WorldWideScience

Sample records for rotation measure-galaxy cross-correlations

  1. Investigation of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.

    2013-01-01

    The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed

  2. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Abdul-Aziz, Ali; Woike, Mark R.; Fralick, Gustave C.

    2015-01-01

    The modern turbine engine operates in a harsh environment at high speeds and is repeatedly exposed to combined high mechanical and thermal loads. The cumulative effects of these external forces lead to high stresses and strains on the engine components, such as the rotating turbine disks, which may eventually lead to a catastrophic failure if left undetected. The operating environment makes it difficult to use conventional strain gauges, therefore, non-contact strain measurement techniques is of interest to NASA and the turbine engine community. This presentation describes one such approach; the use of cross correlation analysis to measure strain experienced by the engine turbine disk with the goal of assessing potential faults and damage.

  3. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-01-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the

  4. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY

    International Nuclear Information System (INIS)

    Fushman, David; Cowburn, David

    1999-01-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D-parallel /D-perpendicular -1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D-parallel /D-perpendicular ≥1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems

  5. CROSS-CORRELATIONS AS A COSMOLOGICAL CARBON MONOXIDE DETECTOR

    International Nuclear Information System (INIS)

    Pullen, Anthony R.; Doré, Olivier; Chang, Tzu-Ching; Lidz, Adam

    2013-01-01

    We present a new procedure to measure the large-scale carbon monoxide (CO) emissions across cosmic history. As a tracer of large-scale structure (LSS), the CO gas content as a function of redshift can be quantified by its three-dimensional fluctuation power spectra. Furthermore, cross-correlating CO emission with other LSS tracers offers a way to measure the emission as a function of scale and redshift. Here we introduce the model relevant for such a cross-correlation measurement between CO and other LSS tracers, and between different CO rotational lines. We propose a novel use of cosmic microwave background (CMB) data and attempt to extract redshifted CO emissions embedded in the Wilkinson Microwave Anisotropy Probe (WMAP) data set. We cross-correlate the all-sky WMAP7 data with LSS data sets, namely, the photometric quasar sample and the luminous red galaxy sample from the Sloan Digital Sky Survey Data Releases 6 and 7, respectively. We are unable to detect a cross-correlation signal with either CO(1-0) or CO(2-1) lines, mainly due to the instrumental noise in the WMAP data. However, we are able to rule out models more than three times greater than our more optimistic model. We discuss the cross-correlation signal from the thermal Sunyaev-Zeldovich effect and dust as potential contaminants, and quantify their impact for our CO measurements. We discuss forecasts for current CMB experiments and a hypothetical future CO-focused experiment, and propose to cross-correlate CO temperature data with the Hobby-Eberly Telescope Dark Energy Experiment Lyα-emitter sample, for which a signal-to-noise ratio of 58 is possible.

  6. Detrended cross-correlation analysis of electroencephalogram

    International Nuclear Information System (INIS)

    Wang Jun; Zhao Da-Qing

    2012-01-01

    In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not. (interdisciplinary physics and related areas of science and technology)

  7. Bunches of random cross-correlated sequences

    International Nuclear Information System (INIS)

    Maystrenko, A A; Melnik, S S; Pritula, G M; Usatenko, O V

    2013-01-01

    The statistical properties of random cross-correlated sequences constructed by the convolution method (likewise referred to as the Rice or the inverse Fourier transformation) are examined. We clarify the meaning of the filtering function—the kernel of the convolution operator—and show that it is the value of the cross-correlation function which describes correlations between the initial white noise and constructed correlated sequences. The matrix generalization of this method for constructing a bunch of N cross-correlated sequences is presented. Algorithms for their generation are reduced to solving the problem of decomposition of the Fourier transform of the correlation matrix into a product of two mutually conjugate matrices. Different decompositions are considered. The limits of weak and strong correlations for the one-point probability and pair correlation functions of sequences generated by the method under consideration are studied. Special cases of heavy-tailed distributions of the generated sequences are analyzed. We show that, if the filtering function is rather smooth, the distribution function of generated variables has the Gaussian or Lévy form depending on the analytical properties of the distribution (or characteristic) functions of the initial white noise. Anisotropic properties of statistically homogeneous random sequences related to the asymmetry of a filtering function are revealed and studied. These asymmetry properties are expressed in terms of the third- or fourth-order correlation functions. Several examples of the construction of correlated chains with a predefined correlation matrix are given. (paper)

  8. Cross-correlation time-of-flight analysis of molecular beam scattering

    International Nuclear Information System (INIS)

    Nowikow, C.V.; Grice, R.

    1979-01-01

    The theory of the cross-correlation method of time-of-flight analysis is presented in a form which highlights its formal similarity to the conventional method. A time-of-flight system for the analysis of crossed molecular beam scattering is described, which is based on a minicomputer interface and can operate in both the cross-correlation and conventional modes. The interface maintains the synchronisation of chopper disc rotation and channel advance indefinitely in the cross-correlation method and can acquire data in phase with the beam modulation in both methods. The shutter function of the cross-correlation method is determined and the deconvolution analysis of the data is discussed. (author)

  9. Exploiting Cross Correlations and Joint Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, J. [Caltech; Allen, S. [SLAC; Benson, B. A. [Chicago U., Astron. Astrophys. Ctr.; Chang, T. [Taipei, Inst. Astron. Astrophys.; de Putter, R. [Caltech; Dodelson, S. [Chicago U., Astron. Astrophys. Ctr.; Doré, O. [Caltech; Honscheid, K. [Ohio State U., CCAPP; Linder, E. [UC, Berkeley; Ménard, B. [Tokyo U., IPMU; Newman, J. [Pittsburgh U.; Nord, B. [Fermilab; Rozo, E. [SLAC; Rykoff, E. [SLAC; Vallinotto, A. [LBL, Berkeley; Weinberg, D. [Ohio State U., CCAPP

    2014-02-28

    In this report, we present a wide variety of ways in which information from multiple probes of dark energy may be combined to obtain additional information not accessible when they are considered separately. Fundamentally, because all major probes are affected by the underlying distribution of matter in the regions studied, there exist covariances between them that can provide information on cosmology. Combining multiple probes allows for more accurate (less contaminated by systematics) and more precise (since there is cosmological information encoded in cross-correlation statistics) measurements of dark energy. The potential of cross-correlation methods is only beginning to be realized. By bringing in information from other wavelengths, the capabilities of the existing probes of dark energy can be enhanced and systematic effects can be mitigated further. We present a mixture of work in progress and suggestions for future scientific efforts. Given the scope of future dark energy experiments, the greatest gains may only be realized with more coordination and cooperation between multiple project teams; we recommend that this interchange should begin sooner, rather than later, to maximize scientific gains.

  10. Modeling CMB lensing cross correlations with CLEFT

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Chirag; White, Martin [Department of Physics, University of California, Berkeley, CA 94720 (United States); Vlah, Zvonimir, E-mail: modichirag@berkeley.edu, E-mail: mwhite@berkeley.edu, E-mail: zvlah@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States)

    2017-08-01

    A new generation of surveys will soon map large fractions of sky to ever greater depths and their science goals can be enhanced by exploiting cross correlations between them. In this paper we study cross correlations between the lensing of the CMB and biased tracers of large-scale structure at high z . We motivate the need for more sophisticated bias models for modeling increasingly biased tracers at these redshifts and propose the use of perturbation theories, specifically Convolution Lagrangian Effective Field Theory (CLEFT). Since such signals reside at large scales and redshifts, they can be well described by perturbative approaches. We compare our model with the current approach of using scale independent bias coupled with fitting functions for non-linear matter power spectra, showing that the latter will not be sufficient for upcoming surveys. We illustrate our ideas by estimating σ{sub 8} from the auto- and cross-spectra of mock surveys, finding that CLEFT returns accurate and unbiased results at high z . We discuss uncertainties due to the redshift distribution of the tracers, and several avenues for future development.

  11. A new methodology of spatial cross-correlation analysis.

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  12. A New Methodology of Spatial Cross-Correlation Analysis

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  13. Multifractal detrended cross-correlation analysis in the MENA area

    Science.gov (United States)

    El Alaoui, Marwane; Benbachir, Saâd

    2013-12-01

    In this paper, we investigated multifractal cross-correlations qualitatively and quantitatively using a cross-correlation test and the Multifractal detrended cross-correlation analysis method (MF-DCCA) for markets in the MENA area. We used cross-correlation coefficients to measure the level of this correlation. The analysis concerns four stock market indices of Morocco, Tunisia, Egypt and Jordan. The countries chosen are signatory of the Agadir agreement concerning the establishment of a free trade area comprising Arab Mediterranean countries. We computed the bivariate generalized Hurst exponent, Rényi exponent and spectrum of singularity for each pair of indices to measure quantitatively the cross-correlations. By analyzing the results, we found the existence of multifractal cross-correlations between all of these markets. We compared the spectrum width of these indices; we also found which pair of indices has a strong multifractal cross-correlation.

  14. Cross-Correlations in Quasar Radio Emission

    Science.gov (United States)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    The main factors forming the complex evolution of the accretive astrophysical systems are nonlinearity, intermittency, nonstationarity and also collective phenomena. To discover the dynamic processes in these objects and to detain understanding their properties we need to use all the applicable analyzing methods. Here we use the Flicker-Noise Spectroscopy (FNS) as a phenomenological approach to analyzing and parameterizing the auto- and cross-correlations in time series of astrophysical objects dynamics. As an example we consider the quasar flux radio spectral density at frequencies 2.7 GHz and 8.1 GHz. Data have been observed by Dr. N. Tanizuka (Laboratory for Complex Systems Analysis, Osaka Prefecture University) in a period of 1979 to 1988 (3 309 days). According to mental habits quasar is a very energetic and distant active galactic nucleus containing a supermassive black hole by size 10-10,000 times the Schwarzschild radius. The quasar is powered by an accretion disc around the black hole. The accretion disc material layers, moving around the black hole, are under the influence of gravitational and frictional forces. It results in raising the high temperature and arising the resonant and collective phenomena reflected in quasar emission dynamics. Radio emission dynamics of the quasar 0215p015 is characterized by three quasi-periodic processes, which are prevalent in considering dynamics. By contrast the 1641p399's emission dynamics have not any distinguish processes. It means the presence of high intermittency in accretive modes. The second difference moment allows comparing the degree of manifesting of resonant and chaotic components in initial time series of the quasar radio emission. The comparative analysis shows the dominating of chaotic part of 1641p399's dynamics whereas the radio emission of 0215p015 has the predominance of resonant component. Analyzing the collective features of the quasar radio emission intensity demonstrates the significant

  15. World currency exchange rate cross-correlations

    Science.gov (United States)

    Droå¼dż, S.; Górski, A. Z.; Kwapień, J.

    2007-08-01

    World currency network constitutes one of the most complex structures that is associated with the contemporary civilization. On a way towards quantifying its characteristics we study the cross correlations in changes of the daily foreign exchange rates within the basket of 60 currencies in the period December 1998 May 2005. Such a dynamics turns out to predominantly involve one outstanding eigenvalue of the correlation matrix. The magnitude of this eigenvalue depends however crucially on which currency is used as a base currency for the remaining ones. Most prominent it looks from the perspective of a peripheral currency. This largest eigenvalue is seen to systematically decrease and thus the structure of correlations becomes more heterogeneous, when more significant currencies are used as reference. An extreme case in this later respect is the USD in the period considered. Besides providing further insight into subtle nature of complexity, these observations point to a formal procedure that in general can be used for practical purposes of measuring the relative currencies significance on various time horizons.

  16. Multiscale Detrended Cross-Correlation Analysis of STOCK Markets

    Science.gov (United States)

    Yin, Yi; Shang, Pengjian

    2014-06-01

    In this paper, we employ the detrended cross-correlation analysis (DCCA) to investigate the cross-correlations between different stock markets. We report the results of cross-correlated behaviors in US, Chinese and European stock markets in period 1997-2012 by using DCCA method. The DCCA shows the cross-correlated behaviors of intra-regional and inter-regional stock markets in the short and long term which display the similarities and differences of cross-correlated behaviors simply and roughly and the persistence of cross-correlated behaviors of fluctuations. Then, because of the limitation and inapplicability of DCCA method, we propose multiscale detrended cross-correlation analysis (MSDCCA) method to avoid "a priori" selecting the ranges of scales over which two coefficients of the classical DCCA method are identified, and employ MSDCCA to reanalyze these cross-correlations to exhibit some important details such as the existence and position of minimum, maximum and bimodal distribution which are lost if the scale structure is described by two coefficients only and essential differences and similarities in the scale structures of cross-correlation of intra-regional and inter-regional markets. More statistical characteristics of cross-correlation obtained by MSDCCA method help us to understand how two different stock markets influence each other and to analyze the influence from thus two inter-regional markets on the cross-correlation in detail, thus we get a richer and more detailed knowledge of the complex evolutions of dynamics of the cross-correlations between stock markets. The application of MSDCCA is important to promote our understanding of the internal mechanisms and structures of financial markets and helps to forecast the stock indices based on our current results demonstrated the cross-correlations between stock indices. We also discuss the MSDCCA methods of secant rolling window with different sizes and, lastly, provide some relevant implications and

  17. Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets

    International Nuclear Information System (INIS)

    He Lingyun; Chen Shupeng

    2011-01-01

    Highlights: → We investigated cross-correlations between China's and US agricultural futures markets. → Power-law cross-correlations are found between the geographically far but correlated markets. → Multifractal features are significant in all the markets. → Cross-correlation exponent is less than averaged GHE when q 0. - Abstract: We investigated geographically far but temporally correlated China's and US agricultural futures markets. We found that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the markets. It is very interesting that the geographically far markets show strong cross-correlations and share much of their multifractal structure. Furthermore, we found that for all the agricultural futures markets in our studies, the cross-correlation exponent is less than the averaged generalized Hurst exponents (GHE) when q 0.

  18. Stochastic systems with cross-correlated Gaussian white noises

    International Nuclear Information System (INIS)

    Wang Cheng-Yu; Song Yu-Min; Zhou Peng; Yang Hai; Gao Yun

    2010-01-01

    This paper theoretically investigates three stochastic systems with cross-correlation Gaussian white noises. Both steady state properties of the stochastic nonlinear systems and the nonequilibrium transitions induced by the cross-correlated noises are studied. The stationary solutions of the Fokker—Planck equation for three specific examples are analysed. It is shown explicitly that the cross-correlation of white noises can induce nonequilibrium transitions

  19. Signal Digitizer and Cross-Correlation Application Specific Integrated Circuit

    Science.gov (United States)

    Baranauskas, Dalius (Inventor); Baranauskas, Gytis (Inventor); Zelenin, Denis (Inventor); Kangaslahti, Pekka (Inventor); Tanner, Alan B. (Inventor); Lim, Boon H. (Inventor)

    2017-01-01

    According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.

  20. Cross-correlation interference effects in multiaccess optical communications

    Science.gov (United States)

    Peterson, G. D.; Gardner, C. S.

    1981-03-01

    An analysis is presented of the cross correlation between user codes in an optical code-division multiple-access communication system. The system model is a multiaccess satellite repeater, where the uplink and downlink channels are direct-detection optical-polarization modulation links. The error probability is obtained in terms of the cross correlation between the intended and interfering user codes. It is demonstrated that the system error rate can be minimized by the use of code sequences in which the normalized second moment of the cross correlation between codes is small.

  1. Testing power-law cross-correlations: Rescaled covariance test

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 86, č. 10 (2013), 418-1-418-15 ISSN 1434-6028 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * testing * long-term memory Subject RIV: AH - Economics Impact factor: 1.463, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-testing power-law cross-correlations rescaled covariance test.pdf

  2. Statistical tests for power-law cross-correlated processes

    Science.gov (United States)

    Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H. Eugene

    2011-12-01

    For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T,n), where T is the total length of the time series and n the window size. For ρDCCA(T,n), we numerically calculated the Cauchy inequality -1≤ρDCCA(T,n)≤1. Here we derive -1≤ρDCCA(T,n)≤1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the cross-correlations become statistically significant. For overlapping windows we numerically determine—and for nonoverlapping windows we derive—that the standard deviation of ρDCCA(T,n) tends with increasing T to 1/T. Using ρDCCA(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.

  3. Cross-correlations and influence in world gold markets

    Science.gov (United States)

    Lin, Min; Wang, Gang-Jin; Xie, Chi; Stanley, H. Eugene

    2018-01-01

    Using the detrended cross-correlation analysis (DCCA) coefficient and the detrended partial cross-correlation analysis (DPCCA) coefficient, we investigate cross-correlations and net cross-correlations among five major world gold markets (London, New York, Shanghai, Tokyo, and Mumbai) at different time scales. We propose multiscale influence measures for examining the influence of individual markets on other markets and on the entire system. We find (i) that the cross-correlations, net cross-correlations, and net influences among the five gold markets vary across time scales, (ii) that the cross-market correlation between London and New York at each time scale is intense and inherent, meaning that the influence of other gold markets on the London-New York market is negligible, (iii) that the remaining cross-market correlations (i.e., those other than London-New York) are greatly affected by other gold markets, and (iv) that the London gold market significantly affects the other four gold markets and dominates the world-wide gold market. Our multiscale findings give market participants and market regulators new information on cross-market linkages in the world-wide gold market.

  4. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  5. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    Science.gov (United States)

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  6. Cross Correlation versus Normalized Mutual Information on Image Registration

    Science.gov (United States)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  7. Atmospheric pollution measurement by optical cross correlation methods - A concept

    Science.gov (United States)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  8. Cross-correlated imaging of distributed mode filtering rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    We analyze the modal properties of an 85μm core distributed mode filtering rod fiber using cross-correlated (C2) imaging. We evaluate suppression of higher-order modes (HOMs) under severely misaligned mode excitation and identify a single-mode regime where HOMs are suppressed by more than 20dB....

  9. Audio Quality Assurance : An Application of Cross Correlation

    DEFF Research Database (Denmark)

    Jurik, Bolette Ammitzbøll; Nielsen, Jesper Asbjørn Sindahl

    2012-01-01

    We describe algorithms for automated quality assurance on content of audio files in context of preservation actions and access. The algorithms use cross correlation to compare the sound waves. They are used to do overlap analysis in an access scenario, where preserved radio broadcasts are used in...

  10. Nonreciprocal Green’s function retrieval by cross correlation

    NARCIS (Netherlands)

    Wapenaar, C.P.A.

    2006-01-01

    The cross correlation of two recordings of a diffuse acoustic wave field at different receivers yields the Green’s function between these receivers. In nearly all cases considered so far the wave equation obeys time-reversal invariance and the Green’s function obeys source-receiver reciprocity. Here

  11. Cross-correlation enhanced stability in a tumor cell growth model with immune surveillance driven by cross-correlated noises

    International Nuclear Information System (INIS)

    Zeng Chunhua; Zhou Xiaofeng; Tao Shufen

    2009-01-01

    The transient properties of a tumor cell growth model with immune surveillance driven by cross-correlated multiplicative and additive noises are investigated. The explicit expression of extinction rate from the state of a stable tumor to the state of extinction is obtained. Based on the numerical computations, we find the following: (i) the intensity of multiplicative noise D and the intensity of additive noise α enhance the extinction rate for the case of λ ≤ 0 (i.e. λ denotes cross-correlation intensity between two noises), but for the case of λ > 0, a critical noise intensity D or α exists at which the extinction rate is the smallest; D and α at first weaken the extinction rate and then enhance it. (ii) The immune rate β and the cross-correlation intensity λ play opposite roles on the extinction rate, i.e. β enhances the extinction rate of the tumor cell, while λ weakens the extinction rate of the tumor cell. Namely, the immune rate can enhance the extinction of the tumor cell and the cross-correlation between two noises can enhance stability of the cancer state.

  12. Cross-correlation analysis of Ge/Li/ spectra

    International Nuclear Information System (INIS)

    MacDonald, R.; Robertson, A.; Kennett, T.J.; Prestwich, W.V.

    1974-01-01

    A sensitive technique is proposed for activation analysis using cross-correlation and improved spectral orthogonality achieved through use of a rectangular zero area digital filter. To test the accuracy and reliability of the cross-correlation procedure five spectra obtained with a Ge/Li detector were combined in different proportions. Gaussian distributed statistics were then added to the composite spectra by means of a pseudo-random number generator. The basis spectra used were 76 As, 82 Br, 72 Ga, 77 Ge, and room background. In general, when the basis spectra were combined in roughly comparable proportions the accuracy of the techique proved to be excelent (>1%). However, of primary importance was the ability of the correlation technique to identify low intensity components in the presence of high intensity components. It was found that the detection threshold for Ge, for example, was not reached until the Ge content in the unfiltered spectrum was <0.16%. (T.G.)

  13. The Atacama Cosmology Telescope: cross correlation with Planck maps

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Næss, Sigurd [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Addison, Graeme E.; Hincks, Adam D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, U.S.A (United States); Dünner, Rolando; Infante, Leopoldo [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Gralla, Megan; Marriage, Tobias A. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Huffenberger, Kevin [Department of Physics, Florida State University, Keen Physics Building, 77 Chieftan Way, Tallahassee, Florida (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4041 (South Africa); Niemack, Michael D., E-mail: Thibaut.Louis@astro.ox.ac.uk [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); and others

    2014-07-01

    We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT × Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.

  14. Power-law cross-correlations estimation under heavy tails

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2016-01-01

    Roč. 40, č. 1 (2016), s. 163-172 ISSN 1007-5704 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Power-law cross-correlations * Heavy tails * Monte Carlo study Subject RIV: AH - Economics Impact factor: 2.784, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0472030.pdf

  15. Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data

    Science.gov (United States)

    Delignières, Didier; Marmelat, Vivien

    2014-01-01

    In this paper, we analyze empirical data, accounting for coordination processes between complex systems (bimanual coordination, interpersonal coordination, and synchronization with a fractal metronome), by using a recently proposed method: detrended cross-correlation analysis (DCCA). This work is motivated by the strong anticipation hypothesis, which supposes that coordination between complex systems is not achieved on the basis of local adaptations (i.e., correction, predictions), but results from a more global matching of complexity properties. Indeed, recent experiments have evidenced a very close correlation between the scaling properties of the series produced by two coordinated systems, despite a quite weak local synchronization. We hypothesized that strong anticipation should result in the presence of long-range cross-correlations between the series produced by the two systems. Results allow a detailed analysis of the effects of coordination on the fluctuations of the series produced by the two systems. In the long term, series tend to present similar scaling properties, with clear evidence of long-range cross-correlation. Short-term results strongly depend on the nature of the task. Simulation studies allow disentangling the respective effects of noise and short-term coupling processes on DCCA results, and suggest that the matching of long-term fluctuations could be the result of short-term coupling processes.

  16. Random matrix approach to cross correlations in financial data

    Science.gov (United States)

    Plerou, Vasiliki; Gopikrishnan, Parameswaran; Rosenow, Bernd; Amaral, Luís A.; Guhr, Thomas; Stanley, H. Eugene

    2002-06-01

    We analyze cross correlations between price fluctuations of different stocks using methods of random matrix theory (RMT). Using two large databases, we calculate cross-correlation matrices C of returns constructed from (i) 30-min returns of 1000 US stocks for the 2-yr period 1994-1995, (ii) 30-min returns of 881 US stocks for the 2-yr period 1996-1997, and (iii) 1-day returns of 422 US stocks for the 35-yr period 1962-1996. We test the statistics of the eigenvalues λi of C against a ``null hypothesis'' - a random correlation matrix constructed from mutually uncorrelated time series. We find that a majority of the eigenvalues of C fall within the RMT bounds [λ-,λ+] for the eigenvalues of random correlation matrices. We test the eigenvalues of C within the RMT bound for universal properties of random matrices and find good agreement with the results for the Gaussian orthogonal ensemble of random matrices-implying a large degree of randomness in the measured cross-correlation coefficients. Further, we find that the distribution of eigenvector components for the eigenvectors corresponding to the eigenvalues outside the RMT bound display systematic deviations from the RMT prediction. In addition, we find that these ``deviating eigenvectors'' are stable in time. We analyze the components of the deviating eigenvectors and find that the largest eigenvalue corresponds to an influence common to all stocks. Our analysis of the remaining deviating eigenvectors shows distinct groups, whose identities correspond to conventionally identified business sectors. Finally, we discuss applications to the construction of portfolios of stocks that have a stable ratio of risk to return.

  17. A technique for plasma velocity-space cross-correlation

    Science.gov (United States)

    Mattingly, Sean; Skiff, Fred

    2018-05-01

    An advance in experimental plasma diagnostics is presented and used to make the first measurement of a plasma velocity-space cross-correlation matrix. The velocity space correlation function can detect collective fluctuations of plasmas through a localized measurement. An empirical decomposition, singular value decomposition, is applied to this Hermitian matrix in order to obtain the plasma fluctuation eigenmode structure on the ion distribution function. A basic theory is introduced and compared to the modes obtained by the experiment. A full characterization of these modes is left for future work, but an outline of this endeavor is provided. Finally, the requirements for this experimental technique in other plasma regimes are discussed.

  18. CCFpams: Atmospheric stellar parameters from cross-correlation functions

    Science.gov (United States)

    Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane

    2017-07-01

    CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

  19. Cross-correlation of long-range correlated series

    International Nuclear Information System (INIS)

    Arianos, Sergio; Carbone, Anna

    2009-01-01

    A method for estimating the cross-correlation C xy (τ) of long-range correlated series x(t) and y(t), at varying lags τ and scales n, is proposed. For fractional Brownian motions with Hurst exponents H 1 and H 2 , the asymptotic expression for C xy (τ) depends only on the lag τ (wide-sense stationarity) and scales as a power of n with exponent H 1 +H 2 for τ→0. The method is illustrated on: (i) financial series, to show the leverage effect; (ii) genomic sequences, to estimate the correlations between structural parameters along the chromosomes

  20. Whistler-mode signals: Group delay by cross correlation

    International Nuclear Information System (INIS)

    Thomson, N.R.

    1975-01-01

    Group travel times of 18.6 kHz whistler-mode signals from NLK, Seattle, to Wellington, New Zealand, are now being measured using the normal FSK transmissions. This is done using a mini-computer programmed to perform real-time cross correlations between two receivers: one receiver gets its signal from a whip aerial on which the ground wave (subionospheric mode) dominates, while the other gets its signal from a loop oriented for minimum ground wave. Group travel time can thus be measured continuously while there are whistler-mode signals present. Delays of 0.2--0.8 seconds have been found

  1. Positive Noise Cross Correlation in a Copper Pair Splitter.

    Science.gov (United States)

    Das, Anindya; Ronen, Yuval; Heiblum, Moty; Shtrikman, Hadas; Mahalu, Diana

    2012-02-01

    Entanglement is in heart of the Einstein-Podolsky-Rosen (EPR) paradox, in which non-locality is a fundamental property. Up to date spin entanglement of electrons had not been demonstrated. Here, we provide direct evidence of such entanglement by measuring: non-local positive current correlation and positive cross correlation among current fluctuations, both of separated electrons born by a Cooper-pair-beam-splitter. The realization of the splitter is provided by injecting current from an Al superconductor contact into two, single channel, pure InAs nanowires - each intercepted by a Coulomb blockaded quantum dot (QD). The QDs impedes strongly the flow of Cooper pairs allowing easy single electron transport. The passage of electron in one wire enables the simultaneous passage of the other in the neighboring wire. The splitting efficiency of the Cooper pairs (relative to Cooper pairs actual current) was found to be ˜ 40%. The positive cross-correlations in the currents and their fluctuations (shot noise) are fully consistent with entangled electrons produced by the beam splitter.

  2. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  3. Structure of a financial cross-correlation matrix under attack

    Science.gov (United States)

    Lim, Gyuchang; Kim, SooYong; Kim, Junghwan; Kim, Pyungsoo; Kang, Yoonjong; Park, Sanghoon; Park, Inho; Park, Sang-Bum; Kim, Kyungsik

    2009-09-01

    We investigate the structure of a perturbed stock market in terms of correlation matrices. For the purpose of perturbing a stock market, two distinct methods are used, namely local and global perturbation. The former involves replacing a correlation coefficient of the cross-correlation matrix with one calculated from two Gaussian-distributed time series while the latter reconstructs the cross-correlation matrix just after replacing the original return series with Gaussian-distributed time series. Concerning the local case, it is a technical study only and there is no attempt to model reality. The term ‘global’ means the overall effect of the replacement on other untouched returns. Through statistical analyses such as random matrix theory (RMT), network theory, and the correlation coefficient distributions, we show that the global structure of a stock market is vulnerable to perturbation. However, apart from in the analysis of inverse participation ratios (IPRs), the vulnerability becomes dull under a small-scale perturbation. This means that these analysis tools are inappropriate for monitoring the whole stock market due to the low sensitivity of a stock market to a small-scale perturbation. In contrast, when going down to the structure of business sectors, we confirm that correlation-based business sectors are regrouped in terms of IPRs. This result gives a clue about monitoring the effect of hidden intentions, which are revealed via portfolios taken mostly by large investors.

  4. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays.

    Science.gov (United States)

    Li, Jianfeng; Wang, Feng; Jiang, Defu

    2017-03-20

    A fast direction of arrival (DOA) estimation method using a real-valued cross-correlation matrix (CCM) of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS) method and estimation of signal parameter via rotational invariance (ESPRIT) based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach.

  5. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays

    Directory of Open Access Journals (Sweden)

    Jianfeng Li

    2017-03-01

    Full Text Available A fast direction of arrival (DOA estimation method using a real-valued cross-correlation matrix (CCM of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS method and estimation of signal parameter via rotational invariance (ESPRIT based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach.

  6. Registration of synthetic tomographic projection data sets using cross-correlation

    International Nuclear Information System (INIS)

    Fitchard, E.E.; Aldridge, J.S.; Reckwerdt, P.J.; Mackie, T.R.

    1998-01-01

    Tomographic registration, a method that makes possible accurate patient registration directly from projection data, consists of three processing steps: (i) manual coarse positioning, (ii) tomographic projection set acquisition, and (iii) computer mediated refined positioning. In the coarse positioning stage, the degree of patient alignment is comparable with that achieved with the standard radiotherapy set-up. However, the accuracy requirements are somewhat more relaxed in that meticulous alignment of the patient using external laser indicators is not necessary. Instead, tomographic projection sets are compared with planning CTs in order to achieve improved patient set-up. The projection sets are cross-correlated to obtain the best-fit translation and rotation offsets. The algorithm has been tested on synthetic data with the incorporation of varying amounts of Gaussian pseudo-random noise. These tests demonstrate the algorithm's stability and also confirm that alignment can be achieved with an accuracy of less than one projection pixel. (author)

  7. Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket

    Science.gov (United States)

    Wang, Gang-Jin; Xie, Chi

    2013-03-01

    We investigate the cross-correlations between Renminbi (CNY) and four major currencies (USD, EUR, JPY, and KRW) in the Renminbi currency basket, i.e., the cross-correlations of CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW. Qualitatively, using a statistical test in analogy to the Ljung-Box test, we find that cross-correlations significantly exist in CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW. Quantitatively, employing the detrended cross-correlation analysis (DCCA) method, we find that the cross-correlations of CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW are weakly persistent. We use the DCCA cross-correlation coefficient ρ to quantify the level of cross-correlations and find the currency weight in the Renminbi currency basket is arranged in the order of USD>EUR>JPY >KRW. Using the method of rolling windows, which can capture the time-varying cross-correlation scaling exponents, we find that: (i) CNY and USD are positively cross-correlated over time, but the cross-correlations of CNY-USD are anti-persistent during the US sub-prime crisis and the European debt crisis. (ii) The cross-correlation scaling exponents of CNY-EUR have the cyclical fluctuation with a nearly two-year cycle. (iii) CNY-JPY has long-term negative cross-correlations, during the European debt crisis, but CNY and KRW are positively cross-correlated.

  8. Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective

    Science.gov (United States)

    Dutta, Srimonti; Ghosh, Dipak; Chatterjee, Sucharita

    2016-12-01

    The manuscript studies autocorrelation and cross correlation of SENSEX fluctuations and Forex Exchange Rate in respect to Indian scenario. Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended cross correlation analysis (MFDXA) were employed to study the correlation between the two series. It was observed that the two series are strongly cross correlated. The change of degree of cross correlation with time was studied and the results are interpreted qualitatively.

  9. PyCCF: Python Cross Correlation Function for reverberation mapping studies

    Science.gov (United States)

    Sun, Mouyuan; Grier, C. J.; Peterson, B. M.

    2018-05-01

    PyCCF emulates a Fortran program written by B. Peterson for use with reverberation mapping. The code cross correlates two light curves that are unevenly sampled using linear interpolation and measures the peak and centroid of the cross-correlation function. In addition, it is possible to run Monto Carlo iterations using flux randomization and random subset selection (RSS) to produce cross-correlation centroid distributions to estimate the uncertainties in the cross correlation results.

  10. Cross correlation measurement of low frequency conductivity noise

    Science.gov (United States)

    Jain, Aditya Kumar; Nigudkar, Himanshu; Chakraborti, Himadri; Udupa, Aditi; Gupta, Kantimay Das

    2018-04-01

    In order to study the low frequency noise(1/f noise)an experimental technique based on cross correlation of two channels is presented. In this method the device under test (DUT)is connected to the two independently powered preamplifiers in parallel. The amplified signals from the two preamplifiers are fed to two channels of a digitizer. Subsequent data processing largelyeliminates the uncorrelated noise of the two channels. This method is tested for various commercial carbon/metal film resistors by measuring equilibrium thermal noise (4kBTR). The method is then modified to study the non-equilibrium low frequency noise of heterostructure samples using fiveprobe configuration. Five contact probes allow two parts of the sample to become two arms of a balanced bridge. This configuration helps in suppressing the effect of power supply fluctuations, bath temperature fluctuations and contact resistances.

  11. Cross-correlation Doppler global velocimetry (CC-DGV)

    Science.gov (United States)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  12. Multifractal detrended cross-correlation analysis on gold, crude oil and foreign exchange rate time series

    Science.gov (United States)

    Pal, Mayukha; Madhusudana Rao, P.; Manimaran, P.

    2014-12-01

    We apply the recently developed multifractal detrended cross-correlation analysis method to investigate the cross-correlation behavior and fractal nature between two non-stationary time series. We analyze the daily return price of gold, West Texas Intermediate and Brent crude oil, foreign exchange rate data, over a period of 18 years. The cross correlation has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, the existence of multifractal cross-correlation between all of these time series is found. We also found that the cross correlation between gold and oil prices possess uncorrelated behavior and the remaining bivariate time series possess persistent behavior. It was observed for five bivariate series that the cross-correlation exponents are less than the calculated average generalized Hurst exponents (GHE) for q0 and for one bivariate series the cross-correlation exponent is greater than GHE for all q values.

  13. Impulse response measurements with an off-line cross correlator

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.

    1963-11-01

    The impulse responses of simulated systems have been computed by off-line cross-correlation of the system input and output signals. The input test signal consisted of a discrete interval binary code whose autocorrelation was a triangular pulse at zero lag. The main object of the experiments was to study the inaccuracies introduced in ideal, noise free systems by determining the impulse response digitally from sampled versions of the system input and output signals. A second object was to determine the error introduced by adding controlled amounts of uncorrelated noise at the system outputs. The experimental results showed that for signal to noise ratios greater than 10:1 in the mean square sense, the impulse responses may be determined with reasonable accuracy using only one cycle of the binary code. The method lends itself to on-line computation of system impulse responses. The latter could be used to monitor the stability of the system or to determine control parameters in an adaptive control system. (author)

  14. Impulse response measurements with an off-line cross correlator

    Energy Technology Data Exchange (ETDEWEB)

    Corran, E R; Cummins, J D [Dynamics Group, Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-11-15

    The impulse responses of simulated systems have been computed by off-line cross-correlation of the system input and output signals. The input test signal consisted of a discrete interval binary code whose autocorrelation was a triangular pulse at zero lag. The main object of the experiments was to study the inaccuracies introduced in ideal, noise free systems by determining the impulse response digitally from sampled versions of the system input and output signals. A second object was to determine the error introduced by adding controlled amounts of uncorrelated noise at the system outputs. The experimental results showed that for signal to noise ratios greater than 10:1 in the mean square sense, the impulse responses may be determined with reasonable accuracy using only one cycle of the binary code. The method lends itself to on-line computation of system impulse responses. The latter could be used to monitor the stability of the system or to determine control parameters in an adaptive control system. (author)

  15. Blind Cartography for Side Channel Attacks: Cross-Correlation Cartography

    Directory of Open Access Journals (Sweden)

    Laurent Sauvage

    2012-01-01

    Full Text Available Side channel and fault injection attacks are major threats to cryptographic applications of embedded systems. Best performances for these attacks are achieved by focusing sensors or injectors on the sensible parts of the application, by means of dedicated methods to localise them. Few methods have been proposed in the past, and all of them aim at pinpointing the cryptoprocessor. However it could be interesting to exploit the activity of other parts of the application, in order to increase the attack's efficiency or to bypass its countermeasures. In this paper, we present a localisation method based on cross-correlation, which issues a list of areas of interest within the attacked device. It realizes an exhaustive analysis, since it may localise any module of the device, and not only those which perform cryptographic operations. Moreover, it also does not require a preliminary knowledge about the implementation, whereas some previous cartography methods require that the attacker could choose the cryptoprocessor inputs, which is not always possible. The method is experimentally validated using observations of the electromagnetic near field distribution over a Xilinx Virtex 5 FPGA. The matching between areas of interest and the application layout in the FPGA floorplan is confirmed by correlation analysis.

  16. Multifractal temporally weighted detrended cross-correlation analysis to quantify power-law cross-correlation and its application to stock markets

    Science.gov (United States)

    Wei, Yun-Lan; Yu, Zu-Guo; Zou, Hai-Long; Anh, Vo

    2017-06-01

    A new method—multifractal temporally weighted detrended cross-correlation analysis (MF-TWXDFA)—is proposed to investigate multifractal cross-correlations in this paper. This new method is based on multifractal temporally weighted detrended fluctuation analysis and multifractal cross-correlation analysis (MFCCA). An innovation of the method is applying geographically weighted regression to estimate local trends in the nonstationary time series. We also take into consideration the sign of the fluctuations in computing the corresponding detrended cross-covariance function. To test the performance of the MF-TWXDFA algorithm, we apply it and the MFCCA method on simulated and actual series. Numerical tests on artificially simulated series demonstrate that our method can accurately detect long-range cross-correlations for two simultaneously recorded series. To further show the utility of MF-TWXDFA, we apply it on time series from stock markets and find that power-law cross-correlation between stock returns is significantly multifractal. A new coefficient, MF-TWXDFA cross-correlation coefficient, is also defined to quantify the levels of cross-correlation between two time series.

  17. Kinematic cross-correlation induces sensory integration across separate objects.

    Science.gov (United States)

    Debats, Nienke B; Ernst, Marc O; Heuer, Herbert

    2017-12-01

    In a basic cursor-control task, the perceived positions of the hand and the cursor are biased towards each other. We recently found that this phenomenon conforms to the reliability-based weighting mechanism of optimal multisensory integration. This indicates that optimal integration is not restricted to sensory signals originating from a single source, as is the prevailing view, but that it also applies to separate objects that are connected by a kinematic relation (i.e. hand and cursor). In the current study, we examined which aspects of the kinematic relation are crucial for eliciting the sensory integration: (i) the cross-correlation between kinematic variables of the hand and cursor trajectories, and/or (ii) an internal model of the hand-cursor kinematic transformation. Participants made out-and-back movements from the centre of a semicircular workspace to its boundary, after which they judged the position where either their hand or the cursor hit the boundary. We analysed the position biases and found that the integration was strong in a condition with high kinematic correlations (a straight hand trajectory was mapped to a straight cursor trajectory), that it was significantly reduced for reduced kinematic correlations (a straight hand trajectory was transformed into a curved cursor trajectory) and that it was not affected by the inability to acquire an internal model of the kinematic transformation (i.e. by the trial-to-trial variability of the cursor curvature). These findings support the idea that correlations play a crucial role in multisensory integration irrespective of the number of sensory sources involved. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. CALIBRATING PHOTOMETRIC REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS

    International Nuclear Information System (INIS)

    Schulz, A. E.

    2010-01-01

    The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshift identifications by two orders of magnitude, drastically expanding both the redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair subsample of these new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys to illuminate the processes of galaxy evolution and to constrain the underlying cosmology and growth of structure. We examine here an alternative to direct spectroscopic follow-up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline to implement the method, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is generally effective, but the estimator is weakened by two main factors. One is that the correlation function of the spectroscopic sample must be measured in many bins along the line of sight, which renders the measurement noisy and interferes with high-quality reconstruction of the photometric redshift distribution. Also, the method is not able to disentangle the photometric redshift distribution from redshift dependence in the bias of the photometric sample. We establish the impact of these factors using our mock catalogs. We conclude that it may still be necessary to spectroscopically follow up a fair subsample of the photometric survey data. Nonetheless, it is significant that the method has been successfully implemented on mock data, and with further refinement it may appreciably decrease the number of spectra that will be needed to calibrate future surveys.

  19. Atmospheric stellar parameters from cross-correlation functions

    Science.gov (United States)

    Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.

    2017-08-01

    The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.

  20. The effects of common risk factors on stock returns: A detrended cross-correlation analysis

    Science.gov (United States)

    Ruan, Qingsong; Yang, Bingchan

    2017-10-01

    In this paper, we investigate the cross-correlations between Fama and French three factors and the return of American industries on the basis of cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). Qualitatively, we find that the return series of Fama and French three factors and American industries were overall significantly cross-correlated based on the analysis of a statistic. Quantitatively, we find that the cross-correlations between three factors and the return of American industries were strongly multifractal, and applying MF-DCCA we also investigate the cross-correlation of industry returns and residuals. We find that there exists multifractality of industry returns and residuals. The result of correlation coefficients we can verify that there exist other factors which influence the industry returns except Fama three factors.

