting 3-D blade and vane rows is documented. Three-dimensional Reynolds Averaged Navier-Stokes computations are used to assess the design and off-design performance of an embedded 1.5-stage portion-Rotor 1, Stator 2, and Rotor 2-of the turbine. The 3-D computational results yield the same efficiency versus speed trends predicted by meanline analyses, supporting the design choice to execute the turbine design at the cruise operating speed.
Shake a tail feather: the evolution of the theropod tail into a stiff aerodynamic surface.
Directory of Open Access Journals (Sweden)
Michael Pittman
Full Text Available Theropod dinosaurs show striking morphological and functional tail variation; e.g., a long, robust, basal theropod tail used for counterbalance, or a short, modern avian tail used as an aerodynamic surface. We used a quantitative morphological and functional analysis to reconstruct intervertebral joint stiffness in the tail along the theropod lineage to extant birds. This provides new details of the tail's morphological transformation, and for the first time quantitatively evaluates its biomechanical consequences. We observe that both dorsoventral and lateral joint stiffness decreased along the non-avian theropod lineage (between nodes Theropoda and Paraves. Our results show how the tail structure of non-avian theropods was mechanically appropriate for holding itself up against gravity and maintaining passive balance. However, as dorsoventral and lateral joint stiffness decreased, the tail may have become more effective for dynamically maintaining balance. This supports our hypothesis of a reduction of dorsoventral and lateral joint stiffness in shorter tails. Along the avian theropod lineage (Avialae to crown group birds, dorsoventral and lateral joint stiffness increased overall, which appears to contradict our null expectation. We infer that this departure in joint stiffness is specific to the tail's aerodynamic role and the functional constraints imposed by it. Increased dorsoventral and lateral joint stiffness may have facilitated a gradually improved capacity to lift, depress, and swing the tail. The associated morphological changes should have resulted in a tail capable of producing larger muscular forces to utilise larger lift forces in flight. Improved joint mobility in neornithine birds potentially permitted an increase in the range of lift force vector orientations, which might have improved flight proficiency and manoeuvrability. The tail morphology of modern birds with tail fanning capabilities originated in early ornithuromorph
How Crouch Gait Can Dynamically Induce Stiff-Knee Gait
Van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.; Collins, S.H.
Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on
How Crouch Gait Can Dynamically Induce Stiff-Knee Gait
Van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.; Collins, S.H.
Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on
A novel energy-efficient rotational variable stiffness actuator
Rao, Shodhan; Carloni, Raffaella; Stramigioli, Stefano
2011-01-01
This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping
A novel energy-efficient rotational variable stiffness actuator
Rao, S.; Carloni, Raffaella; Stramigioli, Stefano
This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping
Control of polarization-induced stiffness asymmetry in highly focused optical tweezers
So, Jinmyoung
2015-01-01
Optical tweezers that utilize a highly focused, linearly polarized laser beam are shown to exhibit strong stiffness asymmetry, which originates from the anisotropic field distribution in the transverse plane. We present an experimental demonstration in which the degree of stiffness asymmetry is controlled by using the polarization state of the trapping beam as a tuning knob. Theoretical support for the experimental observations is provided based on the generalized Lorenz-Mie theory, which is revised to encompass the general polarization state of a trapping beam.
Nijsse, G.J.P.; Spronck, J.W.
1999-01-01
There is described a support system enabling supporting an object such as a platform (1) free from vibration, in that bearing elements (50) have a stiffness (k) which at a working point (z0) equals zero. A bearing element (50) comprises two magnetic couplings (51, 52) provided by permanent magnets
Nijsse, G.J.P.; Spronck, J.W.
1999-01-01
There is described a support system enabling supporting an object such as a platform (1) free from vibration, in that bearing elements (50) have a stiffness (k) which at a working point (z0) equals zero. A bearing element (50) comprises two magnetic couplings (51, 52) provided by permanent magnets (