International Nuclear Information System (INIS)
Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.
2016-01-01
The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)
Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193
Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.
2011-01-01
The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.
Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb
Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S
2011-01-01
The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.
Test of Magnetic Rotation near the band head in ^197,198Pb
Krücken, R.; Clark, R. M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Macchiavelli, A. O.; Lee, I. Y.; Schmid, G. J.; Stephens, F. S.; Vetter, K.; Dewald, A.; Peusquens, R.; von Brentano, P.; Baldsiefen, G.; Chmel, S.; Hübel, H.; Becker, J. A.; Bernstein, L. A.; Hauschild, K.
1998-04-01
The concept of magnetic rotation is tested near the band head of shears-bands in ^197,198Pb by means of a lifetime experiment with the recoil distance method (RDM). The experiment was performed using the Gammasphere array in conjunction with the Cologne Plunger. The B(M1) values extracted from the measured lifetimes can prove the applicability of the concept of magnetic rotation for the states near the band head of these shears bands. The RDM results are compared with tilted axis cranking and shell model calculations. Furthermore the results will be used to test earlier DSAM lifetime measurements for states at higher spins. Preliminary results of this topic will be presented. This work is supported by DOE grant numbers DE-AC03-76SF00098 (LBNL), DE-FG02-91ER40609 (Yale), W-7405-ENG-48 (LLNL) and by the German BMBF for Cologne (No. 06 OK 668) and Bonn.
Predicting superdeformed rotational band-head spin in A ∼ 190 ...
Indian Academy of Sciences (India)
PACS No. 21.60.−n. 1. Introduction. Superdeformed (SD) nuclei are one of the most challenging and ... like A ∼ 60, 80, 130, 150 and 190 [2,3]. ..... work and the research is progressing to give systematic features of rotational bands of SD.
Energy Technology Data Exchange (ETDEWEB)
Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)
2016-01-15
In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)
Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae
Sharma, Honey; Mittal, H. M.
2018-03-01
The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.
Band head spin assignment of superdeformed bands in Hg isotopes through power index formula
Sharma, Honey; Mittal, H. M.
2018-05-01
The power index formula has been used to obtain the band head spin (I 0) of all the superdeformed (SD) bands in Hg isotopes. A least squares fitting approach is used. The root mean square deviations between the determined and the observed transition energies are calculated by extracting the model parameters using the power index formula. Whenever definite spins are available, the determined and the observed transition energies are in accordance with each other. The computed values of dynamic moment of inertia J (2) obtained by using the power index formula and its deviation with the rotational frequency is also studied. Excellent agreement is shown between the calculated and the experimental results for J (2) versus the rotational frequency. Hence, the power index formula works very well for all the SD bands in Hg isotopes expect for 195Hg(2, 3, 4).
Vibrational and Rotational Energy Relaxation in Liquids
DEFF Research Database (Denmark)
Petersen, Jakob
Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...
Energy correlations for mixed rotational bands
International Nuclear Information System (INIS)
Doessing, T.
1985-01-01
A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)
Energy crops in rotation. A review
Energy Technology Data Exchange (ETDEWEB)
Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)
2011-01-15
The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in
Energy transfer in scattering by rotating potentials
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Quantum mechanical scattering theory is studied for time-dependent. Schrödinger ... the energy transferred to a particle by collision with a rotating blade. Keywords. ..... terms of the unitary group for some time-independent generator. This will ...
Energy Transfer in Scattering by Rotating Potentials
Indian Academy of Sciences (India)
Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...
Rotating flux compressor for energy conversion
International Nuclear Information System (INIS)
Chowdhuri, P.; Linton, T.W.; Phillips, J.A.
1983-01-01
The rotating flux compressor (RFC) converts rotational kinetic energy into an electrical output pulse which would have higher energy than the electrical energy initially stored in the compressor. An RFC has been designed in which wedge-shaped rotor blades pass through the air gaps between successive turns of a solenoid, the stator. Magnetic flux is generated by pulsing the stator solenoids when the inductance is a maximum, i.e., when the flux fills the stator-solenoid volume. Connecting the solenoid across a load conserves the flux which is compressed within the small volume surrounding the stator periphery when the rotor blades cut into the free space between the stator plates, creating a minimum-inductance condition. The unique features of this design are: (1) no electrical connections (brushes) to the rotor; (2) no conventional windings; and (3) no maintenance. The device has been tested up to 5000 rpm of rotor speed
Energy transfer in turbulence under rotation
Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz
2018-03-01
It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.
Power law scaling for rotational energy transfer
International Nuclear Information System (INIS)
Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.
1979-01-01
We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law
A low frequency rotational energy harvesting system
International Nuclear Information System (INIS)
Febbo, M; Machado, S P; Ramirez, J M; Gatti, C D
2016-01-01
This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation. (paper)
Spins of superdeformed rotational bands in Tl isotopes
Energy Technology Data Exchange (ETDEWEB)
Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)
2017-01-15
The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)
Predicting superdeformed rotational band-head spin in A ∼ 190 ...
Indian Academy of Sciences (India)
Table1 Shi2 ab3. Becker4 CBM5 SAM6 Zeng7. 191Au(b1). 187. 184.6. 1.5. 0.1185. 9.5. 9.5. 7.5. 7.5. –. 7.5. 7.5. 7.5. 191Au(b2). 398. 398.7. 8.4. 0.0928. 17.5. 17.5 17.5. 17.5. –. 17.5. 17.5 17.5. 191Au(b3). 383. 383.3. 7.4. 0.0916. 16.5. 16.5 17.5. 17.5. –. 16.5. 16.5 16.5. 190Hg(b1). 317. 316.8. 6.8. 0.0834. 12. 12. 13. 13. 12.
Vacuum energy of the electromagnetic field in a rotating system
International Nuclear Information System (INIS)
Hacyan, S.; Sarmiento, A.
1986-01-01
The vacuum energy of the electromagnetic field is calculated for a uniformly rotating observer. The spectrum of vacuum fluctuations is composed of the zero-point energy with a modified density of states and a contribution due to the rotation which is not thermal. (orig.)
Scowcroft, Victoria; Seibert, Mark; Freedman, Wendy L.; Beaton, Rachael L.; Madore, Barry F.; Monson, Andrew J.; Rich, Jeffery A.; Rigby, Jane R.
2016-01-01
We compare mid-infrared (IR) 3.6 and 4.5 micron Warm Spitzer observations for Cepheids in the Milky Way and the Large and Small Magellanic Clouds. Using models, we explore in detail the effect of the CO rotation-vibration band-head at 4.6 micron on the mid-IR photometry. We confirm the temperature sensitivity of the CO band-head at 4.6 micron and find no evidence for an effect at 3.6 micron. We compare the ([3.6]-[4.5]) period-colour relations in the MW, LMC and SMC. The slopes of the period-colour relations for the three galaxies are in good agreement, but there is a trend in zero-point with metallicity, with the lowest metallicity Cepheids having redder mid-IR colours. Finally, we present a colour-[Fe/H] relation based on published spectroscopic metallicities. This empirical relation, calibrated to the metallicity system of Genovali et al., demonstrates that the ([3.6]-[4.5]) colour provides a reliable metallicity indicator for Cepheids, with a precision comparable to current spectroscopic determinations.
Stochastic Hydrodynamic Synchronization in Rotating Energy Landscapes
Koumakis, N.; Di Leonardo, R.
2013-01-01
Hydrodynamic synchronization provides a general mechanism for the spontaneous emergence of coherent beating states in independently driven mesoscopic oscillators. A complete physical picture of those phenomena is of definite importance to the understanding of biological cooperative motions of cilia and flagella. Moreover, it can potentially suggest novel routes to exploit synchronization in technological applications of soft matter. We demonstrate that driving colloidal particles in rotating ...
Rotating gravity currents. Part 1. Energy loss theory
Martin, J. R.; Lane-Serff, G. F.
2005-01-01
A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.
Ultra high energy electrons powered by pulsar rotation.
Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino
2013-01-01
A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.
Casimir energy of rotating string - indirect approach
International Nuclear Information System (INIS)
Hadasz, L.
1999-01-01
Methods of calculating the Casimir energy which do not require the explicit knowledge of the oscillation frequencies are developed and applied to the model of the Nambu-Goto string with the Gauss-Bonnet term in the action. (author)
Casimir Energy of Rotating String --- Indirect Approach
Hadasz, Leszek
1999-04-01
Methods of calculating the Casimir energy which do not require the explicit knowledge of the oscillation frequencies are developed and applied to the model of the Nambu--Goto string with the Gauss--Bonnet term in the action.
Determination of yttrium using YO band head obtained by laser enhanced ionization spectrometry
International Nuclear Information System (INIS)
Deshpande, S.S.; Khanna, P.P.
1997-04-01
The determination of yttrium (Y) in water in the concentration range of 2 μg/ml to 200 μg/ml by laser enhanced ionisation (LEI) technique is reported. The YO band head at 584.27 nm belonging to A 2 Π - X 2 Σ + system is used for LEI signal detection. It is also shown that the LEI signal is enhanced when the mixture of air - acetylene - argon (AAA) is used instead of commonly used air-acetylene (AA) mixture. In the present work an XeCl laser (308 nm) pumped rhodamine 6G dye laser, covering a range of 570-610 nm is used. The sample/standard in solution form is aspirated into the flame with pneumatic nebulizer. The working curve is a straight line showing linear dependence of LEI signal with yttrium concentration. The relative standard deviation calculated at 100 μg/ml is found to be 2.4 %. (author)
Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester
Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro
2013-12-01
It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.
Casimir energy of rotating string - indirect approach
Energy Technology Data Exchange (ETDEWEB)
Hadasz, L. [Smoluchowski Institute of Physics, Jagiellonian University, Cracow (Poland)
1999-04-01
Methods of calculating the Casimir energy which do not require the explicit knowledge of the oscillation frequencies are developed and applied to the model of the Nambu-Goto string with the Gauss-Bonnet term in the action. (author) 17 refs, 1 fig
Woody biomass from short rotation energy crops. Chapter 2
R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk
2011-01-01
Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...
A novel energy-efficient rotational variable stiffness actuator
Rao, S.; Carloni, Raffaella; Stramigioli, Stefano
This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping
Compact passively self-tuning energy harvesting for rotating applications
International Nuclear Information System (INIS)
Gu, Lei; Livermore, Carol
2012-01-01
This paper presents a compact, passive, self-tuning energy harvester for rotating applications. The harvester rotates in the vertical plane and is comprised of two beams: a relatively rigid piezoelectric generating beam and a narrow, flexible driving beam with a tip mass mounted at the end. The mass impacts the generating beam repeatedly under the influence of gravity to drive generation. Centrifugal force from the rotation modifies the resonant frequency of the flexible driving beam and the frequency response of the harvester. An analytical model that captures the harvester system's resonant frequency as a function of rotational speed is used to guide the detailed design. With an optimized design, the resonant frequency of the harvester substantially matches the frequency of the rotation over a wide frequency range from 4 to 16.2 Hz. A prototype of the passive self-tuning energy harvester using a lead zirconate titanate generating beam achieved a power density of 30.8 µW cm −3 and a more than 11 Hz bandwidth, which is much larger than the 0.8 Hz bandwidth calculated semi-empirically for a similar but untuned harvester. Passive tuning was also demonstrated using the more robust and reliable but less efficient polymer polyvinylidene fluoride for the generating beam
Rotational and divergent kinetic energy in the mesoscale model ALADIN
Directory of Open Access Journals (Sweden)
V. Blažica
2013-03-01
Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.
Possible Measurable Effects of Dark Energy in Rotating Superconductors
Directory of Open Access Journals (Sweden)
Clovis Jacinto de Matos
2009-01-01
Full Text Available We discuss recent laboratory experiments with rotating superconductors and show that three so far unexplained experimentally observed effects (anomalous acceleration signals, anomalous gyroscope signals, Cooper pair mass excess can be physically explained in terms of a possible interaction of dark energy with Cooper pairs. Our approach is based on a Ginzburg-Landau-like model of electromagnetic dark energy, where gravitationally active photons obtain mass in the superconductor. We show that this model can account simultaneously for the anomalous acceleration and anomalous gravitomagnetic fields around rotating superconductors measured by Tajmar et al. and for the anomalous Cooper pair mass in superconductive Niobium, measured by Cabrera and Tate. It is argued that these three different physical effects are ultimately different experimental manifestations of the simultaneous spontaneous breaking of gauge invariance and of the principle of general covariance in superconductive materials.
Imprint reduction in rotating heavy ions beam energy deposition
Energy Technology Data Exchange (ETDEWEB)
Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)
2014-01-01
The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.
Imprint reduction in rotating heavy ions beam energy deposition
International Nuclear Information System (INIS)
Bret, A.; Piriz, A.R.; Tahir, N.A.
2014-01-01
The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω
Surprisal analysis and probability matrices for rotational energy transfer
International Nuclear Information System (INIS)
Levine, R.D.; Bernstein, R.B.; Kahana, P.; Procaccia, I.; Upchurch, E.T.
1976-01-01
The information-theoretic approach is applied to the analysis of state-to-state rotational energy transfer cross sections. The rotational surprisal is evaluated in the usual way, in terms of the deviance of the cross sections from their reference (''prior'') values. The surprisal is found to be an essentially linear function of the energy transferred. This behavior accounts for the experimentally observed exponential gap law for the hydrogen halide systems. The data base here analyzed (taken from the literature) is largely computational in origin: quantal calculations for the hydrogenic systems H 2 +H, He, Li + ; HD+He; D 2 +H and for the N 2 +Ar system; and classical trajectory results for H 2 +Li + ; D 2 +Li + and N 2 +Ar. The surprisal analysis not only serves to compact a large body of data but also aids in the interpretation of the results. A single surprisal parameter theta/subR/ suffices to account for the (relative) magnitude of all state-to-state inelastic cross sections at a given energy
Short-rotation forestry for energy production in Hawaii
Energy Technology Data Exchange (ETDEWEB)
Phillips, V.C.; Liu, W. [Univ. of Hawaii, Honolulu, HI (United States); Merriam, R.A.
1993-12-31
In Hawaii, imports of fossil fuels continue to accelerate and now provide over 90% of the total energy supply at a cost exceeding $1 {times} 10{sup 9} annually exported from the local economy. Concurrently, sugarcane and pineapple crops, the traditional mainstays of the state`s economy, have declined such that as much as 80,000 hectares of agricultural land are now available for alternative land uses. The feasibility of short-rotation forestry for sustainable energy production on these former sugarcane and pineapple plantation lands is being evaluated using species- and site-specific empirical models to predict yields of Eucalyptus grandis, E. saligna, and Leucaena leucocephala, a system model to estimate delivered costs, and a geographic information system to extend the analysis to areas where no field trials exist and to present results in map form. The island of Hawaii is showcased as an application of the methodology. Modeling results of methanol, ethanol, and electricity production from tropical hardwoods are presented. Short-rotation forestry appears to hold promise for the greening of Hawaii`s energy system and agricultural lands for the benefit of the state`s citizens and visitors. The methodology is readily transferable to other regions of the United States and rest of the world.
Carbon storage and recycling in short-rotation energy crops
International Nuclear Information System (INIS)
Ranney, J.W.; Wright, L.L.; Mitchell, C.P.
1991-01-01
Short-rotation energy crops can play a significant role in storing carbon compared to the agricultural land uses they would displace. However, the benefits from these plantations in avoiding further use of fossil fuel and in taking pressure off of native forests for energy uses provides longer term carbon benetfits than the plantation carbon sequestration itself. The fast growth and harvest frequency of plantations tends to limit the amount of above and below-ground carbon storage in them. The primary components of plantation carbon sequestering compared to sustained agricultural practices involve above-ground wood, possible increased soil carbon, litter layer formation, and increased root biomass. On the average, short-rotation plantations in total may increase carbon inventories by about 30 to 40 tonnes per hectare over about a 20- to 56-year period when displacing cropland. This is about doubling in storage over cropland and about one-half the storage in human-impacted forests. The sequestration benefit of wood energy crops over cropland would be negated in about 75 to 100 years by the use of fossil fuels to tend the plantations and handle biomass. Plantation interactions with other land uses and total landscape carbon inventory is important in assessing the relative role plantations play in terrestrial and atmospheric carbon dynamics. It is speculated that plantations, when viewed in this context. could trencrate a global leveling of net carbon emissions for approximately 10 to 20 years
High-Energy Emission from Rotation-Powered Pulsars
Harding, Alice K.
2007-01-01
Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand their pulsed emission at any wavelength. In the last few years there have been some fundamental developments in acceleration and emission models. I will review both the basic physics of the models as well as the latest developments in understanding the high-energy emission of rotation-powered pulsars. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately two new gamma-ray telescopes, AGILE and GLAST, with launches expected this year will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.
Environmental effects of energy forest (short rotation willow)
International Nuclear Information System (INIS)
Frank, K.
1994-01-01
This paper deals with environmental effects of producing and combusting energy forest fuel. Energy forest means short rotation willow (Salix). Supposed effects of sewage sludge application are discussed as well. Energy forestry on agricultural land implies both advantages and disadvantages for the environment. Leaf litter (humified leaves) increases the humus content in the top soil. The soil fauna is also positively affected. Until now performed studies about nitrogen leakage from fields cultivated with energy forest (Salix), have not given any distinct results. A retarded drainage within energy forest fields is on the other hand noticed. While the root system of Salix is active during a long period of the year, the nitrogen leakage become less compared to traditional cultivation. The content of plant nutrients and organic matter in sewage sludge make a resource that can be useful for agricultural purposes, especially for energy forest cultivation. The content of heavy metals and organic emissions contradicts sludge application to agricultural land. Sewage sludge with todays quality increases somewhat the content of heavy metals in the soil. This condition can be counteracted to a certain extent by growing energy forest. It has been established that Salix has high ability to heavy metal uptake, especially cadmium. Growing energy forest on drained farm land is connected with a risk for root penetration into the drainage system. With enough water and plant nutrients in the top soil the risk is reduced. Shallow depth of the pipes increases the risk. Combustion of wood chip from energy forests (and other types of biomass) gives especially two advantages. It does not give any net contribution of carbon dioxide to the atmosphere. The sulphur discharge will be minimal since the sulphur content in wood fuels is low. Discharge of nitrogen oxide and hydrocarbons may give some problems. These can be reduced by technological measures when combusting. 27 refs, 4 tabs
Closed Loop Short Rotation Woody Biomass Energy Crops
Energy Technology Data Exchange (ETDEWEB)
Brower, Michael [CRC Development, LLC, Oakland, CA (United States)
2012-09-30
CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.
Short rotation coppice for energy production: hydrological guidelines
Energy Technology Data Exchange (ETDEWEB)
Hall, R.L.
2003-07-01
This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising short rotation coppice (SRC) for energy production. The aim of the report is to help interested parties decide if a location is suitable for SRC planting by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of SRC compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of SRC and notes that, in some situations, there will be considerable uncertainty in predictions.
A theoretical study of rotatable renewable energy system for stratospheric airship
International Nuclear Information System (INIS)
Lv, Mingyun; Li, Jun; Zhu, Weiyu; Du, Huafei; Meng, Junhui; Sun, Kangwen
2017-01-01
Highlights: • A new rotatable renewable energy system is designed for stratospheric airship. • A theoretical model of optimal rotation angle and required area are studied. • The effects of latitude and date on output energy per day are investigated. • The advantages of the rotatable renewable energy system are studied. - Abstract: Renewable energy system is very critical for solving the energy problem of a long endurance stratospheric airship. Output performance of the traditional solar array fixed on the upper surface of the airship remains to be improved to reduce the area and weight of renewable energy system. Inspired by the solar tracking system and kirigami, a rotatable renewable energy system (mainly including solar array) is designed to improve the current status of the energy system. The advantages of the rotatable solar array are studied using a MATLAB computer program based on the theoretical model established in this paper. The improvements in output energy and required area of the solar array were compared between the traditional airship and improved one. Studies had shown that the rotatable renewable energy system made the total weight of energy system decreased by 1000 kg when the maximum design speed of the airship was greater than 22 m/s. The results demonstrate that the rotatable renewable energy system for the airship can be a good way to improve the output performance of solar array, and the conceptual design and theoretical model suggest a pathway towards solving the energy problem of a stratospheric airship.
Partitioning of methyl internal rotational barrier energy of ...
Indian Academy of Sciences (India)
The nature of methyl internal rotational barrier in thioacetaldehyde has been investigated by relaxation effect, natural bond orbital (NBO) analysis and Pauling exchange interactions. The true experimental barrier can be obtained by considering fully relaxed rotation. Nuclear-electron attraction term is a barrier forming term in ...
Directory of Open Access Journals (Sweden)
Serov Anatoly
2017-01-01
Full Text Available The torque of the rotational resistance in the Ku-Etta multi-cylinder system rotating in the direction towards each other is measured. The experiments were carried out for three values of the kinematic viscosity of the working fluid that fills the multicylinder system: water at a temperature of 24 °C (viscosity 0.9 cSt, an aqueous solution of glycerol at 20 °C and 41 °C (2.5 cSt and 5.2 cSt. An attempt is made to investigate the features of a viscous flow in the multicolor Couette flow system from the analysis of the energy spectra of the moment of resistance to rotation of cylinders.
E 2 decay strength of the M 1 scissors mode of 156Gd and its first excited rotational state
Beck, T.; Beller, J.; Pietralla, N.; Bhike, M.; Birkhan, J.; Derya, V.; Gayer, U.; Hennig, A.; Isaak, J.; Löher, B.; Ponomarev, V. Yu.; Richter, A.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.
2017-05-01
The E 2 /M 1 multipole mixing ratio δ1 →2 of the 1sc+→21+ γ -ray decay in 156Gd and hence the isovector E 2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ -ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched 156Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying Jπ=2+ member of the rotational band of states on top of the 1+ band head is obtained, too, indicating a significant signature splitting in the K =1 scissors mode rotational band.
E2 decay strength of the M1 scissors mode of ^{156}Gd and its first excited rotational state.
Beck, T; Beller, J; Pietralla, N; Bhike, M; Birkhan, J; Derya, V; Gayer, U; Hennig, A; Isaak, J; Löher, B; Ponomarev, V Yu; Richter, A; Romig, C; Savran, D; Scheck, M; Tornow, W; Werner, V; Zilges, A; Zweidinger, M
2017-05-26
The E2/M1 multipole mixing ratio δ_{1→2} of the 1_{sc}^{+}→2_{1}^{+} γ-ray decay in ^{156}Gd and hence the isovector E2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ-ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched ^{156}Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying J^{π}=2^{+} member of the rotational band of states on top of the 1^{+} band head is obtained, too, indicating a significant signature splitting in the K=1 scissors mode rotational band.
Causal extraction of black hole rotational energy by various kinds of electromagnetic fields
International Nuclear Information System (INIS)
Koide, Shinji; Baba, Tamon
2014-01-01
Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.
The influence of molecular rotation on vibration--translation energy transfer
International Nuclear Information System (INIS)
McKenzie, R.L.
1977-01-01
The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ω/sub e//B/sub e/, and second by the proximity of their initial state to a near-resonant vibration--rotation transition with a small change in angular momentum. While the dynamics of molecules with ω/sub e//B/sub e/ ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ω/sub e//B/sub e/ ratios appear to be well approximated by a collinear collision model
Clarke, Peter; Varghese, Philip; Goldstein, David
2018-01-01
A discrete velocity method is developed for gas mixtures of diatomic molecules with both rotational and vibrational energy states. A full quantized model is described, and rotation-translation and vibration-translation energy exchanges are simulated using a Larsen-Borgnakke exchange model. Elastic and inelastic molecular interactions are modeled during every simulated collision to help produce smooth internal energy distributions. The method is verified by comparing simulations of homogeneous relaxation by our discrete velocity method to numerical solutions of the Jeans and Landau-Teller equations, and to direct simulation Monte Carlo. We compute the structure of a 1D shock using this method, and determine how the rotational energy distribution varies with spatial location in the shock and with position in velocity space.
International Nuclear Information System (INIS)
Smith, N.; Pritchard, D.E.
1981-01-01
We have recently demonstrated that the energy corrected sudden (ECS) scaling law of De Pristo et al. when conbined with the power law assumption for the basis rates k/sub l/→0proportional[l(l+1)]/sup -g/ can accurately fit a wide body of rotational energy transfer data. We develop a simple and accurate approximation to this fitting law, and in addition mathematically show the connection between it and our earlier proposed energy based law which also has been successful in describing both theoretical and experimental data on rotationally inelastic collisions
On the study of rotational effects in mass asymmetric colliding nuclei at intermediate energies
Kaur, Kamaldeep; Kumar, Suneel
2018-05-01
The rotational dynamics has been studied for different mass asymmetric systems 49122In + 50126Sn, 48114Cs + 54134In, 40100Mo + 64148Gd, 3686Kr + 67162Ho, 3171Ga + 71177Lu, 2860Ni + 76188Os and 2450Cr + 78198 Pt for incident energies between 40 MeV/nucleon and 400 MeV/nucleon for impact parameter range 0.25 free protons have been compared successfully with IQMD model calculations. The rotational flow of free protons with increasing incident energies and elliptic flow (calculated from the fits of azimuthal distributions of free protons) dependence with energy has also been investigated.
Energy extraction from a Konoplya–Zhidenko rotating non-Kerr black hole
Directory of Open Access Journals (Sweden)
Fen Long
2018-01-01
Full Text Available We have investigated the properties of the ergosphere and the energy extraction by Penrose process in a Konoplya–Zhidenko rotating non-Kerr black hole spacetime. We find that the ergosphere becomes thin and the maximum efficiency of energy extraction decreases as the deformation parameter increases. For the case with aM, we find that the maximum efficiency can reach so high that it is almost unlimited as the positive deformation parameter is close to zero, which is a new feature of energy extraction in such kind of rotating non-Kerr black hole spacetime.
Sustained turbulence and magnetic energy in non-rotating shear flows
DEFF Research Database (Denmark)
Nauman, Farrukh; Blackman, Eric G.
2017-01-01
From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....
Rotational energy transfer of the A{sup 2}{Sigma}`({nu}`=1) state of OH
Energy Technology Data Exchange (ETDEWEB)
Beaud, P; Radi, P; Frey, H B; Mischler, B; Tzannis, A P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Spectrally and temporally resolved laser excited fluorescence of OH is investigated in the picosecond time domain. The total rotational energy transfer (RET) rate from the excited state is determined from the experimental data. Simulated spectra obtained by modelling RET with the energy corrected sudden approximation agree well with the measured spectra. (author) 1 fig., 1 tab., 5 refs.
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
Directory of Open Access Journals (Sweden)
Zhengqiu Xie
2018-01-01
Full Text Available This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
Xie, Zhengqiu; Kitio Kwuimy, C. A.; Wang, Zhiguo; Huang, Wenbin
2018-01-01
This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
Measurement and Analysis of Rotational Energy of Nitrogen Molecular Beam by REMPI
International Nuclear Information System (INIS)
Mori, H.; Yamaguchi, H.; Kataoka, K.; Sugiyama, N.; Ide, K.; Niimi, T.
2008-01-01
Molecular beams are powerful tools for diagnoses of solid surfaces and gas-surface interaction tests. Unfortunately, there are very few reports about experimental analysis of internal energy distribution (e.g. rotational energy) of molecular beams of diatomic or polyatomic molecules, because measurement of internal energy distribution is very difficult. Spectroscopic measurement techniques based on resonantly enhanced multiphoton ionization (REMPI) is very powerful for measurement in highly rarefied gas flows. In this study, the REMPI method is applied to measurement of rotational energy distribution of nitrogen molecular beams. The REMPI spectrum of the molecular beam indicates the rotational temperature higher than the translational temperature of 7.2 K estimated by assuming isentropic flows. The O and P branches of the REMPI spectrum correspond to the rotational temperature of 30 K, but the S branch of the spectrum deviates from that at 30 K. It seems to be because the non-equilibrium rotational energy distribution of the molecular beam deviates from the Boltzmann distribution.
Zhang, Yunshun; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.
2018-04-01
Nonlinear energy harvesters are frequently considered in preference to linear devices because they can potentially overcome the narrow frequency bandwidth limitations inherent to linear variants; however, the possibility of variable harvesting efficiency is raised for the nonlinear case. This paper proposes a rotational energy harvester which may be fitted into an automobile tyre, with the advantage that it may broaden the rotating frequency bandwidth and simultaneously stabilise high-energy orbit oscillations. By consideration of the centrifugal effects due to rotation, the overall restoring force will potentially be increased for a cantilever implemented within the harvester, and this manifests as an increase in its equivalent elastic stiffness. In addition, this study reveals that the initial potential well barriers become as shallow as those for a bistable system. When the rotational frequency increases beyond an identifiable boundary frequency, the system transforms into one with a potential barrier of a typical monostable system. On this basis, the inter-well motion of the bistable system can provide sufficient kinetic energy so that the cantilever maintains its high-energy orbit oscillation for monostable hardening behaviour. Furthermore, in a vehicle drive experiment, it has been shown that the effective rotating frequency bandwidth can be widened from 15 km/h-25 km/h to 10 km/h-40 km/h. In addition, it is confirmed that the centrifugal effects can improve the harvester performance, producing a mean power of 61 μW at a driving speed of 40 km/h, and this is achieved by stabilising the high-energy orbit oscillations of the rotational harvester.
Non-resonant energy harvester with elastic constraints for low rotating frequencies
Machado, Sebastián P.; Febbo, Mariano; Gatti, Claudio D.; Ramirez, José M.
2017-11-01
This paper presents a non-resonant piezoelectric energy harvester (PEH) which is designed to capture energy from low frequency rotational vibration. The proposed device works out of the plane of rotation where the motion of a mass-spring system is transferred to a piezoelectric layer with the intention to generate energy to power wireless structural monitoring systems or sensors. The mechanical structure is formed by two beams with rigid and elastic boundary conditions at the clamped end. On the free boundaries, heavy masses connected by a spring are placed in order to increase voltage generation and diminish the natural frequency. A mathematical framework and the equations governing the energy-harvesting system are presented. Numerical simulations and experimental verifications are performed for different rotation speeds ranging from 0.7 to 2.5 Hz. An output power of 125 μW is obtained for maximum rotating frequency demonstrating that the proposed design can collect enough energy for the suggested application.
Energy valorization of the species used in short-rotation plantations
International Nuclear Information System (INIS)
Moya Roque, Roger; Tenorio Monge, Carolina; Salazar Zeledon, Estephania
2016-01-01
The energy potential of some non-traditional plantations for production of energy is exposed. Forest and forage species are utilized in Costa Rica for energy plantations. The characteristics of these species have been short rotation (1-3 years) and a production between 20 and 25 tonnes of dry matter per hectare. Agro-energy plantations are described. Gmelina arborea y Pennisetum purpureum species have been viable options for biomass production. However, the high cost of seedlings and land to cultivate have been one of the problems of this energy source [es
Electromagnetic Energy Converters - Rotating Motors and Linear Generators
Energy Technology Data Exchange (ETDEWEB)
Ekergaard, Boel
2011-07-01
This licentiate thesis presents a study of the electromagnetic properties of linear synchronous permanent magnet generators, utilized in wave energy converters, and a two pole permanent magnet motor for an electrical vehicle. Both machine topologies are presented, designed with a numerical simulation tool, based on a model derived from Maxwell's equations. Full scale prototypes of both the machines are under construction. A continued study about the impact on the magnetic circuit caused by the longitudinal ends of a linear generator is performed. The results present significant core losses in the translator and an increased cogging force caused by the longitudinal ends. Further, a new electric conversion circuit based on the electric resonance phenomena is presented. Experimental results indicate that a successful electric resonance between the generator and external circuit has been achieved. Finally, detailed analytical and numerical methods are utilized to investigate the losses in the two pole permanent magnet motor over a wide frequency interval. The results indicate that the efficiency of electrical motors in electrical vehicle system can be increased relative existing designs and argue for limiting of the gearbox. The system total efficiency and mechanical stability can thereby be increased. The work concerning the wave energy converter is a part of a larger project, the so called Lysekil Wave Power Project, whereas the work concerning the electric motor so far has been carried out as an individual project. However, a future goal is to integrate the research on the electric motor for electrical vehicle with closely related ongoing research regarding a flywheel based electric driveline for an All Electric Propulsion System
Simultaneous Feedback Control of Plasma Rotation and Stored Energy on the DIII-D Tokamak
International Nuclear Information System (INIS)
Scoville, J.T.; Ferron, J.R.; Humphreys, D.A.; Walker, M.L.