  1. Cross-correlations between agricultural commodity futures markets in the US and China

    Science.gov (United States)

    Li, Zhihui; Lu, Xinsheng

    2012-08-01

    This paper examines the cross-correlation properties of agricultural futures markets between the US and China using a cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). The results show that the cross-correlations between the two geographically distant markets for four pairs of important agricultural commodities futures are significantly multifractal. By introducing the concept of a “crossover”, we find that the multifractality of cross-correlations between the two markets is not long lasting. The cross-correlations in the short term are more strongly multifractal, but they are weakly so in the long term. Moreover, cross-correlations of small fluctuations are persistent and those of large fluctuations are anti-persistent in the short term while cross-correlations of all kinds of fluctuations for soy bean and soy meal futures are persistent and for corn and wheat futures are anti-persistent in the long term. We also find that cross-correlation exponents are less than the averaged generalized Hurst exponent when q0 in the short term, while in the long term they are almost the same.

  2. Study of water flowrate using time transient and cross-correlation techniques with 82Br radiotracer

    International Nuclear Information System (INIS)

    Salgado, William L.; Brandao, Luiz E.B.

    2013-01-01

    This paper aims to determinate the water flowrate using Time Transient and Cross-Correlation techniques. The detection system uses two NaI (T1) detectors adequately positioned on the outside of pipe and a gamma-ray source ( 82 Br radiotracer). The water flowrate measurements using Time Transient and Cross-Correlation techniques were compared to invasive conventional measurements of the flowrate previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowmeter previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowrate values were found to be less than 3% in relation to conventional ones. (author)

  3. Detrended cross-correlation analysis on RMB exchange rate and Hang Seng China Enterprises Index

    Science.gov (United States)

    Ruan, Qingsong; Yang, Bingchan; Ma, Guofeng

    2017-02-01

    In this paper, we investigate the cross-correlations between the Hang Seng China Enterprises Index and RMB exchange markets on the basis of a cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). MF-DCCA has, at best, serious limitations for most of the signals describing complex natural processes and often indicates multifractal cross-correlations when there are none. In order to prevent these false multifractal cross-correlations, we apply MFCCA to verify the cross-correlations. Qualitatively, we find that the return series of the Hang Seng China Enterprises Index and RMB exchange markets were, overall, significantly cross-correlated based on the statistical analysis. Quantitatively, we find that the cross-correlations between the stock index and RMB exchange markets were strongly multifractal, and the multifractal degree of the onshore RMB exchange markets was somewhat larger than the offshore RMB exchange markets. Moreover, we use the absolute return series to investigate and confirm the fact of multifractality. The results from the rolling windows show that the short-term cross-correlations between volatility series remain high.

  4. Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient

    Science.gov (United States)

    Wang, Gang-Jin; Xie, Chi; Chen, Shou; Yang, Jiao-Jiao; Yang, Ming-Yan

    2013-09-01

    In this study, we first build two empirical cross-correlation matrices in the US stock market by two different methods, namely the Pearson’s correlation coefficient and the detrended cross-correlation coefficient (DCCA coefficient). Then, combining the two matrices with the method of random matrix theory (RMT), we mainly investigate the statistical properties of cross-correlations in the US stock market. We choose the daily closing prices of 462 constituent stocks of S&P 500 index as the research objects and select the sample data from January 3, 2005 to August 31, 2012. In the empirical analysis, we examine the statistical properties of cross-correlation coefficients, the distribution of eigenvalues, the distribution of eigenvector components, and the inverse participation ratio. From the two methods, we find some new results of the cross-correlations in the US stock market in our study, which are different from the conclusions reached by previous studies. The empirical cross-correlation matrices constructed by the DCCA coefficient show several interesting properties at different time scales in the US stock market, which are useful to the risk management and optimal portfolio selection, especially to the diversity of the asset portfolio. It will be an interesting and meaningful work to find the theoretical eigenvalue distribution of a completely random matrix R for the DCCA coefficient because it does not obey the Marčenko-Pastur distribution.

  5. Analyzing the Cross-Correlation Between Onshore and Offshore RMB Exchange Rates Based on Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)

    Science.gov (United States)

    Xie, Chi; Zhou, Yingying; Wang, Gangjin; Yan, Xinguo

    We use the multifractal detrended cross-correlation analysis (MF-DCCA) method to explore the multifractal behavior of the cross-correlation between exchange rates of onshore RMB (CNY) and offshore RMB (CNH) against US dollar (USD). The empirical data are daily prices of CNY/USD and CNH/USD from May 1, 2012 to February 29, 2016. The results demonstrate that: (i) the cross-correlation between CNY/USD and CNH/USD is persistent and its fluctuation is smaller when the order of fluctuation function is negative than that when the order is positive; (ii) the multifractal behavior of the cross-correlation between CNY/USD and CNH/USD is significant during the sample period; (iii) the dynamic Hurst exponents obtained by the rolling windows analysis show that the cross-correlation is stable when the global economic situation is good and volatile in bad situation; and (iv) the non-normal distribution of original data has a greater effect on the multifractality of the cross-correlation between CNY/USD and CNH/USD than the temporary correlation.

  6. Big Data Solution for CTBT Monitoring Using Global Cross Correlation

    Science.gov (United States)

    Gaillard, P.; Bobrov, D.; Dupont, A.; Grenouille, A.; Kitov, I. O.; Rozhkov, M.

    2014-12-01

    Due to the mismatch between data volume and the performance of the Information Technology infrastructure used in seismic data centers, it becomes more and more difficult to process all the data with traditional applications in a reasonable elapsed time. To fulfill their missions, the International Data Centre of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO/IDC) and the Département Analyse Surveillance Environnement of Commissariat à l'Energie atomique et aux énergies alternatives (CEA/DASE) collect, process and produce complex data sets whose volume is growing exponentially. In the medium term, computer architectures, data management systems and application algorithms will require fundamental changes to meet the needs. This problem is well known and identified as a "Big Data" challenge. To tackle this major task, the CEA/DASE takes part during two years to the "DataScale" project. Started in September 2013, DataScale gathers a large set of partners (research laboratories, SMEs and big companies). The common objective is to design efficient solutions using the synergy between Big Data solutions and the High Performance Computing (HPC). The project will evaluate the relevance of these technological solutions by implementing a demonstrator for seismic event detections thanks to massive waveform correlations. The IDC has developed an expertise on such techniques leading to an algorithm called "Master Event" and provides a high-quality dataset for an extensive cross correlation study. The objective of the project is to enhance the Master Event algorithm and to reanalyze 10 years of waveform data from the International Monitoring System (IMS) network thanks to a dedicated HPC infrastructure operated by the "Centre de Calcul Recherche et Technologie" at the CEA of Bruyères-le-Châtel. The dataset used for the demonstrator includes more than 300,000 seismic events, tens of millions of raw detections and more than 30 terabytes of continuous seismic data

  7. On the linearity of cross-correlation delay times

    Science.gov (United States)

    Mercerat, E. D.; Nolet, G.

    2012-12-01

    We investigate the question whether a P-wave delay time Δ T estimated by locating the maximum of the cross-correlation function between data d(t) and a predicted test function s(t): γ (t) = ∫ t1t_2 s(τ ) d(τ -t) \\ {d}τ, provides an estimate of the Delta T that is (quasi-)linear with the relative velocity perturbation deltaln V_P}. Such linearity is intuitive if the data d(t) is an undeformed but delayed replica of the test signal, i.e. if d(t)=s(t-Delta T). Then the maximum of gamma (t) is shifted exactly by the delay Delta T, and linearity holds even for Delta T very large. In this case, we say that the body waves are in the ray theoretical regime and their delays, because of Fermat's Principle, depend quasi-linearly on the relative velocity (or slowness) perturbations deltaln V_P in the model. However, even if we correct for dispersion induced by the instrument response and by attenuation, body waves may show frequency dependent delay times that are caused by diffraction effects around lateral heterogeneities. It is not a-priori clear that linearity holds for Delta T, as is assumed in finite-frequency theory, if the waveforms of d(t) and s(t) differ substantially because of such dispersion. To test the linearity, we generate synthetic seismograms between two boreholes, and between the boreholes and the surface, in a 3D box of 200 × 120 × 120 m. The heterogeneity is a checkerboard with cubic anomalies of size 12 × 12 × 12 m. We test two different anomaly amplitudes: ± 2% and ± 5%, and measure Delta T using a test seismogram s(t) computed for an homogeneous medium. We also predict the delays for the 5% model from those in the 2% model by multiplying with 5/2. These predictions are in error by 10-20% of the delay, which is usually acceptable for tomography when compared with actual data errors. A slight bias in the prediction indicates that the Wielandt effect - the fact that negative delays suffer less wavefront healing than positive delays - is a

  8. Stationary echo canceling in velocity estimation by time-domain cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The application of stationary echo canceling to ultrasonic estimation of blood velocities using time-domain cross-correlation is investigated. Expressions are derived that show the influence from the echo canceler on the signals that enter the cross-correlation estimator. It is demonstrated...

  9. Stationary-phase integrals in the cross correlation of ambient noise

    NARCIS (Netherlands)

    Boschi, L.; Weemstra, C.

    2015-01-01

    The cross correlation of ambient signal allows seismologists to collect data even in the absence of seismic events. “Seismic interferometry” shows that the cross correlation of simultaneous recordings of a random wavefield made at two locations is formally related to the impulse response between

  10. Cross-correlations between crude oil and exchange markets for selected oil rich economies

    Science.gov (United States)

    Li, Jianfeng; Lu, Xinsheng; Zhou, Ying

    2016-07-01

    Using multifractal detrended cross-correlation analysis (MF-DCCA), this paper studies the cross-correlation behavior between crude oil market and five selected exchange rate markets. The dataset covers the period of January 1,1996-December 31,2014, and contains 4,633 observations for each of the series, including daily closing prices of crude oil, Australian Dollars, Canadian Dollars, Mexican Pesos, Russian Rubles, and South African Rand. Our empirical results obtained from cross-correlation statistic and cross-correlation coefficient have confirmed the existence of cross-correlations, and the MF-DCCA results have demonstrated a strong multifractality between cross-correlated crude oil market and exchange rate markets in both short term and long term. Using rolling window analysis, we have also found the persistent cross-correlations between the exchange rates and crude oil returns, and the cross-correlation scaling exponents exhibit volatility during some time periods due to its sensitivity to sudden events.

  11. The Dynamic Cross-Correlations between Mass Media News, New Media News, and Stock Returns

    Directory of Open Access Journals (Sweden)

    Zuochao Zhang

    2018-01-01

    Full Text Available We investigate the dynamic cross-correlations between mass media news, new media news, and stock returns for the SSE 50 Index in Chinese stock market by employing the MF-DCCA method. The empirical results show that (1 there exist power-law cross-correlations between two types of news as well as between news and its corresponding SSE 50 Index return; (2 the cross-correlations between mass media news and SSE 50 Index returns show larger multifractality and more complicated structures; (3 mass media news and new media news have both complementary and competitive relationships; (4 with the rolling window analysis, we further find that there is a general increasing trend for the cross-correlations between the two types of news as well as the cross-correlations between news and returns and this trend becomes more persistent over time.

  12. Quantifying the range of cross-correlated fluctuations using a q- L dependent AHXA coefficient

    Science.gov (United States)

    Wang, Fang; Wang, Lin; Chen, Yuming

    2018-03-01

    Recently, based on analogous height cross-correlation analysis (AHXA), a cross-correlation coefficient ρ×(L) has been proposed to quantify the levels of cross-correlation on different temporal scales for bivariate series. A limitation of this coefficient is that it cannot capture the full information of cross-correlations on amplitude of fluctuations. In fact, it only detects the cross-correlation at a specific order fluctuation, which might neglect some important information inherited from other order fluctuations. To overcome this disadvantage, in this work, based on the scaling of the qth order covariance and time delay L, we define a two-parameter dependent cross-correlation coefficient ρq(L) to detect and quantify the range and level of cross-correlations. This new version of ρq(L) coefficient leads to the formation of a ρq(L) surface, which not only is able to quantify the level of cross-correlations, but also allows us to identify the range of fluctuation amplitudes that are correlated in two given signals. Applications to the classical ARFIMA models and the binomial multifractal series illustrate the feasibility of this new coefficient ρq(L) . In addition, a statistical test is proposed to quantify the existence of cross-correlations between two given series. Applying our method to the real life empirical data from the 1999-2000 California electricity market, we find that the California power crisis in 2000 destroys the cross-correlation between the price and the load series but does not affect the correlation of the load series during and before the crisis.

  13. Cross-Correlations between Energy and Emissions Markets: New Evidence from Fractal and Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Gang-Jin Wang

    2014-01-01

    Full Text Available We supply a new perspective to describe and understand the behavior of cross-correlations between energy and emissions markets. Namely, we investigate cross-correlations between oil and gas (Oil-Gas, oil and CO2 (Oil-CO2, and gas and CO2 (Gas-CO2 based on fractal and multifractal analysis. We focus our study on returns of the oil, gas, and CO2 during the period of April 22, 2005–April 30, 2013. In the empirical analysis, by using the detrended cross-correlation analysis (DCCA method, we find that cross-correlations for Oil-Gas, Oil-CO2, and Gas-CO2 obey a power-law and are weakly persistent. Then, we adopt the method of DCCA cross-correlation coefficient to quantify cross-correlations between energy and emissions markets. The results show that their cross-correlations are diverse at different time scales. Next, based on the multifractal DCCA method, we find that cross-correlated markets have the nonlinear and multifractal nature and that the multifractality strength for three cross-correlated markets is arranged in the order of Gas-CO2 > Oil-Gas > Oil-CO2. Finally, by employing the rolling windows method, which can be used to investigate time-varying cross-correlation scaling exponents, we analyze short-term and long-term market dynamics and find that the recent global financial crisis has a notable influence on short-term and long-term market dynamics.

  14. Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces

    Science.gov (United States)

    Qian, Xi-Yuan; Liu, Ya-Min; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2015-06-01

    When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails.

  15. CROSS-CORRELATION MODELLING OF SURFACE WATER – GROUNDWATER INTERACTION USING THE EXCEL SPREADSHEET APPLICATION

    Directory of Open Access Journals (Sweden)

    Kristijan Posavec

    2017-01-01

    Full Text Available Modelling responses of groundwater levels in aquifer systems, which occur as a reaction to changes in aquifer system boundary conditions such as river or stream stages, is commonly being studied using statistical methods, namely correlation, cross-correlation and regression methods. Although correlation and regression analysis tools are readily available in Microsoft Excel, a widely applied spreadsheet industry standard, the cross-correlation analysis tool is missing. As a part of research of groundwater pressure propagation into alluvial aquifer systems of the Sava and Drava/Danube River catchments following river stages rise, focused on estimating groundwater pressure travel times in aquifers, an Excel spreadsheet data analysis application for cross-correlation modelling has been designed and used in modelling surface water – groundwater interaction. Examples of fi eld data from the Zagreb aquifer system and the Kopački rit Nature Park aquifer system are used to illustrate the usefulness of the cross-correlation application.

  16. Mixed-correlated ARFIMA processes for power-law cross-correlations

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 392, č. 24 (2013), s. 6484-6493 ISSN 0378-4371 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.722, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-mixed-correlated arfima processes for power-law cross-correlations.pdf

  17. Detecting Near-Earth Objects Using Cross-Correlation with a Point Spread Function

    Science.gov (United States)

    2009-03-01

    impact in the Yucatan Peninsula caused the extinction of the dinosaurs in the Cretaceous Period [Fix, 1995]. Even the Moon is pot marked by many...the atmosphere that the light traverses. For this reason , it is typically better to be at higher elevations to decrease the amount of atmosphere the...detection on average for the Rayleigh sampling with cross-correlation of a PSF than the Rayleigh sampling without cross- correlation. For this reason

  18. Cross-correlations between RMB exchange rate and international commodity markets

    Science.gov (United States)

    Lu, Xinsheng; Li, Jianfeng; Zhou, Ying; Qian, Yubo

    2017-11-01

    This paper employs multifractal detrended analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA) to study cross-correlation behaviors between China's RMB exchange rate market and four international commodity markets, using a comprehensive set of data covering the period from 22 July 2005 to 15 March 2016. Our empirical results from MF-DFA indicate that the RMB exchange rate is the most inefficient among the 4 selected markets. The results from quantitative analysis have testified the existence of cross-correlations and the result from MF-DCCA have further confirmed a strong multifractal behavior between RMB exchange rate and international commodity markets. We also demonstrate that the recent financial crisis has significant impact on the cross-correlated behavior. Through the rolling window analysis, we find that the RMB exchange rates and international commodity prices are anti-persistent cross-correlated. The main sources of multifractality in the cross-correlations are long-range correlations between RMB exchange rate and the aggregate commodity, energy and metals index.

  19. Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among Mainland China, US, and Hong Kong stock markets

    Science.gov (United States)

    Cao, Guangxi; Zhang, Minjia; Li, Qingchen

    2017-04-01

    This study focuses on multifractal detrended cross-correlation analysis of the different volatility intervals of Mainland China, US, and Hong Kong stock markets. A volatility-constrained multifractal detrended cross-correlation analysis (VC-MF-DCCA) method is proposed to study the volatility conductivity of Mainland China, US, and Hong Kong stock markets. Empirical results indicate that fluctuation may be related to important activities in real markets. The Hang Seng Index (HSI) stock market is more influential than the Shanghai Composite Index (SCI) stock market. Furthermore, the SCI stock market is more influential than the Dow Jones Industrial Average stock market. The conductivity between the HSI and SCI stock markets is the strongest. HSI was the most influential market in the large fluctuation interval of 1991 to 2014. The autoregressive fractionally integrated moving average method is used to verify the validity of VC-MF-DCCA. Results show that VC-MF-DCCA is effective.

  20. The cross-correlation analysis of multi property of stock markets based on MM-DFA

    Science.gov (United States)

    Yang, Yujun; Li, Jianping; Yang, Yimei

    2017-09-01

    In this paper, we propose a new method called DH-MXA based on distribution histograms of Hurst surface and multiscale multifractal detrended fluctuation analysis. The method allows us to investigate the cross-correlation characteristics among multiple properties of different stock time series. It may provide a new way of measuring the nonlinearity of several signals. It also can provide a more stable and faithful description of cross-correlation of multiple properties of stocks. The DH-MXA helps us to present much richer information than multifractal detrented cross-correlation analysis and allows us to assess many universal and subtle cross-correlation characteristics of stock markets. We show DH-MXA by selecting four artificial data sets and five properties of four stock time series from different countries. The results show that our proposed method can be adapted to investigate the cross-correlation of stock markets. In general, the American stock markets are more mature and less volatile than the Chinese stock markets.

  1. Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter

    Science.gov (United States)

    Tröster, Tilman; Camera, Stefano; Fornasa, Mattia; Regis, Marco; van Waerbeke, Ludovic; Harnois-Déraps, Joachim; Ando, Shin'ichiro; Bilicki, Maciej; Erben, Thomas; Fornengo, Nicolao; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Kuijken, Konrad; Viola, Massimo

    2017-05-01

    We measure the cross-correlation between Fermi gamma-ray photons and over 1000 deg2 of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree Survey (KiDS). We present the first measurement of tomographic weak lensing cross-correlations and the first application of spectral binning to cross-correlations between gamma rays and weak lensing. The measurements are performed using an angular power spectrum estimator while the covariance is estimated using an analytical prescription. We verify the accuracy of our covariance estimate by comparing it to two internal covariance estimators. Based on the non-detection of a cross-correlation signal, we derive constraints on weakly interacting massive particle (WIMP) dark matter. We compute exclusion limits on the dark matter annihilation cross-section , decay rate Γdec and particle mass mDM. We find that in the absence of a cross-correlation signal, tomography does not significantly improve the constraining power of the analysis. Assuming a strong contribution to the gamma-ray flux due to small-scale clustering of dark matter and accounting for known astrophysical sources of gamma rays, we exclude the thermal relic cross-section for particle masses of mDM ≲ 20 GeV.

  2. A new method to measure galaxy bias by combining the density and weak lensing fields

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu

    2016-07-29

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  3. Needlet estimation of cross-correlation between CMB lensing maps and LSS

    Energy Technology Data Exchange (ETDEWEB)

    Bianchini, Federico [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Renzi, Alessandro; Marinucci, Domenico, E-mail: fbianchini@sissa.it, E-mail: renzi@mat.uniroma2.it, E-mail: marinucc@mat.uniroma2.it [Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2016-11-01

    In this paper we develop a novel needlet-based estimator to investigate the cross-correlation between cosmic microwave background (CMB) lensing maps and large-scale structure (LSS) data. We compare this estimator with its harmonic counterpart and, in particular, we analyze the bias effects of different forms of masking. In order to address this bias, we also implement a MASTER-like technique in the needlet case. The resulting estimator turns out to have an extremely good signal-to-noise performance. Our analysis aims at expanding and optimizing the operating domains in CMB-LSS cross-correlation studies, similarly to CMB needlet data analysis. It is motivated especially by next generation experiments (such as Euclid) which will allow us to derive much tighter constraints on cosmological and astrophysical parameters through cross-correlation measurements between CMB and LSS.

  4. Multifractal detrended cross-correlations between crude oil market and Chinese ten sector stock markets

    Science.gov (United States)

    Yang, Liansheng; Zhu, Yingming; Wang, Yudong; Wang, Yiqi

    2016-11-01

    Based on the daily price data of spot prices of West Texas Intermediate (WTI) crude oil and ten CSI300 sector indices in China, we apply multifractal detrended cross-correlation analysis (MF-DCCA) method to investigate the cross-correlations between crude oil and Chinese sector stock markets. We find that the strength of multifractality between WTI crude oil and energy sector stock market is the highest, followed by the strength of multifractality between WTI crude oil and financial sector market, which reflects a close connection between energy and financial market. Then we do vector autoregression (VAR) analysis to capture the interdependencies among the multiple time series. By comparing the strength of multifractality for original data and residual errors of VAR model, we get a conclusion that vector auto-regression (VAR) model could not be used to describe the dynamics of the cross-correlations between WTI crude oil and the ten sector stock markets.

  5. Extended families of 2D arrays with near optimal auto and low cross-correlation

    Science.gov (United States)

    Svalbe, I. D.; Tirkel, A. Z.

    2017-12-01

    Families of 2D arrays can be constructed where each array has perfect autocorrelation, and the cross-correlation between any pair of family members is optimally low. We exploit equivalent Hadamard matrices to construct many families of p p × p arrays, where p is any 4k-1 prime. From these families, we assemble extended families of arrays with members that exhibit perfect autocorrelation and next-to-optimally low cross-correlation. Pseudo-Hadamard matrices are used to construct extended families using p = 4k + 1 primes. An optimal family of 31 31 × 31 perfect arrays can provide copyright protection to uniquely stamp a robust, low-visibility watermark within every frame of each second of high-definition, 30 fps video. The extended families permit the embedding of many more perfect watermarks that have next-to-minimal cross-correlations.

  6. Nonlinear Analysis on Cross-Correlation of Financial Time Series by Continuum Percolation System

    Science.gov (United States)

    Niu, Hongli; Wang, Jun

    We establish a financial price process by continuum percolation system, in which we attribute price fluctuations to the investors’ attitudes towards the financial market, and consider the clusters in continuum percolation as the investors share the same investment opinion. We investigate the cross-correlations in two return time series, and analyze the multifractal behaviors in this relationship. Further, we study the corresponding behaviors for the real stock indexes of SSE and HSI as well as the liquid stocks pair of SPD and PAB by comparison. To quantify the multifractality in cross-correlation relationship, we employ multifractal detrended cross-correlation analysis method to perform an empirical research for the simulation data and the real markets data.

  7. Autocorrelation and cross-correlation in time series of homicide and attempted homicide

    Science.gov (United States)

    Machado Filho, A.; da Silva, M. F.; Zebende, G. F.

    2014-04-01

    We propose in this paper to establish the relationship between homicides and attempted homicides by a non-stationary time-series analysis. This analysis will be carried out by Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), and DCCA cross-correlation coefficient, ρ(n). Through this analysis we can identify a positive cross-correlation between homicides and attempted homicides. At the same time, looked at from the point of view of autocorrelation (DFA), this analysis can be more informative depending on time scale. For short scale (days), we cannot identify auto-correlations, on the scale of weeks DFA presents anti-persistent behavior, and for long time scales (n>90 days) DFA presents a persistent behavior. Finally, the application of this new type of statistical analysis proved to be efficient and, in this sense, this paper can contribute to a more accurate descriptive statistics of crime.

  8. Cross-Correlation-Function-Based Multipath Mitigation Method for Sine-BOC Signals

    Directory of Open Access Journals (Sweden)

    H. H. Chen

    2012-06-01

    Full Text Available Global Navigation Satellite Systems (GNSS positioning accuracy indoor and urban canyons environments are greatly affected by multipath due to distortions in its autocorrelation function. In this paper, a cross-correlation function between the received sine phased Binary Offset Carrier (sine-BOC modulation signal and the local signal is studied firstly, and a new multipath mitigation method based on cross-correlation function for sine-BOC signal is proposed. This method is implemented to create a cross-correlation function by designing the modulated symbols of the local signal. The theoretical analysis and simulation results indicate that the proposed method exhibits better multipath mitigation performance compared with the traditional Double Delta Correlator (DDC techniques, especially the medium/long delay multipath signals, and it is also convenient and flexible to implement by using only one correlator, which is the case of low-cost mass-market receivers.

  9. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    Science.gov (United States)

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  10. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations

    Science.gov (United States)

    Kwapień, Jarosław; Oświecimka, Paweł; DroŻdŻ, Stanisław

    2015-11-01

    The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q -dependent counterpart of the correlation matrices and then to the network representation.

  11. Corrections for frequency domain transformations of Winfrith binary cross correlator responses

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1968-04-01

    This report considers the corrections for frequency domain transformations of Winfrith binary cross correlator responses; (i) for the finite bandwidth of the equivalent input signal; (2) for the finite time required for the actuator to move between the two positions appropriate to the two levels of the periodic binary chain code input and (3) for the averaging of experimental determinations of the system frequency response and calculations of the standard deviations of the modulus and phase of the frequency responses determined from the cross correlator responses. (author)

  12. Multifractal detrended cross correlation analysis of neuro-degenerative diseases-An in depth study

    Science.gov (United States)

    Dutta, Srimonti; Ghosh, Dipak; Chatterjee, Sucharita

    2018-02-01

    This work revisits our previous study on human gait diseases, (Dutta et al., 2013) where we have studied the autocorrelation of human gait pattern in normal and diseased set. Significant difference in results was observed for normal and diseased set. However we were not able to distinguish between sets of Parkinson's and Huntington's disease. In this paper we attempt to study whether cross correlations between two feet of human gait pattern can help to distinguish between different diseased set. The results reveal that study of cross correlations can help to distinguish between Parkinson's and Huntington's disease.

  13. Two-detector cross-correlation noise technique and its application in measuring reactor kinetic parameters

    International Nuclear Information System (INIS)

    Lu Guiping; Peng Feng; Yi Jieyi

    1988-01-01

    The two-detector cross-correlation noise technique is a new method of measuring reactor kinetic parameters developed in the sixties. It has the advantages of non-perturbation in core, high signal to noise ratio, low space dependent effect, and simple and reliable in measurement. A special set of cross-correlation analyzer has been prepared for measuring kinetic parameters of several reactor assemblies, such as the High Flux Engineering Test Reactor, its zero power mock up facility and a low enriched uranium light water lattice zero power facility

  14. Bottomside sinusoidal irregularities in the equatorial F region. II - Cross-correlation and spectral analysis

    Science.gov (United States)

    Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.

    1985-01-01

    Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.

  15. Cross-correlations in volume space: Differences between buy and sell volumes

    Science.gov (United States)

    Lee, Sun Young; Hwang, Dong Il; Kim, Min Jae; Koh, In Gyu; Kim, Soo Yong

    2011-03-01

    We study the cross-correlations of buy and sell volumes on the Korean stock market in high frequency. We observe that the pulling effects of volumes are as small as that of returns. The properties of the correlations of buy and sell volumes differ. They are explained by the degree of synchronization of stock volumes. Further, the pulling effects on the minimal spanning tree are studied. In minimal spanning trees with directed links, the large pulling effects are clustered at the center, not uniformly distributed. The Epps effect of buy and sell volumes are observed. The reversal of the cross-correlations of buy and sell volumes is also detected.

  16. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams

    CERN Document Server

    Zelenogorskii, V V; Gacheva, E I; Gelikonov, G V; Krasilnikov, M; Mart'yanov, M A; Mironov, S Yu; Potemkin, A K; Syresin, E M; Stephan, F; Khazanov, E A

    2014-01-01

    The specific features of experimental implementation of a cross-correlator with a scan rate above 1600 cm s(-1) and a spatial delay amplitude of more than 15 mm are considered. The possibility of measuring the width of femtosecond pulses propagating in a train 300 mu s in duration with a repetition rate of 1 MHz is demonstrated. A time resolution of 300 fs for the maximum time window of 50 ps is attained.The cross-correlator is aimed at testing 3D pulses of a laser driver of an electron photo-injector.

  17. Cross-correlation between EMG and center of gravity during quiet stance: theory and simulations.

    Science.gov (United States)

    Kohn, André Fabio

    2005-11-01

    Several signal processing tools have been employed in the experimental study of the postural control system in humans. Among them, the cross-correlation function has been used to analyze the time relationship between signals such as the electromyogram and the horizontal projection of the center of gravity. The common finding is that the electromyogram precedes the biomechanical signal, a result that has been interpreted in different ways, for example, the existence of feedforward control or the preponderance of a velocity feedback. It is shown here, analytically and by simulation, that the cross-correlation function is dependent in a complicated way on system parameters and on noise spectra. Results similar to those found experimentally, e.g., electromyogram preceding the biomechanical signal may be obtained in a postural control model without any feedforward control and without any velocity feedback. Therefore, correct interpretations of experimentally obtained cross-correlation functions may require additional information about the system. The results extend to other biomedical applications where two signals from a closed loop system are cross-correlated.

  18. Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Dutta, Srimonti; Chakraborty, Sayantan

    2014-01-01

    Highlights: • We analyze EEG of patients during seizure and in seizure free interval. • Data from different sections of the brain and seizure activity was analyzed. • Assessment of cross-correlation in seizure and seizure free interval using MF-DXA technique. - Abstract: This paper reports a study of EEG data of epileptic patients in terms of multifractal detrended cross-correlation analysis (MF-DXA). The EEG clinical data were obtained from the EEG Database available with the Clinic of Epileptology of the University Hospital of Bonn, Germany. The data sets (C, D, and E) were taken from five epileptic patients undergoing presurgical evaluations. The data sets consist of intracranial EEG recordings during seizure-free intervals (interictal periods) from within the epileptogenic zone (D) and from the hippocampal formation of the opposite hemisphere of the epileptic patients’ brain, respectively (C). The data set (E) was recorded during seizure activity (ictal periods). MF-DXA is a very rigorous and robust tool for assessment of cross-correlation among two nonlinear time series. The study reveals the degree of cross-correlation is more among seizure and seizure free interval in epileptogenic zone. These data are very significant for diagnosis, onset and prognosis of epileptic patients

  19. Statistical properties of cross-correlation in the Korean stock market

    Science.gov (United States)

    Oh, G.; Eom, C.; Wang, F.; Jung, W.-S.; Stanley, H. E.; Kim, S.

    2011-01-01

    We investigate the statistical properties of the cross-correlation matrix between individual stocks traded in the Korean stock market using the random matrix theory (RMT) and observe how these affect the portfolio weights in the Markowitz portfolio theory. We find that the distribution of the cross-correlation matrix is positively skewed and changes over time. We find that the eigenvalue distribution of original cross-correlation matrix deviates from the eigenvalues predicted by the RMT, and the largest eigenvalue is 52 times larger than the maximum value among the eigenvalues predicted by the RMT. The β_{473} coefficient, which reflect the largest eigenvalue property, is 0.8, while one of the eigenvalues in the RMT is approximately zero. Notably, we show that the entropy function E(σ) with the portfolio risk σ for the original and filtered cross-correlation matrices are consistent with a power-law function, E( σ) σ^{-γ}, with the exponent γ 2.92 and those for Asian currency crisis decreases significantly.

  20. Finite sample properties of power-law cross-correlations estimators

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2015-01-01

    Roč. 419, č. 1 (2015), s. 513-525 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433530.pdf

  1. Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition

    International Nuclear Information System (INIS)

    Zhao Xiaojun; Shang Pengjian; Zhao Chuang; Wang Jing; Tao Rui

    2012-01-01

    Highlights: ► Investigate the effects of linear, exponential and periodic trends on DCCA. ► Apply empirical mode decomposition to extract trend term. ► Strong and monotonic trends are successfully eliminated. ► Get the cross-correlation exponent in a persistent behavior without crossover. - Abstract: Detrended cross-correlation analysis (DCCA) is a scaling method commonly used to estimate long-range power law cross-correlation in non-stationary signals. However, the susceptibility of DCCA to trends makes the scaling results difficult to analyze due to spurious crossovers. We artificially generate long-range cross-correlated signals and systematically investigate the effect of linear, exponential and periodic trends. Specifically to the crossovers raised by trends, we apply empirical mode decomposition method which decomposes underlying signals into several intrinsic mode functions (IMF) and a residual trend. After the removal of residual term, strong and monotonic trends such as linear and exponential trends are successfully eliminated. But periodic trend cannot be separated out according to the criterion of IMF, which can be eliminated by Fourier transform. As a special case of DCCA, detrended fluctuation analysis presents similar results.

  2. Flow velocity measurement by using zero-crossing polarity cross correlation method

    International Nuclear Information System (INIS)

    Xu Chengji; Lu Jinming; Xia Hong

    1993-01-01

    Using the designed correlation metering system and a high accurate hot-wire anemometer as a calibration device, the experimental study of correlation method in a tunnel was carried out. The velocity measurement of gas flow by using zero-crossing polarity cross correlation method was realized and the experimental results has been analysed

  3. Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films

    Science.gov (United States)

    Schroer, M. A.; Gutt, C.; Grübel, G.

    2014-07-01

    Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.

  4. Detectability of the 21-cm CMB cross-correlation from the epoch of reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem; Jelic, Vibor

    The 21-cm line fluctuations and the cosmic microwave background (CMB) are powerful probes of the epoch of reionization of the Universe. We study the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionization history. We

  5. Current cross-correlations in double quantum dot Cooper pair splitter

    Energy Technology Data Exchange (ETDEWEB)

    Wrzesniewski, Kacper; Trocha, Piotr; Weymann, Ireneusz [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan (Poland)

    2016-07-01

    We investigate theoretically transport properties of a quantum dot (QD) system working as a Cooper pair splitter. The device is coupled to one superconducting and two ferromagnetic leads. Presented results are calculated using real-time diagrammatic technique in the sequential tunneling approximation with respect to the coupling to ferromagnetic leads. The transport properties are evaluated within the superconductor subgap regime taking into account Andreev reflection processes solely. We focus on the analysis of current and current cross-correlations, both in linear and nonlinear responses. Current cross-correlations give additional information about dynamics of transport processes. We identify both positive and negative signs of current cross-correlations and discuss mechanisms leading to those results. Strong negative cross-correlations are found when the occupation number of QD system becomes degenerate and near the emergence of the triplet blockade, while positive ones occur in the most range where current flows due to crossed Andreev processes. Finally, we consider ferromagnetic leads polarization and temperature influences on aforementioned features.

  6. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation

    Science.gov (United States)

    Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in

  7. Multifractal detrended cross-correlation between the Chinese domestic and international gold markets based on DCCA and DMCA methods

    Science.gov (United States)

    Cao, Guangxi; Han, Yan; Chen, Yuemeng; Yang, Chunxia

    2014-05-01

    Based on the daily price data of Shanghai and London gold spot markets, we applied detrended cross-correlation analysis (DCCA) and detrended moving average cross-correlation analysis (DMCA) methods to quantify power-law cross-correlation between domestic and international gold markets. Results show that the cross-correlations between the Chinese domestic and international gold spot markets are multifractal. Furthermore, forward DMCA and backward DMCA seems to outperform DCCA and centered DMCA for short-range gold series, which confirms the comparison results of short-range artificial data in L. Y. He and S. P. Chen [Physica A 390 (2011) 3806-3814]. Finally, we analyzed the local multifractal characteristics of the cross-correlation between Chinese domestic and international gold markets. We show that multifractal characteristics of the cross-correlation between the Chinese domestic and international gold markets are time-varying and that multifractal characteristics were strengthened by the financial crisis in 2007-2008.

  8. Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix

    Science.gov (United States)

    Takaishi, Tetsuya

    2016-08-01

    We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile.

  9. Cosmic microwave and infrared backgrounds cross-correlation for ISW detection

    International Nuclear Information System (INIS)

    Ilić, S

    2014-01-01

    We have investigated the cross-correlation between the cosmic infrared and microwave backgrounds (CIB and CMB) anisotropies through the integrated Sachs-Wolfe effect. We have first described the CIB anisotropies using a linearly biased power spectrum, then derive the theoretical angular power spectrum of the CMB-CIB cross-correlation for different instruments and frequencies. We have discussed the detectability of the ISW signal by performing a signal-to-noise (SNR) analysis with our predicted spectra. The significances obtained range from 6σ to 7σ in an ideal case, depending on the frequency; in realistic cases which account for the presence of noise including astrophysical contaminants, the results span the range 2 – 5σ, depending strongly on the major contribution to the noise term

  10. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION

    International Nuclear Information System (INIS)

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R.; Banavar, N.; Bandura, K.; Blake, C.; Chang, T.-C.; Liao, Y.-W.; Chen, X.; Li, Y.-C.; Natarajan, A.; Peterson, J. B.; Voytek, T. C.

    2013-01-01

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 HI b HI r = [0.43 ± 0.07(stat.) ± 0.04(sys.)] × 10 –3 , where Ω HI is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b HI is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z ∼ 0.8 both in its precision and in the range of scales probed.

  11. Spatially varying cross-correlation coefficients in the presence of nugget effects

    KAUST Repository

    Kleiber, William; Genton, Marc G.

    2012-01-01

    We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to vary with location when the spatial model is augmented with nugget effects. The derived class is valid for any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal, implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly independent at high elevations, while still yielding a positive definite covariance matrix. © 2012 Biometrika Trust.

  12. Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2016-01-01

    We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile. (paper)

  13. The q-dependent detrended cross-correlation analysis of stock market

    Science.gov (United States)

    Zhao, Longfeng; Li, Wei; Fenu, Andrea; Podobnik, Boris; Wang, Yougui; Stanley, H. Eugene

    2018-02-01

    Properties of the q-dependent cross-correlation matrices of the stock market have been analyzed by using random matrix theory and complex networks. The correlation structures of the fluctuations at different magnitudes have unique properties. The cross-correlations among small fluctuations are much stronger than those among large fluctuations. The large and small fluctuations are dominated by different groups of stocks. We use complex network representation to study these q-dependent matrices and discover some new identities. By utilizing those q-dependent correlation-based networks, we are able to construct some portfolios of those more independent stocks which consistently perform better. The optimal multifractal order for portfolio optimization is around q  =  2 under the mean-variance portfolio framework, and q\\in[2, 6] under the expected shortfall criterion. These results have deepened our understanding regarding the collective behavior of the complex financial system.

  14. Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China

    Science.gov (United States)

    Ma, Pengcheng; Li, Daye; Li, Shuo

    2016-02-01

    Using one minute high-frequency data of the Shanghai Composite Index (SHCI) and the Shenzhen Composite Index (SZCI) (2007-2008), we employ the detrended fluctuation analysis (DFA) and the detrended cross correlation analysis (DCCA) with rolling window approach to observe the evolution of market efficiency and cross-correlation in pre-crisis and crisis period. Considering the fat-tail distribution of return time series, statistical test based on shuffling method is conducted to verify the null hypothesis of no long-term dependence. Our empirical research displays three main findings. First Shanghai equity market efficiency deteriorated while Shenzhen equity market efficiency improved with the advent of financial crisis. Second the highly positive dependence between SHCI and SZCI varies with time scale. Third financial crisis saw a significant increase of dependence between SHCI and SZCI at shorter time scales but a lack of significant change at longer time scales, providing evidence of contagion and absence of interdependence during crisis.

  15. Perspectives of Cross-Correlation in Seismic Monitoring at the International Data Centre

    Science.gov (United States)

    Bobrov, Dmitry; Kitov, Ivan; Zerbo, Lassina

    2014-03-01

    We demonstrate that several techniques based on waveform cross-correlation are able to significantly reduce the detection threshold of seismic sources worldwide and to improve the reliability of arrivals by a more accurate estimation of their defining parameters. A master event and the events it can find using waveform cross-correlation at array stations of the International Monitoring System (IMS) have to be close. For the purposes of the International Data Centre (IDC), one can use the spatial closeness of the master and slave events in order to construct a new automatic processing pipeline: all qualified arrivals detected using cross-correlation are associated with events matching the current IDC event definition criteria (EDC) in a local association procedure. Considering the repeating character of global seismicity, more than 90 % of events in the reviewed event bulletin (REB) can be built in this automatic processing. Due to the reduced detection threshold, waveform cross-correlation may increase the number of valid REB events by a factor of 1.5-2.0. Therefore, the new pipeline may produce a more comprehensive bulletin than the current pipeline—the goal of seismic monitoring. The analysts' experience with the cross correlation event list (XSEL) shows that the workload of interactive processing might be reduced by a factor of two or even more. Since cross-correlation produces a comprehensive list of detections for a given master event, no additional arrivals from primary stations are expected to be associated with the XSEL events. The number of false alarms, relative to the number of events rejected from the standard event list 3 (SEL3) in the current interactive processing—can also be reduced by the use of several powerful filters. The principal filter is the difference between the arrival times of the master and newly built events at three or more primary stations, which should lie in a narrow range of a few seconds. In this study, one event at a

  16. Three dimensional winds: A maximum cross-correlation application to elastic lidar data

    Energy Technology Data Exchange (ETDEWEB)

    Buttler, William Tillman [Univ. of Texas, Austin, TX (United States)

    1996-05-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.

