WorldWideScience

Sample records for rotating target neutron

  1. RTNS-II [Rotating Target Neutron Source II] operational summary

    International Nuclear Information System (INIS)

    Heikkinen, D.W.

    1988-09-01

    The Rotating Target Neutron Source II facility (RTNS-II) operated for over nine years. Its purpose was to provide high intensities of 14 MeV neutrons for materials studies in the fusion energy program. For the period from 1982-1987, the facility was supported by both the US (Department of Energy) and Japan (Ministry of Education, Culture, and Science). RTNS-II contains two accelerator-based neutron sources which use the T(d,n) 4 He reaction. In this paper, we will summarize the operational history of RTNS-II. Typical operating parameters are given. In addition, a brief description of the experimental program is presented. The current status and future options for the facility are discussed. 7 refs., 5 tabs

  2. Characteristics of rotating target neutron source and its use in radiation effects studies

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Barschall, H.H.; Booth, R.; Wong, C.

    1975-07-01

    The Rotating Target Neutron Source (RTNS) at Lawrence Livermore Laboratory is currently the most intense source of DT fusion neutrons available for the study of radiation effects in materials. This paper will present a brief description of the machine, outline the history of its development and discuss its performance characteristics and its application to CTR materials research. (U.S.)

  3. Fiscal year 1976 DT fusion neutron irradiations and dosimetry at the LLL rotating target neutron source

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of 319 samples during 19 irradiation periods (beam-on time of more than 1026 hours) is described. Experiments from 24 individuals representing 11 institutions are summarized. The numbers of the UCID dosimetry reports detailing each of the irradiations are given

  4. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    Science.gov (United States)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  5. Pneumatic sample-transfer system for use with the Lawrence Livermore National Laboratory rotating target neutron source (RTNS-I)

    International Nuclear Information System (INIS)

    Williams, R.E.

    1981-07-01

    A pneumatic sample-transfer system is needed to be able to rapidly retrieve samples irradiated with 14-MeV neutrons at the Rotating Target Neutron Source (RTNS-I). The rabbit system, already in place for many years, has been refurbished with modern system components controlled by an LSI-11 minicomputer. Samples can now be counted three seconds after an irradiation. There are many uses for this expanded 14-MeV neutron activation capability. Several fission products difficult to isolate from mixed fission fragments can be produced instead through (n,p) or (n,α) reactions with stable isotopes. Mass-separated samples of Nd, Mo, and Se, for example, can be irradiated to produce Pr, Nb, and As radionuclides sufficient for decay scheme studies. The system may also be used for multielement fast-neutron activation analysis because the neutron flux is greater than 2 x 10 11 n/cm 2 -sec. Single element analyses of Si and O are also possible. Finally, measurements of fast-neutron cross sections producing short-lived activation products can be performed with this system. A description of the rabbit system and instructions for its use are presented in this report

  6. T violating neutron spin rotation asymmetry

    International Nuclear Information System (INIS)

    Masuda, Yasushiro.

    1993-01-01

    A new experiment on T-violation is proposed, where a spin-rotating-neutron transmission through a polarized nuclear target is measuered. The method to control the neutron spin is discussed for the new T-violation experiment. The present method has possibility to provide us more accurate T-violation information than the neutron EDM measurement

  7. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  8. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  9. Differential rotation of viscous neutron matter

    International Nuclear Information System (INIS)

    Nitsch, J.; Pfarr, J.; Heintzmann, H.

    1976-08-01

    The reaction of homogeneous sphere of neutron matter set in rotational motion under the influence of an external torque acting on its surface is investigated. For neutron matter with a typical neutron star density of 10 15 gcm -3 and a temperature varying between 10 6 and 10 9 K originally in uniform rotation, a time dependent differential motion sets in, which lasts a time scale of hours to some decades, resulting finally in co-rotation. During these times the braking index of a magnetic neutron sphere very sensitively depends on time

  10. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  11. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  12. Fiscal year 1976T (add-on quarter) DT fusion neutron irradiations and dosimetry at the LLL rotating target neutron source

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of more than 90 samples during seven irradiation periods (beam-on time of more than 430.9 hours) is described. Experiments from 15 individuals representing six institutions are summarized. The numbers of UCID dosimetry reports detailing each of the irradiations is given

  13. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  14. A mechanical rotator for neutron scattering measurements

    International Nuclear Information System (INIS)

    Thaler, A.; Northen, E.; Aczel, A. A.; MacDougall, G. J.

    2016-01-01

    We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities.

  15. Limiting rotational period of neutron stars

    Science.gov (United States)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  16. Limiting rotational period of neutron stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1992-01-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442M circle-dot neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars

  17. A rotating target wheel system for gammasphere

    International Nuclear Information System (INIS)

    Greene, J. P.

    1999-01-01

    A description is given for a low-mass, rotating target wheel to be used within the Gammasphere target chamber. This system was developed for experiments employing high beam currents in order to extend lifetimes of targets using low-melting point target material. The design is based on a previously successful implementation of rotating target wheels for the Argonne Positron Experiment (APEX) as well as the Fragment Mass Analyser (FMA) at ATLAS (Argonne Tandem Linac Accelerator System). A brief history of these rotating target wheel systems is given as well as a discussion on target preparation and performance

  18. Gravitational waves from rotating strained neutron stars

    International Nuclear Information System (INIS)

    Jones, D I

    2002-01-01

    In this review we examine the dynamics and gravitational wave detectability of rotating strained neutron stars. The discussion is divided into two halves: triaxial stars and precessing stars. We summarize recent studies on how crustal strains and magnetic fields can sustain triaxiality, and suggest that Magnus forces connected with pinned superfluid vortices might contribute to deformation also. The conclusions that could be drawn following the successful gravitational wave detection of a triaxial star are discussed, and areas requiring further study identified. The latest ideas regarding free precession are then outlined, and the recent suggestion of Middleditch et al (Middleditch et al 2000 New Astronomy 5 243; 2000 Preprint astro-ph/0010044) that the remnant of SN1987A contains a freely precessing star, spinning down by gravitational wave energy loss, is examined critically. We describe what we would learn about neutron stars should the gravitational wave detectors prove this hypothesis to be correct

  19. Jet target intense neutron source

    International Nuclear Information System (INIS)

    Meier, K.L.

    1977-01-01

    A jet target Intense Neutron Source (INS) is being built by the Los Alamos Scientific Laboratory with DOE/MFE funding in order to perform radiation damage experiments on materials to be used in fusion power reactors. The jet target can be either a supersonic or a subsonic jet. Each type has its particular advantages and disadvantages, and either of the jets can be placed inside the spherical blanket converter which will be used to simulate a fusion reactor neutron environment. Preliminary mock-up experiments with a 16-mA, 115 keV, H + ion beam on a nitrogen gas supersonic jet show no serious problems in the beam formation, transport, or jet interaction

  20. Gas target neutron generator studies

    International Nuclear Information System (INIS)

    Chatoorgoon, V.

    1978-01-01

    The need for an intense neutron source for the study of radiation damage on materials has resulted in the proposal of various solid, liquid, and gas targets. Among the gas targets proposed have been the transonic gas target, two types of hypersonic gas target, and the subsonic gas target (SGT). It has been suggested that heat deposition in a subsonic channel might create a gas density step which would constitute an attractive gas target type. The first part of the present study examines this aspect of the SGT and shows that gas density gradients are indeed formed by heat deposition in subsonic flow. The variation of beam voltage, gas density, gas pressure, and gas temperature within the channel have been calculated as functions of the system parameters: beam voltage, beam current, channel diameter, stagnation tank temperature and pressure. The analysis is applicable to any beam particle and target gas. For the case of T + on D 2 , which is relevant to the fusion application, the 14 MeV neutron profiles are presented as a function of system parameters. It is found that the SGT is compatible with concentrated intense source operation. The possibility of instability was investigated in detail using a non-linear analysis which made it possible to follow the complete time development of the SGT. It was found that the SGT is stable against all small perturbations and certain types of large perturbations. It appears that the SGT is the most advantageous type of gas target, operating at a lower mass flow and less severe stagnation tank conditions than the other types. The second part of the thesis examines a problem associated with the straight hypersonic target, the deuterium spill into the tritium port. The regime of practical operation for this target is established. (auth)

  1. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  2. Delayed neutrons in liquid metal spallation targets

    International Nuclear Information System (INIS)

    Ridikas, D.; Bokov, P.; David, J.C.; Dore, D.; Giacri, M.L.; Van Lauwe, A.; Plukiene, R.; Plukis, A.; Ignatiev, S.; Pankratov, D.

    2003-01-01

    The next generation spallation neutron sources, neutrino factories or RIB production facilities currently being designed and constructed around the world will increase the average proton beam power on target by a few orders of magnitude. Increased proton beam power results in target thermal hydraulic issues leading to new target designs, very often based on flowing liquid metal targets such as Hg, Pb, Pb-Bi. Radioactive nuclides produced in liquid metal targets are transported into hot cells, past electronics, into pumps with radiation sensitive components, etc. Besides the considerable amount of photon activity in the irradiated liquid metal, a significant amount of the delayed neutron precursor activity can be accumulated in the target fluid. The transit time from the front of a liquid metal target into areas, where delayed neutrons may be important, can be as short as a few seconds, well within one half-life of many delayed neutron precursors. Therefore, it is necessary to evaluate the total neutron flux (including delayed neutrons) as a function of time and determine if delayed neutrons contribute significantly to the dose rate. In this study the multi-particle transport code MCNPX combined with the material evolution program CINDER'90 will be used to evaluate the delayed neutron flux and spectra. The following scientific issues will be addressed in this paper: - Modeling of a typical geometry of the liquid metal spallation target; - Predictions of the prompt neutron fluxes, fission fragment and spallation product distributions; - Comparison of the above parameters with existing experimental data; - Time-dependent calculations of delayed neutron precursors; - Neutron flux estimates due to the prompt and delayed neutron emission; - Proposal of an experimental program to measure delayed neutron spectra from high energy spallation-fission reactions. The results of this study should be directly applicable in the design study of the European MegaPie (1 MW

  3. Target system neutronics study for NXGENS

    International Nuclear Information System (INIS)

    Willis, C.; Muhrer, G.

    2007-01-01

    The Materials Test Station (MTS) [E. Pitcher, G. Muhrer, H. Trellue, Neutronics Assessment of the LANSCE Materials Test Station as an Irradiation Facility for the JIMO Space Reactor, LA-CP-04-0903.], a spallation target station, planned for construction at the Los Alamos Neutron Science Center (LANSCE), will provide the opportunity to test the prototype of a long-pulse spallation source neutron scattering instrument (NXGENS). In this paper, we present the target-moderator neutronics optimization study that was performed in support of NXGENS

  4. Spallation neutron source target station issues

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-01-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy (∼1 GeV) and high powered (∼ 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy (≤ 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed

  5. Extended I-Love relations for slowly rotating neutron stars

    Science.gov (United States)

    Gagnon-Bischoff, Jérémie; Green, Stephen R.; Landry, Philippe; Ortiz, Néstor

    2018-03-01

    Observations of gravitational waves from inspiralling neutron star binaries—such as GW170817—can be used to constrain the nuclear equation of state by placing bounds on stellar tidal deformability. For slowly rotating neutron stars, the response to a weak quadrupolar tidal field is characterized by four internal-structure-dependent constants called "Love numbers." The tidal Love numbers k2el and k2mag measure the tides raised by the gravitoelectric and gravitomagnetic components of the applied field, and the rotational-tidal Love numbers fo and ko measure those raised by couplings between the applied field and the neutron star spin. In this work, we compute these four Love numbers for perfect fluid neutron stars with realistic equations of state. We discover (nearly) equation-of-state independent relations between the rotational-tidal Love numbers and the moment of inertia, thereby extending the scope of I-Love-Q universality. We find that similar relations hold among the tidal and rotational-tidal Love numbers. These relations extend the applications of I-Love universality in gravitational-wave astronomy. As our findings differ from those reported in the literature, we derive general formulas for the rotational-tidal Love numbers in post-Newtonian theory and confirm numerically that they agree with our general-relativistic computations in the weak-field limit.

  6. Neutronic performances of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, S.; Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); Beauvais, P.; Lotrus, P.; Molinie, F.; Toussaint, J.Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA), 91- Gif sur Yvette (France); Chartier, F. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Oriol, L. [CEA Cadarache, Dept. d' Etudes des Reacteurs (DEN/DER/SPEX), 13 - Saint Paul lez Durance (France)

    2008-07-01

    The MEGAPIE project is a key experiment on the road to Accelerator Driven Systems and it provides the scientific community with unique data on the behavior of a liquid lead-bismuth spallation target under realistic and long term irradiation conditions. The neutronic of such target is of course of prime importance when considering its final destination as an intense neutron source. This is the motivation to characterize the inside neutron flux of the target in operation. A complex detector, made of 8 'micro' fission-chambers, has been built and installed in the core of the target, few tens of centimeters from the proton/Pb-Bi interaction zone. This detector is designed to measure the absolute neutron flux inside the target, to give its spatial distribution and to correlate its temporal variations with the beam intensity. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, giving integral constraints on the neutron production models implemented in transport codes such as MCNPX. (authors)

  7. 10 CFR 39.55 - Tritium neutron generator target sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...

  8. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  9. Neutron performance analysis for ESS target proposal

    International Nuclear Information System (INIS)

    Magán, M.; Terrón, S.; Thomsen, K.; Sordo, F.; Perlado, J.M.; Bermejo, F.J.

    2012-01-01

    In the course of discussing different target types for their suitability in the European Spallation Source (ESS) one main focus was on neutronics' performance. Diverse concepts have been assessed baselining some preliminary engineering and geometrical details and including some optimization. With the restrictions and resulting uncertainty imposed by the lack of detailed designs optimizations at the time of compiling this paper, the conclusion drawn is basically that there is a little difference in the neutronic yield of the investigated targets. Other criteria like safety, environmental compatibility, reliability and cost will thus dominate the choice of an ESS target.

  10. Gravitational waves from rotating proto-neutron stars

    International Nuclear Information System (INIS)

    Ferrari, V; Gualtieri, L; Pons, J A; Stavridis, A

    2004-01-01

    We study the effects of rotation on the quasi-normal modes (QNMs) of a newly born proto-neutron star (PNS) at different evolutionary stages, until it becomes a cold neutron star (NS). We use the Cowling approximation, neglecting spacetime perturbations, and consider different models of evolving PNS. The frequencies of the modes of a PNS are considerably lower than those of a cold NS, and are further lowered by rotation; consequently, if QNMs were excited in a sufficiently energetic process, they would radiate waves that could be more easily detectable by resonant-mass and interferometric detectors than those emitted by a cold NS. We find that for high rotation rates, some of the g-modes become unstable via the CFS instability; however, this instability is likely to be suppressed by competing mechanisms before emitting a significant amount of gravitational waves

  11. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1980-01-01

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  12. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  13. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  14. An accurate metric for the spacetime around rotating neutron stars

    Science.gov (United States)

    Pappas, George

    2017-04-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parametrized metric, I.e. a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work, we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parametrized by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parametrization of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a three-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  15. Some neutron measurements with simulated ING targets

    International Nuclear Information System (INIS)

    Walker, J.

    1966-01-01

    Thermal neutron fluxes in the vicinity of a simulated Intense Neutron Generator target have been measured using Mn and Au foils, and a small BF 3 detector. The target was a Pb cylinder either 4-inch or 8-inch in diameter with a 1.2 g Ra-Be neutron source at its centre. This was centrally mounted in a 5' diam. x 5' high tank which was filled with either H 2 O or D 2 O moderator. Various gaps and absorbing annuli were placed around the target, and air-filled aluminum 'beam tubes' were mounted radially or tangentially from the target to simulate typical ING conditions. The measured thermal neutron fluxes were less than calculated at all radii. The single-age computation clearly gives large errors at large radii, but the multi-energy approach seems to give a useful indication of the thermal flux distribution in spite of the extreme simplicity of the model. The fall in measured fluxes at small radii in both D 2 O and H 2 O is most likely caused by absorption in the target material which is not allowed for in the computational model. (author)

  16. Some neutron measurements with simulated ING targets

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J

    1966-07-01

    Thermal neutron fluxes in the vicinity of a simulated Intense Neutron Generator target have been measured using Mn and Au foils, and a small BF{sub 3} detector. The target was a Pb cylinder either 4-inch or 8-inch in diameter with a 1.2 g Ra-Be neutron source at its centre. This was centrally mounted in a 5' diam. x 5' high tank which was filled with either H{sub 2}O or D{sub 2}O moderator. Various gaps and absorbing annuli were placed around the target, and air-filled aluminum 'beam tubes' were mounted radially or tangentially from the target to simulate typical ING conditions. The measured thermal neutron fluxes were less than calculated at all radii. The single-age computation clearly gives large errors at large radii, but the multi-energy approach seems to give a useful indication of the thermal flux distribution in spite of the extreme simplicity of the model. The fall in measured fluxes at small radii in both D{sub 2}O and H{sub 2}O is most likely caused by absorption in the target material which is not allowed for in the computational model. (author)

  17. Neutron transport from targets to moderators

    International Nuclear Information System (INIS)

    Taylor, A.D.

    1980-01-01

    The title of this meeting is 'Targets for Neutron Beam Spallation Sources', but so far all the emphasis in the talks has been on how to produce the fast neutron flux. I would like to stress that that is just the beginning of the story. What we are required to produce are beams of thermal and epithermal neutrons with time and spectral characteristics tailored to the instrumental requirements. The real source of our neutrons is not uranium arrays or thorium cylinders but a small volume of hydrogenous material, some 10 x 10 x 5 cm 3 . This is really what the whole thing is about - the target produces a copious field of fast neutrons, but if we fail to moderate them with the right energy and time characteristics, we will not match to what is happening downstream. In this talk, I am going to deal specifically with what we have done for SNS to optimise the target-moderator-reflector and decoupler system in this respect. (orig.)

  18. The National Spallation Neutron Source Target Station.

    Science.gov (United States)

    Gabriel, T. A.

    1997-05-01

    The technologies that are being utilized to design and build a state-of-the-art high powered (>= 1 MW), short pulsed (storage ring. Many scientific and technical disciplines are required to produce a successful target station. These disciplines include engineering, remote handling, neutronics, materials, thermal hydraulics, shock analysis, etc. In the areas of engineering and remote handling special emphasis is being given to rapid and efficient assembly and disassembly of critical parts of the target station. In the neutronics area, emphasis is being given to neutron yield and pulse optimization from the moderators, and heating and activation rates throughout the station. Development of structural materials to withstand aggressive radiation environments and that are compatible with other materials is also an important area. Thermal hydraulics and shock analysis are being closely studied since large amounts of energy are being deposited in small volumes in relatively short time periods (< 1 μsec). These areas will be expanded upon in the paper.

  19. Rotational and neutron-hole states in 43S via the neutron knockout and fragmentation reactions

    International Nuclear Information System (INIS)

    Riley, L. A.; Hosier, K. E.; Adrich, P.; Baugher, T. R.; Bazin, D.; Diget, C. A.; Weisshaar, D.; Brown, B. A.; Cook, J. M.; Gade, A.; Garland, D. A.; Glasmacher, T.; Ratkiewicz, A.; Siwek, K. P.; Cottle, P. D.; Kemper, K. W.; Tostevin, J. A.

    2009-01-01

    The recent assertion that shape coexistence occurs in the neutron-rich isotope 43 S implies that a state observed at 940 keV in a previous study is a rotational excitation of the deformed ground state. Here we use results from two intermediate-energy reactions to demonstrate that this state--assigned an energy of 971 keV in the present work--is indeed a rotational state. This result strengthens the case for shape coexistence in 43 S.

  20. Thermal hydraulic and neutronic interaction in the rotating bed reactor

    International Nuclear Information System (INIS)

    Lee, C.C.