2006-01-01
One of the major modifications made to the DIII-D tokamak during the 2005 Long Torus Opening was the rotation of one of the four two-source neutral beam injection systems. Prior to this modification, all beams injected power with a component in the same direction as the usual plasma current ('' co-injection ''). Starting in early 2006, two of the seven beams inject with a component in the opposite direction ('' counter-injection ''). This new capability allows, for the first time, a partial decoupling of the injected energy and momentum during neutral beam heating experiments. An immediate advantage of mixed co- and counter-injection beams is the capability to control the plasma rotation velocity. High beta plasmas can now be studied over a wide range of the plasma rotation velocity. The stabilizing effect of rotation on the resistive wall mode (RWM), for example, can be directly compared to the stabilization achieved by external feedback coils. This is an advantage over previous techniques to control plasma rotation, such as magnetic braking, which have had only limited success. We describe development and implementation of a model-based control algorithm for simultaneous regulation of plasma rotation and beta. The model includes the two relevant plasma states (plasma rotation and stored energy), and describes the dynamic effects of the relevant actuators on those states. The actuators include the applied beam torque and beam power, which depend on the amount of co and counter-injected beams. Implementation of the model-based control within the plasma control system (PCS) [B.G. Penaflor, et al, '' Current Status of DIII-D Plasma Control System Computer Upgrades,'' Fusion Eng. and Design 71 (2004) 47] requires real-time measurements of the plasma rotation, obtained from the charge exchange recombination (CER) diagnostic, and stored energy calculated by the real-time EFIT equilibrium reconstruction. Details of this model and its development, and a comparison with
International Nuclear Information System (INIS)
Adamovich, Igor V.
2014-01-01
A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes
Directory of Open Access Journals (Sweden)
Lutao Yan
2013-01-01
Full Text Available This paper presents a new vibration based electromagnetic power generator to transfer energy from stationary to rotating equipment, which can be a new attempt to substitute slip ring in rotational systems. The natural frequencies and modes are simulated in order to have a maximum and steady power output from the device. Parameters such as piezoelectric disk location and relative motion direction of the magnet are theoretically and experimentally analyzed. The results show that the position that is close to the fixed end of the cantilever and the relative motion along the long side gives higher power output. Moreover, the capability of the energy harvester to extract power from lower energy environment is experimentally validated. The voltage and power output are measured at different excitation frequencies.
Vib--rotational energy distributions and relaxation processes in pulsed HF chemical lasers
International Nuclear Information System (INIS)
Ben-Shaul, A.; Kompa, K.L.; Schmailzl, U.
1976-01-01
The rate equations governing the temporal evolution of photon densities and level populations in pulsed F+H 2 →HF+H chemical lasers are solved for different initial conditions. The rate equations are solved simultaneously for all relevant vibrational--rotational levels and vibrational--rotational P-branch transitions. Rotational equilibrium is not assumed. Approximate expressions for the detailed state-to-state rate constants corresponding to the various energy transfer processes (V--V, V--R,T, R--R,T) coupling the vib--rotational levels are formulated on the basis of experimental data, approximate theories, and qualitative considerations. The main findings are as follows: At low pressures, R--T transfer cannot compete with the stimulated emission, and the laser output largely reflects the nonequilibrium energy distribution in the pumping reaction. The various transitions reach threshold and decay almost independently and simultaneous lasing on several lines takes place. When a buffer gas is added in excess to the reacting mixture, the enhanced rotational relaxation leads to nearly single-line operation and to the J shift in lasing. Laser efficiency is higher at high inert gas pressures owing to a better extraction of the internal energy from partially inverted populations. V--V exchange enhances lasing from upper vibrational levels but reduces the total pulse intensity. V--R,T processes reduce the efficiency but do not substantially modify the spectral output distribution. The photon yield ranges between 0.4 and 1.4 photons/HF molecule depending on the initial conditions. Comparison with experimental data, when available, is fair
The Taylor-Proudman column in a rapidly-rotating compressible fluid I. energy transports
International Nuclear Information System (INIS)
Park, Jun Sang
2014-01-01
A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. An examination is made of the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy flux content, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. A plausible argument is given to explain the difficulty in achieving the Taylor-Proudman column in a compressible rotating fluid. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy flux content.
An out-of-plane rotational energy harvesting system for low frequency environments
International Nuclear Information System (INIS)
Febbo, M.; Machado, S.P.; Gatti, C.D.; Ramirez, J.M.
2017-01-01
Highlights: • An alternative to cantilever beam-type systems for energy harvesting is proposed. • The device generates energy in a low frequency rotational environment. • It comprises two beams, a spring and two heavy masses joined by the spring. • By varying the flexibility of one beam, the device increments output DC power. • The generated DC power suffices to feed low power wireless transmitters. - Abstract: We present a novel design of a rotational power scavenging system as an alternative to cantilever beams attached to a hub. The device is meant to provide energy to wireless autonomous monitoring systems in low frequency environments such as wind turbines of 30 kW with rotational speeds of between 50 and 150 rpm. These characteristics define the bandwidth of the rotational energy harvesting system (REH) and its physical dimensions. A versatile geometric configuration with two elastic beams and two heavy masses joined by a spring is proposed. A piezoelectric sheet is mounted on the primary beam while the REH is placed on a rotating hub with the gravitational force acting as a periodic source. This kind of double-beam system offers the possibility to modify the vibration characteristics of the harvester for achieving high power density. An analytical framework using the Lagrangian formulation is derived to describe the motion of the system and the voltage output as a function of rotation speed. Several sets of experiments were performed to characterize the system and to validate the assumed hypothesis. In the experimental setup, a wireless data acquisition system based on Arduino technology was implemented to avoid slip-ring mechanisms. The results show very good agreement between the theoretical and experimental tests. Moreover, the output power of a simple harvesting circuit, which serves as an energy storage device, yields values ranging 26–105 μW over the whole frequency range. This allows us to use the proposed device for the designed purpose
Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge
Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.
2017-04-01
We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.
Cao, Ran; Zhou, Tao; Wang, Bin; Yin, Yingying; Yuan, Zuqing; Li, Congju; Wang, Zhong Lin
2017-08-22
Currently, a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) have been hybridized to effectively scavenge mechanical energy. However, one critical issue of the hybrid device is the limited output power due to the mismatched output impedance between the two generators. In this work, impedance matching between the TENG and EMG is achieved facilely through commercial transformers, and we put forward a highly integrated hybrid device. The rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator (RSHG) is designed by simulating the structure of a common EMG, which ensures a high efficiency in transferring ambient mechanical energy into electric power. The RSHG presents an excellent performance with a short-circuit current of 1 mA and open-circuit voltage of 48 V at a rotation speed of 250 rpm. Systematic measurements demonstrate that the hybrid nanogenerator can deliver the largest output power of 13 mW at a loading resistance of 8 kΩ. Moreover, it is demonstrated that a wind-driven RSHG can light dozens of light-emitting diodes and power an electric watch. The distinctive structure and high output performance promise the practical application of this rotating-sleeve structured hybrid nanogenerator for large-scale energy conversion.
Contra-rotating homopolar motor-generator for energy storage and return
International Nuclear Information System (INIS)
Kustom, R.L.; Wehrle, R.B.
1978-01-01
An apparatus for receiving electrical energy in amounts of the order of hundreds of megajoules, converting the electrical energy to mechanical energy for storage, and delivering the stored energy as electrical energy in times of the order of a second. It consists of a sequence of stacked electrically conducting cylindrical shells having a common axis. The conducting shells are free to rotate and are separated by stationary insulating cylindrical shells. Adjacent conducting shells are connected electrically by brushes at the edges and a radial magnetic field is caused to pass through the conductors. The apparatus permits the reversal in a plasma heating coil of electric currents of amplitudes up to 100,000 amperes in a time of the order of a second
Transformation of heat into mechanical energy by means of rotating systems
Directory of Open Access Journals (Sweden)
Mešina Marian
2018-01-01
Full Text Available All heat engines need two different temperatures for their work, T1
The rotational predissociation of HeH+ energy and lifetime measurements, ch. 3
International Nuclear Information System (INIS)
Locht, R.; Maas, J.G.; Asselt, N.P.F.B. van; Los, J.
1976-01-01
Relative lifetimes and energies above the dissociation limit have been determined for the rotational predissociation of several quasi-bound levels of the X'Σ + state of 4 HeH + . In particular, the lifetimes are very sensitive to the shape of the potential energy curve. These measurements are used to discriminate between two ab initio potential curves which differ by only 0.00004 a.u. (approximately 1 meV). Using the lifetime data, relative population factors were determined for the observed levels
Peak creation in the energy spectrum of laser-produced protons by phase rotation
International Nuclear Information System (INIS)
Noda, Akira; Nakamura, Shu; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Ito, Hiroyuki; Souda, Hikaru; Yamazaki, Atsushi; Tanabe, Mikio; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Bulanov, Sergei; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Fukumi, Atsushi; Li, Zhong
2007-01-01
In collaboration between JAEA, Kansai Photon Science Institute and Institute for Chemical Research, Kyoto University, proton generation from a thin foil target (Ti 3 or 5 μm in thickness) with use of 10 TW laser (JLITEX) has been performed. Proton production is optimized by real time proton energy measurement with use of TOF method. Phase rotation with use of an RF electric field phase-synchronized to the pulse laser enabled the creation of peaks with the spread of ∼7% in the energy spectrum of the produced protons, which resulted in the increase of the intensity ∼4 times at peak position. (author)
Triaxial energy relation to describe rotational band in 98-112Ru nuclei
International Nuclear Information System (INIS)
Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Varshney, Mani; Singh, M.; Gupta, D.K.
2010-01-01
In a broader perspective rotation vibration coupling parameter (b) is considered changing with the change in excitation energy (ε 1 ) and is evaluated on fitting experimental energy for 98-112 Ru isotopes in the frame work of general asymmetric rotor model. The moment of inertia parameter (a), common to yrast and quasi-γ band, is calculated from deformation parameter (β) using general empirical relation. The present work is undertaken to suggest some suitable equation for the trajectories which are similar in shape in 98-112 Ru nuclei
Rotating shaft model updating from modal data by a direct energy approach : a feasibility study
International Nuclear Information System (INIS)
Audebert, S.
1996-01-01
Investigations to improve the rotating machinery monitoring tend more and more to use numerical models. The aim is to obtain multi-fluid bearing rotor models which are able to correctly represent their dynamic behaviour, either modal or forced response type. The possibility of extending the direct energy method, initially developed for undamped structures, to rotating machinery is studied. It is based on the minimization of the kinetic and strain energy gap between experimental and analytic modal data. The preliminary determination of a multi-linear bearing rotor system Eigen modes shows the problem complexity in comparison with undamped non rotating structures: taking into account gyroscopic effects and bearing damping, as factors of rotor velocities, leads to complex component Eigen modes; moreover, non symmetric matrices, related to stiffness and damping bearing contributions, induce distinct left and right-hand side Eigen modes (left hand side Eigenmodes corresponds to the adjoint structure). Theoretically, the extension of the energy method is studied, considering first the intermediate case of an undamped non gyroscopic structure, second the general case of a rotating shaft: dta used for updating procedure are Eigen frequencies and left- and right- hand side mode shapes. Since left hand side mode shapes cannot be directly measured, they are replaced by analytic ones. The method is tested on a two-bearing rotor system, with a mass added; simulated data are used, relative to a non compatible structure, i.e. which is not a part of the set of modified analytic possible structures. Parameters to be corrected are the mass density, the Young's modulus, and the stiffness and damping linearized characteristics of bearings. If parameters are influent in regard with modes to be updates, the updating method permits a significant improvement of the gap between analytic and experimental modes, even for modes not involves in the procedure. Modal damping appears to be more
Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
International Nuclear Information System (INIS)
Roundy, Shad; Tola, Jeffry
2014-01-01
We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph. (paper)
Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
Roundy, Shad; Tola, Jeffry
2014-10-01
We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph.
Energy Technology Data Exchange (ETDEWEB)
Aydas, C. [Ankara Nuclear Research and Training Center, Ankara (Turkmenistan); Korkmaz, M. [Hacettepe University, Beytepe, Ankara (Turkmenistan)
2004-10-15
In the present work, electron spin resonance (ESR) spectroscopy was used to study, through the rotational microviscosity approach, the effects of high electrolyte concentrations on the phase behaviors of DPPC (dipalmitoylphosphatidylcholine) multilayer aqueous dispersions of lipid concentrations of 25 mg/ml and 50 mg/ml containing a 5-SASL spin label. The correlation time involved in the definition of rotational microviscosity was calculated using two different equations given in the literature. The activation energies of the rotational viscosity in the gel and the liquid crystal phases and the main transition temperatures were calculated from constructed Andrade plots. The results obtained are discussed in light of the literature data, and the validity of the approach was emphasized.
Input-output analysis of energy requirements for short rotation, intensive culture, woody biomass
International Nuclear Information System (INIS)
Strauss, C.H.; Grado, S.C.
1992-01-01
A production model for short rotation, intensive culture (SRIC) plantations was developed to determine the energy and financial cost of woody biomass. The model was based on hybrid poplars planted on good quality agricultural sites at a density of 2100 cuttings ha -1 , with average annual growth forecast at 16 metric tonne, oven dry (mg(OD)). Energy and financial analyses showed preharvest cost 4381 megajoules (MJ) Mg -1 (OD) and $16 (US) Mg -1 (OD). Harvesting and transportation requirements increased the total costs 6130 MJ Mg -1 (OD) and $39 Mg -1 (OD) for the delivered material. On an energy cost basis, the principal input was land, whereas on a financial basis, costs were more uniformly distributed among equipment, land, labor, and materials and fuel
Quantum mechanics of electronic-rotational energy transfer in F(2P) + H2 collisions
International Nuclear Information System (INIS)
Wyatt, R.E.; Walker, R.B.
1977-01-01
A theoretical study is made of electronic-rotational energy transfer in F( 2 P) + H 2 three-dimensional collisions, with electronic matrix elements from DIM theory. The quantum close-coupled equations are integrated via the R-matrix propagation method. Inelastic quenching probabilities are emphasized, with and without simulated open reaction channels. Interweaving patterns in the transition probability for even and odd nuclear parity vs. J (total angular momentum quantum number) are analyzed in terms of avoided crossing structure in the electrotational energy correlation diagrams. Localized regions where electronic quenching is dominant are identified in the correlation diagrams, and are confirmed in separate calculations which neglect interchannel mixing in local regions of the atom-molecule separation. Open reaction channels are found to have little influence on the quenching probabilities in these low energy calculations
Macroscopic-microscopic energy of rotating nuclei in the fusion-like deformation valley
International Nuclear Information System (INIS)
Gherghescu, R.A.; Royer, Guy
2000-01-01
The energy of rotating nuclei in the fusion-like deformation valley has been determined within a liquid drop model including the proximity energy, the two-center shell model and the Strutinsky method. The potential barriers of the 84 Zr, 132 Ce, 152 Dy and 192 Hg nuclei have been determined. A first minimum having a microscopic origin and lodging the normally deformed states disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to hyperdeformed quasi-molecular states. (author)
Magnetostrictive energy generator for harvesting the rotation of human knee joint
Directory of Open Access Journals (Sweden)
Baiping Yan
2018-05-01
Full Text Available This paper presents the design and fabrication of a rotary-impact magnetostrictive energy generator, used to harvest the rotation of human knee joint. The harvester consists of twelve movable Terfenol-D rods, surrounded by the picked up coils respectively, and alternate permanent magnet (PM array sandwiched in each part of the shell. Rotational electromagnetic power generating effect and impacted magnetostrictive power generating effect are designed in the harvester. Modeling and simulation are used to validate the concept. Then, magnetic field and leakage of the harvester are analyzed, electromagnetic force in the harvester is simulated. A prototype of harvester is fabricated, and subjected to the experimental characterization. It can be concluded that huge induced voltage generated in the short-time impact situation and that induced voltage in the harvester can reach up to 60-80 volts at 0.91Hz low frequency rotation. Also, the presented harvester has good harvesting effects at low frequency human walking and periodic swing crus situation, which are suitable to be used for future researches of wearable knee joint applications.
Magnetostrictive energy generator for harvesting the rotation of human knee joint
Yan, Baiping; Zhang, Chengming; Li, Liyi
2018-05-01
This paper presents the design and fabrication of a rotary-impact magnetostrictive energy generator, used to harvest the rotation of human knee joint. The harvester consists of twelve movable Terfenol-D rods, surrounded by the picked up coils respectively, and alternate permanent magnet (PM) array sandwiched in each part of the shell. Rotational electromagnetic power generating effect and impacted magnetostrictive power generating effect are designed in the harvester. Modeling and simulation are used to validate the concept. Then, magnetic field and leakage of the harvester are analyzed, electromagnetic force in the harvester is simulated. A prototype of harvester is fabricated, and subjected to the experimental characterization. It can be concluded that huge induced voltage generated in the short-time impact situation and that induced voltage in the harvester can reach up to 60-80 volts at 0.91Hz low frequency rotation. Also, the presented harvester has good harvesting effects at low frequency human walking and periodic swing crus situation, which are suitable to be used for future researches of wearable knee joint applications.
Quantum complex rotation and uniform semiclassical calculations of complex energy eigenvalues
International Nuclear Information System (INIS)
Connor, J.N.L.; Smith, A.D.
1983-01-01
Quantum and semiclassical calculations of complex energy eigenvalues have been carried out for an exponential potential of the form V 0 r 2 exp(-r) and Lennard-Jones (12,6) potential. A straightforward method, based on the complex coordinate rotation technique, is described for the quantum calculation of complex eigenenergies. For singular potentials, the method involves an inward and outward integration of the radial Schroedinger equation, followed by matching of the logarithmic derivatives of the wave functions at an intermediate point. For regular potentials, the method is simpler, as only an inward integration is required. Attention is drawn to the World War II researches of Hartree and co-workers who anticipated later quantum mechanical work on the complex rotation method. Complex eigenenergies are also calculated from a uniform semiclassical three turning point quantization formula, which allows for the proximity of the outer pair of complex turning points. Limiting cases of this formula, which are valid for very narrow or very broad widths, are also used in the calculations. We obtain good agreement between the semiclassical and quantum results. For the Lennard-Jones (12,6) potential, we compare resonance energies and widths from the complex energy definition of a resonance with those obtained from the time delay definition
The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems
Directory of Open Access Journals (Sweden)
Strašil Zdeněk
2015-09-01
Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.
International Nuclear Information System (INIS)
Monedero, Esperanza; Hernández, Juan José; Cañellas, Isabel; Otero, Jose María; Sixto, Hortensia
2016-01-01
Highlights: • The combustion properties of poplar genotypes harvested from three different sites were analyzed. • Both the genotype and the locations affect the expected combustion behavior. • Among the poplar genotypes, ‘Monviso’ and ‘Viriato’ are expected to have better combustion behavior. • No operating problems derived from fouling/corrosion are expected for any of the genotypes. - Abstract: Short rotation plantations of fast-growing species provide a promising way to produce heat and electricity from renewable sources. The thermo-chemical and physical properties of different genotypes of poplar in short rotation forestry crops grown at three locations with different climatic and edaphic characteristics as well as planting density, have been determined in order to characterize the most appropriate biomass in terms of energy potential. The planting density was 6666 or 13,333 trees/ha (depending on the location) in a rotation of three-four years and the analysis was carried out at the end of the first rotation. For all the genotypes, experimental tests to quantify the moisture content, particle size distribution, bulk density, heating value, ash content and composition as well as the volatile matter were performed. In addition, natural air drying of biomass (stem and branches) was studied in two locations with the aim of determining the humidity loss during raw storage. A significant effect of the genotype and the planting density on the biomass properties was observed. The results obtained indicate that ‘Monviso’ and ‘Viriato’ are the most suitable genotypes. No operational problems related to ash fouling and deposition in combustion devices are expected for any of the genotypes studied.
Energy Technology Data Exchange (ETDEWEB)
Zentner, R.P.; Stumborg, M.A.; Campbell, C.A.
1989-03-01
Non-renewable energy inputs (both direct and indirect), metabolizable energy output and energy efficiency of 10 spring wheat (Triticum aestivum L.) rotations were examined over 18 years on a loam soil in the Brown soil zone of the Canadian Prairies. The rotations, which were managed using conventional tillage, included a range of crops, cropping intensities, crop sequences and fertilizer practices. Results showed that the total energy input per unit of land was lowest for the traditional fallow-wheat (F-W) rotation (3482 MJ ha/sup -1/), intermediate (4470 MJ ha/sup -1/) for N- and P-fertilized fallow-wheat-wheat (F-W-W) and highest for N- and P-fertilized continuous wheat (7100 MJ ha/sup -1/). Substituting flax (Linum usitatissimum L.) or rye (Secale cereale L.) for wheat in the rotations reduced total energy input by 3 to 8%, while withholding the application of either N or P fertilizer reduced total energy input by 16-37%. Liquid fuel for field operations and local product transport, and fertilizer (primarily N) were the major energy inputs; both increased with cropping intensity. Fuel accounted for 30-50% of the total energy input of the rotations. Fertilizer represented 15-49% of the total energy input and was more important than fuel for the continuous crop rotations. Despite the high energy content in pesticides, they accounted for only 4-11% of the total energy input of the rotations. Metabolizable energy output displayed similar response patterns as total energy input reflecting the higher total annual grain yields as cropping intensity increased. The average energy output to input ratio for F-W was 3.6, or 262 kg of wheat GJ/sup -1/ of energy input, while those for F-W-W and continuous wheat were 3.3 and 2.6, or 240 and 191 kg of wheat GJ/sup -1/ of energy input, respectively. Rotations that included flax or cereal forage crops had the lowest energy efficiencies. 2 figs., 31 refs., 4 tabs.
Validity of single term energy expression for ground state rotational band of even-even nuclei
International Nuclear Information System (INIS)
Sharma, S.; Kumar, R.; Gupta, J.B.
2005-01-01
Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei
Order parameters and energies of analytic and singular vortex lines in rotating 3He-A
International Nuclear Information System (INIS)
Passvogel, T.; Schopohl, N.; Warnke, M.; Tewordt, L.
1982-01-01
We present the expressions of the generalized Ginzburg-Landau (GL) theory for the free energy and the supercurrent in terms of the d vector, the magnetic field H, and operators containing the spatial gradient and the rotation Ω. These expressions are then specialized to the Anderson--Brinkman--Morel (ABM) state. We consider eight single-vortex lines of cylindrical symmetry and radius R = [2mΩ/h]/sup -1/2/: the Mermin--Ho vortex, a second analytic vortex, and six singular vortices, i.e., the orbital and radial disgyrations, the orbital and radial phase vortices, and two axial phase vortices. These eight vortex states are determined by solving the Euler--Lagrange equations whose solutions minimize the GL free energy functional. For increasing field, the core radius of the I texture of the Mermin--Ho vortex tends to a limiting value, while the core radius of the d texture goes to zero. The gap of the singular vortices behaves like r/sup α/ for r→0, where α ranges between √1/2 and √9/2. The energy of the radial disgyration becomes lower than that of the Mermin--Ho vortex for fields H> or =6.5 H* = 6.5 x 25 G (at T = 0.99 T/sub c/ and for R = 10 L* = 60 μm, or Ω = 2.9 rad/sec). For R→2xi/sub T/ (xi/sub T/ is the GL coherence length) or Ω→Ω/sub c2/ (upper critical rotation speed), the energies of the singular vortices become lower than the energies of the analytic vortices. This is in agreement with the exact result of Schopohl for a vortex lattice at Ω/sub c/2 . Finally, we calculate the correction of order (1-T/T/sub c/) to the GL gap for the axial phase vortex
Biomass energy in organic farming - the potential role of short rotation coppice
Energy Technology Data Exchange (ETDEWEB)
Joergensen, Uffe; Dalgaard, Tommy [Danish Inst. of Agricultural Sciences (DIAS), Dept. of Agroecology, Research Centre Foulum, Tjele (Denmark); Kristensen, Erik Steen [Danish Research Centre for Organic Farming (DARCOF), Research Centre Foulum, Tjele (Denmark)
2005-02-01
One of the aims of organic farming is to 'reduce the use of non-renewable resources (e.g. fossil fuels) to a minimum'. So far, however, only very little progress has been made to introduce renewable energy in organic farming. This paper presents energy balances of Danish organic farming compared with energy balances of conventional farming. In general, the conversion to organic farming leads to a lower energy use (approximately 10% per unit of product). But the production of energy in organic farming is very low compared with the extensive utilisation of straw from conventional farming in Denmark (energy content of straw used for energy production was equivalent to 18% of total energy input in Danish agriculture in 1996). Biomass is a key energy carrier with a good potential for on-farm development. Apart from utilising farm manure and crop residues for biogas production, the production of nutrient efficient short rotation coppice (SRC) is an option in organic farming. Alder (Alnus spp.) is an interesting crop due to its symbiosis with the actinomycete Frankia, which has the ability to fix up to 185 kg/ha nitrogen (N{sub 2}) from the air. Yields obtained at different European sites are presented and the R and D needed to implement energy cropping in organic farming is discussed. Possible win-win solutions for SRC production in organic farming that may facilitate its implementation are; the protection of ground water quality in intensively farmed areas, utilisation of wastewater for irrigation, or combination with outdoor animal husbandry such as pigs or poultry. (Author)
International Nuclear Information System (INIS)
Fu, Hailing; Yeatman, Eric M.
2017-01-01
Energy harvesting from vibration for low-power electronics has been investigated intensively in recent years, but rotational energy harvesting is less investigated and still has some challenges. In this paper, a methodology for low-speed rotational energy harvesting using piezoelectric transduction and frequency up-conversion is analysed. The system consists of a piezoelectric cantilever beam with a tip magnet and a rotating magnet on a revolving host. The angular kinetic energy of the host is transferred to the vibration energy of the piezoelectric beam via magnetic coupling between the magnets. Frequency up-conversion is achieved by magnetic plucking, converting low frequency rotation into high frequency vibration of the piezoelectric beam. A distributed-parameter theoretical model is presented to analyse the electromechanical behaviour of the rotational energy harvester. Different configurations and design parameters were investigated to improve the output power of the device. Experimental studies were conducted to validate the theoretical estimation. The results illustrate that the proposed method is a feasible solution to collecting low-speed rotational energy from ambient hosts, such as vehicle tires, micro-turbines and wristwatches. - Highlights: • A topology to harvest low-frequency broad-band rotational energy is studied. • Different configurations were considered; arrangement (a)-repulsive was the best. • Theoretical analysis shows the harvester has a wide bandwidth at low frequency. • The ripples of output power are related to the beam's natural frequency. • Experimental results show a good performance (over 20 μW) from 15 Hz to 35 Hz.
Kravchenko, Olga; Thachuk, Mark
2011-03-21
A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."
Philippov, Alexander A.; Spitkovsky, Anatoly
2018-03-01
We perform global particle-in-cell simulations of pulsar magnetospheres, including pair production, ion extraction from the surface, frame-dragging corrections, and high-energy photon emission and propagation. In the case of oblique rotators, the effects of general relativity increase the fraction of the open field lines that support active pair discharge. We find that the plasma density and particle energy flux in the pulsar wind are highly non-uniform with latitude. A significant fraction of the outgoing particle energy flux is carried by energetic ions, which are extracted from the stellar surface. Their energies may extend up to a large fraction of the open field line voltage, making them interesting candidates for ultra-high-energy cosmic rays. We show that pulsar gamma-ray radiation is dominated by synchrotron emission, produced by particles that are energized by relativistic magnetic reconnection close to the Y-point and in the equatorial current sheet. In most cases, the calculated light curves contain two strong peaks, which is in general agreement with Fermi observations. The radiative efficiency decreases with increasing pulsar inclination and increasing efficiency of pair production in the current sheet, which explains the observed scatter in L γ versus \\dot{E}. We find that the high-frequency cutoff in the spectra is regulated by the pair-loading of the current sheet. Our findings lay the foundation for quantitative interpretation of Fermi observations of gamma-ray pulsars.
Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole
Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric
2017-07-01
We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.
International Nuclear Information System (INIS)
Zou, Hong-Xiang; Zhang, Wen-ming; Li, Wen-Bo; Wei, Ke-Xiang; Gao, Qiu-Hua; Peng, Zhi-Ke; Meng, Guang
2017-01-01
Highlights: • A magnetically coupled two-degree-of-freedom harvester for rotation is proposed. • The electromechanical coupling model is developed and validated experimentally. • The harvester can generate high voltage at low rotating speeds. • The harvester can harvest vibration energy in multiple frequency bands. - Abstract: Energy can be harvested from rotational motion for powering wireless autonomous electronic devices. The paper presents a magnetically coupled two-degree-of-freedom vibration energy harvester for rotary motion applications. The design consists of two inverted piezoelectric cantilever beams whose free ends point to the rotating shaft. The centrifugal force of the inverted cantilever beam is beneficial to producing large amplitude in a low speed range. The electromechanical coupling dynamical model is developed by the energy method from Hamilton’s principle and validated experimentally. The experimental results indicate that the presented harvester is suitable for low speed rotation and can harvest vibration energy in multiple frequency bands. The first and second resonant behaviors of voltage can be obtained at 420 r/min and 550 r/min, and the average output powers are 564 μW and 535.3 μW, respectively.
International Nuclear Information System (INIS)
Janphuang, P; Lockhart, R; Briand, D; De Rooij, N F; Henein, S
2013-01-01
This paper demonstrates a novel methodology using a rotational flywheel to determine the energy conversion efficiency of the impact based piezoelectric energy harvesters. The influence of the impact speed and additional proof mass on the efficiency is presented here. In order to convert low frequency mechanical oscillations into usable electrical energy, a piezoelectric harvester is coupled to a rotating gear wheel driven by flywheel. The efficiency is determined from the ratio of the electrical energy generated by the harvester to the mechanical energy dissipated by the flywheel. The experimental results reveal that free vibrations of the harvester after plucking contribute significantly to the efficiency. The efficiency and output energy can be greatly improved by adding a proof mass to the harvester. Under certain conditions, the piezoelectric harvesters have an impact energy conversion efficiency of 1.2%
Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.
Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A
2013-11-01
This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced
Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.
2018-05-01
In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.
Manifestations of the rotation and gravity of the Earth in high-energy physics experiments
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2016-08-01
The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.
Energy Technology Data Exchange (ETDEWEB)
Dawson, W M [N.I. Horticulture and Plant Breeding Station, Armagh (Ireland); Isebrands, J [USDA Forest Service, North Central Forest Experiment Station, Rhinelander, WI (United States); Namkoong, G [Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Forest Sciences; Tahvanainen, J [Univ. of Joensuu (Finland). Dept. of Biology
1996-11-01
The purpose of this evaluation was to inform NUTEK of the scientific quality of the research projects, as seen in an international context. The projects were therefore the main elements considered in the evaluation. The main basis of the evaluation was the scientific quality of the research and its relevance to NUTEK`s aims in the application of industrial research and development. The present report is based on the information contained in the written reports submitted by the grant holders, site visits and discussions between the grant holders and the Committee. The report first gives an overview and general recommendations concerning the overall programme in the field of Short Rotation Forestry for Energy. Thereafter, the 16 projects are evaluated separately
HIGH-RESOLUTION ROTATIONAL SPECTRUM, DUNHAM COEFFICIENTS, AND POTENTIAL ENERGY FUNCTION OF NaCl
International Nuclear Information System (INIS)
Cabezas, C.; Peña, I.; Alonso, J. L.; Cernicharo, J.; Quintana-Lacaci, G.; Agundez, M.; Prieto, L. Velilla; Castro-Carrizo, A.; Zuñiga, J.; Bastida, A.; Requena, A.
2016-01-01
We report laboratory spectroscopy for the first time of the J = 1–0 and J = 2–1 lines of Na 35 Cl and Na 37 Cl in several vibrational states. The hyperfine structure has been resolved in both transitions for all vibrational levels, which permit us to predict with high accuracy the hyperfine splitting of the rotational transitions of the two isotopologues at higher frequencies. The new data have been merged with all previous works at microwave, millimeter, and infrared wavelengths and fitted to a series of mass-independent Dunham parameters and to a potential energy function. The obtained parameters have been used to compute a new dipole moment function, from which the dipole moment for infrared transitions up to Δ v = 8 has been derived. Frequency and intensity predictions are provided for all rovibrational transitions up to J = 150 and v = 8, from which the ALMA data of evolved stars can be modeled and interpreted.
Role of rotational energy component in the dynamics of 16O+198Pt reaction
Directory of Open Access Journals (Sweden)
Sharma Manoj K.
2017-01-01
Full Text Available The role of rotational energy is investigated in reference to the dynamics of 16O+198Pt →214Rn∗ reaction using the sticking (IS and the non-sticking (INS limits of moment of inertia within the framework of dynamical cluster decay model. The decay barrier height and barrier position get significantly modified for the use of sticking or non-sticking choice, which in turn reproduce the evaporation residue and the fusion-fission cross-sections nicely by the IS approach, while the INS approach provides feasible addressal of data only for evaporation residue channel. Moreover, the fragmentation path of decaying fragments of 214Rn∗ compound nucleus gets influenced for different choices of moment of inertia. Beside this, the role of nuclear deformations i.e. static, dynamic quadurpole (β2 and higher order static deformation up to β4 are duly investigated for both choices of the moment of inertia.