  17. A prototype of on-line digital flow rate meter based on cross-correlation principle

    International Nuclear Information System (INIS)

    Sun Xiaodong; Dai Zhenxi; Xu Jijun

    1997-01-01

    An on-line, digital prototype of flow rate measurement system based on cross-correlation principle is developed. Laboratory measurements using the prototype show that sufficiently large temperature fluctuations exist naturally and that measurements are possible. Temperature fluctuations are detected by two identical thermocouples spaced along the flow direction and are pre-processed by a thermocouple signal amplifier. The pre-processed temperature fluctuations are analyzed by a cross-correlator which measures the transit time of temperature fluctuations between two thermocouples directly. Thus, the so-called correlation velocity can be determined by a chip microprocessor 8031. Experimental results with single-phase under steady conditions also show that the distance between two thermocouples and the Reynolds number of fluid are the most important parameters to the measurement

  18. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Science.gov (United States)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  19. Spatially varying cross-correlation coefficients in the presence of nugget effects

    KAUST Repository

    Kleiber, William

    2012-11-29

    We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to vary with location when the spatial model is augmented with nugget effects. The derived class is valid for any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal, implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly independent at high elevations, while still yielding a positive definite covariance matrix. © 2012 Biometrika Trust.

  20. Fractal approach towards power-law coherency to measure cross-correlations between time series

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2017-01-01

    Roč. 50, č. 1 (2017), s. 193-200 ISSN 1007-5704 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : power- law coherency * power- law cross-correlations * correlations Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 2.784, year: 2016 http://library.utia.cas.cz/separaty/2017/E/kristoufek-0473066.pdf

  1. Cross correlations of quantum key distribution based on single-photon sources

    International Nuclear Information System (INIS)

    Dong Shuangli; Wang Xiaobo; Zhang Guofeng; Sun Jianhu; Zhang Fang; Xiao Liantuan; Jia Suotang

    2009-01-01

    We theoretically analyze the second-order correlation function in a quantum key distribution system with real single-photon sources. Based on single-event photon statistics, the influence of the modification caused by an eavesdropper's intervention and the effects of background signals on the cross correlations between authorized partners are presented. On this basis, we have shown a secure range of correlation against the intercept-resend attacks.

  2. The Maximum Cross-Correlation approach to detecting translational motions from sequential remote-sensing images

    Science.gov (United States)

    Gao, J.; Lythe, M. B.

    1996-06-01

    This paper presents the principle of the Maximum Cross-Correlation (MCC) approach in detecting translational motions within dynamic fields from time-sequential remotely sensed images. A C program implementing the approach is presented and illustrated in a flowchart. The program is tested with a pair of sea-surface temperature images derived from Advanced Very High Resolution Radiometer (AVHRR) images near East Cape, New Zealand. Results show that the mean currents in the region have been detected satisfactorily with the approach.

  3. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z {approx} 0.8 IN CROSS-CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George St., Toronto, Ontario, M5S 3H8 (Canada); Banavar, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Bandura, K. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Blake, C. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Chang, T.-C.; Liao, Y.-W. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Chen, X.; Li, Y.-C. [National Astronomical Observatories, Chinese Academy of Science, 20A Datun Road, Beijing 100012 (China); Natarajan, A.; Peterson, J. B.; Voytek, T. C. [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States)

    2013-01-20

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling {approx}41 deg. sq. and 190 hr of radio integration time. The cross-correlation constrains {Omega}{sub HI} b{sub HI} r = [0.43 {+-} 0.07(stat.) {+-} 0.04(sys.)] Multiplication-Sign 10{sup -3}, where {Omega}{sub HI} is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b{sub HI} is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z {approx} 0.8 both in its precision and in the range of scales probed.

  4. Cross-Correlation Asymmetries and Causal Relationships between Stock and Market Risk

    Science.gov (United States)

    Borysov, Stanislav S.; Balatsky, Alexander V.

    2014-01-01

    We study historical correlations and lead-lag relationships between individual stock risk (volatility of daily stock returns) and market risk (volatility of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-correlation functions averaged over all stocks, using 71 stock prices from the Standard & Poor's 500 index for 1994–2013. We focus on the behavior of the cross-correlations at the times of financial crises with significant jumps of market volatility. The observed historical dynamics showed that the dependence between the risks was almost linear during the US stock market downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated response functions suggest the presence of characteristic regimes near financial crashes, when the volatility of an individual stock follows the market volatility and vice versa. PMID:25162697

  5. Cross-correlation asymmetries and causal relationships between stock and market risk.

    Science.gov (United States)

    Borysov, Stanislav S; Balatsky, Alexander V

    2014-01-01

    We study historical correlations and lead-lag relationships between individual stock risk (volatility of daily stock returns) and market risk (volatility of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-correlation functions averaged over all stocks, using 71 stock prices from the Standard & Poor's 500 index for 1994-2013. We focus on the behavior of the cross-correlations at the times of financial crises with significant jumps of market volatility. The observed historical dynamics showed that the dependence between the risks was almost linear during the US stock market downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated response functions suggest the presence of characteristic regimes near financial crashes, when the volatility of an individual stock follows the market volatility and vice versa.

  6. A new detrended semipartial cross-correlation analysis: Assessing the important meteorological factors affecting API

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen-Hua, E-mail: shenandchen01@163.com [College of Geographical Science, Nanjing Normal University, Nanjing 210046 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource, Nanjing 210046 (China); Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing 210046 (China)

    2015-12-04

    To analyze the unique contribution of meteorological factors to the air pollution index (API), a new method, the detrended semipartial cross-correlation analysis (DSPCCA), is proposed. Based on both a detrended cross-correlation analysis and a DFA-based multivariate-linear-regression (DMLR), this method is improved by including a semipartial correlation technique, which is used to indicate the unique contribution of an explanatory variable to multiple correlation coefficients. The advantages of this method in handling nonstationary time series are illustrated by numerical tests. To further demonstrate the utility of this method in environmental systems, new evidence of the primary contribution of meteorological factors to API is provided through DMLR. Results show that the most important meteorological factors affecting API are wind speed and diurnal temperature range, and the explanatory ability of meteorological factors to API gradually strengthens with increasing time scales. The results suggest that DSPCCA is a useful method for addressing environmental systems. - Highlights: • A detrended multiple linear regression is shown. • A detrended semipartial cross correlation analysis is proposed. • The important meteorological factors affecting API are assessed. • The explanatory ability of meteorological factors to API gradually strengthens with increasing time scales.

  7. A new detrended semipartial cross-correlation analysis: Assessing the important meteorological factors affecting API

    International Nuclear Information System (INIS)

    Shen, Chen-Hua

    2015-01-01

    To analyze the unique contribution of meteorological factors to the air pollution index (API), a new method, the detrended semipartial cross-correlation analysis (DSPCCA), is proposed. Based on both a detrended cross-correlation analysis and a DFA-based multivariate-linear-regression (DMLR), this method is improved by including a semipartial correlation technique, which is used to indicate the unique contribution of an explanatory variable to multiple correlation coefficients. The advantages of this method in handling nonstationary time series are illustrated by numerical tests. To further demonstrate the utility of this method in environmental systems, new evidence of the primary contribution of meteorological factors to API is provided through DMLR. Results show that the most important meteorological factors affecting API are wind speed and diurnal temperature range, and the explanatory ability of meteorological factors to API gradually strengthens with increasing time scales. The results suggest that DSPCCA is a useful method for addressing environmental systems. - Highlights: • A detrended multiple linear regression is shown. • A detrended semipartial cross correlation analysis is proposed. • The important meteorological factors affecting API are assessed. • The explanatory ability of meteorological factors to API gradually strengthens with increasing time scales.

  8. Dynamic evolution of cross-correlations in the Chinese stock market.

    Science.gov (United States)

    Ren, Fei; Zhou, Wei-Xing

    2014-01-01

    The analysis of cross-correlations is extensively applied for the understanding of interconnections in stock markets and the portfolio risk estimation. Current studies of correlations in Chinese market mainly focus on the static correlations between return series, and this calls for an urgent need to investigate their dynamic correlations. Our study aims to reveal the dynamic evolution of cross-correlations in the Chinese stock market, and offer an exact interpretation for the evolution behavior. The correlation matrices constructed from the return series of 367 A-share stocks traded on the Shanghai Stock Exchange from January 4, 1999 to December 30, 2011 are calculated over a moving window with a size of 400 days. The evolutions of the statistical properties of the correlation coefficients, eigenvalues, and eigenvectors of the correlation matrices are carefully analyzed. We find that the stock correlations are significantly increased in the periods of two market crashes in 2001 and 2008, during which only five eigenvalues significantly deviate from the random correlation matrix, and the systemic risk is higher in these volatile periods than calm periods. By investigating the significant contributors of the deviating eigenvectors in different time periods, we observe a dynamic evolution behavior in business sectors such as IT, electronics, and real estate, which lead the rise (drop) before (after) the crashes. Our results provide new perspectives for the understanding of the dynamic evolution of cross-correlations in the Chines stock markets, and the result of risk estimation is valuable for the application of risk management.

  9. Coordination analysis of players' distribution in football using cross-correlation and vector coding techniques.

    Science.gov (United States)

    Moura, Felipe Arruda; van Emmerik, Richard E A; Santana, Juliana Exel; Martins, Luiz Eduardo Barreto; Barros, Ricardo Machado Leite de; Cunha, Sergio Augusto

    2016-12-01

    The purpose of this study was to investigate the coordination between teams spread during football matches using cross-correlation and vector coding techniques. Using a video-based tracking system, we obtained the trajectories of 257 players during 10 matches. Team spread was calculated as functions of time. For a general coordination description, we calculated the cross-correlation between the signals. Vector coding was used to identify the coordination patterns between teams during offensive sequences that ended in shots on goal or defensive tackles. Cross-correlation showed that opponent teams have a tendency to present in-phase coordination, with a short time lag. During offensive sequences, vector coding results showed that, although in-phase coordination dominated, other patterns were observed. We verified that during the early stages, offensive sequences ending in shots on goal present greater anti-phase and attacking team phase periods, compared to sequences ending in tackles. Results suggest that the attacking team may seek to present a contrary behaviour of its opponent (or may lead the adversary behaviour) in the beginning of the attacking play, regarding to the distribution strategy, to increase the chances of a shot on goal. The techniques allowed detecting the coordination patterns between teams, providing additional information about football dynamics and players' interaction.

  10. CROSS-CORRELATION BETWEEN X-RAY AND OPTICAL/NEAR-INFRARED BACKGROUND INTENSITY FLUCTUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell-Wynne, Ketron; Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Xue, Yongquan [CAS Key Laboratory for Researches in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Luo, Bin [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Brandt, William [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, 16802 (United States); Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-01

    Angular power spectra of optical and infrared background anisotropies at wavelengths between 0.5 and 5 μ m are a useful probe of faint sources present during reionization, in addition to faint galaxies and diffuse signals at low redshift. The cross-correlation of these fluctuations with backgrounds at other wavelengths can be used to separate some of these signals. A previous study on the cross-correlation between X-ray and Spitzer fluctuations at 3.6 μ m and 4.5 μ m has been interpreted as evidence for direct collapse black holes present at z  > 12. Here we return to this cross-correlation and study its wavelength dependence from 0.5 to 4.5 μ m using Hubble and Spitzer data in combination with a subset of the 4 Ms Chandra observations in GOODS-S/ECDFS. Our study involves five Hubble bands at 0.6, 0.7, 0.85, 1.25, and 1.6 μ m, and two Spitzer -IRAC bands at 3.6 μ m and 4.5 μ m. We confirm the previously seen cross-correlation between 3.6 μ m (4.5 μ m) and X-rays with 3.7 σ (4.2 σ ) and 2.7 σ (3.7 σ ) detections in the soft [0.5–2] keV and hard [2–8] keV X-ray bands, respectively, at angular scales above 20 arcsec. The cross-correlation of X-rays with Hubble is largely anticorrelated, ranging between the levels of 1.4 σ –3.5 σ for all the Hubble and X-ray bands. This lack of correlation in the shorter optical/NIR bands implies the sources responsible for the cosmic infrared background at 3.6 and 4.5 μ m are at least partly dissimilar to those at 1.6 μ m and shorter.

  11. Detecting PM2.5's Correlations between Neighboring Cities Using a Time-Lagged Cross-Correlation Coefficient.

    Science.gov (United States)

    Wang, Fang; Wang, Lin; Chen, Yuming

    2017-08-31

    In order to investigate the time-dependent cross-correlations of fine particulate (PM2.5) series among neighboring cities in Northern China, in this paper, we propose a new cross-correlation coefficient, the time-lagged q-L dependent height crosscorrelation coefficient (denoted by p q (τ, L)), which incorporates the time-lag factor and the fluctuation amplitude information into the analogous height cross-correlation analysis coefficient. Numerical tests are performed to illustrate that the newly proposed coefficient ρ q (τ, L) can be used to detect cross-correlations between two series with time lags and to identify different range of fluctuations at which two series possess cross-correlations. Applying the new coefficient to analyze the time-dependent cross-correlations of PM2.5 series between Beijing and the three neighboring cities of Tianjin, Zhangjiakou, and Baoding, we find that time lags between the PM2.5 series with larger fluctuations are longer than those between PM2.5 series withsmaller fluctuations. Our analysis also shows that cross-correlations between the PM2.5 series of two neighboring cities are significant and the time lags between two PM2.5 series of neighboring cities are significantly non-zero. These findings providenew scientific support on the view that air pollution in neighboring cities can affect one another not simultaneously but with a time lag.

  12. Sodium boiling detection in LMFBRs by acoustic-neutronic cross correlation

    International Nuclear Information System (INIS)

    Wright, S.A.

    1977-01-01

    The acoustic and neutronic noise signals caused by boiling are the signals primarily considered likely to detect sodium boiling in an LMFBR. Unfortunately, these signals may have serious signal-to-noise problems due to strong background noise sources. Neutronic-acoustic cross correlation techniques are expected to provide a means of improving the signal-to-noise ratio. This technique can improve the signal-to-noise ratio because the neutronic and acoustic signals due to boiling are highly correlated near the bubble repetition frequency, while the background noise sources are expected to be uncorrelated (or at most weakly correlated). An experiment was designed to show that the neutronic and acoustic noise signals are indeed highly correlated. The experiment consisted of simulating the void and pressure effects of local sodium boiling in the core of a zero-power reactor (ARK). The analysis showed that the neutronic and acoustic noise signals caused by boiling are almost perfectly correlated in a wide frequency band about the bubble repetition frequency. The results of the experiments were generalized to full-scale reactors to compare the inherent effectiveness of the methods which use the neutronic or acoustic signals alone with a hybrid method, which cross correlates the neutronic and acoustic signals. It was concluded that over a zone of the reactor where the void coefficient is sufficiently large (approximately 85 percent the core volume), the cross correlation method can provide a more rapid detection system for a given signal-to-noise ratio. However, where the void coefficient is small, one must probably rely on the acoustic method alone

  13. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    Science.gov (United States)

    Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.

    2018-06-01

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.

  14. Remote detection of weak aftershocks of the DPRK underground explosions using waveform cross correlation

    Science.gov (United States)

    Le Bras, R.; Rozhkov, M.; Bobrov, D.; Kitov, I. O.; Sanina, I.

    2017-12-01

    Association of weak seismic signals generated by low-magnitude aftershocks of the DPRK underground tests into event hypotheses represent a challenge for routine automatic and interactive processing at the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization, due to the relatively low station density of the International Monitoring System (IMS) seismic network. Since 2011, as an alternative, the IDC has been testing various prototype techniques of signal detection and event creation based on waveform cross correlation. Using signals measured by seismic stations of the IMS from DPRK explosions as waveform templates, the IDC detected several small (estimated mb between 2.2 and 3.6) seismic events after two DPRK tests conducted on September 9, 2016 and September 3, 2017. The obtained detections were associated with reliable event hypothesis and then used to locate these events relative to the epicenters of the DPRK explosions. We observe high similarity of the detected signals with the corresponding waveform templates. The newly found signals also correlate well between themselves. In addition, the values of the signal-to-noise ratios (SNR) estimated using the traces of cross correlation coefficients, increase with template length (from 5 s to 150 s), providing strong evidence in favour of their spatial closeness, which allows interpreting them as explosion aftershocks. We estimated the relative magnitudes of all aftershocks using the ratio of RMS amplitudes of the master and slave signal in the cross correlation windows characterized by the highest SNR. Additional waveform data from regional non-IMS stations MDJ and SEHB provide independent validation of these aftershock hypotheses. Since waveform templates from any single master event may be sub-efficient at some stations, we have also developed a method of joint usage of the DPRK and the biggest aftershocks templates to build more robust event hypotheses.

  15. The large-scale quasar-Lyman α forest cross-correlation from BOSS

    International Nuclear Information System (INIS)

    Font-Ribera, Andreu; Arnau, Eduard; Miralda-Escudé, Jordi

    2013-01-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption in redshift space, using ∼ 60000 quasar spectra from Data Release 9 (DR9) of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is detected over a wide range of scales, up to comoving separations r of 80 h −1 Mpc. For r > 15 h −1 Mpc, we show that the cross-correlation is well fitted by the linear theory prediction for the mean overdensity around a quasar host halo in the standard ΛCDM model, with the redshift distortions indicative of gravitational evolution detected at high confidence. Using previous determinations of the Lyα forest bias factor obtained from the Lyα autocorrelation, we infer the quasar bias factor to be b q = 3.64 +0.13 −0.15 at a mean redshift z = 2.38, in agreement with previous measurements from the quasar auto-correlation. We also obtain a new estimate of the Lyα forest redshift distortion factor, β F = 1.1±0.15, slightly larger than but consistent with the previous measurement from the Lyα forest autocorrelation. The simple linear model we use fails at separations r −1 Mpc, and we show that this may reasonably be due to the enhanced ionization due to radiation from the quasars. We also provide the expected correction that the mass overdensity around the quasar implies for measurements of the ionizing radiation background from the line-of-sight proximity effect

  16. The large-scale quasar-Lyman α forest cross-correlation from BOSS

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Arnau, Eduard [Institut de Ciències del Cosmos (IEEC/UB), Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain); Miralda-Escudé, Jordi, E-mail: font@physik.uzh.ch, E-mail: edu.arnau.lazaro@gmail.com, E-mail: miralda@icc.ub.edu [Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia (Spain); and others

    2013-05-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption in redshift space, using ∼ 60000 quasar spectra from Data Release 9 (DR9) of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is detected over a wide range of scales, up to comoving separations r of 80 h{sup −1}Mpc. For r > 15 h{sup −1}Mpc, we show that the cross-correlation is well fitted by the linear theory prediction for the mean overdensity around a quasar host halo in the standard ΛCDM model, with the redshift distortions indicative of gravitational evolution detected at high confidence. Using previous determinations of the Lyα forest bias factor obtained from the Lyα autocorrelation, we infer the quasar bias factor to be b{sub q} = 3.64{sup +0.13}{sub −0.15} at a mean redshift z = 2.38, in agreement with previous measurements from the quasar auto-correlation. We also obtain a new estimate of the Lyα forest redshift distortion factor, β{sub F} = 1.1±0.15, slightly larger than but consistent with the previous measurement from the Lyα forest autocorrelation. The simple linear model we use fails at separations r < 15h{sup −1}Mpc, and we show that this may reasonably be due to the enhanced ionization due to radiation from the quasars. We also provide the expected correction that the mass overdensity around the quasar implies for measurements of the ionizing radiation background from the line-of-sight proximity effect.

  17. Multifractal cross-correlations between crude oil and tanker freight rate

    Science.gov (United States)

    Chen, Feier; Miao, Yuqi; Tian, Kang; Ding, Xiaoxu; Li, Tingyi

    2017-05-01

    Analysis of crude oil price and tanker freight rate volatility attract more attention as the mechanism is not only the basis of industrialization but also a vital role in economics, especially after the year 2008 when financial crisis notably blew the maritime transportation. In this paper, we studied the cross-correlations between the West Texas International crude oil (WTI) and Baltic Exchange Dirty Tanker Index (BDTI) employing the Multifractal Detrended Cross-Correlation Analysis (MF-DCCA). Empirical results show that the degree of short-term cross-correlation is higher than that in the long term and that the strength of multifractality after financial crisis is larger than that before. Moreover, the components of multifractal spectrum are quantified with the finite-size effect taken into consideration and an improved method in terms of constructing the surrogated time series provided. Numerical results show that the multifractality is generated mostly from the nonlinear and the fat-tailed probability distribution (PDF) part. Also, it is apparent that the PDF part changes a lot after the financial crisis. The research is contributory to risk management by providing various instructions for participants in shipping markets. Our main contribution is that we investigated both the multifractal features and the origin of multifractality and provided confirming evidence of multifractality through numerical results while applying quantitative analysis based on MF-DCCA; furthermore, the research is contributory to risk management since it provides instructions in both economic market and stock market simultaneously. However, constructing the surrogated series in order to obtain consistence seems less convincing which requires further discussion and attempts.

  18. Dynamic evolution of cross-correlations in the Chinese stock market.

    Directory of Open Access Journals (Sweden)

    Fei Ren

    Full Text Available The analysis of cross-correlations is extensively applied for the understanding of interconnections in stock markets and the portfolio risk estimation. Current studies of correlations in Chinese market mainly focus on the static correlations between return series, and this calls for an urgent need to investigate their dynamic correlations. Our study aims to reveal the dynamic evolution of cross-correlations in the Chinese stock market, and offer an exact interpretation for the evolution behavior. The correlation matrices constructed from the return series of 367 A-share stocks traded on the Shanghai Stock Exchange from January 4, 1999 to December 30, 2011 are calculated over a moving window with a size of 400 days. The evolutions of the statistical properties of the correlation coefficients, eigenvalues, and eigenvectors of the correlation matrices are carefully analyzed. We find that the stock correlations are significantly increased in the periods of two market crashes in 2001 and 2008, during which only five eigenvalues significantly deviate from the random correlation matrix, and the systemic risk is higher in these volatile periods than calm periods. By investigating the significant contributors of the deviating eigenvectors in different time periods, we observe a dynamic evolution behavior in business sectors such as IT, electronics, and real estate, which lead the rise (drop before (after the crashes. Our results provide new perspectives for the understanding of the dynamic evolution of cross-correlations in the Chines stock markets, and the result of risk estimation is valuable for the application of risk management.

  19. Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation

    International Nuclear Information System (INIS)

    Wapenaar, Kees

    2004-01-01

    A correlation-type reciprocity theorem is used to show that the elastodynamic Green's function of any inhomogeneous medium (random or deterministic) can be retrieved from the cross correlation of two recordings of a wave field at different receiver locations at the free surface. Unlike in other derivations, which apply to diffuse wave fields in random media or irregular finite bodies, no assumptions are made about the diffusivity of the wave field. In a second version, it is assumed that the wave field is diffuse due to many uncorrelated sources inside the medium

  20. Brief communication: Landslide motion from cross correlation of UAV-derived morphological attributes

    Science.gov (United States)

    Peppa, Maria V.; Mills, Jon P.; Moore, Phil; Miller, Pauline E.; Chambers, Jonathan E.

    2017-12-01

    Unmanned aerial vehicles (UAVs) can provide observations of high spatio-temporal resolution to enable operational landslide monitoring. In this research, the construction of digital elevation models (DEMs) and orthomosaics from UAV imagery is achieved using structure-from-motion (SfM) photogrammetric procedures. The study examines the additional value that the morphological attribute of openness, amongst others, can provide to surface deformation analysis. Image-cross-correlation functions and DEM subtraction techniques are applied to the SfM outputs. Through the proposed integrated analysis, the automated quantification of a landslide's motion over time is demonstrated, with implications for the wider interpretation of landslide kinematics via UAV surveys.

  1. The Atacama Cosmology Telescope: Calibration with the Wilkinson Microwave Anisotropy Probe Using Cross-Correlations

    Science.gov (United States)

    Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; hide

    2011-01-01

    We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and mapmaking procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.

  2. Evaluation of the performance of an ultrasonic cross-correlation flowmeter

    International Nuclear Information System (INIS)

    Bazerghi, H.; Serdula, K.J.

    1977-09-01

    An ultrasonic cross-correlation flowmeter, developed to assist in improving performance of heavy water plants, was evaluated. Overall performance of the flowmeter is satisfactory. The flowmeter is ideally suited to industrial applications and has an accuracy and repeatability comparable to many laboratory instruments. An accuracy of 3% is readily obtainable. This new 'clamp-on' portable flowmeter should prove useful in applications which provide flow measurements in systems where pipe penetration is too costly or not practical, verify or replace existing flowmeters, and measure flows in lines not previously instrumented to provide better control or to verify performance of systems

  3. Detecting particle dark matter signatures by cross-correlating γ-ray anisotropies with weak lensing

    Science.gov (United States)

    Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.

    2016-05-01

    The underlying nature of dark matter still represents one of the fundamental questions in contemporary cosmology. Although observations well agree with its description in terms of a new fundamental particle, neither direct nor indirect signatures of its particle nature have been detected so far, despite a strong experimental effort. Similarly, particle accelerators have hitherto failed at producing dark matter particles in collider physics experiments. Here, we illustrate how the cross-correlation between anisotropies in the diffuse γ-ray background and weak gravitational lensing effects represents a novel promising way in the quest of detecting particle dark matter signatures.

  4. Detection of non-stationary leak signals at NPP primary circuit by cross-correlation analysis

    International Nuclear Information System (INIS)

    Shimanskij, S.B.

    2007-01-01

    A leak-detection system employing high-temperature microphones has been developed for the RBMK and ATR (Japan) reactors. Further improvement of the system focused on using cross-correlation analysis of the spectral components of the signal to detect a small leak at an early stage of development. Since envelope processes are less affected by distortions than are wave processes, they give a higher-degree of correlation and can be used to detect leaks with lower signal-noise ratios. Many simulation tests performed at nuclear power plants have shown that the proposed methods can be used to detect and find the location of a small leak [ru

  5. Nuclear material enrichment identification method based on cross-correlation and high order spectra

    International Nuclear Information System (INIS)

    Yang Fan; Wei Biao; Feng Peng; Mi Deling; Ren Yong

    2013-01-01

    In order to enhance the sensitivity of nuclear material identification system (NMIS) against the change of nuclear material enrichment, the principle of high order statistic feature is introduced and applied to traditional NMIS. We present a new enrichment identification method based on cross-correlation and high order spectrum algorithm. By applying the identification method to NMIS, the 3D graphs with nuclear material character are presented and can be used as new signatures to identify the enrichment of nuclear materials. The simulation result shows that the identification method could suppress the background noises, electronic system noises, and improve the sensitivity against enrichment change to exponential order with no system structure modification. (authors)

  6. Cross-correlation analysis between Chinese TF contracts and treasury ETF based on high-frequency data

    Science.gov (United States)

    Zhou, Yu; Chen, Shi

    2016-02-01

    In this paper, we investigate the high-frequency cross-correlation relationship between Chinese treasury futures contracts and treasury ETF. We analyze the logarithmic return of these two price series, from which we can conclude that both return series are not normally distributed and the futures markets have greater volatility. We find significant cross-correlation between these two series. We further confirm the relationship using the DCCA coefficient and the DMCA coefficient. We quantify the long-range cross-correlation with DCCA method, and we further show that the relationship is multifractal. An arbitrage algorithm based on DFA regression with stable return is proposed in the last part.

  7. Time dependence of entropy flux and entropy production for a dynamical system driven by noises with coloured cross-correlation

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Xian; Xu Wei; Cai Li

    2007-01-01

    This paper shows the Fokker-Planck equation of a dynamical system driven by coloured cross-correlated white noises in the absence and presence of a small external force. Based on the Fokker-Planck equation and the definition of Shannon's information entropy, the time dependence of entropy flux and entropy production can be calculated. The present results can be used to explain the extremal behaviour of time dependence of entropy flux and entropy production in view of the dissipative parameter γ of the system, coloured cross-correlation time τ and coloured cross-correlation strength λ.

  8. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Kirkby, David; Blomqvist, Michael [Department of Physics and Astronomy, University of California, 4129 Frederick Reines Hall, Irvine, CA, 92697 (United States); Busca, Nicolas; Aubourg, Éric; Bautista, Julian [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Miralda-Escudé, Jordi [Institut de Ciències del Cosmos (IEEC/UB), Martí i Franquès 1, Barcelona, 08028 Catalonia (Spain); Ross, Nicholas P.; Bailey, Stephen; Beutler, Florian; Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA (United States); Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton, NY, 11375 (United States); Rich, James; Delubac, Timothée [CEA, Centre de Saclay, IRFU, Gif-sur-Yvette, 91191 France (France); Bhardwaj, Vaishali; Bizyaev, Dmitry [Department of Astronomy, University of Washington, Box 351580, Seattle, WA, 98195 (United States); Brewington, Howard; Brinkmann, Jon [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Brownstein, Joel R.; Dawson, Kyle S., E-mail: font@physik.uzh.ch [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT, 84112 (United States); and others

    2014-05-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight c/(H(z = 2.36)r{sub s}) = 9.0±0.3 and across the line of sight D{sub A}(z = 2.36)/r{sub s} = 10.8±0.4, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data (r{sub s} = 147.49 Mpc), we can translate these results to a measurement of the Hubble parameter of H(z = 2.36) = 226±8 km s{sup −1} Mpc{sup −1} and of the angular diameter distance of D{sub A}(z = 2.36) = 1590±60 Mpc. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.

  9. Measurement of the dipole in the cross-correlation function of galaxies

    CERN Document Server

    Gaztanaga, Enrique; Hui, Lam

    2017-01-01

    It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions that do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sam...

  10. Calibration of the Dodewaard downcomer thermocouple cross-correlation flow-rate measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stekelenburg, A J.C. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Hagen, T.H.J.J. van der [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Akker, H.E.A. van den [Technische Univ. Delft (Netherlands). Lab. voor Fysische Technologie

    1992-12-01

    The cross-correlation flow measurement technique, applied for measuring the coolant flow rate in a nuclear reactor, was calibrated with the use of numerical simulations of turbulent flow. The three-dimensional domain was collapsed into two dimensions. With a two-dimensional calculation of steady-state flow with transient thermal characteristics the response of thermocouples to a temperature variation was calculated. By cross-correlating the calculated thermocouple responses, the link between total flow rate and measured transit times was made. Three calibration points were taken in the range of 579 kg/s to 1477 kg/s. In this range, the product of the calculated transit time and the mass flow-rate is constant up to +3.5% and -2.4%. The reliability of the calibration was estimated at {+-}4.6%. The influence of the inlet boundary conditions, and the modelling of the flow in the upper part of the downcomer channel on the calibration result is shown to be small. A measured velocity profile effect was successfully predicted. (orig.).

  11. Evidence of Cross-correlation between the CMB Lensing and the γ-Ray Sky

    Science.gov (United States)

    Fornengo, Nicolao; Perotto, Laurence; Regis, Marco; Camera, Stefano

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  12. EVIDENCE OF CROSS-CORRELATION BETWEEN THE CMB LENSING AND THE γ-RAY SKY

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica, Università di Torino, I-10125 Torino (Italy); Perotto, Laurence [LPSC, Université Grenoble-Alpes, CNRS/IN2P3, 53, rue des Martyrs, F-38026 Grenoble Cedex (France); Camera, Stefano, E-mail: regis@to.infn.it [Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  13. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    KAUST Repository

    Dutta, Gaurav

    2014-08-05

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  14. Bias of damped Lyman-α systems from their cross-correlation with CMB lensing

    Science.gov (United States)

    Alonso, D.; Colosimo, J.; Font-Ribera, A.; Slosar, A.

    2018-04-01

    We cross-correlate the positions of damped Lyman-α systems (DLAs) and their parent quasar catalog with a convergence map derived from the Planck cosmic microwave background (CMB) temperature data. We make consistent measurements of the lensing signal of both samples in both Fourier and configuration space. By interpreting the excess signal present in the DLA catalog with respect to the parent quasar catalog as caused by the large scale structure traced by DLAs, we are able to infer the bias of these objects: bDLA=2.6±0.9. These results are consistent with previous measurements made in cross-correlation with the Lyman-α forest, although the current noise in the lensing data and the low number density of DLAs limits the constraining power of this measurement. We discuss the robustness of the analysis with respect to a number different systematic effects and forecast prospects of carrying out this measurement with data from future experiments.

  15. Two dimension MDW OCDMA code cross-correlation for reduction of phase induced intensity noise

    Science.gov (United States)

    Ahmed, Israa Sh.; Aljunid, Syed A.; Nordin, Junita M.; Dulaimi, Layth A. Khalil Al; Matem, Rima

    2017-11-01

    In this paper, we first review 2-D MDW code cross correlation equations and table to be improved significantly by using code correlation properties. These codes can be used in the synchronous optical CDMA systems for multi access interference cancellation and maximum suppress the phase induced intensity noise. Low Psr is due to the reduction of interference noise that is induced by the 2-D MDW code PIIN suppression. High data rate causes increases in BER, requires high effective power and severely deteriorates the system performance. The 2-D W/T MDW code has an excellent system performance where the value of PIIN is suppressed as low as possible at the optimum Psr with high data bit rate. The 2-D MDW code shows better tolerance to PIIN in comparison to others with enhanced system performance. We prove by numerical analysis that the PIIN maximally suppressed by MDW code through the minimizing property of cross correlation in comparison to 2-D PDC and 2-D MQC OCDMA code.scheme systems.

  16. CROSS-CORRELATING THE γ -RAY SKY WITH CATALOGS OF GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Branchini, Enzo [Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre,” via della Vasca Navale 84, I-00146 Roma (Italy); Camera, Stefano [Jodrell Bank Centre for Astrophysics, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Cuoco, Alessandro [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, D-52056 Aachen (Germany); Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Viel, Matteo [INAF Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34141, Trieste (Italy); Xia, Jun-Qing, E-mail: xiajq@bnu.edu.cn, E-mail: branchin@fis.uniroma3.it, E-mail: stefano.camera@manchester.ac.uk, E-mail: cuoco@physik.rwth-aachen.de, E-mail: fornengo@to.infn.it, E-mail: regis@to.infn.it, E-mail: viel@oats.inaf.it [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-01-01

    We report the detection of a cross-correlation signal between Fermi Large Area Telescope diffuse γ -ray maps and catalogs of clusters. In our analysis, we considered three different catalogs: WHL12, redMaPPer, and PlanckSZ. They all show a positive correlation with different amplitudes, related to the average mass of the objects in each catalog, which also sets the catalog bias. The signal detection is confirmed by the results of a stacking analysis. The cross-correlation signal extends to rather large angular scales, around 1°, that correspond, at the typical redshift of the clusters in these catalogs, to a few to tens of megaparsecs, i.e., the typical scale-length of the large-scale structures in the universe. Most likely this signal is contributed by the cumulative emission from active galactic nuclei (AGNs) associated with the filamentary structures that converge toward the high peaks of the matter density field in which galaxy clusters reside. In addition, our analysis reveals the presence of a second component, more compact in size and compatible with a point-like emission from within individual clusters. At present, we cannot distinguish between the two most likely interpretations for such a signal, i.e., whether it is produced by AGNs inside clusters or if it is a diffuse γ -ray emission from the intracluster medium. We argue that this latter, intriguing, hypothesis might be tested by applying this technique to a low-redshift large-mass cluster sample.

  17. Development of OCDMA system based on Flexible Cross Correlation (FCC) code with OFDM modulation

    Science.gov (United States)

    Aldhaibani, A. O.; Aljunid, S. A.; Anuar, M. S.; Arief, A. R.; Rashidi, C. B. M.

    2015-03-01

    The performance of the OCDMA systems is governed by numerous quantitative parameters such as the data rate, simultaneous number of users, the powers of transmitter and receiver, and the type of codes. This paper analyzes the performance of the OCDMA system using OFDM technique to enhance the channel data rate, to save power and increase the number of user of OSCDMA systems compared with previous hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system. The average received signal to noise ratio (SNR) with the nonlinearity of subcarriers is derived. The theoretical results have been evaluated based on BER and number of users as well as amount of power saved. The proposed system gave better performance and save around -6 dBm of the power as well as increase the number of users twice compare to SCM/OCDMA system. In addition it is robust against interference and much more spectrally efficient than SCM/OCDMA system. The system was designed based on Flexible Cross Correlation (FCC) code which is easier construction, less complexity of encoder/decoder design and flexible in-phase cross-correlation for uncomplicated to implement using Fiber Bragg Gratings (FBGs) for the OCDMA systems for any number of users and weights. The OCDMA-FCC_OFDM improves the number of users (cardinality) 108% compare to SCM/ODCMA-FCC system.

  18. Two dimension MDW OCDMA code cross-correlation for reduction of phase induced intensity noise

    Directory of Open Access Journals (Sweden)

    Sh. Ahmed Israa

    2017-01-01

    Full Text Available In this paper, we first review 2-D MDW code cross correlation equations and table to be improved significantly by using code correlation properties. These codes can be used in the synchronous optical CDMA systems for multi access interference cancellation and maximum suppress the phase induced intensity noise. Low Psr is due to the reduction of interference noise that is induced by the 2-D MDW code PIIN suppression. High data rate causes increases in BER, requires high effective power and severely deteriorates the system performance. The 2-D W/T MDW code has an excellent system performance where the value of PIIN is suppressed as low as possible at the optimum Psr with high data bit rate. The 2-D MDW code shows better tolerance to PIIN in comparison to others with enhanced system performance. We prove by numerical analysis that the PIIN maximally suppressed by MDW code through the minimizing property of cross correlation in comparison to 2-D PDC and 2-D MQC OCDMA code.scheme systems.

  19. Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers

    International Nuclear Information System (INIS)

    Hashisaka, Masayuki; Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji

    2014-01-01

    We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements

  20. Interdependence between crude oil and world food prices: A detrended cross correlation analysis

    Science.gov (United States)

    Pal, Debdatta; Mitra, Subrata K.

    2018-02-01

    This article explores the changing interdependence between crude oil and world food prices at varying time scales using detrended cross correlation analysis that would answer whether the interdependence (if any) differed significantly between pre and post-crisis period. Unlike the previous studies that exogenously imposed break dates for dividing the time series into sub-samples, we tested whether the mean of the crude oil price changed over time to find evidence for structural changes in the crude oil price series and endogenously determine three break dates with minimum Bayesian information criterion scores. Accordingly, we divided the entire study period in four sample periods - January 1990 to October 1999, November 1999 to February 2005, March 2005 to September 2010, and October 2010 to July 2016, where the third sample period coincided with the period of food crisis and enabled us to compare the fuel-food interdependence across pre-crisis, during the crisis, and post-crisis periods. The results of the detrended cross correlation analysis extended corroborative evidence for increasing positive interdependence between the crude oil price and world food price index along with its sub-categories, namely dairy, cereals, vegetable oil, and sugar. The article ends with the implications of these results in the domain of food policy and the financial sector.

  1. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    KAUST Repository

    Dutta, Gaurav; Sinha, Mrinal; Schuster, Gerard T.

    2014-01-01

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  2. Pleasant/Unpleasant Filtering for Affective Image Retrieval Based on Cross-Correlation of EEG Features

    Directory of Open Access Journals (Sweden)

    Keranmu Xielifuguli

    2014-01-01

    Full Text Available People often make decisions based on sensitivity rather than rationality. In the field of biological information processing, methods are available for analyzing biological information directly based on electroencephalogram: EEG to determine the pleasant/unpleasant reactions of users. In this study, we propose a sensitivity filtering technique for discriminating preferences (pleasant/unpleasant for images using a sensitivity image filtering system based on EEG. Using a set of images retrieved by similarity retrieval, we perform the sensitivity-based pleasant/unpleasant classification of images based on the affective features extracted from images with the maximum entropy method: MEM. In the present study, the affective features comprised cross-correlation features obtained from EEGs produced when an individual observed an image. However, it is difficult to measure the EEG when a subject visualizes an unknown image. Thus, we propose a solution where a linear regression method based on canonical correlation is used to estimate the cross-correlation features from image features. Experiments were conducted to evaluate the validity of sensitivity filtering compared with image similarity retrieval methods based on image features. We found that sensitivity filtering using color correlograms was suitable for the classification of preferred images, while sensitivity filtering using local binary patterns was suitable for the classification of unpleasant images. Moreover, sensitivity filtering using local binary patterns for unpleasant images had a 90% success rate. Thus, we conclude that the proposed method is efficient for filtering unpleasant images.

  3. Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.

    Science.gov (United States)

    Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A

    2011-04-01

    Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing

    Science.gov (United States)

    Harnois-Déraps, Joachim; Tröster, Tilman; Chisari, Nora Elisa; Heymans, Catherine; van Waerbeke, Ludovic; Asgari, Marika; Bilicki, Maciej; Choi, Ami; Erben, Thomas; Hildebrandt, Hendrik; Hoekstra, Henk; Joudaki, Shahab; Kuijken, Konrad; Merten, Julian; Miller, Lance; Robertson, Naomi; Schneider, Peter; Viola, Massimo

    2017-10-01

    We present the tomographic cross-correlation between galaxy lensing measured in the Kilo Degree Survey (KiDS-450) with overlapping lensing measurements of the cosmic microwave background (CMB), as detected by Planck 2015. We compare our joint probe measurement to the theoretical expectation for a flat Λ cold dark matter cosmology, assuming the best-fitting cosmological parameters from the KiDS-450 cosmic shear and Planck CMB analyses. We find that our results are consistent within 1σ with the KiDS-450 cosmology, with an amplitude re-scaling parameter AKiDS = 0.86 ± 0.19. Adopting a Planck cosmology, we find our results are consistent within 2σ, with APlanck = 0.68 ± 0.15. We show that the agreement is improved in both cases when the contamination to the signal by intrinsic galaxy alignments is accounted for, increasing A by ∼0.1. This is the first tomographic analysis of the galaxy lensing - CMB lensing cross-correlation signal, and is based on five photometric redshift bins. We use this measurement as an independent validation of the multiplicative shear calibration and of the calibrated source redshift distribution at high redshifts. We find that constraints on these two quantities are strongly correlated when obtained from this technique, which should therefore not be considered as a stand-alone competitive calibration tool.