    1986-01-01

    Power transient characteristics in a rotating fluidized bed reactor (RBR) are investigated theoretically. A propellant flow perturbation is assumed to occur in an initially equilibrium state of the core. Transfer functions representing quasi-one-dimensional mutual feedback between thermal hydraulics and neutronics are developed and analyzed in the frequency domain. Neutronic responses are determined by Fermi-age theory for slowing down of fast neutrons and diffusion theory for thermal neutron distribution. Neutron leakage through the exhaust nozzle is accounted for by applying diffuse view factors similar to those applied in radiative heat transfer. The bed expansion behavior is described by a kinematic wave equation derived from the continuity of the gas phase. The drift flux approach is used to determine the yield fractions in the equilibrium bed. Thermal responses of fuel are evaluated by dividing it into several volume-averaged zones to better account for the transient effects over single zone models. Sample calculations are undertaken for the various operation conditions and design parameters of the RBR based on 250 MW/sub t/, 1000 MW/sub t/, and 5000 MW/sub t/ power reactors. The results show that power transients are dependent on the parametric changes of optical thickness and view factors

  1. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production

    International Nuclear Information System (INIS)

    Monnin, Carole; Bach, Pierre; Tulle, Pierre Alain; Rompay, Marc van; Ballanger, Anne

    2002-01-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium targets on copper substrates, and going to more sophisticated devices. The range of possible uses is wide, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets or large size rotating targets for higher lifetimes. The activity of the targets ranges from 3.7x10 10 to 3.7x10 13 Bq (1-1000 Ci), the diameter being up to 30 cm. Sodern and the CEA/Valduc centre have developed different technologies for tritium target manufacture, allowing the selection of the best configuration for each kind of use. In order to optimize the production of high energy neutrons, the performance of tritide and deuteride titanium targets made by different processes has been studied experimentally by bombardment with 120 and 350 kV deuterons provided by electrostatic accelerators. It is then possible to optimize either neutron output or lifetime and stability or thermal behaviour. The importance of the deposit evaporation conditions on the efficiency of neutron emission is clearly demonstrated, as well as the thermomechanical stability of the Ti thin film under deuteron bombardment. The main parameters involved in the target performance are discussed from a thermodynamical approach

  2. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production

    Science.gov (United States)

    Monnin, Carole; Bach, Pierre; Tulle, Pierre Alain; van Rompay, Marc; Ballanger, Anne

    2002-03-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium targets on copper substrates, and going to more sophisticated devices. The range of possible uses is wide, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets or large size rotating targets for higher lifetimes. The activity of the targets ranges from 3.7×10 10 to 3.7×10 13 Bq (1-1000 Ci), the diameter being up to 30 cm. Sodern and the CEA/Valduc centre have developed different technologies for tritium target manufacture, allowing the selection of the best configuration for each kind of use. In order to optimize the production of high energy neutrons, the performance of tritide and deuteride titanium targets made by different processes has been studied experimentally by bombardment with 120 and 350 kV deuterons provided by electrostatic accelerators. It is then possible to optimize either neutron output or lifetime and stability or thermal behaviour. The importance of the deposit evaporation conditions on the efficiency of neutron emission is clearly demonstrated, as well as the thermomechanical stability of the Ti thin film under deuteron bombardment. The main parameters involved in the target performance are discussed from a thermodynamical approach.

  3. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  4. Inertial modes of rigidly rotating neutron stars in Cowling approximation

    International Nuclear Information System (INIS)

    Kastaun, Wolfgang

    2008-01-01

    In this article, we investigate inertial modes of rigidly rotating neutron stars, i.e. modes for which the Coriolis force is dominant. This is done using the assumption of a fixed spacetime (Cowling approximation). We present frequencies and eigenfunctions for a sequence of stars with a polytropic equation of state, covering a broad range of rotation rates. The modes were obtained with a nonlinear general relativistic hydrodynamic evolution code. We further show that the eigenequations for the oscillation modes can be written in a particularly simple form for the case of arbitrary fast but rigid rotation. Using these equations, we investigate some general characteristics of inertial modes, which are then compared to the numerically obtained eigenfunctions. In particular, we derive a rough analytical estimate for the frequency as a function of the number of nodes of the eigenfunction, and find that a similar empirical relation matches the numerical results with unexpected accuracy. We investigate the slow rotation limit of the eigenequations, obtaining two different sets of equations describing pressure and inertial modes. For the numerical computations we only considered axisymmetric modes, while the analytic part also covers nonaxisymmetric modes. The eigenfunctions suggest that the classification of inertial modes by the quantum numbers of the leading term of a spherical harmonic decomposition is artificial in the sense that the largest term is not strongly dominant, even in the slow rotation limit. The reason for the different structure of pressure and inertial modes is that the Coriolis force remains important in the slow rotation limit only for inertial modes. Accordingly, the scalar eigenequation we obtain in that limit is spherically symmetric for pressure modes, but not for inertial modes

  5. EURAC: A liquid target neutron spallation

    Energy Technology Data Exchange (ETDEWEB)

    Perlado, J.M.; Minguez, E.; Sanz, J. [Universidad Politecnica de Madrid (Spain)] [and others

    1995-10-01

    Euratom/JRC Ispra led some years ago the design of an accelerator based neutron spallation source EURAC, with special emphasis as a fusion material testing device. DENIM was involved in the development of the last version of this source. EURAC proposes to use a beam of 600 MeV or 1.5 GeV protons, produced by an effective and low cost ring cyclotron with a current of 6 mA impinging in a liquid lead, or lead-bismuth, target. It will use an advanced cyclotron technology which can be implemented in the next future, in the line of the actual technology of the upgraded SIN-type cyclotron. The adjacent rows to the target correspond to the lead, or Li{sub 17}Pb{sub 83}, cooled channels where the samples will be located. The available volumes there were shown enough for material testing purposes. Here, proposal of using those experimental areas to introduce small masses of radioactive wastes for testing of transmutation in spallation source is made. In addition, extrapolation of present conceptual design to make available larger volumes under flexible conditions seems to be possible. Neutrons leaking from the test zone drive a subcritical booster (<10 MW) which could provide a thermal neutron flux trap with a liquid hydrogen moderator in the center.

  6. Design and Fabrication of Titanium Target for Portable Neutron Generator

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Oh, Byunghoon; Chang, Daesik; Jang, Dohyun; In Sang Yeol; Park, Jaewon; Hong, Kwangpyo

    2014-01-01

    For the neutron generator to produce a neutron flux of the above order, a target that produces fast neutrons in the generator plays an important role, and the target is used and applied to develop the generator due to its simplicity and inexpensive. Making suitable targets for neutron production, especially mono-energy neutrons, has always been of interest. These targets have been used for neutron production reaction studies, calibration of detectors, and neutron therapy. Different studies have been carried out on deuterium and tritium for making solid targets to produce mono-energy neutron from D-D and D-T reactions. A lot of investigations have been carried out on solid target properties such as lifetime, thermal stability, neutron yield, and energy. Vaporized zirconium and titanium layers on a high thermal conductivity substrate (Cu, Mo, Ag) have been used as deuterium and tritium absorbing metals. The density of titanium is smaller than zirconium and the range of charged particles in the titanium targets is more than that in zirconium targets. Thus, titanium targets have more neutron yield than zirconium targets in a low energy beam and titanium is usually used to make a target. The titanium target was designed and simulated to determine the suitable thickness of the target. As a result of the simulation, the target was fabricated to generate fast neutrons by the reaction. The thickness of the target was measured using a profiler. The thickness of the two targets is 2.108 and 2.190 μm. The target will be applied to produce neutrons in a neutron generator

  7. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    Science.gov (United States)

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  8. Collapse of differentially rotating neutron stars and cosmic censorship

    International Nuclear Information System (INIS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-01-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M 2 , where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M 2 2 >1, i.e. 'supra-Kerr' models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  9. A neutron production target for ESS based upon the Canned-rods concept

    International Nuclear Information System (INIS)

    Ghiglino, A.; Terrón, S.; Thomsen, K.; Wolters, J.; Magán, M.; Martínez, F.; Vicente, P.J. de; Vivanco, R.; Sordo, F.; Butzek, M.; Perlado, J.M.; Bermejo, F.J.

    2014-01-01

    The neutron production targets operating within the present day spallation neutron sources in the MW power range are either based on water-cooled solid state devices such as that implemented at the SINQ source at PSI or liquid metal loops such as those installed at SNS and MLSF. Here we describe a water-cooled rotating solid target as an option for the 5 MW ESS project as an alternative to the current design based upon a helium-cooled solid rotating target. Implementation of the proposed option would provide comparable neutronic performance to that of the gas-cooled concept and furthermore, it would involve a relatively straightforward adaptation of the current ESS baseline geometry

  10. Multiple operating system rotation environment moving target defense

    Science.gov (United States)

    Evans, Nathaniel; Thompson, Michael

    2016-03-22

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  11. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  12. Phase-shift and spin-rotation phenomena in neutron interferometry

    International Nuclear Information System (INIS)

    Badurek, G.; Rauch, H.; Zeilinger, A.; Bauspiess, W.; Bonse, U.

    1976-01-01

    The perfect-crystal neutron interferometer was used to study characteristic phenomena arising from simultaneous phase shift and spin rotation of neutron waves. In accordance with theoretical predictions, the beams leaving the interferometer became partially polarized, even with unpolarized incident neutrons. The intensity and the polarization as a function of phase shift and spin rotation have been found to oscillate with the same period, displaying a mutual beat pattern

  13. Heavy water jet target and a beryllium target for production of fast neutrons

    International Nuclear Information System (INIS)

    Logan, C.M.; Anderson, J.D.; Barschall, H.H.; Davis, J.C.

    1975-01-01

    A limitation on the neutron flux obtainable from proton or deuteron induced reactions is the heating of the target by the accelerated charged particles. The heat can be removed more easily if the target moves. The possibility of using a rotating Be target and a heavy water jet as a target for bombardment by 35-MeV deuterons was studied. In a thick Be metal target moving at 10 m/sec through such a beam of 1 cm diameter a temperature pulse of about 300 0 C will be produced by the 0.3 MW beam. The Be target should be able to withstand such a temperature pulse. A Be target suitable for 3 MW of power in a 1 cm diameter beam would require internal cooling and a higher velocity. A free jet of heavy water is also a possible target. Laser photographs of water jets in vacuum show small angles of divergence. The effect of heating by a 0.3 MW beam is probably not important because the temperature rise produced by the beam is small compared to the absolute temperature of the unheated jet. (auth)

  14. Tritium solid targets for intense D-T neutron production and its related problems

    International Nuclear Information System (INIS)

    Sumita, Kenji

    1988-01-01

    This review paper is divided into three parts. Firstly, to attain an intense neutron production rate, the construction of a design with a higher tritium-containing surface and an effective cooling system like a rotating target device are discussed. The maximum attainable intensity based on tritium solid targets shall be estimated regarding planning for future D-T sources. Secondly, on the way to carry out some experiments, an absolute intensity calibration and an angular dependent neutron energy spectrum of the neutron source are essential parameters to analyse the results of the experiments. Sometimes the space dependent neutron spectrum is required as well as the space dependent neutron flux near the targets and irradiation samples. The measurement methods and their examples are reviewed for tritium solid targets. The third part is devoted to discuss the protection to tritium contamination problems due to unavoidable release of tritium gas from targets. Performance and effectiveness of tritium collection systems for intense D-T neutron sources shall be discussed in some examples. Tritium contamination incidents due to the faulted film powder of target surface are also reported in some real incident cases. (author). Abstract only

  15. A novel rotational invariants target recognition method for rotating motion blurred images

    Science.gov (United States)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  16. Target injection and engagement for neutron generation at 1 Hz

    International Nuclear Information System (INIS)

    Komeda, Osamu; Mori, Yoshitaka; Nishimura, Yasuhiko

    2013-01-01

    Target injection is a key technology to realizing inertial fusion energy. Here we present the first demonstration of target injection and neutron generation. We injected more than 600 spherical deuterated polystyrene (C 8 D 8 ) bead targets during 10 minutes at 1 Hz. After the targets fell for a distance of 18 cm, we applied the synchronized laser-diode-pumped ultra-intense laser HAMA and successfully generated neutrons repeatedly. The result is a step toward fusion power and also suggests possible industrial neutron sources. (author)

  17. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies

    Science.gov (United States)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.

    2013-10-01

    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  18. Integral measurements of neutron production in spallation targets

    International Nuclear Information System (INIS)

    Frehaut, J.; Deneuville, D.; Ledoux, X.; Lochard, J.P.; Longuet, J.L.; Petibon, E.; Alrick, K.; Bownan, D.; Cverna, F.; King, N.S.P.; Morgan, G.L.; Greene, G.; Hanson, A.; Snead, L.; Thompson, R.; Ward, T.

    1998-01-01

    Measurements of neutron production for thick iron, tungsten and lead targets of different diameter prototypic for spallation systems have been made at SATURNE in an incident proton energy range from 400 MeV to 2 GeV. TIERCE code system calculations are in good agreement with experiment for iron and large diameter tungsten and lead targets. They overestimate the measured neutron production for tungsten and lead targets for diameter ≤20 cm. (author)

  19. The neutronic performance of solid-target alternatives for SINQ

    International Nuclear Information System (INIS)

    Atchison, F.

    1991-01-01

    The results from calculations of the neutronic performance of three possible 'solid' targets and that of the current version of the liquid Pb-Bi target are presented. Two are 'conventional' transverse cooled plate structures, one using tantalum, the other tungsten. The third is a Pb-shot based pebble-bed design. Some general results on the effect of neutron absorption on the performance of the Pebble-bed target are given. (author)

  20. Effect of Earth's rotation on the quantum mechanical phase of the neutron

    International Nuclear Information System (INIS)

    Werner, S.A.; Staudenmann, J.; Colella, R.

    1979-01-01

    Using a neutron interferometer of the type first developed by Bonse and Hart for x rays, we have observed the effect of Earth's rotation on the phase of the neutron wave function. This experiment is the quantum mechanical analog of the optical interferometry observations of Michelson, Gale, and Pearson

  1. Spallation neutron production on thick target at saturne

    International Nuclear Information System (INIS)

    David, J.C.; David, J.C.; Varignon, C.; Borne, F.; Boudard, A.; Brochard, F.; Crespin, S.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hannappe, F.; Lebrun, C.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Menard, S.; Milleret, G.; Patin, Y.; Petitbon, E.; Plouin, F.; Schapira, J.P.; Stugge, L.; Terrien, Y.; Thun, J.; Volant, C.; Whittal, D.M.

    2003-01-01

    In view of the new spallation neutron source projects, we discuss the characteristics of the neutron spectra on thick targets measured at SATURNE. Some comparisons to spallation models, and especially INCL4/ABLA implemented in the LAHET code, are done. (orig.)

  2. Target spot localization at neutron producing accelerators

    International Nuclear Information System (INIS)

    Medveczki, L.; Bornemisza-Pauspertl, P.

    1980-01-01

    In the application of neutron producing accelerators it is required to know the actual position and the homogeneity of distribution of the emitted neutrons. Solid state nuclear track detectors offer a good possibility to get precise information on these without any disturbing influence on them. LR 115 2 type cellulose nitrate Kodak-Pathe Foils were irradiated with fast neutrons. When track density is higher than about 104 tracks cm -2 the damaged area can be observed with the naked eye, too. To get quantitative information the track densities were counted with manual technique. (author)

  3. Neutron transport from targets to moderators

    International Nuclear Information System (INIS)

    Taylor, A.D.

    1981-06-01

    By appropriately choosing parameters such as temperature, decoupler, thickness and effective size it is possible to tailor the moderators of a pulsed spallation neutron source in such a way that the different characteristics regarding time structure and spectral distribution as requested for the different instruments can be met very closely. This enables a unique flexibility in the design of neutron spectrometers to be used at such a source. (author)

  4. Interpretation of the quasi-elastic neutron scattering on PAA by rotational diffusion models

    International Nuclear Information System (INIS)

    Bata, L.; Vizi, J.; Kugler, S.

    1974-10-01

    First the most important data determined by other methods for para azoxy anisolon (PAA) are collected. This molecule makes a rotational oscillational motion around the mean molecular direction. The details of this motion can be determined by inelastic neutron scattering. Quasielastic neutron scattering measurements were carried out without orienting magnetic field on a time-of-flight facility with neutron beam of 4.26 meV. For the interpretation of the results two models, the spherical rotation diffusion model and the circular random walk model are investigated. The comparison shows that the circular random walk model (with N=8 sites, d=4A diameter and K=10 10 s -1 rate constant) fits very well with the quasi-elastic neutron scattering, while the spherical rotational diffusion model seems to be incorrect. (Sz.N.Z.)

  5. Development of lithium target for accelerator based neutron capture therapy

    International Nuclear Information System (INIS)

    Taskaev, Sergey; Bayanov, Boris; Belov, Victor; Zhoorov, Eugene

    2006-01-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is now of the threshold of its operation at the BINP, Russia. One of the main elements of the facility is lithium target producing neutrons via threshold 7 Li(p,n) 7 Be reaction at 25 kW proton beam with energies 1.915 MeV or 2.5 MeV. The main problems of lithium target were determined to be: 7 Be radioactive isotope activation keeping lithium layer solid, presence of photons due to proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal test of target prototype were presented as previous NCT Congress. It becomes clear that water is preferable for cooling the target, and that lithium target 10 cm in diameter is able to run before melting. In the present report, the conception of optimal target is proposed: thin metal disk 10 cm in diameter easy for detaching, with evaporated thin layer of pure lithium from the side of proton beam exposure, its back being intensively cooled with turbulent water flow to maintain lithium layer solid. Design of the target for the neutron source constructed at BINP is shown. The results of investigation of radiation blistering and lithium layer are presented. Target unit of facility is under construction now, and obtaining neutrons is expected in nearest future. (author)

  6. Beam splitting to improve target life in neutron generators

    International Nuclear Information System (INIS)

    Farrell, J.P.

    1976-01-01

    In a neutron generator in which a tritium-titanium target is bombarded by a deuterium ion beam, the target half-life is increased by separating the beam with a weak magnetic field to provide three separate beams of atomic, diatomic, and triatomic deuterium ions which all strike the target at different adjacent locations. Beam separation in this manner eliminates the problem of one type ion impairing the neutron generating efficiency of other type ions, thereby effecting more efficient utilization of the target material

  7. Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.; Shibata, Masaru

    2006-01-01

    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can be formed in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both act on differentially rotating stars to redistribute angular momentum. Simulations of these stars are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. We consider stars with two different equations of state (EOS), a gamma-law EOS with Γ=2, and a more realistic hybrid EOS, and we evolve them adiabatically. Our simulations show that the fate of the star depends on its mass and spin. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Normal configurations have rest masses below the maximum achievable with uniform rotation, and angular momentum below the maximum for uniform rotation at the same rest mass. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along

  8. Fast neutron dose equivalent rates in heavy ion target areas

    International Nuclear Information System (INIS)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas

  9. Fast neutron dose equivalent rates in heavy ion target areas

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas.

  10. Preparation of homogeneous isotopic targets with rotating substrate

    International Nuclear Information System (INIS)

    Xu, G.J.; Zhao, Z.G.

    1993-01-01

    Isotopically enriched accelerator targets were prepared using the evaporation-condensation method from a resistance heating crucible. For high collection efficiency and good homogeneity the substrate was rotated at a vertical distance of 1.3 to 2.5 cm from the evaporation source. Measured collection efficiencies were 13 to 51 μg cm -2 mg -1 and homogeneity tests showed values close to the theoretically calculated ones for a point source. Targets, selfsupporting or on backings, could be fabricated with this method for elements and some compounds with evaporation temperatures up to 2300 K. (orig.)

  11. Neutron penumbral imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Lerche, R.A.; Ress, D.B.

    1988-01-01

    Using a new technique, penumbral coded-aperture imaging, the first neutron images of laser-driven, inertial-confinement fusion targets were obtained. With these images the deuterium-tritium burn region within a compressed target can be measured directly. 4 references, 11 figures

  12. Neutron targets of Moscow meson facility status, problems, prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sidorkin, S.; Koptelov, E.; Perekrestenko, A.; Stavissky, Y.; Trushkin, V.; Sobolevsky, N. [Institute for Nuclear Research RAS, 60-th October Anniversary Prospect, Moscow (Russian Federation)

    2001-03-01

    The status, problems and possible perspectives of target complexes of the Moscow meson factory is described in the report. The results of test proton beam session to neutron source are analysed. Some technical features of targets and expected modes in the nearest sessions are stated. (author)

  13. Preliminary Test on Hydraulic Rotation Device for Neutron Transmutation Doping

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Kang, Han-Ok; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing a new Research Reactor (KJRR) which will be located at KIJANG in the south-eastern province of Korea. The KJRR will be mainly utilized for isotope production, NTD production, and the related research activities. During the NTD process, the irradiation rig containing the silicon ingot rotates at the constant speed to ensure precisely defined homogeneity of the irradiation. A new NTD Hydraulic Rotation Device (NTDHRD) is being developed to rotate the irradiation rigs at the required speed. In this study, the preliminary test and the analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are described. A new NTD hydraulic rotation device is being developed for the purpose of application to the KIJANG research reactor (KJRR). The preliminary test and analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are conducted in experimental apparatus. The film thickness by the thrust bearing is measured and the minimum required mass flow rate for stable rotation is determined

  14. Neutronics for the SNS long wavelength target station

    International Nuclear Information System (INIS)

    Iverson, E.B.; Micklich, B.J.; Carpenter, J.M.