HIGH-RESOLUTION ROTATIONAL SPECTRUM, DUNHAM COEFFICIENTS, AND POTENTIAL ENERGY FUNCTION OF NaCl
Energy Technology Data Exchange (ETDEWEB)
Cabezas, C.; Peña, I.; Alonso, J. L. [Grupo de Espectroscopía Molecular, Edificio Quifima, Laboratorios de Espectroscopía y Bioespectroscopía, Unidad asociada CSIC, Parque científico Uva, Universidad de Valladolid, Paseo de Belén 5, E-47011, Valladolid (Spain); Cernicharo, J.; Quintana-Lacaci, G.; Agundez, M.; Prieto, L. Velilla [Group of Molecular Astrophysics, ICMM, CSIC. C/Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco, Madrid (Spain); Castro-Carrizo, A. [Institut de Radioastronomie Millimétrique, 300 rue de la la Piscine, F-38406, Saint Martin d’Hères (France); Zuñiga, J.; Bastida, A.; Requena, A. [Universidad de Murcia. Faculdad de Química, Dpto. de Química-Física, Campus Espinardo E-30100, Murcia (Spain)
2016-07-10
We report laboratory spectroscopy for the first time of the J = 1–0 and J = 2–1 lines of Na{sup 35}Cl and Na{sup 37}Cl in several vibrational states. The hyperfine structure has been resolved in both transitions for all vibrational levels, which permit us to predict with high accuracy the hyperfine splitting of the rotational transitions of the two isotopologues at higher frequencies. The new data have been merged with all previous works at microwave, millimeter, and infrared wavelengths and fitted to a series of mass-independent Dunham parameters and to a potential energy function. The obtained parameters have been used to compute a new dipole moment function, from which the dipole moment for infrared transitions up to Δ v = 8 has been derived. Frequency and intensity predictions are provided for all rovibrational transitions up to J = 150 and v = 8, from which the ALMA data of evolved stars can be modeled and interpreted.
Admixture of lime in connection with deep rotary cultivation for short rotation energy forest
Energy Technology Data Exchange (ETDEWEB)
Danfors, B; Stambeck, A; Aasberg, G
1985-01-01
Spaghnum soils, which could be used for production of short rotation energy forests (Salix), require lime for the adjustment of the pH-level to obtain production at acceptable levels. It is necessary that the lime is distributed uniformly in the soil profile to a depth of at least 40-50 cm. The investigation has studied three methods of spreading and incorporating lime in the uppermost layer of soil. The first method concerned ploughing of peat soil with a conventional agricultural plough, the second method concerned rotovation with an agricutural rotovator to maximally 20 cm depth. In both cases the lime has been spread with a centrifugal broadcaster before the soil tillage. The third method implied simultaneous spreading of the lime and rotovation of the peat to a depth of maximally 50 cm, JTI has built and constructed a machine for this purpose. Ploughing as the only method of soil tillage of peat soils before planting of short rotation energy forests is rejected for two reasons. 1. Certain peat soils which have such mechanical properties that they immediately completely clog a plough. 2. The deficient distribution of lime in the ploughed layer. Rotovation with an agricultural rotovator has been done with good results. The delivery of lime in connection with the rotovation works well provided that the lime is dry. The peat is efficiently disintegrated and the lime gets a sufficiently uniform admixture. The cultivation depth, 40-50 cm, appears to be sufficient for the Salix plants to cope with the water supply during the summer. Limitations which should be discussed concern the cost of such an intensive and deep tillage of the peat.
The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars
Energy Technology Data Exchange (ETDEWEB)
Kotera, Kumiko [Institut d' Astrophysique de Paris UMR7095—CNRS, Université Pierre and Marie Curie, 98 bis boulevard Arago, Paris, F-75014 France (France); Amato, Elena; Blasi, Pasquale, E-mail: kotera@iap.fr, E-mail: amato@arcetri.astro.it, E-mail: blasi@arcetri.astro.it [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, Firenze, I-50125 Italy (Italy)
2015-08-01
Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the star's surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures (T<10{sup 7} K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and acceleration in the star's electric potential, lead to injection of nuclei with a chemical composition that is mixed, even if only iron is extracted from the surface. We show that under certain conditions the chemical composition injected into the wind region is compatible with that required in previous work based on purely phenomenological arguments (typically ∼50% protons, ∼30% CNO and ∼20% Fe), and provides a reasonable explanation of the mass abundance inferred from ultra high energy data.
Haqiqi, M. T.; Yuliansyah; Suwinarti, W.; Amirta, R.
2018-04-01
Short Rotation Coppice (SRC) system is an option to provide renewable and sustainable feedstock in generating electricity for rural area. Here in this study, we focussed on application of Response Surface Methodology (RSM) to simplify calculation protocols to point out wood chip production and energy potency from some tropical SRC species identified as Bauhinia purpurea, Bridelia tomentosa, Calliandra calothyrsus, Fagraea racemosa, Gliricidia sepium, Melastoma malabathricum, Piper aduncum, Vernonia amygdalina, Vernonia arborea and Vitex pinnata. The result showed that the highest calorific value was obtained from V. pinnata wood (19.97 MJ kg-1) due to its high lignin content (29.84 %, w/w). Our findings also indicated that the use of RSM for estimating energy-electricity of SRC wood had significant term regarding to the quadratic model (R2 = 0.953), whereas the solid-chip ratio prediction was accurate (R2 = 1.000). In the near future, the simple formula will be promising to calculate energy production easily from woody biomass, especially from SRC species.
The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars
International Nuclear Information System (INIS)
Kotera, Kumiko; Amato, Elena; Blasi, Pasquale
2015-01-01
Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the star's surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures (T<10 7 K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and acceleration in the star's electric potential, lead to injection of nuclei with a chemical composition that is mixed, even if only iron is extracted from the surface. We show that under certain conditions the chemical composition injected into the wind region is compatible with that required in previous work based on purely phenomenological arguments (typically ∼50% protons, ∼30% CNO and ∼20% Fe), and provides a reasonable explanation of the mass abundance inferred from ultra high energy data
Real World Testing Of A Piezoelectric Rotational Energy Harvester For Human Motion
International Nuclear Information System (INIS)
Pillatsch, P; Yeatman, E M; Holmes, A S
2013-01-01
Harvesting energy from human motion is challenging because the frequencies are generally low and random compared to industrial machinery that vibrates at much higher frequencies. One of the most promising and popular strategies to overcome this is frequency up-conversion. The transducing element is actuated at its optimal frequency of operation, higher than the source excitation frequency, through some kind of catch and release mechanism. This is beneficial for efficient power generation. Such devices have now been investigated for a few years and this paper takes a previously introduced piezoelectric rotational harvester, relying on beam plucking for the energy conversion, to the next step by testing the device during a half marathon race. The prototype and data acquisition system are described in detail and the experimental results presented. A comparison of the input excitation, based on an accelerometer readout, and the output voltage of the piezoelectric beam, recorded at the same time, confirm the successful implementation of the system. For a device functional volume of 1.85 cm 3 , a maximum power output of 7 μW was achieved when the system was worn on the upper arm. However, degradation of the piezoelectric material meant that the performance dropped rapidly from this initial level; this requires further research. Furthermore, the need for intermediate energy storage solutions is discussed, as human motion harvesters only generate power as long as the wearer is actually moving
Bettens, Ryan P A
2003-01-15
Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.
A study of energy dissipation and critical speed of granular flow in a rotating cylinder
Dragomir, Sergiu C.; Sinnott, Mathew D.; Semercigil, S. Eren; Turan, Özden F.
2014-12-01
Tuned vibration absorbers may improve the safety of flexible structures which are prone to excessive oscillation magnitudes under dynamic loads. A novel absorber design proposes sloshing of granular material in a rotating cylinder where the granular material is the energy dissipating agent. As the conventional dissipative elements require maintenance due to the nature of their function, the new design may represent a virtually maintenance free alternative. The angular speed of the cylinder containing particles has a critical centrifuging speed, after which particles remain permanently in contact with the walls and there can be no further dissipation. Until the critical speed, however, dissipation increases proportionally with the angular speed. It is then vital to know the value of the critical speed as the limit of dissipation. The focus of the present study is on determination of the critical centrifuge speed. This critical speed is also of practical importance in bulk-material handling rotary mills, such as dryers and crushers. Experiments and numerical simulations, using Discrete Element Method, are used to determine the critical centrifuging speed. In addition, predictions are given and guidelines are offered for the choice of material properties to maximize the energy dissipation. As a result of a parametric study, the coefficient of friction is found to have the greatest significance on the centrifuging speed.
Rashid, Evan; Hamidi, Armita; Tadesse, Yonas
2017-04-01
With increasing popularity of portable devices for outdoor activities, portable energy harvesting devices are coming into spot light. The next generation energy harvester which is called hybrid energy harvester can employ more than one mechanism in a single device to optimize portion of the energy that can be harvested from any source of waste energy namely motion, vibration, heat and etc. In spite of few recent attempts for creating hybrid portable devices, the level of output energy still needs to be improved with the intention of employing them in commercial electronic systems or further applications. Moreover, implementing a practical hybrid energy harvester in different application for further investigation is still challenging. This proposal is projected to incorporate a novel approach to maximize and optimize the voltage output of hybrid energy harvesters to achieve a greater conversion efficiency normalized by the total mass of the hybrid device than the simple arithmetic sum of the individual harvesting mechanisms. The energy harvester model previously proposed by Larkin and Tadesse [1] is used as a baseline and a continuous unidirectional rotation is incorporated to maximize and optimize the output. The device harvest mechanical energy from oscillatory motion and convert it to electrical energy through electromagnetic and piezoelectric systems. The new designed mechanism upgrades the device in a way that can harvest energy from both rotational and linear motions by using magnets. Likewise, the piezoelectric section optimized to harvest at least 10% more energy. To the end, the device scaled down for tested with different sources of vibrations in the immediate environment, including machinery operation, bicycle, door motion while opening and closing and finally, human motions. Comparing the results from literature proved that current device has capability to be employed in commercial small electronic devices for enhancement of battery usage or as a backup
William F. Lazarus; Douglas G. Tiffany; Ronald S. Zalesny Jr.; Don E. Riemenschneider
2011-01-01
Short-rotation woody crops (SRWC) such as hybrid poplars are becoming increasingly competitive with agriculture on marginal land. The trees can be grown for energy and for traditional uses such as oriented strandboard. Using IMPLAN (Impact Analysis for Planning) software, we modeled the impacts of shifting land use from hay and pasture for cow-calf beef operations to...
Ibragimov, Ranis N.
2018-03-01
The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.
Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.
We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.
Rotational Energy as Mass in H3 + and Lower Limits on the Atomic Masses of D and 3He
Smith, J. A.; Hamzeloui, S.; Fink, D. J.; Myers, E. G.
2018-04-01
We have made precise measurements of the cyclotron frequency ratios H3 +/HD+ and H3 +/ 3He+ and observe that different H3+ ions result in different cyclotron frequency ratios. We interpret these differences as due to the molecular rotational energy of H3 + changing its inertial mass. We also confirm that certain high J , K rotational levels of H3+ have mean lifetimes exceeding several weeks. From measurements with the lightest H3+ ion we obtain lower limits on the atomic masses of deuterium and helium-3 with respect to the proton.
Rotational Energy as Mass in H_{3}^{+} and Lower Limits on the Atomic Masses of D and ^{3}He.
Smith, J A; Hamzeloui, S; Fink, D J; Myers, E G
2018-04-06
We have made precise measurements of the cyclotron frequency ratios H_{3}^{+}/HD^{+} and H_{3}^{+}/^{3}He^{+} and observe that different H_{3}^{+} ions result in different cyclotron frequency ratios. We interpret these differences as due to the molecular rotational energy of H_{3}^{+} changing its inertial mass. We also confirm that certain high J, K rotational levels of H_{3}^{+} have mean lifetimes exceeding several weeks. From measurements with the lightest H_{3}^{+} ion we obtain lower limits on the atomic masses of deuterium and helium-3 with respect to the proton.
Expanding the FCI to Eevaluate Conceptual Mastery of Energy, Momentum, and Rotational Dynamics
Chediak, Alex; Hay, Katrina
2010-03-01
Normalized gain on the Force Concept Inventory (FCI) has deservedly become a widely accepted assessment tool to evaluate conceptual mastery in a high school, college, or university-level mechanics course. Left out of this assessment, however, are important physics concepts typically presented in the same course. Conservation of energy and momentum as well as rotational motion receive scant (if any) coverage on the FCI (or, for that matter, the Mechanics Baseline Test). Yet these concepts are foundational for popular majors such as mechanical engineering, where high failure rates are often a concern. A revised assessment tool is presented, one that incorporates the strengths of the FCI (and preserves the straightforward multiple choice format), but assesses these other mechanics-related concepts. Ten additional questions are included, inspired in part by material from the Physics Education Group at the University of Washington and in part by the authors' own experiences with common student misperceptions. The questions are given as pre- and post tests at the authors' institutions, California Baptist University and Pacific Lutheran University, in both calculus-based and algebra-based mechanics courses, exploring breadth of applicability for our findings. We present normalized gain data for the traditional thirty FCI questions and for our ten additional questions.
Herrmann, Christiane; Idler, Christine; Heiermann, Monika
2016-04-01
Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
International Nuclear Information System (INIS)
Pierrard, J.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Gaidot, A.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.
1975-01-01
The spin rotation parameter R in pp and π + p elastic scattering at 45GeV/c has been measured at the Serpukhov accelerator, for /t/ ranging from 0.2 to 0.5(GeV/c) 2 . The results are presented, together with previous R measurements at 3.8, 6, 16 and 40GeV/c, and are compared with the predictions of Regge pole models. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues. An s-channel helicity amplitude analysis for pion-nucleon scattering at 40GeV/c is made using all available data. Significant results are obtained for the non flip amplitude in isoscalar exchange and for flip amplitudes on both isovector and isoscalar exchanges. The helicity flip in isoscalar exchange is non negligible. The energy dependence of this amplitude, at 6, 16 and 40GeV/c, is compared with predictions of Regge pole models [fr
Water and Energy Balances of Loblolly Pine Plantation Forests during a Full Stand Rotation
Sun, G.; Mitra, B.; Domec, J. C.; Gavazi, M.; Yang, Y.; Tian, S.; Zietlow, D.; McNulty, S.; King, J.; Noormets, A.
2017-12-01
Loblolly pine (Pinus taeda) plantations in the southern U.S. are well recognized for their ecosystem services in supplying clean and stable water and mitigating climate change through carbon sequestration and solar energy partitioning. Since 2004, we have monitored energy, water, and carbon fluxes in a chronosequence of three drained loblolly pine plantations using integrated methods that include eddy covariance, sap flux, watershed hydrometeorology, remote sensing, and process-based simulation modeling. Study sites were located on the eastern North Carolina coastal plain, representing highly productive ecosystems with high groundwater table, and designated in the Ameriflux network as NC1 (0-10 year old), NC2 (12-25 year old) and NC3 (0-3 years old). The 13-year study spanned a wide range of annual precipitation (900-1600 mm/yr) including two exceptionally dry years during 2007-2008. We found that the mature stand (NC2) had higher net radiation (Rn) flux due to its lower albedo (α =0.11-12), compared with the young stands (NC1, NC3) (α=0.15-0.18). Annually about 75%-80% of net radiation was converted to latent heat in the pine plantations. In general, the mature stand had higher latent heat flux (LE) (i.e. evapotranspiration (ET)) rates than the young stands, but ET rates were similar during wet years when the groundwater table was at or near the soil surface. During a historic drought period (i.e., 2007-2008), total stand annual ET exceeded precipitation, but decreased about 30% at NC2 when compared to a normal year (e.g., 2006). Field measurements and remote sensing-based modeling suggested that annual ET rates increased linearly from planting age (about 800 mm) to age 15 (about 1050 mm) and then stabilized as stand leaf area index leveled-off. Over a full stand rotation, approximately 70% (young stand) to 90% (mature stand) of precipitation was returned to the atmosphere through ET. We conclude that both climatic variability and canopy structure controlled the
International Nuclear Information System (INIS)
Xue, T; Roundy, S; Ma, X; Rahn, C
2014-01-01
Energy harvesting from human motion addresses the growing need for battery-free health and wellness sensors in wearable applications. The major obstacles to harvesting energy in such applications are low and random frequencies due to the nature of human motion. This paper presents a generalized rotational harvester model in 3 dimensions to determine the upper bound of power output from real world measured data. Simulation results indicate much space for improvement on power generation comparing to existing devices. We have developed a rotational energy harvester for human motion that attempts to close the gap between theoretical possibility and demonstrated devices. Like previous work, it makes use of magnetically plucked piezoelectric beams. However, it more fully utilizes the space available and has many degrees of freedom available for optimization. Finally we present a prototype harvester based on the coupled harvester model with preliminary experimental validation
Albert, J-D; Meadeb, J; Guggenbuhl, P; Marin, F; Benkalfate, T; Thomazeau, H; Chalès, G
2007-03-01
In a prospective randomised trial of calcifying tendinitis of the rotator cuff, we compared the efficacy of dual treatment sessions delivering 2500 extracorporeal shock waves at either high- or low-energy, via an electromagnetic generator under fluoroscopic guidance. Patients were eligible for the study if they had more than a three-month history of calcifying tendinitis of the rotator cuff, with calcification measuring 10 mm or more in maximum dimension. The primary outcome measure was the change in the Constant and Murley Score. A total of 80 patients were enrolled (40 in each group), and were re-evaluated at a mean of 110 (41 to 255) days after treatment when the increase in Constant and Murley score was significantly greater (t-test, p = 0.026) in the high-energy treatment group than in the low-energy group. The improvement from the baseline level was significant in the high-energy group, with a mean gain of 12.5 (-20.7 to 47.5) points (p energy group. Total or subtotal resorption of the calcification occurred in six patients (15%) in the high-energy group and in two patients (5%) in the low-energy group. High-energy shock-wave therapy significantly improves symptoms in refractory calcifying tendinitis of the shoulder after three months of follow-up, but the calcific deposit remains unchanged in size in the majority of patients.
Directory of Open Access Journals (Sweden)
Phillip Burgers
Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.
Burgers, Phillip; Alexander, David E.
2012-01-01
For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv 2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326
Burgers, Phillip; Alexander, David E
2012-01-01
For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.
Directory of Open Access Journals (Sweden)
Chongfei Sun
2018-03-01
Full Text Available The lack of an efficient and reliable power supply is currently one of the bottlenecks restricting the practical application of unmanned ocean detectors. Wave energy is the most widely distributed ocean energy, with the obvious advantages of high energy density and predictability. In this paper, a novel wave energy converter (WEC for power supply of low-power unmanned ocean detectors is proposed, which is a small-scale counter-rotating self-adaptive point absorber-type WEC. The double-layer counter-rotating absorbers can achieve the torque balance of the whole device. Besides, the self-adaptation of the blade to the water flow can maintain a unidirectional continuous rotation of the single-layer absorber. The WEC has several advantages, including small occupied space, simple exchange process and convenient modular integration. It is expected to meet the power demand of low-power ocean detectors. Through modeling and CFD analysis, it was found that the power and efficiency characteristics of WEC are greatly influenced by the relative flow velocity, the blade angle of the absorber and the interaction between the upper and lower absorbers. A physical prototype of the WEC was made and some related experiments were conducted to verify the feasibility of WEC working principle and the reliability of CFD analysis.
Non-energy markets for small roundwood, forest residues and short rotation coppice
Energy Technology Data Exchange (ETDEWEB)
Watt, G.
1995-06-01
Competition for roundwood is intense at the present time with prices ranging from approximately Pound 20 to Pound 51 per green tonne delivered at mill. The sawmilling industry produces nearly 2 million green tonnes of residues annually from converting British roundwood and about 85% of this is used by the panelboard and paperboard mills. The remaining 15%, comprising mostly bark, and some of the unpeeled chips are used as material for mulching, landscaping and horticultural use, play areas, paths and horse gallops, soil composting and soil conditioning. Wood shavings and sawdust is produced by joinery and milling firms from imported sawn timber and amounts to about 300,000 tonnes/annum. Approximately 70% of this is used for higher priced markets, bedding for horses, chicken and turkeys, cattle and other uses. The remaining 30% is used in the wood processing industry. An increasing volume of solid wood waste which previously went for landfill sites is now being recycled and this trend is expected to continue. Only a very small proportion of the forest residues (tree tops and branches) produced each year is utilised and most of this material is used as mulch for horticultural and landscape uses. Markets for material from traditional short rotation coppice are limited relative to potential production but work is underway to develop new markets. There are no established markets for recently planted non-traditional coppice of willow and poplar with potential for energy production. Trials organised by ETSU and the DTI have indicated the suitability of the material for chipboard production provided the bark percentage is not too high. (author)
Non-energy markets for small roundwood, forest residues and short rotation coppice
International Nuclear Information System (INIS)
Watt, G.
1995-01-01
Competition for roundwood is intense at the present time with prices ranging from approximately Pound 20 to Pound 51 per green tonne delivered at mill. The sawmilling industry produces nearly 2 million green tonnes of residues annually from converting British roundwood and about 85% of this is used by the panelboard and paperboard mills. The remaining 15%, comprising mostly bark, and some of the unpeeled chips are used as material for mulching, landscaping and horticultural use, play areas, paths and horse gallops, soil composting and soil conditioning. Wood shavings and sawdust is produced by joinery and milling firms from imported sawn timber and amounts to about 300,000 tonnes/annum. Approximately 70% of this is used for higher priced markets, bedding for horses, chicken and turkeys, cattle and other uses. The remaining 30% is used in the wood processing industry. An increasing volume of solid wood waste which previously went for landfill sites is now being recycled and this trend is expected to continue. Only a very small proportion of the forest residues (tree tops and branches) produced each year is utilised and most of this material is used as mulch for horticultural and landscape uses. Markets for material from traditional short rotation coppice are limited relative to potential production but work is underway to develop new markets. There are no established markets for recently planted non-traditional coppice of willow and poplar with potential for energy production. Trials organised by ETSU and the DTI have indicated the suitability of the material for chipboard production provided the bark percentage is not too high. (author)
Energy Technology Data Exchange (ETDEWEB)
Bowersox, T.W.; Blankenhorn, P.R.
1979-10-24
Production of biomass by corn-like plantations has been demonstrated by a number of researchers. These forest analogs of agronomic cropping systems have the potential to yield substantially more biomass per unit area than traditional forests. Care is needed in choosing the appropriate sites, species, spacing, and harvesting strategies. Opportunities for increased yields have been suggested for fertilization and irrigation. Utilization of the biomass from these dense plantations for energy was the focus of this study. Although the amount of energy potential of the biomass is important, the energy output must be greater than the energy input for biomass to have a positive benefit to society. Further, in order to completely evaluate the net energy of the system it is necessary to examine the energy out-to-in ratios on the basis of usable energy (for example, usable heat, process steam and electricity), as well as all of the energies expended in producing, harvesting, transporting and processing the biomass. The objective of this study is to establish and analyze the energy inputs for selected management strategies in order to evaluate the sensitivity and variability of the energy inputs in the net energy analysis, and based on the net energy analysis to recommend a management strategy that minimizes energy inputs while maximizing biomass yield for short-rotation systems of Populus spp. in the northeastern United States.
International Nuclear Information System (INIS)
Li Yongqing; Song Peng; Chen Yuehui; Wang Weili; Ma Fengcai
2005-01-01
In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys. Lett. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (A 1 Π, v = 3) with inert gases, which originates from the difference between the two Λ-related collision potential energy surfaces. The interference angle, which measures the degree of coherence, is presented in this paper. Based on the time-dependent first order Born approximation, taking into account the anisotropic Lennard-Jones interaction potentials, the relation of the interference angle with the factors, including experimental temperature, partner, and rotational quantum number, are obtained. The changing tendencies with them are discussed. This theoretical model is important to understanding and performing this kind of experiment.
Pump--probe measurements of state-to-state rotational energy transfer rates in N2 (v=1)
International Nuclear Information System (INIS)
Sitz, G.O.; Farrow, R.L.
1990-01-01
We report direct measurements of the state-to-state rotational energy transfer rates for N 2 (υ=1) at 298 K. Stimulated Raman pumping of Q-branch (υ=1 left-arrow 0) transitions is used to prepare a selected rotational state of N 2 in the υ=1 state. After allowing an appropriate time interval for collisions to occur, 2+2 resonance-enhanced multiphoton ionization is used (through the a 1 Π g left-arrow X 1 Σ + g transition) to detect the relative population of the pumped level and other levels to which rotational energy transfer has occurred. We have performed a series of measurements in which a single even rotational level (J i =0--14) is excited and the time-dependent level populations are recorded at three or more delay times. This data set is then globally fit to determine the best set of state-to-state rate constants. The fitting procedure does not place any constraints (such as an exponential gap law) on the J or energy dependence of the rates. We compare our measurements and best-fit rates with results predicted from phenomenological rate models and from a semiclassical scattering calculation of Koszykowski et al. [J. Phys. Chem. 91, 41 (1987)]. Excellent agreement is obtained with two of the models and with the scattering calculation. We also test the validity of the energy-corrected sudden (ECS) scaling theory for N 2 by using our experimental transfer rates as basis rates (J=L→0), finding that the ECS scaling expressions accurately predict the remaining rates
Short Rotation Forestry (SRF in a Mediterranean Environment Under Limited Energy Inputs
Directory of Open Access Journals (Sweden)
Antonio Sergio De Franchi
2010-10-01
Full Text Available The aim of this work is comparing the two year performance (diameter, total height and mortality of twenty tree and shrub species in a semi arid environment. The research also wants to supply recommendation on the agronomic cropping techniques in areas where rainfall is the main limiting factor and water use is strictly limited. Woody biomass is gaining increasing importance for energy production in Italy. During the last five years, roughly 5000 ha of Short Rotation Forestry (SRF have been planted, mostly in northern Italy, especially using poplar clones. However, in Southern Italy, due to the poor rainfall and the lack of knowledge existing on the species to use, few groves have been established. The studied groves were set in December 2005 in a Mediterranean area where the total year rainfall is not higher than 600 mm (mostly in autumn and winter. Twenty species (Salix cinerea, Ulmus carpinifolia, Corylus avellana, Spartium junceum, Acer saccharinum, Morus alba, Saphora japonica, Eleagnus angustifolia, Fraxinus angustifolia (var oxicarpa, Sambucus nigra, Robinia pseudoacacia, Populus nigra, Albizia julibrissis, Populus alba, Salix alba, Ailanthus altissima, Alnus cordata, Ficus carica, Eucalyptus camaldulensis, Celtis australis were planted in “collection” plots and set in singular plots on single rows (3 m X 0.5 m spacing. Six species (R. pseudoacacia, P. nigra, P. alba, S. nigra, E. camaldulensis, and A. altissima were planted in eighteen random “experimental” split-plots, using single and twin rows (0.5 m spacing between plants. Plots had a rectangular plant spacing (3 m between singular and twin rows, 0.5 m on each row. Plant density was roughly 6670 cuttings ha-1 in “collection” plots with singular rows and 10950 cuttings ha-1 in “experimental” plots using single and twin rows. The expected harvest interval ranges from 2 to 5 years, depending on the first results. In the “collection” plots, the first results showed
Short Rotation Forestry (SRF in a Mediterranean Environment Under Limited Energy Inputs
Directory of Open Access Journals (Sweden)
Stella Lovelli
2010-12-01
Full Text Available The aim of this work is comparing the two year performance (diameter, total height and mortality of twenty tree and shrub species in a semi arid environment. The research also wants to supply recommendation on the agronomic cropping techniques in areas where rainfall is the main limiting factor and water use is strictly limited. Woody biomass is gaining increasing importance for energy production in Italy. During the last five years, roughly 5000 ha of Short Rotation Forestry (SRF have been planted, mostly in northern Italy, especially using poplar clones. However, in Southern Italy, due to the poor rainfall and the lack of knowledge existing on the species to use, few groves have been established. The studied groves were set in December 2005 in a Mediterranean area where the total year rainfall is not higher than 600 mm (mostly in autumn and winter. Twenty species (Salix cinerea, Ulmus carpinifolia, Corylus avellana, Spartium junceum, Acer saccharinum, Morus alba, Saphora japonica, Eleagnus angustifolia, Fraxinus angustifolia (var oxicarpa, Sambucus nigra, Robinia pseudoacacia, Populus nigra, Albizia julibrissis, Populus alba, Salix alba, Ailanthus altissima, Alnus cordata, Ficus carica, Eucalyptus camaldulensis, Celtis australis were planted in “collection” plots and set in singular plots on single rows (3 m X 0.5 m spacing. Six species (R. pseudoacacia, P. nigra, P. alba, S. nigra, E. camaldulensis, and A. altissima were planted in eighteen random “experimental” split-plots, using single and twin rows (0.5 m spacing between plants. Plots had a rectangular plant spacing (3 m between singular and twin rows, 0.5 m on each row. Plant density was roughly 6670 cuttings ha-1 in “collection” plots with singular rows and 10950 cuttings ha-1 in “experimental” plots using single and twin rows. The expected harvest interval ranges from 2 to 5 years, depending on the first results. In the “collection” plots, the first results showed
International Nuclear Information System (INIS)
Iglesias, A.; Favrat, D.
2014-01-01
Highlights: • Doing a new concept of small scale compressed air energy storage. • Presenting a new working process of scroll machinery. • Updating a thermodynamic model of scroll compressor that take into account water injection. • Updating a mathematical model of volumetric loses that take into account sealing effect of liquid water. • Encouraging results to investigate more deeply this new concept. - Abstract: The development of an efficient isothermal turbine and compressor is essential for the realization of a small-scale compressed air energy storage (CAES). This article presents the theoretical development of an oil-free co-rotating scroll air compressor and turbine working with water injection to make the operations of expansion and compression as isothermal as possible. First experimental results in expander mode are shown. The theoretical performance is predicted with the help of a mathematical model using the equations of energy and mass conservation and the equation of state. This model takes into account the effects of water injection and volumetric losses. The experimental prototype is an oil-free scroll air compressor with the distinctive feature of having two mobile involutes working in synchronized co-rotation one relative to another. The prime-mover is an electric motor driving the two scrolls with two synchronizing belts. Water injection in the housing intends to provide a quasi-isothermal compression. The same device is used as an isothermal expander by supplying high-pressure air with water when it rotates backwards in expander mode, the electric motor acting then as a generator. Expected improvements to a standard scroll compressor and expander are a better volumetric efficiency and a greater power density due to a higher rotational speed of the scrolls, thanks to their symmetrical masses. The isothermal processes increase also the overall performance
International Nuclear Information System (INIS)
Ericsson, Niclas; Nordberg, Åke; Sundberg, Cecilia; Ahlgren, Serina; Hansson, Per-Anders
2014-01-01
Highlights: • Using LCA, CHP from willow use in biogas was compared with direct combustion. • Direct combustion was ninefold more energy-efficient. • Biogas had a much greater cooling effect on global mean surface temperature. • The effects of soil carbon changes on temperature over time differed. • Biogas had long-term temperature effects, direct combustion short-term effects. - Abstract: Short rotation coppice willow is an energy crop used in Sweden to produce electricity and heat in combined heat and power plants. Recent laboratory-scale experiments have shown that SRC willow can also be used for biogas production in anaerobic digestion processes. Here, life cycle assessment is used to compare the climate impact and energy efficiency of electricity and heat generated by these measures. All energy inputs and greenhouse gas emissions, including soil organic carbon fluxes were included in the life cycle assessment. The climate impact was determined using time-dependent life cycle assessment methodology. Both systems showed a positive net energy balance, but the direct combustion system delivered ninefold more energy than the biogas system. Both systems had a cooling effect on the global mean surface temperature change. The cooling impact per hectare from the biogas system was ninefold higher due to the carbon returned to soil with the digestate. Compensating the lower energy production of the biogas system with external energy sources had a large impact on the result, effectively determining whether the biogas scenario had a net warming or cooling contribution to the global mean temperature change per kWh of electricity. In all cases, the contribution to global warming was lowered by the inclusion of willow in the energy system. The use of time-dependent climate impact methodology shows that extended use of short rotation coppice willow can contribute to counteract global warming
Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.
2017-07-01
We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the
Turbulence statistics and energy budget in rotating Rayleigh-Bénard convection
Kunnen, R.P.J.; Geurts, Bernardus J.; Clercx, H.J.H.
The strongly-modified turbulence statistics of Rayleigh–Bénard convection subject to various rotation rates is addressed by numerical investigations. The flow is simulated in a domain with periodic boundary conditions in the horizontal directions, and confined vertically by parallel no-slip
Role of rotational energy and deformations in the dynamics of {sup 6}Li+{sup 90}Zr reaction
Energy Technology Data Exchange (ETDEWEB)
Kaur, Gurvinder; Grover, Neha; Sandhu, Kirandeep; Sharma, Manoj K., E-mail: msharma@thapar.edu
2014-07-15
In reference to recent experimental data, the dynamical cluster-decay model (DCM) has been applied to study the neutron evaporation residue (ER) cross sections of intermediate mass nucleus {sup 96}Tc{sup ⁎} spread over a wide range of incident energy across the Coulomb barrier. In order to analyze the effect of rotational energy in the dynamics of {sup 6}Li+{sup 90}Zr reaction, the cross sections have been calculated using the sticking (I{sub S}) and the non-sticking (I{sub NS}) limits of moment of inertia with inclusion of quadrupole (β{sub 2}) deformation within optimum orientation approach. The effect of either of the two approaches on the angular momentum, and hence the rotational energy associated with it, is assessed through the fragment mass distribution, preformation factor and the barrier penetrability. Also, the role of deformations is studied through a comparative analysis of decay path for spherical and β{sub 2} deformed fragmentation. The calculated evaporation residue cross sections show excellent agreement with the reported data at all incident energies for both spherical and β{sub 2}-deformed approach. Finally, the incomplete fusion (ICF) process observed due to loosely bound projectile {sup 6}Li is addressed within the framework of DCM.