  5. Lenses in the forest: cross correlation of the Lyman-alpha flux with cosmic microwave background lensing.

    Science.gov (United States)

    Vallinotto, Alberto; Das, Sudeep; Spergel, David N; Viel, Matteo

    2009-08-28

    We present a theoretical estimate for a new observable: the cross correlation between the Lyman-alpha flux fluctuations in quasar spectra and the convergence of the cosmic microwave background as measured along the same line of sight. As a first step toward the assessment of its detectability, we estimate the signal-to-noise ratio using linear theory. Although the signal-to-noise is small for a single line of sight and peaks at somewhat smaller redshifts than those probed by the Lyman-alpha forest, we estimate a total signal-to-noise of 9 for cross correlating quasar spectra of SDSS-III with Planck and 20 for cross correlating with a future polarization based cosmic microwave background experiment. The detection of this effect would be a direct measure of the neutral hydrogen-matter cross correlation and could provide important information on the growth of structures at large scales in a redshift range which is still poorly probed.

  6. Financial liberalization and stock market cross-correlation: MF-DCCA analysis based on Shanghai-Hong Kong Stock Connect

    Science.gov (United States)

    Ruan, Qingsong; Zhang, Shuhua; Lv, Dayong; Lu, Xinsheng

    2018-02-01

    Based on the implementation of Shanghai-Hong Kong Stock Connect in China, this paper examines the effects of financial liberalization on stock market comovement using both multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA) methods. Results based on MF-DFA confirm the multifractality of Shanghai and Hong Kong stock markets, and the market efficiency of Shanghai stock market increased after the implementation of this connect program. Besides, analysis based on MF-DCCA has verified the existence of persistent cross-correlation between Shanghai and Hong Kong stock markets, and the cross-correlation gets stronger after the launch of this liberalization program. Finally, we find that fat-tail distribution is the main source of multifractality in the cross-correlations before the stock connect program, while long-range correlation contributes to the multifractality after this program.

  7. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Beye, M., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ochmann, M.; Huse, N. [Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Ross, M.; Khalil, M. [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States); Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Föhlisch, A. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  8. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    International Nuclear Information System (INIS)

    Matthews, Daniel J.; Newman, Jeffrey A.

    2010-01-01

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to ∼0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alone Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys that sample

  9. Big Data solution for CTBT monitoring: CEA-IDC joint global cross correlation project

    Science.gov (United States)

    Bobrov, Dmitry; Bell, Randy; Brachet, Nicolas; Gaillard, Pierre; Kitov, Ivan; Rozhkov, Mikhail

    2014-05-01

    Waveform cross-correlation when applied to historical datasets of seismic records provides dramatic improvements in detection, location, and magnitude estimation of natural and manmade seismic events. With correlation techniques, the amplitude threshold of signal detection can be reduced globally by a factor of 2 to 3 relative to currently standard beamforming and STA/LTA detector. The gain in sensitivity corresponds to a body wave magnitude reduction by 0.3 to 0.4 units and doubles the number of events meeting high quality requirements (e.g. detected by three and more seismic stations of the International Monitoring System (IMS). This gain is crucial for seismic monitoring under the Comprehensive Nuclear-Test-Ban Treaty. The International Data Centre (IDC) dataset includes more than 450,000 seismic events, tens of millions of raw detections and continuous seismic data from the primary IMS stations since 2000. This high-quality dataset is a natural candidate for an extensive cross correlation study and the basis of further enhancements in monitoring capabilities. Without this historical dataset recorded by the permanent IMS Seismic Network any improvements would not be feasible. However, due to the mismatch between the volume of data and the performance of the standard Information Technology infrastructure, it becomes impossible to process all the data within tolerable elapsed time. To tackle this problem known as "BigData", the CEA/DASE is part of the French project "DataScale". One objective is to reanalyze 10 years of waveform data from the IMS network with the cross-correlation technique thanks to a dedicated High Performance Computer (HPC) infrastructure operated by the Centre de Calcul Recherche et Technologie (CCRT) at the CEA of Bruyères-le-Châtel. Within 2 years we are planning to enhance detection and phase association algorithms (also using machine learning and automatic classification) and process about 30 terabytes of data provided by the IDC to

  10. The Cross-Correlation and Reshuffling Tests in Discerning Induced Seismicity

    Science.gov (United States)

    Schultz, Ryan; Telesca, Luciano

    2018-05-01

    In recent years, cases of newly emergent induced clusters have increased seismic hazard and risk in locations with social, environmental, and economic consequence. Thus, the need for a quantitative and robust means to discern induced seismicity has become a critical concern. This paper reviews a Matlab-based algorithm designed to quantify the statistical confidence between two time-series datasets. Similar to prior approaches, our method utilizes the cross-correlation to delineate the strength and lag of correlated signals. In addition, use of surrogate reshuffling tests allows for the dynamic testing against statistical confidence intervals of anticipated spurious correlations. We demonstrate the robust nature of our algorithm in a suite of synthetic tests to determine the limits of accurate signal detection in the presence of noise and sub-sampling. Overall, this routine has considerable merit in terms of delineating the strength of correlated signals, one of which includes the discernment of induced seismicity from natural.

  11. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    International Nuclear Information System (INIS)

    Vögeli, Beat

    2017-01-01

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H N –N and H α –C α dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  12. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vögeli, Beat, E-mail: beat.vogeli@ucdenver.edu [University of Colorado Denver, Department of Biochemistry and Molecular Genetics (United States)

    2017-03-15

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H{sup N}–N and H{sup α}–C{sup α} dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  13. Cross-correlation matrix analysis of Chinese and American bank stocks in subprime crisis

    International Nuclear Information System (INIS)

    Zhu Shi-Zhao; Li Xin-Li; Zhang Wen-Qing; Wang Bing-Hong; Nie Sen; Yu Gao-Feng; Han Xiao-Pu

    2015-01-01

    In order to study the universality of the interactions among different markets, we analyze the cross-correlation matrix of the price of the Chinese and American bank stocks. We then find that the stock prices of the emerging market are more correlated than that of the developed market. Considering that the values of the components for the eigenvector may be positive or negative, we analyze the differences between two markets in combination with the endogenous and exogenous events which influence the financial markets. We find that the sparse pattern of components of eigenvectors out of the threshold value has no change in American bank stocks before and after the subprime crisis. However, it changes from sparse to dense for Chinese bank stocks. By using the threshold value to exclude the external factors, we simulate the interactions in financial markets. (paper)

  14. Application of cross-correlated delay shift rule in spiking neural networks for interictal spike detection.

    Science.gov (United States)

    Lilin Guo; Zhenzhong Wang; Cabrerizo, Mercedes; Adjouadi, Malek

    2016-08-01

    This study proposes a Cross-Correlated Delay Shift (CCDS) supervised learning rule to train neurons with associated spatiotemporal patterns to classify spike patterns. The objective of this study was to evaluate the feasibility of using the CCDS rule to automate the detection of interictal spikes in electroencephalogram (EEG) data on patients with epilepsy. Encoding is the initial yet essential step for spiking neurons to process EEG patterns. A new encoding method is utilized to convert the EEG signal into spike patterns. The simulation results show that the proposed algorithm identified 69 spikes out of 82 spikes, or 84% detection rate, which is quite high considering the subtleties of interictal spikes and the tediousness of monitoring long EEG records. This CCDS rule is also benchmarked by ReSuMe on the same task.

  15. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    Science.gov (United States)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  16. Burst Detection and Localization using Discrete Wavelet Transform and Cross-Correlation

    Directory of Open Access Journals (Sweden)

    Eduardo Trutié-Carrero

    2018-03-01

    Full Text Available Burst in water distribution systems causes great loss of this natural resource, interrupts the water supply, damages the streets, builds and increases the transmission of infectious diseases. In this paper we propose a new algorithm that allows the detection and automatic localization of burst in water distribution systems. As for detection, the novelty is to use the wavelet correlation criterion to compute the statistical decision and compare it with a detection threshold. The novelty in the localization is to use the statistical operator cross-correlation. The algorithm was implemented in Octave and was validated with 32 signals acquired in the laboratory in a 26.7 m long steel pipe. In 16 signals burst were triggered which were detected under a false positive probability of 2 %. No false positives were present on the 16 signals where only noise was present.

  17. Determination of velocity vector angles using the directional cross-correlation method

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt

    2005-01-01

    and then select the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and with a parabolic flow having a peak velocity of 0.3 m/s. A 7 MHz linear array transducer is used......A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions......-time ) between signals to correlate, and a proper choice varies with flow angle and flow velocity. One performance example is given with a fixed value of k tprf for all flow angles. The angle estimation on measured data for flow at 60 ◦ to 90 ◦ , yields a probability of valid estimates between 68% and 98...

  18. Estimation of velocity vector angles using the directional cross-correlation method

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt

    2006-01-01

    and then select the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and a circulating flow rig with a parabolic flow having a peak velocity of 0.3 m/s. A 7 MHz linear array......A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions...... transducer is used with a normal transmission of a focused ultrasound field. In the simulations the relative standard deviation of the velocity magnitude is between 0.7% and 7.7% for flow angles between 45 deg and 90 deg. The study showed that angle estimation by directional beamforming can be estimated...

  19. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    Science.gov (United States)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. High precision Cross-correlated imaging in Few-mode fibers

    DEFF Research Database (Denmark)

    Muliar, Olena; Usuga Castaneda, Mario A.; Kristensen, Torben

    2017-01-01

    us to distinguishing differential time delays between HOMs in the picosecond timescale. Broad wavelength scanning in combination with spectral shaping, allows us to estimate the modal behavior of FMF without prior knowledge of the fiber parameters. We performed our demonstration at wavelengths from...... existing approaches for modal content analysis, several methods as S2, C2 in time and frequency domain are available. In this contribution we will present an improved time-domain cross-correlated (C2) imaging technique for the experimental evaluation of modal properties in HOM fibers over a broad range......) in a few-mode fiber (FMF) are used as multiple spatial communication channels, comes in this context as a viable approach to enable the optimization of high-capacity links. From this perspective, it becomes highly necessary to possess a diagnostic tool for the precise modal characterization of FMFs. Among...

  1. Noise analysis of the measurement of group delay in Fourier white-light interferometric cross correlation

    International Nuclear Information System (INIS)

    Laude, Vincent

    2002-01-01

    The problem of noise analysis in measuring the group delay introduced by a dispersive optical element by use of white-light interferometric cross correlation is investigated. Two noise types, detection noise and position noise, are specifically analyzed. Detection noise is shown to be highly sensitive to the spectral content of the white-light source at the frequency considered and to the temporal acquisition window. Position noise, which arises from the finite accuracy of the measurement of the scanning mirror's position, can severely damage the estimation of the group delay. Such is shown to be the case for fast Fourier transform-based estimation algorithms. A new algorithm that is insensitive to scanning delay errors is proposed, and subfemtosecond accuracy is obtained without any postprocessing

  2. Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems

    Science.gov (United States)

    Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao

    2018-02-01

    Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.

  3. Cross-correlating the γ-ray Sky with Catalogs of Galaxy Clusters

    Science.gov (United States)

    Branchini, Enzo; Camera, Stefano; Cuoco, Alessandro; Fornengo, Nicolao; Regis, Marco; Viel, Matteo; Xia, Jun-Qing

    2017-01-01

    We report the detection of a cross-correlation signal between Fermi Large Area Telescope diffuse γ-ray maps and catalogs of clusters. In our analysis, we considered three different catalogs: WHL12, redMaPPer, and PlanckSZ. They all show a positive correlation with different amplitudes, related to the average mass of the objects in each catalog, which also sets the catalog bias. The signal detection is confirmed by the results of a stacking analysis. The cross-correlation signal extends to rather large angular scales, around 1°, that correspond, at the typical redshift of the clusters in these catalogs, to a few to tens of megaparsecs, I.e., the typical scale-length of the large-scale structures in the universe. Most likely this signal is contributed by the cumulative emission from active galactic nuclei (AGNs) associated with the filamentary structures that converge toward the high peaks of the matter density field in which galaxy clusters reside. In addition, our analysis reveals the presence of a second component, more compact in size and compatible with a point-like emission from within individual clusters. At present, we cannot distinguish between the two most likely interpretations for such a signal, I.e., whether it is produced by AGNs inside clusters or if it is a diffuse γ-ray emission from the intracluster medium. We argue that this latter, intriguing, hypothesis might be tested by applying this technique to a low-redshift large-mass cluster sample.

  4. OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING SNe Ia AND ESTIMATING THEIR REDSHIFTS

    International Nuclear Information System (INIS)

    Scolnic, Daniel M.; Riess, Adam G.; Huber, Mark E.; Rest, Armin; Stubbs, Christoper W.; Tonry, John L.

    2009-01-01

    Large photometric surveys of transient phenomena, such as Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope, will locate thousands to millions of Type Ia supernova (SN Ia) candidates per year, a rate prohibitive for acquiring spectroscopy to determine each candidate's type and redshift. In response, we have developed an economical approach to identifying SNe Ia and their redshifts using an uncommon type of optical filter which has multiple, discontinuous passbands on a single substrate. Observation of a supernova through a specially designed pair of these 'cross-correlation filters' measures the approximate amplitude and phase of the cross-correlation between the spectrum and a SN Ia template, a quantity typically used to determine the redshift and type of a high-redshift SN Ia. Simulating the use of these filters, we obtain a sample of SNe Ia which is ∼98% pure with individual redshifts measured to σ z = 0.01 precision. The advantages of this approach over standard broadband photometric methods are that it is insensitive to reddening, independent of the color data used for subsequent distance determinations which reduce selection or interpretation bias, and because it makes use of the spectral features its reliability is greater. A great advantage over long-slit spectroscopy comes from increased throughput, enhanced multiplexing, and reduced setup time resulting in a net gain in speed of up to ∼30 times. This approach is also insensitive to host galaxy contamination. Prototype filters were built and successfully used on Magellan with LDSS-3 to characterize three SuperNova Legacy Survey candidates. We discuss how these filters can provide critical information for the upcoming photometric supernova surveys.

  5. Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia

    Science.gov (United States)

    Timashev, Serge F.; Panischev, Oleg Yu.; Polyakov, Yuriy S.; Demin, Sergey A.; Kaplan, Alexander Ya.

    2012-02-01

    We apply flicker-noise spectroscopy (FNS), a time series analysis method operating on structure functions and power spectrum estimates, to study the clinical electroencephalogram (EEG) signals recorded in children/adolescents (11 to 14 years of age) with diagnosed schizophrenia-spectrum symptoms at the National Center for Psychiatric Health (NCPH) of the Russian Academy of Medical Sciences. The EEG signals for these subjects were compared with the signals for a control sample of chronically depressed children/adolescents. The purpose of the study is to look for diagnostic signs of subjects' susceptibility to schizophrenia in the FNS parameters for specific electrodes and cross-correlations between the signals simultaneously measured at different points on the scalp. Our analysis of EEG signals from scalp-mounted electrodes at locations F3 and F4, which are symmetrically positioned in the left and right frontal areas of cerebral cortex, respectively, demonstrates an essential role of frequency-phase synchronization, a phenomenon representing specific correlations between the characteristic frequencies and phases of excitations in the brain. We introduce quantitative measures of frequency-phase synchronization and systematize the values of FNS parameters for the EEG data. The comparison of our results with the medical diagnoses for 84 subjects performed at NCPH makes it possible to group the EEG signals into 4 categories corresponding to different risk levels of subjects' susceptibility to schizophrenia. We suggest that the introduced quantitative characteristics and classification of cross-correlations may be used for the diagnosis of schizophrenia at the early stages of its development.

  6. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum

    Directory of Open Access Journals (Sweden)

    Tjeerd V. olde Scheper

    2018-01-01

    Full Text Available Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized

  7. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio

    International Nuclear Information System (INIS)

    Charonko, John J; Vlachos, Pavlos P

    2013-01-01

    Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost. (paper)

  8. Quantifying and modeling long-range cross correlations in multiple time series with applications to world stock indices.

    Science.gov (United States)

    Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H Eugene

    2011-04-01

    We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes "bad news" for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.

  9. A novel coefficient for detecting and quantifying asymmetry of California electricity market based on asymmetric detrended cross-correlation analysis.

    Science.gov (United States)

    Wang, Fang

    2016-06-01

    In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρDXA, contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic (MH) and ΔMH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.

  10. A novel coefficient for detecting and quantifying asymmetry of California electricity market based on asymmetric detrended cross-correlation analysis

    Science.gov (United States)

    Wang, Fang

    2016-06-01

    In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρ D X A , contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic (MH) and ΔMH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.

  11. Quantifying and modeling long-range cross correlations in multiple time series with applications to world stock indices

    Science.gov (United States)

    Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H. Eugene

    2011-04-01

    We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes “bad news” for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.

  12. A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series

    Science.gov (United States)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.

    2014-11-01

    We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.

  13. Intensive care antibiotic consumption and resistance patterns: a cross-correlation analysis

    Directory of Open Access Journals (Sweden)

    Luminita Baditoiu

    2017-11-01

    Full Text Available Abstract Background Over recent decades, a dramatic increase in infections caused by multidrug-resistant pathogens has been observed worldwide. The aim of the present study was to investigate the relationship between local resistance bacterial patterns and antibiotic consumption in an intensive care unit in a Romanian university hospital. Methods A prospective study was conducted between 1st January 2012 and 31st December 2013. Data covering the consumption of antibacterial drugs and the incidence density for the main resistance phenotypes was collected on a monthly basis, and this data was aggregated quarterly. The relationship between the antibiotic consumption and resistance was investigated using cross-correlation, and four regression models were constructed, using the SPSS version 20.0 (IBM, Chicago, IL and the R version 3.2.3 packages. Results During the period studied, the incidence of combined-resistant and carbapenem-resistant P. aeruginosa strains increased significantly [(gradient = 0.78, R2 = 0.707, p = 0.009 (gradient = 0.74, R2 = 0.666, p = 0.013 respectively], mirroring the increase in consumption of β-lactam antibiotics with β-lactamase inhibitors (piperacillin/tazobactam and carbapenems (meropenem [(gradient = 10.91, R2 = 0.698, p = 0.010 and (gradient = 14.63, R2 = 0.753, p = 0.005 respectively]. The highest cross-correlation coefficients for zero time lags were found between combined-resistant vs. penicillins consumption and carbapenem-resistant P. aeruginosa strains vs. carbapenems consumption (0.876 and 0.928, respectively. The best model describing the relation between combined-resistant P. aeruginosa strains and penicillins consumption during a given quarter incorporates both the consumption and the incidence of combined-resistant strains in the hospital department during the previous quarter (multiple R2 = 0.953, p = 0.017. The best model for explaining the carbapenem resistance of P

  14. Correction of clock errors in seismic data using noise cross-correlations

    Science.gov (United States)

    Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline

    2017-04-01

    Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock

  15. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    International Nuclear Information System (INIS)

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S.; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R.

    2016-01-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  16. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Atul Kumar [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Gajiwala, Astrid Lobo [Tissue Bank, Tata Memorial Hospital, Parel, Mumbai 400012 (India); Rai, Ratan Kumar [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Khan, Mohd Parvez [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Singh, Chandan [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Barbhuyan, Tarun [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Vijayalakshmi, S. [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chattopadhyay, Naibedya [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Sinha, Neeraj, E-mail: neerajcbmr@gmail.com [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Kumar, Ashutosh, E-mail: ashutoshk@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  17. Seismic reflection response from cross-correlations of ambient vibrations on non-conventional hidrocarbon reservoir

    Science.gov (United States)

    Huerta, F. V.; Granados, I.; Aguirre, J.; Carrera, R. Á.

    2017-12-01

    Nowadays, in hydrocarbon industry, there is a need to optimize and reduce exploration costs in the different types of reservoirs, motivating the community specialized in the search and development of alternative exploration geophysical methods. This study show the reflection response obtained from a shale gas / oil deposit through the method of seismic interferometry of ambient vibrations in combination with Wavelet analysis and conventional seismic reflection techniques (CMP & NMO). The method is to generate seismic responses from virtual sources through the process of cross-correlation of records of Ambient Seismic Vibrations (ASV), collected in different receivers. The seismic response obtained is interpreted as the response that would be measured in one of the receivers considering a virtual source in the other. The acquisition of ASV records was performed in northern of Mexico through semi-rectangular arrays of multi-component geophones with instrumental response of 10 Hz. The in-line distance between geophones was 40 m while in cross-line was 280 m, the sampling used during the data collection was 2 ms and the total duration of the records was 6 hours. The results show the reflection response of two lines in the in-line direction and two in the cross-line direction for which the continuity of coherent events have been identified and interpreted as reflectors. There is certainty that the events identified correspond to reflections because the time-frequency analysis performed with the Wavelet Transform has allowed to identify the frequency band in which there are body waves. On the other hand, the CMP and NMO techniques have allowed to emphasize and correct the reflection response obtained during the correlation processes in the frequency band of interest. The results of the processing and analysis of ASV records through the seismic interferometry method have allowed us to see interesting results in light of the cross-correlation process in combination with

  18. DCCA cross-correlation in blue-chips companies: A view of the 2008 financial crisis in the Eurozone

    Science.gov (United States)

    Guedes, E.; Dionísio, A.; Ferreira, P. J.; Zebende, G. F.

    2017-08-01

    In this paper we analyze the blue-chips (up to 50% of the total index) companies in the Eurozone. Our motivation being analysis of the effect of the 2008 financial crisis. For this purpose, we apply the DCCA cross-correlation coefficient (ρDCCA) between the country stock market index and their respective blue-chips. Then, with the cross-correlation coefficient, we qualify and quantify how each blue-chip is adherent to its country index, evaluating the type of cross-correlation among them. Subsequently, for each blue-chip, we propose to study the 2008 financial crisis by measuring the adherence between post and pre-crisis. From this analysis, we can construct an adhesion map of each company with respect to the global index. Our database is formed of 12 Eurozone countries.

  19. Long memory of abnormal investor attention and the cross-correlations between abnormal investor attention and trading volume, volatility respectively

    Science.gov (United States)

    Fan, Xiaoqian; Yuan, Ying; Zhuang, Xintian; Jin, Xiu

    2017-03-01

    Taking Baidu Index as a proxy for abnormal investor attention (AIA), the long memory property in the AIA of Shanghai Stock Exchange (SSE) 50 Index component stocks was empirically investigated using detrended fluctuation analysis (DFA) method. The results show that abnormal investor attention is power-law correlated with Hurst exponents between 0.64 and 0.98. Furthermore, the cross-correlations between abnormal investor attention and trading volume, volatility respectively are studied using detrended cross-correlation analysis (DCCA) and the DCCA cross-correlation coefficient (ρDCCA). The results suggest that there are positive correlations between AIA and trading volume, volatility respectively. In addition, the correlations for trading volume are in general higher than the ones for volatility. By carrying on rescaled range analysis (R/S) and rolling windows analysis, we find that the results mentioned above are effective and significant.

  20. Improved dark energy detection through the polarization-assisted cross correlation of the cosmic microwave background with radio sources

    International Nuclear Information System (INIS)

    Liu, Guo-Chin; Ng, Kin-Wang; Pen, Ue-Li

    2011-01-01

    Integrated Sachs-Wolfe (ISW) effect can be estimated by cross-correlating the cosmic microwave background (CMB) sky with tracers of the local matter distribution. At late cosmic time, the dark energy-induced decay of gravitation potential generates a cross correlation signal on large angular scales. The dominant noise is the intrinsic CMB anisotropies from the inflationary epoch. In this paper we use CMB polarization to reduce this intrinsic noise. We cross-correlate the microwave sky observed by Wilkinson Microwave Anisotropy Probe (WMAP) with the radio source catalog compiled by NRAO VLA Sky Survey (NVSS) to study the efficiency of the noise suppression. We find that the error bars are reduced by about 4 to 14% and the statistical power in the signal is improved.

  1. On the determination of neutrino masses and dark energy evolution from the cross-correlation of CMB and LSS

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Takahashi, Tomo

    2008-01-01

    We discuss the possibilities of the simultaneous determination of the neutrino masses and the evolution of dark energy from future cosmological observations such as cosmic microwave background (CMB), large scale structure (LSS) and the cross-correlation between them. Recently it has been discussed that there is a degeneracy between the neutrino masses and the equation of state for dark energy. It is also known that there are some degeneracies among the parameters describing the dark energy evolution. We discuss the implications of these for the cross-correlation of CMB with LSS in some detail. Then we consider to what extent we can determine the neutrino masses and the dark energy evolution using the expected data from CMB, LSS and their cross-correlation

  2. Increasing the computational efficient of digital cross correlation by a vectorization method

    Science.gov (United States)

    Chang, Ching-Yuan; Ma, Chien-Ching

    2017-08-01

    This study presents a vectorization method for use in MATLAB programming aimed at increasing the computational efficiency of digital cross correlation in sound and images, resulting in a speedup of 6.387 and 36.044 times compared with performance values obtained from looped expression. This work bridges the gap between matrix operations and loop iteration, preserving flexibility and efficiency in program testing. This paper uses numerical simulation to verify the speedup of the proposed vectorization method as well as experiments to measure the quantitative transient displacement response subjected to dynamic impact loading. The experiment involved the use of a high speed camera as well as a fiber optic system to measure the transient displacement in a cantilever beam under impact from a steel ball. Experimental measurement data obtained from the two methods are in excellent agreement in both the time and frequency domain, with discrepancies of only 0.68%. Numerical and experiment results demonstrate the efficacy of the proposed vectorization method with regard to computational speed in signal processing and high precision in the correlation algorithm. We also present the source code with which to build MATLAB-executable functions on Windows as well as Linux platforms, and provide a series of examples to demonstrate the application of the proposed vectorization method.

  3. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    International Nuclear Information System (INIS)

    Munoz-Diosdado, A

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems

  4. Quasi-biennial oscillations in the cross-correlation of properties of macrospicules

    Science.gov (United States)

    Kiss, T. S.; Gyenge, N.; Erdélyi, R.

    2018-01-01

    Jets, whatever small (e.g. spicules) or large (e.g. macrospicules) their size, may play a key role in momentum and energy transport from photosphere to chromosphere and at least to the low corona. Here, we investigate the properties of abundant, large-scale dynamic jets observable in the solar atmosphere: the macrospicules (MS). These jets are observationally more distinct phenomena than their little, and perhaps more ubiquitous, cousins, the spicules. Investigation of long-term variation of the properties of macrospicules may help to a better understanding of their underlying physics of generation and role in coronal heating. Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory, a new dataset, with several hundreds of macrospicules, was constructed encompassing a period of observations over six years. Here, we analyse the measured properties and relations between these properties of macrospicules as function of time during the observed time interval. We found that cross-correlations of several of these macrospicule properties display a strong oscillatory pattern. Next, wavelet analysis is used to provide more detailed information about the temporal behaviour of the various properties of MS. For coronal hole macrospicules, a significant peak is found at around 2-year period. This peak also exists partially or is shifted to longer period, in the case of quiet Sun macrospicules. These observed findings may be rooted in the underlying mechanism generating the solar magnetic field, i.e. the global solar dynamo.

  5. Orientational cross correlations between entangled branch polymers in primitive chain network simulations

    Science.gov (United States)

    Masubuchi, Yuichi; Pandey, Ankita; Amamoto, Yoshifumi; Uneyama, Takashi

    2017-11-01

    Although it has not been frequently discussed, contributions of the orientational cross-correlation (OCC) between entangled polymers are not negligible in the relaxation modulus. In the present study, OCC contributions were investigated for 4- and 6-arm star-branched and H-branched polymers by means of multi-chain slip-link simulations. Owing to the molecular-level description of the simulation, the segment orientation was traced separately for each molecule as well as each subchain composing the molecules. Then, the OCC was calculated between different molecules and different subchains. The results revealed that the amount of OCC between different molecules is virtually identical to that of linear polymers regardless of the branching structure. The OCC between constituent subchains of the same molecule is significantly smaller than the OCC between different molecules, although its intensity and time-dependent behavior depend on the branching structure as well as the molecular weight. These results lend support to the single-chain models given that the OCC effects are embedded into the stress-optical coefficient, which is independent of the branching structure.

  6. Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

    Science.gov (United States)

    Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.

    2018-06-01

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

  7. Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM

    Directory of Open Access Journals (Sweden)

    Lin-sheng Huo

    2016-01-01

    Full Text Available An effective method for the damage detection of skeletal structures which combines the cross correlation function amplitude (CCFA with the support vector machine (SVM is presented in this paper. The proposed method consists of two stages. Firstly, the data features are extracted from the CCFA, which, calculated from dynamic responses and as a representation of the modal shapes of the structure, changes when damage occurs on the structure. The data features are then input into the SVM with the one-against-one (OAO algorithm to classify the damage status of the structure. The simulation data of IASC-ASCE benchmark model and a vibration experiment of truss structure are adopted to verify the feasibility of proposed method. The results show that the proposed method is suitable for the damage identification of skeletal structures with the limited sensors subjected to ambient excitation. As the CCFA based data features are sensitive to damage, the proposed method demonstrates its reliability in the diagnosis of structures with damage, especially for those with minor damage. In addition, the proposed method shows better noise robustness and is more suitable for noisy environments.

  8. Measuring time-of-flight in an ultrasonic LPS system using generalized cross-correlation.

    Science.gov (United States)

    Villladangos, José Manuel; Ureña, Jesús; García, Juan Jesús; Mazo, Manuel; Hernández, Alvaro; Jiménez, Ana; Ruíz, Daniel; De Marziani, Carlos

    2011-01-01

    In this article, a time-of-flight detection technique in the frequency domain is described for an ultrasonic local positioning system (LPS) based on encoded beacons. Beacon transmissions have been synchronized and become simultaneous by means of the DS-CDMA (direct-sequence code Division multiple access) technique. Every beacon has been associated to a 255-bit Kasami code. The detection of signal arrival instant at the receiver, from which the distance to each beacon can be obtained, is based on the application of the generalized cross-correlation (GCC), by using the cross-spectral density between the received signal and the sequence to be detected. Prior filtering to enhance the frequency components around the carrier frequency (40 kHz) has improved estimations when obtaining the correlation function maximum, which implies an improvement in distance measurement precision. Positioning has been achieved by using hyperbolic trilateration, based on the time differences of arrival (TDOA) between a reference beacon and the others.

  9. Using Cross-Correlation Methods to Characterize Earthquakes Associated with the Socorro Magma Body

    Science.gov (United States)

    Vieceli, R.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.; Dodge, D. A.; Pyle, M. L.; Walter, W. R.

    2017-12-01

    The Socorro Magma Body (SMB), a thin, sill-like body with a top surface-depth of 19 km situated within the Rio Grande Rift in central New Mexico, is one of the largest recognized continental mid-crustal magma bodies in the world by area. SMB-associated inflation leads to slow regional uplift of a few mm/yr and has been linked to longstanding concentrated shallow seismicity (history. In February 2015 seismic data were collected above the northern and most rapidly uplifting region of the SMB with a densely spaced temporary array, consisting of seven broadband and 804 short period Fairfield nodal vertical component seismographs. The total array area was 50 x 25 km with typical node spacing of 300 m along a road network. In this study, we exploit all available seismic network data in a cross-correlation framework developed at Lawrence Livermore National Laboratory to detect events and characterize earthquake swarms, clusters, and patterns occurring over the last 15 years. We use a power detector to build an initial catalog of small magnitude earthquakes, including 33 events (M <= 2.5) recorded during the February 2015 deployment, as templates to detect additional events. We also develop an updated shallow velocity model for the region and refine event hypocenters using Bayesloc, a bayesian, multiple-event location algorithm. This enhanced seismicity catalog will be utilized in interpreting the recent seismicity of the SMB. LLNL-ABS-735529

  10. Cross-correlation matrix analysis of Chinese and American bank stocks in subprime crisis

    Science.gov (United States)

    Zhu, Shi-Zhao; Li, Xin-Li; Nie, Sen; Zhang, Wen-Qing; Yu, Gao-Feng; Han, Xiao-Pu; Wang, Bing-Hong

    2015-05-01

    In order to study the universality of the interactions among different markets, we analyze the cross-correlation matrix of the price of the Chinese and American bank stocks. We then find that the stock prices of the emerging market are more correlated than that of the developed market. Considering that the values of the components for the eigenvector may be positive or negative, we analyze the differences between two markets in combination with the endogenous and exogenous events which influence the financial markets. We find that the sparse pattern of components of eigenvectors out of the threshold value has no change in American bank stocks before and after the subprime crisis. However, it changes from sparse to dense for Chinese bank stocks. By using the threshold value to exclude the external factors, we simulate the interactions in financial markets. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275186, 91024026, and FOM2014OF001) and the University of Shanghai for Science and Technology (USST) of Humanities and Social Sciences, China (Grant Nos. USST13XSZ05 and 11YJA790231).

  11. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  12. Cross-correlation studies between CMB temperature anisotropies and 21 cm fluctuations

    International Nuclear Information System (INIS)

    Cooray, Asantha

    2004-01-01

    During the transition from a neutral to a fully reionized universe, scattering of cosmic microwave background (CMB) photons via free electrons leads to a new anisotropy contribution to the temperature distribution. If the reionization process is inhomogeneous and patchy, the era of reionization is also visible via brightness temperature fluctuations in the redshifted 21 cm line emission from neutral hydrogen. Since regions containing electrons and neutral hydrogen are expected to trace the same underlying density field, the two are (anti)correlated and this is expected to be reflected in the anisotropy maps via a correlation between arcminute-scale CMB temperature and the 21 cm background. In terms of the angular cross-power spectrum, unfortunately, this correlation is insignificant due to a geometric cancellation associated with second-order CMB anisotropies. The same cross correlation between ionized and neutral regions, however, can be studied using a bispectrum involving large-scale velocity field of ionized regions from the Doppler effect, arcminute-scale CMB anisotropies during reionization, and the 21 cm background. While the geometric cancellation is partly avoided, the signal-to-noise ratio related to this bispectrum is reduced due to the large cosmic variance related to velocity fluctuations traced by the Doppler effect. Unless the velocity field during reionization can be independently established, it is unlikely that the correlation information related to the relative distribution of ionized electrons and regions containing neutral hydrogen can be obtained with a combined study involving CMB and 21 cm fluctuations

  13. Effect of cross-correlation on track-to-track fusion

    Science.gov (United States)

    Saha, Rajat K.

    1994-07-01

    Since the advent of target tracking systems employing a diverse mixture of sensors, there has been increasing recognition by air defense system planners and other military system analysts of the need to integrate these tracks so that a clear air picture can be obtained in a command center. A popular methodology to achieve this goal is to perform track-to-track fusion, which performs track-to-track association as well as kinematic state vector fusion. This paper seeks to answer analytically the extent of improvement achievable by means of kinetic state vector fusion when the tracks are obtained from dissimilar sensors (e.g., Radar/ESM/IRST/IFF). It is well known that evaluation of the performance of state vector fusion algorithms at steady state must take into account the effects of cross-correlation between eligible tracks introduced by the input noise which, unfortunately, is often neglected because of added computational complexity. In this paper, an expression for the steady-state cross-covariance matrix for a 2D state vector track-to-track fusion is obtained. This matrix is shown to be a function of the parameters of the Kalman filters associated with the candidate tracks being fused. Conditions for positive definiteness of the cross-covariance matrix have been derived and the effect of positive definiteness on performance of track-to-track fusion is also discussed.

  14. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Diosdado, A [Department of Mathematics, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Av. Acueducto s/n, 07340, Mexico City (Mexico)

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.

  15. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    Science.gov (United States)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; hide

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  16. Cross correlation analysis of medium energy gamma rays for the northern hemisphere

    International Nuclear Information System (INIS)

    Long, J.; Zanrosso, E.; Zych, A.D.; White, R.S.

    1982-01-01

    Data obtained with the UCR gamma telescope have been analyzed using the cross-correlation method. The observations extended over 37.5 hr from 0930 UT, 30 Sept. to 2300 UT, 1 oct. 1978 at 32deg N. Lat. (Palestine, Texas). The Crab Nebula- Anticenter region was observed on consecutive days. The telescope's wide field-of-view permitted the search for a number of other medium energy (1-30 MeV) source candidates. As the telescope swept the sky, the count rates for fixed celestial directions were correlated with the expected response as a function of time and telescope geometry. Similar correlations were carried out for sources measured in the laboratory and computer-simulated sources. In the correlation method the time independence and azimuthal symmetry of the atmospheric and cosmic diffuse backgrounds provide zero correlation. In contrast, a celestial source produces an asymmetric response with respect to the azimuthal direction which varies predictably in time to give a positive correlation. Preliminary correlation skymaps of the Anticenter region are presented and their statistical significance discussed. An energy spectrum obtained from the ''correlated counts'' is compared with measurements by other methods

  17. Two phase formation of massive elliptical galaxies: study through cross-correlation including spatial effect

    Science.gov (United States)

    Modak, Soumita; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar

    2017-11-01

    Area of study is the formation mechanism of the present-day population of elliptical galaxies, in the context of hierarchical cosmological models accompanied by accretion and minor mergers. The present work investigates the formation and evolution of several components of the nearby massive early-type galaxies (ETGs) through cross-correlation function (CCF), using the spatial parameters right ascension (RA) and declination (DEC), and the intrinsic parameters mass (M_{*}) and size. According to the astrophysical terminology, here these variables, namely mass, size, RA and DEC are termed as parameters, whereas the unknown constants involved in the kernel function are called hyperparameters. Throughout this paper, the parameter size is used to represent the effective radius (Re). Following Huang et al. (2013a), each nearby ETG is divided into three parts on the basis of its Re value. We study the CCF between each of these three components of nearby massive ETGs and the ETGs in the high redshift range, 0.5conflict raised in a previous work (De et al. 2014) suggesting other possibilities for the formation of the outermost part. A probable cause of this improvement is the inclusion of the spatial effects in addition to the other parameters in the study.

  18. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  19. Cross-correlation cosmography with intensity mapping of the neutral hydrogen 21 cm emission

    Science.gov (United States)

    Pourtsidou, A.; Bacon, D.; Crittenden, R.

    2015-11-01

    The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and neutral hydrogen (HI) intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to ≃8 % for a sky coverage fsky=0.5 and assuming a σ (ΩDE)=0.03 prior for the dark energy density parameter. We also show that using the cosmic microwave background as the second source plane is not competitive, even when considering a COrE-like satellite.

  20. Conjugate gradient and cross-correlation based least-square reverse time migration and its application

    Science.gov (United States)

    Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun

    2017-09-01

    Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.

  1. IMPROVING CORRELATION FUNCTION FITTING WITH RIDGE REGRESSION: APPLICATION TO CROSS-CORRELATION RECONSTRUCTION

    International Nuclear Information System (INIS)

    Matthews, Daniel J.; Newman, Jeffrey A.

    2012-01-01

    Cross-correlation techniques provide a promising avenue for calibrating photometric redshifts and determining redshift distributions using spectroscopy which is systematically incomplete (e.g., current deep spectroscopic surveys fail to obtain secure redshifts for 30%-50% or more of the galaxies targeted). In this paper, we improve on the redshift distribution reconstruction methods from our previous work by incorporating full covariance information into our correlation function fits. Correlation function measurements are strongly covariant between angular or spatial bins, and accounting for this in fitting can yield substantial reduction in errors. However, frequently the covariance matrices used in these calculations are determined from a relatively small set (dozens rather than hundreds) of subsamples or mock catalogs, resulting in noisy covariance matrices whose inversion is ill-conditioned and numerically unstable. We present here a method of conditioning the covariance matrix known as ridge regression which results in a more well behaved inversion than other techniques common in large-scale structure studies. We demonstrate that ridge regression significantly improves the determination of correlation function parameters. We then apply these improved techniques to the problem of reconstructing redshift distributions. By incorporating full covariance information, applying ridge regression, and changing the weighting of fields in obtaining average correlation functions, we obtain reductions in the mean redshift distribution reconstruction error of as much as ∼40% compared to previous methods. We provide a description of POWERFIT, an IDL code for performing power-law fits to correlation functions with ridge regression conditioning that we are making publicly available.

  2. Photoplethysmogram signal quality estimation using repeated Gaussian filters and cross-correlation

    International Nuclear Information System (INIS)

    Karlen, W; Kobayashi, K; Dumont, G A; Ansermino, J M

    2012-01-01

    Pulse oximeters are monitors that noninvasively measure heart rate and blood oxygen saturation (SpO 2 ). Unfortunately, pulse oximetry is prone to artifacts which negatively impact the accuracy of the measurement and can cause a significant number of false alarms. We have developed an algorithm to segment pulse oximetry signals into pulses and estimate the signal quality in real time. The algorithm iteratively calculates a signal quality index (SQI) ranging from 0 to 100. In the presence of artifacts and irregular signal morphology, the algorithm outputs a low SQI number. The pulse segmentation algorithm uses the derivative of the signal to find pulse slopes and an adaptive set of repeated Gaussian filters to select the correct slopes. Cross-correlation of consecutive pulse segments is used to estimate signal quality. Experimental results using two different benchmark data sets showed a good pulse detection rate with a sensitivity of 96.21% and a positive predictive value of 99.22%, which was equivalent to the available reference algorithm. The novel SQI algorithm was effective and produced significantly lower SQI values in the presence of artifacts compared to SQI values during clean signals. The SQI algorithm may help to guide untrained pulse oximeter users and also help in the design of advanced algorithms for generating smart alarms. (paper)

  3. Photoplethysmogram signal quality estimation using repeated Gaussian filters and cross-correlation.

    Science.gov (United States)

    Karlen, W; Kobayashi, K; Ansermino, J M; Dumont, G A

    2012-10-01

    Pulse oximeters are monitors that noninvasively measure heart rate and blood oxygen saturation (SpO2). Unfortunately, pulse oximetry is prone to artifacts which negatively impact the accuracy of the measurement and can cause a significant number of false alarms. We have developed an algorithm to segment pulse oximetry signals into pulses and estimate the signal quality in real time. The algorithm iteratively calculates a signal quality index (SQI) ranging from 0 to 100. In the presence of artifacts and irregular signal morphology, the algorithm outputs a low SQI number. The pulse segmentation algorithm uses the derivative of the signal to find pulse slopes and an adaptive set of repeated Gaussian filters to select the correct slopes. Cross-correlation of consecutive pulse segments is used to estimate signal quality. Experimental results using two different benchmark data sets showed a good pulse detection rate with a sensitivity of 96.21% and a positive predictive value of 99.22%, which was equivalent to the available reference algorithm. The novel SQI algorithm was effective and produced significantly lower SQI values in the presence of artifacts compared to SQI values during clean signals. The SQI algorithm may help to guide untrained pulse oximeter users and also help in the design of advanced algorithms for generating smart alarms.