    2001-01-01

    One of the most significant and adventurous aspects of the LWTS (Long Wavelength Target Station) design concept is the use of slab moderators, historically considered to be awkward due to the high contamination of the neutron beams with fast and high- energy neutrons. Concern over this contamination is the reason behind our proposition that none of the beam on a slab moderator should be viewed directly, that is, without a curved guide, compact bender, or other fast and high-energy neutron filter. We made a large number of calculations concerning fast neutron source term of the solid target-slab moderator configuration with monolithic solid methane, which includes a curved guide or compact beam bender. We also made optimization on target position, beam void open angle, target gap and target division of the split target configuration. All fast and high-energy neutron spectra will be reported as lethargy spectra, normalized to 1 eV. In this way, we will attempt to define the 'cost' of using slab moderators as a function of the payoff gained from their use. We report these data for general information and discussion, and further draw the conclusions. Numerous issues have arisen in the course of the LWTS concept development, which require more information than is now in hand to provide the basis for detailed design and for potential design innovations. Some of the R and D issues are listed, along with proposed efforts to fill design needs. We have devised a highly effective 'base case' conceptual design for LWTS, which we are still evaluating and optimizing. LWTS will provide distinctly unique capabilities complimentary to SNS (Spallation Neutron Source) HPTS (High Power Target Station). The configuration of LWTS is strongly coupled to instrument requirements through close interaction with scientists formulating the science case and instrument suite. (Tanaka, Y.)

  15. Accelerator and neutron targets: a survey

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1974-01-01

    Although advances in electronics, ion source physics, detector technology, and other technical aspects of accelerator science have resulted in the capability of making highly sophisticated and accurate measurements of nuclear and atomic properties, the significance of such measurements is frequently dictated by the form, composition, and other characteristics of the target containing the nuclear species being studied. Consideration must be given to the impurity content, number of isotope nuclei per unit area, uniformity of nuclei distribution in the target, physical strength of the target, and myriad other factors. Most target characteristics are related to the mode(s) of preparation and to the quality of isotopic material used. A wide variety of target types and associated preparative methods are described and evaluated, together with methods of target characterization

  16. Deformation and shape transitions in hot rotating neutron deficient Te isotopes

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Mazumdar, I.

    2009-01-01

    Evolution of the nuclear shapes and deformations under the influence of temperature and rotation is investigated in Te isotopes with neutron number ranging from the proton drip line to the stability valley. Spin dependent critical temperatures for the shape transitions in Te nuclei are computed. Shape transitions from prolate at low temperature and spin to oblate via triaxiality are seen with increasing neutron number and spin.

  17. Design of a cryogenic deuterium gas target for neutron therapy

    International Nuclear Information System (INIS)

    Kuchnir, F.T.; Waterman, F.M.; Forsthoff, H.; Skaggs, L.S.; Vander Arend, P.C.; Stoy, S.

    1976-01-01

    A cryogenic deuterium gas target operating at 80 0 K and 10 atm pressure has been designed for use with a small cyclotron; the D(d,n) reaction is used to produce a neutron beam suitable for radiation therapy. The target is cooled by circulation of the gas in a closed loop between the target and an external heat exchanger immersed in liquid nitrogen

  18. Targets for bulk hydrogen analysis using thermal neutrons

    CERN Document Server

    Csikai, J; Buczko, C M

    2002-01-01

    The reflection property of substances can be characterized by the reflection cross-section of thermal neutrons, sigma subbeta. A combination of the targets with thin polyethylene foils allowed an estimation of the flux depression of thermal neutrons caused by a bulk sample containing highly absorbing elements or compounds. Some new and more accurate sigma subbeta values were determined by using the combined target arrangement. For the ratio, R of the reflection and the elastic scattering cross-sections of thermal neutrons, R=sigma subbeta/sigma sub E sub L a value of 0.60+-0.02 was found on the basis of the data obtained for a number of elements from H to Pb. Using this correlation factor, and the sigma sub E sub L values, the unknown sigma subbeta data can be deduced. The equivalent thicknesses, to polyethylene or hydrogen, of the different target materials were determined from the sigma subbeta values.

  19. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  20. Rotationally resolved colors of the targets of NASA's Lucy mission

    Science.gov (United States)

    Emery, Joshua; Mottola, Stefano; Brown, Mike; Noll, Keith; Binzel, Richard

    2018-05-01

    We propose rotationally resolved photometry at 3.6 and 4.5 um of 5 Trojan asteroids and one Main Belt asteroid - the targets of NASA's Lucy mission. The proposed Spitzer observations are designed to meet a combination of science goals and mission support objectives. Science goals 1) Search for signatures of volatiles and/or organics on the surfaces. a. This goal includes resolving a discrepancy between previous WISE and Spitzer measurements of Trojans 2) Provide new constraints on the cause of rotational spectral heterogeneity detected on 3548 Eurybates at shorter wavelengths a. Determine whether the heterogeneity (Fig 1) extends to the 3-5 um region 3) Assess the possibility for spectral heterogeneity on the other targets a. This goal will help test the hypothesis of Wong and Brown (2015) that the near-surface interiors of Trojans differ from their surfaces 4) Thermal data at 4.5 um for the Main Belt target Donaldjohanson will refine estimates of size, albedo, and provide the first estimate of thermal inertia Mission support objectives 1) Assess scientifically optimal encounter times (viewing geometries) for the fly-bys a. Characterizing rotational spectral units now will enable the team to choose the most scientifically valuable part of the asteroid to view 2) Gather data to optimize observing parameters for Lucy instruments a. Measuring brightness in the 3 - 5 um region and resolving the discrepancy between WISE and Spitzer will enable better planning of the Lucy spectral observations in this wavelength range 3) The size, albedo, and thermal inertia of Donaldjohanson are fundamental data for planning the encounter with that Main Belt asteroid

  1. Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Arminjon, Mayeul

    2008-01-01

    The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself

  2. Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages.

    Science.gov (United States)

    Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H

    2009-01-09

    We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

  3. Neutron emission spectra and level density of hot rotating 132Sn

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    The neutron emission spectrum of the highly excited compound nuclear system 132 Sn is investigated at high spin. The doubly magic nucleus 132 Sn undergoes a shape transition at high angular momentum which affects the nuclear level density and neutron emission probability considerably. The interplay of temperature, shape, deformation and rotational degrees of freedom and their influence on neutron emission is emphasized. We predict an enhancement of nucleonic emission at those spins where the nucleus suffers a transition from a spherical to deformed shape. (author)

  4. LANSCE (Los Alamos Neutron Scattering Center) target system performance

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Robinson, H.; Legate, G.L.; Bridge, A.; Sanchez, R.J.; Brewton, R.J.; Woods, R.; Hughes, H.G. III

    1989-01-01

    The authors measured neutron beam fluxes at LANSCE using gold foil activation techniques. They did an extensive computer simulation of the as-built LANSCE Target/Moderator/Reflector/Shield geometry. They used this mockup in a Monte Carlo calculation to predict LANSCE neutronic performance for comparison with measured results. For neutron beam fluxes at 1 eV, the ratio of measured data to calculated varies from ∼0.6-0.9. The computed 1 eV neutron leakage at the moderator surface is 3.9 x 10 10 n/eV-sr-s-μA for LANSCE high-intensity water moderators. The corresponding values for the LANSCE high-resolution water moderator and the liquid hydrogen moderator are 3.3 and 2.9 x 10 10 , respectively. LANSCE predicted moderator intensities (per proton) for a tungsten target are essentially the same as ISIS predicted moderator intensities for a depleted uranium target. The calculated LANSCE steady state unperturbed thermal (E 13 n/cm 2 -s. The unique LANSCE split-target/flux-trap-moderator system is performing exceedingly well. The system has operated without a target or moderator change for over three years at nominal proton currents of 25 μA of 800-MeV protons. 17 refs., 8 figs., 3 tabs

  5. Calculation of Spectra of Neutrons and Charged Particles Produced in a Target of a Neutron Generator

    Science.gov (United States)

    Gaganov, V. V.

    2017-12-01

    An algorithm for calculating the spectra of neutrons and associated charged particles produced in the target of a neutron generator is detailed. The products of four nuclear reactions 3H( d, n)4He, 2H( d, n)3He, 2H( d, p)3H, and 3He( d, p)4He are analyzed. The results of calculations are presented in the form of neutron spectra for several emission angles and spectra of associated charged particles emitted at an angle of 180° for a deuteron initial energy of 0.13 MeV.

  6. Neutrons and numerical methods. A new look at rotational tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M R; Kearley, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Molecular modelling techniques are easily adapted to calculate rotational potentials in crystals of simple molecular compounds. A comparison with the potentials obtained from the tunnelling spectra provides a stringent means for validating current methods of calculating Van der Waals, Coulomb and covalent terms. (author). 5 refs.

  7. Rotation stability of high speed neutron time-of-flight mechanical chopper

    International Nuclear Information System (INIS)

    Habib, N.; Adib, M.

    1998-01-01

    A modified rotation stabilization system has been designed to maintain the stability of a neutron time-of-flight (TOF) mechanical chopper rates from 460 rpm to 16000 rpm. The main principle of the system is based on comparing the chopper's rotation period with the preselected one from a quartz timer. The result of comparison is used to control the current driver of the chopper's motor. A 600 Hz three phase generator controlled by a magnetic amplifier was used as a current driver. The stability of the chopper's rotation rate at 16000 rpm was 0.02%. An improved method precise time scale calibration of the TOF spectrometer is applied

  8. Optimum design of exploding pusher target to produce maximum neutrons

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Miyanaga, N.; Kato, Y.; Nakatsuka, M.; Nishiguchi, A.; Yabe, T.; Yamanaka, C.

    1985-03-01

    Exploding pusher target experiments have been conducted with the 1.052-μm GEKKO MII two-beam glass laser system to design an optimum target, which couples to the incident laser light most effectively to produce the maximum neutrons. Since hot electrons preheat the shell entirely in spite of strongly nonuniform irradiation, a simple model can design the optimum target, of which the shell/fuel interface is accelerated to 0.5 to 0.7 times the initial radius within a laser pulse. A 2-dimensional computer simulation supports this target design. The scaling of the neutron yield N with the laser power P is N ∝ P 2.4±0.4 . (author)

  9. Analytic model of heat deposition in spallation neutron target

    International Nuclear Information System (INIS)

    Findlay, D.J.S.

    2015-01-01

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  10. Analytic model of heat deposition in spallation neutron target

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.J.S.

    2015-12-11

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  11. A new, 13C-based material for neutron targets

    International Nuclear Information System (INIS)

    Romanenko, A.I.; Anikeeva, O.B.; Gorbachev, R.V.; Zhmurikov, E.I.; Gubin, K.V.; Logachev, P.V.; Avilov, M.S.; Tsybulya, S.V.; Kryukova, G.N.; Burgina, E.B.; Tecchio, L.

    2005-01-01

    A 13 C-based neutron-target material is investigated using X-ray diffraction, IR absorption and Raman scattering spectroscopies, transmission electron microscopy, and electrical (conductivity, magnetoresistance, and Hall effect) measurements before and after high-power electron irradiation for various lengths of time [ru

  12. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    International Nuclear Information System (INIS)

    Guzek, J.; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S.

    1999-01-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 μA beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output

  13. Eigenmode frequency distribution of rapidly rotating neutron stars

    International Nuclear Information System (INIS)

    Boutloukos, Stratos; Nollert, Hans-Peter

    2007-01-01

    We use perturbation theory and the relativistic Cowling approximation to numerically compute characteristic oscillation modes of rapidly rotating relativistic stars which consist of a perfect fluid obeying a polytropic equation of state. We present a code that allows the computation of modes of arbitrary order. We focus here on the overall distribution of frequencies. As expected, we find an infinite pressure mode spectrum extending to infinite frequency. In addition we obtain an infinite number of inertial mode solutions confined to a finite, well-defined frequency range which depends on the compactness and the rotation frequency of the star. For nonaxisymmetric modes we observe how this range is shifted with respect to the axisymmetric ones, moving towards negative frequencies and thus making all m>2 modes unstable. We discuss whether our results indicate that the star's spectrum must have a continuous part, as opposed to simply containing an infinite number of discrete modes

  14. Growth of black holes in the interior of rotating neutron stars

    DEFF Research Database (Denmark)

    Kouvaris, C.; Tinyakov, P.

    2014-01-01

    Mini-black holes made of dark matter that can potentially form in the interior of neutron stars always have been thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angular velocities that can...... in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum...... evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion...

  15. Beryllium armoured target for extreme heat and neutron loading conditions

    International Nuclear Information System (INIS)

    Mazul, I.; Gervash, A.; Giniyatulin, R.

    2004-01-01

    Beryllium is a primary candidate as a target material for high-energy protons conversion into neutrons used for different applications. In order to get higher neutron flux the conversion area has to be minimized - in our case the target is limited by 1-2 liter volume. This target generates about 5·10 13 fast neutrons per second and removes of 150 kW thermal power deposited by proton beam (30 mA, 5 MeV), coming from linac. The operational condition of the converter is close to the condition of Be-armored components in fusion reactors: high thermal and neutron fluxes and active cooling. Therefore achievements in development of water-cooled high heat flux components for fusion application can be used for design of Be converter and vice versa. However for medical application the using of high-activated heat sink materials such as Cu and SS is strongly limited. So, new materials (Be, Al, Zr) and new joining technologies in comparison with the achievements in fusion area have to be used for construction of such Be converter. In order to reduce amount of heat sink materials in the target saddle-block geometry for Be armor is suggested and developed. Results of R and D works on the development of water cooled Be target for converter are presented, including data on selected materials, technological trials and mockups high heat flux testing. Preliminary design of Be neutron converter for medical applications based on R and D results is presented. (author)

  16. Long-Lifetime Low-Scatter Neutron Polarization Target

    International Nuclear Information System (INIS)

    Richardson, Jonathan M.

    2004-01-01

    Polarized neutrons scattering is an important technology for characterizing magnetic and other materials. Polarized helium three (P-3He) is a novel technology for creating polarized beams and, perhaps more importantly, for the analysis of polarization in highly divergent scattered beams. Analysis of scattered beams requires specialized targets with complex geometries to ensure accurate results. Special materials and handling procedures are required to give the targets a long useful lifetime. In most cases, the targets must be shielded from stray magnetic fields from nearby equipment. SRL has developed and demonstrated hybrid targets made from glass and aluminum. We have also developed and calibrated a low-field NMR system for measuring polarization lifetimes. We have demonstrated that our low-field system is able to measure NMR signals in the presence of conducting (metallic) cell elements. We have also demonstrated a non-magnetic valve that can be used to seal the cells. We feel that these accomplishments in Phase I are sufficient to ensure a successful Phase II program. The commercial market for this technology is solid. There are over nine neutron scattering centers in the US and Canada and over 22 abroad. Currently, the US plans to build a new $1.4B scattering facility called the Spallation Neutron Source (SNS). The technology developed in this project will allow SRL to supply targets to both existing and future facilities. SRL is also involved with the application of P-3He to medical imaging

  17. Some target assay uncertainties for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Langner, D.G.; Menlove, H.O.; Miller, M.C.; Russo, P.A.

    1990-01-01

    This paper provides some target assay uncertainties for passive neutron coincidence counting of plutonium metal, oxide, mixed oxide, and scrap and waste. The target values are based in part on past user experience and in part on the estimated results from new coincidence counting techniques that are under development. The paper summarizes assay error sources and the new coincidence techniques, and recommends the technique that is likely to yield the lowest assay uncertainty for a given material type. These target assay uncertainties are intended to be useful for NDA instrument selection and assay variance propagation studies for both new and existing facilities. 14 refs., 3 tabs

  18. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  19. Taking into account the Earth's rotation in experiments on search for the electric dipole moment of neutron

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2007-01-01

    Analysis of the problem of taking into account the Earth's rotation in a search for the electric dipole moment (EDM) of the neutron in experiments with ultracold neutrons and in a diffractional experiment is fulfilled. Taking into account the Earth's rotation in the diffractional experiment gives an exactly calculated correction which is negligible as compared with the accuracy reached at present time. In the experiments with ultracold neutrons, the correction is greater than the systematical error and the exact calculation of it needs further investigation. In this connection, further developments of diffractional method would considerably promote progress in the search for the electric dipole moment of the neutron

  20. Targets for the production of neutron activated molybdenum-99

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Boyd, R.E.

    1999-01-01

    Neutron activation of natural molybdenum is, ostensibly, the least complex route to 99m Tc. However in most commercial generators the severe limitation in 99 Mo specific activity that the route imposes has caused manufacturers to choose the alternative fission process despite its disadvantages of being more expensive and requiring a more complex waste management strategy. The development of a newer generator technology is capable of reviving the demand for neutron activated 99 Mo and might encourage the production of 99m Tc by countries possessing less developed nuclear infrastructures. The targets used in the (n,γ) production route consist of analytical grade molybdenum trioxide which has been further refined to remove both rhenium and tungsten trace impurities. The basic methods used by ANSTO to produce a molybdenum target capable of yielding 99m Tc of high radionuclidic purity are described. (author)

  1. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    International Nuclear Information System (INIS)

    Morgan, G.; Butler, G.; Cappiello, M.; Carius, S.; Daemen, L.; DeVolder, B.; Frehaut, J.; Goulding, C.; Grace, R.; Green, R.; Lisowski, P.; Littleton, P.; King, J.; King, N.; Prael, R.; Stratton, T.; Turner, S.; Ullmann, J.; Venneri, F.; Yates, M.

    1995-01-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system

  2. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.; Butler, G.; Cappiello, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system.

  3. Materials considerations for the National Spallation Neutron Source target

    International Nuclear Information System (INIS)

    Mansur, L.K.; DiStefano, J.R.; Farrell, K.; Lee, E.H.; Pawel, S.J.; Wechsler, M.S.

    1997-08-01

    The National Spallation Neutron Source (NSNS), in which neutrons are generated by bombarding a liquid mercury target with 1 GeV protons, will place extraordinary demands on materials performance. The target structural material will operate in an aggressive environment, subject to intense fluxes of high energy protons, neutrons, and other particles, while exposed to liquid mercury and to water. Components that require special consideration include the Hg liquid target container and protective shroud, beam windows, support structures, moderator containers, and beam tubes. In response to these demands a materials R and D program has been developed for the NSNS that includes: selection of materials; calculations of radiation damage; irradiations, post irradiation testing, and characterization; compatibility testing and characterization; design and implementation of a plan for monitoring of materials performance in service; and materials engineering and technical support to the project. Irradiations are being carried out in actual and simulated spallation environments. Compatibility experiments in Hg are underway to ascertain whether the phenomena of liquid metal embrittlement and temperature gradient mass transfer will be significant. Results available to date are assessed in terms of the design and operational performance of the facility

  4. The methyl rotational potentials of Ga(CH sub 3) sub 3 derived by neutron spectroscopy

    CERN Document Server

    Prager, M; Parker, S F; Desmedt, A; Lechner, R E

    2002-01-01

    High resolution neutron spectra of Ga(CH sub 3) sub 3 show tunnelling transitions between 4.5 and 19 mu eV. The spectrum can be explained within the single-particle model on the basis of the monoclinic C2/c (Z = 16) low temperature crystal structure of Ga(CH sub 3) sub 3 with six inequivalent methyl groups in the unit cell. The overlapping tunnelling lines prevent the extraction of temperature dependent linewidths which would allow us to assign the librational energies measured in the phonon density of states. Classical rotational motion is studied by quasielastic neutron scattering. Three activation energies could be extracted. Methyl librations, tunnelling energies and barrier heights are combined with consistent intensities into rotational potentials. Only the concerted application of all spectroscopic techniques yields a conclusive description.

  5. Frozen orientation disorder and rotation excitation in solid mixtures of methane and krypton (neutron diffraction experiments)

    International Nuclear Information System (INIS)

    Grondey, S.

    1986-09-01

    The effect of a statistical replacement of CH 4 molecules by Kr atoms on the rotational states in solid methane has been examined. Obviously the anisotropic molecular interaction (octopole-octopole interaction) is disturbed in a way analogous to magnetic systems with random internal fields. Inelastic neutron scattering experiments on solid mixtures (CH 4 ) 1-x Kr x with 0≤x≤0.35 have been carried out, and simple models have been developed to interpret the spectra. (orig./BHO)

  6. Impact of triaxiality on the rotational structure of neutron-rich rhenium isotopes

    Directory of Open Access Journals (Sweden)

    M.W. Reed

    2016-01-01

    Full Text Available A number of 3-quasiparticle isomers have been found and characterised in the odd-mass, neutron-rich, 187Re, 189Re and 191Re nuclei, the latter being four neutrons beyond stability. The decay of the isomers populates states in the rotational bands built upon the 9/2−[514] Nilsson orbital. These bands exhibit a degree of signature splitting that increases with neutron number. This splitting taken together with measurements of the M1/E2 mixing ratios and with the changes observed in the energy of the gamma-vibrational band coupled to the 9/2−[514] state, suggests an increase in triaxiality, with γ values of 5°, 18° and 25° deduced in the framework of a particle-rotor model.

  7. Laser driven compression and neutron generation with spherical shell targets

    International Nuclear Information System (INIS)

    Campbell, P.M.; Hammerling, P.; Johnson, R.R.; Kubis, J.J.; Mayer, F.J.

    1977-01-01

    Laser-driven implosion experiments using DT-gas-filled spherical glass-shell targets are described. Neutron yields to 5 x 10 7 are produced from implosions of small ( -- 55 μm-diameter) targets spherically illuminated with an on-target laser power of 0.4 terawatt. Nuclear reaction product diagnostics, X-ray pinhole photographs, fast-ion spectra and X-ray measurements are used in conjunction with hydrodynamic computer code simulations to investigate the implosion phenomenology as well as the target corona evolution. Simulations using completely classical effects are not able to describe the full range of experimental data. Electron or radiation preheating may be required to explain some implosion measurements. (auth.)