International Nuclear Information System (INIS)
Suzuki, Yohichi; Tanimura, Yoshitaka
2007-01-01
Electron transfer reaction in a polar solvent is modeled by a solute dipole surrounded by dipolar molecules with simple rotational dynamics posted on the three-dimensional distorted lattice sites. The interaction energy between the solute and solvent dipoles as a reaction coordinate is adopted and free energy landscapes are calculated by generating all possible states for a 26 dipolar system and by employing Wang-Landau sampling algorithm for a 92 dipolar system. For temperatures higher than the energy scale of dipole-dipole interactions, the free energy landscapes for the small reaction coordinate region have quadratic shape as predicted by Marcus [Rev. Mod. Phys. 65, 599 (1993)] whereas for the large reaction coordinate region, the landscapes exhibit a nonquadratic shape. When the temperature drops, small notched structures appear on the free energy profiles because of the frustrated interactions among dipoles. The formation of notched structure is analyzed with statistical approach and it is shown that the amplitude of notched structure depend upon the segment size of the reaction coordinate and is characterized by the interaction energy among the dipoles. Using simulated free energy landscapes, the authors calculate the reaction rates as a function of the energy gap for various temperatures. At high temperature, the reactions rates follow a bell shaped (inverted parabolic) energy gap law in the small energy gap regions, while it becomes steeper than the parabolic shape in a large energy gap regions due to the nonquadratic shape of the free energy landscape. The peak position of parabola also changes as the function of temperature. At low temperature, the profile of the reaction rates is no longer smooth because of the many local minima of the free energy landscape
International Nuclear Information System (INIS)
Stolarski, Mariusz J.; Krzyżaniak, Michał; Tworkowski, Józef; Szczukowski, Stefan; Niksa, Dariusz
2016-01-01
The aim of this study was to determine the energy input and energy efficiency of the production of willow, poplar and black locust chips in four-year harvest rotation. The highest energy input was made in poplar production when soil was enriched with lignin and by mineral fertilisation (33.02 GJ ha −1 ). For willow production it was 30.76 GJ ha −1 when lignin, mycorrhiza and mineral fertilisation were used. The energy input in the production of black locust was much lower. The largest energy gain was obtained in the production of poplar when soil was enriched with lignin and mineral fertilisation (673.7 GJ ha −1 ). A similar level of this parameter (669.7 GJ ha −1 ) was achieved in the production of willow when lignin, mycorrhiza and mineral fertilisation was used. In general, a higher energy gain was obtained in the production of willow and poplar than in the production of black locust. On the other hand, the best energy efficiency ratio was achieved for willow (28.9) in the option with lignin. The ratio for poplar production ranged from 19.7 to 25.9. On the other hand, the energy efficiency ratio for black locust ranged from 10.6 to 21.7. - Highlights: • The energy input ranged from 6.69 GJ ha −1 to 33.02 GJ ha −1 . • The largest energy gain was obtained for poplar (673.7 GJ ha −1 ). • The best energy efficiency ratio was achieved for willow (28.9). • The energy efficiency ratio for poplar ranged from 19.7 to 25.9. • The energy efficiency ratio for black locust ranged from 10.6 to 21.7.
Short rotation coppice as a business field of an energy utility
Energy Technology Data Exchange (ETDEWEB)
Cremer, T. (RWE Innogy Cogen GmbH, Dortmund (Germany))
2010-07-01
Companies that start planting short rotation coppice (SRC), enter a new territory. In fact, this subject is often discussed, but there is - at least in Germany - still comparatively little practical knowledge on that. Since ca. 1 year, RWE Innogy Cogen is doing pioneer work here and starts establishing SRC in Germany and Europe. Therefore, first results and experiences, as well as consequences for practice shall be presented and discussed in this article. (orig.)
Theoretical background to and practical utilization of short-rotation and energy forestry
International Nuclear Information System (INIS)
Christersson, L.
1999-01-01
This paper gives an overview of activities within short-rotation forestry in Sweden. The main interest lies in plantations of alder, poplar and birch and the study also mentions the industrial value of these tree species, especially for the pulp and paper, and furniture sector. The environmental impact of deciduous tree plantations as well as the possibility of waste water treatment is also discussed
Ghodousi, Maryam; Shahgholi, Majid; Payganeh, Gholamhassan
2018-03-01
The objective of the present work is to investigate the nonlinear vibrations of the rotating asymmetrical nano-shafts by considering surface effect. In order to compute the surface stress tensor, the surface elasticity theory is used. The governing nonlinear equations of motion are obtained with the aid of variational approach. Bubnov-Galerkin is a very effective method for exploiting the reduced-order model of the equations of motion. The averaging method is employed to analyze the reduced-order model of the system. For this purpose, the well-known Van der Pol transformation in the complex form and angle-action transformation are utilized. The effect of surface stress on the forward and backward speeds, steady state responses of the system, fixed points, close orbits and stability of the solutions is examined. The preliminary results of the research show that the absolute values of forward and backward whirling speeds in the presence of surface effect with positive residual surface stress are higher than those of regarding the system without surface effect and in the presence of surface effect with negative residual surface stress. In addition, it is seen that the undamped rotating asymmetrical nano-shaft, for specified value of detuning parameter, in the absence or presence of surface effect has various number of stable and unstable periodic solutions. Besides, there is different number of separatrix (homoclinic orbit type). Furthermore, bifurcations, number of solutions and their stability for damped rotating asymmetrical nano-shaft are investigated. Also, the above results have been obtained for rotating symmetrical nano-shaft.
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
Energy Threshold-based Cluster Head Rotation for Routing Protocol in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Hadi Raheem Ali
2018-05-01
Full Text Available Energy efficiency represents a fundamental issue in WSNs, since the network lifetime period entirely depends on the energy of sensor nodes, which are usually battery-operated. In this article, an unequal clustering-based routing protocol has been suggested, where parameters of energy, distance, and density are involved in the cluster head election. Besides, the sizes of clusters are unequal according to distance, energy, and density. Furthermore, the cluster heads are not changed every round unless the residual energy reaches a specific threshold of energy. The outcomes of the conducted simulation confirmed that the performance of the suggested protocol achieves improvement in energy efficiency.
International Nuclear Information System (INIS)
Kim, In-Ho; Jung, Hyung-Jo; Jang, Seon-Jun
2013-01-01
In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s −2 ) −2 , while that of the original device is just 5.47 mW (m s −2 ) −2 . These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle–moderate wind conditions. (paper)
Design of a non-linear power take-off simulator for model testing of rotating wave energy devices
Energy Technology Data Exchange (ETDEWEB)
Lopes, M.F.P.; Henriques, J.C.C.; Lopes, Miguel C.; Gato, L.M.C. [IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Dente Antonio [CIE3 - Center for Innovation in Electrical and Energy Engineering, Lisboa (Portugal)
2009-07-01
Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in the model testing of wave energy converters at small scale. These are based on the principle that a conductive material moving perpendicularly to a magnetic field generates a braking force proportional to its velocity. This was applied in the design of the PTO simulator of a bottom-hinged flap wave energy converter model, at 1/16 scale. The efforts put into the accurate dynamic simulation of the device led to the development of a controllable PTO simulator, which can be applied to other small scale rotating wave energy device models. A special power source was built to provide the required controllable current intensity to feed the magnetic field generating coils. Different non-linear damping PTO characteristic curves can be simulated by basing the current control on real-time velocity measurement. The calibration of the system was done by connecting the device to a constant rotating speed motor and measuring the resistent torque produced by the PTO with a torquemeter for different values of current intensity through the coils.
2015-09-08
Paul A. Shade, Jay C. Schuren, and Todd J. Turner AFRL/RX Basil Blank PulseRay Peter Kenesei, Kurt Goetze, Ulrich Lienert, and Jonathan Almer...AFRL/RX 2) Basil Blank – PulseRay (continued on page 2) 5d. PROJECT NUMBER 4349 5e. TASK NUMBER 0001 5f...2015) A rotational and axial motion system load frame insert for in situ high energy x-ray studies Paul A. Shade,1,a) Basil Blank,2 Jay C. Schuren,1,b
Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.
2017-12-01
Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.
Short rotation woody crops: Using agroforestry technology for energy in the United States
International Nuclear Information System (INIS)
Wright, L.L.; Ranney, J.W.
1991-01-01
Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described
International Nuclear Information System (INIS)
Bellum, J.C.; McGuire, P.
1983-01-01
We investigate forms of the molecular system Hamiltonian valid for rigorous quantum-mechanical treatments of inelastic atom--diatom collisions characterized by exchange of energy between electronic, vibrational, and rotational degrees of freedom. We analyze this Hamiltonian in terms of various choices of independent coordinates which unambiguously specify the electronic and nuclear positions in the context of space-fixed and body-fixed reference frames. In particular we derive forms of the Hamiltonian in the context of the following four sets of independent coordinates: (1) a so-called space-fixed set, in which both electronic and nuclear positions are relative to the space-fixed frame; (2) a so-called mixed set, in which nuclear positions are relative to the body-fixed frame while electronic positions are relative to the space-fixed frame; (3) a so-called body-fixed set, in which both electronic and nuclear positions are relative to the body-fixed frame; and (4) another mixed set, in which nuclear positions are relative to the space-fixed frame while electronic positions are relative to the body-fixed frame. Based on practical considerations in accounting for electronic structure and nonadiabatic coupling of electronic states of the collision complex we find the forms of the Hamiltonian in the context of coordinate sets (3) and (4) above to be most appropriate, respectively, for body-fixed and space-fixed treatments of nuclear dynamics in collisional transfer of electronic, vibrational, and rotational energies
Rotationally invariant correlation filtering
International Nuclear Information System (INIS)
Schils, G.F.; Sweeney, D.W.
1985-01-01
A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired
A rotational and axial motion system load frame insert for in situ high energy x-ray studies
Energy Technology Data Exchange (ETDEWEB)
Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-09-15
High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.
Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Dickey, Jean O.
1995-01-01
The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.
Establishment and monitoring of large scale trials of short rotation coppice for energy
Energy Technology Data Exchange (ETDEWEB)
Mitchell, C.; Stevens, E.A.; Watters, M.P.
1998-09-01
The overall objective of the trials was to obtain information on costs, logistics, productivity and biology of short rotation coppice crops in order to evaluate their potential for producing wood for fuel. More specifically, the objectives of the final and most recent phase of the research work were: the continuing management and monitoring of the coppice trial sites established during phases 1 and 2 of the project; to provide technical and economic data on the management and maintenance of the continuing coppice trail sites; to identify appropriate methods for stool removal and land reclamation and provide technical and economic data on those operations; and to undertake yield assessment at the remaining sites using appropriate methods of yield estimation. (author)
Accurate Determination of Rotational Energy Levels in the Ground State of ^{12}CH_4
Abe, M.; Iwakuni, K.; Okubo, S.; Sasada, H.
2013-06-01
We have measured absolute frequencies of saturated absorption of 183 allowed and 21 forbidden transitions in the νb{3} band of ^{12}CH_4 using an optical comb-referenced difference-frequency-generation spectrometer from 86.8 to 93.1 THz (from 2890 to 3100 wn). The pump and signal sources are a 1.06-μ m Nd:YAG laser and a 1.5-μ m extended-cavity laser diode. An enhanced-cavity absorption cell increases the optical electric field and enhances the sensitivity. The typical uncertainty is 3 kHz for the allowed transitions and 12 kHz for the forbidden transitions. Twenty combination differences are precisely determined, and the scalar rotational and centrifugal distortion constants of the ground state are thereby yielded as r@ = l@ r@ = l B_{{s}} (157 122 614.2 ± 1.5) kHz, D_{{s}} (3 328.545 ± 0.031) kHz, H_{{s}} (190.90 ± 0.26) Hz, and L_{{s}} (-13.16 ± 0.76) mHz. Here, B_{{s}} is the rotational constant and D_{{s}}, H_{{s}} and L_{{s}} are the scalar quartic, sextic, octic distortion constants. The relative uncertainties are considerably smaller than those obtained from global analysis of Fourier-transform infrared spectroscopy. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba and H. Sasada, Opt. Express 19, 23878 (2011). M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B (to be published). S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. -P. Champion, M. Loëte, A. Nikitin, and M. Quack, Chem. Phys. 356, 131 (2009).
Energy Technology Data Exchange (ETDEWEB)
Iritz, Z.
1996-10-01
Energy balance and evaporation of a short-rotation willow (Salix viminalis L.) forest was studied in relation to season and stand development. The developmental stage of the forest stand considerably influenced how the energy, received as net radiation, was partitioned between the connective fluxes and the storage components. The main part of the available energy was utilised for evaporation during most of the season. Only at the beginning of the season did the willow forest supply heat to the atmosphere. Later in the season, energy was taken from air and utilised for evaporation, which resulted in negative sensible heat fluxes. Soil heat storage was also a significant term in the energy balance and also strongly depended on canopy development. Changes in energy partitioning relative to leaf area indices indicated the existence of a threshold value for leaf area index of the developing canopy. The analysis suggested that the canopy of the willow forest could be considered as closed at a leaf area index of 2. It was further found that evaporation from well-irrigated willow forest occurred also during night-time, particularly in windy and dry weather conditions. The sources of nocturnal evaporation were both the canopy, i.e. indicating non-closed stomata, and the soil surface. Partitioning of the total evaporation into components was investigated using a physically-based model with a two-layer aboveground representation and a two-layer soil module. The model estimates evaporation with respect to developmental stage of the willow stand and also takes into account the interaction between the fluxes from the canopy and the soil surface. Good performance of the model indicated that, after further testing in drier conditions, it could be used as a tool for analysing the prerequisites for energy-forest establishment, and practical management of energy forest stands. 37 refs, 9 figs
Stress-energy tensor near a charged, rotating, evaporating black hole
International Nuclear Information System (INIS)
Hiscock, W.A.
1977-01-01
The recently developed two-dimensional stress-energy regularization techniques are applied to the two-dimensional analog of the Reissner-Nordstroem family of black-hole metrics. The calculated stress-energy tensor in all cases contains the thermal radiation discovered by Hawking. Implications for the evolution of the interior of a charged black hole are considered. The calculated stress-energy tensor is found to diverge on the inner, Cauchy, horizon. Thus the effect of quantum mechanics is to cause the Cauchy horizon to become singular. The stress-energy tensor is also calculated for the ''most reasonable'' two-dimensional analog of the Kerr-Newman family of black-hole metrics. Although the analysis is not as rigorous as in the Reissner-Nordstroem case, it appears that the correct value for the Hawking radiation also appears in this model
HM-EH-RT: hybrid multimodal energy harvesting from rotational and translational motions
Miles Larkin; Yonas Tadesse
2013-01-01
This paper presents a novel hybrid multimodal energy harvesting device consisting of an unbalanced rotary disk that supports two transduction methods, piezoelectric and electromagnetic. The device generates electrical energy from oscillatory motion either orthogonal or parallel to the rotary axis to power electronic devices. Analytical models for the electromagnetic and piezoelectric systems were developed to describe the mechanical and electrical behavior of the device. From these models, nu...
International Nuclear Information System (INIS)
Eckner, Jens; Peter, Christiane; Vetter, Armin
2015-01-01
The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.
International Nuclear Information System (INIS)
Thomason, M.D.
1982-07-01
Rates for resonant vibrational and rotational energy transfer from the 001 state by CO 2 + CO 2 collisions have been measured. All data were obtained by double resonance spectroscopy with CO 2 lasers in a 2.5 meter absorption cell at 700 0 K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ΔJ up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 → 101) and hot-band (011 → 110) lasting have been used to observe resonant nu 3 -transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments
Energy Technology Data Exchange (ETDEWEB)
Moffat, A.J.; Armstrong, A.T. [Forest Research, Farnham (United Kingdom); Ockleston, J. [Thames Water Utilities Ltd., Reading (United Kingdom)
2001-07-01
An experiment was set up to test the effect of sewage sludge application and waste water irrigation on the biomass production of two poplar varieties, Populus trichocarpa x P. deltoides ''Beaupre'', and Populus trichocarpa ''Trichobel''. Three sludge applications were examined factorially with two irrigation regimes (with and without), over the two final years of a three-year rotation. The effects of treatment on soil and soil water were monitored, and the amount of heavy metals removed in the biomass was quantified. Irrigation had a significant effect on biomass of both poplar varieties, with Beaupre yielding more than Trichobel. Sludge application was not effective in increasing biomass yield, but the experiment was valuable in identifying that modest amounts of sludge (approximately 100 m{sup 3} ha{sup -1} yr{sup -1}) were acceptable environmentally and did not compromise biomass production. Cadmium uptake was detected in the poplar biomass, but the amounts were small and insufficient for poplar to be used in phytoremediation of metal-contaminated land. (author)
Su, Xiangzheng; Li, Zhongli; Liu, Zhengsheng; Shi, Teng; Xue, Chao
2017-06-09
The aim of this study was to investigate the efficacy of high- and low-energy radial shock waves combined with physiotherapy for rotator cuff tendinopathy patients. Data from rotator cuff tendinopathy patients received high- or low-energy radial shock waves combined with physiotherapy or physiotherapy alone were collected. The Constant and Murley score and visual analog scale score were collected to assess the effectiveness of treatment in three groups at 4, 8, 12, and 24 weeks. In total, 94 patients were involved for our retrospective study. All groups showed remarkable improvement in the visual analog scale and Constant and Murley score compared to baseline at 24 weeks. The high-energy radial shock waves group had more marked improvement in the Constant and Murley score compared to the physiotherapy group at 4 and 8 weeks and at 4 weeks when compared with low-energy group. Furthermore, high-energy radial shock waves group had superior results on the visual analog scale at 4, 8, and 12 weeks compared to low-energy and physiotherapy groups. This retrospective study supported the usage of high-energy radial shock waves as a supplementary therapy over physiotherapy alone for rotator cuff tendinopathy by relieving the symptoms rapidly and maintaining symptoms at a satisfactory level for 24 weeks. Implications for Rehabilitation High-energy radial shock waves can be a supplemental therapy to physiotherapy for rotator cuff tendinopathy. We recommend the usage of high-energy radial shock waves during the first 5 weeks, at an interval of 7 days, of physiotherapy treatment. High-energy radial shock waves treatment combined with physiotherapy can benefit rotator cuff tendinopathy by relieving symptoms rapidly and maintain these improvements at a satisfactory level for quite a long time.
A Rigorous Treatment of Energy Extraction from a Rotating Black Hole
Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.
2009-05-01
The Cauchy problem is considered for the scalar wave equation in the Kerr geometry. We prove that by choosing a suitable wave packet as initial data, one can extract energy from the black hole, thereby putting supperradiance, the wave analogue of the Penrose process, into a rigorous mathematical framework. We quantify the maximal energy gain. We also compute the infinitesimal change of mass and angular momentum of the black hole, in agreement with Christodoulou’s result for the Penrose process. The main mathematical tool is our previously derived integral representation of the wave propagator.
Comment on ''Vacuum stress-energy tensor of the electromagnetic field in rotating frames''
International Nuclear Information System (INIS)
Mane, S.R.
1991-01-01
Hacyan and Sarmiento have found that an observer accelerating in a circle will detect a nonzero energy flux (Poynting vector) caused by the vacuum electromagnetic fluctuations in that frame. I wish to suggest that the above flux is related to synchrotron radiation. I treat only the leading order of perturbation theory
HM-EH-RT: hybrid multimodal energy harvesting from rotational and translational motions
Directory of Open Access Journals (Sweden)
Miles Larkin
2013-12-01
Full Text Available This paper presents a novel hybrid multimodal energy harvesting device consisting of an unbalanced rotary disk that supports two transduction methods, piezoelectric and electromagnetic. The device generates electrical energy from oscillatory motion either orthogonal or parallel to the rotary axis to power electronic devices. Analytical models for the electromagnetic and piezoelectric systems were developed to describe the mechanical and electrical behavior of the device. From these models, numerical simulations were performed to predict power generation capabilities. The device was fabricated, and several components were optimized experimentally. The energy harvester was then experimentally characterized using a modal shaker in several different orientations. The device generates a maximum RMS power output of 120 mW from the electromagnetic system at 5 Hz and 0.8 g, and 4.23 mW from the piezoelectric system at 20.2 Hz and 0.4 g excitation acceleration. The device is 180 mm in diameter and 45 mm thick including the rotor height. Further size optimization will produce an energy harvester capable of being used as a wearable device to power mobile electronics for multiple applications.
Exact, rotational, infinite energy, blowup solutions to the 3-dimensional Euler equations
International Nuclear Information System (INIS)
Yuen, Manwai
2011-01-01
In this Letter, we construct a new class of blowup or global solutions with elementary functions to the 3-dimensional compressible or incompressible Euler and Navier-Stokes equations. And the corresponding blowup or global solutions for the incompressible Euler and Naiver-Stokes equations are also given. Our constructed solutions are similar to the famous Arnold-Beltrami-Childress (ABC) flow. The obtained solutions with infinite energy can exhibit the interesting behaviors locally. Furthermore, due to divu → =0 for the solutions, the solutions also work for the 3-dimensional incompressible Euler and Navier-Stokes equations. -- Highlights: → We construct a new class of solutions to the 3D compressible or incompressible Euler and Navier-Stokes equations. → The constructed solutions are similar to the famous Arnold-Beltrami-Childress flow. → The solutions with infinite energy can exhibit the interesting behaviors locally.
Influence of Rotational Transform and Magnetic Shear on the Energy Content of TJ-II Plasmas
International Nuclear Information System (INIS)
Estrada, T.; Ascasibar, E.; Castejon, F.; Jimenez, J. A.; Lopez-Bruna, D.; Pastor, I.
2002-01-01
In the magnetic configuration scans performed in TJ-II stellarator, low plasma energy content is found to be related to the presence of low order rational surfaces within the confinement region in low plasma density experiments. Plasma currents of about-1 kA (mainly bootstrap driven) can substantially increase the magnetic shear in TJ-II and under these conditions the confinement is no longer deteriorated by low order rational surfaces. Experiments with higher plasma currents (OH induced currents up to +/-10 kA) show a non-symmetric dependence on the sign of the magnetic shear. Preliminary results show a substantial improvement of the confinement in the case of negative plasma current, while minor changes are observed in the plasma energy content when positive current is induced in magnetic configurations that in vacuum exclude low order rational surfaces. (Author) 12 refs
Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei
2018-05-01
In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.
Influence of Rotational Transform and Magnetic Shear on the Energy Content of TJ-II Plasmas
Energy Technology Data Exchange (ETDEWEB)
Estrada, T.; Ascasibar, E.; Castejon, F.; Jimenez, J. A.; Lopez-Bruna, D.; Pastor, I.
2002-07-01
In the magnetic configuration scans performed in TJ-II stellarator, low plasma energy content is found to be related to the presence of low order rational surfaces within the confinement region in low plasma density experiments. Plasma currents of about-1 kA (mainly bootstrap driven) can substantially increase the magnetic shear in TJ-II and under these conditions the confinement is no longer deteriorated by low order rational surfaces. Experiments with higher plasma currents (OH induced currents up to +/-10 kA) show a non-symmetric dependence on the sign of the magnetic shear. Preliminary results show a substantial improvement of the confinement in the case of negative plasma current, while minor changes are observed in the plasma energy content when positive current is induced in magnetic configurations that in vacuum exclude low order rational surfaces. (Author) 12 refs.
Wave-driven Rotation in Supersonically Rotating Mirrors
Energy Technology Data Exchange (ETDEWEB)
A. Fetterman and N.J. Fisch
2010-02-15
Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.
Wave-driven Rotation in Supersonically Rotating Mirrors
International Nuclear Information System (INIS)
Fetterman, A.; Fisch, N.J.
2010-01-01
Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.
International Nuclear Information System (INIS)
Coiante, D.
1997-02-01
A simple power system made up of a conventional rotating power generator in direct connection to an intermittent renewable energy source (with energy or photovoltaic) is modelled on the base of respective functional schemes. The relative variations of the voltage frequency are calculated as an output to an abrupt variation of intermittent tied power and in function of electro-mechanical parameters of the rotating generator (dumping coefficient and inertial rotor coefficient). The stability conditions and the tolerance allowed on the frequency variations are considered in relation to toad service requires. As a consequence, the maximum intermittent power amount, which can be accepted in direct connection, is obtained. For usual conventional rotating machines, the resulting limit is placed in the range of (12-19)% of nominal capacity of power generator
Laventure, Audrey; De Grandpré, Guillaume; Soldera, Armand; Lebel, Olivier; Pellerin, Christian
2016-01-21
Mexylaminotriazine derivatives form molecular glasses with outstanding glass-forming ability (GFA), high resistance to crystallization (glass kinetic stability, GS), and a glass transition temperature (Tg) above room temperature that can be conveniently modulated by selection of the headgroup and ancillary groups. A common feature of all these compounds is their secondary amino linkers, suggesting that they play a critical role in their GFA and GS for reasons that remain unclear because they can simultaneously form hydrogen (H) bonds and lead to a high interconversion energy barrier between different rotamers. To investigate independently and better control the influence of H bonding capability and rotational energy barrier on Tg, GFA and GS, a library of twelve analogous molecules was synthesized with different combinations of NH, NMe and O linkers. Differential scanning calorimetry (DSC) revealed that these compounds form, with a single exception, kinetically stable glasses with Tg values spanning a very broad range from -25 to 94 °C. While variable temperature infrared spectroscopy combined to chemometrics reveals that, on average, around 60% of the NH groups are still H-bonded as high as 40 °C above Tg, critical cooling rates obtained by DSC clearly show that molecules without H-bond donating linkers also present an outstanding GFA, meaning that H bonding plays a dominant role in controlling Tg but is not required to prevent crystallization. It is a high interconversion energy barrier, provoking a distribution of rotamers, that most efficiently promotes both GFA and resistance to crystallization. These new insights pave the way to more efficient glass engineering by extending the possible range of accessible Tg, allowing in particular the preparation of homologous glass-formers with high GS at ambient temperature in either the viscous or vitreous state.
Energy Technology Data Exchange (ETDEWEB)
Ledin, S.; Christersson, L. [eds.
1996-12-31
The overall aim of the Department of Short Rotation Forestry is to carry out research for development of basic, theoretical and practical knowledge in the related disciplines of biology, ecology and cultivation techniques in order to reach a high and sustainable production of woody biomass for energy purposes using environmentally acceptable methods. This report gives summaries of nine research programs within the Department, and the reports were prepared for the evaluation of the research during the period 1993-1996. The projects are: 1. Competition in short rotation forests (Theo Verwijst); 2. Carbon allocation as a function of nutrient and water availability (Lars Rytter, Tom Ericsson); 3. States and fluxes of water and carbon dioxide in the soil-plant-atmosphere system (Anders Lindroth); 4. Root dynamics of fast growing deciduous trees (Rose-Marie Rytter); 5. Accumulation and mobilization of root reserves in coppice growth (Lisa Sennerby-Forsse, Lars Bollmark, Yuehua von Fircks); 6. Effects of nutrient supply on frost resistance in fast growing Salix clones (Heinrich von Fircks); 7. Optimizing water and nutrients in poplar and willow plantations for maximum growth (Sune Elowson); 8. Soil biology in relation to energy forestry (Ulf Granhall); and 9. Plant protection in short rotation forestry against fungi and bacteria (Mauritz Ramstedt)
International Nuclear Information System (INIS)
Czerski, I.; Szymanski, S.
2005-01-01
According to the damped quantum rotation (DQR) theory, hindered rotation of methyl groups, reflected in NMR spectra, is a quantum mechanical process controlled by two quantum mechanical rate constants k t and k K . The subscripts t and K, designating '' tunneling '' and '' Kramers '', refer to two specific, long-lived quantum coherence in the methyl rotor system each of which engages the space and spin coordinates of the three protons, correlated by the Pauli principle. Only in the instances where k t and k K happen to be equal, the NMR picture will be the same as for a hypothetical CH 3 group undergoing classical jumps between its three equivalent orientations, described by single rate constant k '. Departure of the ratio c = k t /k K from 1 can thus serve as a quick measure of the degree of non classicality in the stochastic dynamics of the methyl group or, in other words, of the magnitude of the DQR effect. When the Arrhenius activation energy, Ea, for k K is about 12 kJmol -1 , the non classicality factor c can exceed 5. This is an inference from our recent single-crystal NMR studies at temperatures 60 - 110 K. On an intuitive ground, there should be an inverse (but hardly linear) correlation between E a and c. Indeed, for strongly hindered methyl group in 9-methyltripticene derivatives for which the activation energies can exceed 37 kJmol -1 , the DQR effect proves to be much smaller, with the corresponding values of c not exceeding 1.20. Nonetheless, for the values of c above 1.10 it can still be clearly seen in liquid-phase NMR spectra. Here we report on our recent liquid-phase NMR experiments with a series of 9-methyltriptycene derivatives for which the values of E a for k K span the range 37.4 - 44.8 kJmol -1 while the respective, average values of c vary between 1.04 and 1.20. It comes out that, within such a narrow variability range of E a , the correlation between c and E a no longer holds. For example, for 1,2,3,4-tetrabromo-9,10-dimethyltriptycene
Childs, Peter R N
2010-01-01
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...
Lee, William H K.
2016-01-01
Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.
DEFF Research Database (Denmark)
Blanchard, Didier; Maronsson, Jon Bergmann; Riktor, M.D.
2012-01-01
, around the 2-fold (C2) and 3-fold (C3) axes were observed at temperatures from 120 to 440 K. The experimentally obtained activation energies (EaC2 = 39 and 76 meV and EaC3 = 214 meV) and mean residence times between reorientational jumps are comparable with the energy barriers obtained from DFT......In this work, hindered rotations of the BH4- tetrahedra in Mg(BH4)2 were studied by quasielastic neutron scattering, using two instruments with different energy resolution, in combination with density functional theory (DFT) calculations. Two thermally activated reorientations of the BH4- units...... calculations. A linear dependency of the energy barriers for rotations around the C2 axis parallel to the Mg-Mg axis with the distance between these two axes was revealed by the DFT calculations. At the lowest temperature (120 K) only 15% of the BH4- units undergo rotational motion and from comparison with DFT...
International Nuclear Information System (INIS)
Rosquist, K.
1980-01-01
Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)
International Nuclear Information System (INIS)
Thirumalai, D.; Onda, K.; Truhlar, D.G.
1981-01-01
Coupled-channels calculations based on an effective potential are presented for electron scattering by CO 2 at 10 eV impact energy. The processes studied are pure elastic scattering, rotational excitation, and vibrational excitation of the asymmetric stretch; the vibrational excitation is always accompanied by rotational excitation. The quantities calculated are differential, partial, integral, and momentum transfer cross sections, both state to state and summed over final rotational states for a given final vibrational level. The effective potential is based on the INDOX2/1s method for the static and polarization potentials and the semiclassical exchange approximation for the exchange potential. There are no empirical parameters. The present calculations are compared to experiment and to previous calculations where available, and we also perform calculations with an altered polarization potential to further elucidate the reasons for the differences from one of the previous calculations. The agreement of the present results with the experimental rotationally summed, vibrationally inelastic differential cross section is excellent
Energy Technology Data Exchange (ETDEWEB)
Herbert, John M. [Kansas State Univ., Manhattan, KS (United States). Dept. of Chemistry
1997-01-01
Rayleigh-Schroedinger perturbation theory is an effective and popular tool for describing low-lying vibrational and rotational states of molecules. This method, in conjunction with ab initio techniques for computation of electronic potential energy surfaces, can be used to calculate first-principles molecular vibrational-rotational energies to successive orders of approximation. Because of mathematical complexities, however, such perturbation calculations are rarely extended beyond the second order of approximation, although recent work by Herbert has provided a formula for the nth-order energy correction. This report extends that work and furnishes the remaining theoretical details (including a general formula for the Rayleigh-Schroedinger expansion coefficients) necessary for calculation of energy corrections to arbitrary order. The commercial computer algebra software Mathematica is employed to perform the prohibitively tedious symbolic manipulations necessary for derivation of generalized energy formulae in terms of universal constants, molecular constants, and quantum numbers. As a pedagogical example, a Hamiltonian operator tailored specifically to diatomic molecules is derived, and the perturbation formulae obtained from this Hamiltonian are evaluated for a number of such molecules. This work provides a foundation for future analyses of polyatomic molecules, since it demonstrates that arbitrary-order perturbation theory can successfully be applied with the aid of commercially available computer algebra software.