  4. THE DiskMass SURVEY. III. STELLAR KINEMATICS VIA CROSS-CORRELATION

    International Nuclear Information System (INIS)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.

    2011-01-01

    We describe a new cross-correlation (CC) approach used by our survey to derive stellar kinematics from galaxy-continuum spectroscopy. This approach adopts the formal error analysis derived by Statler, but properly handles spectral masks. Thus, we address the primary concerns regarding application of the CC method to censored data, while maintaining its primary advantage by consolidating kinematic and template-mismatch information toward different regions of the CC function. We identify a systematic error in the nominal CC method of approximately 10% in velocity dispersion incurred by a mistreatment of detector-censored data, which is eliminated by our new method. We derive our approach from first principles, and we use Monte Carlo simulations to demonstrate its efficacy. An identical set of Monte Carlo simulations performed using the well-established penalized-pixel-fitting code of Cappellari and Emsellem compares favorably with the results from our newly implemented software. Finally, we provide a practical demonstration of this software by extracting stellar kinematics from SparsePak spectra of UGC 6918.

  5. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    Science.gov (United States)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  6. Retrieving the Green’s function in an open system by cross correlation : A comparison of approaches (L)

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Fokkema, J.; Snieder, R.

    2005-01-01

    We compare two approaches for deriving the fact that the Green’s function in an arbitrary inhomogeneous open system can be obtained by cross correlating recordings of the wave field at two positions. One approach is based on physical arguments, exploiting the principle of time-reversal invariance of

  7. First results of cross-correlation analysis of ambient seismic noise from the Hellenic Unified Seismic Network

    NARCIS (Netherlands)

    Panou, Areti; Paulssen, Hanneke; Hatzidimitriou, Panagiotis

    2015-01-01

    In this study we present phase velocity maps that were obtained from the cross-correlation analysis of ambient seismic noise recorded in the region of Greece.We used one year (2013) of ambient seismic data obtained from the vertical component of 64 broadband permanent seismological stations that are

  8. Spatiotemporal Ultrafast-Plasmon Control Based on Response Functions of Nanostructures Measured by Interferometric Cross-Correlation Microscopy

    Directory of Open Access Journals (Sweden)

    Kusaba Miyuki

    2013-03-01

    Full Text Available We demonstrate an electrical-field cross-correlation imaging technique to obtain a response function of localized plasmon generated by femtosecond laser pulses on gold nanostructures. Based on the measured response functions, we spatiotemporally control the plasmon by shaping the femtosecond excitation laser pulses.

  9. The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem

    2008-01-01

    The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization (E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization

  10. Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies

    Science.gov (United States)

    Krumpe, Mirko; Miyaji, Takamitsu; Coil, Alison L.; Aceves, Hector

    2018-02-01

    We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of 0.007 2MASS galaxies.

  11. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    Science.gov (United States)

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baheza, Richard A. [Department of Biomedical Engineering and Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Welch, E. Brian [Institute of Imaging Science and Departments of Radiology and Radiological Sciences and Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Gochberg, Daniel F. [Institute of Imaging Science and Departments of Radiology and Radiological Sciences, and Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Sanders, Melinda [Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Harvey, Sara [Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Gore, John C. [Institute of Imaging Science and Departments of Biomedical Engineering, Radiology and Radiological Sciences, Physics and Astronomy, and Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Yankeelov, Thomas E., E-mail: thomas.yankeelov@vanderbilt.edu [Institute of Imaging Science and Departments of Radiology and Radiological Sciences, Biomedical Engineering, Physics and Astronomy, and Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States)

    2015-03-15

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12

  13. Cross correlation of chemical profiles in minerals: insights into the architecture of magmatic reservoirs

    Science.gov (United States)

    Probst, Line; Caricchi, Luca; Gander, Martin; Wallace, Glenn

    2016-04-01

    Analysis of chemical zoning in minerals offers the opportunity to reconstruct the pre-eruptive conditions and the temporal evolution of magmatic reservoirs. The chemical composition of minerals is a function of the thermodynamic conditions of the reservoir from which they grow and therefore minerals record the evolution and variation of residual melt chemistry and intensive parameters within the magmatic system. A quantitative approach is required to determine if similar crystals actually shared a portion of their crystallisation history. These analyses are in many cases extremely time consuming and rather expensive. Therefore, it is not always possible to analyse a statically significant number of crystals, especially within their textural context in thin sections and that is the main reason to build automated methods. We are presenting a numerical cross-correlation method that compares the zonation pattern of minerals to identify if they share the totality or part of their growth history. We modified the method first developed by Wallace and Bergantz (2004) to compare profiles in minerals also from samples collected in different outcrops and that can be used for any dataset (i.e. geochemical proxies in stratigraphic sections). The main purpose of this method is to objectively compare chemical profiles in minerals (collected by electron microprobe, LA-ICP-MS or cathodoluminescence images) and quantify their degree of similarity. For this purpose, we use a well-known mathematical tool: the cross correlation which is a way of quantifying the difference between two given signals at a given position. Once our program was built, we performed tests using a set of synthetic profiles, profiles acquired along different transects of the same mineral and also on different minerals. Finally we applied our program to about 100 zircons from Kilgore Tuff, Heise Volcanic Field (USA) collected at different stratigraphic levels in two different outcrops. The correlation shows that

  14. CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. I. MEASUREMENTS

    International Nuclear Information System (INIS)

    Sheldon, Erin S.; Johnston, David E.; Scranton, Ryan; Koester, Benjamin P.; Oyaizu, Hiroaki; Cunha, Carlos; Lima, Marcos; Frieman, Joshua A.; McKay, Timothy A.; Lin Huan; Annis, James; Wechsler, Risa H.; Mandelbaum, Rachel; Bahcall, Neta A.; Fukugita, Masataka

    2009-01-01

    This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes ∼130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters. We split the clusters into bins of richness and luminosity and stack the surface density contrast to produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo (25 kpc h -1 ) well into the surrounding large-scale structure (30 Mpc h -1 ), with a significance of 15 to 20 in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass cross-correlation function. We pay careful attention to sources of systematic error, correcting for them where possible. The resulting signals are calibrated to the ∼10% level, with the dominant remaining uncertainty being the redshift distribution of the background sources. We find that the profiles scale strongly with richness and luminosity. We find that the signal within a given richness bin depends upon luminosity, suggesting that luminosity is more closely correlated with mass than galaxy counts. We split the samples by redshift but detect no significant evolution. The profiles are not well described by power laws. In a subsequent series of papers, we invert the profiles to three-dimensional mass profiles, show that they are well fit by a halo model description, measure mass-to-light ratios, and provide a cosmological interpretation.

  15. Environmental quenching and galactic conformity in the galaxy cross-correlation signal

    Science.gov (United States)

    Hatfield, P. W.; Jarvis, M. J.

    2017-12-01

    It has long been known that environment has a large effect on star formation in galaxies. There are several known plausible mechanisms to remove the cool gas needed for star formation, such as strangulation, harassment and ram-pressure stripping. It is unclear which process is dominant, and over what range of stellar mass. In this paper, we find evidence for suppression of the cross-correlation function between massive galaxies and less massive star-forming galaxies, giving a measure of how less likely a galaxy is to be star forming in the vicinity of a more massive galaxy. We develop a formalism for modelling environmental quenching mechanisms within the halo occupation distribution scheme. We find that at z ∼ 2 environment is not a significant factor in determining quenching of star-forming galaxies, and that galaxies are quenched with similar probabilities when they are satellites in sub-group environments, as they are globally. However, by z ∼ 0.5 galaxies are much less likely to be star forming when in a high-density (group or low-mass cluster) environment than when not. This increased probability of being quenched does not appear to have significant radial dependence within the halo at lower redshifts, supportive of the quenching being caused by the halting of fresh inflows of pristine gas, as opposed to by tidal stripping. Furthermore, by separating the massive sample into passive and star forming, we see that this effect is further enhanced when the central galaxy is passive, a manifestation of galactic conformity.

  16. A study on Improvisation in a Musical performance using Multifractal Detrended Cross Correlation Analysis

    Science.gov (United States)

    Sanyal, Shankha; Banerjee, Archi; Patranabis, Anirban; Banerjee, Kaushik; Sengupta, Ranjan; Ghosh, Dipak

    2016-11-01

    MFDFA (the most rigorous technique to assess multifractality) was performed on four Hindustani music samples played on same 'raga' sung by the same performer. Each music sample was divided into six parts and 'multifractal spectral width' was determined for each part corresponding to the four samples. The results obtained reveal that different parts of all the four sound signals possess spectral width of widely varying values. This gives a cue of the so called 'musical improvisation' in all music samples, keeping in mind they belong to the bandish part of the same raga. Formal compositions in Hindustani raga are juxtaposed with the improvised portions, where an artist manoeuvers his/her own creativity to bring out a mood that is specific for that particular performance, which is known as 'improvisation'. Further, this observation hints at the association of different emotions even in the same bandish of the same raga performed by the same artist, this interesting observation cannot be revealed unless rigorous non-linear technique explores the nature of musical structure. In the second part, we applied MFDXA technique to explore more in-depth about 'improvisation' and association with emotion. This technique is applied to find the degree of cross-correlation (γx) between the different parts of the samples. Pronounced correlation has been observed in the middle parts of the all the four samples evident from higher values of γx ​whereas the other parts show weak correlation. This gets further support from the values of spectral width from different parts of the sample - width of those parts is significantly different from other parts. This observation is extremely new both in respect of musical structure of so called improvisation and associated emotion. The importance of this study in application area of cognitive music therapy is immense.

  17. A BAYESIAN ESTIMATE OF THE CMB–LARGE-SCALE STRUCTURE CROSS-CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Santos, E. [Instituto de Física, Universidade de São Paulo, Rua do Matão trav. R 187, 05508-090, São Paulo—SP (Brazil); Carvalho, F. C. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210, Mossoró-RN (Brazil); Penna-Lima, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Novaes, C. P.; Wuensche, C. A., E-mail: emoura@if.usp.br, E-mail: fabiocabral@uern.br, E-mail: pennal@apc.in2p3.fr, E-mail: cawuenschel@das.inpe.br, E-mail: camilanovaes@on.br [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil)

    2016-08-01

    Evidences for late-time acceleration of the universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB), and large-scale structure (LSS). In this work, we focus on the integrated Sachs–Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB–LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe ( WMAP 9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.

  18. Cross-correlation patterns in social opinion formation with sequential data

    Science.gov (United States)

    Chakrabarti, Anindya S.

    2016-11-01

    Recent research on large-scale internet data suggests existence of patterns in the collective behavior of billions of people even though each of them may pursue own activities. In this paper, we interpret online rating activity as a process of forming social opinion about individual items, where people sequentially choose a rating based on the current information set comprising all previous ratings and own preferences. We construct an opinion index from the sequence of ratings and we show that (1) movie-specific opinion converges much slower than an independent and identically distributed (i.i.d.) sequence of ratings, (2) rating sequence for individual movies shows lesser variation compared to an i.i.d. sequence of ratings, (3) the probability density function of the asymptotic opinions has more spread than that defined over opinion arising from i.i.d. sequence of ratings, (4) opinion sequences across movies are correlated with significantly higher and lower correlation compared to opinion constructed from i.i.d. sequence of ratings, creating a bimodal cross-correlation structure. By decomposing the temporal correlation structures from panel data of movie ratings, we show that the social effects are very prominent whereas group effects cannot be differentiated from those of surrogate data and individual effects are quite small. The former explains a large part of extreme positive or negative correlations between sequences of opinions. In general, this method can be applied to any rating data to extract social or group-specific effects in correlation structures. We conclude that in this particular case, social effects are important in opinion formation process.

  19. DISSECTING THE HIGH- z INTERSTELLAR MEDIUM THROUGH INTENSITY MAPPING CROSS-CORRELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Paolo; Doré, Olivier [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lagache, Guilaine, E-mail: Paolo.Serra@jpl.nasa.gov [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France)

    2016-12-20

    We explore the detection, with upcoming spectroscopic surveys, of three-dimensional power spectra of emission line fluctuations produced in different phases of the interstellar medium (ISM) by forbidden transitions of ionized carbon [C ii] (157.7 μ m), ionized nitrogen [N ii] (121.9 and 205.2 μ m), and neutral oxygen [O i] (145.5 μ m) at redshift z  > 4. These lines are important coolants of both the neutral and the ionized medium, and probe multiple phases of the ISM. In the framework of the halo model, we compute predictions of the three-dimensional power spectra for two different surveys, showing that they have the required sensitivity to detect cross-power spectra between the [C ii] line and both the [O i] line and the [N ii] lines with sufficient signal-to-noise ratio. The importance of cross-correlating multiple lines with the intensity mapping technique is twofold. On the one hand, we will have multiple probes of the different phases of the ISM, which is key to understanding the interplay between energetic sources, and the gas and dust at high redshift. This kind of study will be useful for a next-generation space observatory such as the NASA Far-IR Surveyor, which will probe the global star formation and the ISM of galaxies from the peak of star formation to the epoch of reionization. On the other hand, emission lines from external galaxies are an important foreground when measuring spectral distortions of the cosmic microwave background spectrum with future space-based experiments like PIXIE; measuring fluctuations in the intensity mapping regime will help constrain the mean amplitude of these lines, and will allow us to better handle this important foreground.

  20. Rapid and Robust Cross-Correlation-Based Seismic Phase Identification Using an Approximate Nearest Neighbor Method

    Science.gov (United States)

    Tibi, R.; Young, C. J.; Gonzales, A.; Ballard, S.; Encarnacao, A. V.

    2016-12-01

    The matched filtering technique involving the cross-correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive, and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an Approximate Nearest Neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation without requiring a complex distributed computing system. Our method begins with a projection into a reduced dimensionality space based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors is accomplished by using randomized K-dimensional trees. We used the approach to search for matches to each of 2700 analyst-reviewed signal detections reported for May 2010 for the IMS station MKAR. The template library in this case consists of a dataset of more than 200,000 analyst-reviewed signal detections for the same station from 2002-2014 (excluding May 2010). Of these signal detections, 60% are teleseismic first P, and 15% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer shows that the proposed approach performs the search of the large template libraries about 20 times faster than the standard full linear search, while achieving recall rates greater than 80%, with the recall rate increasing for higher correlation values. To decide whether to confirm a match, we use a hybrid method involving a cluster approach for queries with two or more matches, and correlation score for single matches. Of the signal detections that passed our confirmation process, 52% were teleseismic first P, and 30% were regional phases.

  1. Detailed Tremor Migration Styles in Guerrero, Mexico Imaged with Cross-station Cross-correlations

    Science.gov (United States)

    Peng, Y.; Rubin, A. M.

    2015-12-01

    Tremor occurred downdip of the area that slipped the most during the 2006 slow slip event (SSE) in Guerrero, Mexico, as opposed to Cascadia, where tremor locations and rupture zones of SSEs largely overlap. Here we obtain high resolution tremor locations by applying cross-station cross-correlations [Armbruster et al., 2014] to seismic data from the Meso-America Subduction Experiment deployment. A few 3-station detectors are adopted to capture detailed deformation styles in the tremor "transient zone" and the downdip "sweet spot" as defined in Frank et al., 2014. Similar to Cascadia, tremor activities in our study region were comprised mostly of short tremor bursts lasting minutes to hours. Many of these bursts show clear migration patterns with propagation velocities of hundreds of km/day, comparable to those in Cascadia. However, the propagation of the main tremor front was often not in a simple unilateral fashion. Before the 2006 SSE, we observe 4 large tremor episodes during which both the transient zone and the sweet spot participated, consistent with previous findings [Frank et al., 2014]. The transient zone usually became active a few days after the sweet spot. We find many along-dip migrations with recurrence intervals of about a half day within a region about 10 km along strike and 35 km along dip in the sweet spot, suggesting possible tidal modulation, after the main front moved beyond this region. These migrations appear not to originate at the main front, in contrast to tremor migrations from a few km to tens of km across observed in Cascadia [Rubin and Armbruster, 2013; Peng et al., 2015; Peng and Rubin, submitted], but possibly similar to Shikoku, Japan [Shelly et al., 2007]. We do not observe obvious half-day periodicity for the migrations farther downdip within the sweet spot. During the SSE, the recurrence interval of tremor episodes decreased significantly in both the transient zone and the sweet spot, with that of the former being much shorter

  2. CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. III. MASS-TO-LIGHT RATIOS

    International Nuclear Information System (INIS)

    Sheldon, Erin S.; Johnston, David E.; Masjedi, Morad; Blanton, Michael R.; McKay, Timothy A.; Scranton, Ryan; Wechsler, Risa H.; Koester, Benjamin P.; Hansen, Sarah M.; Frieman, Joshua A.; Annis, James

    2009-01-01

    We present measurements of the excess mass-to-light ratio (M/L) measured around MaxBCG galaxy clusters observed in the Sloan Digital Sky Survey. This red-sequence cluster sample includes objects from small groups with M 200 ∼ 5 x 10 12 h -1 M sun to clusters with M 200 ∼ 10 15 h -1 M sun . Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean Δρ(r)=ρ(r)-ρ-bar for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density Δl(r)=l(r)-l-bar measured in the z = 0.25 i band. For both mass and light, we de-project the profiles to produce three-dimensional mass and light profiles over scales from 25 h -1 kpc to 22 h -1 Mpc. From these profiles we calculate the cumulative excess mass ΔM(r) and excess light ΔL(r) as a function of separation from the BCG. On small scales, where ρ(r)>>ρ-bar, the integrated mass-to-light profile (ΔM/ΔL)(r) may be interpreted as the cluster M/L. We find the (ΔM/ΔL) 200 , the M/L within r 200 , scales with cluster mass as a power law with index 0.33 ± 0.02. On large scales, where ρ(r)∼ρ-bar, the ΔM/ΔL approaches an asymptotic value independent of cluster richness. For small groups, the mean (ΔM/ΔL) 200 is much smaller than the asymptotic value, while for large clusters (ΔM/ΔL) 200 is consistent with the asymptotic value. This asymptotic value should be proportional to the mean M/L of the universe (M/L). We find (M/L)b -2 M/L = 362 ± 54h (statistical). There is additional uncertainty in the overall calibration at the ∼10% level. The parameter b 2 M/L is primarily a function of the bias of the L ∼ * galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find Ω m b -2 M/L = 0.20 ± 0.03, independent of the Hubble parameter.

  3. Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price

    Science.gov (United States)

    Zhuang, Xiaoyang; Wei, Yu; Ma, Feng

    2015-07-01

    In this paper, the multifractality and efficiency degrees of ten important Chinese sectoral indices are evaluated using the methods of MF-DFA and generalized Hurst exponents. The study also scrutinizes the dynamics of the efficiency of Chinese sectoral stock market by the rolling window approach. The overall empirical findings revealed that all the sectoral indices of Chinese stock market exist different degrees of multifractality. The results of different efficiency measures have agreed on that the 300 Materials index is the least efficient index. However, they have a slight diffidence on the most efficient one. The 300 Information Technology, 300 Telecommunication Services and 300 Health Care indices are comparatively efficient. We also investigate the cross-correlations between the ten sectoral indices and WTI crude oil price based on Multifractal Detrended Cross-correlation Analysis. At last, some relevant discussions and implications of the empirical results are presented.

  4. Optimal portfolio strategy with cross-correlation matrix composed by DCCA coefficients: Evidence from the Chinese stock market

    Science.gov (United States)

    Sun, Xuelian; Liu, Zixian

    2016-02-01

    In this paper, a new estimator of correlation matrix is proposed, which is composed of the detrended cross-correlation coefficients (DCCA coefficients), to improve portfolio optimization. In contrast to Pearson's correlation coefficients (PCC), DCCA coefficients acquired by the detrended cross-correlation analysis (DCCA) method can describe the nonlinear correlation between assets, and can be decomposed in different time scales. These properties of DCCA make it possible to improve the investment effect and more valuable to investigate the scale behaviors of portfolios. The minimum variance portfolio (MVP) model and the Mean-Variance (MV) model are used to evaluate the effectiveness of this improvement. Stability analysis shows the effect of two kinds of correlation matrices on the estimation error of portfolio weights. The observed scale behaviors are significant to risk management and could be used to optimize the portfolio selection.

  5. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  6. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    Science.gov (United States)

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-04

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  7. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds

  8. Cross-correlating CMB temperature fluctuations with high-energy γ-ray from Dark-Matter annihilation

    International Nuclear Information System (INIS)

    Pieri, L.

    2013-01-01

    In this paper we compute the Integrated Sachs-Wolfe effect due to the presence of dark-matter structures on cosmological scale. We cross-correlate the CMB temperature fluctuations with the extragalactic high-energy γ-ray flux map obtained with FERMI-LAT. We find a null signal consistent with the theory and conclude that the presence of halos and subhalos at galactic and extragalactic scale, if not excluded, will be hardly discoverable.

  9. A damage detection method for instrumented civil structures using prerecorded Green’s functions and cross-correlation

    OpenAIRE

    Heckman, Vanessa; Kohler, Monica; Heaton, Thomas

    2011-01-01

    Automated damage detection methods have application to instrumented structures that are susceptible to types of damage that are difficult or costly to detect. The presented method has application to the detection of brittle fracture of welded beam-column connections in steel moment-resisting frames (MRFs), where locations of potential structural damage are known a priori. The method makes use of a prerecorded catalog of Green’s function templates and a cross-correlation method ...

  10. DARK MATTER SEARCHES IN THE GAMMA-RAY EXTRAGALACTIC BACKGROUND VIA CROSS-CORRELATIONS WITH GALAXY CATALOGS

    International Nuclear Information System (INIS)

    Cuoco, Alessandro; Regis, Marco; Fornengo, Nicolao; Xia, Jun-Qing; Branchini, Enzo; Viel, Matteo

    2015-01-01

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM

  11. Dark Matter Searches in the Gamma-ray Extragalactic Background via Cross-correlations with Galaxy Catalogs

    Science.gov (United States)

    Cuoco, Alessandro; Xia, Jun-Qing; Regis, Marco; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-12-01

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.

  12. DARK MATTER SEARCHES IN THE GAMMA-RAY EXTRAGALACTIC BACKGROUND VIA CROSS-CORRELATIONS WITH GALAXY CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Cuoco, Alessandro; Regis, Marco; Fornengo, Nicolao [Dipartimento di Fisica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Xia, Jun-Qing [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Branchini, Enzo [Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre,” via della Vasca Navale 84, I-00146 Roma (Italy); Viel, Matteo, E-mail: cuoco@to.infn.it, E-mail: regis@to.infn.it, E-mail: fornengo@to.infn.it, E-mail: xiajq@bnu.edu.cn, E-mail: branchin@fis.uniroma3.it, E-mail: viel@oats.inaf.it [INAF Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34141, Trieste (Italy)

    2015-12-15

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.

  13. On the interplay between short and long term memory in the power-law cross-correlations setting

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2015-01-01

    Roč. 421, č. 1 (2015), s. 218-222 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Power-law cross-correlations * Long term memory * Short term memory Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452316.pdf

  14. What is new about covered interest parity condition in the European Union? Evidence from fractal cross-correlation regressions

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Ferreira, P.

    2017-01-01

    Roč. 486, č. 1 (2017), s. 554-566 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GA17-12408S Institutional support: RVO:67985556 Keywords : covered interest parity * detrended cross-correlation analysis * detrending moving cross-corrrelation analysis * financial integration Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2017/E/kristoufek-0478811.pdf

  15. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate

    Science.gov (United States)

    Tian, Ye; Ritzwoller, Michael H.

    2017-09-01

    Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.

  16. Memory-induced sign reversals of the spatial cross-correlation for particles in viscoelastic shear flows

    International Nuclear Information System (INIS)

    Sauga, Ako; Laas, Katrin; Mankin, Romi

    2015-01-01

    Highlights: • Cross-correlation (CC) of coordinates of particles in viscoelastic shear flows is discussed. • Expressions for CC functions subjected to both internal and external noises are presented. • Impact of internal and external noises on CC functions are compared. • Memory-induced reentrant sign reversals of the spatial cross-moment are established. - Abstract: The behavior of shear-induced cross-correlation functions between particle fluctuations along orthogonal directions in the shear plane for harmonically trapped Brownian particles in a viscoelastic shear flow is studied. A generalized Langevin equation with a power-law-type memory kernel is used to model the complex structure of the viscoelastic media. Interaction with fluctuations of environmental parameters is modeled by a multiplicative white Gaussian noise, by an internal fractional Gaussian noise, and by an additive external white noise. It is shown that the presence of a memory has a profound effect on the behavior of the cross-correlation functions. Particularly, memory-induced reentrant sign reversals of the spatial cross-moment between orthogonal random displacements of a particle are established, i.e., an increase of the memory exponent can cause the sign reversal from positive to negative, but by a further increase of the memory exponent a reentrant transition from negative to positive values appears. Similarities and differences between the behavior of the models with additive internal and external noises are considered. It is shown that additive external and internal noises cause qualitatively different dependencies of the cross-correlation functions on the time lag. The occurrence of energetic instability due to the influence of multiplicative noise is also discussed.

  17. Measurement of zero power reactor dynamic response by cross correlation method; Merenje dinamickog odziva reaktora nulte snage kros korelacionom metodom

    Energy Technology Data Exchange (ETDEWEB)

    Kostic, Lj; Petrovic, M [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1969-07-15

    Pulse response is comprehensive description of linear system dynamics. In this paper, cross correlation method was used for measuring the response of zero power reactor. Reactor system was perturbed by pseudo-random signal, which was cross correlated with the reactor signal responding to this perturbation on the digital ZUSE Z-23 computer. Cross-correlation functions were measured for different positions of stochastic oscillator and ionization chamber in the critical system. From numerical processing of performed experimental data, it was concluded that a more powerful faster computer would be needed for processing statistical experiments. In that case it would be possible to obtain information about spatial effects in the reactor and propagation of neutron waves in the multiplication medium. Impulsni odziv je potpuni opis dinamike linearnog sistema. Za merenje impulsnog odziva nultog reaktora, u ovom radu, koriscena je kros korelaciona metoda. Reaktorski sistem je perturbovan pseudoslucajnim signalom, koji je u digitalnom racunaru ZUSE Z-23 kroskorelisan sa signalom odziva reaktora na ove perturbacije. Merene su kroskorelacione funkcije za razlicite polozaje stohastickog oscilatora i jonizacione komore u kriticnom sistemu. Iz numericki obradjivanih eksperimenta namece se kao zakljucak da bi za obradu statistickih eksperimenata kod nultih reaktora bio potreban racunar veceg kapaciteta i brzine. U tom slucaju bi se iz ovako postavljenog eksperimenta moglo doci i do informacija o prostornim efektima u reaktoru i prostiranju neutronskih talasa kroz multiplikativnu sredinu. (author)

  18. Investigating cluster astrophysics and cosmology with cross-correlation of the thermal Sunyaev-Zel'dovich effect and weak lensing

    Science.gov (United States)

    Osato, Ken; Flender, Samuel; Nagai, Daisuke; Shirasaki, Masato; Yoshida, Naoki

    2018-03-01

    Recent detections of the cross-correlation of the thermal Sunyaev-Zel'dovich (tSZ) effect and weak gravitational lensing (WL) enable unique studies of cluster astrophysics and cosmology. In this work, we present constraints on the amplitude of the non-thermal pressure fraction in galaxy clusters, α0, and the amplitude of the matter power spectrum, σ8, using measurements of the tSZ power spectrum from Planck, and the tSZ-WL cross-correlation from Planck and the Red Cluster Sequence Lensing Survey. We fit the data to a semi-analytic model with the covariance matrix using N-body simulations. We find that the tSZ power spectrum alone prefers σ8 ˜ 0.85 and a large fraction of non-thermal pressure (α0 ˜ 0.2-0.3). The tSZ-WL cross-correlation on the other hand prefers a significantly lower σ8 ˜ 0.6 and low α0 ˜ 0.05. We show that this tension can be mitigated by allowing for a steep slope in the stellar mass-halo mass relation, which would cause a reduction of the gas in low-mass haloes. In such a model, the combined data prefer σ8 ˜ 0.7 and α0 ˜ 0.2, consistent with predictions from hydrodynamical simulations.

  19. What is new about covered interest parity condition in the European Union? Evidence from fractal cross-correlation regressions

    Science.gov (United States)

    Ferreira, Paulo; Kristoufek, Ladislav

    2017-11-01

    We analyse the covered interest parity (CIP) using two novel regression frameworks based on cross-correlation analysis (detrended cross-correlation analysis and detrending moving-average cross-correlation analysis), which allow for studying the relationships at different scales and work well under non-stationarity and heavy tails. CIP is a measure of capital mobility commonly used to analyse financial integration, which remains an interesting feature of study in the context of the European Union. The importance of this features is related to the fact that the adoption of a common currency is associated with some benefits for countries, but also involves some risks such as the loss of economic instruments to face possible asymmetric shocks. While studying the Eurozone members could explain some problems in the common currency, studying the non-Euro countries is important to analyse if they are fit to take the possible benefits. Our results point to the CIP verification mainly in the Central European countries while in the remaining countries, the verification of the parity is only residual.

  20. Hidden cross-correlation patterns in stock markets based on permutation cross-sample entropy and PCA

    Science.gov (United States)

    Lin, Aijing; Shang, Pengjian; Zhong, Bo

    2014-12-01

    In this article, we investigate the hidden cross-correlation structures in Chinese stock markets and US stock markets by performing PCSE combined with PCA approach. It is suggested that PCSE can provide a more faithful and more interpretable description of the dynamic mechanism between time series than cross-correlation matrix. We show that this new technique can be adapted to observe stock markets especially during financial crisis. In order to identify and compare the interactions and structures of stock markets during financial crisis, as well as in normal periods, all the samples are divided into four sub-periods. The results imply that the cross-correlations between Chinese group are stronger than the US group in the most sub-periods. In particular, it is likely that the US stock markets are more integrated with each other during global financial crisis than during Asian financial crisis. However, our results illustrate that Chinese stock markets are not immune from the global financial crisis, although less integrated with other markets if they are compared with US stock markets.

  1. Effects of signal modulation and coloured cross-correlation of coloured noises on the diffusion of a harmonic oscillator

    Institute of Scientific and Technical Information of China (English)

    Liu Li; Zhang Liang-Ying; Cao Li

    2009-01-01

    The diffusion in a harmonic oscillator driven by coloured noises ζ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time τ_3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient λ of the two Orustein-Uhlenbeck (O-U) noises. 2) Changing the value of τ3, the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3)Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model.

  2. Effects of signal modulation and coloured cross-correlation of coloured noises on the diffusion of a harmonic oscillator

    International Nuclear Information System (INIS)

    Li, Liu; Li, Cao; Liang-Ying, Zhang

    2009-01-01

    The diffusion in a harmonic oscillator driven by coloured noises ζ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time τ 3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient λ of the two Ornstein–Uhlenbeck (O-U) noises. 2) Changing the value of τ 3 , the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3) Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model. (general)

  3. Cross correlation coefficients of turbulent boundary layer with micro-bubble injection

    International Nuclear Information System (INIS)

    Claudia del Carmen Gutierrez-Torres; Yassin A Hassan; Jose Alfredo Jimenez-Bernal

    2005-01-01

    Full text of publication follows: Injection of micro-bubbles within the turbulent boundary layer has been investigated for a several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not fully understood yet. Experiments in a channel flow for single phase (water) and two phase (water and micro-bubbles) flows under different void fraction conditions are reported for a Reynolds number of 5128. Particle Image Velocimetry technique is used to measure instantaneous velocity fields. Consequently the cross-correlation coefficient Ruv can be calculated along the stream-wise direction for various different y + positions and along the normal direction for the fluctuating components of the velocity obtained from the instantaneous velocity fields. The experiments were carried out in a rectangular acrylic channel, whose dimensions are 4.8 m length, 20.6 cm wide and 5.6 cm height. Water was driven trough the channel by gravity from a tank, which was located 3 m above the channel. Then, water was conducted to a lower tank; from which water was pumped to the upper thank forming a closed loop. Upper tank's water level was kept constant through the tests to ensure constant flow rate trough the channel. The velocity field in the x-y plane was obtained by particle image velocimetry (PIV) at 3.15 m downstream from the channel inlet. A Nd:YAG laser with a wavelength of 532 nm (green light) and power of 350 mJ per pulse is utilized. The particles used for seeding have a diameter that goes from 6-9 μm with a specific gravity almost identical to water s specific gravity. The laser light scattered from the seeding particles was recorded using a CCD Kodak Megaplus camera, Model ES 1.0, 1008 x 1018 pixels. The viewing area was 1.28 cm 2 and was located close to the channel wall. The system recorded 30 velocity fields per second. Each velocity field was obtained from a pair of consecutive images capturing the second image of the pair 1 ms after

  4. Cross correlation coefficients of turbulent boundary layer with micro-bubble injection

    Energy Technology Data Exchange (ETDEWEB)

    Claudia del Carmen Gutierrez-Torres [LABINTHAP-SEPI-ESIME, Instituto Politecnico Nacional, U.P. Adolfo Lopez Mateos Edif. 5 3er. Piso, Col Lindavista, C.P. 07738, Mexico, D. F. (Mexico); Yassin A Hassan; Jose Alfredo Jimenez-Bernal [Texas A and M University, College Station, Tx. 77843-3133 (United States)

    2005-07-01

    Full text of publication follows: Injection of micro-bubbles within the turbulent boundary layer has been investigated for a several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not fully understood yet. Experiments in a channel flow for single phase (water) and two phase (water and micro-bubbles) flows under different void fraction conditions are reported for a Reynolds number of 5128. Particle Image Velocimetry technique is used to measure instantaneous velocity fields. Consequently the cross-correlation coefficient Ruv can be calculated along the stream-wise direction for various different y{sup +} positions and along the normal direction for the fluctuating components of the velocity obtained from the instantaneous velocity fields. The experiments were carried out in a rectangular acrylic channel, whose dimensions are 4.8 m length, 20.6 cm wide and 5.6 cm height. Water was driven trough the channel by gravity from a tank, which was located 3 m above the channel. Then, water was conducted to a lower tank; from which water was pumped to the upper thank forming a closed loop. Upper tank's water level was kept constant through the tests to ensure constant flow rate trough the channel. The velocity field in the x-y plane was obtained by particle image velocimetry (PIV) at 3.15 m downstream from the channel inlet. A Nd:YAG laser with a wavelength of 532 nm (green light) and power of 350 mJ per pulse is utilized. The particles used for seeding have a diameter that goes from 6-9 {mu}m with a specific gravity almost identical to water s specific gravity. The laser light scattered from the seeding particles was recorded using a CCD Kodak Megaplus camera, Model ES 1.0, 1008 x 1018 pixels. The viewing area was 1.28 cm{sup 2} and was located close to the channel wall. The system recorded 30 velocity fields per second. Each velocity field was obtained from a pair of consecutive images capturing the second image of

  5. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  6. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  7. When can Empirical Green Functions be computed from Noise Cross-Correlations? Hints from different Geographical and Tectonic environments

    Science.gov (United States)

    Matos, Catarina; Silveira, Graça; Custódio, Susana; Domingues, Ana; Dias, Nuno; Fonseca, João F. B.; Matias, Luís; Krueger, Frank; Carrilho, Fernando

    2014-05-01

    Noise cross-correlations are now widely used to extract Green functions between station pairs. But, do all the cross-correlations routinely computed produce successful Green Functions? What is the relationship between noise recorded in a couple of stations and the cross-correlation between them? During the last decade, we have been involved in the deployment of several temporary dense broadband (BB) networks within the scope of both national projects and international collaborations. From 2000 to 2002, a pool of 8 BB stations continuously operated in the Azores in the scope of the Memorandum of Understanding COSEA (COordinated Seismic Experiment in the Azores). Thanks to the Project WILAS (West Iberia Lithosphere and Astenosphere Structure, PTDC/CTE-GIX/097946/2008) we temporarily increased the number of BB deployed in mainland Portugal to more than 50 (permanent + temporary) during the period 2010 - 2012. In 2011/12 a temporary pool of 12 seismometers continuously recorded BB data in the Madeira archipelago, as part of the DOCTAR (Deep Ocean Test Array Experiment) project. Project CV-PLUME (Investigation on the geometry and deep signature of the Cape Verde mantle plume, PTDC/CTE-GIN/64330/2006) covered the archipelago of Cape Verde, North Atlantic, with 40 temporary BB stations in 2007/08. Project MOZART (Mozambique African Rift Tomography, PTDC/CTE-GIX/103249/2008), covered Mozambique, East Africa, with 30 temporary BB stations in the period 2011 - 2013. These networks, located in very distinct geographical and tectonic environments, offer an interesting opportunity to study seasonal and spatial variations of noise sources and their impact on Empirical Green functions computed from noise cross-correlation. Seismic noise recorded at different seismic stations is evaluated by computation of the probability density functions of power spectral density (PSD) of continuous data. To assess seasonal variations of ambient noise sources in frequency content, time-series of

  8. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.

    2016-03-10

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\\rm med} {\\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\\times$SPT cross-power is found to be $A = 0.88 \\pm 0.30$ and that from DES$\\times$Planck to be $A = 0.86 \\pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \\sigma$ and $2.2 \\sigma$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $A = 1.08 \\pm 0.36$ for DES$\\times$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.

  9. The roles of shear and cross-correlations on the fluctuation levels in simple stochastic models. Revision

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1999-01-01

    Highly simplified models of random flows interacting with background microturbulence are analyzed. In the limit of very rapid velocity fluctuations, it is shown rigorously that the fluctuation level of a passively advected scalar is not controlled by the rms shear. In a model with random velocities dependent only on time, the level of cross-correlations between the flows and the background turbulence regulates the saturation level. This effect is illustrated by considering a simple stochastic-oscillator model, both exactly and with analysis and numerical solutions of the direct-interaction approximation. Implications for the understanding of self-consistent turbulence are discussed briefly

  10. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  11. Application of fast Fourier transform cross-correlation and mass spectrometry data for accurate alignment of chromatograms.

    Science.gov (United States)

    Zheng, Yi-Bao; Zhang, Zhi-Min; Liang, Yi-Zeng; Zhan, De-Jian; Huang, Jian-Hua; Yun, Yong-Huan; Xie, Hua-Lin

    2013-04-19

    Chromatography has been established as one of the most important analytical methods in the modern analytical laboratory. However, preprocessing of the chromatograms, especially peak alignment, is usually a time-consuming task prior to extracting useful information from the datasets because of the small unavoidable differences in the experimental conditions caused by minor changes and drift. Most of the alignment algorithms are performed on reduced datasets using only the detected peaks in the chromatograms, which means a loss of data and introduces the problem of extraction of peak data from the chromatographic profiles. These disadvantages can be overcome by using the full chromatographic information that is generated from hyphenated chromatographic instruments. A new alignment algorithm called CAMS (Chromatogram Alignment via Mass Spectra) is present here to correct the retention time shifts among chromatograms accurately and rapidly. In this report, peaks of each chromatogram were detected based on Continuous Wavelet Transform (CWT) with Haar wavelet and were aligned against the reference chromatogram via the correlation of mass spectra. The aligning procedure was accelerated by Fast Fourier Transform cross correlation (FFT cross correlation). This approach has been compared with several well-known alignment methods on real chromatographic datasets, which demonstrates that CAMS can preserve the shape of peaks and achieve a high quality alignment result. Furthermore, the CAMS method was implemented in the Matlab language and available as an open source package at http://www.github.com/matchcoder/CAMS. Copyright © 2013. Published by Elsevier B.V.

  12. Quadrature Errors and DC Offsets Calibration of Analog Complex Cross-Correlator for Interferometric Passive Millimeter-Wave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2018-02-01

    Full Text Available The design and calibration of the cross-correlator are crucial issues for interferometric imaging systems. In this paper, an analog complex cross-correlator with output DC offsets and amplitudes calibration capability is proposed for interferometric passive millimeter-wave security sensing applications. By employing digital potentiometers in the low frequency amplification circuits of the correlator, the outputs characteristics of the correlator could be digitally controlled. A measurement system and a corresponding calibration scheme were developed in order to eliminate the output DC offsets and the quadrature amplitude error between the in-phase and the quadrature correlating subunits of the complex correlator. By using vector modulators to provide phase controllable correlated noise signals, the measurement system was capable of obtaining the output correlation circle of the correlator. When injected with −18 dBm correlated noise signals, the calibrated quadrature amplitude error was 0.041 dB and the calibrated DC offsets were under 26 mV, which was only 7.1% of the uncalibrated value. Furthermore, we also described a quadrature errors calibration algorithm in order to estimate the quadrature phase error and in order to improve the output phase accuracy of the correlator. After applying this calibration, we were able to reduce the output phase error of the correlator to 0.3°.

  13. Groundwater travel time uncertainty analysis. Sensitivity of results to model geometry, and correlations and cross correlations among input parameters

    International Nuclear Information System (INIS)

    Clifton, P.M.