  8. Spallation Neutron Source Second Target Station Integrated Systems Update

    Energy Technology Data Exchange (ETDEWEB)

    Ankner, John Francis [ORNL; An, Ke [ORNL; Blokland, Willem [ORNL; Charlton, Timothy R. [ORNL; Coates, Leighton [ORNL; Dayton, Michael J. [ORNL; Dean, Robert A. [ORNL; Dominguez-Ontiveros, Elvis E. [ORNL; Ehlers, Georg [ORNL; Gallmeier, Franz X. [ORNL; Graves, Van B. [ORNL; Heller, William T. [ORNL; Holmes, Jeffrey A. [ORNL; Huq, Ashfia [ORNL; Lumsden, Mark D. [ORNL; McHargue, William M. [ORNL; McManamy, Thomas J. [ORNL; Plum, Michael A. [ORNL; Rajic, Slobodan [ORNL; Remec, Igor [ORNL; Robertson, Lee [ORNL; Sala, Gabriele [ORNL; Stoica, Alexandru Dan [ORNL; Trotter, Steven M. [ORNL; Winn, Barry L. [ORNL; Abudureyimu, Reheman [ORNL; Rennich, Mark J. [ORNL; Herwig, Kenneth W. [ORNL

    2017-04-01

    The Spallation Neutron Source (SNS) was designed from the beginning to accommodate both an accelerator upgrade to increase the proton power and a second target station (STS). Four workshops were organized in 2013 and 2014 to identify key science areas and challenges where neutrons will play a vital role [1-4]. Participants concluded that the addition of STS to the existing ORNL neutron sources was needed to complement the strengths of High Flux Isotope Reactor (HFIR) and the SNS first target station (FTS). To address the capability gaps identified in the workshops, a study was undertaken to identify instrument concepts that could provide the required new science capabilities. The study outlined 22 instrument concepts and presented an initial science case for STS [5]. These instrument concepts formed the basis of a planning suite of instruments whose requirements determined an initial site layout and moderator selection. An STS Technical Design Report (TDR) documented the STS concept based on those choices [6]. Since issue of the TDR, the STS concept has significantly matured as described in this document.

  9. Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    International Nuclear Information System (INIS)

    Pappas, George

    2009-01-01

    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R ISCO ), the rotation frequency and the epicyclic frequencies Ω ρ , Ω z . Finally we present some results of the comparison.

  10. Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, George, E-mail: gpappas@phys.uoa.g [Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)

    2009-10-01

    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R{sub ISCO}), the rotation frequency and the epicyclic frequencies {Omega}{sub {rho}}, {Omega}{sub z}. Finally we present some results of the comparison.

  11. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    International Nuclear Information System (INIS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-01-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  12. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    Energy Technology Data Exchange (ETDEWEB)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg [Theoretical Astrophysics, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany)

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  13. Calculation of neutron spectra produced in neutron generator target: Code testing.

    Science.gov (United States)

    Gaganov, V V

    2018-03-01

    DT-neutron spectra calculated using the SRIANG code was benchmarked against the results obtained by widely used Monte Carlo codes: PROFIL, SHORIN, TARGET, ENEA-JSI, MCUNED, DDT and NEUSDESC. The comparison of the spectra obtained by different codes confirmed the correctness of SRIANG calculations. The cross-checking of the compared spectra revealed some systematic features and possible errors of analysed codes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The space distribution of neutrons generated in massive lead target by relativistic nuclear beam

    International Nuclear Information System (INIS)

    Chultem, D.; Damdinsuren, Ts.; Enkh-Gin, L.; Lomova, L.; Perelygin, V.; Tolstov, K.

    1993-01-01

    The present paper is devoted to implementation of solid state nuclear track detectors in the research of the neutron generation in extended lead spallation target. Measured neutrons space distribution inside the lead target and neutron distribution in the thick water moderator are assessed. (Author)

  15. Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques

    CERN Document Server

    Strohmayer, T E

    2002-01-01

    X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the conte...

  16. Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars

    International Nuclear Information System (INIS)

    Schenk, A.K.; Arras, P.; Flanagan, E.E.; Teukolsky, S.A.; Wasserman, I.

    2002-01-01

    We develop the formalism required to study the nonlinear interaction of modes in rotating Newtonian stars, assuming that the mode amplitudes are only mildly nonlinear. The formalism is simpler than previous treatments of mode-mode interactions for spherical stars, and simplifies and corrects previous treatments for rotating stars. At linear order, we elucidate and extend slightly a formalism due to Schutz, show how to decompose a general motion of a rotating star into a sum over modes, and obtain uncoupled equations of motion for the mode amplitudes under the influence of an external force. Nonlinear effects are added perturbatively via three-mode couplings, which suffices for moderate amplitude modal excitations; the formalism is easy to extend to higher order couplings. We describe a new, efficient way to compute the modal coupling coefficients, to zeroth order in the stellar rotation rate, using spin-weighted spherical harmonics. The formalism is general enough to allow computation of the initial trends in the evolution of the spin frequency and differential rotation of the background star. We apply this formalism to derive some properties of the coupling coefficients relevant to the nonlinear interactions of unstable r modes in neutron stars, postponing numerical integrations of the coupled equations of motion to a later paper. First, we clarify some aspects of the expansion in stellar rotation frequency Ω that is often used to compute approximate mode functions. We show that, in zero-buoyancy stars, the rotational modes (those modes whose frequencies vanish as Ω→0) are orthogonal to zeroth order in Ω. From an astrophysical viewpoint, the most interesting result of this paper is that many couplings of r modes to other rotational modes are small: either they vanish altogether because of various selection rules, or they vanish to lowest order in Ω or in compressibility. In particular, in zero-buoyancy stars, the coupling of three r modes is forbidden

  17. Thermofluid-neutronic stability of the rotating, fluidized bed, space-power reactor

    International Nuclear Information System (INIS)

    Lee, C.C.; Jones, O.C.; Becker, M.

    1993-01-01

    A rotating fluidized bed nuclear reactor has the potential of being a vary attractive option for ultra-high power space systems, especially for propulsion. Research has already examined fuel bed expansion due to variations in state variables, propellant flow rate, and rotational speed, and has also considered problems related to thermal stress. This paper describes the results of a coupled thermofluid-neutronic analysis where perturbations in fuel bed height caused by maneuvering changes in operating conditions alter power levels due to varying absorption of neutrons which would otherwise leak from the system, mainly through the nozzle. This first analysis was not a detailed stability analysis. Rather, it utilized simplified neutronic methods, and was intended to provide an order-of-magnitude assessment of the stability of the reactor with the intention to determine whether or not stability might be a 'concept killer'. Stability was compared with a fixed-fuel-bed reactor of identical geometry for three different cases comprising a set of small, medium and large sizes/powers from 250 MW to 5 GW. It was found that power fluctuations in the fluidized bed reactor were larger by 100 db or more than expected in a packed bed reactor of the same geometry, but never resulted in power excursions. Margins to unit gain in some cases, however, were sufficiently small that the approximations in this quasi-2-dimensional model may not be sufficiently accurate to preclude significant excursions. (orig.)

  18. A SCILAB Program for Computing General-Relativistic Models of Rotating Neutron Stars by Implementing Hartle's Perturbation Method

    Science.gov (United States)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.

  19. Calculating the energy spectrum of neutrons from tritium target of the NG-150 type generator

    International Nuclear Information System (INIS)

    Bortash, A.I.; Kuznetsov, V.S.

    1987-01-01

    Calculation procedure of neutron spectra yielding from the NG-150 generator target chamber with regard to deutron moderation is suggested. Using the suggested procedure, neutron spectra for different escape angles formed in the tritium target are calculated. The spectrum of neutrons scattered in cooling water is calculated. The mean energy of neutrons escaping at the angle of 0 deg equalling 14.5 MeV is obtained

  20. Spallation target-moderator-reflector studies at the Weapons Neutron Research facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Prael, S.D.; Robinson, H.; Howe, S.D.

    1980-01-01

    Basic neutronics data, initiated by 800-MeV proton spallation reactions, are important to spallation neutron source development and electronuclear fuel production. Angle-dependent and energy-dependent neutron production cross sections, energy-dependent and total neutron yields, thermal and epithermal neutron surface and beam fluxes, and fertile-to-fissile conversion ratios are being measured. The measurements are being done at the Weapons Neutron Research facility on a variety of targets and target-moderator-reflector configurations. The experiments are relevant to the above applications, and provide data to validate computer codes. Preliminary results are presented and compared to calculated predictions. 13 figures

  1. Design specification for the European Spallation Source neutron generating target element

    International Nuclear Information System (INIS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J.M.

    2017-01-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  2. Design specification for the European Spallation Source neutron generating target element

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sordo, F., E-mail: fernando.sordo@essbilbao.org [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mora, T. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Mena, L. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Magan, M.; Vivanco, R. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Jimenez-Villacorta, F. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sjogreen, K.; Oden, U. [European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund (Sweden); Perlado, J.M. [Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); and others

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  3. Neutron production in interactions of relativistic protons and deuterons with lead targets

    International Nuclear Information System (INIS)

    Yurevich, V.I.; Amelin, N.S.; Yakovlev, R.M.; Nikolaev, V.A.; Lyapin, V.G.; Tsvetkov, I.O.

    2005-01-01

    Results on the neutron double-differential cross sections and yields obtained in the time-of-flight measurements with different lead targets and beams of protons and deuterons at an energy of about 2 GeV are discussed. The neutron spatial-energy distribution for an extended lead target was studied by the threshold detector method in the energy range of protons and deuterons 1-3.7 GeV. A dependence of the mean neutron multiplicity, energy of neutrons, and process of neutron multiplication in lead on the target dimension, and the type and energy of the beam particle is analyzed. (author)

  4. Calculations of radiation damage in target, container and window materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Mansur, L.K.

    1996-01-01

    Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies

  5. Effectively universal behavior of rotating neutron stars in general relativity makes them even simpler than their Newtonian counterparts.

    Science.gov (United States)

    Pappas, George; Apostolatos, Theocharis A

    2014-03-28

    Recently, it was shown that slowly rotating neutron stars exhibit an interesting correlation between their moment of inertia I, their quadrupole moment Q, and their tidal deformation Love number λ (the I-Love-Q relations), independently of the equation of state of the compact object. In the present Letter a similar, more general, universality is shown to hold true for all rotating neutron stars within general relativity; the first four multipole moments of the neutron star are related in a way independent of the nuclear matter equation of state we assume. By exploiting this relation, we can describe quite accurately the geometry around a neutron star with fewer parameters, even if we don't know precisely the equation of state. Furthermore, this universal behavior displayed by neutron stars could promote them to a more promising class of candidates (next to black holes) for testing theories of gravity.

  6. Inelastic neutron excitation of the ground state rotational band of 238U

    International Nuclear Information System (INIS)

    Guenther, P.; Smith, A.

    1975-01-01

    Cross sections for the neutron excitation of the 2+(45 keV), 4+(148 keV) and 6+(308 keV) states in 238 U were measured to incident energies of approximately 3.0 MeV. The experimental resolution was sufficient to resolve these components throughout the measured energy range. Particular attention was given to energies near threshold and in the few MeV range where direct reaction contributions were appreciable. The experimental results were compared with theoretical estimates based upon statistical and coupled-channel models deduced from comprehensive studies of neutron scattering from heavy-rotational-deformed nuclei. An evaluated inelastic scattering data set was derived from the present experimental and calculational results and previously reported experimental values and compared with respective values from the ENDF-IV file. 4 figures

  7. Hydrogen rotational and translational diffusion in calcium borohydride from quasielastic neutron scattering and DFT

    DEFF Research Database (Denmark)

    Blanchard, Didier; Riktor, M.D.; Maronsson, Jon Bergmann

    2010-01-01

    Hydrogen dynamics in crystalline calcium borohydride can be initiated by long-range diffusion or localized motion such as rotations, librations, and vibrations. Herein, the rotational and translational diffusion were studied by quasielastic neutron scattering (QENS) by using two instruments...... with different time scales in combination with density functional theory (DFT) calculations. Two thermally activated reorientational motions were observed, around the 2-fold (C2) and 3-fold (C3) axes of the BH4− units, at temperature from 95 to 280K. The experimental energy barriers (EaC2 = 0.14 eV and EaC3 = 0...... of the interstitial H2 might come from the synthesis of the compound or a side reaction with trapped synthesis residue leading to the partial oxidation of the compound and hydrogen release....

  8. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Continuous energy Neutron Transport Monte Carlo Simulator Project: Decomposition of the neutron energy spectrum by target nuclei tagging

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares; Leite, Sergio Q. Bogado, E-mail: sbogado@ibest.com.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work a Monte Carlo simulator with continuous energy is used. This simulator distinguishes itself by using the sum of three probability distributions to represent the neutron spectrum. Two distributions have known shape, but have varying population of neutrons in time, and these are the fission neutron spectrum (for high energy neutrons) and the Maxwell-Boltzmann distribution (for thermal neutrons). The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. It is common practice in neutron transport calculations, e.g. multi-group transport, to consider that the neutrons only lose energy with each scattering reaction and then to use a thermal group with a Maxwellian distribution. Such an approximation is valid due to the fact that for fast neutrons up-scattering occurrence is irrelevant, being only appreciable at low energies, i.e. in the thermal energy region, in which it can be regarded as a Maxwell-Boltzmann distribution for thermal equilibrium. In this work the possible neutron-matter interactions are simulated with exception of the up-scattering of neutrons. In order to preserve the thermal spectrum, neutrons are selected stochastically as being part of the thermal population and have an energy attributed to them taken from a Maxwellian distribution. It is then shown how this procedure can emulate the up-scattering effect by the increase in the neutron population kinetic energy. Since the simulator uses tags to identify the reactions it is possible not only to plot the distributions by neutron energy, but also by the type of interaction with matter and with the identification of the target nuclei involved in the process. This work contains some preliminary results obtained from a Monte Carlo simulator for neutron transport that is being developed at Federal University of Rio Grande do Sul. (author)

  10. Influence of target-scattered neutrons on cross-section measurements

    International Nuclear Information System (INIS)

    Lesiecki, H.; Cosack, M.; Siebert, B.R.L.

    1985-01-01

    Monoenergetic neutrons produced with accelerators are usually accompanied by degraded and secondary neutrons which arise from reactions of source neutrons in the material of the target construction. A Monte Carlo code was written which takes into account the kinematics and the angular source strength of the neutron producing reaction and the interactions of the neutrons with the material in the immediate vicinity of their production. The calculation of the spectral distribution of the neutron fluence is compared with the result of a time-of-flight measurement. (author)

  11. Neutron scattering and muon spin rotation as probes of light interstitial transport

    International Nuclear Information System (INIS)

    Brown, D.W.

    1985-01-01

    The transport of light interstitials, specifically of hydrogen isotopes and the positive muon, is studied with the help of microscopic transport models. The principal observables are the differential neutron scattering cross section of the hydrogen isotopes and the muon spin rotation signal of the positive muon. The transport feature of primary interest is coherence arising as a result of persistence of quantum mechanical phase memory. Evaluation of observables is based on the generalized master equation, or alternatively, the stochastic Liouville equation. The latter is applied to obtain the neutron scattering lineshapes for local tunneling systems as well as for extended Bravais and non-Bravais lattices. It is found that the usual form of the stochastic Liouville equation does not address adequately transport among non-degenerate site-states. An appropriate modification is suggested and employed to obtain scattering lineshapes applicable to recent experiments on impurity-trapped hydrogen. The muon spin rotation signal is formulated under the assumption that spin interactions constitute a negligible source of scattering for muon transport. The depolarization function is evaluated for the cases of local tunneling systems and simple models of spatially extended transport. The former addresses consequences of coherence and both address the consequences of the spatial extent of the muon wavefunction. It is found that the depolarization function is sensitive to the wave function extent, and the detail attributable to it is characterized

  12. Secondary neutron production from thick Pb target by light particle irradiation

    CERN Document Server

    Adloff, J C; Debeauvais, M; Fernández, F; Krivopustov, M; Kulakov, B A; Sosnin, A; Zamani, M

    1999-01-01

    Neutron multiplicities from spallation neutron sources were measured by Solid State Nuclear Track Detectors. Light particles as protons, deuterons and alphas in the GeV range were used on Pb targets. For neutron thermalization the targets were covered by 6 cm paraffin moderator. Neutron multiplicity distributions were studied inside and on the moderator surface. Comparison of SSNTDs results were made for thermal-epithermal neutrons with sup 1 sup 3 sup 9 La activation method as well as with Dubna DCM/CEM code. Discussion including previous sup 1 sup 2 C results are given.

  13. Separation of heavier rare earths from neutron irradiated uranium targets

    International Nuclear Information System (INIS)

    Bhargava, V.K.; Rao, V.K.; Marathe, S.G.; Sahakundu, S.M.; Iyer, R.H.

    1978-01-01

    A radiochemical method is described for the separation of heavier rare earths from the fission of uranium. The method is particularly suitable for the separation of low yield (10sup(-5)%-10sup(-7)%), highly asymmetric rare earth fission products viz. sup(179,177)Lu, sup(175)Yb, sup(173)Tm, sup(172,171)Er, sup(167)Ho and sup(161,160)Tb in the neutron induced fission of natural and depleted uranium targets. Additional separation steps have been incorporated for decontamination from sup(239)Np (an activation product) and sup(93-90)Y (a high fission-yield product) which show similar chemical behaviour to rare earths. Separation of individual rare earths is achieved by a cation exchange method performed at 80 deg C by elution with α-hydroxyisobutyric acid (α-HIBA). (author)

  14. Analysis of the Neutron Generator and Target for the LSDTS System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius.

  15. Inelastic neutron scattering study of methyl groups rotation in some methylxanthines

    Science.gov (United States)

    Prager, M.; Pawlukojc, A.; Wischnewski, A.; Wuttke, J.

    2007-12-01

    The three isomeric dimethylxanthines and trimethylxanthine are studied by neutron spectroscopy up to energy transfers of 100meV at energy resolutions ranging from 0.7μeV to some meV. The loss of elastic intensity with increasing temperature can be modeled by quasielastic methyl rotation. The number of inequivalent methyl groups is in agreement with those of the room temperature crystal structures. Activation energies are obtained. In the case of theophylline, a doublet tunneling band is observed at 15.1 and 17.5μeV. In theobromine, a single tunneling band at 0.3μeV is found. Orientational disorder in caffeine leads to a 2.7μeV broad distribution of tunneling bands around the elastic line. At the same time, broad low energy phonon spectra characterize an orientational glassy state with weak methyl rotational potentials. Librational energies of the dimethylxanthines are clearly seen in the phonon densities of states. Rotational potentials can be derived which explain consistently all observables. While their symmetry in general is threefold, theophylline shows a close to sixfold potential reflecting a mirror symmetry.

  16. Rotating target wheel system for super-heavy element production at ATLAS

    CERN Document Server

    Greene, J P; Falout, J; Janssens, R V F

    2004-01-01

    A new scattering chamber housing a large diameter rotating target wheel has been designed and constructed in front of the Fragment Mass Analyzer (FMA) for the production of very heavy nuclei (Z greater than 100) using beams from the Argonne Tandem Linear Accelerator System (ATLAS). In addition to the target and drive system, the chamber is extensively instrumented in order to monitor target performance and deterioration. Capabilities also exist to install rotating entrance and exit windows for gas cooling of the target within the scattering chamber. The design and initial tests are described.

  17. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    Directory of Open Access Journals (Sweden)

    R. E. Phillips

    2013-07-01

    Full Text Available A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  18. Spatial distribution of moderated neutrons along a Pb target irradiated by high-energy protons

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, A.N.; Debeauvais, M.; Adloff, J.C.; Zamani Valasiadou, M.

    2006-01-01

    High-energy protons in the range of 0.5-7.4 GeV have irradiated an extended Pb target covered with a paraffin moderator. The moderator was used in order to shift the hard Pb spallation neutron spectrum to lower energies and to increase the transmutation efficiency via (n,γ) reactions. Neutron distributions along and inside the paraffin moderator were measured. An analysis of the experimental results was performed based on particle production by high-energy interactions with heavy targets and neutron spectrum shifting by the paraffin. Conclusions about the spallation neutron production in the target and moderation through the paraffin are presented. The study of the total neutron fluence on the moderator surface as a function of the proton beam energy shows that neutron cost is improved up to 1 GeV. For higher proton beam energies it remains constant with a tendency to decline

  19. Calculated /alpha/-induced thick target neutron yields and spectra, with comparison to measured data

    International Nuclear Information System (INIS)

    Wilson, W.B.; Bozoian, M.; Perry, R.T.