Sabry, Hanan
2014-05-01
Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance of clear skies.The daylighting and energy performance of solar screens is affected by many parameters. These include screen perforation, depth, reflectivity and color, aspect ratio of openings, shape, tilt angle and rotation. Changing some of these parameters can improve the daylighting performance drastically. However, this can result in increased energy consumption. A balanced solution must be sought, where acceptable daylighting performance would be achieved at minimum energy consumption.This paper aims at defining solar screen designs that achieve visual comfort and at the same time minimum energy consumption in residential desert settings. The study focused on the effect of changing the solar screen axial rotation and the aspect ratio of its openings under the desert clear-sky. The individual and combined effects of changing these parameters were studied.Results of this study demonstrated that a non-rotated solar screen that has wide horizontal openings (aspect ratio of 18:1) proved to be successful in the north and south orientations. Its performance in the east/west orientations was also superior. In contrast, the screen that was rotated along its vertical axis while having small size openings (aspect ratio of 1:1) proved to be more successful in the east/west orientations. Its performance in the north orientation was also good. These solutions enhanced daylighting performance, while maintaining the energy consumption at a minimum.Moreover, it was observed that combining two screen parameters which proved useful in previous studies on daylighting or thermal performance does not add up to better solutions. The combined solutions that were tested in this study did not prove successful in satisfying daylighting and thermal
PAAR, [No Value; VORKAPIC, D; DIERPERINK, AEL
1992-01-01
We study the fluctuation properties of 0+ levels in rotational nuclei using the framework of SU(3) dynamical symmetry of the interacting boson model. Computations of Poincare sections for SU(3) dynamical symmetry and its breaking confirm the expected relation between dynamical symmetry and classical
International Nuclear Information System (INIS)
Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Carleer, Michel R.; Csaszar, Attila G.; Gamache, Robert R.; Hodges, Joseph T.; Jenouvrier, Alain; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Toth, Robert A.; Vandaele, Ann Carine; Zobov, Nikolai F.; Daumont, Ludovic; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Mikhailenko, Semen N.
2009-01-01
This is the first part of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependence and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. The present article contains energy levels and data for line positions of the singly substituted isotopologues H 2 17 O and H 2 18 O. The procedure and code MARVEL, standing for measured active rotational-vibrational energy levels, is used extensively in all stages of determining the validated levels and lines and their self-consistent uncertainties. The spectral regions covered for both isotopologues H 2 17 O and H 2 18 O are 0-17125cm -1 . The energy levels are checked against ones determined from accurate variational calculations. The number of critically evaluated and recommended levels and lines are, respectively, 2687 and 8614 for H 2 17 O, and 4839 and 29 364 for H 2 18 O. The extensive lists of MARVEL lines and levels obtained are deposited in the Supplementary Material, as well as in a distributed information system applied to water, W-DIS, where they can easily be retrieved. A distinguishing feature of the present evaluation of water spectroscopic data is the systematic use of all available experimental data and validation by first-principles theoretical calculations.
Staggering in signature partners of A∼190 mass region of superdeformed rotational bands
International Nuclear Information System (INIS)
Uma, V.S.; Goel, Alpana; Yadav, Archana
2014-01-01
This paper discuss about ΔI=1 signature splitting in signature partner pairs of A∼190 mass region. Around twenty signature partner pairs (usually called as two bands, each with a fixed signature) have been reported in this mass region. For these signature pairs, band head moment of inertia (J 0 ) and intrinsic structure of each pair of signature partners have been found as almost identical. Also, these signature partner pairs showed large amplitude signature splitting. As each of the two signature partner forms a regular spin sequence and signature bands are not equivalent in terms of energies. This difference in energies results in signature splitting
Lekner, John
2008-01-01
Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…
International Nuclear Information System (INIS)
Noe, C.
1984-01-01
Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr
Energy Technology Data Exchange (ETDEWEB)
Heiermann, M.; Scholz, V.; Foltan, H. (comps.)
2007-05-15
The conference proceedings contain 15 contributions on energy plants: energy plant production in Germany - developments and research activities; potentials and constraints of cultivating energy crops; environmental aspects of production and utilization of energy plants; costs of energy crop supply; crops for the biogas production in the territory of Brandenburg; mixed cropping systems on sandy soils - alternative cropping strategies; impact of ensiling process on biogas production - recent research results; solid state anaerobic digestion of renewable biomass sources - state of research and development; energy crops as feedstock in a biogas plant; proffer and demand of wood fuel in the State of Brandenburg; regulatory framework of growing short rotation coppice; mechanization of SRC production; 20 years of short rotation coppice; willow production and marketing in Denmark; short rotation coppice production in Italy.
Directory of Open Access Journals (Sweden)
D. Lummerzheim
2008-05-01
Full Text Available High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES which forms part of the Spectrographic Imaging Facility (SIF, located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2, which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR. Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K and the energy lowest (1 keV. In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular
Burgers, Phillip; Alexander, David E.
2012-01-01
For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standar...
International Nuclear Information System (INIS)
Brunner, T.A.; Smith, N.; Karp, A.W.; Pritchard, D.E.
1981-01-01
Using the method of laser-induced fluorescence, we have measured level to level rate constants for rotational energy transfer (RET) in Na 2 colliding with Xe, Kr, Ar, Ne, He, H 2 , N 2 , and CH 4 . For each target gas we varied the initial rotational quantum number ji-italic over a wide range, typically 4--100, and measured approximately 60 rate constants with an average error of between 6% and 9%. The resulting base of 479 rate constants is used to test several recently proposed fitting laws. The energy corrected sudden scaling law of DePristo et al., when combined with the assumption of a power gap law for the basis rate constants k/sub l/→0, fit with only 3 parameters all of the data for a given target gas with 7%--12% average percentage deviation. Our statistical power gap law worked well and was generally the best law for those data sets with only one value of j/sub i/. The worst fits in all cases considered here were those using the exponential gap law of surprisal theory
Czech Academy of Sciences Publication Activity Database
Djomo, S. N.; Ač, Alexander; Zenone, T.; De Groote, T.; Bergante, S.; Facciotto, G.; Sixto, H.; Ciria Ciria, P.; Weger, J.; Ceulemans, R.
2015-01-01
Roč. 41, jan (2015), s. 845-854 ISSN 1364-0321 R&D Projects: GA MŠk EE2.3.30.0056 Institutional support: RVO:67179843 Keywords : poplar * willow * bioenergy crops * energy balance * energy efficiency Subject RIV: GC - Agronomy Impact factor: 6.798, year: 2015
Baryshevsky, V.G.
2015-01-01
We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.
Energy Technology Data Exchange (ETDEWEB)
Mauchle, P.; Schnyder, G.
2010-01-15
As an alternative to the static UPS-Systems (uninterruptible power supply systems), rotating UPS-Systems can be applied. The application and the realisation of rotating UPS-Systems are different to the one of static UPS-Systems. Furthermore at the rotating UPS-Systems is to distinguish, if the UPS-System is realised as a diesel dynamic UPS-System, with an activity up from 400 kVA, or if the dynamic part is limited to the energy storage, with an activity up from 60 kVA. The diesel dynamic UPS-Systems are composed of a synchronous machine, an asynchronous machine with a flywheel, respectively a kinetic module and the diesel engine. The connection to the critical user at the low voltage network occurs using an inductor and the accordant switchgears. The application of a diesel dynamic UPS-System is optimal when it can be connected with an emergency power supply. With the realisation of dynamic energy storages, battery systems can be avoided respectively can be reduced or the lifetime of batteries can be extended. It is only possible to avoid the batteries if the requested autonomous time of the UPS-System is shorter than two minutes. Is an autonomous time longer than 2 minutes necessary, battery systems have to be realised for the energy storage. Thereby dynamic energy storage in parallel to the battery system is useful, because the dynamic energy storage will compensate temporary voltage drops or short power failures. In this way the number of charge and discharge cycles of the battery system will be reduced and therefore the lifetime of the battery will be extended. The use of a dynamic or static UPS system is dependent on the requirements of the powered load. Taking into account various criteria it can be found for each specific application the optimal type of UPS system. (authors)
International Nuclear Information System (INIS)
Tangedahl, M.J.; Stone, C.R.
1992-01-01
This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs
Wave-Driven Rotation In Centrifugal Mirrors
International Nuclear Information System (INIS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-01-01
Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.
Energy Technology Data Exchange (ETDEWEB)
Eckner, Jens [Thueringer Landesanstalt fuer Landwirtschaft (Germany); Peter, Christiane; Vetter, Armin
2015-07-01
The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.
Directory of Open Access Journals (Sweden)
Julio Cesar Ríos-Saucedo
2016-01-01
Full Text Available Los cultivos dendroenergéticos de corta rotación en monte bajo (Short Rotation Coppice -SRC comúnmente están formados por individuos unifustales en el primer ciclo de corta, pero a partir del segundo ciclo, de cada cepa surgen numerosos vástagos o brotes, los cuales presentan desafíos interesantes al momento de estimar su biomasa. El objetivo de este trabajo fue identificar especies, longitud de rotación y tipos de modelos alométricos usados para estimar biomasa en SRC, en revistas científicas de las bases de datos Scopus y Web of Science. Entre los modelos para estimar la biomasa (y de uso más frecuente destaca el exponencial, que tiene como variable predictora el diámetro normal ( D ( y = b 0 D b 1 , diámetro basal de tallo ( Db ( y = b 0 Db b 1 y la combinación de diámetro normal al cuadrado por la altura total ( D 2 H ( y = b 0 + b 1 D 2 H . Los géneros con mayor número de modelos diferentes fueron Populus, Salix y Eucalyptus . Los dos primeros son los más estudiados. La longitud de rotación empleada en los cultivos estudiados varió de uno a 15 años.
Continuously rotating cat scanning apparatus and method
International Nuclear Information System (INIS)
Bax, R.F.
1980-01-01
A tomographic scanner with a continuously rotating source of radiation is energized by converting inertial mechanical energy to electrical energy. The mechanical-to-electrical conversion apparatus is mounted with the x-ray source to be energized on a rotating flywheel. The inertial mechanical energy stored in the rotating conversion apparatus, flywheel and x-ray source is utilized for generating electrical energy used, in turn, to energize the x-ray source
Low-energy levels calculation for 193Ir
International Nuclear Information System (INIS)
Zahn, Guilherme Soares; Zamboni, Cibele Bugno; Genezini, Frederico Antonio; Mesa-Hormaza, Joel; Cruz, Manoel Tiago Freitas da
2006-01-01
In this work, a model based on single particle plus pairing residual interaction was used to study the low-lying excited states of the 193 Ir nucleus. In this model, the deformation parameters in equilibrium were obtained by minimizing the total energy calculated by the Strutinsky prescription; the macroscopic contribution to the potential was taken from the Liquid Droplet Model, with the shell and paring corrections used as as microscopic contributions. The nuclear shape was described using the Cassinian ovoids as base figures; the single particle energy spectra and wave functions for protons and neutrons were calculated in a deformed Woods-Saxon potential, where the parameters for neutrons were obtained from the literature and the parameters for protons were adjusted in order to describe the main sequence of angular momentum and parity of the band heads, as well as the proton binding energy of 193 Ir. The residual pairing interaction was calculated using the BCS prescription with Lipkin-Nogami approximation. The results obtained for the first three band heads (the 3/2 + ground state, the 1/2 + excited state at E ∼ 73 keV and the the 11/2 - isomeric state at E ∼ 80 keV) showed a very good agreement, but the model so far greatly overestimated the energy of the next band head, a 7/2 - at E ∼ 299 keV. (author)
International Nuclear Information System (INIS)
Ambruş, Victor E.; Winstanley, Elizabeth
2014-01-01
We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space–time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress–energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space–time geometries
DEFF Research Database (Denmark)
Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.
2012-01-01
flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe...... particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field....
International Nuclear Information System (INIS)
Nascimento Filho, V.F.; Silva, R.M.C.; Perez, C.A.
2005-01-01
Our aim was to study the chemical concentration of some metals in suspended particulate matter inside an-iron metallurgical plant. Using a rotating streaker air-particulate sampler with 8 and 0.45 microns pore diameter filter, it was possible to collect coarse and fine particulates during a week, with one hour step. After this, each strip of the filter was analyzed by energy dispersive x-ray microfluorescence (μ-EDXRF), using in the excitation a collimated x-ray line beam from a Mo target tube (30 kV, 20 mA, Zr filter) with a quartz capillary (120 mm long, 10 mm entrance diameter and 20 microns inner diameter at exit). The detection was carried out using a Si(Li) semiconductor detector coupled to a multichannel analyzer, and the X-ray spectra were fitted with the AXIL software. The profiles of several elements are shown and the results are discussed.
Nath, Gorakh
2016-07-01
Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.
DEFF Research Database (Denmark)
Qin, Zian; Blaabjerg, Frede; Loh, Poh Chiang
2015-01-01
Power fluctuation caused by wind speed variations may be harmful for the stability of the power system as well as the reliability of the wind power converter, since it may induce thermal excursions in the solder joints of the power modules. Using the wind turbine rotor inertia energy for power...... in the frequency domain for power leveling. Moreover, the impact of other parameters on power leveling, including the time constant of maximum power point tracking (MPPT) and the rotor inertia, are also studied. With the proposed optimal design, the power fluctuations are mitigated as much as possible, while...
International Nuclear Information System (INIS)
Walle, Inge van de; Camp, Nancy van; Casteele, Liesbet van de; Verheyen, Kris; Lemeur, Raoul
2007-01-01
Belgium, being an EU country, has committed itself to a 7.5% reduction of greenhouse gas emissions during the first commitment period of the Kyoto Protocol. Within this framework, the Flemish government aims at reaching a share of 6% of renewable electricity in the total electricity production by 2010. In this work, the biomass production of birch, maple, poplar and willow in a short-rotation forestry (SRF) plantation after a 4-year growth period served as the base to calculate the amount of (electrical) energy that could be produced by this type of bioenergy crop in Flanders. The maximum amount of electricity that could be provided by SRF biomass was estimated at 72.9 GWh e year -1 , which only accounts for 0.16% of the total electricity production in this region. Although the energy output was rather low, the bioenergy production process under consideration appeared to be more energy efficient than energy production processes based on fossil fuels. The high efficiency of birch compared to the other species was mainly due to the high calorific value of the birch wood. The maximum CO 2 emission reduction potential of SRF plantations in Flanders was estimated at only 0.09% of the total annual CO 2 emission. The most interesting application of SRF in Flanders seemed to be the establishment of small-scale plantations, linked to a local combined heat and power plant. These plantations could be established on marginal arable soils or on polluted sites, and they could be of importance in the densely populated area of Flanders because of other environmental benefits, among which their function as (temporary) habitat for many species
International Nuclear Information System (INIS)
Rogister, A.
1998-01-01
We show that the large negative radial electric fields which are measured in front of the separatrix in H-mode discharges are easily explainable on the basis of the rigorous 'revisited' neoclassical theory, including finite Larmor radii and inertia effects that was published earlier (Rogister A 1994 Phys. Plasmas 1 619); the same theory naturally leads to sub-neoclassical energy transport and novel particle pinch terms. The calculation has so far been developed only in the high collisionality regime: step sizes comparable to gradient-scale sizes are therefore not required to explain observed properties! Based on the analysis, we conclude that the radial electric field profile develops a well in front of the separatrix when the plasma is unable to sustain ambipolar flows otherwise. (author)
Structure of molecules and internal rotation
Mizushima, San-Ichiro
1954-01-01
Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi
Investigation of level energies and B(E2) values for rotation-aligned bands in Hg isotopes
International Nuclear Information System (INIS)
Mertin, D.; Tischler, R.; Kleinrahm, A.; Kroth, R.; Huebel, H.; Guenther, C.
1978-01-01
High spin states in 191 192 193 195 197 199 Hg were investigated by observing γ-rays and conversion electrons in the compound reactions 192 194 198 Pt(α,xn) and 192 Pt ( 3 He,4n). In 197 Hg the decoupled band built on the 13/2 + state and the semi-decoupled negative-parity band are observed up to Isup(π)=41/2 + and 33/2 - , respectively. A careful investigation of 199 Hg revealed no new high spin states above the previously known levels with Isup(π)=25/2 + and 31/2 - . Half-lives were determined for the 10 + , 7 - , 8 - and 16 - states in 192 Hg, the 33/2 states in 191 193 Hg and the 25/2 - states in 191 193 195 197 Hg. The systematics of the level energies and B(E2) values for the positive parity ground and 13/2 + bands and the negative-parity semi-decoupled bands in 190-200 Hg is discussed. (Auth.)
Karbowniczek, Paweł; Chrzanowska, Agnieszka
2017-11-01
A two-dimensional Lennard-Jones system in a circular and rotating container has been studied by means of molecular dynamics technique. A nonequilibrium transition to the rotating stage has been detected in a delayed time since an instant switching of the frame rotation. This transition is attributed to the increase of the density at the wall because of the centrifugal force. At the same time the phase transition occurs, the inner system changes its configuration of the solid-state type into the liquid type. Impact of angular frequency and molecular roughness on the transport properties of the nonrotating and rotating systems is analyzed.
Advances in Rotational Seismic Measurements
Energy Technology Data Exchange (ETDEWEB)
Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)
2016-10-19
Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.
Rotational dynamics with Tracker
International Nuclear Information System (INIS)
Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P
2012-01-01
We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)
International Nuclear Information System (INIS)
Perttu, K.; Koppel, A.
1996-01-01
The overall aim of the present seminar was to present and discuss results from the joint Swedish - Estonian energy forestry research activities during the period of 1993-1995 and to publish the papers in a technical report. The results is a publication, presenting interesting methods and results, and is meant partly to serve as the final report of the joint efforts during the period mentioned, partly to be used for future planning of new projects and for application of funding for a continued cooperation. Separate abstracts have been prepared for all of the 17 papers in the report
International Nuclear Information System (INIS)
Wyslocki, J.J.; Pawlik, P.; Wochowski, K.; Kotur, B.; Bodak, O.I.
1996-01-01
The magnetic torque, T, was applied to determine the anisotropy constants K 1 and K 2 of the UFe 6 Al 6 , UFe 9 AlSi 2 and ScFe 10 Si 2 compounds. The mechanism of magnetization reversal processes in these compounds was investigated on the basis of the analysis of the rotational hysteresis energy, W r and rotational hysteresis integral, R, calculated from the magnetic torque curves. Applying the powder pattern method, magnetic domain structures were observed. Moreover, the fundamental parameters of the domain structure were determined. (orig.)
International Nuclear Information System (INIS)
Zheng, Rui; Zheng, Limin; Yang, Minghui; Lu, Yunpeng
2015-01-01
Theoretical studies of the potential energy surface (PES) and bound states are performed for the N 2 –N 2 O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N 2 O monomer is near the N 2 monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency for intermolecular disrotation mode is 23.086 cm −1 , which is in good agreement with the available experimental data of 22.334 cm −1 . A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers 14 N 2 –N 2 O and 15 N 2 –N 2 O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters
Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.
2018-04-01
The discovery of quasars at increasingly large cosmological redshifts may favor "direct collapse" as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.
Energy-Effective Rotation Equipment
Directory of Open Access Journals (Sweden)
V. G. Kascheev
2013-01-01
Full Text Available The article presents invention, which allows to create compact and cheap fog-forming devices for industrial hothouses (plants, greenhouses, storehouses, testing polygons and other Objects. Besides, this invention gives the possibilities to modernize the traversers of gas-water fire-fighting type AGVS-100 or AGVS-150, using turbojet engines. Utilization of fog-forming machines among fire-fighting devices will increase the effectiveness in fire-fighting of forest and industrial Objects and oil fields.
Energy Technology Data Exchange (ETDEWEB)
Hirotani, Kouichi; Pu, Hung-Yi; Lin, Lupin Chun-Che; Inoue, Makoto; Matsushita, Satoki [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei, Taiwan 10617, R.O.C. (China); Chang, Hsiang-Kuang; Kong, Albert K. H. [Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C. (China); Tam, Pak-Hin T., E-mail: hirotani@tiara.sinica.edu.tw [School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082 (China)
2016-12-20
We investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, applying the pulsar outer-gap model to black hole (BH) magnetospheres. During a low accretion phase, the radiatively inefficient accretion flow (RIAF) cannot emit enough MeV photons that are needed to sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma rays via curvature and inverse-Compton (IC) processes. Some of such gamma rays collide with the submillimeter-IR photons emitted from the RIAF to materialize as pairs, which polarize to partially screen the original acceleration electric field. It is found that the gap gamma-ray luminosity increases with decreasing accretion rate. However, if the accretion rate decreases too much, the diminished RIAF soft photon field can no longer sustain a stationary pair production within the gap. As long as a stationary gap is formed, the magnetosphere becomes force-free outside the gap by the cascaded pairs, irrespective of the BH mass. If a nearby stellar-mass BH is in quiescence, or if a galactic intermediate-mass BH is in a very low accretion state, its curvature and IC emissions are found to be detectable with Fermi /LAT and imaging atmospheric Cherenkov telescopes (IACT). If a low-luminosity active galactic nucleus is located within about 30 Mpc, the IC emission from its supermassive BH is marginally detectable with IACT.
Collective rotation from ab initio theory
International Nuclear Information System (INIS)
Caprio, M.A.; Maris, P.; Vary, J.P.; Smith, R.
2015-01-01
Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7–9 Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction. (author)
Relaxation processes in rotational motion
International Nuclear Information System (INIS)
Broglia, R.A.
1986-01-01
At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs
... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...
CONFERENCE: Muon spin rotation
Energy Technology Data Exchange (ETDEWEB)
Karlsson, Erik
1986-11-15
An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.
Le Doeuff, René
2013-01-01
In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives). General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I
Energy Technology Data Exchange (ETDEWEB)
Song, Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Evans, M. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Ng, C. Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Hsu, C.-W. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Jarvis, G. K. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2000-01-15
We have obtained rotationally resolved pulsed-field ionization photoelectron (PFI-PE) spectra for O{sub 2} in the energy range of 17.05-18.13 eV, covering the ionization transitions O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12,N{sup +})(<-)O{sub 2}(X {sup 3}{sigma}{sub g}{sup -},v{sup ''}=0,N{sup ''}). Although these O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}) PFI-PE bands have significant overlaps with vibrational bands for O{sub 2}{sup +}(a {sup 4}{pi}{sub u}) and O{sub 2}{sup +}(X {sup 2}{pi}{sub g}), we have identified all the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) bands by simulation of spectra obtained using supersonically cooled O{sub 2} samples with rotational temperatures {approx_equal}20 and 220 K. While these v{sup +}=0-12 PFI-PE bands represent the first rotationally resolved photoelectron data for O{sub 2}{sup +}(A {sup 2}{pi}{sub u}), the PFI-PE bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) are the first rotationally resolved spectroscopic data for these levels. The simulation also allows the determination of accurate ionization energies, vibrational constants, and rotational constants for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12). The analysis of the PFI-PE spectra supports the conclusion of the previous emission study that the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) states are strongly perturbed by a nearby electronic state. (c) 2000 American Institute of Physics.
International Nuclear Information System (INIS)
Bohr, A.
1977-01-01
History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)
Rotational damping motion in nuclei
International Nuclear Information System (INIS)
Egido, J.L.; Faessler, A.
1991-01-01
The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)
International Nuclear Information System (INIS)
Bohr, A.
1976-01-01
Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra
Alpha Channeling in Rotating Plasma with Stationary Waves
International Nuclear Information System (INIS)
Fetterman, A.; Fisch, N.J.
2010-01-01
An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n θ can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.
Forced vibrations of rotating circular cylindrical shells
International Nuclear Information System (INIS)
Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru
1995-01-01
Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)
Hydrodynamics of rotating superfluids
International Nuclear Information System (INIS)
Chandler, E.A.
1981-01-01
In this thesis, a coarse grained hydrodynamics is developed from the exact description of Tkachenko. To account for the dynamics of the vortex lattice, the macroscopic vortex displacement field is treated as an independent degree of freedom. The conserved energy is written in terms of the coarse-grained normal fluid, superfluid, and vortex velocities and includes an elastic energy associated with deformations of the vortex lattice. Equations of motion consistent with the conservation of energy, entropy and vorticity and containing mutual friction terms arising from microscopic interactions between normal fluid excitations and the vortex lines are derived. When the vortex velocity is eliminated from the damping terms, this system of equations becomes essentially that of BK with added elastic terms in the momentum stress tensor and energy current. The dispersion relation and damping of the first and second sound modes and the two transverse modes sustained by the system are investigated. It is shown that mutual friction mixes the transverse modes of the normal and superfluid components and damps the transverse mode associated with the relative velocity of these components, making this wave evanescent in the plane perpendicular to the rotation axis. The wave associated with transverse motion of the total mass current is a generalized Tkachenko mode, whose dispersion relation reduces to that derived by Tkachenko wave when the wavevector lies in this plane
International Nuclear Information System (INIS)
Hill, K.W.; Bitter, M.L.; Broennimann, Ch.; Eikenberry, E.F.; Ince-Cushman, A.; Lee, S.G.; Rice, J.E.; Scott, S.; Barnsley, R.
2008-01-01
A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of T i and ν φ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER
Energy Technology Data Exchange (ETDEWEB)
Wirkner, Ronny
2010-12-01
The thesis has to the content the latest stand and the possibilities of further development of wood energy production by short rotation coppice (SRC). After analyzing the development of this relatively new option of the management of fast growing tree species and their possibilities, the associated legal bases are being analyzed. In addition to related agricultural land, other options will be considered to establish land (forest, fallow land). Weaknesses in delimitation and promotion, especially at country level are discussed. There follows a detailed consideration of the economical and ecological contemplation of wood agricultural cultivation, as well as the basics of the management including the raw material supply. The analyzed results serve as a basis for running interviews with experts of the subject fast growing tree species. The results of the interviews show that SRC mainly as an opportunity for long-term wood energy supply and establishment of regional circuits is seen with emphasis on the agricultural sector, but in this context there are lots of deficits on side of the management technology, basic conditions and other establishment barriers that we are confront with. After overcoming the remaining start-up difficulties however the chances are good to expand the energy wood production in short rotation forestry in an economically viable, ecologically profitable and socially acceptable way and therewith contribute to the diversification of agricultural production and relief of multifunctional forest management. (orig.)
The rotating converter GKN II starts operation
International Nuclear Information System (INIS)
Jergas, E.
1989-01-01
At the beginning of 1989 the energy supply and consumption of the 110-kV-railway mains has changed considerably with starting the rotating converter of the German Federal Railways (DB) in the joint nuclear power station Neckar GmbH (GKN) block II. A description is given of the planned utilization of the rotating converters at baseload operation and possibilities for optimal energy use are shown. (orig.) [de
Alpha Channeling in a Rotating Plasma
International Nuclear Information System (INIS)
Abraham J. Fetterman; Nathaniel J. Fisch
2008-01-01
The wave-particle α-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with α particles in a mirror machine with E x B rotation to diffuse the α particles along constrained paths in phase space. Of major interest is that the α-particle energy, in addition to amplifying the RF waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity
α Channeling in a Rotating Plasma
International Nuclear Information System (INIS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2008-01-01
The wave-particle α-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with α particles in a mirror machine with ExB rotation to diffuse the α particles along constrained paths in phase space. Of major interest is that the α-particle energy, in addition to amplifying the rf waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity
Parameterization of rotational spectra
International Nuclear Information System (INIS)
Zhou Chunmei; Liu Tong
1992-01-01
The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented
Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.
2013-01-01
This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:
Rotational characterization of methyl methacrylate: Internal dynamics and structure determination
Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe
2018-01-01
Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.
Directory of Open Access Journals (Sweden)
Stergioulas Nikolaos
2003-01-01
Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.
Secular stability of rotating stars
International Nuclear Information System (INIS)
Imamura, J.N.; Friedman, J.L.; Durisen, R.H.
1984-01-01
In this work, we calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. We consider polytropic indices ranging from 1 to 3 and several angular momentum distributions. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m = 2 mode for the Maclaurin spheroids (n = O) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983)
DEFF Research Database (Denmark)
Gramkow, Claus
1999-01-01
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
Katsikadakos, D; Hardalupas, Y; Taylor, A M K P; Hunt, P A
2012-07-21
Hydrogen abstraction reactions by the methyl radical from n-butanol have been investigated at the ROCBS-QB3 level of theory. Reaction energies and product geometries for the most stable conformer of n-butanol (ROH) have been computed, the reaction energies order α channel more stable than the β-channel? Why do the two C(γ)-H H-abstraction TS differ in energy? The method and basis set dependence of the TS barriers is investigated. The Boltzmann probability distribution for the n-butanol conformers suggests that low energy conformers are present in approximately equal proportions to the most stable conformer at combustion temperatures where ĊH(3) radicals are present. Thus, the relative significance of the various H-abstraction channels has been assessed for a selection of higher energy conformers (ROH'). Key results include finding that higher energy n-butanol conformers (E(ROH') > E(ROH)) can generate lower energy product radicals, E(ROH') < E(ROH). Moreover, higher energy conformers can also have a globally competitive TS energy for H-abstraction.
Rotating quantum Gaussian packets
International Nuclear Information System (INIS)
Dodonov, V V
2015-01-01
We study two-dimensional quantum Gaussian packets with a fixed value of mean angular momentum. This value is the sum of two independent parts: the ‘external’ momentum related to the motion of the packet center and the ‘internal’ momentum due to quantum fluctuations. The packets minimizing the mean energy of an isotropic oscillator with the fixed mean angular momentum are found. They exist for ‘co-rotating’ external and internal motions, and they have nonzero correlation coefficients between coordinates and momenta, together with some (moderate) amount of quadrature squeezing. Variances of angular momentum and energy are calculated, too. Differences in the behavior of ‘co-rotating’ and ‘anti-rotating’ packets are shown. The time evolution of rotating Gaussian packets is analyzed, including the cases of a charge in a homogeneous magnetic field and a free particle. In the latter case, the effect of initial shrinking of packets with big enough coordinate-momentum correlation coefficients (followed by the well known expansion) is discovered. This happens due to a competition of ‘focusing’ and ‘de-focusing’ in the orthogonal directions. (paper)
Wave induced supersonic rotation in mirrors
Fetterman, Abraham
2010-11-01
Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).
International Nuclear Information System (INIS)
Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel
2011-01-01
This paper reports computational results of the total cross sections for electron impact on H 2 CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy (∼15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.
Rotations with Rodrigues' vector
International Nuclear Information System (INIS)
Pina, E
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.
DEFF Research Database (Denmark)
Gramkow, Claus
2001-01-01
In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
Sabry, Hanan; Sherif, Ahmed; Gadelhak, Mahmoud; Aly, Mohamed
2014-01-01
Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance
Helical spin rotators and snakes for RHIC
International Nuclear Information System (INIS)
Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.
1995-01-01
The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented
Analysis of counter-rotating wind turbines
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær
2007-01-01
This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier......-Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been...
SEBS validation in a Spanish rotating crop
Pardo, N.; Sanchez, M.L.; Timmermans, J.; Su, Zhongbo; Perez, I.A.; Garcia, M.A.
2014-01-01
This paper focuses on calculating Evaporative Fraction (EF) and energy balance components, applying the Surface Energy Balance System (SEBS) model combined with remote sensing products and meteorological data over an agricultural rotating cropland from 2008 to 2011. The model is validated by
Wave-particle interactions in rotating mirrorsa)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-05-01
Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Wave-particle Interactions In Rotating Mirrors
Energy Technology Data Exchange (ETDEWEB)
Abraham J. Fetterman and Nathaniel J. Fisch
2011-01-11
Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Wave-particle interactions in rotating mirrors
International Nuclear Information System (INIS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-01-01
Wave-particle interactions in ExB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Wave-particle Interactions In Rotating Mirrors
International Nuclear Information System (INIS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-01-01
Wave-particle interactions in E-B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Free and binary rotation of polyatomic molecules
International Nuclear Information System (INIS)
Konyukhov, V K
2003-01-01
A modification of the quantum-mechanical theory of rotation of polyatomic molecules (binary rotation) is proposed, which is based on the algebra and representations of the SO(4) group and allows the introduction of the concept of parity, as in atomic spectroscopy. It is shown that, if an asymmetric top molecule performing binary rotation finds itself in a spatially inhomogeneous electric field, its rotational levels acquire the additional energy due to the quadrupole moment. The existence of the rotational states of polyatomic molecules that cannot transfer to the free rotation state is predicted. In particular, the spin isomers of a water molecule, which corresponds to such states, can have different absolute values of the adsorption energy due to the quadrupole interaction of the molecule with a surface. The difference in the adsorption energies allows one to explain qualitatively the behaviour of the ortho- and para-molecules of water upon their adsorption on the surface of solids in accordance with experimental data. (laser applications and other topics in quantum electronics)
Beainy, Georges; Cerba, Tiphaine; Bassani, Franck; Martin, Mickaël; Baron, Thierry; Barnes, Jean-Paul
2018-05-01
Time of flight secondary ion mass spectrometry (ToF-SIMS) is a well-adapted analytical method for the chemical characterization of concentration profiles in layered or multilayered materials. However, under ion beam bombardment, initially smooth material surface becomes morphologically unstable. This leads to abnormal secondary ion yields and depth profile distortions. In this contribution, we explore the surface topography and roughening evolution induced by O2+ ion bombardment on GaSb/InAs multilayers. We demonstrate the formation of nanodots and ripples patterning according to the ion beam energy. Since the latter are undesirable for ToF-SIMS analysis, we managed to totally stop their growth by using simultaneously sample rotation and oxygen flooding. This unprecedented coupling between these two latter mechanisms leads to a significant enhancement in depth profiles resolution.