    1985-03-01

    This study examines the sensitivity of the travel time distribution predicted by a reference case model to (1) scale of representation of the model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross correlations between transmissivity and effective thickness. The basis for the reference model is the preliminary stochastic travel time model previously documented by the Basalt Waste Isolation Project. Results of this study show the following. The variability of the predicted travel times can be adequately represented when the ratio between the size of the zones used to represent the model parameters and the log-transmissivity correlation range is less than about one-fifth. The size of the model domain and the types of boundary conditions can have a strong impact on the distribution of travel times. Longer log-transmissivity correlation ranges cause larger variability in the predicted travel times. Positive cross correlation between transmissivity and effective thickness causes a decrease in the travel time variability. These results demonstrate the need for a sound conceptual model prior to conducting a stochastic travel time analysis

  14. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    2014-01-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10 4 K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources

  15. Dynamical properties of a tumor growth system in the presence of immunization and colored cross-correlated noises

    International Nuclear Information System (INIS)

    Jia Zhenglin; Mei Dongcheng

    2010-01-01

    We investigate the effects of the noise parameters and immunization strength β on the dynamical properties of a tumor growth system with both immunization and colored cross-correlated noises. The analytical expressions for the associated relaxation time T C and the normalized correlation function C(s) are derived by means of the projection operator method. The results indicate that: (i) T C as a function of the multiplicative noise intensity α shows resonance-like behavior, i.e. the curves of T C versus α exhibit a single-peak structure and its peak position changes with increasing correlation strength between noises λ, the autocorrelation time of multiplicative noise τ 1 , the autocorrelation time of additive noise τ 2 and the cross-correlation time τ 3 . This behavior can be understood in terms of the noise-enhanced stability effect and the influence of the memory effects on it. (ii) The increasing λ, τ 1 , τ 2 and the additive noise intensity D slow down the fluctuation decay of the tumor population, whereas the increasing τ 3 and β speed it up. (iii) C(s) increases as λ, τ 1 , τ 2 and β increase, while it decreases with τ 3 increasing. Our study shows that the effects of some noise parameters on tumor growth can be modified due to the presence of the immunization effect.

  16. Dynamical properties of a tumor growth system in the presence of immunization and colored cross-correlated noises

    Science.gov (United States)

    Jia, Zheng-Lin; Mei, Dong-Cheng

    2010-05-01

    We investigate the effects of the noise parameters and immunization strength β on the dynamical properties of a tumor growth system with both immunization and colored cross-correlated noises. The analytical expressions for the associated relaxation time TC and the normalized correlation function C(s) are derived by means of the projection operator method. The results indicate that: (i) TC as a function of the multiplicative noise intensity α shows resonance-like behavior, i.e. the curves of TC versus α exhibit a single-peak structure and its peak position changes with increasing correlation strength between noises λ, the autocorrelation time of multiplicative noise τ1, the autocorrelation time of additive noise τ2 and the cross-correlation time τ3. This behavior can be understood in terms of the noise-enhanced stability effect and the influence of the memory effects on it. (ii) The increasing λ, τ1, τ2 and the additive noise intensity D slow down the fluctuation decay of the tumor population, whereas the increasing τ3 and β speed it up. (iii) C(s) increases as λ, τ1, τ2 and β increase, while it decreases with τ3 increasing. Our study shows that the effects of some noise parameters on tumor growth can be modified due to the presence of the immunization effect.

  17. Improved automatic estimation of winds at the cloud top of Venus using superposition of cross-correlation surfaces

    Science.gov (United States)

    Ikegawa, Shinichi; Horinouchi, Takeshi

    2016-06-01

    Accurate wind observation is a key to study atmospheric dynamics. A new automated cloud tracking method for the dayside of Venus is proposed and evaluated by using the ultraviolet images obtained by the Venus Monitoring Camera onboard the Venus Express orbiter. It uses multiple images obtained successively over a few hours. Cross-correlations are computed from the pair combinations of the images and are superposed to identify cloud advection. It is shown that the superposition improves the accuracy of velocity estimation and significantly reduces false pattern matches that cause large errors. Two methods to evaluate the accuracy of each of the obtained cloud motion vectors are proposed. One relies on the confidence bounds of cross-correlation with consideration of anisotropic cloud morphology. The other relies on the comparison of two independent estimations obtained by separating the successive images into two groups. The two evaluations can be combined to screen the results. It is shown that the accuracy of the screened vectors are very high to the equatorward of 30 degree, while it is relatively low at higher latitudes. Analysis of them supports the previously reported existence of day-to-day large-scale variability at the cloud deck of Venus, and it further suggests smaller-scale features. The product of this study is expected to advance the dynamics of venusian atmosphere.

  18. Mechanical Dyssynchrony by Tissue Doppler Cross-Correlation is Associated with Risk for Complex Ventricular Arrhythmias after Cardiac Resynchronization Therapy

    DEFF Research Database (Denmark)

    Tayal, Bhupendar; Gorcsan, John; Delgado-Montero, Antonia

    2015-01-01

    BACKGROUND: Tissue Doppler cross-correlation analysis has been shown to be associated with long-term survival after cardiac resynchronization defibrillator therapy (CRT-D). Its association with ventricular arrhythmia (VA) is unknown. METHODS: From two centers 151 CRT-D patients (New York Heart...... Association functional classes II-IV, ejection fraction ≤ 35%, and QRS duration ≥ 120 msec) were prospectively included. Tissue Doppler cross-correlation analysis of myocardial acceleration curves from the basal segments in the apical views both at baseline and 6 months after CRT-D implantation was performed...... with a substantially increased risk for VA (hazard ratio [HR], 4.4; 95% CI, 1.2-16.3; P = .03) and VA or death (HR, 4.0; 95% CI, 1.7-9.6; P = .002) after adjusting for other covariates. Similarly, patients with new dyssynchrony had increased risk for VA (HR, 10.6; 95% CI, 2.8-40.4; P = .001) and VA or death (HR, 5...

  19. Method for stationarity-segmentation of spike train data with application to the Pearson cross-correlation.

    Science.gov (United States)

    Quiroga-Lombard, Claudio S; Hass, Joachim; Durstewitz, Daniel

    2013-07-01

    Correlations among neurons are supposed to play an important role in computation and information coding in the nervous system. Empirically, functional interactions between neurons are most commonly assessed by cross-correlation functions. Recent studies have suggested that pairwise correlations may indeed be sufficient to capture most of the information present in neural interactions. Many applications of correlation functions, however, implicitly tend to assume that the underlying processes are stationary. This assumption will usually fail for real neurons recorded in vivo since their activity during behavioral tasks is heavily influenced by stimulus-, movement-, or cognition-related processes as well as by more general processes like slow oscillations or changes in state of alertness. To address the problem of nonstationarity, we introduce a method for assessing stationarity empirically and then "slicing" spike trains into stationary segments according to the statistical definition of weak-sense stationarity. We examine pairwise Pearson cross-correlations (PCCs) under both stationary and nonstationary conditions and identify another source of covariance that can be differentiated from the covariance of the spike times and emerges as a consequence of residual nonstationarities after the slicing process: the covariance of the firing rates defined on each segment. Based on this, a correction of the PCC is introduced that accounts for the effect of segmentation. We probe these methods both on simulated data sets and on in vivo recordings from the prefrontal cortex of behaving rats. Rather than for removing nonstationarities, the present method may also be used for detecting significant events in spike trains.

  20. Kalman/Map Filtering-Aided Fast Normalized Cross Correlation-Based Wi-Fi Fingerprinting Location Sensing

    Directory of Open Access Journals (Sweden)

    Yongliang Sun

    2013-11-01

    Full Text Available A Kalman/map filtering (KMF-aided fast normalized cross correlation (FNCC-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.

  1. Kalman/Map filtering-aided fast normalized cross correlation-based Wi-Fi fingerprinting location sensing.

    Science.gov (United States)

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-11-13

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.

  2. Importance of Preserving Cross-correlation in developing Statistically Downscaled Climate Forcings and in estimating Land-surface Fluxes and States

    Science.gov (United States)

    Das Bhowmik, R.; Arumugam, S.

    2015-12-01

    Multivariate downscaling techniques exhibited superiority over univariate regression schemes in terms of preserving cross-correlations between multiple variables- precipitation and temperature - from GCMs. This study focuses on two aspects: (a) develop an analytical solutions on estimating biases in cross-correlations from univariate downscaling approaches and (b) quantify the uncertainty in land-surface states and fluxes due to biases in cross-correlations in downscaled climate forcings. Both these aspects are evaluated using climate forcings available from both historical climate simulations and CMIP5 hindcasts over the entire US. The analytical solution basically relates the univariate regression parameters, co-efficient of determination of regression and the co-variance ratio between GCM and downscaled values. The analytical solutions are compared with the downscaled univariate forcings by choosing the desired p-value (Type-1 error) in preserving the observed cross-correlation. . For quantifying the impacts of biases on cross-correlation on estimating streamflow and groundwater, we corrupt the downscaled climate forcings with different cross-correlation structure.

  3. B polarization of the CMB from Faraday rotation

    International Nuclear Information System (INIS)

    Scoccola, Claudia; Harari, Diego; Mollerach, Silvia

    2004-01-01

    We study the effect of Faraday rotation due to a uniform magnetic field on the polarization of the cosmic microwave background. Scalar fluctuations give rise only to parity-even E-type polarization of the cosmic microwave background. However in the presence of a magnetic field, a nonvanishing parity-odd B-type polarization component is produced through Faraday rotation. We derive the exact solution for the E and B modes generated by scalar perturbations including the Faraday rotation effect of a uniform magnetic field, and evaluate their cross correlations with temperature anisotropies. We compute the angular autocorrelation function of the B-modes in the limit that the Faraday rotation is small. We find that uniform primordial magnetic fields of present strength around B 0 =10 -9 G rotate E-modes into B-modes with amplitude comparable to those due to the weak gravitational lensing effect at frequencies around ν=30 GHz. The strength of B-modes produced by Faraday rotation scales as B 0 /ν 2 . We evaluate also the depolarizing effect of Faraday rotation upon the cross correlation between temperature anisotropy and E-type polarization

  4. Cross-correlation analysis of pulse wave propagation in arteries: in vitro validation and in vivo feasibility.

    Science.gov (United States)

    Nauleau, Pierre; Apostolakis, Iason; McGarry, Matthew; Konofagou, Elisa

    2018-05-29

    The stiffness of the arteries is known to be an indicator of the progression of various cardiovascular diseases. Clinically, the pulse wave velocity (PWV) is used as a surrogate for arterial stiffness. Pulse wave imaging (PWI) is a non-invasive, ultrasound-based imaging technique capable of mapping the motion of the vessel walls, allowing the local assessment of arterial properties. Conventionally, a distinctive feature of the displacement wave (e.g. the 50% upstroke) is tracked across the map to estimate the PWV. However, the presence of reflections, such as those generated at the carotid bifurcation, can bias the PWV estimation. In this paper, we propose a two-step cross-correlation based method to characterize arteries using the information available in the PWI spatio-temporal map. First, the area under the cross-correlation curve is proposed as an index for locating the regions of different properties. Second, a local peak of the cross-correlation function is tracked to obtain a less biased estimate of the PWV. Three series of experiments were conducted in phantoms to evaluate the capabilities of the proposed method compared with the conventional method. In the ideal case of a homogeneous phantom, the two methods performed similarly and correctly estimated the PWV. In the presence of reflections, the proposed method provided a more accurate estimate than conventional processing: e.g. for the soft phantom, biases of  -0.27 and -0.71 m · s -1 were observed. In a third series of experiments, the correlation-based method was able to locate two regions of different properties with an error smaller than 1 mm. It also provided more accurate PWV estimates than conventional processing (biases:  -0.12 versus -0.26 m · s -1 ). Finally, the in vivo feasibility of the proposed method was demonstrated in eleven healthy subjects. The results indicate that the correlation-based method might be less precise in vivo but more accurate than the conventional method.

  5. ISW-galaxy cross correlation: a probe of dark energy clustering and distribution of dark matter tracers

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Shahram; Mollazadeh, Amir [Department of Astronomy and High Energy Physics, Faculty of Physics, Kharazmi University, Mofateh Ave., Tehran (Iran, Islamic Republic of); Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of)

    2016-09-01

    Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM model will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.

  6. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  7. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  8. Remote Sensing of Three-dimensional Winds with Elastic Lidar: Explanation of Maximum Cross-correlation Method

    Science.gov (United States)

    Buttler, William T.; Soriano, Cecilia; Baldasano, Jose M.; Nickel, George H.

    Maximum cross-correlation provides a method toremotely de-ter-mine high-lyre-solved three-dimensional fields of horizontalwinds with e-las-tic li-darthrough-out large volumes of the planetaryboundary layer (PBL). This paperdetails the technique and shows comparisonsbetween elastic lidar winds, remotelysensed laser Doppler velocimeter (LDV) windprofiles, and radiosonde winds.Radiosonde wind data were acquired at Barcelona,Spain, during the BarcelonaAir-Quality Initiative (1992), and the LDVwind data were acquired at SunlandPark, New Mexico during the 1994 Border AreaAir-Quality Study. Comparisonsshow good agreement between the differentinstruments, and demonstrate the methoduseful for air pollution management at thelocal/regional scale. Elastic lidar windscould thus offer insight into aerosol andpollution transport within the PBL. Lidarwind fields might also be used to nudge orimprove initialization and evaluation ofatmospheric meteorological models.

  9. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    International Nuclear Information System (INIS)

    Trendafilova, I

    2011-01-01

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  10. Side chain mobility as monitored by CH-CH cross correlation: The example of cytochrome b5

    International Nuclear Information System (INIS)

    Banci, Lucia; Bertini, Ivano; Felli, Isabella C.; Hajieva, Parvana; Viezzoli, Maria Silvia

    2001-01-01

    The mobility of βCH 2 moieties in oxidized and reduced cytochrome b 5 was studied by analyzing the 13 C relaxation of the J-split components, in terms of C-H dipole-C-H dipole cross correlation rates. A 2D 13 C- 1 H experiment is proposed to measure these rates that provide the internal effective reorientation correlation time for each CH 2 moiety. It is found that higher mobility is present in the α helices forming the heme pocket. On the contrary, the β strands, which form the hydrophobic core of the molecule, have the lowest mobility. The general pattern is the same for the oxidized and reduced species, indicating that any oxidation-dependent property detected for backbone NH moieties does not affect the CH 2 mobility

  11. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  12. Groundwater travel time uncertainty analysis: Sensitivity of results to model geometry, and correlations and cross correlations among input parameters

    International Nuclear Information System (INIS)

    Clifton, P.M.

    1984-12-01

    The deep basalt formations beneath the Hanford Site are being investigated for the Department of Energy (DOE) to assess their suitability as a host medium for a high level nuclear waste repository. Predicted performance of the proposed repository is an important part of the investigation. One of the performance measures being used to gauge the suitability of the host medium is pre-waste-emplacement groundwater travel times to the accessible environment. Many deterministic analyses of groundwater travel times have been completed by Rockwell and other independent organizations. Recently, Rockwell has completed a preliminary stochastic analysis of groundwater travel times. This document presents analyses that show the sensitivity of the results from the previous stochastic travel time study to: (1) scale of representation of model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross-correlation between transmissivity and effective thickness. 40 refs., 29 figs., 6 tabs

  13. Heterogeneous local order in self-assembled nanoparticle films revealed by X-ray cross-correlations

    Directory of Open Access Journals (Sweden)

    Felix Lehmkühler

    2018-05-01

    Full Text Available We report on the self-assembly of gold nanoparticles coated with a soft poly(ethylene glycol shell studied by X-ray cross-correlation analysis. Depending on the initial concentration of gold nanoparticles used, structurally heterogeneous films were formed. The films feature hot spots of dominating four- and sixfold local order with patch sizes of a few micrometres, containing 104–105 particles. The amplitude of the order parameters suggested that a minimum sample amount was necessary to form well ordered local structures. Furthermore, the increasing variation in order parameters with sample thickness demonstrated a high degree of structural heterogeneity. This wealth of information cannot be obtained by the conventional microscopy techniques that are commonly used to study nanocrystal superstructures, as illustrated by complementary scanning electron microscopy measurements.

  14. New Observations of Seismic Group Velocities in the Western Solomon Islands from Cross-Correlation of Ambient Seismic Noise

    Science.gov (United States)

    Ku, C. S.; You, S. H.; Kuo, Y. T.; Huang, B. S.; Wu, Y. M.; Chen, Y. G.; Taylor, F. W.

    2015-12-01

    A MW 8.1 earthquake occurred on 1 April 2007 in the western Solomon Islands. Following this event, a damaging tsunami was induced and hit the Island Gizo where the capital city of Western Province of Solomon Islands located. Several buildings of this city were destroyed and several peoples lost their lives during this earthquake. However, during this earthquake, no near source seismic instrument has been installed in this region. The seismic evaluations for the aftershock sequence, the possible earthquake early warning and tsunami warning were unavailable. For the purpose of knowing more detailed information about seismic activity in this region, we have installed 9 seismic stations (with Trillium 120PA broadband seismometer and Q330S 24bit digitizer) around the rupture zone of the 2007 earthquake since September of 2009. Within a decade, it has been demonstrated both theoretically and experimentally that the Green's function or impulse response between two seismic stations can be retrieved from the cross-correlation of ambient noise. In this study, 6 stations' observations which are more complete during 2011/10 ~ 2012/12 period, were selected for the purpose of the cross-correlation analysis of ambient seismic noise. The group velocities at period 2-20 seconds of 15 station-pairs were extracted by using multiple filter technique (MFT) method. The analyzed results of this study presented significant results of group velocities with higher frequency contents than other studies (20-60 seconds in usually cases) and opened new opportunities to study the shallow crustal structure of the western Solomon Islands.

  15. Dangers and uses of cross-correlation in analyzing time series in perception, performance, movement, and neuroscience: The importance of constructing transfer function autoregressive models.

    Science.gov (United States)

    Dean, Roger T; Dunsmuir, William T M

    2016-06-01

    Many articles on perception, performance, psychophysiology, and neuroscience seek to relate pairs of time series through assessments of their cross-correlations. Most such series are individually autocorrelated: they do not comprise independent values. Given this situation, an unfounded reliance is often placed on cross-correlation as an indicator of relationships (e.g., referent vs. response, leading vs. following). Such cross-correlations can indicate spurious relationships, because of autocorrelation. Given these dangers, we here simulated how and why such spurious conclusions can arise, to provide an approach to resolving them. We show that when multiple pairs of series are aggregated in several different ways for a cross-correlation analysis, problems remain. Finally, even a genuine cross-correlation function does not answer key motivating questions, such as whether there are likely causal relationships between the series. Thus, we illustrate how to obtain a transfer function describing such relationships, informed by any genuine cross-correlations. We illustrate the confounds and the meaningful transfer functions by two concrete examples, one each in perception and performance, together with key elements of the R software code needed. The approach involves autocorrelation functions, the establishment of stationarity, prewhitening, the determination of cross-correlation functions, the assessment of Granger causality, and autoregressive model development. Autocorrelation also limits the interpretability of other measures of possible relationships between pairs of time series, such as mutual information. We emphasize that further complexity may be required as the appropriate analysis is pursued fully, and that causal intervention experiments will likely also be needed.

  16. Classification of THz pulse signals using two-dimensional cross-correlation feature extraction and non-linear classifiers.

    Science.gov (United States)

    Siuly; Yin, Xiaoxia; Hadjiloucas, Sillas; Zhang, Yanchun

    2016-04-01

    This work provides a performance comparison of four different machine learning classifiers: multinomial logistic regression with ridge estimators (MLR) classifier, k-nearest neighbours (KNN), support vector machine (SVM) and naïve Bayes (NB) as applied to terahertz (THz) transient time domain sequences associated with pixelated images of different powder samples. The six substances considered, although have similar optical properties, their complex insertion loss at the THz part of the spectrum is significantly different because of differences in both their frequency dependent THz extinction coefficient as well as differences in their refractive index and scattering properties. As scattering can be unquantifiable in many spectroscopic experiments, classification solely on differences in complex insertion loss can be inconclusive. The problem is addressed using two-dimensional (2-D) cross-correlations between background and sample interferograms, these ensure good noise suppression of the datasets and provide a range of statistical features that are subsequently used as inputs to the above classifiers. A cross-validation procedure is adopted to assess the performance of the classifiers. Firstly the measurements related to samples that had thicknesses of 2mm were classified, then samples at thicknesses of 4mm, and after that 3mm were classified and the success rate and consistency of each classifier was recorded. In addition, mixtures having thicknesses of 2 and 4mm as well as mixtures of 2, 3 and 4mm were presented simultaneously to all classifiers. This approach provided further cross-validation of the classification consistency of each algorithm. The results confirm the superiority in classification accuracy and robustness of the MLR (least accuracy 88.24%) and KNN (least accuracy 90.19%) algorithms which consistently outperformed the SVM (least accuracy 74.51%) and NB (least accuracy 56.86%) classifiers for the same number of feature vectors across all studies

  17. Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: Quantitative data analysis

    Science.gov (United States)

    Schmitz, R.; Yordanov, S.; Butt, H. J.; Koynov, K.; Dünweg, B.

    2011-12-01

    Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS) has recently [S. Yordanov , Optics ExpressOPEXFF1094-408710.1364/OE.17.021149 17, 21149 (2009)] been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence occurs only for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions provide only rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. First, Brownian dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Second, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero.

  18. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy, and electromyography.

    Science.gov (United States)

    Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.

  19. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function.

    Science.gov (United States)

    Martins, J H C; Santos, N C; Figueira, P; Melo, C

    2016-11-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10 -4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10 -7 . To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  20. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  1. The Cross-Correlation Analysis of Indicators of the Scientific-Innovation and Educational Activity of the Regions of Ukraine

    Directory of Open Access Journals (Sweden)

    Zhuravka Andrey V.

    2017-04-01

    Full Text Available The article is aimed at exploring the cross-correlation dependency between the 11 selected indicators of the scientific-innovation and educational activity of the regions of Ukraine over the past years using the standard features of the MS Excel software. The calculated values of the pairwise coefficients of Pearson correlation changed from 0,66 to 1. The worst-case correlation coefficient, which changed from 0,7 to 0,8, was observed only with the number of students at the beginning of the academic year 2015/16. The article provides seven selected equations of linear regression and their graphs, with the latter equation corresponding to the worst correlation coefficient between the number of students and doctoral candidates (R = 0,6574. The first five equations of linear regression conform to correlations between financing the costs for completing scientific and scientific-technical works by the regions of Ukraine and various indicators of the scientific-educational potential of personnel. In all five cases, there was a high correlation dependency. As result of the study, fairly high correlation relationships among all indicators have been obtained. Prospect for further research is accounting for a larger number of indicators of the scientific-innovation and educational activity of the regions of Ukraine.

  2. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2016-10-01

    Full Text Available Ultra-wideband (UWB radar has been widely used for detecting human physiological signals (respiration, movement, etc. in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc., the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  3. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method.

    Science.gov (United States)

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-10-27

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  4. New catenated OFDM modulation scheme in zero cross correlation OCDMA at various number of user and effective power

    Directory of Open Access Journals (Sweden)

    Nawawi N. M.

    2017-01-01

    Full Text Available This paper proposes an integration of optical Code Division Multiple Access (OCDMA with new catenated Orthogonal Frequency Division Multiplexing (OFDM modulation scheme. This effective combination based on Zero Cross Correlation (ZCC code can enhanced the system capacity and increased spectral efficiency by fully utilizing the available electrical bandwidth. We investigate the performance of the proposed system for various number of user, number of weight and effective power. The performance assessment is carried out by means of the signal to noise ratio (SNR and bit error rate (BER for up to five catenated OFDM bands transmitted simultaneously through optical link at 622 Mbps. More specifically, mathematical expressions for SNR and BER performance are derived. The corresponding numerical results are presented and compared with traditional OCDMA-ZCC system to verified the feasibility of the proposed system. The results show that with OCDMA/catenated-OFDM based on ZCC code provides 86% more number of permissible user for SNR of 15 dB. In addition, this integration provides higher receiver sensitivity; an approximately –22.5 dBm for 20 number of user with 8 number of weight. It is also found that, to accommodate more user, the system requires higher effective power at the receiver.

  5. Joint cross-correlation analysis reveals complex, time-dependent functional relationship between cortical neurons and arm electromyograms

    Science.gov (United States)

    Zhuang, Katie Z.; Lebedev, Mikhail A.

    2014-01-01

    Correlation between cortical activity and electromyographic (EMG) activity of limb muscles has long been a subject of neurophysiological studies, especially in terms of corticospinal connectivity. Interest in this issue has recently increased due to the development of brain-machine interfaces with output signals that mimic muscle force. For this study, three monkeys were implanted with multielectrode arrays in multiple cortical areas. One monkey performed self-timed touch pad presses, whereas the other two executed arm reaching movements. We analyzed the dynamic relationship between cortical neuronal activity and arm EMGs using a joint cross-correlation (JCC) analysis that evaluated trial-by-trial correlation as a function of time intervals within a trial. JCCs revealed transient correlations between the EMGs of multiple muscles and neural activity in motor, premotor and somatosensory cortical areas. Matching results were obtained using spike-triggered averages corrected by subtracting trial-shuffled data. Compared with spike-triggered averages, JCCs more readily revealed dynamic changes in cortico-EMG correlations. JCCs showed that correlation peaks often sharpened around movement times and broadened during delay intervals. Furthermore, JCC patterns were directionally selective for the arm-reaching task. We propose that such highly dynamic, task-dependent and distributed relationships between cortical activity and EMGs should be taken into consideration for future brain-machine interfaces that generate EMG-like signals. PMID:25210153

  6. Estimation of error on the cross-correlation, phase and time lag between evenly sampled light curves

    Science.gov (United States)

    Misra, R.; Bora, A.; Dewangan, G.

    2018-04-01

    Temporal analysis of radiation from Astrophysical sources like Active Galactic Nuclei, X-ray Binaries and Gamma-ray bursts provides information on the geometry and sizes of the emitting regions. Establishing that two light-curves in different energy bands are correlated, and measuring the phase and time-lag between them is an important and frequently used temporal diagnostic. Generally the estimates are done by dividing the light-curves into large number of adjacent intervals to find the variance or by using numerically expensive simulations. In this work we have presented alternative expressions for estimate of the errors on the cross-correlation, phase and time-lag between two shorter light-curves when they cannot be divided into segments. Thus the estimates presented here allow for analysis of light-curves with relatively small number of points, as well as to obtain information on the longest time-scales available. The expressions have been tested using 200 light curves simulated from both white and 1 / f stochastic processes with measurement errors. We also present an application to the XMM-Newton light-curves of the Active Galactic Nucleus, Akn 564. The example shows that the estimates presented here allow for analysis of light-curves with relatively small (∼ 1000) number of points.

  7. DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients

    Science.gov (United States)

    Chen, Yingyuan; Cai, Lihui; Wang, Ruofan; Song, Zhenxi; Deng, Bin; Wang, Jiang; Yu, Haitao

    2018-01-01

    Alzheimer's disease (AD) is a degenerative disorder of neural system that affects mainly the older population. Recently, many researches show that the EEG of AD patients can be characterized by EEG slowing, enhanced complexity of the EEG signals, and EEG synchrony. In order to examine the neural synchrony at multi scales, and to find a biomarker that help detecting AD in diagnosis, detrended cross-correlation analysis (DCCA) of EEG signals is applied in this paper. Several parameters, namely DCCA coefficients in the whole brain, DCCA coefficients at a specific scale, maximum DCCA coefficient over the span of all time scales and the corresponding scale of such coefficients, were extracted to examine the synchronization, respectively. The results show that DCCA coefficients have a trend of increase as scale increases, and decreases as electrode distance increases. Comparing DCCA coefficients in AD patients with healthy controls, a decrease of synchronization in the whole brain, and a bigger scale corresponding to maximum correlation is discovered in AD patients. The change of max-correlation scale may relate to the slowing of oscillatory activities. Linear combination of max DCCA coefficient and max-correlation scale reaches a classification accuracy of 90%. From the above results, it is reasonable to conclude that DCCA coefficient reveals the change of both oscillation and synchrony in AD, and thus is a powerful tool to differentiate AD patients from healthy elderly individuals.

  8. Nuclear techniques and cross-correlation methods for spectral analysis in two-phase flow measurements in mineral pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Luis E.B.; Salgado, Cesar M., E-mail: brandaos@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisao de Radiofarmacos; Sicilliano, Umberto C.C.S., E-mail: umberto.cassara@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Metalurgia

    2013-07-01

    In mineral industry is common to use water to transport pellets inside pipes. In these units, the correct measurement of flow (both solid and liquid phase) is important to guarantee a safe operation. Cross correlation flow meters are devices specially suited to be used in dual-phase flow and they are based on measure the transit time due the disturbances registered between two points, in our case gamma attenuation from radioactive sources. The emphasis of this work is the application of gamma transmission and scattering technique associated with spectral analysis methods to measure the flow of solid phase in a liquid fluid in side the pipe. The detectors and the sources are out side of the tube and are positioned 10.0 cm distant one from the other. The photons of transmission/scattering gamma radiation were registered, and across-correlation method was applied to measure the flow and spectral analysis was used to study the flow profile inside the pipe. (author)

  9. Noise enhanced stability effect in a metastable system with two different kinds of time delays and cross-correlated noises

    International Nuclear Information System (INIS)

    Jia Zhenglin; Mei Dongcheng

    2011-01-01

    We numerically investigate the influences of the time delay τ simultaneously existing in both the deterministic and fluctuating forces, the time delay τ r existing only in the fluctuating force and the cross-correlation strength λ on the enhancement of the mean first-passage time (MFPT) as a function of the additive D and the multiplicative α noise intensities in a metastable system. The results indicate that both the multiplicative and additive noises can induce the noise-enhanced stability (NES) effect. An increase of λ can enhance or weaken the NES effect induced by the additive noise, depending on the value of τ. However, it weakens the NES effect induced by the multiplicative noise with a suppression of the effect of λ caused by increasing τ. The τ-induced critical behavior on both NES effects can be observed, i.e. an increase of τ can enhance or restrain the NES effects induced by the two kinds of noises. With an increase of λ and τ, MFPT versus D shows a transition from one peak to two peaks and finally one peak, implying the multiple NES effect caused by λ and τ. An increase of τ r can enhance the NES effect induced by the additive noise and weaken the NES effect induced by the multiplicative noise.

  10. Cross-Correlation of Diameter Measures for the Co-Registration of Forest Inventory Plots with Airborne Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Jean-Matthieu Monnet

    2014-09-01

    Full Text Available Continuous maps of forest parameters can be derived from airborne laser scanning (ALS remote sensing data. A prediction model is calibrated between local point cloud statistics and forest parameters measured on field plots. Unfortunately, inaccurate positioning of field measures lead to a bad matching of forest measures with remote sensing data. The potential of using tree diameter and position measures in cross-correlation with ALS data to improve co-registration is evaluated. The influence of the correction on ALS models is assessed by comparing the accuracy of basal area prediction models calibrated or validated with or without the corrected positions. In a coniferous, uneven-aged forest with high density ALS data and low positioning precision, the algorithm co-registers 91% of plots within two meters from the operator location when at least the five largest trees are used in the analysis. The new coordinates slightly improve the prediction models and allow a better estimation of their accuracy. In a forest with various stand structures and species, lower ALS density and differential Global Navigation Satellite System measurements, position correction turns out to have only a limited impact on prediction models.

  11. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  12. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  13. Human Identification by Cross-Correlation and Pattern Matching of Personalized Heartbeat: Influence of ECG Leads and Reference Database Size.

    Science.gov (United States)

    Jekova, Irena; Krasteva, Vessela; Schmid, Ramun

    2018-01-27

    Human identification (ID) is a biometric task, comparing single input sample to many stored templates to identify an individual in a reference database. This paper aims to present the perspectives of personalized heartbeat pattern for reliable ECG-based identification. The investigations are using a database with 460 pairs of 12-lead resting electrocardiograms (ECG) with 10-s durations recorded at time-instants T1 and T2 > T1 + 1 year. Intra-subject long-term ECG stability and inter-subject variability of personalized PQRST (500 ms) and QRS (100 ms) patterns is quantified via cross-correlation, amplitude ratio and pattern matching between T1 and T2 using 7 features × 12-leads. Single and multi-lead ID models are trained on the first 230 ECG pairs. Their validation on 10, 20, ... 230 reference subjects (RS) from the remaining 230 ECG pairs shows: (i) two best single-lead ID models using lead II for a small population RS = (10-140) with identification accuracy AccID = (89.4-67.2)% and aVF for a large population RS = (140-230) with AccID = (67.2-63.9)%; (ii) better performance of the 6-lead limb vs. the 6-lead chest ID model-(91.4-76.1)% vs. (90.9-70)% for RS = (10-230); (iii) best performance of the 12-lead ID model-(98.4-87.4)% for RS = (10-230). The tolerable reference database size, keeping AccID > 80%, is RS = 30 in the single-lead ID scenario (II); RS = 50 (6 chest leads); RS = 100 (6 limb leads), RS > 230-maximal population in this study (12-lead ECG).

  14. PCR-free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhou

    2009-11-01

    Full Text Available The safety of genetically modified organisms (GMOs has attracted much attention recently. Polymerase chain reaction (PCR amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS. The cauliflower mosaic virus 35S (CaMV35S promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 microg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.

  15. EVOLUTION OF THE CROSS-CORRELATION AND TIME LAG OF 4U 1735-44 ALONG THE BRANCHES

    International Nuclear Information System (INIS)

    Lei Yajuan; Zhang Haotong; Zhang Chengmin; Yuan Hailong; Dong Yiqiao; Zhao Yongheng; Zhang Yanxia; Qu Jinlu; Song Liming; Wang Dehua; Yin Hongxing

    2013-01-01

    We analyze the cross-correlation function between the soft and hard X-rays of atoll source 4U 1735-44 with RXTE data, and find anti-correlated soft and hard time lags of about a hecto-second. In the island state, the observations do not show any obvious correlations, and most observations of the banana branch show a positive correlation. However, anti-correlations are detected in the upper banana branch. These results are different from those of Z-sources (Cyg X-2, GX 5-1), where anti-correlations are detected in the horizontal branch and upper normal branch. In this case, the lag timescales of both this atoll and Z-sources are found to be similar, at a magnitude of several tens to hundreds of seconds. As a comparison, it is noted that anti-correlated lags lasting thousands of seconds have been reported from several black hole candidates in their intermediate states. In addition, for an observation containing four segments that show positive or anti-correlation, we analyze the spectral evolution with the hybrid model. In the observation, the anti-correlation is detected at the highest flux. The fitting results show that the Comptonized component is not the lowest at the highest flux, which suggests that the anti-correlation corresponds to the transition between the soft and hard states. Finally, we compare the corresponding results of atoll source 4U 1735-44 with those observed in Z-sources and black hole candidates, and the possible origins of the anti-correlated time lags are discussed

  16. EVOLUTION OF THE CROSS-CORRELATION AND TIME LAG OF 4U 1735-44 ALONG THE BRANCHES

    Energy Technology Data Exchange (ETDEWEB)

    Lei Yajuan; Zhang Haotong; Zhang Chengmin; Yuan Hailong; Dong Yiqiao; Zhao Yongheng; Zhang Yanxia [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Qu Jinlu; Song Liming [Particle Astrophysics Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wang Dehua [Astronomy Department, Beijing Normal University, Beijing 100875 (China); Yin Hongxing, E-mail: leiyjcwmy@163.com [School of Space Science and Physics, Shandong University, Weihai 264209 (China)

    2013-09-15

    We analyze the cross-correlation function between the soft and hard X-rays of atoll source 4U 1735-44 with RXTE data, and find anti-correlated soft and hard time lags of about a hecto-second. In the island state, the observations do not show any obvious correlations, and most observations of the banana branch show a positive correlation. However, anti-correlations are detected in the upper banana branch. These results are different from those of Z-sources (Cyg X-2, GX 5-1), where anti-correlations are detected in the horizontal branch and upper normal branch. In this case, the lag timescales of both this atoll and Z-sources are found to be similar, at a magnitude of several tens to hundreds of seconds. As a comparison, it is noted that anti-correlated lags lasting thousands of seconds have been reported from several black hole candidates in their intermediate states. In addition, for an observation containing four segments that show positive or anti-correlation, we analyze the spectral evolution with the hybrid model. In the observation, the anti-correlation is detected at the highest flux. The fitting results show that the Comptonized component is not the lowest at the highest flux, which suggests that the anti-correlation corresponds to the transition between the soft and hard states. Finally, we compare the corresponding results of atoll source 4U 1735-44 with those observed in Z-sources and black hole candidates, and the possible origins of the anti-correlated time lags are discussed.

  17. Chromospheric rotation. II. Dependence on the size of chromospheric features

    Energy Technology Data Exchange (ETDEWEB)

    Azzarelli, L; Casalini, P; Cerri, S; Denoth, F [Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Elaborazione della Informazione

    1979-08-01

    The dependence of solar rotation on the size of the chromospheric tracers is considered. On the basis of an analysis of Ca II K/sub 3/ daily filtergrams taken in the period 8 May-14 August, 1972, chromospheric features can be divided into two classes according to their size. Features with size falling into the range 24 000-110 000 km can be identified with network elements, while those falling into the range 120 000-300 000 km with active regions, or brightness features of comparable size present at high latitudes. The rotation rate is determined separately for the two families of chromospheric features by means of a cross-correlation technique directly yields the average daily displacement of tracers due to rotation. Before computing the cross-correlation functions, chromospheric brightness data have been filtered with appropriate bandpass and highpass filters for separating spatial periodicities whose wavelengths fall into the two ranges of size, characteristic of the network pattern and of the activity centers. A difference less than 1% of the rotation rate of the two families of chromospheric features has been found. This is an indication for a substantial corotation at chromospheric levels of different short-lived features, both related to solar activity and controlled by the convective supergranular motions.

  18. Cross-correlation of the cosmic microwave background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Loh, Yeong-Shang; Strauss, Michael A.

    2004-01-01

    We cross-correlate the cosmic microwave background temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modeling the theoretical expectation for this signal, we extract the signatures of dark energy [integrated Sachs-Wolfe effect (ISW)], hot gas [thermal Sunyaev-Zeldovich (SZ) effect], and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7σ level, which is consistent with the theoretical prediction based on observations of x-ray clusters. We also see the ISW signal at the 2.5σ level, which is consistent with the expected value for the concordance ΛCDM cosmology, and is an independent signature of the presence of dark energy in the Universe. Finally, we see the signature of microwave point sources at the 2.7σ level

  19. Tomographic-spectral approach for dark matter detection in the cross-correlation between cosmic shear and diffuse γ-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Camera, S. [Jodrell Bank Centre for Astrophysics, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Fornasa, M. [School of Physics and Astronomy, University of Nottingham, University Campus, Nottingham NG7 2RD (United Kingdom); Fornengo, N.; Regis, M., E-mail: stefano.camera@manchester.ac.uk, E-mail: fornasam@gmail.com, E-mail: fornengo@to.infn.it, E-mail: regis@to.infn.it [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125 Torino (Italy)

    2015-06-01

    We recently proposed to cross-correlate the diffuse extragalactic γ-ray background with the gravitational lensing signal of cosmic shear. This represents a novel and promising strategy to search for annihilating or decaying particle dark matter (DM) candidates. In the present work, we demonstrate the potential of a tomographic-spectral approach: measuring the cross-correlation in separate bins of redshift and energy significantly improves the sensitivity to a DM signal. Indeed, the technique proposed here takes advantage of the different scaling of the astrophysical and DM components with redshift and, simultaneously of their different energy spectra and different angular extensions. The sensitivity to a particle DM signal is extremely promising even when the DM-induced emission is quite faint. We first quantify the prospects of detecting DM by cross-correlating the Fermi Large Area Telescope (LAT) diffuse γ-ray background with the cosmic shear expected from the Dark Energy Survey. Under the hypothesis of a significant subhalo boost, such a measurement can deliver a 5σ detection of DM, if the DM particle is lighter than 300 GeV and has a thermal annihilation rate. We then forecast the capability of the European Space Agency Euclid satellite (whose launch is planned for 2020), in combination with an hypothetical future γ-ray detector with slightly improved specifications compared to current telescopes. We predict that the cross-correlation of their data will allow a measurement of the DM mass with an uncertainty of a factor of 1.5–2, even for moderate subhalo boosts, for DM masses up to few hundreds of GeV and thermal annihilation rates.

  20. Tomographic-spectral approach for dark matter detection in the cross-correlation between cosmic shear and diffuse γ-ray emission

    Science.gov (United States)

    Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.

    2015-06-01

    We recently proposed to cross-correlate the diffuse extragalactic γ-ray background with the gravitational lensing signal of cosmic shear. This represents a novel and promising strategy to search for annihilating or decaying particle dark matter (DM) candidates. In the present work, we demonstrate the potential of a tomographic-spectral approach: measuring the cross-correlation in separate bins of redshift and energy significantly improves the sensitivity to a DM signal. Indeed, the technique proposed here takes advantage of the different scaling of the astrophysical and DM components with redshift and, simultaneously of their different energy spectra and different angular extensions. The sensitivity to a particle DM signal is extremely promising even when the DM-induced emission is quite faint. We first quantify the prospects of detecting DM by cross-correlating the Fermi Large Area Telescope (LAT) diffuse γ-ray background with the cosmic shear expected from the Dark Energy Survey. Under the hypothesis of a significant subhalo boost, such a measurement can deliver a 5σ detection of DM, if the DM particle is lighter than 300 GeV and has a thermal annihilation rate. We then forecast the capability of the European Space Agency Euclid satellite (whose launch is planned for 2020), in combination with an hypothetical future γ-ray detector with slightly improved specifications compared to current telescopes. We predict that the cross-correlation of their data will allow a measurement of the DM mass with an uncertainty of a factor of 1.5-2, even for moderate subhalo boosts, for DM masses up to few hundreds of GeV and thermal annihilation rates.

  1. Tomographic-spectral approach for dark matter detection in the cross-correlation between cosmic shear and diffuse γ-ray emission

    International Nuclear Information System (INIS)

    Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.