    1988-01-01

    One component of the neutron source associated with the decay of actinide nuclides in many environments is due to the interaction of decay /alpha/ particles in (/alpha/,n) reactions on low Z nuclides. Measurements of (/alpha/,n) thick target neutron yields and associated neutron spectra have been made for only a few combinations of /alpha/ energy and target nuclide or mixtures of actinide and target nuclides. Calculations of thick target neutron yields and spectra with the SOURCES code require /alpha/-energy-dependent cross sections for (/alpha/,n) reactions, as well as branching fractions leading to the energetically possible levels of the product nuclides. A library of these data has been accumulated for target nuclides of Z /le/ 15 using that available from measurements and from recent GNASH code calculations. SOURCES, assuming neutrons to be emitted isotopically in the center-of-mass system, uses libraries of /alpha/ stopping cross sections, (/alpha/,n) reaction cross reactions, product nuclide level branching fractions, and actinide decay /alpha/ spectra to calculate thick target (/alpha/,n) yields and neutron spectra for homogeneous combinations of nuclides. The code also calculates the thick target yield and angle intergrated neutron spectrum produced by /alpha/-particle beams on targets of homogeneous mixtures of nuclides. Illustrative calculated results are given and comparisons are made with measured thick target yields and spectra. 50 refs., 1 fig., 2 tabs

  20. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    Alba, R; Cosentino, G; Zoppo, A Del; Pietro, A Di; Figuera, P; Finocchiaro, P; Maiolino, C; Santonocito, D; Schillaci, M; Barbagallo, M; Colonna, N; Boccaccio, P; Esposito, J; Celentano, A; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Kostyukov, A

    2013-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  1. Neutron dose equivalent next to the target shield of a neutron therapy facility using an LET counter

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.

    1981-01-01

    The use of a spherical tissue-equivalent proportional counter for measurements of the lineal energy (y) and derivations of the linear energy transfer (LET) for fast neutrons has the advantage of giving distributions of dose and dose equivalent as functions of either LET or y. A measurement next to the target shielding of the neutron therapy facility at the University of Chicago Hospitals and Clinics (UCHC) is described, and the data processing is outlined. The distributions are presented and compared to those from measurements in the neutron beam. The average quality factors are presented

  2. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-01-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10 9 n/cm 2 /s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  3. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  4. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, John P.; Gabor, Rachel; Neubauer, Janelle

    2001-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or 'wobbled' beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  5. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  6. Line strength variations in gamma-ray burst GB870303: Possible evidence of neutron star rotation

    International Nuclear Information System (INIS)

    Graziani, C.; Fenimore, E.E.; Murakami, T.; Yoshida, A.; Lamb, D.Q.; Wang, J.C.L.; Loredo, T.J.

    1991-01-01

    An exhaustive search of the Ginga data on γ-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One (previously unreported) interval shows a single prominent line feature at ∼20 keV; a second, corresponding to the interval reported by Murakami et al., shows two line features at ∼20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B∼1.8x10 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle θ relative the magnetic field. We conjecture that the change in θ is due to rotation of the neutron star, and derive limits 45 sec approx-lt P approx-lt 180 sec on the rotation period P

  7. A target-moderator-reflector concept of the JAERI 5 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Watanabe, Noboru; Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jyunichi; Oyama, Yukio

    1998-03-01

    In Japan Atomic Energy Research Institute the construction of a 5 MW (short) pulsed spallation neutron source is under planning using a projected high power superconducting proton (or H - ) linac of 8 MW in total beam power. In the present paper we report our consideration on target-moderator-reflector concept, based on the layout of the tentative neutron instruments for the assumed neutron scattering experiments in future. The choice of cold neutron moderators for high resolution and high intensity experiments, thermal and epithermal neutron moderators for high resolution uses was discussed and a reference layout of target-moderator-reflector system was proposed for detailed neutronic calculation and optimization. The proposed system was designed like that it can provide, at least, 30 beam lines for more than 40 instruments. (author)

  8. Target-moderator-reflector optimization for JAERI 5 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya

    1999-01-01

    Optimization studies on the target-moderator-reflector neutronics for the projected intense pulsed-spallation-neutron-source in JAERI are reported. In order to obtain the highest possible performance of the source a new target-moderator-reflector system has been proposed and effects of various parameters, such as material and the shape/dimensions of the target, the profile/distribution of the proton beam, material and dimensions of the reflector, the coupling scheme of the target-moderator, moderator parameters, etc., on slow neutron performance and energy deposition in cryogenic moderators have extensively been studied by neutronic calculations. A cold neutron moderator for high-resolution together with high-intensity experiments has newly been proposed. It was found that, by adopting a flat target with a flat beam profile, the slow neutron intensities from the moderators could be rather insensitive to the target/beam dimensions, providing more flexibility to the engineering design of the target and the moderators. The moderator position relative to the target is another important issue to be optimized. It was confirmed that the proposed target-moderator-reflector layout made it possible to put all the moderators almost at the best position (It has not been possible so far), resulting in a higher performance. The predicted performance obtained with nearly optimized parameters was compared with those of similar projects in the world to justify the present concept. (author)

  9. Collimator design for neutron imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Sommargren, G.E.; Lerche, R.A.

    1981-01-01

    Several pinhole collimator geometries for use in neutron imaging experiments have been modeled and compared. Point spread functions are shown for a cylinder, hyperbola, intersecting cones, and a five-zone approximation to the intersecting cones. Of the geometries studied, the intersecting cones appear the most promising with respect to neutron efficiency, field of view, and isoplanatism

  10. Transfer reactions at the neutron dripline with triton target

    CERN Multimedia

    Two-neutron transfer to $^{9}$Li will populate the ground state of $^{11}$Li as well as low-lying resonances in a way that is complementary to studies of these states performed at higher beam energies. We aim at detecting the charged particles from the transfer reactions as well as neutrons coming from the decay of possible $^{11}$Li resonances.

  11. Transfer reactions at the neutron dripline with triton target

    CERN Document Server

    Borge, M J G; Fynbo, H O U; Gomez Camacho, J; Johansen, J; Johansson, H T; Jonson, B; Krücken, R; Kurcewicz, J; Martel, I; Moro, A; Mücher, D; Nilsson, T; Nyman, G; Raabe, R; Randisi, G; Riisager, K; Sambi, S; Sanchez-Benitez, AM; Tengblad, O

    2012-01-01

    Two-neutron transfer to $^{9}$Li will populate the ground state of $^{11}$Li as well as low-lying resonances in a way that is complementary to studies of these states performed at higher beam energies. We aim at detecting the charged particles from the transfer reactions as well as neutrons coming from the decay of possible $^{11}$Li resonances.

  12. Behavior of structural and target materials irradiated in spallation neutron environments

    International Nuclear Information System (INIS)

    Stubbins, J.F.; Wechsler, M.; Borden, M.

    1995-01-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources

  13. Behavior of structural and target materials irradiated in spallation neutron environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States); Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States); Borden, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  14. Distributed ISAR Subimage Fusion of Nonuniform Rotating Target Based on Matching Fourier Transform.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Yaowen; Zhang, Wenpeng

    2018-06-04

    In real applications, the image quality of the conventional monostatic Inverse Synthetic Aperture Radar (ISAR) for the maneuvering target is subject to the strong fluctuation of Radar Cross Section (RCS), as the target aspect varies enormously. Meanwhile, the maneuvering target introduces nonuniform rotation after translation motion compensation which degrades the imaging performance of the conventional Fourier Transform (FT)-based method in the cross-range dimension. In this paper, a method which combines the distributed ISAR technique and the Matching Fourier Transform (MFT) is proposed to overcome these problems. Firstly, according to the characteristics of the distributed ISAR, the multiple channel echoes of the nonuniform rotation target from different observation angles can be acquired. Then, by applying the MFT to the echo of each channel, the defocused problem of nonuniform rotation target which is inevitable by using the FT-based imaging method can be avoided. Finally, after preprocessing, scaling and rotation of all subimages, the noncoherent fusion image containing all the RCS information in all channels can be obtained. The accumulation coefficients of all subimages are calculated adaptively according to the their image qualities. Simulation and experimental data are used to validate the effectiveness of the proposed approach, and fusion image with improved recognizability can be obtained. Therefore, by using the distributed ISAR technique and MFT, subimages of high-maneuvering target from different observation angles can be obtained. Meanwhile, by employing the adaptive subimage fusion method, the RCS fluctuation can be alleviated and more recognizable final image can be obtained.

  15. Transmutation and neutron flux studies with fission chambers in the MEGAPIE target

    International Nuclear Information System (INIS)

    Chabod, S.; Foucher, Y.; Letourneau, A.; Marie, F.; Toussaint, J.C.; Blandin, Ch.; Chartier, F.; Fioni, G.

    2005-01-01

    Eight fission micro chambers will be inserted inside the central rod of the 1 MW liquid Pb-Bi MEGAPIE target in order to study the transmutation of two major actinides and to measure the neutron flux at a level of 5%. These chambers were developed for high neutron fluxes and tested at Laue Langevin Institute. (authors)

  16. Effect of Target Location on Dynamic Visual Acuity During Passive Horizontal Rotation

    Science.gov (United States)

    Appelbaum, Meghan; DeDios, Yiri; Kulecz, Walter; Peters, Brian; Wood, Scott

    2010-01-01

    The vestibulo-ocular reflex (VOR) generates eye rotation to compensate for potential retinal slip in the specific plane of head movement. Dynamic visual acuity (DVA) has been utilized as a functional measure of the VOR. The purpose of this study was to examine changes in accuracy and reaction time when performing a DVA task with targets offset from the plane of rotation, e.g. offset vertically during horizontal rotation. Visual acuity was measured in 12 healthy subjects as they moved a hand-held joystick to indicate the orientation of a computer-generated Landolt C "as quickly and accurately as possible." Acuity thresholds were established with optotypes presented centrally on a wall-mounted LCD screen at 1.3 m distance, first without motion (static condition) and then while oscillating at 0.8 Hz (DVA, peak velocity 60 deg/s). The effect of target location was then measured during horizontal rotation with the optotypes randomly presented in one of nine different locations on the screen (offset up to 10 deg). The optotype size (logMar 0, 0.2 or 0.4, corresponding to Snellen range 20/20 to 20/50) and presentation duration (150, 300 and 450 ms) were counter-balanced across five trials, each utilizing horizontal rotation at 0.8 Hz. Dynamic acuity was reduced relative to static acuity in 7 of 12 subjects by one step size. During the random target trials, both accuracy and reaction time improved proportional to optotype size. Accuracy and reaction time also improved between 150 ms and 300 ms presentation durations. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements when acquiring vertical targets. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of motion. Both reaction time and accuracy are functionally relevant DVA parameters of VOR function.

  17. Investigations of fast neutron production by 190 GeV/c muon interactions on graphite target

    CERN Document Server

    Chazal, V; Cook, B; Henrikson, H; Jonkmans, G; Paic, A; Mascarenhas, N; Vogel, P; Vuilleumier, J L

    2002-01-01

    The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon target. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross section.

  18. Investigations of fast neutron production by 190 GeV/c muon interactions on different targets

    International Nuclear Information System (INIS)

    Chazal, V.; Boehm, F.; Cook, B.; Henrikson, H.; Jonkmans, G.; Paic, A.; Mascarenhas, N.; Vogel, P.; Vuilleumier, J.-L.

    2002-01-01

    The production of fast neutrons (1 MeV-1 GeV) in high-energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon, copper and lead targets. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross-section

  19. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    International Nuclear Information System (INIS)

    Xufei, X.; Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-01-01

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes

  20. Spectroscopy of 9Be and observation of neutron halo structure in the states of positive parity rotational band

    Directory of Open Access Journals (Sweden)

    Demyanova A.S.

    2014-03-01

    Full Text Available The differential cross sections of the 9Be + α inelastic scattering at 30 MeV were measured at the tandem of Tsukuba University. All the known states of 9Be up to energies ~ 12 MeV were observed and decomposed into three rotational bands, each of them having a cluster structure consisting of a 8Be core plus a valence neutron in one of the sub-shells: p3/2−, s1/2+ and p1/2−. Existence of a neutron halo in the positive parity states was confirmed.

  1. Long life neutron generator target using deuterium pass-through structure

    Science.gov (United States)

    Alger, D. L.

    1974-01-01

    Target structure permits all deuterons, except the one-in-a-million that interacts with tritium atom to produce a neutron, to pass completely through target structure and be returned to vacuum system. Since tritium atoms are not displaced as in conventional targets, tritium population will remain unchanged while under deuteron bombardment.

  2. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    OpenAIRE

    Mishustin, Igor; Malyshkin, Yury; Pshenichnov, Igor; Greiner, Walter

    2014-01-01

    A possibility of synthesizing neutron-reach super-heavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to Bk-249 can be produced in multiple neutron capture reactions in macroscopic quantities. Howeve...

  3. Methyl group rotation and segmental motion in atactic polypropylene. An incoherent quasi elastic neutron scattering investigation

    International Nuclear Information System (INIS)

    Arrighi, V.; Triolo, A.

    1999-01-01

    Complete text of publication follows. Results from the analysis of recent quasielastic neutron scattering (QENS) experiments on atactic polypropylene (aPP), are presented both in the sub-T g and above T g regimes. Experiments were carried out on the IRIS (ISIS, Rutherford Appleton Laboratory, UK) and IN10 (ILL FR) spectrometers in the temperature range from 140 to 400 K. Different instrumental resolutions were used in order to cover a wide energy window. The high resolution data collected on IN10 using the fixed energy scan technique, give clear evidence of two separate dynamic processes that we attribute to methyl group rotational hopping (below T g ) and to segmental motion (above T g ), respectively. Data were fitted using a model involving a distribution of relaxation rates. The IN10 results are used in interpreting and analyzing the QENS data from the IRIS spectrometer. In order to exploit the different energy resolutions of IRIS, Fourier inversion of the experimental data was carried out. This approach to data analysis allows us to widen the energy range available for data analysis. Due to the high activation energy of the methyl group hopping in aPP, this motion overlaps with the segmental relaxation, thus making analysis of high temperature data quite complex. The IN10 results are employed in order to perform data analysis in terms of two distinct processes. (author)

  4. A new target concept for proton accelerator driven boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1998-01-01

    A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the 7 Li(p,n) 7 Be reaction. The proton beam loses only a few keV of its ∼MeV energy as it passes through a given target, and is re-accelerated to its initial energy, by a DC electric field between the targets

  5. Target station design for a 1 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Baker, G.D.; Brewton, R.J.

    1993-01-01

    Target stations are vital components of the 1 MW, next generation spallation neutron source proposed for LANSCE. By and large, target stations design determines the overall performance of the facility. Many traditional concepts will probably have to be rethought, and many new concepts will have to be put forward to meet the 1 MW challenge. This article gives a brief overview of the proposed neutron spallation source from the target station viewpoint, as well as the general philosophy adopted for the design of the LANSCE-II target stations. Some of the saliant concepts and features envisioned for LANSCE-II are briefly described

  6. Target designs for the Brookhaven National Laboratory 5-MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Powell, J.R.

    1996-01-01

    A feasibility study of a compact high power density target for a spallation neutron source was under-taken. The target arrangement consists primarily of heavy metal, with appropriate cooling passages. A high intensity proton beam of intermediate energy is directed at the target, where it interacts with the heavy metal nuclei. The subsequent spallation reactions produce several neutrons per proton resulting in an intense neutron source. The proton beam is assumed to havean energy of 5 MW, and to be cyclic with a repetition rate of 10Hz and 50Hz. The study was divided into two broad sections. First, an analysis of preliminary target designs was undertaken to ensure the overall feasibility of the concepts involved in the design and eventual construction of such a high power density target. Second, two proposed target designs, based on the first set of analyses, are investigated in more detail. Special care is taken to ensure that the neutron fluxes in the moderator are at the desired level no material compatibility problems exist,and the target is able to operate in a reliable and safe manner. Several target materials, coolant types, and target arrangements are investigated in the first section. The second section concentrates on a single target material and geometric arrangement. However, several structural material choices continue to be investigated with the aim of minimizing the effects of structural heating, and associated thermally induced stresses. In the final section the conclusions of this preliminary study are summarized

  7. Neutron yield from thick lead target by the action of high-energy electrons

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Sorokin, P.V.

    1978-01-01

    The results are presented of studying the complete neutron yield from a lead target bombarded by high-energy electrons. Neutrons were recorded by the method of radio-active indicators. The dependence of the neutron yield on the target thickness varying from 0.2 to 8 cm was obtained at the energies of electrons of 230 and 1200 MeV. The neutron yield for the given energies with the target of 6 cm in thickness is in the range of saturation and is 0.1 +-0.03 and 0.65+-0.22 (neutr./MeV.el.), respectively. The neutron angular distributions were measured for different thicknesses of targets at the 201, 230 and 1200 MeV electrons. Within the error limits the angular distributions are isotropic. The dependence of neutron yield on the electron energy was examined for a 3 cm thick target. In the energy range of 100-1200 MeV these values are related by a linear dependence with the proportionality coefficient C=3x10 -4 (neutr./MeV.el.)

  8. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS

    International Nuclear Information System (INIS)

    FISHER, R.K.

    2003-01-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 (micro), are the most promising approach to imaging NIF target plasmas with the desired 5 (micro) spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 · 10 13 yield DT target plasmas with a target plane spatial resolution of ∼ 140 (micro). As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of ∼ 5000 drops (∼ 100 (micro) in diameter) of bubble detector liquid/cm 3 suspended in an inactive support gel that occupies ∼ 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are ∼ 10 (micro) in diameter, should result in ∼ 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of ∼ 10 to 50 (micro)

  9. Neutron energy spectrum from 120 GeV protons on a thick copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; /Kyushu U.; Sanami, Toshiya; /KEK, Tsukuba; Kajimoto, Tsuyoshi; /Kyushu U.; Iwamoto, Yosuke; /JAEA, Ibaraki; Hagiwara, Masayuki; Saito, Kiwamu; /KEK, Tsukuba; Ishibashi, Kenji; /Kyushu U.; Nakashima, Hiroshi; Sakamoto, Yukio; /JAEA, Ibaraki; Lee, Hee-Seock; /Pohang Accelerator Lab.; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  10. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    International Nuclear Information System (INIS)

    Osipenko, M.; Ripani, M.; Ricco, G.; Alba, R.; Schillaci, M.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; Finocchiaro, P.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Barbagallo, M.; Colonna, N.; Boccaccio, P.; Esposito, J.; Celentano, A.; Viberti, C.M.; Kostyukov, A.

    2013-06-01

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range 3 He detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval. (authors)

  11. Neutron energy spectra produced by α-bombardment of light elements in thick targets

    International Nuclear Information System (INIS)

    Jacobs, G.J.H.

    1982-01-01

    The aim of the work, presented in this thesis, is to determine energy spectra of neutrons produced by α-particle bombardment of thick targets containing light elements. These spectra are required for nuclear waste management. The set-up of the neutron spectrometer is described, and its calibration discussed. Absolute efficiencies were determined at various neutron energies, using monoenergetic neutrons produced with the Van de Graaff accelerator in pulsed mode. The additional calibration of the neutron spectrometer as proton-recoil spectrometer was carried out primarily for future applications in measurements where no pulsed neutron source is available or the neutron flux density is too low. The basis for an accurate uncertainty analysis is made by the determination of the covariance matrix for the uncertainties in the efficiencies. The determination of the neutron energy spectra from time-of-flight and from proton-recoil measurements is described. A comparison of the results obtained from the two different types of measurements is made. The experimentally determined spectra were compared with spectra calculated from stopping powers and theoretically determined cross sections. These cross sections were calculated from optical model parameters and level parameters using the Hauser-Feshbach formalism. Measurements were carried out on thick targets of silicon, aluminium, magnesium, carbon, boron nitride, calcium fluoride, aluminium oxide, silicon oxide and uranium oxide at four different α-particle energies. (Auth.)

  12. Projectile fragmentation of neutron-rich nuclei on light target (momentum distribution and nucleon-removal cross section)

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tanihata, I.; Suzuki, T.

    1992-01-01

    Transverse momentum distributions of the projectile fragments from β-unstable nuclei have been measured with various projectile and target combinations. The momentum correlation of two neutrons in the neutron halo is extracted from the P c t distribution of 9 Li and hat of the neutrons. It is found that the two neutrons are moving in the same direction on average and thus strongly suggests the formation of a di-neutron in 11 Li. (Author)

  13. A D-D neutron generator using a titanium drive-in target

    International Nuclear Information System (INIS)

    Kim, I.J.; Jung, N.S.; Jung, H.D.; Hwang, Y.S.; Choi, H.D.