International Nuclear Information System (INIS)
Binzel, R.P.; Farinella, P.
1989-01-01
Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties
DEFF Research Database (Denmark)
Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard
2013-01-01
This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...
Superconducting rotating machines
International Nuclear Information System (INIS)
Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.
1975-01-01
The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed
Fundamental Relativistic Rotator
International Nuclear Information System (INIS)
Staruszkiewicz, A.
2008-01-01
Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)
Le Vine, David
2016-01-01
Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).
Units of rotational information
Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping
2017-12-01
Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.
Fluctuation analysis of rotational spectra
International Nuclear Information System (INIS)
Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.
1996-01-01
The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)
International Nuclear Information System (INIS)
Ruben, G.; Treder, H.J.
1987-01-01
For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected
International Nuclear Information System (INIS)
Sevec, J.B.
1978-01-01
A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal
Paschalidis, Vasileios; Stergioulas, Nikolaos
2017-01-01
Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.
Influence of defects on the vibrations of rotating systems
International Nuclear Information System (INIS)
Lazarus, A.
2008-01-01
For high rotation speeds, the imperfections (cracks, anisotropy...) of rotating machinery of the energy sector lead to a specific vibratory behavior which can damage the machine. The simulation of rotating machinery are usually realized for systems without defect. The aim of this thesis is to understand the influence of defects and to propose an algorithm to predict the dynamical behavior. In a first part the author studies the simplified rotating oscillators to propose a numerical method in order to taking into account the dynamic of these systems. This method is then applied to real rotating machinery with the Cast3m software. The numerical results are validated with experiments. (A.L.B.)
g-Factors of magnetic-rotational states in {sup 85}Zr
Energy Technology Data Exchange (ETDEWEB)
Yuan Daqing; Zheng Yongnan; Zhou Dongmei; Zuo Yi; Fan Ping; Liu Meng; Wu Xiaoguang; Zhu Lihua; Li Guangsheng; Xu Guoji; Fan Qiewen; Zhang Xizhen; Zhu Shengyun, E-mail: zhusy@ciae.ac.cn [China Institute of Atomic Energy (China)
2007-11-15
The g-factors of the magnetic-rotational intra-band states in {sup 85}Zr have been measured by the TMF-IMPAD method for the first time. The configuration {pi} (g{sub 9/2}){sub 8}{sup 2} x {nu} ( f{sub 7/2}) is established for the band. The measured g-factors are in good agreement with those calculated by the semi-classical model. The decrease of both g-factors and shears angles along the band shows that the total angular momentum is generated by the sheras effect of a step-by-step alignment of the valence protons and neutrons. The rapid neutron alignment leads to a decrease of g-factors along the band. The shears angle of the band-head is great than 90{sup o}, which implies that the spin-dependent interaction as well as the residul interaction might be involved in the shears mechanism in {sup 85}Zr.
Energy Technology Data Exchange (ETDEWEB)
Twomey, Janet M. [Wichita State Univ., Wichita, KS (United States)
2010-04-30
An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life
Quantitative rotating frame relaxometry methods in MRI.
Gilani, Irtiza Ali; Sepponen, Raimo
2016-06-01
Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rotation, Stability and Transport
Energy Technology Data Exchange (ETDEWEB)
Connor, J. W.
2007-07-01
Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic
Metin M. Cosgel; Thomas J. Miceli
1998-01-01
A fundamental principle of economics with which Adam Smith begins The Wealth of Nations is the division of labor. Some firms, however, have been pursuing a practice called job rotation, which assigns each worker not to a single and specific task but to a set of several tasks among which he or she rotates with some frequency. We examine the practice of job rotation as a serious alternative to specialization, with three objectives. The first is to consider current and historical examples of job...
International Nuclear Information System (INIS)
von Haeften, K.; von Pietrowski, R.; Moeller, T.; Joppien, M.; Moussavizadeh, L.; de Castro, A.R.
1997-01-01
Discrete visible and near-infrared luminescence of a beam of photoexcited helium clusters is reported. The emission lines are attributed to free helium atoms and molecules desorbing from clusters in electronically excited states. Depending on the excitation energy, various atomic and molecular singlet and triplet states are involved in the relaxation process. With increasing cluster size the intensity of molecular transitions becomes dominant. The temperature of ejected molecules could be estimated to T vib ∼2500 K and T rot ∼450 K and is much higher than that of the cluster itself. copyright 1997 The American Physical Society
... this page: //medlineplus.gov/ency/patientinstructions/000358.htm Rotator cuff - self-care To use the sharing features on ... and shoulder exercises may help ease your symptoms. Rotator Cuff Problems Common rotator cuff problems include: Tendinitis , which ...
Rotating bubble and toroidal nuclei and fragmentation
International Nuclear Information System (INIS)
Royer, G.; Haddad, F.; Jouault, B.
1995-01-01
The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)
Tilting mode in rigidly rotating field-reversed configurations
International Nuclear Information System (INIS)
Clemente, R.A.; Milovich, J.L.
1983-01-01
The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant
DEFF Research Database (Denmark)
Pawlowski, F; Jorgensen, P; Olsen, Jeppe
2002-01-01
A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...
International Nuclear Information System (INIS)
Meister, F.; Ott, F.
2002-01-01
This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)
Rotational distributions of molecular photoions following resonant excitation
International Nuclear Information System (INIS)
Poliakoff, E.D.; Chan, J.C.K.; White, M.G.
1986-01-01
We demonstrate that the photoelectron energy mediates the rotational energy distribution of N + 2 ions created by photoionization, and conversely, that rotational energy determinations probe resonant excitation in molecular photoionization. Experimentally, this is accomplished by monitoring the dispersed fluorescence from N + 2 (B 2 Σ + /sub u/) photoions to determine their rotational energy distribution. These results demonstrate that while dipole selection rules constrain the total angular momentum of the electron--ion complex, the partitioning of angular momentum between the photoelectron and photoion depends on the photoejection dynamics. Implications for photoionization and electron impact ionizatin studies are discussed
International Nuclear Information System (INIS)
Meister, F.
2001-01-01
This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)
International Nuclear Information System (INIS)
Tozini, A.V.
1984-01-01
A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt
Rotation Invariance Neural Network
Li, Shiyuan
2017-01-01
Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...
Short rotation Wood Crops Program
Energy Technology Data Exchange (ETDEWEB)
Wright, L.L.; Ehrenshaft, A.R.
1990-08-01
This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.
Secular stability of rotating stars
International Nuclear Information System (INIS)
Imamura, J.N.; Friedman, J.L.; Durisen, R.H.
1984-01-01
In this work, the authors calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. Polytropic indices ranging from 1 to 3 and several angular momentum distributions are considered. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m - 2 mode for the Maclaurin spheroids (n = 0) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983). 16 references, 2 tables
International Nuclear Information System (INIS)
Miloni, R.P.
2001-01-01
This article describes an innovative solar building in Weiz, Austria, that uses passive solar technologies, photovoltaics and a ground-coupled heat pump to cover its minimal energy requirements. The house, which follows the sun by rotating around its central axis, is described in detail, including its climatic design and its 'plus-energy' concept. Details are also given on the materials used in the house's construction and the functioning of its thermal insulation. The various operating modes of the house from the systems point of view are described for differing seasons and climatic extremes. Marketing aspects for this standardised house, featuring personal-computer-based on-line definition of facade cladding, fittings, photovoltaic power, furnishings etc. and real-time rendering of the house are also discussed
Energy Technology Data Exchange (ETDEWEB)
Fallone, B; Keyvanloo, A; Burke, B; St Aubin, J; Baillie, D; Wachowicz, K; Warkentin, B; Steciw, S [Cross Cancer Institute, Edmonton, AB (Canada)
2016-06-15
Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth of 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)
Rotating positron tomographs revisited
International Nuclear Information System (INIS)
Townsend, D.; Defrise, M.; Geissbuhler, A.
1994-01-01
We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)
Rotational Motion Control of a Spacecraft
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2001-01-01
The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...
Rotational motion control of a spacecraft
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2003-01-01
The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...
International Nuclear Information System (INIS)
Bobin, J.L.
1996-01-01
Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs
Thermodynamics in rotating systems—analysis of selected examples
International Nuclear Information System (INIS)
Güémez, J; Fiolhais, M
2014-01-01
We solve a set of selected exercises on rotational motion requiring a mechanical and thermodynamical analysis. When non-conservative forces or thermal effects are present, a complete study must use the first law of thermodynamics together with Newton’s second law. The latter is here better expressed in terms of an ‘angular’ impulse–momentum equation (Poinsot–Euler equation), or, equivalently, in terms of a ‘rotational’ pseudo-work–energy equation. Thermodynamical aspects in rotational systems, when e.g. frictional forces are present or when there is a variation of the rotational kinetic energy due to internal sources of energy, are discussed. (paper)
Foland, Andrew Dean
2007-01-01
Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.
DEFF Research Database (Denmark)
Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel
1997-01-01
further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
Rotating bubble membrane radiator
Webb, Brent J.; Coomes, Edmund P.
1988-12-06
A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.
Quantization in rotating co-ordinates revisited
International Nuclear Information System (INIS)
Hussain, F.; Qadir, A.
1982-07-01
Recent work on quantization in rotating co-ordinates showed that no radiation would be seen by an observer rotating with a constant angular speed. This work used a Galilean-type co-ordinate transformation. We show that the same result holds for a Lorentz-type co-ordinate system, in spite of the fact that the metric has a co-ordinate singularity at rΩ = 1. Further, we are able to define positive and negative energy modes for a particular case of a non-static, non-stationary metric. (author)
Rotation and Accretion Powered Pulsars
Energy Technology Data Exchange (ETDEWEB)
Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)
2008-03-07
Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly
Rotation and Accretion Powered Pulsars
International Nuclear Information System (INIS)
Kaspi, V M
2008-01-01
Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you
SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS
Energy Technology Data Exchange (ETDEWEB)
Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J
2010-12-20
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Rotations and angular momentum
International Nuclear Information System (INIS)
Nyborg, P.; Froyland, J.
1979-01-01
This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included
Negative Rotation Cinch Strap.
This project discloses an improved unitary parachute torso harness, having a single fastening means, wherein an auxillary tightening strap is...attached to the groin straps of said harness. Said auxillary straps are used to prevent torso rotation or harness slippage and to prevent harness elongation
International Nuclear Information System (INIS)
Jensen, B.
1993-06-01
The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs
Connors, G. Patrick
Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…
Hunter, Walter M.
This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…
International Nuclear Information System (INIS)
Grinin, V.P.
1982-01-01
It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion
Directory of Open Access Journals (Sweden)
Paulo Moraes Agnollitto
2016-02-01
Full Text Available Abstract The present report describes a case where typical findings of traumatic glenohumeral interposition of rotator cuff stumps were surgically confirmed. This condition is a rare complication of shoulder trauma. Generally, it occurs in high-energy trauma, frequently in association with glenohumeral joint dislocation. Radiography demonstrated increased joint space, internal rotation of the humerus and coracoid process fracture. In addition to the mentioned findings, magnetic resonance imaging showed massive rotator cuff tear with interposition of the supraspinatus, infraspinatus and subscapularis stumps within the glenohumeral joint. Surgical treatment was performed confirming the injury and the rotator cuff stumps interposition. It is important that radiologists and orthopedic surgeons become familiar with this entity which, because of its rarity, might be neglected in cases of shoulder trauma.
Ring wormholes via duality rotations
Directory of Open Access Journals (Sweden)
Gary W. Gibbons
2016-09-01
Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.
Slowly braked, rotating neutron stars
Sato, H.
1975-01-01
A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.
Rotational Energy in a Physical Pendulum
Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.
2014-01-01
Smartphone usage has expanded dramatically in recent years worldwide. This revolution also has impact in undergraduate laboratories where different experiences are facilitated by the use of the sensors usually included in these devices. Recently, in several articles published in the literature, the use of "smartphones" has been proposed…
Rotational discontinuities and the structure of the magnetopause
International Nuclear Information System (INIS)
Swift, D.W.; Lee, L.C.
1983-01-01
Symmetric and asymmetric rotational discontinuities are studied by means of a one-dimensional computer simulation and by single-particle trajectory calculations. The numerical simulations show the symmetric rotation to be stable for both ion and electron senses of rotation with a thickness of the order of a few ion gyroradii when the rotation angle of the tangential field is 180 0 or less. Larger rotation angles tend to be unstable. In an expansive discontinuity, when the magnetic field on the downstream side of the discontinuity is larger, an expanding transition layer separating the high-field from a low-field region develops on the downstream side, and a symmetric rotational discontinuity forms at the upstream edge. The implication of these results for magnetopause structure and energy flow through the magnetopause is described
Robertson, William C
2002-01-01
Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...
Public perceptions of short rotation coppice
International Nuclear Information System (INIS)
Sadler, R.
1993-01-01
The ''Wood as a Fuel'' programme - which funded the research covered in this report - is one of the renewable energy development programmes managed by ETSU (the Energy Technology Support Unit) for the Department of Trade and Industry. This national programme is developing the production and use of fuel wood from two main sources - forestry residues and short rotation coppice. Wood fuel from short rotation coppice offers the greater potential - energy equivalent to 10 mtce (million tonnes of coal equivalent) could be produced annually from 1 million hectares of land. This programme is now well established, with ten trial coppice sites in operation, plus some 40 others. A number of successfully willow and poplar clones have been selected for different soil conditions, and machinery for planting and harvesting has been developed. Local consortia of farmers and users are being established to provide long-term markets for the wood fuel produced. (author)
Analytic vibration-rotational matrix elements for diatomic molecules
International Nuclear Information System (INIS)
Bouanich, J.P.
1987-01-01
The vibration-rotational matrix elements for infrared or Raman transitions vJ → v'J' of diatomic molecules are calculated for powers of the reduced displacement X from parameters of the Dunham potential-energy function. (orig.)
Thermodynamic properties of rotating trapped ideal Bose gases
International Nuclear Information System (INIS)
Li, Yushan; Gu, Qiang
2014-01-01
Ultracold atomic gases can be spined up either by confining them in rotating frame, or by introducing “synthetic” magnetic field. In this paper, thermodynamics of rotating ideal Bose gases are investigated within truncated-summation approach which keeps to take into account the discrete nature of energy levels, rather than to approximate the summation over single-particle energy levels by an integral as it does in semi-classical approximation. Our results show that Bose gases in rotating frame exhibit much stronger dependence on rotation frequency than those in “synthetic” magnetic field. Consequently, BEC can be more easily suppressed in rotating frame than in “synthetic” magnetic field.
Duality rotations for interacting fields
International Nuclear Information System (INIS)
Gaillard, M.K.; Zumino, Bruno
1981-05-01
We study the properties of interacting field theories which are invariant under duality rotations which transform a vector field strength into its dual. We consider non-abelian duality groups and find that the largest group for n interacting field strengths is the non-compact Sp(2n,R), which has U(n) as its maximal compact subgroup. We show that invariance of the equations of motion requires that the Lagrangian change in a particular way under duality. We use this property to demonstrate the existence of conserved currents, the invariance of the energy momentum tensor, and also in the general construction of the Lagrangian. Finally we comment on the existence of zero mass spin one bound states in N=8 supergravity, which possesses a non-compact E 7 dual invariance
Rotational structures in 174Ta
International Nuclear Information System (INIS)
Hojman, Daniel; Kreiner, A.J.; Davidson, Miguel
1989-01-01
The nucleus 174 Ta has been studied for the first time through the fusion-evaporation reaction 169 Tm ( 9 Be,4n) using a 4 mg/cm 2 self-supporting Tm foil in the 40 to 65 MeV bombarding energy range (the 4n channel was found to peak at 50 MeV). The experiments comprised γ and X-ray singles in beam and activity spectra, γ-γ-t coincidences (one of the counters was Compton suppressed) and γ-ray angular distributions. The results obtained allowed the construction of a high-spin level scheme. This scheme, which resembles that of 172 Ta, comprises several rotational bands which correspond to different couplings of the valence nucleons. One of these structures, the doubly decoupled band (DDB), is particularly interesting because it is the first observed case of a DDB based on an I π =3 + state. (Author) [es
COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Energy Technology Data Exchange (ETDEWEB)
Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)
2014-06-10
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.
Quark Deconfinement in Rotating Neutron Stars
Directory of Open Access Journals (Sweden)
Richard D. Mellinger
2017-01-01
Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.
3 QP plus rotor model and high spin states
International Nuclear Information System (INIS)
Mathur, Tripti
1995-01-01
Nuclear models are approximate methods to describe certain properties of a large number of nuclei. In this paper details of 3 QP (three quasi particle) plus rotor model and high spin state are discussed. The band head energies for the 3 QP rotational bands for 157 Ho and 159 Tm are also given. 5 refs., 8 figs
International Nuclear Information System (INIS)
1975-10-01
On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)
Torriti, Jacopo
2016-01-01
The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....
Rotator Cuff Injuries - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...
International Nuclear Information System (INIS)
2003-01-01
In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)
Energy Technology Data Exchange (ETDEWEB)
Deloncle, I.
1989-10-23
In this study we have built the quadrupolar collective Bohr Hamiltonian in a purely microscopic way by using an approximation of the time-dependant Hartree-Fock adiabatic approach. The purpose of this work was to obtain a quantitative description of the collective properties in the low energy range of intermediate and heavy nuclei by using a 2-body effective interaction of Skyrme-type. We consider low energy processes as dynamic regimes in which the collective movement is adiabatic when compared with modes associated to individual freedom. In the N-body solution we propose, we have assumed that: -) a mean field exists at any moment, -) some collective variables exist whose temporal variations include all the dynamics, and -) the collective movement is adiabatic. This work is a microscopic formulation and an efficient approach to resolve the Bohr and Mottelson unified model. Low energy spectra have been computed for 4 nuclei: Ge{sup 74}, Se{sup 76}, Cd{sup 110} and Pt{sup 186} and they agree well with experimental data.
International Nuclear Information System (INIS)
Harris, A.W.; Young, J.W.
1983-01-01
The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values
International Nuclear Information System (INIS)
Garibaldi, J.L.; Logan, C.M.
1982-01-01
An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an oring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers
International Nuclear Information System (INIS)
Ziatkin, M.B.; Iannotti, J.P.; Roberts, M.; Dalinka, M.K.; Esterhai, J.L.; Kressel, H.Y.; Lenkinski, R.E.
1988-01-01
A dual-surface-coil array in a Helmholtz configuration was used to evaluate th rotator cuff in ten normal volunteers and 44 patients. Studies were performed with a General Electric 1.5-T MR imager. Thirty-two patients underwent surgery, 25 of whom also underwent arthrography. In comparison with surgery, MR imaging was more sensitive than arthrography for rotator cuff tears (91% vs 71%). The specificity and accuracy of MR imaging were 88% and 91%. The accuracy increased with use of an MR grading system. MR findings correlated with surgical findings with regard to the size and site of tears. MR findings of cuff tears were studied with multivariate analysis. Correlation was also found between a clinical score, the MR grade, and the clinical outcome
DEFF Research Database (Denmark)
Rasmusson, Allan
2009-01-01
it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form...
Rotational spectrum of tryptophan
Energy Technology Data Exchange (ETDEWEB)
Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)
2014-05-28
The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.
Power and momentum relations in rotating magnetic field current drive
Energy Technology Data Exchange (ETDEWEB)
Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences
1984-01-01
The use of rotating magnetic fields (RMF) to drive steady currents in plasmas involves a transfer of energy and angular momentum from the radio frequency source feeding the rotating field coils to the plasma. The power-torque relationships in RMF systems are discussed and the analogy between RMF current drive and the polyphase induction motor is explained. The general relationship between the energy and angular momentum transfer is utilized to calculate the efficiency of the RMF plasma current drive. It is found that relatively high efficiencies can be achieved in RMF current drive because of the low phase velocity and small slip between the rotating field and the electron fluid.
Calculation of restricted rotational states in the methyl group
Ozaki, Y
2002-01-01
A methyl group attached to a molecule in the solid phase has a certain amount of hindrance in its rotational motion. The rotational potential can usually be expressed by the 3rd-order and the 6th-order terms of periodic functions. In the intermediate region with respect to the field strength and also the degree of mixing of two components, much variety appears in the structure of the rotational energy levels. The energy values correspond to the various molecular surroundings. The matrix elements are also derived, which yield the intensity of inelastic neutron scattering spectra. One example of calculated intensities is given. (orig.)
Rotator cuff tendon connections with the rotator cable.
Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo
2017-07-01
The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.
Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.
Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C
2014-01-01
Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.
Broadband Rotational Spectroscopy
Pate, Brooks
2014-06-01
The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De
The rotational spectrum of IBr
International Nuclear Information System (INIS)
Tiemann, E.; Moeller, T.
1975-01-01
The microwave spectrum of IBr was measured in the low rotational transition J = 3 → 2 in order to resolve the hyperfine structure as completely as possible. Rotational constants and quadrupole coupling constants were derived for both nuclei. The observation of the rotational spectrum in different vibrational states yields the vibrational dependence of the rotational constants as well as of the hyperfine parameters. The Dunham potential coefficients α 0 , α 1 , α 2 , α 3 are given. (orig.) [de
International Nuclear Information System (INIS)
Lee, S.Y.
1990-01-01
The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs
Laboratory tests of catastrophic disruption of rotating bodies
Morris, A. J. W.; Burchell, M. J.
2017-11-01
The results of catastrophic disruption experiments on static and rotating targets are reported. The experiments used cement spheres of diameter 10 cm as the targets. Impacts were by mm sized stainless steel spheres at speeds of between 1 and 7.75 km s-1. Energy densities (Q) in the targets ranged from 7 to 2613 J kg-1. The experiments covered both the cratering and catastrophic disruption regimes. For static, i.e. non-rotating targets the critical energy density for disruption (Q*, the value of Q when the largest surviving target fragment has a mass equal to one half of the pre-impact target mass) was Q* = 1447 ± 90 J kg-1. For rotating targets (median rotation frequency of 3.44 Hz) we found Q* = 987 ± 349 J kg-1, a reduction of 32% in the mean value. This lower value of Q* for rotating targets was also accompanied by a larger scatter on the data, hence the greater uncertainty. We suggest that in some cases the rotating targets behaved as static targets, i.e. broke up with the same catastrophic disruption threshold, but in other cases the rotation helped the break up causing a lower catastrophic disruption threshold, hence both the lower value of Q* and the larger scatter on the data. The fragment mass distributions after impact were similar in both the static and rotating target experiments with similar slopes.
CdS films deposited by chemical bath under rotation
International Nuclear Information System (INIS)
Oliva-Aviles, A.I.; Patino, R.; Oliva, A.I.
2010-01-01
Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl 2 , KOH, NH 4 NO 3 and CS(NH 2 ) 2 as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.
CdS films deposited by chemical bath under rotation
Energy Technology Data Exchange (ETDEWEB)
Oliva-Aviles, A.I., E-mail: aoliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)
2010-08-01
Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.
Nuclear elasticity applied to giant resonances of fast rotating nuclei
International Nuclear Information System (INIS)
Jang, S.; Bouyssy, A.
1987-06-01
Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given
CISM Course on Rotating Fluids
1992-01-01
The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.
COMMISSIONING SPIN ROTATORS IN RHIC
International Nuclear Information System (INIS)
MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.
2003-01-01
During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX
Nonresonant Faraday rotation in glassy semiconductors
van den Keybus, P.; Grevendonk, W.
1986-06-01
Nonresonant interband Faraday rotation in amorphous semiconductors, as a function of photon energy, may be described by an equation derived for direct transitions in crystalline semiconductors. In this paper it is shown how this equation may be obtained for the former case also, assuming a parabolic density of states function N(E) and a correlation between valence- and conduction-band states. The analysis of experiments on chalcogenide glasses reveals a Faraday-rotation energy gap EFRg that is significantly larger than the optical gap Eoptg. The effect is attributed to transitions between extended states, so that it is meaningful to compare EFRg with the mobility gap Eμg. For oxide glasses both gaps are comparable but for chalcogenide glasses EFRg is too large by a few tenths of 1 eV.
Semiclassical shell structure in rotating Fermi systems
International Nuclear Information System (INIS)
Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.
2010-01-01
The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.
Millimetre Wave Rotational Spectrum of Glycolic Acid
Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa; Charnley, Steven B.
2016-01-01
The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(exp -1) have been measured and their analysis is reported. The data sets for the ground state, v21 = 1, and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v21 mode is close to 100 cm(exp -1). The existence of the less stable AAT conformer in the near 50 C sample used in our experiment was also confirmed and additional transitions have been measured.
Rotational stabilization of q < 1 modes
International Nuclear Information System (INIS)
Waelbroeck, F.L.; Aydemir, A.Y.
1996-01-01
Analyses of high performance discharges with central safety factor below unity have shown that the ideal Magnetohydrodynamic stability threshold for the n=1 kink mode is often violated with impunity. For TFTR (Tokamak Fusion Test Reactor) supershots, the experimental observations can be explained by diamagnetic stabilization of the reconnecting model provided that the fluid free energy is suitably reduced by trapped particle effects. For the broader profiles typical of other high confinement regimes, however, diamagnetic effects cannot account for the experimental results. Furthermore, there is evidence that the Mercier stability condition can also be violated in some cases. Here, we show that toroidal rotation of the plasma can stabilize the kink mode even in the presence of resistivity in configurations that would otherwise be ideally unstable. Two effects can be distinguished. The first effect consists in a reduction of the ideal driving energy. This can be understood in view of the fact that, to a good approximation, the internal kink is a rigid body displacement combining a tilt of the plasma inside the q = 1 surface with a translation along the tilt axis. In the presence of rotation, this displacement must be accompanied by a precessional motion so as to conserve angular momentum. The kinetic energy of the precessional motion must be extracted from the energy driving the displacement. The second effect of rotation is to resolve the Alfven singularity. This is a consequence of the pressure perturbation caused by the equilibrium variation of the entropy within the flux surfaces. It results in the stabilization of resistive as well as weak ideal instabilities, including Mercier modes. For rotationally stabilized equilibria, it also implies the presence of a neutrally stable mode with frequency of the order of the growth rate of the internal kink
Spin Tunneling in a Rotating Nanomagnet
O'Keeffe, Michael; Chudnovsky, Eugene; Lehman College Theoretical Condensed Matter Physics Team
2011-03-01
We study spin tunneling in a magnetic nanoparticle with biaxial anisotropy that is free to rotate about its anisotropy axis. Exact instanton of the coupled equations of motion is found that connects degenerate classical energy minima. We show that mechanical freedom of the particle renormalizes magnetic anisotropy and increases the tunnel splitting. M. F. O'Keeffe and E. M. Chudnovsky, cond-mat, arXiv:1011.3134.
DEFF Research Database (Denmark)
Fogedby, Hans C.; Imparato, Alberto
2018-01-01
to a directed rotary motion. At variance with the classical case, the thermal fluctuations in the baths give rise to a non-vanishing average torque contribution; this is a genuine quantum effect akin to the Casimir effect. In the steady state the heat current flowing between the two baths is systematically......, the rotator cannot work either as a heat pump or as a heat engine. We finally use our exact results to extend an ab initio quantum simulation algorithm to the out-of-equilibrium regime. Copyright (C) EPLA, 2018...
International Nuclear Information System (INIS)
Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.
1984-01-01
In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors
Rotational anomalies without anyons
International Nuclear Information System (INIS)
Hagen, C.R.
1985-01-01
A specific field theory is proposed in two spatial dimensions which has anomalous rotational properties. Although this might be expected to lead to a concrete realization of what Wilczek refers to as the anyon, it is shown by utilizing the transformation properties of the system and the statistics of the underlying charge fields that anyonic interpolations between bosons and fermions do not occur. This leads to the suggestion that anyons inferred from semiclassical considerations will not survive the transition to a fully relativistic field theory
Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms
Zhang, Guofeng; Zhu, Hanjie
2015-01-01
The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the ...
Transitions in rapidly rotating convection dynamos
Tilgner, A.
2013-12-01
It is commonly assumed that buoyancy in the fluid core powers the geodynamo. We study here the minimal model of a convection driven dynamo, which is a horizontal plane layer in a gravity field, filled with electrically conducting fluid, heated from below and cooled from above, and rotating about a vertical axis. Such a plane layer may be viewed as a local approximation to the geophysically more relevant spherical geometry. The numerical simulations have been run on graphics processing units with at least 960 cores. If the convection is driven stronger and stronger at fixed rotation rate, the flow behaves at some point as if it was not rotating. This transition shows in the scaling of the heat transport which can be used to distinguish slow from rapid rotation. One expects dynamos to behave differently in these two flow regimes. But even within the convection flows which are rapidly rotating according to this criterion, it will be shown that different types of dynamos exist. In one state, the magnetic field strength obeys a scaling indicative of a magnetostrophic balance, in which the Lorentz force is in equilibrium with the Coriolis force. The flow in this case is helical. A different state exists at higher magnetic Reynolds numbers, in which the magnetic energy obeys a different scaling law and the helicity of the flow is much reduced. As one increases the Rayleigh number, all other parameters kept constant, one may find both types of dynamos separated by an interval of Rayleigh numbers in which there are no dynamos at all. The effect of these transitions on energy dissipation and mean field generation have also been studied.
Low-Frequency Rotation of Surface Winds over Canada
Directory of Open Access Journals (Sweden)
Richard B. Richardson
2012-10-01
Full Text Available Hourly surface observations from the Canadian Weather Energy and Engineering Dataset were analyzed with respect to long-term wind direction drift or rotation. Most of the Canadian landmass, including the High Arctic, exhibits a spatially consistent and remarkably steady anticyclonic rotation of wind direction. The period of anticyclonic rotation recorded at 144 out of 149 Canadian meteostations directly correlated with latitude and ranged from 7 days at Medicine Hat (50°N, 110°W to 25 days at Resolute (75°N, 95°W. Only five locations in the vicinity of the Rocky Mountains and Pacific Coast were found to obey a “negative” (i.e., cyclonic rotation. The observed anticyclonic rotation appears to be a deterministic, virtually ubiquitous, and highly persistent feature of continental surface wind. These findings are directly applicable to probabilistic assessments of airborne pollutants.
Induction of poloidal rotation by mean of a ponderomotive force
International Nuclear Information System (INIS)
Gutierrez T, C.; Martinell, J.
1999-01-01
When a plasma is radiated with a radiofrequency wave (RF) with fluxes of energy at hundred megawatts order (MW) the effect the of ponderomotive force (PM) is very important. This force applied to the plasma column can generate a rotation movement by a non-resonant mechanism. Particularly, it is known that the poloidal rotation can be induced by direct action of the PM force poloidal moment. This poloidal rotation of the plasma column can to explain the appearance of high confinement regime (H) in Tokamaks. In this work, it is analysed this mechanism, showing that if it is operated efficiently with the poloidal and parallel components of PM force then could be intensified the poloidal rotation moreover it is showed the form in which the asymptotic value of this rotation is established. (Author)
Classical theory of rotational rainbow scattering from uncorrugated surfaces
International Nuclear Information System (INIS)
Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli
2010-01-01
A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.
Elliptical Galaxies: Rotationally Distorted, After All
Directory of Open Access Journals (Sweden)
Caimmi, R.
2009-12-01
Full Text Available On the basis of earlier investigations onhomeoidally striated Mac Laurin spheroids and Jacobi ellipsoids (Caimmi and Marmo2005, Caimmi 2006a, 2007, different sequences of configurations are defined and represented in the ellipticity-rotation plane, $({sf O}hat{e}chi_v^2$. The rotation parameter, $chi_v^2$, is defined as the ratio, $E_mathrm{rot}/E_mathrm{res}$, of kinetic energy related to the mean tangential equatorial velocity component, $M(overline{v_phi}^2/2$, to kineticenergy related to tangential equatorial component velocity dispersion, $Msigma_{phiphi}^2/2$, andresidual motions, $M(sigma_{ww}^2+sigma_{33}^2/2$.Without loss of generality (above a thresholdin ellipticity values, the analysis is restricted to systems with isotropic stress tensor, whichmay be considered as adjoint configurationsto any assigned homeoidally striated density profile with anisotropic stress tensor, different angular momentum, and equal remaining parameters.The description of configurations in the$({sf O}hat{e}chi_v^2$ plane is extendedin two respects, namely (a from equilibriumto nonequilibrium figures, where the virialequations hold with additional kinetic energy,and (b from real to imaginary rotation, wherethe effect is elongating instead of flattening,with respect to the rotation axis.An application is made toa subsample $(N=16$ of elliptical galaxies extracted from richer samples $(N=25,~N=48$of early type galaxies investigated within theSAURON project (Cappellari et al. 2006, 2007.Sample objects are idealized as homeoidallystriated MacLaurinspheroids and Jacobi ellipsoids, and theirposition in the $({sf O}hat{e}chi_v^2$plane is inferred from observations followinga procedure outlined in an earlier paper(Caimmi 2009b. The position of related adjoint configurations with isotropic stresstensor is also determined. With a singleexception (NGC 3379, slow rotators arecharacterized by low ellipticities $(0lehat{e}<0.2$, low anisotropy parameters$(0ledelta<0
Rotational temperature determinations in molecular gas lasers
International Nuclear Information System (INIS)
Weaver, L.A.; Taylor, L.H.; Denes, L.J.