    2015-01-01

    We recently proposed to cross-correlate the diffuse extragalactic γ-ray background with the gravitational lensing signal of cosmic shear. This represents a novel and promising strategy to search for annihilating or decaying particle dark matter (DM) candidates. In the present work, we demonstrate the potential of a tomographic-spectral approach: measuring the cross-correlation in separate bins of redshift and energy significantly improves the sensitivity to a DM signal. Indeed, the technique proposed here takes advantage of the different scaling of the astrophysical and DM components with redshift and, simultaneously of their different energy spectra and different angular extensions. The sensitivity to a particle DM signal is extremely promising even when the DM-induced emission is quite faint. We first quantify the prospects of detecting DM by cross-correlating the Fermi Large Area Telescope (LAT) diffuse γ-ray background with the cosmic shear expected from the Dark Energy Survey. Under the hypothesis of a significant subhalo boost, such a measurement can deliver a 5σ detection of DM, if the DM particle is lighter than 300 GeV and has a thermal annihilation rate. We then forecast the capability of the European Space Agency Euclid satellite (whose launch is planned for 2020), in combination with an hypothetical future γ-ray detector with slightly improved specifications compared to current telescopes. We predict that the cross-correlation of their data will allow a measurement of the DM mass with an uncertainty of a factor of 1.5–2, even for moderate subhalo boosts, for DM masses up to few hundreds of GeV and thermal annihilation rates

  2. Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2015-01-01

    Roč. 428, č. 1 (2015), s. 194-205 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Online searches * Google Trends * Long-term memory * Cross-correlations * Volatility * Traded volume Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452317.pdf

  3. On the (In)Efficiency of the Cross-Correlation Statistic for Gravitational Wave Stochastic Background Signals with Non-Gaussian Noise and Heterogeneous Detector Sensitivities

    OpenAIRE

    Lionel, Martellini; Tania, Regimbau

    2015-01-01

    Under standard assumptions including stationary and serially uncorrelated Gaussian gravitational wave stochastic background signal and noise distributions, as well as homogenous detector sensitivities, the standard cross-correlation detection statistic is known to be optimal in the sense of minimizing the probability of a false dismissal at a fixed value of the probability of a false alarm. The focus of this paper is to analyze the comparative efficiency of this statistic, versus a simple alt...

  4. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    Science.gov (United States)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  5. Development of comprehensive image processing technique for differential diagnosis of liver disease by using multi-modality images. Pixel-based cross-correlation method using a profile

    International Nuclear Information System (INIS)

    Inoue, Akira; Okura, Yasuhiko; Akiyama, Mitoshi; Ishida, Takayuki; Kawashita, Ikuo; Ito, Katsuyoshi; Matsunaga, Naofumi; Sanada, Taizo

    2009-01-01

    Imaging techniques such as high magnetic field imaging and multidetector-row CT have been markedly improved recently. The final image-reading systems easily produce more than a thousand diagnostic images per patient. Therefore, we developed a comprehensive cross-correlation processing technique using multi-modality images, in order to decrease the considerable time and effort involved in the interpretation of a radiogram (multi-formatted display and/or stack display method, etc). In this scheme, the criteria of an attending radiologist for the differential diagnosis of liver cyst, hemangioma of liver, hepatocellular carcinoma, and metastatic liver cancer on magnetic resonance images with various sequences and CT images with and without contrast enhancement employ a cross-correlation coefficient. Using a one-dimensional cross-correlation method, comprehensive image processing could be also adapted for various artifacts (some depending on modality imaging, and some on patients), which may be encountered at the clinical scene. This comprehensive image-processing technique could assist radiologists in the differential diagnosis of liver diseases. (author)

  6. The large-scale cross-correlation of Damped Lyman alpha systems with the Lyman alpha forest: first measurements from BOSS

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); Miralda-Escudé, Jordi [Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia (Spain); Arnau, Eduard [Institut de Ciències del Cosmos (IEEC/UB), Barcelona, Catalonia (Spain); Carithers, Bill; Ross, Nicholas P.; White, Martin [Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, California 94720 (United States); Lee, Khee-Gan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Noterdaeme, Pasquier; Pâris, Isabelle; Petitjean, Patrick; Rollinde, Emmanuel [Institut d' Astrophysique de Paris, Université Paris 6 et CNRS, 98bis blvd. Arago, 75014 Paris (France); Rich, James [CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); York, Donald G., E-mail: font@physik.uzh.ch, E-mail: miralda@icc.ub.edu [Department of Astronomy and Astrophysics and The Fermi Institute, Chicago University, 5640 So. Ellis Ave., Chicago, IL 60637 (United States)

    2012-11-01

    We present the first measurement of the large-scale cross-correlation of Lyα forest absorption and Damped Lyman α systems (DLA), using the 9th Data Release of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is clearly detected on scales up to 40h{sup −1}Mpc and is well fitted by the linear theory prediction of the standard Cold Dark Matter model of structure formation with the expected redshift distortions, confirming its origin in the gravitational evolution of structure. The amplitude of the DLA-Lyα cross-correlation depends on only one free parameter, the bias factor of the DLA systems, once the Lyα forest bias factors are known from independent Lyα forest correlation measurements. We measure the DLA bias factor to be b{sub D} = (2.17±0.20)β{sub F}{sup 0.22}, where the Lyα forest redshift distortion parameter β{sub F} is expected to be above unity. This bias factor implies a typical host halo mass for DLAs that is much larger than expected in present DLA models, and is reproduced if the DLA cross section scales with halo mass as M{sub h}{sup α}, with α = 1.1±0.1 for β{sub F} = 1. Matching the observed DLA bias factor and rate of incidence requires that atomic gas remains extended in massive halos over larger areas than predicted in present simulations of galaxy formation, with typical DLA proper sizes larger than 20 kpc in host halos of masses ∼ 10{sup 12}M{sub ☉}. We infer that typical galaxies at z ≅ 2 to 3 are surrounded by systems of atomic clouds that are much more extended than the luminous parts of galaxies and contain ∼ 10% of the baryons in the host halo.

  7. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    Science.gov (United States)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  8. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    Science.gov (United States)

    Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, C. Y.; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.

    2018-05-01

    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 clustering of neutral hydrogen (H I), a small correlation coefficient between optical galaxies and H I, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with H I on k ˜ 1.5 h Mpc-1 scales, suggesting that H I is more associated with blue star-forming galaxies and tends to avoid red galaxies.

  9. Autocorrelation and cross-correlation between hCGβ and PAPP-A in repeated sampling during first trimester of pregnancy

    DEFF Research Database (Denmark)

    Nørgaard, Pernille; Wright, Dave; Ball, Susan

    2013-01-01

    Theoretically, repeated sampling of free β-human chorionic gonadotropin (hCGβ) and pregnancy associated plasma protein-A (PAPP-A) in the first trimester of pregnancy might improve performance of risk assessment of trisomy 21 (T21). To assess the performance of a screening test involving repeated...... measures of biochemical markers, correlations between markers must be estimated. The aims of this study were to calculate the autocorrelation and cross-correlation between hCGβ and PAPP-A in the first trimester of pregnancy and to investigate the possible impact of gestational age at the first sample...

  10. Predicting response to cardiac resynchronization therapy with cross-correlation analysis of myocardial systolic acceleration: a new approach to echocardiographic dyssynchrony evaluation

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Mogelvang, Rasmus; Jons, Christian

    2009-01-01

    BACKGROUND: We tested the ability of cross-correlation analysis of myocardial systolic acceleration (XCA), a new marker of dyssynchrony based on tissue Doppler echocardiography, to predict long-term outcome of cardiac resynchronization therapy (CRT) and to discriminate between control patients...... and patients with dyssynchrony. METHODS: XCA was performed by off-line analysis of digitally stored myocardial velocity curves in 44 patients treated with CRT and followed for 13 +/- 2 months. We tested the ability of preimplant XCA to identify long-term responders to CRT (defined by a decrease in left...

  11. Analysis of thermal fluctuations in the semiscale tests to determine flow transit delay times using a transfer function cross-correlation technique

    International Nuclear Information System (INIS)

    Raptis, A.C.; Popper, G.F.

    1977-08-01

    On April 14, 1976, EG and G performed the Semiscale Blowdown 29-1 experiment to try to establish the feasibility of using a transit time flowmeter (TTF) to measure transient blowdown two-phase flow rates. The recorded signals from that experiment were made available to and analyzed by the Argonne National Laboratory using the transfer function cross-correlation technique. The theoretical background for the transfer function method of analysis and the results of the data analysis are presented. Histograms of transit time during the blowdown are shown and topics for further investigation are identified

  12. The importance of parameter variances, correlations lengths, and cross-correlations in reactive transport models: key considerations for assessing the need for microscale information

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul W [Los Alamos National Laboratory

    2010-12-08

    A process-oriented modeling approach is implemented to examine the importance of parameter variances, correlation lengths, and especially cross-correlations in contaminant transport predictions over large scales. It is shown that the most important consideration is the correlation between flow rates and retardation processes (e.g., sorption, matrix diffusion) in the system. lf flow rates are negatively correlated with retardation factors in systems containing multiple flow pathways, then characterizing these negative correlation(s) may have more impact on reactive transport modeling than microscale information. Such negative correlations are expected in porous-media systems where permeability is negatively correlated with clay content and rock alteration (which are usually associated with increased sorption). Likewise, negative correlations are expected in fractured rocks where permeability is positively correlated with fracture apertures, which in turn are negatively correlated with sorption and matrix diffusion. Parameter variances and correlation lengths are also shown to have important effects on reactive transport predictions, but they are less important than parameter cross-correlations. Microscale information pertaining to contaminant transport has become more readily available as characterization methods and spectroscopic instrumentation have achieved lower detection limits, greater resolution, and better precision. Obtaining detailed mechanistic insights into contaminant-rock-water interactions is becoming a routine practice in characterizing reactive transport processes in groundwater systems (almost necessary for high-profile publications). Unfortunately, a quantitative link between microscale information and flow and transport parameter distributions or cross-correlations has not yet been established. One reason for this is that quantitative microscale information is difficult to obtain in complex, heterogeneous systems. So simple systems that lack the

  13. Rotator cuff exercises

    Science.gov (United States)

    ... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

  14. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    International Nuclear Information System (INIS)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-01-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  15. Analysis of two-phase flow velocity measurements by cross-correlation techniques and the applicability of the drift flux model for their interpretation

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1982-11-01

    An extensive and detailed investigation of two-phase flow velocity measurements by cross-correlating noise signals of information carriers (neutrons, gammas, visible light) modulated by the two-phase flow and registered by two axially placed detectors outside the flow is pursued. To this end, a detailed analysis of velocity measurements in experimental loops and a large number of velocity measurements in a commercial BWR is undertaken, and the applicability and limitations of the drift flux model for their interpretation is investigated. On the basis of this extensive analysis, the authors propose a physically plausible explanation for the deviations in the upper part of the core, expound on why the drift flux model is, to a great extent, not suitable for interpreting two-phase flow velocity measurements by cross-correlation techniques reported in the present work, and conclude that due to the large number of uncertainties and the lack of detailed knowledge about the kind of microstructures of the flow which the detectors prefer to ''sample'', one can safely assume that at least in the lower half of the core the velocity measured can be well approximated by the velocity of the centre of volume, from which the mass fluxes can readily be computed. (Auth.)

  16. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    Science.gov (United States)

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.

  17. Mechanical dyssynchrony evaluated by tissue Doppler cross-correlation analysis is associated with long-term survival in patients after cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Risum, Niels; Williams, Eric S; Khouri, Michel G

    2013-01-01

    Aims Pre-implant assessment of longitudinal mechanical dyssynchrony using cross-correlation analysis (XCA) was tested for association with long-term survival and compared with other tissue Doppler imaging (TDI)-derived indices. Methods and results In 131 patients referred for cardiac resynchroniz......Aims Pre-implant assessment of longitudinal mechanical dyssynchrony using cross-correlation analysis (XCA) was tested for association with long-term survival and compared with other tissue Doppler imaging (TDI)-derived indices. Methods and results In 131 patients referred for cardiac......-max was independently associated with improved survival when adjusted for QRS > 150 ms and aetiology {hazard ratio (HR) 0.35 [95% confidence interval (CI) 0.16-0.77], P = 0.01}. Maximal activation delay performed significantly better than Yu index, OWD, and the presence of left bundle branch block (P ..., for difference between parameters). In subgroup analysis, patients without dyssynchrony and QRS between 120 and 150 ms showed a particularly poor survival [HR 4.3 (95% CI 1.46-12.59), P

  18. A Novel Approach in the Weakly Interacting Massive Particle Quest: Cross-correlation of Gamma-Ray Anisotropies and Cosmic Shear

    Science.gov (United States)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  19. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    Energy Technology Data Exchange (ETDEWEB)

    Camera, Stefano [CENTRA, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Fornasa, Mattia [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica, Universita di Torino and INFN, Torino (Italy)

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  20. Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Cawthon, R.; et al.

    2017-12-19

    We present calibrations of the redshift distributions of redMaGiC galaxies in the Dark Energy Survey Year 1 (DES Y1) and Sloan Digital Sky Survey (SDSS) DR8 data. These results determine the priors of the redshift distribution of redMaGiC galaxies, which were used for galaxy clustering measurements and as lenses for galaxy-galaxy lensing measurements in DES Y1 cosmological analyses. We empirically determine the bias in redMaGiC photometric redshift estimates using angular cross-correlations with Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. For DES, we calibrate a single parameter redshift bias in three photometric redshift bins: $z \\in[0.15,0.3]$, [0.3,0.45], and [0.45,0.6]. Our best fit results in each bin give photometric redshift biases of $|\\Delta z|<0.01$. To further test the redMaGiC algorithm, we apply our calibration procedure to SDSS redMaGiC galaxies, where the statistical precision of the cross-correlation measurement is much higher due to a greater overlap with BOSS galaxies. For SDSS, we also find best fit results of $|\\Delta z|<0.01$. We compare our results to other analyses of redMaGiC photometric redshifts.

  1. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Science.gov (United States)

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation.

    Science.gov (United States)

    Malinsky, Milos; Peter, Roman; Hodneland, Erlend; Lundervold, Astri J; Lundervold, Arvid; Jan, Jiri

    2013-08-01

    In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.

  3. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  4. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  5. The cross-correlation between 21 cm intensity mapping maps and the Lyα forest in the post-reionization era

    Energy Technology Data Exchange (ETDEWEB)

    Carucci, Isabella P. [SISSA—International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); Villaescusa-Navarro, Francisco [Center for Computational Astrophysics, 160 5th Avenue, New York, NY, 10010 (United States); Viel, Matteo, E-mail: ipcarucci@sissa.it, E-mail: fvillaescusa@simonsfoundation.org, E-mail: viel@oats.inaf.it [INAF—Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy)

    2017-04-01

    We investigate the cross-correlation signal between 21cm intensity mapping maps and the Lyα forest in the fully non-linear regime using state-of-the-art hydrodynamic simulations. The cross-correlation signal between the Lyα forest and 21cm maps can provide a coherent and comprehensive picture of the neutral hydrogen (HI) content of our Universe in the post-reionization era, probing both its mass content and volume distribution. We compute the auto-power spectra of both fields together with their cross-power spectrum at z = 2.4 and find that on large scales the fields are completely anti-correlated. This anti-correlation arises because regions with high (low) 21cm emission, such as those with a large (low) concentration of damped Lyα systems, will show up as regions with low (high) transmitted flux. We find that on scales smaller than k ≅ 0.2 h Mpc{sup −1} the cross-correlation coefficient departs from −1, at a scale where non-linearities show up. We use the anisotropy of the power spectra in redshift-space to determine the values of the bias and of the redshift-space distortion parameters of both fields. We find that the errors on the value of the cosmological and astrophysical parameters could decrease by 30% when adding data from the cross-power spectrum, in a conservative analysis. Our results point out that linear theory is capable of reproducing the shape and amplitude of the cross-power up to rather non-linear scales. Finally, we find that the 21cm-Lyα cross-power spectrum can be detected by combining data from a BOSS-like survey together with 21cm intensity mapping observations by SKA1-MID with a S/N ratio higher than 3 in k element of [0.06,1] h Mpc{sup −1}. We emphasize that while the shape and amplitude of the 21cm auto-power spectrum can be severely affected by residual foreground contamination, cross-power spectra will be less sensitive to that and therefore can be used to identify systematics in the 21cm maps.

  6. Cross-correlation and time history analysis of laser dynamic specklegram imaging for quality evaluation and assessment of certain seasonal fruits and vegetables

    Science.gov (United States)

    Samuel, Boni; Retheesh, R.; Zaheer Ansari, Md; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2017-10-01

    Quality evaluation of fruits and vegetables is of great concern as there is a shortage of unadulterated items on the market. Even unadulterated fruits and vegetables, especially those with soft tissue, cannot be stored for longer times due to physical and chemical changes. Moreover, damage can occur during harvest and in the post-harvest period, while preserving or transporting the fruits and vegetables. This work describes the use of a laser dynamic speckle imaging technique as a powerful optoelectronic tool for the quality evaluation of certain seasonal fruits and vegetables in an Indian market. A simple optical configuration was designed for developing the dynamic speckle imagining system to record dynamic specklegrams of the specimens under different conditions. These images were analysed using a cross-correlation function and the temporal history of specklegrams. The technique can be effectively adapted to the industrial environment and would be beneficial for all stakeholders in the field.

  7. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.; et al.

    2017-10-06

    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy of $\\sim0.02$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $\\texttt{COSMOS}$ 30-band photometry and find that our two very different methods produce consistent constraints.

  8. Estimates of methyl 13C and 1H CSA values (Δσ) in proteins from cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Tugarinov, Vitali; Scheurer, Christoph; Brueschweiler, Rafael; Kay, Lewis E.

    2004-01-01

    Simple pulse schemes are presented for the measurement of methyl 13 C and 1 H CSA values from 1 H- 13 C dipole/ 13 C CSA and 1 H- 13 C dipole/ 1 H CSA cross-correlated relaxation. The methodology is applied to protein L and malate synthase G. Average 13 C CSA values are considerably smaller for Ile than Leu/Val (17 vs 25 ppm) and are in good agreement with previous solid state NMR studies of powders of amino acids and dipeptides and in reasonable agreement with quantum-chemical DFT calculations of methyl carbon CSA values in peptide fragments. Small averaged 1 H CSA values on the order of 1 ppm are measured, consistent with a solid state NMR determination of the methyl group 1 H CSA in dimethylmalonic acid

  9. Cosmological constraints on dark matter annihilation and decay. Cross-correlation analysis of the extragalactic γ-ray background and cosmic shear

    Energy Technology Data Exchange (ETDEWEB)

    Shirasaki, Masato [National Astronomical Observatory of Japan, Mitaka, Tokyo (Japan); Macias, Oscar; Horiuchi, Shunsaku [Virginia Tech, Blacksburg, VA (United States). Center for Neutrino Physics; Shirai, Satoshi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yoshida, Naoki [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ., Chiba (Japan). Kavli Inst. for the Physics and Mathematics of the Universe (WPI); Japan Science and Technology Agency, Saitama (Japan). CREST

    2016-07-15

    We derive constraints on dark matter (DM) annihilation cross section and decay lifetime from cross-correlation analyses of the data from Fermi-LAT and weak lensing surveys that cover a wide area of ∝660 squared degrees in total. We improve upon our previous analyses by using an updated extragalactic γ-ray background data reprocessed with the Fermi Pass 8 pipeline, and by using well-calibrated shape measurements of about twelve million galaxies in the Canada-France-Hawaii Lensing Survey (CFHTLenS) and Red-Cluster-Sequence Lensing Survey (RCSLenS). We generate a large set of full-sky mock catalogs from cosmological N-body simulations and use them to estimate statistical errors accurately. The measured cross correlation is consistent with null detection, which is then used to place strong cosmological constraints on annihilating and decaying DM. For leptophilic DM, the constraints are improved by a factor of ∝ 100 in the mass range of O(1) TeV when including contributions from secondary γ rays due to the inverse-Compton upscattering of background photons. Annihilation cross-sections of left angle σν right angle ∝ 10{sup -23} cm{sup 3}/s are excluded for TeV-scale DM depending on channel. Lifetimes of ∝10{sup 25} sec are also excluded for the decaying TeV-scale DM. Finally, we apply this analysis to wino DM and exclude the wino mass around 200 GeV. These constraints will be further tightened, and all the interesting wino DM parameter region can be tested, by using data from future wide-field cosmology surveys.

  10. Cosmological constraints on dark matter annihilation and decay. Cross-correlation analysis of the extragalactic γ-ray background and cosmic shear

    International Nuclear Information System (INIS)

    Shirasaki, Masato; Macias, Oscar; Horiuchi, Shunsaku; Yoshida, Naoki; Tokyo Univ., Chiba; Japan Science and Technology Agency, Saitama

    2016-07-01

    We derive constraints on dark matter (DM) annihilation cross section and decay lifetime from cross-correlation analyses of the data from Fermi-LAT and weak lensing surveys that cover a wide area of ∝660 squared degrees in total. We improve upon our previous analyses by using an updated extragalactic γ-ray background data reprocessed with the Fermi Pass 8 pipeline, and by using well-calibrated shape measurements of about twelve million galaxies in the Canada-France-Hawaii Lensing Survey (CFHTLenS) and Red-Cluster-Sequence Lensing Survey (RCSLenS). We generate a large set of full-sky mock catalogs from cosmological N-body simulations and use them to estimate statistical errors accurately. The measured cross correlation is consistent with null detection, which is then used to place strong cosmological constraints on annihilating and decaying DM. For leptophilic DM, the constraints are improved by a factor of ∝ 100 in the mass range of O(1) TeV when including contributions from secondary γ rays due to the inverse-Compton upscattering of background photons. Annihilation cross-sections of left angle σν right angle ∝ 10"-"2"3 cm"3/s are excluded for TeV-scale DM depending on channel. Lifetimes of ∝10"2"5 sec are also excluded for the decaying TeV-scale DM. Finally, we apply this analysis to wino DM and exclude the wino mass around 200 GeV. These constraints will be further tightened, and all the interesting wino DM parameter region can be tested, by using data from future wide-field cosmology surveys.

  11. A study of the cross-correlation and time lag in black hole X-ray binary XTE J1859+226

    Science.gov (United States)

    Pei, Songpeng; Ding, Guoqiang; Li, Zhibing; Lei, Yajuan; Yuen, Rai; Qu, Jinlu

    2017-07-01

    With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. Anti-correlations and positive correlations and their respective soft and hard X-ray lags are only detected in the first 100 days of the outburst when the luminosity is high. This suggests that the cross-correlations may be related to high luminosity. Positive correlations are detected in every state of XTE J1859+226, viz., hard state, hard-intermediate state (HIMS), soft-intermediate state (SIMS) and soft state. However, anti-correlations are only detected in HIMS and SIMS, anti-correlated hard lags are only detected in SIMS, while anti-correlated soft lags are detected in both HIMS and SIMS. Moreover, the ratio of the observations with anti-correlated soft lags to hard lags detected in XTE J1859+226 is significantly different from that in neutron star low-mass X-ray binaries (NS LMXBs). So far, anti-correlations are never detected in the soft state of BHXBs but detected in every branch or state of NS LMXBs. This may be due to the origin of soft seed photons in BHXBs is confined to the accretion disk and, for NS LMXBs, from both accretion disk and the surface of the NS. We notice that the timescale of anti-correlated time lags detected in XTE J1859+226 is similar with that of other BHXBs and NS LMXBs. We suggest that anti-correlated soft lag detected in BHXB may result from fluctuation in the accretion disk as well as NS LMXB.

  12. The properties of cross-correlation and spectra of the low-mass X-ray binary 4U 1608-52

    International Nuclear Information System (INIS)

    Lei, Ya-Juan; Yuan, Hai-Long; Dong, Yi-Qiao; Zhang, Hao-Tong; Zhang, Cheng-Min; Zhao, Yong-Heng; Zhang, Shu; Qu, Jin-Lu; Wang, Ya-Nan; Li, Zhi-Bing

    2014-01-01

    With RXTE data, we analyzed the cross-correlation function between the soft and hard X-rays of the transient atoll source 4U 1608-52. We found anti-correlations in three outbursts occurred in 1998, 2002, and 2010, and we found significant time lags of several hundreds of seconds in the latter two outbursts. Our results show no correlation between the soft and hard X-rays in the extreme island state and a dominated positive correlation in the lower banana state. Anti-correlations are presented at the upper banana state for the outburst of 2010 and at the island and the lower left banana states for the other two outbursts. So far for atoll sources, the cross-correlation has been studied statistically only for 4U 1735-44, where anti-correlations showed up in the upper banana state. Here our investigation on 4U 1608-52 provides a similar result in its 2010 outburst. In addition, we notice that the luminosities in the upper banana of the 1998 and 2002 outbursts are about 1.5 times that of the 2010 outburst whose luminosity in the upper banana is close to that of 4U 1735-44. The results suggest that the states in the color-color diagram of a source could be correlated with the luminosity of the source. A further spectral analysis during the 2010 outburst is also shown, which suggests that the disk can be a little truncated in the upper banana. The feature on the upper banana is similar to the previous results of the flaring branch in Z sources.

  13. PREVISIÓN DE CRISIS EPILÉPTICAS USANDO TRANSFORMADA WAVELET Y CORRELACIÓN CRUZADA PREVENTION OF EPILEPTICAL CRISIS USING WAVELET TRANSFORM AND CROSS-CORRELATION

    Directory of Open Access Journals (Sweden)

    Claudia C. Botero Suárez

    2007-07-01

    Full Text Available Este artículo describe la detección de actividad precrisis mediante la aplicación de la correlación cruzada junto con la transformada Wavelet. La transformada Wavelet es aplicada a los datos EEG puros para la reducción y pre-procesamiento de las señales. Esta técnica de extracción de características provee las señales simplificadas para ser procesadas por medio de la técnica de correlación cruzada. El análisis ha sido realizado con un grupo de datos tanto precrisis como intercrisis, (incluyendo crisis agudas inducidas y crisis espontáneas recurrentes, con el fin de determinar su sensitividad y especificidad (tasa de falsas predicciones. Son determinados, adicionalmente, el período de ocurrencia de crisis y el horizonte de previsión de crisis.This paper describes the detection of a pre-crisis activity through the application of Cross-Correlation together with the Wavelet Transform. The Wavelet Transform is applied in the data reduction and pre-processing of signals. This feature extract technique provides the simplified signals to process by means of the Cross-Correlation technique. The analysis with a group of pre-crisis and inter-crisis data (including both induced acute crises and recurrent spontaneous crises, to determinate its sensitivity and its specificity (False Prediction Rate has been done. The seizure occurrence period and the seizure prediction horizon are calculated additionally.

  14. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  15. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  16. Rotating reactors : a review

    NARCIS (Netherlands)

    Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

    2013-01-01

    This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

  17. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback.

    Science.gov (United States)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-01-01

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θp. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θp. The maximum value of the cross-correlation coefficient achieved is -0.99 with a zero time delay over a wide range of θp beyond 65° with a poor synchronization dynamic at θp less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θp. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  18. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  19. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  20. Selective enhancement of Selényi rings induced by the cross-correlation between the interfaces of a two-dimensional randomly rough dielectric film

    Science.gov (United States)

    Banon, J.-P.; Hetland, Ø. S.; Simonsen, I.

    2018-02-01

    By the use of both perturbative and non-perturbative solutions of the reduced Rayleigh equation, we present a detailed study of the scattering of light from two-dimensional weakly rough dielectric films. It is shown that for several rough film configurations, Selényi interference rings exist in the diffusely scattered light. For film systems supported by dielectric substrates where only one of the two interfaces of the film is weakly rough and the other planar, Selényi interference rings are observed at angular positions that can be determined from simple phase arguments. For such single-rough-interface films, we find and explain by a single scattering model that the contrast in the interference patterns is better when the top interface of the film (the interface facing the incident light) is rough than when the bottom interface is rough. When both film interfaces are rough, Selényi interference rings exist but a potential cross-correlation of the two rough interfaces of the film can be used to selectively enhance some of the interference rings while others are attenuated and might even disappear. This feature may in principle be used in determining the correlation properties of interfaces of films that otherwise would be difficult to access.

  1. A First Layered Crustal Velocity Model for the Western Solomon Islands: Inversion of Measured Group Velocity of Surface Waves using Ambient Noise Cross-Correlation

    Science.gov (United States)

    Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.

    2017-12-01

    Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.

  2. Time-delay-induced dynamical behaviors for an ecological vegetation growth system driven by cross-correlated multiplicative and additive noises.

    Science.gov (United States)

    Wang, Kang-Kang; Ye, Hui; Wang, Ya-Jun; Li, Sheng-Hong

    2018-05-14

    In this paper, the modified potential function, the stationary probability distribution function (SPDF), the mean growth time and the mean degeneration time for a vegetation growth system with time delay are investigated, where the vegetation system is assumed to be disturbed by cross-correlated multiplicative and additive noises. The results reveal some fact that the multiplicative and additive noises can both reduce the stability and speed up the decline of the vegetation system, while the strength of the noise correlation and time delay can both enhance the stability of the vegetation and slow down the depression process of the ecological system. On the other hand, with regard to the impacts of noises and time delay on the mean development and degeneration processes of the ecological system, it is discovered that 1) in the development process of the vegetation population, the increase of the noise correlation strength and time delay will restrain the regime shift from the barren state to the boom one, while the increase of the additive noise can lead to the fast regime shift from the barren state to the boom one. 2) Conversely, in the depression process of the ecological system, the increase of the strength of the correlation noise and time delay will prevent the regime shift from the boom state to the barren one. Comparatively, the increase of the additive and multiplicative noises can accelerate the regime shift from the boom state to the barren state.

  3. Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions.

    Science.gov (United States)

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki; Aoki, Kazuhiro

    2014-09-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Multi-dimensional modeling of two-phase flow in rod bundles and interpretation of velocities measured in BWRs by the cross-correlation technique

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1984-04-01

    The authors present an as precise as possible interpretation of velocity measurements in BWRs by the cross-correlation technique, which is based on the radially non-uniform quality and velocity distribution in BWR type bundles, as well as on our knowledge about the spatial 'field of view' of the in-core neutron detectors. After formulating the three-dimensional two-fluid model volume/time averaged equations and pointing out some problems associated with averaging, they expound a little on the turbulence mixing and void drift effects, as well as on the way they are modelled in advanced subchannel analysis codes like THERMIT or COBRA-TF. Subsequently, some comparisons are made between axial velocities measured in a commercial BWR by neutron noise analysis, and the steam velocities of the four subchannels nearest to the instrument tube of one of the four bundles as predicted by COBRA-III and by THERMIT. Although as expected, for well-known reasons, COBRA-III predicts subchannel steam velocities which are close to each other, THERMIT correctly predicts in the upper half of the core three largely different steam velocities in the three different types of BW0 subchannels (corner, edge and interior). (Auth.)

  5. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells.

    Science.gov (United States)

    Ohrt, Thomas; Mütze, Jörg; Staroske, Wolfgang; Weinmann, Lasse; Höck, Julia; Crell, Karin; Meister, Gunter; Schwille, Petra

    2008-11-01

    Studies of RNA interference (RNAi) provide evidence that in addition to the well-characterized cytoplasmic mechanisms, nuclear mechanisms also exist. The mechanism by which the nuclear RNA-induced silencing complex (RISC) is formed in mammalian cells, as well as the relationship between the RNA silencing pathways in nuclear and cytoplasmic compartments is still unknown. Here we show by applying fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) in vivo that two distinct RISC exist: a large approximately 3 MDa complex in the cytoplasm and a 20-fold smaller complex of approximately 158 kDa in the nucleus. We further show that nuclear RISC, consisting only of Ago2 and a short RNA, is loaded in the cytoplasm and imported into the nucleus. The loaded RISC accumulates in the nucleus depending on the presence of a target, based on an miRNA-like interaction with impaired cleavage of the cognate RNA. Together, these results suggest a new RISC shuttling mechanism between nucleus and cytoplasm ensuring concomitant gene regulation by small RNAs in both compartments.

  6. Temporal Variation of the Rotation of the Solar Mean Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-04-01

    Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.

  7. Rotations with Rodrigues' vector

    International Nuclear Information System (INIS)

    Pina, E

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  8. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  9. Validation of IPS Single-Station Analysis (SSA) Using MEXART Routines in Multi-Station Spectra. Comparison with Cross Correlation Function (CCF) Analysis.

    Science.gov (United States)

    Bisi, M. M.; Chang, O.; Gonzalez-Esparza, A.; Fallows, R. A.; Aguilar-Rodriguez, E.

    2017-12-01

    The phenomenon of Interplanetary Scintillation (IPS) occurs from the scattering of radio waves coming from compact radio sources that cross electron density fluctuations in the interplanetary medium. By analyzing these fluctuations in the measurements of flux intensity of galactic (compact) radio sources in a radio telescope, it is possible to infer some properties of structures in the solar wind. Studies based on observations of IPS have provided valuable information on the physics of the internal heliosphere for over 50 years. There are two techniques that provide IPS results: 1) Single-Station Analysis (SSA), where a theoretical model is fitted to the observed spectrum; and 2) Cross-Correlation Function (CCF), where two antennas separated by a few hundred kilometers simultaneously and independently observe the same radio source. In order to combine and complement solar wind speed determinations, it is important to validate the results of these two IPS techniques. In this work we analyze events from previously studied observations from MERLIN (Multi-Element Radio-Linked Interferometer Network) using the CCF methodology. The SSA model fit is applied to these observations and compared with the previous results to validate the two techniques. The objective is to know the behavior of the parameters in cases studied by CCFs that can be implemented in the SSA model. This work studies the capability of SSA model fit to describe complex events in the interplanetary environment and seeks to improve the adjustment of parameters from individual spectra to the theoretical model. The validation of these two methodologies is important to be able to combine data in real time from different radio telescopes which is necessary for the success of the Worldwide Interplanetary Scintillation Stations (WIPSS) Network to monitor solar wind structures using IPS data.

  10. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    Science.gov (United States)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  11. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    Science.gov (United States)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of

  12. Evaluation of adaptation to visually induced motion sickness based on the maximum cross-correlation between pulse transmission time and heart rate

    Directory of Open Access Journals (Sweden)

    Chiba Shigeru

    2007-09-01

    Full Text Available Abstract Background Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. Methods An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index ρmax, which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. Results The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in ρmax with time. Conclusion The physiological index, ρmax, will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.

  13. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis.

    Directory of Open Access Journals (Sweden)

    Claudia Schillinger

    Full Text Available The polymicrobial nature of periodontal diseases is reflected by the diversity of phylotypes detected in subgingival plaque and the finding that consortia of suspected pathogens rather than single species are associated with disease development. A number of these microorganisms have been demonstrated in vitro to interact and enhance biofilm integration, survival or even pathogenic features. To examine the in vivo relevance of these proposed interactions, we extended the spatial arrangement analysis tool of the software daime (digital image analysis in microbial ecology. This modification enabled the quantitative analysis of microbial co-localization in images of subgingival biofilm species, where the biomass was confined to fractions of the whole-image area, a situation common for medical samples. Selected representatives of the disease-associated red and orange complexes that were previously suggested to interact with each other in vitro (Tannerella forsythia with Fusobacterium nucleatum and Porphyromonas gingivalis with Prevotella intermedia were chosen for analysis and labeled with specific fluorescent probes via fluorescence in situ hybridization. Pair cross-correlation analysis of in vivo grown biofilms revealed tight clustering of F. nucleatum/periodonticum and T. forsythia at short distances (up to 6 µm with a pronounced peak at 1.5 µm. While these results confirmed previous in vitro observations for F. nucleatum and T. forsythia, random spatial distribution was detected between P. gingivalis and P. intermedia in the in vivo samples. In conclusion, we successfully employed spatial arrangement analysis on the single cell level in clinically relevant medical samples and demonstrated the utility of this approach for the in vivo validation of in vitro observations by analyzing statistically relevant numbers of different patients. More importantly, the culture-independent nature of this approach enables similar quantitative analyses for "as

  14. Rotation of a magnesium plasma column in a background gas

    International Nuclear Information System (INIS)

    Bosco, E. Del; Dallaqua, R.S.

    1993-01-01

    Measurements of the angular velocity of a plasma column in a surrounding gas atmosphere are presented. The plasma is produced by a pulsed, high current arc discharge in the presence of an axial magnetic field. The angular velocity is measured using the cross correlation technique applied to the floating potential signals measured by two Langmuir probes. The main result is that when gas is added to the discharge the angular velocity is always lower than the case when there is no gas, this effect been more pronounced in the beginning of the discharge. For pressures higher than ∼ 2 x 10 -2 Pa there is a effect of the gas on the plasma column rotation and the angular velocity diminishes even at the end of discharge. (author)

  15. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  16. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

    2013-01-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...

  17. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  18. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  19. SMAP Faraday Rotation

    Science.gov (United States)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  20. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  1. The rotating universe

    International Nuclear Information System (INIS)

    Ruben, G.; Treder, H.J.

    1987-01-01

    For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected

  2. Rotation sensor switch

    International Nuclear Information System (INIS)

    Sevec, J.B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal

  3. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  4. Cross-correlation of SDSS DR7 quasars and DR10 BOSS galaxies: The weak luminosity dependence of quasar clustering at z ∼ 0.5

    International Nuclear Information System (INIS)

    Shen, Yue; McBride, Cameron K.; Swanson, Molly E. C.; White, Martin; Kirkpatrick, Jessica A.; Ross, Nicholas P.; Schlegel, David J.; Zheng, Zheng; Myers, Adam D.; Guo, Hong; Zehavi, Idit; Padmanabhan, Nikhil; Parejko, John K.; Schneider, Donald P.; Streblyanska, Alina; Pan, Kaike; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Malanushenko, Viktor

    2013-01-01

    We present the measurement of the two-point cross-correlation function (CCF) of 8198 Sloan Digital Sky Survey Data Release 7 quasars and 349,608 Data Release 10 CMASS galaxies from the Baryonic Oscillation Spectroscopic Survey at 0.3 < z < 0.9. The CCF can be reasonably well fit by a power-law model ξ QG (r) = (r/r 0 ) –γ on projected scales of r p = 2-25 h –1 Mpc with r 0 = 6.61 ± 0.25 h –1 Mpc and γ = 1.69 ± 0.07. We estimate a quasar linear bias of b Q = 1.38 ± 0.10 at (z) = 0.53 from the CCF measurements, which corresponds to a characteristic host halo mass of ∼4 × 10 12 h –1 M ☉ , compared with a ∼10 13 h –1 M ☉ characteristic host halo mass for CMASS galaxies. Based on the clustering measurements, most quasars at z-bar ∼0.5 are not the descendants of their higher luminosity counterparts at higher redshift, which would have evolved into more massive and more biased systems at low redshift. We divide the quasar sample in luminosity and constrain the luminosity dependence of quasar bias to be db Q /dlog L = 0.20 ± 0.34 or 0.11 ± 0.32 (depending on different luminosity divisions) for quasar luminosities –23.5 > M i (z = 2) > –25.5, implying a weak luminosity dependence of clustering for luminous quasars at z-bar ∼0.5. We compare our measurements with theoretical predictions, halo occupation distribution (HOD) models, and mock catalogs. These comparisons suggest that quasars reside in a broad range of host halos. The host halo mass distributions significantly overlap with each other for quasars at different luminosities, implying a poor correlation between halo mass and instantaneous quasar luminosity. We also find that the quasar HOD parameterization is largely degenerate such that different HODs can reproduce the CCF equally well, but with different satellite fractions and host halo mass distributions. These results highlight the limitations and ambiguities in modeling the distribution of quasars with the standard HOD approach.

  5. Rotation, Stability and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J. W.

    2007-07-01

    Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

  6. On Job Rotation

    OpenAIRE

    Metin M. Cosgel; Thomas J. Miceli

    1998-01-01

    A fundamental principle of economics with which Adam Smith begins The Wealth of Nations is the division of labor. Some firms, however, have been pursuing a practice called job rotation, which assigns each worker not to a single and specific task but to a set of several tasks among which he or she rotates with some frequency. We examine the practice of job rotation as a serious alternative to specialization, with three objectives. The first is to consider current and historical examples of job...

  7. Rotator cuff - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000358.htm Rotator cuff - self-care To use the sharing features on ... and shoulder exercises may help ease your symptoms. Rotator Cuff Problems Common rotator cuff problems include: Tendinitis , which ...

  8. Rotating universe models

    International Nuclear Information System (INIS)

    Tozini, A.V.

    1984-01-01

    A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt

  9. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  10. ROTATION RATE DIFFERENCES OF POSITIVE AND NEGATIVE SOLAR MAGNETIC FIELDS BETWEEN ±60° LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X. J.; Xie, J. L., E-mail: shixiangjun@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-04-15

    Based on a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotations Nos. 1625 to 2135 (from 1975 February to 2013 March), the sidereal rotation rates of the positive and negative magnetic fields in the latitude range of ±60° are obtained, and the rotation rate differences between them are investigated. The time–latitude distribution of the rate differences is shown, which looks like a butterfly diagram at the low and middle latitudes. For comparison, the time–latitude distribution of the longitudinally averaged photospheric magnetic fields is shown. We conclude that the magnetic fields having the same polarity as the leading sunspots at a given hemisphere rotate faster than those exhibiting the opposite polarity at low and middle latitudes. However, at higher latitudes, the magnetic fields having the same polarity as the leading sunspots at a given hemisphere do not always rotate faster than those with the opposite polarity. Furthermore, the relationship between the rotation rate differences and solar magnetic fields is studied through a correlation analysis. Our result shows that the correlation coefficients between them reach maximum values at 13° (14°) latitude in the northern (southern) hemisphere, and change sign at 28° latitude in both hemispheres, then reach their minimum values at 58° (53°) latitude in the northern (southern) hemisphere.

  11. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    Science.gov (United States)

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.

  12. MODERATE C IV ABSORBER SYSTEMS REQUIRE 1012 M☉ DARK MATTER HALOS AT z ∼ 2.3: A CROSS-CORRELATION STUDY OF C IV ABSORBER SYSTEMS AND QUASARS IN SDSS-III BOSS DR9

    International Nuclear Information System (INIS)

    Vikas, Shailendra; Wood-Vasey, W. Michael; Lundgren, Britt; Ross, Nicholas P.; Myers, Adam D.; AlSayyad, Yusra; York, Donald G.; Schneider, Donald P.; Brinkmann, J.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Snedden, Stephanie; Ge, Jian; Muna, Demitri; Pâris, Isabelle; Petitjean, Patrick

    2013-01-01

    We measure the two-point cross-correlation function of C IV absorber systems and quasars, using spectroscopic data from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS; Data Release 9). The 19,701 quasars and 6149 C IV ''moderate'' absorbers, 0.28 Å 2 and represent a factor of two increase in sample size over previous investigations. We find a correlation scale length and slope of the redshift-space cross-correlation function of s 0 = 8.46 ± 1.24 Mpc, γ = 1.68 ± 0.19, in the redshift-space range 10 0 = 7.76 ± 2.80 Mpc, γ = 1.74 ± 0.21. We measure the combined quasar and C IV bias to be b QSO b C I V = 8.81 ± 2.28. Using an estimate of b QSO from the quasar auto-correlation function we find b CIV = 2.38 ± 0.62. This b CIV implies that EW > 0.28 Å C IV absorbers at z ∼ 2.3 are typically found in dark matter halos that have masses ≥10 11.3 -10 13.4 M ☉ at that redshift. The complete BOSS sample will triple the number of both quasars and absorption systems and increase the power of this cross-correlation measurement by a factor of two.