    2008-01-01

    A D-D neutron generator was developed with an intensity of 10 8 n/s. A helicon plasma ion source was used to produce a large current deuteron beam, and neutrons were generated by irradiating the deuteron beam on a titanium drive-in target made of commercial pure titanium. The neutron generator was test-run for several hundred hours, and the performances were investigated. The available range of the deuteron beam current was 0.8-8 mA and the beam could be accelerated up to 97.5 keV. The maximum neutron generation rate in the test-runs was 1.9 x 10 8 n/s, which was achieved by irradiating a 7.6 mA deuteron beam at 94.0 keV on a 0.5 mm-thick target. The operation of the neutron generator was fairly stable, such that the neutron generation rate was not altered by high voltage breakdowns during the test-runs. Neutron generation efficiency was rated as low as 10% when compared to an ideal case of irradiating a 100% monatomic deuteron beam on a perfect TiD 2 target. Factors causing the low efficiency were suggested and discussed

  14. Application of Faraday rotator to suppression of target-reflected radiation in the optical path of a laser installation

    International Nuclear Information System (INIS)

    Bykovskiy, N.E.; Denus, S.; Dubik, A.; Ovsik, Y.; Lisunov, V.V.; Senatskiy, Y.V.; Fedotov, S.I.

    1988-01-01

    The interaction conditions between powerful laser radiation and a target are examined together with the Faraday rotators designed for suppressing target-reflected backward radiation in the neodymium glass laser optical path

  15. Free NH3 quantum rotations in Hofmann clathrates: structure factors and line widths studied by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Sobolev, O.; Vorderwisch, P.; Desmedt, A.

    2005-01-01

    Quantum rotations of NH 3 groups in Hofmann clathrates Ni-Ni-C 6 H 6 and Ni-Ni-C 12 H 10 have been studied using inelastic neutron scattering. Calculations of the dynamical structure factor for a free uniaxial quantum rotor reproduce the neutron scattering data with respect to their Q- and T-dependence as well as the relative intensities for the 0 → 1, 0 → 2 and 1 → 2 transitions. Though the effective NH 3 rotation constant is different from the gas phase value, the effective radius of rotation (i.e., the average distance of protons from the rotation axis) is equal or very close to the geometrical value r = 0.94 A for a NH 3 group. Comparing the experimental data with the calculated dynamical structure factor for the 0 → 3 transition it could be shown, that the corresponding transition line, in contrast to transitions between j = 0,1,2 levels measured so far, has a finite width at T = 0 K

  16. High-power liquid-lithium jet target for neutron production

    OpenAIRE

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as ...

  17. Target preparation and neutron activation analysis a successful story at IRMM

    CERN Document Server

    Robouch, P; Eguskiza, M; Maguregui, M I; Pommé, S; Ingelbrecht, C

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements.

  18. Target preparation and neutron activation analysis: a successful story at IRMM

    International Nuclear Information System (INIS)

    Robouch, P.; Arana, G.; Eguskiza, M.; Maguregui, M.I.; Pomme, S.; Ingelbrecht, C.

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements

  19. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, Igor, E-mail: mishustin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); “Kurchatov Institute”, National Research Center, 123182 Moscow (Russian Federation); Malyshkin, Yury, E-mail: malyshkin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2015-04-15

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to {sup 249}Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  20. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  1. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  2. Measurements of secondary neutrons producted from thick targets bombarded by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Nakao, N.; Shibata, T.; Uwamino, Y.; Nakanishi, N.; Fukumura, A.; Kumamoto, Y.

    1997-03-01

    We measured neutron angular and energy distributions from high energy heavy ions stopping in targets of carbon, aluminum, copper and lead at HIMAC. These spectra are much harder for the lighter target nucleus like carbon. This means that the momentum transfer in the forward direction from heavy ion beam to lighter nuclei is much higher than that to heavier nuclei. (author)

  3. Interaction of 14 MeV neutrons with hydrogenated target proton emission calculation

    International Nuclear Information System (INIS)

    Martin, G.; Perez, N.; Desdin.

    1996-01-01

    Using neutron emission data of a 14 MeV neutron generator, a paraffin target, and based on the n + H 1 → n '+ p reaction, have been obtained the characteristics of the proton emission in a proton-neutron mixed field. It was used Monte Carlo simulation and it was obtained the proton output as function of the converter width and the energy spectrum of protons corresponding to different converter thickness. Among 0.07 and 0.2 cm there is a maximum zone for the proton emission. The energy spectrum agrees with obtained on previous papers. Figures showing these results are provided

  4. Neutron pre-emission at the fusion of 11 Li halo nuclei with Si targets

    International Nuclear Information System (INIS)

    Petrascu, M.; Isbasescu, A.; Petrascu, H.; Bordeanu, C.; David, I.; Lazar, I.; Mihai, I.; Vaman, G.; Tanihata, I.; Kobayashi, T.; Korsheninnikov, A.; Fukuda, S.; Kumagai, H.; Momota, S.; Ozawa, A.; Yoshida, K.; Nikolski, E.; Giurgiu, M.

    1997-01-01

    In this contribution, the first experiment on fusion of 11 Li halo nuclei with Si targets is reported. A novel effect consisting of a large neutron pre-emission probability in the fusion process was observed. The neutron halo nuclei are characterized by very large matter radii, small separation energy and small internal momentum of the valence neutrons. Until now, the halo nuclei were investigated mostly by elastic, inelastic scattering and breakup processes. It was recently predicted that due to the very large dimension of 11 Li, one may expect, that in a fusion experiment on a light target, the valence neutrons will not be absorbed together with the 9 Li core, but will be emitted in the early stage of the reaction process. The experiment aiming to check this expectation, performed at RIKEN-RIPS facility, is described. In the experimental arrangement, three main parts are present: the first part contains the detectors used for the control, identification and determination of the beam characteristics; the second part consists of a Multiple Sampling Ionisation Chamber (MUSIC), used for identification of the inclusive evaporation residue spectra produced in the detector-target; the third part consists of two wall neutron detectors, each made up of 15 plastic scintillators. This detector was used for the energy and position determination of the neutrons originating from the target. The projectile energy range was 11.2 - 15.2 AMeV, centered at 13 AMeV. The neutrons resulting from the reaction were measured by time-of-light technique. The position on the 'wall' of the detected neutrons could be also determined. The measured neutron spectra from 11 Li and 9 Li are shown. A marked different between the two spectra was found and it is explained by the contribution of a large amount of pre-emission (breakup) processes, in case of 11 Li projectiles. The position spectra point out the evaporation origin of the neutrons in case of 9 Li projectiles while for 11 Li only the

  5. A monocrystal of 59Co as a nuclear orientation thermometer in neutron experiments with oriented targets

    International Nuclear Information System (INIS)

    Fasoli, U.; Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1980-01-01

    An apparatus for measuring temperatures in the millikelvin region is described based on the 'deformation effect' on fast neutron transmission through an aligned 59 Co monocrystal, employing a 252 Cf pill as the neutron source. A statistical accuracy of a few percent in a few minutes is obtainable with a heat input of some tens of pW. The apparatus is suitable in neutron experiments with oriented targets when the gamma-ray background hinders the use of gamma-ray anisotropy thermometers. In these and similar cases, in which the temperature must be held constant for long periods, the large heat capacity of the cobalt sample is not a drawback. (orig.)

  6. Rotating Parabolic-Reflector Antenna Target in SAR Data: Model, Characteristics, and Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2013-01-01

    Full Text Available Parabolic-reflector antennas (PRAs, usually possessing rotation, are a particular type of targets of potential interest to the synthetic aperture radar (SAR community. This paper is aimed to investigate PRA’s scattering characteristics and then to extract PRA’s parameters from SAR returns, for supporting image interpretation and target recognition. We at first obtain both closed-form and numeric solutions to PRA’s backscattering by geometrical optics (GO, physical optics, and graphical electromagnetic computation, respectively. Based on the GO solution, a migratory scattering center model is at first presented for representing the movement of the specular point with aspect angle, and then a hybrid model, named the migratory/micromotion scattering center (MMSC model, is proposed for characterizing a rotating PRA in the SAR geometry, which incorporates PRA’s rotation into its migratory scattering center model. Additionally, we in detail analyze PRA’s radar characteristics on radar cross-section, high-resolution range profiles, time-frequency distribution, and 2D images, which also confirm the models proposed. A maximal likelihood estimator is developed for jointly solving the MMSC model for PRA’s multiple parameters by optimization. By exploiting the aforementioned characteristics, the coarse parameter estimation guarantees convergency upon global minima. The signatures recovered can be favorably utilized for SAR image interpretation and target recognition.

  7. Rotation of methyl side groups in polymers: A Fourier transform approach to quasielastic neutron scattering. 1: Homopolymers

    International Nuclear Information System (INIS)

    Arrighi, V.; Higgins, J.S.; Howells, W.S.

    1995-01-01

    The rotational motion of the ester methyl group in poly(methyl methacrylate) (PMMA) was investigated using quasielastic neutron scattering (QENS). A comparison between the authors results and the QENS data reported in the literature for PMMA-d 5 indicates that the amount of quasielastic broadening is highly dependent upon the energy resolution of the spectrometer. This anomalous behavior is here attributed to the method of analysis, namely, the use of a single rotational frequency. Such a procedure leads to a non-Arrhenius temperature dependence, to a temperature-dependent elastic incoherent structure factor, and to values of rotational frequency which are resolution dependent. They propose an alternative approach to the analysis of the QENS data which accounts for the existence of a distribution of rotational frequencies. The frequency data are Fourier transformed to the time domain, and the intermediate scattering function is fitted using a stretched exponential or Kohlraush-Williams-Watts function. The excellent overlap between data from different spectrometers leaves no doubt on the adequacy of their procedure. Measurements of the ether methyl group rotation in poly(vinyl methyl ether) (PVME) are also reported. The PVME data confirm that the behavior observed for PMMA-d 5 is likely to be a common feature to all polymeric systems

  8. Parametric studies of target/moderator configurations for the Weapons Neutron Research (WNR) facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Seeger, P.A.; Fluharty, R.G.

    1977-03-01

    Parametric studies, using continuous-energy Monte Carlo codes, were done to optimize the neutronics of the Weapons Neutron Research (WNR) target and three possible target/moderator configurations: slab target/slab moderators, cylindrical target/cylindrical moderator, and cylindrical target/double-wing moderators. The energy range was 0.5 eV to 800 MeV. A general figure-of-merit (FOM) approach was used. The WNR facility performance can be doubled or tripled by optimizing the target and target/moderator configurations; this approach is more efficient than increasing the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator power by an equivalent factor. A bare target should be used for neutron energies above approximately 100 keV. The FOM for the slab target/slab moderator configuration is the best by a factor of at least 2 to 3 below approximately 1 keV. The total neutron leakage from 0.5 eV to 100 keV through a 100- by 100-mm area centered at the peak leakage is largest for the slab moderator, exceeding that of the cylindrical moderator and double-wing moderator by factors of 1.7 and 3.4, respectively. The neutron leakage at 1 eV from one 300- by 150-mm surface of a slab moderator is 1.5 times larger than that from one 155- by 150-mm surface of a cylindrical moderator. When compared with the 1-eV leakage from two 100- by 150-mm surfaces of a double-wing moderator, that from the slab moderator is 3.4 times larger. 107 figures, 13 tables

  9. Influence of neutron energy on formation of radioisotopes during the irradiation of targets in reactor

    Directory of Open Access Journals (Sweden)

    P. M. Vorona

    2011-09-01

    Full Text Available Method of calculation of nuclear transformations in irradiated targets is realized for selection of optimal conditions for accumulation of radioisotopes in reactor, taking into account contributions of different energy neutrons (thermal, resonance and fast. Wide potentialities of program complex MCNP-4C based on the method of statistical testing (Monte Carlo method were used. Positive in proposed method is that all calculations starting from spectra and fluxes of neutrons in reactor and completing by quantity of accumulating nuclei carry out within the framework of the same methodological approach. It was shown by the example of radioactive 98Mo production in Mo98Mo(n, γ99Mo reaction that for achievement of maximal yield of target radionuclide. it is necessary to irradiate start targets of Molybdenum in hard spectrum with essential contribution of resonance neutrons.

  10. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    Science.gov (United States)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  11. Dosimetric effects of rotational output variation and x-ray target degradation on helical tomotherapy plans

    International Nuclear Information System (INIS)

    Staton, Robert J.; Langen, Katja M.; Kupelian, Patrick A.; Meeks, Sanford L.

    2009-01-01

    In this study, two potential sources of IMRT delivery error have been identified for helical tomotherapy delivery using the HiART system (TomoTherapy, Inc., Madison, WI): Rotational output variation and target degradation. The HiArt system is known to have output variation, typically about ±2%, due to the absence of a dose servo system. On the HiArt system, x-ray target replacement is required approximately every 10-12 months due to target degradation. Near the end of target life, the target thins and causes a decrease in the beam energy and a softening of the beam profile at the lateral edges of the beam. The purpose of this study is to evaluate the dosimetric effects of rotational output variation and target degradation by modeling their effects and incorporating them into recalculated treatment plans for three clinical scenarios: Head and neck, partial breast, and prostate. Models were created to emulate both potential sources of error. For output variation, a model was created using a sine function to match the amplitude (±2%), frequency, and phase of the measured rotational output variation data. A second model with a hypothetical variation of ±7% was also created to represent the largest variation that could exist without violating the allowable dose window in the delivery system. A measured beam profile near the end of target life was used to create a modified beam profile model for the target degradation. These models were then incorporated into the treatment plan by modifying the leaf opening times in the delivery sinogram. A new beam model was also created to mimic the change in beam energy seen near the end of target life. The plans were then calculated using a research version of the PLANNED ADAPTIVE treatment planning software from TomoTherapy, Inc. Three plans were evaluated in this study: Head and neck, partial breast, and prostate. The D 50 of organs at risk, the D 95 for planning target volumes (PTVs), and the local dose difference were used to

  12. Scientific opportunities at SARAF with a liquid lithium jet target neutron source

    Science.gov (United States)

    Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.

  13. Los Alamos pulsed spallation neutron source target systems - present and future

    International Nuclear Information System (INIS)

    Russell, G.J.; Daemen, L.L.; Pitcher, E.J.; Brun, T.O.; Hjelm, R.P. Jr.

    1993-01-01

    For the past 16 yr, spallation target-system designers have devoted much time and effort to the design and optimization of pulsed spallation neutron sources. Many concepts have been proposed, but, in practice, only one has been implemented horizontal beam insertion with moderators in wing geometry i.e., until we introduced the innovative split-target/flux-trap-moderator design with a composite reflector shield at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE). The LANSCE target system design is now considered a classic by spallation target system designers worldwide. LANSCE, a state-of-the-art pulsed spallation neutron source for materials science and nuclear physics research, uses 800-MeV protons from the Clinton P. Anderson Meson Physics Facility. These protons are fed into the proton storage ring to be compressed to 250-ns pulses before being delivered to LANSCE at 20 Hz. LANSCE produces the highest peak neutron flux of any pulsed spallation neutron source in the world

  14. Fusion neutron generation by high-repetitive target injection

    International Nuclear Information System (INIS)

    Kitagawa, Yoneyoshi

    2015-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. The Graduate School for the Creation of New Photonics Industries, Hamamatsu Photonics K. K. and Toyota Motor Corporation demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength and the intensity are 0.63 J per beam, 104 fs, 811 nm and 4.7 x 10 18 W/cm 2 , respectively. The irradiated pellets produce D (D, n) 3 He-reacted neutrons with a maximum yield of 9.5 x 10 4 /4π sr/shot. A straight channel with 10 μm-diameter is found through the beads. The pellet size is 1 mm. The results indicate potentially useful technologies for the next step in realizing inertial fusion energy. The results are reviewed as well as some oversea activities. (author)

  15. Targeted Modification of Neutron Energy Spectra for National Security Applications

    Science.gov (United States)

    Bevins, James Edward

    At its core, research represents an attempt to break from the "this is the way we have always done it" paradigm. This idea is evidenced from the start in this research effort by the problem formulation to develop a new way to generate synthetic debris that mimics the samples that would be collected for forensics purposes following a nuclear weapon attack on the U.S. or its allies. The philosophy is also demonstrated by the design methodology used to solve the synthetic debris problem, using methods not commonly applied to nuclear engineering problems. Through this research, the bounds of what is deemed possible in neutron spectral shaping are moved ever so slightly. A capability for the production of synthetic debris and fission products was developed for the National Ignition Facility (NIF). Synthetic debris has historically been made in a limited fashion using sample doping techniques since the cessation of nuclear weapons testing, but a more robust alternative approach using neutron spectral shaping was proposed and developed by the University of California-Berkeley and Lawrence Livermore National Laboratory (LLNL). Using NIF as a starting source spectrum, the energy tuning assembly (ETA) developed in this work can irradiate samples with a combined thermonuclear and prompt fission neutron spectrum (TN+PFNS). When used with fissile foils, this irradiation will produce a synthetic fission product distribution that is realistic across all mass chains. To design the ETA, traditional parametric point design approaches were discarded in favor of formal optimization techniques. Finding a lack of suitable algorithms in the literature, a metaheuristic-based optimization algorithm, Gnowee, was developed for rapid convergence to nearly globally optimum solutions for complex, constrained engineering problems with mixed-integer and combinatorial design vectors and high-cost, noisy, discontinuous, black box objective function evaluations. Comparisons between Gnowee and

  16. The powder targets of hard materials for neutron halo studies

    International Nuclear Information System (INIS)

    Stolarz, A.

    1997-01-01

    The powder sedimentation from a glue solution has been used for preparation of the thick targets of high melting point elements. This technique is particularly suitable for expensive enriched isotopic materials available in very limited amount. The targets of 96 Ru, 104 Ru, 130 Te, 183 W, 192 Os with thickness range of 25-65 mg/cm 2 were prepared by this method. The target thickness uniformity was examined by X-ray absorption and variations less than 10% were found. (orig.)

  17. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  18. CFD analysis of a liquid mercury target for the National Spallation Neutron Source

    International Nuclear Information System (INIS)

    Wendel, M.W.; Tov, M.S.

    1997-01-01

    Computational fluid dynamics (CFD) is being used to analyze the design of the National Spallation Neutron Source (NSNS) target. The target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Various design options have been considered in an effort to satisfy these design criteria. Significant improvements to the design have been recommended based on the results. Detailed results are presented for the current target design including a comparison with published pressure-drop data. Comparisons are also made with forced convection heat transfer data for liquid mercury flow in circular tubes

  19. Status of the Spallation Neutron Source with focus on target materials

    International Nuclear Information System (INIS)

    Mansur, L.K.; Haines, J.R.

    2006-01-01

    An overview of the design and construction of the Spallation Neutron Source (SNS) is presented. Key facility performance parameters are summarized and plans for initial operation are described. Early efforts produced a conceptual design in 1997; the project itself was initiated in 1999, with the official groundbreaking taking place in December of 1999. As of April 2005 building construction was complete and the overall project was more than 90% complete. The design of the target and surrounds are finished and the first target was installed in June 2005. First beam on target is expected in June, 2006. The engineering design of the target region is described. The key systems comprise the mercury target, moderator and reflector assemblies, remote handling systems, utilities and shielding. Through interactions with the 1 GeV proton beam, the target, moderators and reflectors produce short pulse neutrons in thermal energy ranges, which are transported to a variety of neutron scattering instruments. The mercury target module itself is described in more detail. Materials issues are expected to govern the overall lifetime and have influenced the design, fabrication and planned operation. A wide range of materials research and development has been carried out to provide experimental data and analyses to ensure the satisfactory performance of the target and to set initial design conditions. Materials R and D concentrated mainly on cavitation erosion, radiation effects, and mercury compatibility issues, including investigations of the mechanical properties during exposure to mercury. Questions that would require future materials research are discussed

  20. Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; CHEN Yi-Xue; WANG Wei-Jin; YANG Shou-Hai; WU Jun; YIN Wen; LIANG Tian-Jiao; JIA Xue-Jun

    2011-01-01

    The construction of China Spallation Neutron Source (CSNS) has been initiated in Dongguan,Guangdong, China.Thus a detailed radiation transport analysis of the shutter neutron beam stop is of vital importance. The analyses are performed using the coupled Monte Carlo and multi-dimensional discrete ordinates method. The target of calculations is to optimize the neutron beamline shielding design to guarantee personal safety and minimize cost. Successful elimination of the primary ray effects via the two-dimensional uncollided flux and the first collision source methodology is also illustrated. Two-dimensional dose distribution is calculated. The dose at the end of the neutron beam line is less than 2.5μSv/h. The models have ensured that the doses received by the hall staff members are below the standard limit required.

  1. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  2. Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ferres, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); National Graduate School of Engineering and Research Center (ENSICAEN), Caen (France)

    2016-08-03

    Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutron source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.

  3. Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer

    International Nuclear Information System (INIS)

    Zhao Jinkui; Garamus, Vasil M.; Mueller, Wilhelm; Willumeit, Regine

    2005-01-01

    A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8mm thick and consists of 43.4wt% water, 54.6wt% glycerol, and 2wt% of EHBA-Cr(v) complex. The wavelength of the incident neutrons for the transmission experiment was λ=8.1A with Δλ/λ=10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission

  4. Long-term evolution and gravitational wave radiation of neutron stars with differential rotation induced by r-modes

    International Nuclear Information System (INIS)

    Yu Yunwei; Cao Xiaofeng; Zheng Xiaoping

    2009-01-01

    In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs. (research papers)

  5. The applicaton of neutron radioscopy to lithium-aluminum alloy target elements

    International Nuclear Information System (INIS)

    Antal, J.J.; Marotta, A.S.; Salaymeh, S.R.; Varallo, T.P.