1975-01-01
The small-signal gain expressions for vibrational-rotational transitions are examined in detail to determine possible methods of extracting the rotational temperature from experimental gain measurements in molecular gas lasers. Approximate values of T/subr/ can be deduced from the rotational quantum numbers for which the P- and R-branch gains are maximum. Quite accurate values of T/subr/ and the population inversion density (n/subv//sub prime/-n/subv//sub double-prime/) can be determined by fitting data to suitably linearized gain relationships, or by performing least-squares fits of the P- and R-branch experimental data to the full gain expressions. Experimental gain measurements for 15 P-branch and 12 R-branch transitions in the 10.4-μm CO 2 band have been performed for pulsed uv-preionized laser discharges in CO 2 : N 2 : He=1 : 2 : 3 mixtures at 600 Torr. These data are subjected to the several gain analyses described herein, yielding a rotational temperature of 401plus-or-minus10 degreeK and an inversion density of (3.77plus-or-minus0.07) times10 17 cm -3 for conditions of maximum gain. These techniques provide accurate values of the gas temperature in molecular gas lasers with excellent temporal and spatial resolution, and should be useful in extending the conversion efficiency and arcing limits of high-energy electrically exc []ted lasers
Rotating hairy black holes in arbitrary dimensions
Erices, Cristián; Martínez, Cristián
2018-01-01
A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.
Lunar Rotation, Orientation and Science
Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.
2004-12-01
The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.
A compact rotating dilution refrigerator
Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.
2013-10-01
We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.
Spin dependence of rotational damping by the rotational plane mapping method
Energy Technology Data Exchange (ETDEWEB)
Leoni, S; Bracco, A; Million, B [Milan Univ. (Italy). Ist. di Fisica; Herskind, B; Dossing, T; Rasmussen, P [Niels Bohr Inst., Copenhagen (Denmark); Bergstrom, M; Brockstedt, A; Carlsson, H; Ekstrom, P; Nordlund, A; Ryde, H [Lund Univ. (Sweden). Dept. of Physics; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Lonnroth, T [Aabo Akademi, Turku (Finland). Dept. of Physics
1992-08-01
In the study of deformed nuclei by gamma spectroscopy, the large quadrupole transition strength known from rotational bands at high excitation energy may be distributed over all final states of a given parity within an interval defined as the rotational damping width {Gamma}{sub rot} The method of rotational plane mapping extracts a value of {Gamma}{sub rot} from the width of valleys in certain planes in the grid plots of triple gamma coincidence data sets. The method was applied to a high spin triple data set on {sup 162,163}Tm taken with NORDBALL at the tandem accelerator of the Niels Bohr Institute, and formed in the reaction {sup 37}Cl + {sup 130}Te. The value {Gamma}{sub rot} = 85 keV was obtained. Generally, experimental values seem to be lower than theoretical predictions, although the only calculation made was for {sup 168}Yb. 6 refs., 3 figs.
Wormholes immersed in rotating matter
Directory of Open Access Journals (Sweden)
Christian Hoffmann
2018-03-01
Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.
International Nuclear Information System (INIS)
Duvall, T.L. Jr.; Goode, P.R.; Gouch, D.O.
1984-01-01
The frequency difference between prograde and retrograde sectoral solar oscillations is analysed to determine the rotation rate of the solar interior, assuming no latitudinal dependence. Much of the solar interior rotates slightly less rapidly than the surface, while the innermost part apparently rotates more rapidly. The resulting solar gravitational quadrupole moment is J 2 = (1.7 +- 0.4) x 10 -7 and provides a negligible contribution to current planetary tests of Einstein's theory of general relativity. (author)
Czech Academy of Sciences Publication Activity Database
Domec, J. C.; Ashley, E.; Fischer, Milan; Noormets, A.; Boone, J.; Williamson, J. C.; King, J. C.
2017-01-01
Roč. 10, č. 3 (2017), s. 903-914 ISSN 1939-1234 Institutional support: RVO:67179843 Keywords : American sycamore * bioenergy * degraded land * bioethanol * productivity * shor-rotation woody crops Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.487, year: 2016
Hide, Raymond; Dickey, Jean O.
1991-01-01
Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.
Sporcularda rotator cuff problemleri
Guven, Osman; Guven, Zeynep; Gundes, Hakan; Yalcin, Selim
2004-01-01
Rotator cuff tendinitinin etyolojisinde genellikle birden çok faktörün kombinasyonu görülür. Yüzme, raket sporları ve fırlatma sporlarının özellikle gelişmiş ülkelerde giderek yaygınlaşması bu konuya olan ilginin artmasına sebep olmuştur. Eski konseptlerde aktif bir sporcuda tedavinin başarısı genellikle eski atletik seviyesine dönmesi ile ölçülürdü. Son zamanlarda atletik tekniklerin analizi, atroskopik evaluasyon gibi yeni bir Iükse sahip olmamız ve Iiteratürün yeniden gözden geçirilmesi il...
Gender differences in passive knee biomechanical properties in tibial rotation.
Park, Hyung-Soon; Wilson, Nicole A; Zhang, Li-Qun
2008-07-01
The anterior cruciate ligament (ACL) is the most commonly injured knee ligament with the highest incidence of injury in female athletes who participate in pivoting sports. Noncontact ACL injuries commonly occur with both internal and external tibial rotation. ACL impingement against the lateral wall of the intercondylar notch during tibial external rotation and abduction has been proposed as an injury mechanism, but few studies have evaluated in vivo gender-specific differences in laxity and stiffness in external and internal tibial rotations. The purpose of this study was to evaluate these differences. The knees of 10 male and 10 female healthy subjects were rotated between internal and external tibial rotation with the knee at 60 degrees of flexion. Joint laxity, stiffness, and energy loss were compared between male and female subjects. Women had higher laxity (p = 0.01), lower stiffness (p = 0.038), and higher energy loss (p = 0.008) in external tibial rotation than did men. The results suggest that women may be at greater risk of ACL injury resulting from impingement against the lateral wall of the intercondylar notch, which has been shown to be associated with external tibial rotation and abduction.
Rotation and rotation-vibration spectroscopy of the 0+-0- inversion doublet in deuterated cyanamide.
Kisiel, Zbigniew; Kraśnicki, Adam; Jabs, Wolfgang; Herbst, Eric; Winnewisser, Brenda P; Winnewisser, Manfred
2013-10-03
The pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm(-1). For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0(+) and 0(-) substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0(+) ↔ 0(-) coupling. A smaller data set, consisting only of pure rotation and rotation-vibration lines observed with microwave techniques was obtained for HDNCN, and additional transitions of this type were also measured for H2NCN. The spectroscopic data for all three isotopic species were fitted with a unified, robust Hamiltonian allowing confident prediction of spectra well into the terahertz frequency region, which is of interest to contemporary radioastronomy. The isotopic dependence of the determined inversion splitting, ΔE = 16.4964789(8), 32.089173(3), and 49.567770(6) cm(-1), for D2NCN, HDNCN, and H2NCN, respectively, is found to be in good agreement with estimates from a simple reduced quartic-quadratic double minimum potential.
Regular and conformal regular cores for static and rotating solutions
Energy Technology Data Exchange (ETDEWEB)
Azreg-Aïnou, Mustapha
2014-03-07
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Directory of Open Access Journals (Sweden)
Katsuma M.
2014-03-01
Full Text Available The total quantum number N of the α+12C rotational bands in 16O is determined by a study of α+12C elastic scattering. The 8+ and 9− states are found around the excitation energy Ex = 30 MeV and they are the member of the known rotational bands. At the same time, the 02+ state (Ex = 6.05 MeV is found to be dominated by N = 8.
Regular and conformal regular cores for static and rotating solutions
International Nuclear Information System (INIS)
Azreg-Aïnou, Mustapha
2014-01-01
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
On effects of topography in rotating flows
Burmann, Fabian; Noir, Jerome; Jackson, Andrew
2017-11-01
Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).
Surface dimpling on rotating work piece using rotation cutting tool
Bhapkar, Rohit Arun; Larsen, Eric Richard
2015-03-31
A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.
Research on motor rotational speed measurement in regenerative braking system of electric vehicle
Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua
2016-01-01
Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.
Random motion and Brownian rotation
International Nuclear Information System (INIS)
Wyllie, G.
1980-01-01
The course is centred on the Brownian motion - the random movement of molecules arising from thermal fluctuations of the surrounding medium - and starts with the classical theory of A. Einstein, M.v. Smoluchowski and P. Langevin. The first part of this article is quite elementary, and several of the questions raised in it have been instructively treated in a much more sophisticated way in recent reviews by Pomeau and Resibois and by Fox. This simple material may nevertheless be helpful to some readers whose main interest lies in approaching the work on Brownian rotation reviewed in the latter part of the present article. The simplest, and most brutally idealised, problem in our field of interest is that of the random walk in one dimension of space. Its solution leads on, through the diffusivity-mobility relation of Einstein, to Langevin's treatment of the Brownian motion. The application of these ideas to the movement of a molecule in a medium of similar molecules is clearly unrealistic, and much energy has been devoted to finding a suitable generalisation. We shall discuss in particular ideas due to Green, Zwanzig and Mori. (orig./WL)
Coherent distributions for the rigid rotator
Energy Technology Data Exchange (ETDEWEB)
Grigorescu, Marius [CP 15-645, Bucharest 014700 (Romania)
2016-06-15
Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.
Vortex Noise from Rotating Cylindrical Rods
Stowell, E Z; Deming, A F
1935-01-01
A series of round rods of the some diameter were rotated individually about the mid-point of each rod. Vortices are shed from the rods when in motion, giving rise to the emission of sound. With the rotating system placed in the open air, the distribution of sound in space, the acoustical power output, and the spectral distribution have been studied. The frequency of emission of vortices from any point on the rod is given by the formula von Karman. From the spectrum estimates are made of the distribution of acoustical power along the rod, the amount of air concerned in sound production, the "equivalent size" of the vortices, and the acoustical energy content for each vortex.
Nonmodal phenomena in differentially rotating dusty plasmas
Poedts, Stefaan; Rogava, Andria D.
2000-10-01
In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .
Nonmodal phenomena in differentially rotating dusty plasmas
International Nuclear Information System (INIS)
Poedts, Stefaan; Rogava, Andria D.
2000-01-01
In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior--shear-dust-acoustic vortices--are generated. The presence of self-gravity and the nonzero Coriolis parameter ('epicyclic shaking') makes these collective modes transiently unstable
Quantum instability in the kicked rotator with rank-one perturbation
International Nuclear Information System (INIS)
Milek, B.; Seba, P.
1990-03-01
We show that the quasi-energy spectrum of the kicked quantum rotator with rank-one perturbation is singularly continous under certain conditions. The exotic quasi-energy eigenstates, given analytically within this model, are calculated in a basis of 2x10 6 rotator states and their self-similarity property is demonstrated. (orig.)
Rotational inertia of continents: A proposed link between polar wandering and plate tectonics
Kane, M.F.
1972-01-01
A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.
Rotation of the planet mercury.
Jefferys, W H
1966-04-08
The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.
Stabilities of MHD rotational discontinuities
International Nuclear Information System (INIS)
Wang, S.
1984-11-01
In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)
Optical isolation by Faraday rotator
International Nuclear Information System (INIS)
Kasai, Takeshi; Matsushima, Isao; Nemoto, Fusashi; Yano, Masaaki
1984-01-01
Three Faraday rotators designed as optical isolators in a high power glass laser system are described. The spatial fluctuation of applied magnetic field is less than 1% throughout the Faraday glass rod. The Faraday rotators transmit more than 80% of the forward-going laser light and reject more than 96% of the backward-going light. (author)
Constructing the spectral web of rotating plasmas
Goedbloed, Hans
2012-10-01
Rotating plasmas are ubiquitous in nature. The theory of MHD stability of such plasmas, initiated a long time ago, has severely suffered from the wide spread misunderstanding that it necessarily involves non-self-adjoint operators. It has been shown (J.P. Goedbloed, PPCF 16, 074001, 2011; Goedbloed, Keppens and Poedts, Advanced Magnetohydrodynamics, Cambridge, 2010) that, on the contrary, spectral theory of moving plasmas can be constructed entirely on the basis of energy conservation and self-adjointness of the occurring operators. The spectral web is a further development along this line. It involves the construction of a network of curves in the complex omega-plane associated with the complex complementary energy, which is the energy needed to maintain harmonic time dependence in an open system. Vanishing of that energy, at the intersections of the mentioned curves, yields the eigenvalues of the closed system. This permits to consider the enormous diversity of MHD instabilities of rotating tokamaks, accretion disks about compact objects, and jets emitted from those objects, from a single view point. This will be illustrated with results obtained with a new spectral code (ROC).
Energy Technology Data Exchange (ETDEWEB)
Azreg-Ainou, Mustapha [Baskent University, Department of Mathematics, Ankara (Turkey)
2014-05-15
We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)
International Nuclear Information System (INIS)
Azreg-Ainou, Mustapha
2014-01-01
We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)
Rotational superradiance in fluid laboratories
Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke
2016-01-01
Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Bidirectional optical rotation of cells
Directory of Open Access Journals (Sweden)
Jiyi Wu
2017-08-01
Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.
Coarsening dynamics of binary liquids with active rotation.
Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M
2015-11-21
Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.
Magnetostrophic Rotating Magnetoconvection
King, Eric; Aurnou, Jonathan
2016-11-01
Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.
International Nuclear Information System (INIS)
Pigeau, I.; Doursounian, L.; Maigne, J.Y.; Guinet, C.; Meary, E.; Buy, J.N.; Touzard, R.C.; Vadrot, D.; Laval-Jeantet, M.
1989-01-01
Fifteen volunteers and 73 patients with suspected rotator cuff lesions were examined at 0.5 T with T2 * -weighted gradient-echo (GE) MR imaging (700/33/30 degrees) (oblique coronal and sagittal 3 mm thick, surface coil). Results were compared with those of arthrography (all cases), T1-weighted GE imaging (400/20/90 degrees) (35 cases), surgery (28 cases), and T2-weighted spin-echo (SE) images (2,000/60-120) (17 cases). GE images demonstrated all tears (complete, 32, partial, 12) and was superior to arthrography in determining site and size and in displaying muscles (critical point in surgical planning). In 20 cases without tears on arthrography, GE imaging demonstrated five cases of tendinitis, five cases of bursitis, and six probable intratendinous or superficial partial tears. T2 * -weighted GE imaging was superior to T2-weighted SE and T1-weighted GE imaging, with higher fluid contrast and a low fat signal. Therefore, it might replace arthrography in the diagnosis and surgical approach to this pathology
Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.
Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J
2008-11-07
We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.
International Nuclear Information System (INIS)
Zheng, Z Y; Cheng, J P; Li, F C; Zhang, M; Li, Q; Kulagin, V A
2015-01-01
With the application of supercavitation effect, a novel device named Rotational Supercavitating Evaporator (RSCE) has been designed for desalination. In order to study the effect of temperature on the performance of RSCE and then direct the experimental study on RSCE for the next step, numerical simulations are conducted on the supercavitating flows in RSCE under different temperatures and rotational speeds. The results show that the rotational speed, resistance moment and mechanical energy consumed by the rotational cavitator under the critical state with the largest supercavity, decrease with the increase of temperature. And the area and volume of the supercavity increase exponentially with the increase of temperature under the same rotational speed
Sengupta, Tapan K.; Gullapalli, Atchyut
2016-11-01
Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].
Toroidal rotation studies in KSTAR
Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team
2014-10-01
Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.
Rotational discontinuities in anisotropic plasmas
International Nuclear Information System (INIS)
Omidi, N.
1992-01-01
The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense
[Rotator cuff tear athropathy prevalence].
Guerra-Soriano, F; Encalada-Díaz, M I; Ruiz-Suárez, M; Valero-González, F S
2017-01-01
Glenohumeral arthritis secondary to massive rotator cuff tear presents with a superior displacement and femoralization of the humeral head with coracoacromial arch acetabularization. The purpose of this study was to establish prevalence of rotator cuff tear artropathy (CTA) at our institution. Four hundred electronic records were reviewed from which we identified 136 patients with rotator cuff tears. A second group was composed with patients with massive cuff tears that were analized and staged by the Seebauer cuff tear arthropathy classification. Thirty four patients with massive rotator cuff tears were identified, 8 male and 26 female (age 60.1 ± 10.26 years). Massive rotator cuff tear prevalence was 25%. CTA prevalence found in the rotator cuff group was 19 and 76% in the massive cuff tears group. Patients were staged according to the classification with 32% in stage 1a, 11% 1b, 32% 2a and 0% 2b. CTA prevalence in patients with rotator cuff tears and massive cuff tears is higher than the one reported in American population. We consider that a revision of the Seebauer classification to be appropriate to determine its reliability.
Preliminary Test on Hydraulic Rotation Device for Neutron Transmutation Doping
International Nuclear Information System (INIS)
Park, Ki-Jung; Kang, Han-Ok; Kim, Seong Hoon; Park, Cheol
2014-01-01
The Korea Atomic Energy Research Institute (KAERI) is developing a new Research Reactor (KJRR) which will be located at KIJANG in the south-eastern province of Korea. The KJRR will be mainly utilized for isotope production, NTD production, and the related research activities. During the NTD process, the irradiation rig containing the silicon ingot rotates at the constant speed to ensure precisely defined homogeneity of the irradiation. A new NTD Hydraulic Rotation Device (NTDHRD) is being developed to rotate the irradiation rigs at the required speed. In this study, the preliminary test and the analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are described. A new NTD hydraulic rotation device is being developed for the purpose of application to the KIJANG research reactor (KJRR). The preliminary test and analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are conducted in experimental apparatus. The film thickness by the thrust bearing is measured and the minimum required mass flow rate for stable rotation is determined
Electro-mechanical coupling of rotating 3D beams
Directory of Open Access Journals (Sweden)
Stoykov S.
2016-01-01
Full Text Available A rotating thin-walled beam with piezoelectric element is analysed. The beam is considered to vibrate in space, hence the longitudinal, transverse and torsional deformations are taken into account. The bending deformations of the beam are modelled by assuming Timoshenko's theory. Torsion is included by considering that the cross section rotates as a rigid body but can deform in longitudinal direction due to warping. The warping function is computed preliminary by the finite element method. The equation of motion is derived by the principle of virtual work and discretized in space by the Ritz method. Electro-mechanical coupling is included in the model by considering the internal electrical energy and the electric charge output. The piezo-electric constitutive relations are used in reduced form. The beam is assumed to rotate about a fixed axis with constant speed. The equation of motion is derived in rotating coordinate system, but the influence of the rotation of the coordinate system is taken into account through the inertia forces. Results in time domain are presented for different speeds of rotation and frequencies of vibration. The influence of the speed of rotation and of the frequency of vibration on the electrical output is presented and analysed.
Vibration of rotating-shaft design spindles with flexible bases
Tseng, Chaw-Wu
The purpose of this study is to demonstrate an accurate mathematical model predicting forced vibration of rotating-shaft HDD spindle motors with flexible stationary parts. The mathematical model consists of three parts: a rotating part, a stationary part, and bearings. The rotating part includes a flexible hub, a flexible shaft press-fit into the hub, and N elastic disks mounted on the hub. The stationary part can include motor bracket (stator), base casting, and top cover. The bearings under consideration can be ball bearings or hydrodynamic bearings (HDB). The rotating disks are modelled through the classical plate theory. The rotating part (except the disks) and the stationary part are modelled through finite element analyses (FEA). With mode shapes and natural frequencies obtained from FEA, the kinetic and potential energies of the rotating and stationary parts are formulated and discretized to compensate for the gyroscopic effects from rotation. Finally, use of Lagrange equation results in the equations of motion. To verify the mathematical model, frequency response functions are measured experimentally for an HDB spindle carrying two identical disks at motor and drive levels. Experimental measurements agree very well with theoretical predictions not only in resonance frequency but also in resonance amplitude.
Rotating relativistic neutron stars
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Glendenning, N.K.
1991-07-21
Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.
Effect of rotation on convective mass transfer in rotating channels
International Nuclear Information System (INIS)
Pharoah, J.G.; Djilali, N.
2002-01-01
Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)
International Nuclear Information System (INIS)
Martin, A.
1989-01-01
This paper shows that the minimum energy three-quark classical configuration for a given angular momentum and linear two-body potentials between the quarks is a quark-diquark system. The authors deduce from this that baryons at large angular momentum have a quark-diquark structure. Explicit calculations by Flack, Richard and Silvestre-Brac show this effect
Shell model truncation schemes for rotational nuclei
International Nuclear Information System (INIS)
Halse, P.; Jaqua, L.; Barrett, B.R.
1990-01-01
The suitability of the pair condensate approach for rotational states is studied in a single j = 17/2 shell of identical nucleons interacting through a quadrupole-quadrupole hamiltonian. The ground band and a K = 2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground band levels, while G pairs are needed for those in the γ-band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K = 2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels
Asymmetric core collapse of rapidly rotating massive star
Gilkis, Avishai
2018-02-01
Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.
The rotational barrier in ethane: a molecular orbital study.
Quijano-Quiñones, Ramiro F; Quesadas-Rojas, Mariana; Cuevas, Gabriel; Mena-Rejón, Gonzalo J
2012-04-20
The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.
The Rotational Barrier in Ethane: A Molecular Orbital Study
Directory of Open Access Journals (Sweden)
Gonzalo J. Mena-Rejón
2012-04-01
Full Text Available The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ_{s} molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π_{z} and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π_{v} and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C–C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.
Axial gap rotating electrical machine
None
2016-02-23
Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.
International Nuclear Information System (INIS)
Gron, O.
2010-01-01
The question whether rotational motion is relative according to the general theory of relativity is discussed. Einstein's ambivalence concerning this question is pointed out. In the present article I defend Einstein's way of thinking on this when he presented the theory in 1916. The significance of the phenomenon of perfect inertial dragging in connection with the relativity of rotational motion is discussed. The necessity of introducing an extended model of the Minkowski spacetime, in which a globally empty space is supplied with a cosmic mass shell with radius equal to its own Schwarzschild radius, in order to extend the principle of relativity to accelerated and rotational motion, is made clear.
Rotational diffusion of a molecular cat
Katz-Saporta, Ori; Efrati, Efi
We show that a simple isolated system can perform rotational random walk on account of internal excitations alone. We consider the classical dynamics of a ''molecular cat'': a triatomic molecule connected by three harmonic springs with non-zero rest lengths, suspended in free space. In this system, much like for falling cats, the angular momentum constraint is non-holonomic allowing for rotations with zero overall angular momentum. The geometric nonlinearities arising from the non-zero rest lengths of the springs suffice to break integrability and lead to chaotic dynamics. The coupling of the non-integrability of the system and its non-holonomic nature results in an angular random walk of the molecule. We study the properties and dynamics of this angular motion analytically and numerically. For low energy excitations the system displays normal-mode-like motion, while for high enough excitation energy we observe regular random-walk. In between, at intermediate energies we observe an angular Lévy-walk type motion associated with a fractional diffusion coefficient interpolating between the two regimes.
Observation of rotating nuclear molecules and determination of their lifetimes
Energy Technology Data Exchange (ETDEWEB)
Comas, V.; Heinz, S.; Ackermann, D.; Heredia, J.; Hessberger, F.P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany)
2012-12-15
Long-living rotating nuclear molecules (or ''dinuclear systems'') have been observed at the velocity filter SHIP at GSI in reactions of {sup 64}Ni + {sup 207}Pb at Coulomb barrier energies. The rotation was directly revealed by the velocity spectra of deep inelastic target-like transfer products which are formed during the lifetime of the nuclear molecule and emitted after its breakup. The corresponding rotation angles were about 180 degree pointing to long nuclear interaction times or lifetimes of the system, respectively. We deduced the lifetimes from the lines in the velocity spectra originating from two different rotation angles. Further, the unambiguous correlation of a certain transfer product with its individual velocity spectrum allowed us to study the lifetimes as a function of the number of transferred protons. (orig.)
Methyl internal rotation in the microwave spectrum of vinyl acetate.
Nguyen, Ha Vinh Lam; Jabri, Atef; Van, Vinh; Stahl, Wolfgang
2014-12-26
The rotational spectrum of vinyl acetate, CH3(CO)OCH═CH2, was measured using two molecular beam Fourier transform microwave spectrometers operating in the frequency range from 2 to 40 GHz. Large splittings up to 2 GHz occurred due to the internal rotation of the acetyl methyl group CH3CO with a V3 potential of 151.492(34) cm(-1), much larger than the barrier of approximately 100 cm(-1) often found in acetates. The torsional transitions were fitted using three different programs XIAM, ERHAM, and BELGI-Cs, whereby the rotational constants, centrifugal distortion constants, and the internal rotation parameters could be determined with very high accuracy. The experimental results were supported by quantum chemical calculations. For a conformational analysis, potential energy surfaces were calculated.
On the Cauchy problem for nonlinear Schrödinger equations with rotation
Antonelli, Paolo; Marahrens, Daniel; Sparber, Christof
2011-01-01
We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.
Symmetry breaking in small rotating clouds of trapped ultracold Bose atoms
International Nuclear Information System (INIS)
Dagnino, D.; Barberan, N.; Riera, A.; Osterloh, K.; Lewenstein, M.
2007-01-01
We study the signatures of rotational and phase symmetry breaking in small rotating clouds of trapped ultracold Bose atoms by looking at rigorously defined condensate wave function. Rotational symmetry breaking occurs in narrow frequency windows, where energy degeneracy between the lowest energy states of different total angular momentum takes place. This leads to a complex condensate wave function that exhibits vortices clearly seen as holes in the density, as well as characteristic local phase patterns, reflecting the appearance of vorticities. Phase symmetry (or gauge symmetry) breaking, on the other hand, is clearly manifested in the interference of two independent rotating clouds
On the Cauchy problem for nonlinear Schrödinger equations with rotation
Antonelli, Paolo
2011-10-01
We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.
Magnetospheric structure of rotation powered pulsars
Energy Technology Data Exchange (ETDEWEB)
Arons, J. (California Univ., Berkeley, CA (USA) California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics)
1991-01-07
I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.
Nuclear viscosity of hot rotating 240Cf
International Nuclear Information System (INIS)
Shaw, N. P.; Dioszegi, I.; Mazumdar, I.; Buda, A.; Morton, C. R.; Velkovska, J.; Beene, J. R.; Stracener, D. W.; Varner, R. L.; Thoennessen, M.
2000-01-01
The absolute γ-ray/fission multiplicities from hot rotating 240 Cf, populated at seven bombarding energies using the reaction 32 S+ 208 Pb, are reported. Statistical model calculations including nuclear dissipation have been performed to extract the dependence of the nuclear viscosity on temperature and/or nuclear deformation. The extracted nuclear dissipation coefficient is found to be independent of temperature. Large dissipation during the saddle to scission path provides a good fit to the γ-ray spectra. (c) 2000 The American Physical Society
On rapid rotation in stellarators
International Nuclear Information System (INIS)
Helander, Per
2008-01-01
The conditions under which rapid plasma rotation may occur in a three-dimensional magnetic field, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields which are approximately isometric. In an isometric magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry, B=B(ψ,l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be in the direction of the vector ∇ψx∇B. (author)
Spontaneous Rotational Inversion in Phycomyces
Goriely, Alain
2011-03-01
The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.
Differential rotation in magnetic stars
International Nuclear Information System (INIS)
Moss, D.
1981-01-01
The possibility that large-scale magnetic fields in stars are the product of a contemporary dynamo situated in the convective stellar core, rather than being a fossil from an earlier stage in the history of the star, is investigated. It is demonstrated that then the envelope will almost inevitably be in a state of differential rotation. Some simple models are constructed to illustrate the magnitude of the effects on the structure of the envelope and magnetic field. It is found that, for models which are relatively rapidly rotating, a modest differential rotation at the surface of the core may increase considerably the ratio of internal to surface field, but only give rise to a small surface differential rotation. (author)
Conjunct rotation: Codman's paradox revisited.
Wolf, Sebastian I; Fradet, Laetitia; Rettig, Oliver
2009-05-01
This contribution mathematically formalizes Codman's idea of conjunct rotation, a term he used in 1934 to describe a paradoxical phenomenon arising from a closed-loop arm movement. Real (axial) rotation is distinguished from conjunct rotation. For characterizing the latter, the idea of reference vector fields is developed to define the neutral axial position of the humerus for any given orientation of its long axis. This concept largely avoids typical coordinate singularities arising from decomposition of 3D joint motion and therefore can be used for postural (axial) assessment of the shoulder joint both clinically and in sports science in almost the complete accessible range of motion. The concept, even though algebraic rather complex, might help to get an easier and more intuitive understanding of axial rotation of the shoulder in complex movements present in daily life and in sports.
International Nuclear Information System (INIS)
Butterworth, E.M.
1976-01-01
A method is described for obtaining numerical solutions to the exact Einstein field equations that represent uniformly rotating perfect fluid bodies which are stationary and obey equations of state of the form (pressure) proportional (energy density) 1+1 //subn/. Sequences parametrized by the rate of rotation are generated for polytropic indices n between 0.5 and 3 and for varying strengths of relativity. All are found to terminate at surface velocities which are approximately 10 percent or more of the velocity of light. The configurations considered here are probably at least as relativistic as any stable astrophysical object in uniform rotation now thought to exist, but the phenomenon of an ergoregion appears in none of them and probably is absent in actual stars if magnetic viscosity or some other mechanism can induce rigid rotation
Current status of rotational atherectomy.
Tomey, Matthew I; Kini, Annapoorna S; Sharma, Samin K
2014-04-01
Rotational atherectomy facilitates percutaneous coronary intervention for complex de novo lesions with severe calcification. A strategy of routine rotational atherectomy has not, however, conferred reduction in restenosis or major adverse cardiac events. As it is technically demanding, rotational atherectomy is also uncommon. At this 25-year anniversary since the introduction of rotational atherectomy, we sought to review the current state-of-the-art in rotational atherectomy technique, safety, and efficacy data in the modern era of drug-eluting stents, strategies to prevent and manage complications, including slow-flow/no-reflow and burr entrapment, and appropriate use in the context of the broader evolution in the management of stable ischemic heart disease. Fundamental elements of optimal technique include use of a single burr with burr-to-artery ratio of 0.5 to 0.6-rotational speed of 140,000 to 150,000 rpm, gradual burr advancement using a pecking motion, short ablation runs of 15 to 20 s, and avoidance of decelerations >5,000 rpm. Combined with meticulous technique, optimal antiplatelet therapy, vasodilators, flush solution, and provisional use of atropine, temporary pacing, vasopressors, and mechanical support may prevent slow-flow/no-reflow, which in contemporary series is reported in 0.0% to 2.6% of cases. On the basis of the results of recent large clinical trials, a subset of patients with complex coronary artery disease previously assigned to rotational atherectomy may be directed instead to medical therapy alone or bypass surgery. For patients with de novo severely calcified lesions for which rotational atherectomy remains appropriate, referral centers of excellence are required. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Rotating Shadowband Spectroradiometer (RSS) Handbook
Energy Technology Data Exchange (ETDEWEB)
Kiedron, P; Schlemmer, J; Klassen, M
2005-01-01
The rotating shawdowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally-resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to 1050-nm range.
Faraday rotation measurements at Ootacamund
Sethia, G.; Chandra, H.; Deshpande, M. R.; Rastogi, R. G.
1978-01-01
The results of Faraday rotation measurements made at Ootacamund during ATS-6 phase II are presented. For summer and equinoctial months, even though no clear noon bite-out is observed in the variation of Faraday a decrease is observed in the rate of increase of rotation around 0900-1000 hours LT. This is attributed to the 'fountain effect' which is responsible for the noontime bite-out in F2-region peak electron density.
Rotational excitation of N2 by electron impact: 1-4 eV
International Nuclear Information System (INIS)
Wong, S.F.; Dube, L.