  13. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    Science.gov (United States)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic

  14. Rotating positron tomographs revisited

    International Nuclear Information System (INIS)

    Townsend, D.; Defrise, M.; Geissbuhler, A.

    1994-01-01

    We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

  15. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel

    1997-01-01

    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  16. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  17. Rotating quantum states

    International Nuclear Information System (INIS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2014-01-01

    We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space–time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress–energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space–time geometries

  18. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  19. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  20. Negative Rotation Cinch Strap.

    Science.gov (United States)

    This project discloses an improved unitary parachute torso harness, having a single fastening means, wherein an auxillary tightening strap is...attached to the groin straps of said harness. Said auxillary straps are used to prevent torso rotation or harness slippage and to prevent harness elongation

  1. A rotating string

    International Nuclear Information System (INIS)

    Jensen, B.

    1993-06-01

    The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs

  2. Rotator Cuff Injuries.

    Science.gov (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  3. Rotational dynamics with Tracker

    International Nuclear Information System (INIS)

    Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

  4. The Axial Curve Rotator.

    Science.gov (United States)

    Hunter, Walter M.

    This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…

  5. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  6. Dynamic inter-subunit interactions in thermophilic F1-ATPase subcomplexes studied by cross-correlated relaxation-enhanced polarization transfer NMR

    International Nuclear Information System (INIS)

    Kobayashi, Masumi; Yagi, Hiromasa; Yamazaki, Toshio; Yoshida, Masasuke; Akutsu, Hideo

    2008-01-01

    F 1 -ATPase is a unique enzyme in terms of its rotational catalytic activity. The smallest unit showing this property is the α 3 β 3 γ complex (351 kDa). For investigation of such a huge system by means of solution NMR, we have explored a suitable NMR method using F 1 -ATPase subcomplexes from a thermophilic Bacillus PS3 including an α 3 β 3 hexamer (319 kDa). Pulse sequences for large molecules, effects of deuteration and simplification of the spectra were examined in this work. Since the β subunit includes the catalytic site, this was the target of the analysis in this work. The combination of [ 15 N, 1 H]-CRINEPT-HMQC-[ 1 H]-TROSY, deuteration of both α and β subunits, and segmental isotope-labeling was found essential to analyze such a huge and complex molecular system. Utilizing this method, subcomplexes composed of α and β subunits were investigated in terms of inter-subunit interactions. It turned out that there is equilibrium among monomers, heterodimers and the α 3 β 3 hexamers in solution. The rate of exchange between the dimer and hexamer is in the slow regime on the NMR time scale. In chemical shift perturbation experiments, the N-terminal domain was found to be involved in strong inter-subunit interactions. In contrast, the C-terminal domain was found to be mobile even in the hexamer

  7. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  8. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  9. Role of Colored Cross-Correlation in Additive and Multiplicative White Noises on Upper Bound of Time Derivative of Information Entropy[PACS numbers: 02.50.Ey, 05.40.-a

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Gurupada; Majee, Pradip; Bag, Bidhan Chandra [Department of Chemistry, Visva-Bharati, Santiniketan 731 235 (India); Barik, Debashis [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2006-09-15

    In this paper we have studied upper bound of time derivative of information entropy for colored cross-correlated noise driven open systems. The upper bound is calculated based on the Fokker-Planck equation and the Schwartz inequality principle. Our results consider the effect of the noise correlation strength and correlation time due to the correlation between additive and multiplicative white noises on the upper bound as well as relaxation time. The interplay of deterministic and random forces reveals extremal nature of the upper bound and its deviation from the time derivative of information entropy. (author)

  10. Rotator Cuff Injuries - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...

  11. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  12. Rotatable seal assembly

    International Nuclear Information System (INIS)

    Garibaldi, J.L.; Logan, C.M.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an oring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers

  13. Rotator cuff disease

    International Nuclear Information System (INIS)

    Ziatkin, M.B.; Iannotti, J.P.; Roberts, M.; Dalinka, M.K.; Esterhai, J.L.; Kressel, H.Y.; Lenkinski, R.E.

    1988-01-01

    A dual-surface-coil array in a Helmholtz configuration was used to evaluate th rotator cuff in ten normal volunteers and 44 patients. Studies were performed with a General Electric 1.5-T MR imager. Thirty-two patients underwent surgery, 25 of whom also underwent arthrography. In comparison with surgery, MR imaging was more sensitive than arthrography for rotator cuff tears (91% vs 71%). The specificity and accuracy of MR imaging were 88% and 91%. The accuracy increased with use of an MR grading system. MR findings correlated with surgical findings with regard to the size and site of tears. MR findings of cuff tears were studied with multivariate analysis. Correlation was also found between a clinical score, the MR grade, and the clinical outcome

  14. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan

    2009-01-01

    it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form...

  15. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  16. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  17. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  18. The rotational spectrum of IBr

    International Nuclear Information System (INIS)

    Tiemann, E.; Moeller, T.

    1975-01-01

    The microwave spectrum of IBr was measured in the low rotational transition J = 3 → 2 in order to resolve the hyperfine structure as completely as possible. Rotational constants and quadrupole coupling constants were derived for both nuclei. The observation of the rotational spectrum in different vibrational states yields the vibrational dependence of the rotational constants as well as of the hyperfine parameters. The Dunham potential coefficients α 0 , α 1 , α 2 , α 3 are given. (orig.) [de

  19. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  20. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  1. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  2. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  3. Autonomous quantum rotator

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Imparato, Alberto

    2018-01-01

    to a directed rotary motion. At variance with the classical case, the thermal fluctuations in the baths give rise to a non-vanishing average torque contribution; this is a genuine quantum effect akin to the Casimir effect. In the steady state the heat current flowing between the two baths is systematically......, the rotator cannot work either as a heat pump or as a heat engine. We finally use our exact results to extend an ab initio quantum simulation algorithm to the out-of-equilibrium regime. Copyright (C) EPLA, 2018...

  4. Rotating specimen rack repair

    International Nuclear Information System (INIS)

    Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.

    1984-01-01

    In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors

  5. Rotational anomalies without anyons

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1985-01-01

    A specific field theory is proposed in two spatial dimensions which has anomalous rotational properties. Although this might be expected to lead to a concrete realization of what Wilczek refers to as the anyon, it is shown by utilizing the transformation properties of the system and the statistics of the underlying charge fields that anyonic interpolations between bosons and fermions do not occur. This leads to the suggestion that anyons inferred from semiclassical considerations will not survive the transition to a fully relativistic field theory

  6. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  7. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  8. Lunar Rotation, Orientation and Science

    Science.gov (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  9. A compact rotating dilution refrigerator

    Science.gov (United States)

    Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.

    2013-10-01

    We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

  10. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    2018-03-01

    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  11. Internal rotation of the Sun

    International Nuclear Information System (INIS)

    Duvall, T.L. Jr.; Goode, P.R.; Gouch, D.O.

    1984-01-01

    The frequency difference between prograde and retrograde sectoral solar oscillations is analysed to determine the rotation rate of the solar interior, assuming no latitudinal dependence. Much of the solar interior rotates slightly less rapidly than the surface, while the innermost part apparently rotates more rapidly. The resulting solar gravitational quadrupole moment is J 2 = (1.7 +- 0.4) x 10 -7 and provides a negligible contribution to current planetary tests of Einstein's theory of general relativity. (author)

  12. Real time monitoring of induced seismicity in the Insheim and Landau deep geothermal reservoirs, Upper Rhine Graben, using the new SeisComP3 cross-correlation detector

    Science.gov (United States)

    Vasterling, Margarete; Wegler, Ulrich; Bruestle, Andrea; Becker, Jan

    2016-04-01

    Real time information on the locations and magnitudes of induced earthquakes is essential for response plans based on the magnitude frequency distribution. We developed and tested a real time cross-correlation detector focusing on induced microseismicity in deep geothermal reservoirs. The incoming seismological data are cross-correlated in real time with a set of known master events. We use the envelopes of the seismograms rather than the seismograms themselves to account for small changes in the source locations or in the focal mechanisms. Two different detection conditions are implemented: After first passing a single trace correlation condition, secondly a network correlation is calculated taking the amplitude information of the seismic network into account. The magnitude is estimated by using the respective ratio of the maximum amplitudes of the master event and the detected event. The detector is implemented as a real time tool and put into practice as a SeisComp3 module, an established open source software for seismological real time data handling and analysis. We validated the reliability and robustness of the detector by an offline playback test using four month of data from monitoring the power plant in Insheim (Upper Rhine Graben, SW Germany). Subsequently, in October 2013 the detector was installed as real time monitoring system within the project "MAGS2 - Microseismic Activity of Geothermal Systems". Master events from the two neighboring geothermal power plants in Insheim and Landau and two nearby quarries are defined. After detection, manual phase determination and event location are performed at the local seismological survey of the Geological Survey and Mining Authority of Rhineland-Palatinate. Until November 2015 the detector identified 454 events out of which 95% were assigned correctly to the respective source. 5% were misdetections caused by local tectonic events. To evaluate the completeness of the automatically obtained catalogue, it is

  13. Stochastic resonance in a gain-noise model of a single-mode laser driven by pump noise and quantum noise with cross-correlation between real and imaginary parts under direct signal modulation

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Mei; Cao Li; Wu Da-Jin

    2007-01-01

    Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR)separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ and the deterministic steady-state intensity I0.In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of τand λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.

  14. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  15. Sporcularda rotator cuff problemleri

    OpenAIRE

    Guven, Osman; Guven, Zeynep; Gundes, Hakan; Yalcin, Selim

    2004-01-01

    Rotator cuff tendinitinin etyolojisinde genellikle birden çok faktörün kombinasyonu görülür. Yüzme, raket sporları ve fırlatma sporlarının özellikle gelişmiş ülkelerde giderek yaygınlaşması bu konuya olan ilginin artmasına sebep olmuştur. Eski konseptlerde aktif bir sporcuda tedavinin başarısı genellikle eski atletik seviyesine dönmesi ile ölçülürdü. Son zamanlarda atletik tekniklerin analizi, atroskopik evaluasyon gibi yeni bir Iükse sahip olmamız ve Iiteratürün yeniden gözden geçirilmesi il...

  16. Kinematic relationship between rotation of lumbar spine and hip joints during golf swing in professional golfers.

    Science.gov (United States)

    Mun, Frederick; Suh, Seung Woo; Park, Hyun-Joon; Choi, Ahnryul

    2015-05-14

    Understanding the kinematics of the lumbar spine and hip joints during a golf swing is a basic step for identifying swing-specific factors associated with low back pain. The objective of this study was to examine the kinematic relationship between rotational movement of the lumbar spine and hip joints during a golf swing. Fifteen professional golfers participated in this study with employment of six infrared cameras to record their golf swings. Anatomical reference system of the upper torso, pelvis and thigh segments, and the location of each hip and knee joint were defined by the protocols of the kinematic model of previous studies. Lumbar spine and hip joint rotational angle was calculated utilizing the Euler angle method. Cross-correlation and angle-angle plot was used to examine the degree of kinematic relationship between joints. A fairly strong coupling relationship was shown between the lumbar spine and hip rotational movements with an average correlation of 0.81. Leading hip contribution to overall rotation was markedly high in the early stage of the downswing, while the lumbar spine contributed greater towards the end of the downswing; however, the relative contributions of the trailing hip and lumbar spine were nearly equal during the entire downswing. Most of the professional golfers participated in this study used a similar coordination strategy when moving their hips and lumbar spine during golf swings. The rotation of hips was observed to be more efficient in producing the overall rotation during the downswing when compared to the backswing. These results provide quantitative information to better understand the lumbar spine and hip joint kinematic characteristics of professional golfers. This study will have great potential to be used as a normal control data for the comparison with kinematic information among golfers with low back pain and for further investigation of golf swing-specific factors associated with injury.

  17. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  18. Rotation of the planet mercury.

    Science.gov (United States)

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  19. Stabilities of MHD rotational discontinuities

    International Nuclear Information System (INIS)

    Wang, S.

    1984-11-01

    In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)

  20. Optical isolation by Faraday rotator

    International Nuclear Information System (INIS)

    Kasai, Takeshi; Matsushima, Isao; Nemoto, Fusashi; Yano, Masaaki

    1984-01-01

    Three Faraday rotators designed as optical isolators in a high power glass laser system are described. The spatial fluctuation of applied magnetic field is less than 1% throughout the Faraday glass rod. The Faraday rotators transmit more than 80% of the forward-going laser light and reject more than 96% of the backward-going light. (author)

  1. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  2. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  3. Flow past a rotating cylinder

    Science.gov (United States)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  4. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu

    2017-08-01

    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  5. Hydrodynamics of rotating superfluids

    International Nuclear Information System (INIS)

    Chandler, E.A.

    1981-01-01

    In this thesis, a coarse grained hydrodynamics is developed from the exact description of Tkachenko. To account for the dynamics of the vortex lattice, the macroscopic vortex displacement field is treated as an independent degree of freedom. The conserved energy is written in terms of the coarse-grained normal fluid, superfluid, and vortex velocities and includes an elastic energy associated with deformations of the vortex lattice. Equations of motion consistent with the conservation of energy, entropy and vorticity and containing mutual friction terms arising from microscopic interactions between normal fluid excitations and the vortex lines are derived. When the vortex velocity is eliminated from the damping terms, this system of equations becomes essentially that of BK with added elastic terms in the momentum stress tensor and energy current. The dispersion relation and damping of the first and second sound modes and the two transverse modes sustained by the system are investigated. It is shown that mutual friction mixes the transverse modes of the normal and superfluid components and damps the transverse mode associated with the relative velocity of these components, making this wave evanescent in the plane perpendicular to the rotation axis. The wave associated with transverse motion of the total mass current is a generalized Tkachenko mode, whose dispersion relation reduces to that derived by Tkachenko wave when the wavevector lies in this plane

  6. Magnetostrophic Rotating Magnetoconvection

    Science.gov (United States)

    King, Eric; Aurnou, Jonathan

    2016-11-01

    Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.

  7. Rotating quantum Gaussian packets

    International Nuclear Information System (INIS)

    Dodonov, V V

    2015-01-01

    We study two-dimensional quantum Gaussian packets with a fixed value of mean angular momentum. This value is the sum of two independent parts: the ‘external’ momentum related to the motion of the packet center and the ‘internal’ momentum due to quantum fluctuations. The packets minimizing the mean energy of an isotropic oscillator with the fixed mean angular momentum are found. They exist for ‘co-rotating’ external and internal motions, and they have nonzero correlation coefficients between coordinates and momenta, together with some (moderate) amount of quadrature squeezing. Variances of angular momentum and energy are calculated, too. Differences in the behavior of ‘co-rotating’ and ‘anti-rotating’ packets are shown. The time evolution of rotating Gaussian packets is analyzed, including the cases of a charge in a homogeneous magnetic field and a free particle. In the latter case, the effect of initial shrinking of packets with big enough coordinate-momentum correlation coefficients (followed by the well known expansion) is discovered. This happens due to a competition of ‘focusing’ and ‘de-focusing’ in the orthogonal directions. (paper)

  8. Rotator cuff pathology

    International Nuclear Information System (INIS)

    Pigeau, I.; Doursounian, L.; Maigne, J.Y.; Guinet, C.; Meary, E.; Buy, J.N.; Touzard, R.C.; Vadrot, D.; Laval-Jeantet, M.

    1989-01-01

    Fifteen volunteers and 73 patients with suspected rotator cuff lesions were examined at 0.5 T with T2 * -weighted gradient-echo (GE) MR imaging (700/33/30 degrees) (oblique coronal and sagittal 3 mm thick, surface coil). Results were compared with those of arthrography (all cases), T1-weighted GE imaging (400/20/90 degrees) (35 cases), surgery (28 cases), and T2-weighted spin-echo (SE) images (2,000/60-120) (17 cases). GE images demonstrated all tears (complete, 32, partial, 12) and was superior to arthrography in determining site and size and in displaying muscles (critical point in surgical planning). In 20 cases without tears on arthrography, GE imaging demonstrated five cases of tendinitis, five cases of bursitis, and six probable intratendinous or superficial partial tears. T2 * -weighted GE imaging was superior to T2-weighted SE and T1-weighted GE imaging, with higher fluid contrast and a low fat signal. Therefore, it might replace arthrography in the diagnosis and surgical approach to this pathology

  9. Sidescan Sonar Image Matching Using Cross Correlation

    DEFF Research Database (Denmark)

    Thisen, Erik; Sørensen, Helge Bjarup Dissing; Stage, Bjarne

    2003-01-01

    When surveying an area for sea mines with a sidescan sonar, the ability to find the same object in two different sonar images is helpful to determine the nature of the object. The main problem with matching two sidescan sonar images is that a scene changes appearance when viewed from different vi...

  10. Magnified Weak Lensing Cross Correlation Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60 nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is using the tomography data along with simulations in a thesis expected to be completed in June 2012. Loic Guennou (thesis advisors, Adami and Le Brun) whose PhD is expected in 2013. In addition, proposals on the European side were submitted to continue spectroscopic calibration of the photo-zs in clusters versus the field and also to provide further z-band coverage for clusters that are within 1 degree of each other so that more than one cluster image can be acquired per exposure. Preliminary results have been presented at 6 conferences in 2010: Murphy and Guennou at the Great Lakes Cosmology Conference, Clowe, Edinburgh and Garching, Durret, Garching, and Mazure, Japan. Despite favorable reviews is not being continued. Hence, this is a final technical report..

  11. Toroidal rotation studies in KSTAR

    Science.gov (United States)

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  12. Rotational discontinuities in anisotropic plasmas

    International Nuclear Information System (INIS)

    Omidi, N.

    1992-01-01

    The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense

  13. [Rotator cuff tear athropathy prevalence].

    Science.gov (United States)

    Guerra-Soriano, F; Encalada-Díaz, M I; Ruiz-Suárez, M; Valero-González, F S

    2017-01-01

    Glenohumeral arthritis secondary to massive rotator cuff tear presents with a superior displacement and femoralization of the humeral head with coracoacromial arch acetabularization. The purpose of this study was to establish prevalence of rotator cuff tear artropathy (CTA) at our institution. Four hundred electronic records were reviewed from which we identified 136 patients with rotator cuff tears. A second group was composed with patients with massive cuff tears that were analized and staged by the Seebauer cuff tear arthropathy classification. Thirty four patients with massive rotator cuff tears were identified, 8 male and 26 female (age 60.1 ± 10.26 years). Massive rotator cuff tear prevalence was 25%. CTA prevalence found in the rotator cuff group was 19 and 76% in the massive cuff tears group. Patients were staged according to the classification with 32% in stage 1a, 11% 1b, 32% 2a and 0% 2b. CTA prevalence in patients with rotator cuff tears and massive cuff tears is higher than the one reported in American population. We consider that a revision of the Seebauer classification to be appropriate to determine its reliability.

  14. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  15. Effect of rotation on convective mass transfer in rotating channels

    International Nuclear Information System (INIS)

    Pharoah, J.G.; Djilali, N.

    2002-01-01

    Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)

  16. Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis

    Science.gov (United States)

    Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.

    2017-10-01

    Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  17. Axial gap rotating electrical machine

    Science.gov (United States)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  18. On the relativity of rotation

    International Nuclear Information System (INIS)

    Gron, O.

    2010-01-01

    The question whether rotational motion is relative according to the general theory of relativity is discussed. Einstein's ambivalence concerning this question is pointed out. In the present article I defend Einstein's way of thinking on this when he presented the theory in 1916. The significance of the phenomenon of perfect inertial dragging in connection with the relativity of rotational motion is discussed. The necessity of introducing an extended model of the Minkowski spacetime, in which a globally empty space is supplied with a cosmic mass shell with radius equal to its own Schwarzschild radius, in order to extend the principle of relativity to accelerated and rotational motion, is made clear.

  19. North–South Asymmetry of the Rotation of the Solar Magnetic Field

    Science.gov (United States)

    Xie, Jinglan; Shi, Xiangjun; Qu, Zhining

    2018-03-01

    Using the rotation rates of the solar magnetic field during solar cycles 21 to 23 obtained by Chu et al. by analyzing the synoptic magnetic maps produced by the NSO/Kitt Peak and SOHO/MDI during the years 1975 to 2008, the temporal variation of the equatorial rotation rate (A) and the latitude gradient of rotation (B) in the northern and southern hemispheres are studied separately. The results indicate that the rotation is more differential (about 4.3%) in the southern hemisphere in the considered time frame. It is found that the north–south asymmetry of A and the asymmetry of B show increasing trends in the considered time frame, while the north–south asymmetry of the solar activity shows a decreasing trend. There exists a significant negative correlation (at 95% confidence level) between the asymmetry of B and the asymmetry of the solar activity, and this may be due to stronger magnetic activity in a certain hemisphere that may suppress the differential rotation to some extent. The periodicities in the variation of A and B are also studied, and periods of about 5.0 and 10.5 yr (5.5 and 10.4 yr) can be found for the variation of the northern (southern) hemisphere B. Moreover, the north–south asymmetry of A and the asymmetry of B have similar periods of about 2.6–2.7 and 5.2–5.3 yr. Further, cross-correlation analysis indicates that there exists a phase difference (about eight months) between the northern and southern hemisphere B, and this means that the northern hemisphere B generally leads by about eight months.

  20. On rapid rotation in stellarators

    International Nuclear Information System (INIS)

    Helander, Per

    2008-01-01

    The conditions under which rapid plasma rotation may occur in a three-dimensional magnetic field, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields which are approximately isometric. In an isometric magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry, B=B(ψ,l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be in the direction of the vector ∇ψx∇B. (author)

  1. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain

    2011-03-01

    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  2. Differential rotation in magnetic stars

    International Nuclear Information System (INIS)

    Moss, D.

    1981-01-01

    The possibility that large-scale magnetic fields in stars are the product of a contemporary dynamo situated in the convective stellar core, rather than being a fossil from an earlier stage in the history of the star, is investigated. It is demonstrated that then the envelope will almost inevitably be in a state of differential rotation. Some simple models are constructed to illustrate the magnitude of the effects on the structure of the envelope and magnetic field. It is found that, for models which are relatively rapidly rotating, a modest differential rotation at the surface of the core may increase considerably the ratio of internal to surface field, but only give rise to a small surface differential rotation. (author)

  3. Conjunct rotation: Codman's paradox revisited.

    Science.gov (United States)

    Wolf, Sebastian I; Fradet, Laetitia; Rettig, Oliver

    2009-05-01

    This contribution mathematically formalizes Codman's idea of conjunct rotation, a term he used in 1934 to describe a paradoxical phenomenon arising from a closed-loop arm movement. Real (axial) rotation is distinguished from conjunct rotation. For characterizing the latter, the idea of reference vector fields is developed to define the neutral axial position of the humerus for any given orientation of its long axis. This concept largely avoids typical coordinate singularities arising from decomposition of 3D joint motion and therefore can be used for postural (axial) assessment of the shoulder joint both clinically and in sports science in almost the complete accessible range of motion. The concept, even though algebraic rather complex, might help to get an easier and more intuitive understanding of axial rotation of the shoulder in complex movements present in daily life and in sports.

  4. Current status of rotational atherectomy.

    Science.gov (United States)

    Tomey, Matthew I; Kini, Annapoorna S; Sharma, Samin K

    2014-04-01

    Rotational atherectomy facilitates percutaneous coronary intervention for complex de novo lesions with severe calcification. A strategy of routine rotational atherectomy has not, however, conferred reduction in restenosis or major adverse cardiac events. As it is technically demanding, rotational atherectomy is also uncommon. At this 25-year anniversary since the introduction of rotational atherectomy, we sought to review the current state-of-the-art in rotational atherectomy technique, safety, and efficacy data in the modern era of drug-eluting stents, strategies to prevent and manage complications, including slow-flow/no-reflow and burr entrapment, and appropriate use in the context of the broader evolution in the management of stable ischemic heart disease. Fundamental elements of optimal technique include use of a single burr with burr-to-artery ratio of 0.5 to 0.6-rotational speed of 140,000 to 150,000 rpm, gradual burr advancement using a pecking motion, short ablation runs of 15 to 20 s, and avoidance of decelerations >5,000 rpm. Combined with meticulous technique, optimal antiplatelet therapy, vasodilators, flush solution, and provisional use of atropine, temporary pacing, vasopressors, and mechanical support may prevent slow-flow/no-reflow, which in contemporary series is reported in 0.0% to 2.6% of cases. On the basis of the results of recent large clinical trials, a subset of patients with complex coronary artery disease previously assigned to rotational atherectomy may be directed instead to medical therapy alone or bypass surgery. For patients with de novo severely calcified lesions for which rotational atherectomy remains appropriate, referral centers of excellence are required. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Rotating Shadowband Spectroradiometer (RSS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kiedron, P; Schlemmer, J; Klassen, M

    2005-01-01

    The rotating shawdowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally-resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to 1050-nm range.

  6. Faraday rotation measurements at Ootacamund

    Science.gov (United States)

    Sethia, G.; Chandra, H.; Deshpande, M. R.; Rastogi, R. G.

    1978-01-01

    The results of Faraday rotation measurements made at Ootacamund during ATS-6 phase II are presented. For summer and equinoctial months, even though no clear noon bite-out is observed in the variation of Faraday a decrease is observed in the rate of increase of rotation around 0900-1000 hours LT. This is attributed to the 'fountain effect' which is responsible for the noontime bite-out in F2-region peak electron density.

  7. Homogeneous immunoassay for the cancer marker alpha-fetoprotein using single wavelength excitation fluorescence cross-correlation spectroscopy and CdSe/ZnS quantum dots and fluorescent dyes as labels

    International Nuclear Information System (INIS)

    Wang, Jinjie; Liu, Heng; Huang, Xiangyi; Ren, Jicun

    2016-01-01

    The article describes sensitive and selective homogeneous immunoassays for the liver cancer biomarker alpha-fetoprotein (AFP) in human serum by using single wavelength excitation fluorescence cross-correlation spectroscopy (SW-FCCS). Both competitive and sandwich immunoassay modes were applied, and AFP served as a model analyte. Fluorescent CdSe/ZnS quantum dots (with a 655 nm emission peak) and the fluorophore Alexa Fluor 488 (520 nm emission) were chosen to label the antibodies in the sandwich mode, and the antibody and the antigen in the competitive mode. Under optimized conditions, the sandwich assay has a linear dynamic range that covers the 20 pM to 5.0 nM concentration range. The competitive assay, in turn, extends from 180 pM to 15.0 nM. The respective detection limits are 20 pM and 180 pM. The method was successfully applied to directly determine AFP in (spiked) clinical samples, and results were in good agreement with data obtained via ELISAs. (author)

  8. Relaxation processes in rotational motion

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1986-01-01

    At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs

  9. The rotation of galaxy clusters

    International Nuclear Information System (INIS)

    Tovmassian, H.M.

    2015-01-01

    The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b> 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60 per cent, and clusters of BMI type with dominant cD galaxy, ≈ 35 per cent. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have mergings with other clusters and groups of galaxies, in the result of which the rotation has been prevented

  10. Refueling system with small diameter rotatable plugs

    International Nuclear Information System (INIS)

    Ritz, W.C.

    1987-01-01

    This patent describes a liquid-metal fastbreeder nuclear reactor comprising a reactor pressure vessel and closure head therefor, a reactor core barrel disposed within the reactor vessel and enclosing a reactor core having therein a large number of closely spaced fuel assemblies, and the reactor core barrel and the reactor core having an approximately concentric circular cross-sectional configuration with a geometric center in predetermined location within the reactor vessel. The improved refueling system described here comprises: a large controllably rotatable plug means comprising the substantial portion of the closure head, a reactor upper internals structure mounted from the large rotatable plug means. The large rotatable plug means has an approximately circular configuration which approximates the cross-sectional configuration of the reactor core barrel with a center of rotation positioned a first predetermined distance from the geometric center of the reactor core barrel so that the large rotatable plug means rotates eccentrically with respect to the reactor core barrel; a small controllably rotatable plug means affixed to the large rotatable plug means and rotatable with respect thereto. The small rotatable plug means has a center of rotation which is offset a second predetermined distance from the rotational center of the large rotatable plug means so that the small rotatable plug means rotates eccentrically with respect to the large rotatable plug means

  11. Tokamak rotation and charge exchange

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.

    1991-01-01

    In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref

  12. The structure of rotational discontinuities

    International Nuclear Information System (INIS)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle θ between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When θ is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when θ is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes

  13. Motions on a rotating planet

    Science.gov (United States)

    Schröer, H.

    In chapter 1 we want to describe the motion of a falling body on a rotating planet. The planet rotates with an arbitrary changable angular velocity and has a translational acceleration. We obtain 3 differential equations. For the general gravitational field an exact solution is possible, when the differential equation system is explicit solvable. Then we consider the case, if the angular velocity and the translational acceleration is constant. With a special transformation we get 3 partial differential equations of first order. Instead of a planet sphere we can choose a general body of rotation. Even general bodies are possible. Chapter 2 contains the motion in a local coordinate system on planet's surface. We have an inhomogeneous linear differential equation of first order. If the angular velocity is constant, we get a system with constant coefficients. There is an english and a german edition.

  14. Rotated balance in humans due to repetitive rotational movement

    Science.gov (United States)

    Zakynthinaki, M. S.; Madera Milla, J.; López Diaz De Durana, A.; Cordente Martínez, C. A.; Rodríguez Romo, G.; Sillero Quintana, M.; Sampedro Molinuevo, J.

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  15. Mach's principle and rotating universes

    International Nuclear Information System (INIS)

    King, D.H.

    1990-01-01

    It is shown that the Bianchi 9 model universe satisfies the Mach principle. These closed rotating universes were previously thought to be counter-examples to the principle. The Mach principle is satisfied because the angular momentum of the rotating matter is compensated by the effective angular momentum of gravitational waves. A new formulation of the Mach principle is given that is based on the field theory interpretation of general relativity. Every closed universe with 3-sphere topology is shown to satisfy this formulation of the Mach principle. It is shown that the total angular momentum of the matter and gravitational waves in a closed 3-sphere topology universe is zero

  16. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    International Nuclear Information System (INIS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-01-01

    Inelastic structure factors for rotational transitions of uniaxial NH 3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling

  17. Starspots on the fastest rotators in the β Pictoris moving group

    Science.gov (United States)

    García-Alvarez, D.; Lanza, A. F.; Messina, S.; Drake, J. J.; van Wyk, F.; Shobbrook, R. R.; Butler, C. J.; Kilkenny, D.; Doyle, J. G.; Kashyap, V. L.

    2011-09-01

    Aims: We carried out high-resolution spectroscopy and BV(I)C photometric monitoring of the two fastest late-type rotators in the nearby β Pictoris moving group, HD 199143 (F7V) and CD-64°1208 (K7V). The motivation for this work is to investigate the rotation periods and photospheric spot patterns of these very young stars, with a longer term view to probing the evolution of rotation and magnetic activity during the early phases of main-sequence evolution. We also aim to derive information on key physical parameters, such as rotational velocity and rotation period. Methods: We applied maximum entropy (ME) and Tikhonov regularizing (TR) criteria to derive the surface spot map distributions of the optical modulation observed in HD 199143 (F7 V) and CD-64°1208 (K7 V). We also used cross-correlation techniques to determine stellar parameters such as radial velocities and rotational velocities. Lomb-Scargle periodograms were used to obtain the rotational periods from differential magnitude time series. Results: We find periods and inclinations of 0.356 days and 21.5 deg for HD 199143, and 0.355 days and 50.1 deg for CD-64°1208. The spot maps of HD 199143 obtained from the ME and TR methods are very similar, although the latter gives a smoother distribution of the filling factor. Maps obtained at two different epochs three weeks apart show a remarkable increase in spot coverage amounting to ~7% of the surface of the photosphere over a time period of only ~20 days. The spot maps of CD-64°1208 from the two methods show good longitudinal agreement, whereas the latitude range of the spots is extended to cover the whole visible hemisphere in the TR map. The distributions obtained from the first light curve of HD 199143 show the presence of an extended and asymmetric active longitude with the maximum filling factor at longitude ~325°. A secondary active longitude is present at ~100°. The spotted area distributions on CD-64°1208 show two active longitudes separated by

  18. Optimal and fast rotational alignment of volumes with missing data in Fourier space.

    Science.gov (United States)

    Shatsky, Maxim; Arbelaez, Pablo; Glaeser, Robert M; Brenner, Steven E

    2013-11-01

    Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution corresponding to individual macromolecular complexes. Characterization of macromolecular complexes in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biological interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of computational methods that optimize alignment between two sub-tomographic volumes. The alignment optimization is hampered by the fact that the missing data in Fourier space has to be taken into account during the rotational search. A similar problem appears in single particle electron microscopy where the random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We present a fast implementation of a method guaranteed to find an optimal rotational alignment that maximizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fourier space. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Rotation of White Dwarf Stars

    OpenAIRE

    Kawaler, Steven D.

    2014-01-01

    I discuss and consider the status of observational determinations of the rotation velocities of white dwarf stars via asteroseismology and spectroscopy. While these observations have important implications on our understanding of the angular momentum evolution of stars in their late stages of evolution, more direct methods are sorely needed to disentangle ambiguities.

  20. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  1. Rotation in a gravitational billiard

    Science.gov (United States)

    Peraza-Mues, G. G.; Carvente, Osvaldo; Moukarzel, Cristian F.

    Gravitational billiards composed of a viscoelastic frictional disk bouncing on a vibrating wedge have been studied previously, but only from the point of view of their translational behavior. In this work, the average rotational velocity of the disk is studied under various circumstances. First, an experimental realization is briefly presented, which shows sustained rotation when the wedge is tilted. Next, this phenomenon is scrutinized in close detail using a precise numerical implementation of frictional forces. We show that the bouncing disk acquires a spontaneous rotational velocity whenever the wedge angle is not bisected by the direction of gravity. Our molecular dynamics (MD) results are well reproduced by event-driven (ED) simulations. When the wedge aperture angle θW>π/2, the average tangential velocity Rω¯ of the disk scales with the typical wedge vibration velocity vb, and is in general a nonmonotonic function of the overall tilt angle θT of the wedge. The present work focuses on wedges with θW=2π/3, which are relevant for the problem of spontaneous rotation in vibrated disk packings. This study makes part of the PhD Thesis of G. G. Peraza-Mues.

  2. Visual and Haptic Mental Rotation

    Directory of Open Access Journals (Sweden)

    Satoshi Shioiri

    2011-10-01

    Full Text Available It is well known that visual information can be retained in several types of memory systems. Haptic information can also be retained in a memory because we can repeat a hand movement. There may be a common memory system for vision and action. On the one hand, it may be convenient to have a common system for acting with visual information. On the other hand, different modalities may have their own memory and use retained information without transforming specific to the modality. We compared memory properties of visual and haptic information. There is a phenomenon known as mental rotation, which is possibly unique to visual representation. The mental rotation is a phenomenon where reaction time increases with the angle of visual target (eg,, a letter to identify. The phenomenon is explained by the difference in time to rotate the representation of the target in the visual sytem. In this study, we compared the effect of stimulus angle on visual and haptic shape identification (two-line shapes were used. We found that a typical effect of mental rotation for the visual stimulus. However, no such effect was found for the haptic stimulus. This difference cannot be explained by the modality differences in response because similar difference was found even when haptical response was used for visual representation and visual response was used for haptic representation. These results indicate that there are independent systems for visual and haptic representations.

  3. A rotating arc plasma invertor

    International Nuclear Information System (INIS)

    Reusch, M.F.; Jayaram, K.

    1987-02-01

    A device is described for the inversion of direct current to alternating current. The main feature is the use of a rotating plasma arc in crossed electric and magnetic fields as a switch. This device may provide an economic alternative to other inversion methods in some circumstances

  4. Ultrasonography of the Rotator Cuff

    International Nuclear Information System (INIS)

    Yoon, Yong Cheol

    2006-01-01

    The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance

  5. Ultrasonography of the Rotator Cuff

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Cheol [Samsung Medica Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)

    2006-09-15

    The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance

  6. Rotations in a Vertebrate Setting

    Science.gov (United States)

    McCollum, Gin

    2003-05-01

    Rotational movements of the head are often considered to be measured in a single three dimensional coordinate system implemented by the semicircular canals of the vestibular system of the inner ear. However, the vertebrate body -- including the nervous system -- obeys rectangular symmetries alien to rotation groups. At best, nervous systems mimic the physical rotation group in a fragmented way, only partially reintegrating physical movements in whole organism responses. The vestibular canal reference frame is widely used in nervous systems, for example by eye movements. It is used to some extent even in the cerebrum, as evidenced by the remission of hemineglect -- in which half of space is ignored -- when the vestibular system is stimulated. However, reintegration of space by the organism remains incomplete. For example, compensatory eye movements (which in most cases aid visual fixation) may disagree with conscious self-motion perception. In addition, movement-induced nausea, illusions, and cue-free perceptions demonstrate symmetry breaking or incomplete spatial symmetries. As part of a long-term project to investigate rotation groups in nervous systems, we have analyzed the symmetry group of a primary vestibulo-spinal projection.

  7. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George

    2015-01-01

    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  8. Black hole vacua and rotation

    International Nuclear Information System (INIS)

    Krishnan, Chethan

    2011-01-01

    Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.

  9. Perturbative treatment of nuclear rotations

    International Nuclear Information System (INIS)

    Civitarese, O.

    1980-01-01

    In this work, it is described the case corresponding to perturbative quantum treatment of a fermion system in free rotation and the divergences which resulted from the 'break' in symmetry, associated by the adoption of a deformed basis as a non pertubed solution. (A.C.A.S.) [pt

  10. Meniscus Stability in Rotating Systems

    Science.gov (United States)

    Reichel, Yvonne; Dreyer, Michael

    2013-11-01

    In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.

  11. Determination of 13C CSA Tensors: Extension of the Model-independent Approach to an RNA Kissing Complex Undergoing Anisotropic Rotational Diffusion in Solution

    International Nuclear Information System (INIS)

    Ravindranathan, Sapna; Kim, Chul-Hyun; Bodenhausen, Geoffrey

    2005-01-01

    Chemical shift anisotropy (CSA) tensor parameters have been determined for the protonated carbons of the purine bases in an RNA kissing complex in solution by extending the model-independent approach [Fushman, D., Cowburn, D. (1998) J. Am. Chem. Soc. 120, 7109-7110]. A strategy for determining CSA tensor parameters of heteronuclei in isolated X-H two-spin systems (X = 13 C or 15 N) in molecules undergoing anisotropic rotational diffusion is presented. The original method relies on the fact that the ratio κ 2 =R 2 auto /R 2 cross of the transverse auto- and cross-correlated relaxation rates involving the X CSA and the X-H dipolar interaction is independent of parameters related to molecular motion, provided rotational diffusion is isotropic. However, if the overall motion is anisotropic κ 2 depends on the anisotropy D parallel /D -perpendicular of rotational diffusion. In this paper, the field dependence of both κ 2 and its longitudinal counterpart κ 1 =R 1 auto /R 1 cross are determined. For anisotropic rotational diffusion, our calculations show that the average κ av = 1/2 (κ 1 +κ 2 ), of the ratios is largely independent of the anisotropy parameter D parallel /D -perpendicular . The field dependence of the average ratio κ av may thus be utilized to determine CSA tensor parameters by a generalized model-independent approach in the case of molecules with an overall motion described by an axially symmetric rotational diffusion tensor

  12. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro

    1954-01-01

    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  13. Wave-Driven Rotation In Centrifugal Mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  14. Magneto-rotational instability in differentially rotating liquid metals

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Lakhin, V.P.; Serebrennikov, K.S.

    2006-01-01

    We study the stability of Couette flow between two cylinders in the presence of axial magnetic field in local WKB approximation. We find the analytical expression of the critical angular velocity minimized over the wave number and the imposed magnetic field as a function of the measure of deviation of the rotation law from the Rayleigh line. The result found is in a good agreement with the previously known numerical results based on the global analysis. We perform a minimization of the critical Reynolds number over the wave number at fixed magnetic field both analytically and numerically. We show that a compromise between resistive suppression of magneto-rotational instability at weak magnetic field and the increase of the critical Reynolds number with the increase of magnetic field is possible. It takes place at moderate values of magnetic field of order 3x10 2 gauss giving the critical Reynolds number of order 4x10 4

  15. Rapidly rotating general relativistic stars. Pt. 2. Differentially rotating polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Hidemi [Tokyo Univ. (Japan). Faculty of Science; Eriguchi, Yoshiharu [Tokyo Univ. (Japan). Dept. of Astronomy; Hachisu, Izumi [Kyoto Univ. (Japan). Dept. of Aeronautical Engineering

    1989-07-01

    We have applied the numerical method which was developed for Newtonian gravity to general relativistic, differentially rotating bodies including ring-like structures. A number of equilibrium structures are obtained for two different polytropic indices N=1/2 and N=3/2, because the various proposed equations of state for the nuclear density region fall into the range N=1/2 to 3/2 from the viewpoint of its softness. (author).

  16. Development of coaxial rotating-plasma gun

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi

    1985-01-01

    A rotating-plasma gun has been devised to produce plasma streams with higher rotational velocities. The working mechanism of the gun and the results of a preliminary experiment have been described. (author)

  17. SEG Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert; Laughlin, Darren; Brune, Bob

    2016-10-17

    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  18. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah; Ghanem, Bernard

    2017-01-01

    . This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate

  19. Aerospike Nozzle for Rotating Detonation Engine Application

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a graduate MS research thesis on improving the efficiency of rotating detonation engines by using aerospike nozzle technologies. A rotating...

  20. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.