    1989-01-01

    The authors show that neutron radioscopy is very useful in locating the position of a Li-A1 alloy core enriched in Lithium-6 in tubular aluminum target elements. The alloy core is displaced during a forming process and its location must be redetermined before processing can be completed. A low-flux mobile neutron radioscopy system was employed in these studies as a model system for possible on-line, in-plant use. A series of core end sections of target tubes containing from 0.1 to 4.6 grams of Lithium-6 per foot of length were examined radioscopically with thermal neutrons. The system was able to determine the extent of lithium alloy core from the highest concentrations down to about 0.2 grams of Lithium-6 per ft within one minute of data collection time

  6. Neutronics and radiation field studies for the RIA fragmentation target area

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)]. E-mail: reyes20@llnl.gov; Boles, Jason L. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kw for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  7. Neutronics and radiation field studies for the RIA fragmentation target area

    Science.gov (United States)

    Reyes, Susana; Boles, Jason L.; Ahle, Larry E.; Stein, Werner

    2006-06-01

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kW for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  8. Calculational estimations of neutron yield from ADS target

    International Nuclear Information System (INIS)

    Degtyarev, I.I.; Liashenko, O.A.; Yazynin, I.A.; Belyakov-Bodin, V.I.; Blokhin, A.I.

    2002-01-01

    Results of computational studies of high power spallation thick ADS (Accelerator-Driven System) targets with 0.8-1.2 GeV proton beams are given. Comparisons of experiments and calculations of double differential and integral n/p yield are also described. (author)

  9. EURISOL-DS Multi-MW Target Neutronic Calculations for the Baseline Configuration of the Multi-MW Target

    CERN Document Server

    Herrera-Martínez, A

    2006-01-01

    This document summarises the study performed within the Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS) [1] to design the Multi-MW proton-to-neutron converter. A preliminary study [2] was carried out in order to understand the nature of the interactions taking place in the proton-to-neutron converter and their impact on the design of the facility. Namely, the target dimensions and material composition, type of incident particle, its energy and the beam profile were analysed in the aforementioned technical note, and their optimum values were suggested in the conclusions. The present work is based on the results of the previous study and uses the same methodology, namely Monte Carlo simulations with FLUKA [3]. This note describes the performance of a Hg target design and addresses more detailed issues, such as the composition of the fission target and use of a neutron reflector. It also attempts to integrate those components together and estimate the wh...

  10. Neutron production in lead targets by high-energy light-mass heavy ions

    International Nuclear Information System (INIS)

    Daniehl', A.V.; Lyapin, V.S.; Tsvetkov, I.O.

    1992-01-01

    The characteristics of the time-of-flight spectrometer and the double different distributions of neutrons and secondary charged particles produced by 2 GeV protons and 1 GeVXA d,α, 6 Li and 12 C ions bombarding lead targets are described. Experimental data are compared with the results of calculations by codes SITHA. 17 refs.; 10 figs.; 1 tab

  11. Status of SINQ, the only MW spallation neutron source-highlighting target development and industrial applications

    International Nuclear Information System (INIS)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Grosse, Mirco; Lehmann, Eberhard

    2006-01-01

    SINQ is a continuous spallation neutron source, driven by PSI's 590 MeV proton accelerator. Receiving a stable proton current of 1.3 mA, SINQ is the presently most powerful accelerator-driven facility worldwide. Besides the primary designation of SINQ to serve as user facility for neutron scattering and neutron imaging, PSI seeks to play a leading role in the development of the facility, focusing on spallation targets and materials research for high-dose radiation environments. Accompanying these activities, SINQ has established several projects serving a more general, profound development towards high-power spallation targets: the most prominent ones being SINQ Target Irradiation Program (STIP) and megawatt pilot experiment for a liquid metal target (MEGAPIE), complemented by LiSoR and VIMOS. Within the user program, SINQ is aspiring to attract an appropriate contingent of industrial applications. The paper highlights the potential for industrial applications by means of selected examples from strain mapping and neutron imaging

  12. Thermal analysis of titanium drive-in target for D-D neutron generation.

    Science.gov (United States)

    Jung, N S; Kim, I J; Kim, S J; Choi, H D

    2010-01-01

    Thermal analysis was performed for a titanium drive-in target of a D-D neutron generator. Computational fluid dynamics code CFX-5 was used in this study. To define the heat flux term for the thermal analysis, beam current profile was measured. Temperature of the target was calculated at some of the operating conditions. The cooling performance of the target was evaluated by means of the comparison of the calculated maximum target temperature and the critical temperature of titanium. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source with a chamber containing a plurality of alpha emitting strips and beryllium targets coaxially mounted is described. A pulsed source is provided by rotation of the target to on-off positions along with electromagnetic and magnetic devices for positive locking and rotation. (U.S.)

  14. Precise measurements of the thick target neutron yields of the 7Li(p,n) reaction

    International Nuclear Information System (INIS)

    Matysiak, W.; Prestwich, W.V.; Byun, S.H.

    2011-01-01

    Thick target neutron yield of the 7 Li(p,n) 7 Be reaction was measured in the proton energy range from 1.95 to 2.3 MeV by determining induced activity of the 7 Be. A HPGe detector was used to detect the 478 keV gamma-rays emitted through 7 Be decay. A series of irradiations with nominal proton energies of 1.95, 2.0, 2.1, 2.2, and 2.3 MeV were carried out. In an independent experiment, raw neutron spectra were collected by a 3 He ion chamber for the same series of proton energies. From the raw neutron spectra, it was noted, that the effective proton energies were lower than the nominal by 50-58 keV. After corrections for the proton energy offsets were applied, the measured neutron yields matched the analytically calculated yields within 20%. Long term stability of neutron yield was tested at two nominal proton energies, 2.1 and 1.95 MeV over an experimental period of one year. The results show that the yield at 2.1 MeV was stable within rmse variation coefficient of 4.7% and remained consistent even when the lithium target was replaced, whereas at 1.95 MeV, the maximum fluctuations reached a factor of 10.

  15. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. High-power liquid-lithium jet target for neutron production

    Science.gov (United States)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  17. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F. X., E-mail: gallmeierfz@ornl.gov; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L. [Instrument and Source Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6466, Oak Ridge, Tennessee 37831 (United States)

    2016-06-15

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm{sup 2} to 20 × 20 mm{sup 2}. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  18. Neutron energy spectra from the thick target 9Be(d,n)10B reaction

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1976-12-01

    The energy spectrum of neutrons emitted when deuterons impinge on a thick beryllium target has been measured using an NE213 scintillation detector and the time-of-flight technique. Spectra were measured at angles of 0, 30, 45, 60, 90, 120 and 150 0 for deuteron energies of 1.4, 1.8, 2.3 and 2.8 MeV. Tables are presented of these angle-dependent energy spectra, the angle-integrated energy dependent yeidls, and the total neutron yield as a function of deuteron energy. (author)

  19. The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design

    International Nuclear Information System (INIS)

    Langer, Mark Peter; Papiez, Lech; Spirydovich, Siarhei; Thai, Van

    2005-01-01

    Purpose: The effect of rotational errors on the coverage of clinical target volumes (CTVs) is examined. A new planning target volume (PTV) construction that considers the individual paths traced by movements of the target boundary points is developed. Methods and Materials: A standard uniform margin expansion was compared with a PTV constructed from the space swept out by a concave moving target. A new method formed the PTV by aggregating the separate convex hulls taken of the positions of the individual target boundary points in a sampling of CTV displacements. Results: A 0.5-cm uniform margin adequate for translations was inadequate given CTV rotation about a fixed off-center axis. A PTV formed of the target's swept-out area was 22% smaller than needed for coverage by a uniform margin, but computationally is not readily extended to translations combined with rotations about a shifting axis. Forming instead the union of convex hulls of the boundary points in a sampling of CTV displacements represented these movements in the PTV design and retained the target's concave shape. Conclusions: Planning target volumes should accommodate target rotation. The union of convex hulls of the boundary point positions in a sampling of displacements can effectively represent multiple sources of deviations while preserving target concavities

  20. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  1. Preparation of thin arsenic and radioarsenic targets for neutron capture studies

    International Nuclear Information System (INIS)

    Fassbender, M.; Bach, H.; Bond, E.; Nortier, F.M.; Vieira, D.

    2009-01-01

    A simple method for the electrodeposition of elemental arsenic (As) on a metal backing from aqueous solutions has been developed. The method was successfully applied to stable As ( 75 As). Thin (2.5 mg cm -2 ) coherent, smooth layers of the metalloid on Ti foils (2.5 μm thickness) were obtained. Electrodeposits served as targets for 75 As(n,γ) 76 As neutron capture experiments at Los Alamos Neutron Science Center (LANSCE). Respective 73 As(n,γ) 74 As experiments are planned for the near future, and 73 As targets will be prepared in a similar fashion utilizing the new electrodeposition method. The preparation of an 73 As (half-life 80.3 days) plating bath solution from proton irradiated germanium has been demonstrated. Germanium target irradiation was performed at the Los Alamos Isotope Production Facility (IPF). (author)

  2. Differential neutron production cross sections and neutron yields from stopping-length targets for 113-MeV protons

    International Nuclear Information System (INIS)

    Meier, M.M.; Amian, W.B.; Clark, D.A.; Goulding, C.A.; McClelland, J.B.; Morgan, G.L.; Moss, C.E.

    1989-03-01

    We have measured differential (P,ξn) cross sections, d 2 σ/dΩdE/sub n/, from thin targets and absolute neutron yields from stopping-length targets at angles of 7.5/degree/, 30/degree/, 60/degree/, and 150/degree/, for the 113--MeV proton bombardment of elemental beryllium, carbon, aluminum, iron, and depleted uranium. Additional cross-section measurements are reported for oxygen, tungsten, and lead. We used time-of-flight techniques to identify and discriminate against backgrounds and to determine the neutron energy spectrum. Comparison of the experimental data with intranuclear-cascade evaporation-model calculations with the code HETC showed discrepancies as high as a factor of 7 in the differential cross sections. These discrepancies in the differential cross sections make it possible to identify some of the good agreement seen in the stopping-length yield comparisons as fortuitous cancellation of incorrect production estimates in different energy regimes. 13 refs., 20 figs., 4 tabs

  3. Neutron therapy

    International Nuclear Information System (INIS)

    Riesler, Rudi

    1995-01-01

    Standard radiotherapy uses Xrays or electrons which have low LET (linear energy transfer); in contrast, particles such as neutrons with high LET have different radiobiological responses. In the late 1960s, clinical trials by Mary Catterall at the Hammersmith Hospital in London indicated that fast neutron radiation had clinical advantages for certain malignant tumours. Following these early clinical trials, several cyclotron facilities were built in the 1980s for fast neutron therapy, for example at the University of Washington, Seattle, and at UCLA. Most of these newer machines use extracted cyclotron proton beams in the range 42 to 66 MeV with beam intensities of 15 to 60 microamps. The proton beams are transported to dedicated therapy rooms, where neutrons are produced from beryllium targets. Second-generation clinical trials showed that accurate neutron beam delivery to the tumour site is more critical than for photon therapy. In order to achieve precise beam geometries, the extracted proton beams have to be transported through a gantry which can rotate around the patient and deliver beams from any angle; also the neutron beam outline (''field shape'') must be adjusted to extremely irregular shapes using a flexible collimation system. A therapy procedure has to be appropriately organized, with physicians, radiotherapists, nurses, medical physicists and other staff in attendance; other specialized equipment, such as CT or MRI scanners and radiation simulators must be made available. Neutron therapy is usually performed only in radiation oncology departments of major medical centres

  4. Sensitivity studies of the neutron multiplicity spectrum in the spallation of Pb targets

    International Nuclear Information System (INIS)

    Sinha, A.; Garg, S.B.; Srinivasan, M.

    1986-01-01

    The number of neutrons produced per incident proton in the spallation of Pb targets is of direct relevance to the design of accelerator breeders. The nuclear cascade initiated by high-energy protons in spallation targets is usually described by an intranuclear cascade evaporation (INCE) model. Even though this model describes various average nuclear properties of spallation targets fairly well, differential quantities such as energy spectra, angular spectra etc., are not reproduced within the limits of experimental uncertainty. One of the reasons for this is the uncertainty in the magnitude of the parameters involved in the model, notably the level density parameter Bsub(O) whose magnitude is quoted by different workers to be in the range of 8-20 MeV. The accuracy of Bsub(O) could be improved if we could experimentally determine a quantity which is much more sensitive to Bsub(O) than the average neutron yield. In this paper we discuss one such quantity, namely the neutron multiplicity spectrum (MS). We compute the MS due to the spallation of Pb targets of different sizes at proton energies of 1.5, 1.0 and 0.59 GeV using the Monte Carlo code HETC. It is noticed that for the 1.5 GeV proton case the probability P(ν) for leakage of ν neutrons for ν in the range of 60-65, changes by about 70% when Bsub(O) is varied from 8 to 20 MeV. The corresponding change in the average neutron yield is <20%. It is therefore suggested that an accurate measurement of the MS can serve as a useful tool to narrow down the range of uncertainty in the Bsub(O) parameter. (author)

  5. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  6. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  7. Neutron spectrum at 900 from 800 MeV (p,n) reactions on a Ta target

    International Nuclear Information System (INIS)

    Howe, S.D.; Lisowski, P.W.; King, N.S.P.; Russell, G.J.; Donnert, H.J.

    1979-01-01

    The neutron time-of-flight spectrum produced by a thick tantalum target bombarded by 800-MeV protons was measured at an angle of 90 0 . The data were taken at the Weapons Neutron Research facility by use of a cylindrical Ta target with a radius of 1.27 cm and a length of 15 cm. An NE-213 liquid scintillator was used to detect the neutrons over an energy range of 0.5 to 350 MeV. The neutron yield is presented and compared to a intranuclear-cascade/evaporation model prediction. 3 figures

  8. The LANSCE (Los Alamos Neutron Scattering Center) target data collection system

    International Nuclear Information System (INIS)

    Kernodle, A.K.

    1989-01-01

    The Los Alamos Neutron Scattering Center (LANSCE) Target Data Collection System is the result of an effort to provide a base of information from which to draw conclusions on the performance and operational condition of the overall LANSCE target system. During the conceptualization of the system, several goals were defined. A survey was made of both custom-made and off-the-shelf hardware and software that were capable of meeting these goals. The first stage of the system was successfully implemented for the LANSCE run cycle 52. From the operational experience gained thus far, it appears that the LANSCE Target Data Collection System will meet all of the previously defined requirements

  9. Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

    International Nuclear Information System (INIS)

    Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.

    2012-01-01

    In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.

  10. Antiproton Radiotherapy Peripheral Dose from Secondary Neutrons produced in the Annihilation of Antiprotons in the Target

    CERN Document Server

    Fahimian, Benjamin P; Keyes, Roy; Bassler, Niels; Iwamoto, Keisuke S; Zankl, Maria; Holzscheiter, Michael H

    2009-01-01

    The AD-4/ACE collaboration studies the biological effects of antiprotons with respect to a possible use of antiprotons in cancer therapy. In vitro experiments performed by the collaboration have shown an enhanced biological effectiveness for antiprotons relative to protons. One concern is the normal tissue dose resulting from secondary neutrons produced in the annihilation of antiprotons on the nucleons of the target atoms. Here we present the first organ specific Monte Carlo calculations of normal tissue equivalent neutron dose in antiproton therapy through the use of a segmented CT-based human phantom. The MCNPX Monte Carlo code was employed to quantify the peripheral dose for a cylindrical spread out Bragg peak representing a treatment volume of 1 cm diameter and 1 cm length in the frontal lobe of a segmented whole-body phantom of a 38 year old male. The secondary neutron organ dose was tallied as a function of energy and organ.

  11. A target development program for beamhole spallation neutron sources in the megawatt range

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Atchison, F. [Rutherford Appleton Laboratory, Oxon (United Kingdom)] [and others

    1995-10-01

    Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potential benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.

  12. Spallation Neutron Source Accelerator Facility Target Safety and Non-safety Control Systems

    International Nuclear Information System (INIS)

    Battle, Ronald E.; DeVan, B.; Munro, John K. Jr.

    2006-01-01

    The Spallation Neutron Source (SNS) is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006, with first beam on target at approximately 200 W. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix Programmable Logic Controllers (PLCs) interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  13. Neutron emission from projectile-like and target-like fragments in the 18O+48Ti reaction at E(18O)=116 MeV

    International Nuclear Information System (INIS)

    Chambon, B.; Drain, D.; Pastor, C.; Dauchy, A.; Giorni, A.; Morand, C.

    1982-07-01

    Angular correlations between neutrons and projectile-like fragments detected near the grazing angle were analysed by assuming two incoherent neutrons sources. One source describes slower neutrons evaporated by target-like fragments in equilibrium. The faster, forward-peaked neutrons originate from a second source strongly correlated with the projectile-like fragments with regards to velocity and direction. In some cases neutron emission may even be attributed to known neutron emitter levels in excited ejectiles

  14. Target development for the SINQ high-power neutron spallation source

    International Nuclear Information System (INIS)

    Wagner, Werner

    2002-01-01

    SINQ is a 1 MW class research spallation neutron source, driven by the PSI proton accelerator system. In terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation worldwide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience. Therefore, an extensive materials irradiation program (STIP) is currently underway which will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, to develop a liquid lead-bismuth spallation target for a beam power level of 1MW

  15. Lujan Center Mark-IV Target Neutronics Design Internal Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Paul W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallmeier, Franz [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guber, Klaus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2018-02-26

    The 1L Target Moderator Reflector System (TMRS) at the Lujan Center will need to be replaced before the CY 2020 operating cycle. A Physics Division design team investigated options for improving the overall target performance for nuclear science research with minimal reduction in performance for materials science. This review concluded that devoting an optimized arrangement of the Lujan TMRS upper tier to nuclear science and using the lower tier for materials science can achieve those goals. This would open the opportunity for enhanced nuclear science research in an important neutron energy range for NNSA. There will be no other facility in the US that will compete in the keV energy range provided flight paths and instrumentation are developed to take advantage of the neutron flux and resolution.

  16. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  17. Proton and neutron polarized targets for nucleon-nucleon experiments at SATURNE II

    International Nuclear Information System (INIS)

    Ball, J.; Combet, M.; Sans, J.L.; Benda, B.; Chaumette, P.; Deregel, J.; Durand, G.; Dzyubak, A.P.; Gaudron, C.; Lehar, F.; Janout, Z.; Khachaturov, B.A.

    1996-01-01

    A SATURNE polarized target has been used for nucleon-nucleon elastic scattering and transmission experiments for 15 years. The polarized proton target is a 70 cm 3 cartridge loaded with Pentanol-2. For polarized neutron target, two cartridges loaded with 6 LiD and 6 LiH are set in the refrigerator and can be quickly inserted in the beam. First experiments using 6 Li products in quasielastic pp or pn analyzing power measurements are compared with the same observables measured in a free nucleon-nucleon scattering using polarized proton targets. Angular distribution as a function of a kinematically conjugate angle and coplanarity in nucleon-nucleon scattering is shown for different targets. (author)

  18. Design study and heat transfer analysis of a neutron converter target for medical radioisotope production

    International Nuclear Information System (INIS)

    Masoud Behzad; Sang-In Bak; Seung-Woo Hong; Jong-Seo Chai; Yacine Kadi; Claudio Tenreiro; University of Talca, Talca

    2014-01-01

    A worldwide challenge in the near future will be to find a way of producing radioisotopes in sufficient quantity without relying on research reactors. The motivation for this innovative work on targets lies in the accelerator-based production of radioisotopes using a neutron converter target as in the transmutation by adiabatic resonance crossing concept. Thermal analysis of a multi-channel helium cooled device is performed with the computational fluid dynamics code CFX. Different boundary conditions are taken into account in the simulation process and many important parameters such as maximum allowable solid target temperature as well as uniform inlet velocity and outlet pressure changes in the channels are investigated. The results confirm that the cooling configuration works well; hence such a solid target could be operated safely and may be considered for a prototype target. (author)

  19. Thermal analysis of Ti drive-in target for D-D neutron generation

    International Nuclear Information System (INIS)

    Jung, N.S.; Kim, I.J.; Kim, S.J.; Choi, H.D.

    2008-01-01

    Full text: Thermal analysis was performed for a Ti drive-in target of a D-D neutron generator. Numerical calculation was the only feasible way to obtain the information of the target temperature, since it was very difficult to measure the target temperature during neutron generation due to high voltage being applied to the target. Computational fluid dynamics code CFX-5 was used in this study. In order to define the heat flux term for the thermal analysis, the current profile of the ion beam was measured. The one-dimensional, integrated current profile was measured by using a single slit and a Faraday cup. The measured current profile was transformed into the axially symmetric two-dimensional distribution function by using the Abel inversion, which had the two-dimensional Gaussian function shape. Temperature distribution in the target was calculated at the operating condition. The influence of operational parameters like the ion beam energy, current, coolant mass flow rate and coolant inlet temperature on the target temperature was investigated

  20. Investigation of flow asymmetry and instability in the liquid mercury target of the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pointer, D.; Ruggles, A.; Wendel, M.; Crye, J.