1978-01-01
Rotational and rotational-vibrational (v = 0 → 1) excitation in N 2 have been studied with a crossed-beam electron-impact apparatus. In the energy range 1-4 eV, the elastic and vibrational energy-loss peaks show large rotational broadening compared with the apparatus profile (full width at half-maximum, 18 meV). The branching ratios for rotational transitions with Δj = 0, +- 2, +- 4 are obtained with a line-shape analysis applied to the energy-loss profiles. The results for rotational-vibrational excitation at 2.27 eV and scattering angles 30-90 0 are in good agreement with the calculations using the resonant dπ waves and the rotational impulse approximation. The corresponding results for pure rotational excitation show that the branches with Δj = +- 2 and +- 4 are predominantly excited via resonances, while the branch with Δj = 0 contains a large contribution from direct scattering. The absolute rotational cross sections for Δj = +- 4 are measured; they exhibit a large magnitude (10 -16 cm 2 ) and peak and valley structures in the 1-4 eV range, reminiscent of well-known resonant vibrational excitation. The energy dependence and the absolute magnitude of the rotational cross sections for Δj = +- 4 can be understood in terms of a ''boomerang'' calculation. A comparison of the experiment with the relevant theoretical calculations is made
The rotation of galaxy clusters
International Nuclear Information System (INIS)
Tovmassian, H.M.
2015-01-01
The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b> 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60 per cent, and clusters of BMI type with dominant cD galaxy, ≈ 35 per cent. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have mergings with other clusters and groups of galaxies, in the result of which the rotation has been prevented
Mode cross coupling observations with a rotation sensor
Nader-Nieto, M. F.; Igel, H.; Ferreira, A. M.; Al-Attar, D.
2013-12-01
The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations. Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of one of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements.
Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple
International Nuclear Information System (INIS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-01-01
Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.
Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons
International Nuclear Information System (INIS)
Arminjon, Mayeul
2008-01-01
The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself
Collision of two rotating Hayward black holes
Energy Technology Data Exchange (ETDEWEB)
Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of)
2017-07-15
We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226. (orig.)
A study on stability of rotating magnets
International Nuclear Information System (INIS)
Higuchi, N.; Kaiho, K.; Ishii, I.
1996-01-01
Superconducting power generators are being developed in Japan, as a part of a R and D program on energy technology, the New Sunshine Project. In this development, national laboratories are taking a role of fundamental studies to contribute to the R and D being carried out mainly by the manufacturers involved in a research association, Super-GM. Stabilities of magnets in a high gravitational field up to 2,000 G are discussed, based upon the experimental results of forced quench tests in a set of rotating magnets, in order to establish the stability design criterion of field windings of superconducting generators. Relations of propagation velocities, recovery currents, minimum quench energy and heat transfer characteristics are studied, a good agreement between the experimental results and a theory confirmed the improvement of magnet stability in a high gravitational field because of the enhanced heat transfer characteristics
ΔI = 2 Nuclear Staggering in Superdeformed Rotational Bands
Directory of Open Access Journals (Sweden)
Okasha M. D.
2014-01-01
Full Text Available A four parameters model including collective rotational en ergies to fourth order is ap- plied to reproduce the ∆ I = 2 staggering in transition energies in four selected super deformed rotational bands, namely, 148 Gd (SD6, 194 Hg (SD1, SD2, SD3. The model parameters and the spin of the bandhead have been extracted a ssuming various val- ues to the lowest spin of the bandhead at nearest integer, in o rder to obtain a minimum root mean square deviation between calculated and the exper imental transition energies. This allows us to suggest the spin values for the energy level s which are experimentally unknown. For each band a staggering parameter represent the deviation of the transition energies from a smooth reference has been determined by calc ulating the fourth order derivative of the transition energies at a given spin. The st aggering parameter contains five consecutive transition energies which is denoted here a s the five-point formula. In order to get information about the dynamical moment of ine rtia, the two point for- mula which contains only two consecutive transition energi es has been also considered. The dynamical moment of inertia decreasing with increasing rotational frequency for A ∼ 150, while increasing for A ∼ 190 mass regions.
Refueling system with small diameter rotatable plugs
International Nuclear Information System (INIS)
Ritz, W.C.
1987-01-01
This patent describes a liquid-metal fastbreeder nuclear reactor comprising a reactor pressure vessel and closure head therefor, a reactor core barrel disposed within the reactor vessel and enclosing a reactor core having therein a large number of closely spaced fuel assemblies, and the reactor core barrel and the reactor core having an approximately concentric circular cross-sectional configuration with a geometric center in predetermined location within the reactor vessel. The improved refueling system described here comprises: a large controllably rotatable plug means comprising the substantial portion of the closure head, a reactor upper internals structure mounted from the large rotatable plug means. The large rotatable plug means has an approximately circular configuration which approximates the cross-sectional configuration of the reactor core barrel with a center of rotation positioned a first predetermined distance from the geometric center of the reactor core barrel so that the large rotatable plug means rotates eccentrically with respect to the reactor core barrel; a small controllably rotatable plug means affixed to the large rotatable plug means and rotatable with respect thereto. The small rotatable plug means has a center of rotation which is offset a second predetermined distance from the rotational center of the large rotatable plug means so that the small rotatable plug means rotates eccentrically with respect to the large rotatable plug means
Tokamak rotation and charge exchange
International Nuclear Information System (INIS)
Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.
1991-01-01
In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref
Rotational dynamics of propylene inside Na-Y zeolite cages
Indian Academy of Sciences (India)
We report here the quasielastic neutron scattering (QENS) studies on the dynamics of propylene inside Na-Y zeolite using triple axis spectrometer (TAS) at Dhruva reactor, Trombay. Molecular dynamics (MD) simulations performed on the system had shown that the rotational motion involves energy larger than that involved ...
Steady hydromagnetic Couette flow in a rotating system with non ...
African Journals Online (AJOL)
user
energy equation and numerical values of rate of heat transfer at both plates are ... An investigation of MHD flow of an electrically conducting fluid in a rotating ... bounded by stationary free stream whereas MHD flow past a stationary plate ... induced magnetic field produced by fluid motion is negligible in comparison to the ...
Physics of Rotating and Expanding Black Hole Universe
Directory of Open Access Journals (Sweden)
Seshavatharam U. V. S.
2010-04-01
Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole's temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking's black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is "no cosmic temperature" if there is "no cosmic rotation". Starting from the Planck scale it is assumed that universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation "rate of decrease" in temperature or "rate of increase" in cosmic red shift is a measure of "rate of cosmic expansion". Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to $2.726^circ$ K, smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is $2.726^circ$ K, present value of obtained angular velocity is $2.17 imes 10^{-18}$ rad/sec $cong$ 67 Km/sec$imes$Mpc. Present cosmic mass density and cosmic time are fitted with a $ln (volume ratio$ parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.
Secular instability of axisymmetric rotating stars to gravitational radiation reaction
International Nuclear Information System (INIS)
Managan, R.A.
1985-01-01
A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation
The structure of rotational discontinuities
International Nuclear Information System (INIS)
Neugebauer, M.
1989-01-01
This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle θ between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When θ is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when θ is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes
Schröer, H.
In chapter 1 we want to describe the motion of a falling body on a rotating planet. The planet rotates with an arbitrary changable angular velocity and has a translational acceleration. We obtain 3 differential equations. For the general gravitational field an exact solution is possible, when the differential equation system is explicit solvable. Then we consider the case, if the angular velocity and the translational acceleration is constant. With a special transformation we get 3 partial differential equations of first order. Instead of a planet sphere we can choose a general body of rotation. Even general bodies are possible. Chapter 2 contains the motion in a local coordinate system on planet's surface. We have an inhomogeneous linear differential equation of first order. If the angular velocity is constant, we get a system with constant coefficients. There is an english and a german edition.
Energy harvesting water vehicle
Singh, Devendra
2018-01-01
An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag
Rotated balance in humans due to repetitive rotational movement
Zakynthinaki, M. S.; Madera Milla, J.; López Diaz De Durana, A.; Cordente Martínez, C. A.; Rodríguez Romo, G.; Sillero Quintana, M.; Sampedro Molinuevo, J.
2010-03-01
We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.
Mach's principle and rotating universes
International Nuclear Information System (INIS)
King, D.H.
1990-01-01
It is shown that the Bianchi 9 model universe satisfies the Mach principle. These closed rotating universes were previously thought to be counter-examples to the principle. The Mach principle is satisfied because the angular momentum of the rotating matter is compensated by the effective angular momentum of gravitational waves. A new formulation of the Mach principle is given that is based on the field theory interpretation of general relativity. Every closed universe with 3-sphere topology is shown to satisfy this formulation of the Mach principle. It is shown that the total angular momentum of the matter and gravitational waves in a closed 3-sphere topology universe is zero
Ercolani, Gianfranco
2005-01-01
The finite-difference boundary-value method is a numerical method suited for the solution of the one-dimensional Schrodinger equation encountered in problems of hindered rotation. Further, the application of the method, in combination with experimental results for the evaluation of the rotational energy barrier in ethane is presented.
An integrated environmental analysis of short rotation forests as a biomass resource
International Nuclear Information System (INIS)
Stjernquist, Ingrid
1994-01-01
Short-rotation plantations are an environmental sound energy resource if: (1) the biomass production systems are not pressed to maximum production, (2) cultivation measures are taken to minimize nutrient leaching, (3) the short-rotation plantations are designed for visual adaptation to the landscape, and (4) directed silvicultural measures are taken to retain and improve important habitats and protect marginal forest areas. (author)
NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines
International Nuclear Information System (INIS)
Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud
2004-01-01
Inelastic structure factors for rotational transitions of uniaxial NH 3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling
Dou, Huashu; Zhang, Shuo; Yang, Hui; Setoguchi, Toshiaki; Kinoue, Yoichi
2018-04-01
Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Reynolds number 40≤ Re ≤200 and various rotation rate θ i . The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re increases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θ i < θ crit . It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.
Vanhuyse , B.; Van Den Keybus , P.; Grevendonk , W.
1981-01-01
Measurements of Faraday Rotation (FR) in amorphous As2Se3, as a function of photon energy are reported. In the bulk material the temperature dependence of the FR and the derived energy gap EFRg is investigated in the range 3-300 K. For EFRg a temperature coefficient of 2.4 x 10-4 eV/K is found. In amorphous films the FR could be measured through the energy range where the sign of the FR-angle is reversed. The photon energy corresponding to zero FR is in agreement with the gap value calculated...
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
Neutrino-heated winds from rotating protomagnetars
Vlasov, Andrey D.; Metzger, Brian D.; Thompson, Todd A.
2014-11-01
We calculate the steady-state properties of neutrino-driven winds from strongly magnetized, rotating protoneutron stars (PNSs; `protomagnetars') under the assumption that the outflow geometry is set by the force-free magnetic field of an aligned dipole. Our goal is to assess protomagnetars as sites of r-process nucleosynthesis and gamma-ray burst engines using a more realistic outflow geometry than assumed in previous works. One-dimensional solutions calculated along flux tubes corresponding to different polar field lines are stitched together to determine the global properties of the flow at a given neutrino luminosity and rotation period. Protomagnetars with rotation periods of P ˜ 2-5 ms are shown to produce outflows more favourable for the production of third-peak r-process nuclei due to their much shorter expansion times through the seed nucleus formation region, yet only moderately lower entropies, as compared to normal spherical PNS winds. Protomagnetars with moderately rapid birth periods P ˜ 3-5 ms may thus represent a promising galactic r-process site which is compatible with a variety of other observations, including the recent discovery of possible magnetar-powered supernovae in metal-poor galaxies. We also confirm previous results that the outflows from protomagnetars with P ˜ 1-2 ms can achieve maximum Lorentz factors Γmax ˜ 100-1000 in the range necessary to power gamma-ray bursts (GRBs). The implications of GRB jets with a heavy nuclei-dominated composition as sources of ultrahigh energy cosmic rays are also addressed.
GAROS, an aeroelastic code for coupled fixed-rotating structures
Energy Technology Data Exchange (ETDEWEB)
Rees, M. [Aerodyn Energiestyseme GmbH, Rendsburg (Germany); Vollan, A. [Pilatus Flugzeugwerke, Stans (Switzerland)
1996-09-01
The GAROS (General Analysis of Rotating Structures) program system has been specially designed to calculate aeroelastic stability and dynamic response of horizontal axis wind energy converters. Nevertheless it is also suitable for the dynamic analysis of helicopter rotors and has been used in the analysis of car bodies taking account of rotating wheels. GAROS was developed over the last 17 years. In the following the mechanical and the aerodynamic model will be discussed in detail. A short overview of the solution methods for the equation of motion in time and frequency domain will ge given. After this one example for the FEM model of the rotor and tower will be discussed. (EG)
Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile
Energy Technology Data Exchange (ETDEWEB)
Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-01
We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.
The role of quasiparticles in rotating transitional nuclei
International Nuclear Information System (INIS)
Frauendorf, Stefan
1984-01-01
The yrast sequency of nuclei rotating about the symmetry axis is classified in analogy to class I and II superconductors, where the quasiparticles play the role of the quantized flux in metals. The experimental spectra show a class I behaviour. The ω-dependence of the quasiparticle excitation energy in collectively rotating nuclei is used as evidence for magnitude of the pair correlations and the occurrence of triaxial shapes. A transition from triaxial to oblate shape explains the experimental spectra and E2-transition probabilities in the N=88-90 nuclei. (author)
On the Einstein-Stern model of rotational heat capacities
DEFF Research Database (Denmark)
Dahl, Jens Peder
1998-01-01
The Einstein-Stern model for the rotational contribution to the heat capacity of a diatomic gas has recently been resuscitated. In this communication, we show that the apparent success of the model is illusory, because it is based on what has turned out to be an unfortunate comparison with experi...... with experiment. We also take exception to the possibility of assigning any meaning to the rotational zero-point energy introduced by the model. (C) 1998 American Institute of Physics. [S0021-9606(98)02448-9]....
Excited states rotational effects on the behavior of excited molecules
Lim, Edward C
2013-01-01
Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also
Methyl group rotation and nuclear relaxation at low temperatures
International Nuclear Information System (INIS)
Zweers, A.E.
1976-01-01
This thesis deals with the proton spin-lattice relaxation of some methyl group compounds at liquid helium temperatures. In these molecular crystals, an energy difference between the ground and first rotational state of the methyl group occurs, the so-called tunnelling splitting, which is of the order of a few degrees Kelvin. This means that the high temperature approximation is inappropriate for the description of the occupation densities of the two lowest rotational levels. A description of the properties of the methyl group in connection with relaxation
QED Effects in Molecules: Test on Rotational Quantum States of H2
Salumbides, E. J.; Dickenson, G. D.; Ivanov, T. I.; Ubachs, W.
2011-07-01
Quantum electrodynamic effects have been systematically tested in the progression of rotational quantum states in the XΣg+1, v=0 vibronic ground state of molecular hydrogen. High-precision Doppler-free spectroscopy of the EFΣg+1-XΣg+1 (0,0) band was performed with 0.005cm-1 accuracy on rotationally hot H2 (with rotational quantum states J up to 16). QED and relativistic contributions to rotational level energies as high as 0.13cm-1 are extracted, and are in perfect agreement with recent calculations of QED and high-order relativistic effects for the H2 ground state.
Kawaler, Steven D.
2014-01-01
I discuss and consider the status of observational determinations of the rotation velocities of white dwarf stars via asteroseismology and spectroscopy. While these observations have important implications on our understanding of the angular momentum evolution of stars in their late stages of evolution, more direct methods are sorely needed to disentangle ambiguities.
Rotation in a gravitational billiard
Peraza-Mues, G. G.; Carvente, Osvaldo; Moukarzel, Cristian F.
Gravitational billiards composed of a viscoelastic frictional disk bouncing on a vibrating wedge have been studied previously, but only from the point of view of their translational behavior. In this work, the average rotational velocity of the disk is studied under various circumstances. First, an experimental realization is briefly presented, which shows sustained rotation when the wedge is tilted. Next, this phenomenon is scrutinized in close detail using a precise numerical implementation of frictional forces. We show that the bouncing disk acquires a spontaneous rotational velocity whenever the wedge angle is not bisected by the direction of gravity. Our molecular dynamics (MD) results are well reproduced by event-driven (ED) simulations. When the wedge aperture angle θW>π/2, the average tangential velocity Rω¯ of the disk scales with the typical wedge vibration velocity vb, and is in general a nonmonotonic function of the overall tilt angle θT of the wedge. The present work focuses on wedges with θW=2π/3, which are relevant for the problem of spontaneous rotation in vibrated disk packings. This study makes part of the PhD Thesis of G. G. Peraza-Mues.
Visual and Haptic Mental Rotation
Directory of Open Access Journals (Sweden)
Satoshi Shioiri
2011-10-01
Full Text Available It is well known that visual information can be retained in several types of memory systems. Haptic information can also be retained in a memory because we can repeat a hand movement. There may be a common memory system for vision and action. On the one hand, it may be convenient to have a common system for acting with visual information. On the other hand, different modalities may have their own memory and use retained information without transforming specific to the modality. We compared memory properties of visual and haptic information. There is a phenomenon known as mental rotation, which is possibly unique to visual representation. The mental rotation is a phenomenon where reaction time increases with the angle of visual target (eg,, a letter to identify. The phenomenon is explained by the difference in time to rotate the representation of the target in the visual sytem. In this study, we compared the effect of stimulus angle on visual and haptic shape identification (two-line shapes were used. We found that a typical effect of mental rotation for the visual stimulus. However, no such effect was found for the haptic stimulus. This difference cannot be explained by the modality differences in response because similar difference was found even when haptical response was used for visual representation and visual response was used for haptic representation. These results indicate that there are independent systems for visual and haptic representations.
A rotating arc plasma invertor
International Nuclear Information System (INIS)
Reusch, M.F.; Jayaram, K.
1987-02-01
A device is described for the inversion of direct current to alternating current. The main feature is the use of a rotating plasma arc in crossed electric and magnetic fields as a switch. This device may provide an economic alternative to other inversion methods in some circumstances
Ultrasonography of the Rotator Cuff
International Nuclear Information System (INIS)
Yoon, Yong Cheol
2006-01-01
The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance
Ultrasonography of the Rotator Cuff
Energy Technology Data Exchange (ETDEWEB)
Yoon, Yong Cheol [Samsung Medica Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)
2006-09-15
The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance
Rotations in a Vertebrate Setting
McCollum, Gin
2003-05-01
Rotational movements of the head are often considered to be measured in a single three dimensional coordinate system implemented by the semicircular canals of the vestibular system of the inner ear. However, the vertebrate body -- including the nervous system -- obeys rectangular symmetries alien to rotation groups. At best, nervous systems mimic the physical rotation group in a fragmented way, only partially reintegrating physical movements in whole organism responses. The vestibular canal reference frame is widely used in nervous systems, for example by eye movements. It is used to some extent even in the cerebrum, as evidenced by the remission of hemineglect -- in which half of space is ignored -- when the vestibular system is stimulated. However, reintegration of space by the organism remains incomplete. For example, compensatory eye movements (which in most cases aid visual fixation) may disagree with conscious self-motion perception. In addition, movement-induced nausea, illusions, and cue-free perceptions demonstrate symmetry breaking or incomplete spatial symmetries. As part of a long-term project to investigate rotation groups in nervous systems, we have analyzed the symmetry group of a primary vestibulo-spinal projection.
Synchrotron Radiation and Faraday Rotation
Heald, George
2015-01-01
Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For
International Nuclear Information System (INIS)
Krishnan, Chethan
2011-01-01
Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.
Perturbative treatment of nuclear rotations
International Nuclear Information System (INIS)
Civitarese, O.
1980-01-01
In this work, it is described the case corresponding to perturbative quantum treatment of a fermion system in free rotation and the divergences which resulted from the 'break' in symmetry, associated by the adoption of a deformed basis as a non pertubed solution. (A.C.A.S.) [pt
Meniscus Stability in Rotating Systems
Reichel, Yvonne; Dreyer, Michael
2013-11-01
In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.
Scanning the parameter space of collapsing rotating thin shells
Rocha, Jorge V.; Santarelli, Raphael
2018-06-01
We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.
Protostellar formation in rotation interstellar clouds. III. Nonaxisymmetric collapse
International Nuclear Information System (INIS)
Boss, A.P.
1980-01-01
A full three spatial-dimension gravitational hydrodynamics code has been used to follow the collapse of isothermal rotating clouds subjected to various nonaxialy symmetric perturbations (NAP). An initially axially symmetric cloud collapsed to form a ring which then fragmented into a binary protostellar system. A low thermal energy cloud with a large bar-shaped NAP collapsed and fragmented directly into a binary; higher thermal energy clouds damp out such NAPs while higher rotational rotational energy clouds produce binaries with wider separations. Fragmentation into single and binary systems has been seen. The tidal effects of other nearby protostellar clouds are shown to have an important effect upon the collapse and should not be neglected. The three-dimensional calculations indicate that isothermal interstellar clouds may fragment (with or without passing through a transitory ring phase) into protostellar objects while still in the isothermal regime. The fragments obtained have masses and specific spin angular momenta roughly a 10th that of the original cloud. Interstellar clouds and their fragments may pass through successive collapse phases with fragmentation and reduction of spin angular momentum (by conversion to orbital angular momentum and preferential accretion of low angular momentum matter) terminating in the formation of pre--main-sequence stars with the observed pre--main-sequence rotation rates
Fluctuations and correlations in rotating Bose-Einstein condensates
International Nuclear Information System (INIS)
Baharian, Soheil; Baym, Gordon
2010-01-01
We investigate the effects of correlations on the properties of the ground state of the rotating harmonically trapped Bose gas by adding Bogoliubov fluctuations to the mean-field ground state of an N-particle single-vortex system. We demonstrate that the fluctuation-induced correlations lower the energy compared to that of the mean-field ground state, that the vortex core is pushed slightly away from the center of the trap, and that an unstable mode with negative energy (for rotations slower than a critical frequency) emerges in the energy spectrum, thus pointing to a better state for slow rotation. We construct mean-field ground states of zero-, one-, and two-vortex states as a function of rotation rate and determine the critical frequencies for transitions between these states, as well as the critical frequency for appearance of a metastable state with an off-center vortex and its image vortex in the evanescent tail of the cloud.
Theoretical rotation-vibration spectrum of thioformaldehyde
International Nuclear Information System (INIS)
Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter
2013-01-01
We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H 2 CS. It covers 41 809 rovibrational levels for states up to J max = 30 with vibrational band origins up to 5000 cm −1 and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments
Theoretical rotation-vibration spectrum of thioformaldehyde
Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter
2013-11-01
We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H2CS. It covers 41 809 rovibrational levels for states up to Jmax = 30 with vibrational band origins up to 5000 cm-1 and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.
Theoretical rotation-vibration spectrum of thioformaldehyde
Energy Technology Data Exchange (ETDEWEB)
Yachmenev, Andrey [Department of Physics and Astronomy, University College London, London, WC1E 6BT (United Kingdom); Polyak, Iakov; Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D–45470 Mülheim an der Ruhr (Germany)
2013-11-28
We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H{sub 2}CS. It covers 41 809 rovibrational levels for states up to J{sub max} = 30 with vibrational band origins up to 5000 cm{sup −1} and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.
Limiting rotational period of neutron stars
Glendenning, Norman K.
1992-11-01
We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.
Limiting rotational period of neutron stars
International Nuclear Information System (INIS)
Glendenning, N.K.
1992-01-01
We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442M circle-dot neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars
Snakes, rotators, serpents and the octahedral group
International Nuclear Information System (INIS)
Fieguth, T.
1986-04-01
Specific configurations of horizontal and vertical bending magnets are given that, when acting on the spin polarization vector of a particle beam, generate a group of 24 operators isomorphic to the group of rotational symmetries of a cube, known as the octahedral group. Some of these configurations have the feature of converting transversely polarized beams to longitudinally polarized beams (or vice versa) at the midpoint of the configuration for, in principle, all beam energies. Since the first order optical transfer matrix for each half of these configurations is nearly that of a drift region, the external geometry remains unchanged and midpoint dispersion is not introduced. Changing field strengths and/or polarities allows a configuration to serve as either a Snake(1/sup st/ or 2/sup nd/ kind) or a Rotator, where in both cases the spin polarization is longitudinal at the midpoint. In this conceptualization, emphasis has been placed on electron beams and, indeed, for these beams some practical applications can be envisioned. However, due to the relatively high integrated field strengths required, application of these concepts to proton beams may be more promising
Rotational and translational diffusions of fluorescent probes during gelation process
Hattori, Yusuke; Panizza, Pascal; Letamendia, Louis; Ushiki, Hideharu
2006-04-01
Gelation process has been investigated by using light scattering techniques in recent years. We measured both of rotational and translational motions of fluorescent probes during gelation process. The measurements were performed after the temperature quenched at 30 °C. As the results, rotational diffusion coefficient of fluorescein was decreased after 6.0 × 10 4 s and energy transfer rate was reduced after 2.0 × 10 4 s. We sorted the gelation process into the following three parts, (I) pre-gelation, (II) reduction of translational diffusion (aging), and (III) reduction of rotational diffusion with saturating translational diffusion (post-gelation). The time scale of the process was completely different from the results of other methods.
On selection rules in vibrational and rotational molecular spectroscopy
International Nuclear Information System (INIS)
Guichardet, A.
1986-01-01
The aim of this work is a rigorous proof of the Selection Rules in Molecular Spectroscopy (Vibration and Rotation). To get this we give mathematically rigorous definitions of the (tensor) transition operators, in this case the electric dipole moment; this is done, firstly by considering the molecule as a set of point atomic kernels performing arbitrary motions, secondly by limiting ourselves either to infinitesimal vibration motions, or to arbitrary rotation motions. Then the selection rules follow from an abstract formulation of the Wigner-Eckart theorem. In a last paragraph we discuss the problem of separating vibration and rotation motions; very simple ideas from Differential Geometry, linked with the ''slice theorem'', allow us to define the relative speeds, the solid motions speeds, the Coriolis energies and the moving Eckart frames [fr
Fouling in a MBR system with rotating membrane discs
DEFF Research Database (Denmark)
Jørgensen, Mads Koustrup; Bentzen, Thomas Ruby; Christensen, Morten Lykkegaard
concentrations and a clear effluent with no bacteria present in the permeate [1]. However, the process performance is limited by membrane fouling, which results in a lower productivity and higher energy demand and hence places demands for limitation of fouling and/or cleaning of the membranes. One way to do...... uses rotating ceramic membrane discs for creation of shear, which can be changed by controlling the membrane rotation speed of the membrane. Furthermore, the influence of shear on fouling is studied at different radii from the center of rotation, by dividing membranes into different concentric rings......Membrane bioreactors (MBR) are an attractive alternative solution for municipal and industrial wastewater treatment. The MBR, which is a combination of a bioreactor for sludge degradation and a membrane for separation, has the advantages of a low footprint, ability to handle high sludge...
Nuclear collective rotation in the SU3 model, 2
International Nuclear Information System (INIS)
Kinouchi, Shin-ichi; Kishimoto, Teruo; Kammuri, Tetsuo.
1989-05-01
The collective rotation of a nuclear system with the SU 3 Hamiltonian is described by the quantal dynamical nuclear field theory. An angular frequency in the Coriolis interaction of the driving Hamiltonian is replaced by a total angular momentum operator divided by the corresponding moment of inertia. We consider here the low spin states for a triaxial intrinsic configuration. The rotational effect is taken into account by using the effective quadrupole and angular momentum operators, whose expressions are different depending on whether they refer to the laboratory frame or the body-fixed one. Effective forms of the total Hamiltonian and the particle angular momentum are compared with the exact SU 3 energy and the rotor's angular momentum, respectively. In order to dissolve the disagreement for the effective operators, the perturbing interaction should be supplemented by a residual part of the quadrupole-quadrupole interaction, which restores the rotational invariance of the intrinsic Hamiltonian. (author)
Efficiency of wave-driven rigid body rotation toroidal confinement
Rax, J. M.; Gueroult, R.; Fisch, N. J.
2017-03-01
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.
System and Method for Obtaining Simultaneous Levitation and Rotation of a Ferromagnetic Object
Banerjee, Subrata; Sarkar, Mrinal Kanti; Ghosh, Arnab
2017-02-01
In this work a practical demonstration for simultaneous levitation and rotation for a ferromagnetic cylindrical object is presented. A hollow steel cylinder has been arranged to remain suspended stably under I-core electromagnet utilizing dc attraction type levitation principle and then arranged to rotate the levitated object around 1000 rpm speed based on eddy current based energy meter principle. Since the object is to be rotating during levitated condition the device will be frictionless, energy-efficient and robust. This technology may be applied to frictionless energy meter, wind turbine, machine tool applications, precision instruments and many other devices where easy energy-efficient stable rotation will be required. The cascade lead compensation control scheme has been applied for stabilization of unstable levitation system. The proposed device is successfully tested in the laboratory and experimental results have been produced.
Magneto-rotational instability in differentially rotating liquid metals
International Nuclear Information System (INIS)
Velikhov, E.P.; Ivanov, A.A.; Lakhin, V.P.; Serebrennikov, K.S.
2006-01-01
We study the stability of Couette flow between two cylinders in the presence of axial magnetic field in local WKB approximation. We find the analytical expression of the critical angular velocity minimized over the wave number and the imposed magnetic field as a function of the measure of deviation of the rotation law from the Rayleigh line. The result found is in a good agreement with the previously known numerical results based on the global analysis. We perform a minimization of the critical Reynolds number over the wave number at fixed magnetic field both analytically and numerically. We show that a compromise between resistive suppression of magneto-rotational instability at weak magnetic field and the increase of the critical Reynolds number with the increase of magnetic field is possible. It takes place at moderate values of magnetic field of order 3x10 2 gauss giving the critical Reynolds number of order 4x10 4
Rapidly rotating general relativistic stars. Pt. 2. Differentially rotating polytropes
Energy Technology Data Exchange (ETDEWEB)
Komatsu, Hidemi [Tokyo Univ. (Japan). Faculty of Science; Eriguchi, Yoshiharu [Tokyo Univ. (Japan). Dept. of Astronomy; Hachisu, Izumi [Kyoto Univ. (Japan). Dept. of Aeronautical Engineering
1989-07-01
We have applied the numerical method which was developed for Newtonian gravity to general relativistic, differentially rotating bodies including ring-like structures. A number of equilibrium structures are obtained for two different polytropic indices N=1/2 and N=3/2, because the various proposed equations of state for the nuclear density region fall into the range N=1/2 to 3/2 from the viewpoint of its softness. (author).
Physics of Rotating and Expanding Black Hole Universe
Directory of Open Access Journals (Sweden)
Seshavatharam U. V. S.
2010-04-01
Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole’s temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking’s black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation “rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to 2 : 726 K ; smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is 2 : 726 K, present value of obtained angular velocity is 2 : 17 10 Present cosmic mass density and cosmic time are fitted with a ln ( volume ratio parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.
Charged rotating black holes on a 3-brane
International Nuclear Information System (INIS)
Aliev, A.N.; Guemruekcueoglu, A.E.
2005-01-01
We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superseded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the 'squared' energy-momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of nonuniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles
Energy Technology Data Exchange (ETDEWEB)
Lazarus, A. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/SEMT), 91 - Gif sur Yvette (France)
2008-07-01
For high rotation speeds, the imperfections (cracks, anisotropy...) of rotating machinery of the energy sector lead to a specific vibratory behavior which can damage the machine. The simulation of rotating machinery are usually realized for systems without defect. The aim of this thesis is to understand the influence of defects and to propose an algorithm to predict the dynamical behavior. In a first part the author studies the simplified rotating oscillators to propose a numerical method in order to taking into account the dynamic of these systems. This method is then applied to real rotating machinery with the Cast3m software. The numerical results are validated with experiments. (A.L.B.)
Short Rotation Crops in the United States
Energy Technology Data Exchange (ETDEWEB)
Wright, L L
1998-06-04
The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy's Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy's Bioenergy Feedstock Development Program are described in an appendix to the paper.
Study on the Contra-Rotating Propeller system design and full-scale performance prediction method
Directory of Open Access Journals (Sweden)
Keh-Sik Min
2009-09-01
Full Text Available A ship's screw-propeller produces thrust by rotation and, at the same time, generates rotational flow behind the propeller. This rotational flow has no contribution to the generation of thrust, but instead produces energy loss. By recovering part of the lost energy in the rotational flow, therefore, it is possible to improve the propulsion efficiency. The contra-rotating propeller (CRP system is the representing example of such devices. Unfortunately, however, neither a design method nor a full-scale performance prediction procedure for the CRP system has been well established yet. The authors have long performed studies on the CRP system, and some of the results from the authors’ studies shall be presented and discussed.
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)
Rotating model for the equivalence principle paradox
International Nuclear Information System (INIS)
Wilkins, D.C.
1975-01-01
An idealized system is described in which two inertial frames rotate relative to one another. When a (scalar) dipole is locally at rest in one frame, a paradox arises as to whether or not it will radiate. Fluxes of energy and angular momentum and the time development of the system are discussed. Resolution of the paradox involves several unusual features, including (i) radiation by an unmoving charge, an effect discussed by Chitre, Price, and Sandberg, (ii) different power seen by relatively accelerated inertial observers, and (iii) radiation reaction due to gravitational backscattering of radiation, in agreement with the work of C. and B. DeWitt. These results are obtained, for the most part, without the complications of curved space--time