    2000-01-01

    The Spallation Neutron Source (SNS) will utilize a liquid mercury target placed in the path of a high-energy proton beam to produce neutrons for research activities. As the high-energy protons interact with the mercury target, the majority of the beam energy is converted to thermal energy. The liquid mercury must provide sufficient heat transfer to maintain the temperature of the target structure within the thermal limits of the structural materials. Therefore, the behavior of the liquid mercury flow must be characterized in sufficient detail to ensure accurate evaluation of heat transfer in the mercury target. A combination of experimental and computational methods is utilized to characterize the flow in these preliminary analyses. Preliminary studies of the liquid mercury flow in the SNS target indicate that the flow in the exit channel may exhibit multiple recirculation zones, flow asymmetries, and possibly large-scale flow instabilities. While these studies are not conclusive, they serve to focus the efforts of subsequent CFD modeling and experimental programs to better characterize the flow patterns in the SNS mercury target

  1. Quantum rotation and translation of hydrogen molecules encapsulated inside C₆₀: temperature dependence of inelastic neutron scattering spectra.

    Science.gov (United States)

    Horsewill, A J; Goh, K; Rols, S; Ollivier, J; Johnson, M R; Levitt, M H; Carravetta, M; Mamone, S; Murata, Y; Chen, J Y-C; Johnson, J A; Lei, X; Turro, N J

    2013-09-13

    The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.

  2. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  3. Fast neutron distributions from Be and C thick targets bombarded with 80 and 160 MeV deuterons

    International Nuclear Information System (INIS)

    Pauwels, N.; Laurent, H.; Clapier, F.; Brandenburg, S.; Beijers, J. P .M.; Zegers, R. G. T.; Lebreton, H.; Saint-Laurent, M.G.; Mirea, M.

    2001-01-01

    Production of fast neutron studies have come to the fore in the past few years because of the great interest for the possible applications of induced fission to produce neutron rich ion beams. In this context, the main objective of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) and PARRNe (Production d'Atomes Radioactifs Riches en Neutrons) R and D projects is the investigation of the feasibility and of the optimum parameters for a neutron rich isotope source. Special attention is dedicated to the energy and angular distributions of the neutrons obtained through deuteron break--up in different types of converters and different incident energies. Analysis and modelling of such behaviors, together with the study of the yields of neutron induced fission, can be used to optimize the productivity of the fissioning target its geometry and designing it accordingly. The present report continues our previous studies realised for 17, 20, 28 and 200 MeV deuteron energies and it is focused on deuteron incident energies of 80 and 160 MeV. In the experiment, the double differential cross section for neutron production induced by 80 and 160 MeV deuterons impinging on thick C and Be targets, in which the incident deuterons were complete stopped, have been measured. The energy of the neutrons was determined from the time--of--flight (TOF) measurement. To obtain an energy resolution of about 4% for the fastest, forward--emitted neutrons, which have approximately beam velocity, the length of the flightpath for the detectors at angles up to 30 angle was chosen to be 6 m. At backward angles, where the neutron energies are lower, a shorter flightpath was chosen. A schematic drawing of the setup is shown. A 100 mm thick Be target and a 70 mm thick C target were used. Results are exemplified with the angular and energy distributions of neutron obtained for Be target at 80 MeV. (authors)

  4. Tritium target manufacturing for use in accelerators

    Science.gov (United States)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  5. Analysis of process parameters for a DCMS process of a rotating ceramic ITO target

    Energy Technology Data Exchange (ETDEWEB)

    Ries, Patrick; Wuttig, Matthias [Institute of Physics, RWTH Aachen University (Germany)

    2012-07-01

    ITO is the most commonly used but at the same time rather expensive Transparent Conducting Oxide. This fact is due to the high Indium to Tin ratio of 90:10 that is necessary to obtain the best electrical conductivity. If it is possible to find another ratio with similar electrical properties but higher Tin content, this would be of great industrial relevance. To accomplish this goal and to check the hypothesis an in-house developed serial co-sputtering system is employed. The tool consists of a rotating primary cathode and up to two secondary cathodes for co-sputtering processes. The process parameters of a DC-sputtered ceramic ITO target installed on the primary cathode are analyzed and correlations with the thin film properties, especially the resistance and the transmittance are shown. The resistance behavior upon changing the Tin content via a co-deposition process from a secondary cathode will be presented.

  6. Effect Of Superfluidity And Differential Rotation Of Quark Matter On Magetic Field Evolution in Neutron Star And Black Hole

    Science.gov (United States)

    Aurongzeb, Deeder

    2010-11-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin

  7. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources

    International Nuclear Information System (INIS)

    Ghosh, P.; Lamb, F.K.

    1979-01-01

    We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales

  8. A long-wavelength target station for the spallation neutron source

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Mason, T.E.

    2005-01-01

    The Spallation Neutron Source (SNS), a major new user facility for studies of the structure and dynamics of materials, funded by the US Department of Energy (DOE), is under construction at Oak Ridge National Laboratory (ORNL). Details about the project are available in a recent paper and on the SNS Web site [MRS Bull. 28 (12) (2003) 923]. A Long-Wavelength Target Station (LWTS) [Technical Concepts for a Long-Wavelength Target Station for the Spallation Neutron Source, Argonne National Laboratory Report ANL-02/16, Oak Ridge National Laboratory Report ORNL/SNS-TM-2001/163, November 2002. See also www.pns.anl.gov/related/] will complement the High-Power Target Station (HPTS) facility of the SNS and will build upon the significant investment in the remainder of the installation by providing important new scientific opportunities. For areas of science using the optimized long-wavelength beam lines, the LWTS will at least double the overall scientific capability of the SNS and provide for up to an order of magnitude performance gain over the initial HPTS. The fully equipped SNS has the prospect to offer capabilities for neutron-scattering studies of the structure and dynamics of materials with sensitivity, resolution, dynamic range, and speed that are unparalleled in the world. Preliminary assessments of the performance of the several instruments treated in detail in the body of the paper bear out this expectation. The LWTS concept has been developed in close consultation with the scientific community through a series of workshops and conferences jointly sponsored by DOE's Office of Basic Energy Science and the National Science Foundation. We describe the principal features of the LWTS concept, and provide a preliminary summary of some neutron scattering instruments suited to exploit the unique features of the LWTS. It remains to develop concepts and designs for a full suite of instruments that exploit the capabilities of LWTS, a process that has begun in collaboration

  9. Simulation of e-{gamma}-n targets by FLUKA and measurement of neutron flux at various angles for accelerator based neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ernet.i [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ernet.i [Department of Physics, University of Pune, Pune 411 007 (India)

    2010-10-15

    A 6 MeV Race track Microtron (an electron accelerator) based pulsed neutron source has been designed specifically for the elemental analysis of short lived activation products where the low neutron flux requirement is desirable. The bremsstrahlung radiation emitted by impinging 6 MeV electron on the e-{gamma} primary target, was made to fall on the {gamma}-n secondary target to produce neutrons. The optimisation of bremsstrahlung and neutron producing target along with their spectra were estimated using FLUKA code. The measurement of neutron flux was carried out by activation of vanadium and the measured fluxes were 1.1878 x 10{sup 5}, 0.9403 x 10{sup 5}, 0.7428 x 10{sup 5}, 0.6274 x 10{sup 5}, 0.5659 x 10{sup 5}, 0.5210 x 10{sup 5} n/cm{sup 2}/s at 0{sup o}, 30{sup o}, 60{sup o}, 90{sup o}, 115{sup o}, 140{sup o} respectively. The results indicate that the neutron flux was found to be decreased as increase in the angle and in good agreement with the FLUKA simulation.

  10. Measurement of the Neutron Component in a Shower Generated in a Lead Target by Relativistic Nuclear Beam

    International Nuclear Information System (INIS)

    Chultehm, D.; Damdinsurehn, Ts.; D'yachenko, V.M.; Ehnkhzhin, L.; Lomova, L.A.; Perelygin, V.P.; Tolstov, K.D.

    1994-01-01

    The present paper describes a method of determining the total number of neutrons generated in an extended lead target by relativistic nuclei and protons. It is shown that 101±20 neutrons per proton are produced in the target with the volume of 50x50x80 cm 3 at 3.65 GeV energy of protons. 11 refs., 14 figs., 1 tab

  11. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  12. Fast neutron forward distributions from C, Be and U thick targets bombarded by deuterons

    International Nuclear Information System (INIS)

    Menard, S.; Clapier, F.; Pauwels, N.; Proust, J.; Donzaud, C.; Guillemaud-Mueller, D.; Lhenry, I.; Mueller, A.C.; Scarpaci, J.A.; Sorlin, O.; Mirea, M.

    1999-01-01

    In principle, to produce neutron rich radioactive beams with sufficient intensities, a source of isotopes far from the valley of β--stability can be obtained through the fission of 238 U induced by fast neutrons. A very promising way to assess the feasibility of these very intense neutron beams is to break an intense 2 H beam in a dedicated converter. The main objective of SPIRAL and PARRNe R - D projects is the investigation of the optimum parameters for a neutron rich isotope source in accordance with the scheme presented above. In such conditions, the charge particle energy loss can prevent the destruction of the fission target. In the frame of these project, a special attention is dedicated to the energetic and angular distributions of the neutrons emerging from a set of converters at a series of 2 H incident energies. Deuteron beams at energies less than 30 MeV are particularly interesting because it is expected that, after the decay in the 238 U target, the neutron rich radioactive fission products are cold enough, thus avoiding the evaporation of a too large number of neutrons. For such purposes, one needs experimental angular distributions at given energies for different types of converters and to elaborate a theoretical tool in order to estimate accurately the characteristics of the secondary neutron beam. In this paper, the experimental results were obtained with 17, 20 and 28 MeV deuteron energies on Be, C and U converters using the time of flight method. These data are compared to results given by a model valid at higher energy in order to obtain pertinent simulations in a large range of incident energies. Many theoretical tools were developed to characterize the properties of the neutron beams emerging from thick targets. In this contribution the Serber's model, considered with its improvements which account for the Coulomb deflection and the mean straggling of the beam in the material, is compared to experimental data in order to verify the validity

  13. Influence of different moderator materials on characteristics of neutron fluxes generated under irradiation of lead target with proton beams

    International Nuclear Information System (INIS)

    Sosnin, A.N.; Polanski, A.; Petrochenkov, S.A.

    2002-01-01

    Neutron fields generated in extended heavy (Z ≥ 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (diam. 8 cm x 20 cm or diam. 8 cm x 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin

  14. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  15. Study of neutron spectra in extended uranium target. New experimental data

    Directory of Open Access Journals (Sweden)

    Paraipan M.

    2017-01-01

    Full Text Available The spatial distribution of neutron fluences in the extended uranium target (“Quinta” assembly irradiated with 0.66 GeV proton, 4 AGeV deuteron and carbon beams was studied using the reactions with different threshold energy (Eth. The data sets were obtained with 59Co samples. The accumulation rates for the following isotopes: 60Co (Eth 0 MeV, 59Fe (Eth 3 MeV, 58Co (Eth 10 MeV, 57Co (Eth 20 MeV, 56Co (Eth 32 MeV, 47Sc (Eth 55 MeV, and 48V (Eth 70 MeV were measured with HPGe spectrometer. The experimental accumulation rates were compared with the predictions of the simulations with Geant4 code. Substantial difference between the reconstructed and the simulated data for the hard part of the neutron spectrum was analyzed.

  16. Production, separation and target preparation of 171Tm an 147Pm for neutron cross section measurements

    CERN Document Server

    Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Guerrero, C; Köster, U; Tessler, M; Paul, M; Halfon, S

    2015-01-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg 171Tm from 240 mg 170Er2O3 and 72 µg 147Pm from 100 mg 146Nd2O3 irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at n_TOF CERN and the SARAF-LiLiT facility.

  17. Studies of rotational structures in the neutron-rich niobium isotopes 101-103

    International Nuclear Information System (INIS)

    Paffrath, U.

    1989-08-01

    The aim of this thesis was to study rotational structures in the low-lying levels of the niobium isotopes 101, 102, and 103. This was performed at the recoil separator JOSEF of the Nuclear Research Facility Juelich by studies of the β-decays of the zirconium isotopes 101-103 into their niobium daughters. By γ-γ respectively X-γ coincidence measurements the already existing term schemes of the niobium isotopes should be verified respectively extended and by γ-γ angular-correlation measurements the rotational structures should be studied. The term schemes of the niobium isotopes 101 and 102 could be confirmed in the framework of the performed experiments while the level scheme of the 103 Nb could be essentially extended. From the X-γ coincidence measurement for a plurality of γ transitions the conversion coefficients and by this the dominant multipolarities could be determined. With these conversion coefficients then also the mixing parameters were calculated. These data together with the results from the γ-γ angular-correlation experiments led to a fixing concerning the spins and parities at a series of levels in all three niobium isotopes. (orig./HSI) [de

  18. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  19. Neutron yield of thick {sup 12}C and {sup 13}C targets with 20 and 30 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Lhersonneau, G.; Fadil, M. [GANIL, Caen (France); Malkiewicz, T. [CSC - IT Center for Science Ltd., Espoo (Finland); Gorelov, D.; Sorri, J.; Trzaska, W.H. [University of Jyvaskyla, Department of Physics, Jyvaskyla (Finland); Jones, P.; Ngcobo, P.Z. [iThemba Laboratory for Accelerator Based Science, Western Cape (South Africa)

    2016-12-15

    The neutron yield of thick targets of carbon, natural and enriched in {sup 13}C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a {sup 12}C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a {sup 13}C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the {sup 12}C and {sup 13}C targets. (orig.)

  20. Signature splitting in nuclear rotational bands: Neutron i13/2 systematics

    International Nuclear Information System (INIS)

    Mueller, W.F.; Jensen, H.J.; Reviol, W.; Riedinger, L.L.; Yu, C.; Zhang, J.; Nazarewicz, W.; Wyss, R.

    1994-01-01

    Experimental values of signature splitting in νi 13/2 rotational bands in odd-N even-Z nuclei in the Z=62--78 region are collected and presented. A procedure is introduced to calculate signature splitting within the cranked deformed Woods-Saxon model. In the theoretical treatment, deformation parameters are obtained by minimizing the total Routhians of individual νi 13/2 bands, and the procedure accounts for the possibility that the two signatures have different deformations and pairing gaps. Experimental signature splitting data for νi 13/2 bands in Dy, Er, Yb, Hf, W, and Os nuclei are compared with calculated values. The sensitivity of calculated signature splitting to changes in deformation, pairing, and other model parameters is presented

  1. Measurements of the thermophysical properties of graphite composites for a neutron target converter

    Energy Technology Data Exchange (ETDEWEB)

    Zhmurikov, E.I. [Budker Institute of Nuclear Physics, 690090 Novosibirsk, SB RAS (Russian Federation); Savchenko, I.V.; Stankus, S.V.; Yatsuk, O.S. [Kutateladze Institute of Thermal Physics, 690090 Novosibirsk, SB RAS (Russian Federation); Tecchio, L.B., E-mail: tecchio@lnl.infn.it [Laboratori Nazionali di Legnaro-Istituto Nazionale di Fisica Nucleare, Legnaro (Italy)

    2012-05-11

    The thermo-physical characteristics of both nuclear, industrial graphite, such as MPG-6 from NIIGRAFIT or SGL composite from SGL Carbon Group, and the first synthesized graphite composite based on a carbon {sup 13}S isotope have been measured from room temperature to 1675 K by laser flash method on an LFA-427 setup from Netzsch (Germany). The results obtained are compared to the previous data of X-Ray analysis and high-resolution electron microscopy and can be used in thermal calculations of the design of a neutron converter graphite target.

  2. Measurements of the thermophysical properties of graphite composites for a neutron target converter

    International Nuclear Information System (INIS)

    Zhmurikov, E.I.; Savchenko, I.V.; Stankus, S.V.; Yatsuk, O.S.; Tecchio, L.B.

    2012-01-01

    The thermo-physical characteristics of both nuclear, industrial graphite, such as MPG-6 from NIIGRAFIT or SGL composite from SGL Carbon Group, and the first synthesized graphite composite based on a carbon 13 S isotope have been measured from room temperature to 1675 K by laser flash method on an LFA-427 setup from Netzsch (Germany). The results obtained are compared to the previous data of X-Ray analysis and high-resolution electron microscopy and can be used in thermal calculations of the design of a neutron converter graphite target.

  3. Bounds on Time Reversal Violation From Polarized Neutron Capture With Unpolarized Targets.

    Science.gov (United States)

    Davis, E D; Gould, C R; Mitchell, G E; Sharapov, E I

    2005-01-01

    We have analyzed constraints on parity-odd time-reversal noninvariant interactions derived from measurements of the energy dependence of parity-violating polarized neutron capture on unpolarized targets. As previous authors found, a perturbation in energy dependence due to a parity (P)-odd time (T)-odd interaction is present. However, the perturbation competes with T-even terms which can obscure the T-odd signature. We estimate the magnitudes of these competing terms and suggest strategies for a practicable experiment.

  4. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  5. Effect of Target Configuration on the Neutronic Performance of the Gas-Cooled ADS

    CERN Document Server

    Biss, K; Shetty, N; Nabbi, R

    2013-01-01

    With the utilization of nuclear energy transuranic elements like Pu, Am and Cm are produced causing high, long term radioactivity and radio toxicity, respectively. To reduce the radiological impact on the environment and to the repository Partitioning and Transmutation is considered as an efficient way. In this respect comprehensive research works are performed at different research institutes worldwide. The results show that the transmutation of TRU is achieved with fast neutrons due to the higher fission probability. Based on Accelerator Driven Systems (ADS) those neutrons are used in a particular system, in which mainly liquid metal eutectic (lead bismuth) is used as coolant. The neutronic performance of an ADS system based on gas cooling was studied in this work by using the simulation tool MCNPX. The usage of the Monte-Carlo method in MCNPX allows the simulation of the physical processes in a 3D-model of the core. In dependence of the spallation target material and design several parameters like the mult...

  6. Inelastic Neutron Scattering Study of the Rotational Excitations in (KBr)l-x (KCN)x in the Paraelastic and Structural Glass State

    DEFF Research Database (Denmark)

    Loidl, A.; Feile, R.; Knorr, K.

    1984-01-01

    The coupled rotational-translational excitations in (KBr)1-x(KCN)x were studied by inelastic neutron scattering for concentrations 0.008≤x≤0.20. We followed the A1g-T2g tunneling transition and the A1g-Eg librational excitation through the transition from the paraelastic to the structural glass...... state. We found that these two excitations and their coupling to the lattice strains exhibit a very different temperature dependence in the glass state. While the tunneling transition, which triggers reorientations of the CN- ions, shows a drastic reduction of the T2g rotation-translation coupling...

  7. Bibliography of published papers on neutron and photon emission from thick or thin target bombarded by charged particles

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Furuta, Yutaka; Sato, Kazuo; Kawachi, Kiyomitsu; Hirayama, Hideo.

    1981-09-01

    Papers describing about secondary particles, especially neutrons and photons, produced by a thick or thin target are surveyed. The survey covers twelve kinds of journals mainly from 1965 to 1980, and brief descriptions are listed about type of accelerator, projectile and target used, measurements and calculations, and quantities obtained. (author)

  8. Study of a neutron producing target via the 7Li(p,n)7Be reaction near its energy threshold for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; Debray, Mario E.; Stoliar, Pablo; Kesque, Jose M.; Naab, Fabian; Ozafran, Mabel J.; Schuff, Juan; Vazquez, Monica; Caraballo, Maria E.; Valda, Alejandro; Somacal, Hector; Davidson, Miguel; Davidson, Jorge

    2000-01-01

    In the framework of Accelerator Based BNCT (AB-BNCT) the 7 Li(p,n) 7 Be reaction near its energy threshold is one of the most promising. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron beam. The boron neutron capture reaction produces a 0.478 MeV gamma ray in 94 % of the cases. The neutron yield was monitored by detecting this gamma ray using a germanium detector with an 'anti-Compton' shield. Moreover, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4 x 10 8 1/(cm 2 -s-mA) was obtained at 4.2 cm from the phantom surface. (author)

  9. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    International Nuclear Information System (INIS)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.

    2001-01-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  10. Measured and calculated neutron yields for 100 MeV protons on thick targets of Pb and Li

    International Nuclear Information System (INIS)

    Jones, R.T.; Lone, M.A.; Okazaki, A.

    1983-01-01

    The neutron yield per proton from thick targets of lead and lithium irradiated with 100 MeV protons has been measured and calculated. The water bath method was used to measure the neutron production, and a Faraday cup for the beam current determination. Measured yields are 0.343 +- 0.021 for lead and 0.123 +- 0.007 for lithium. Corresponding yields calculated with the nucleon-meson transport code NMTC are 0.363 +- 0.002 and 0.160 +- 0.001. Measured and calculated thermal neutron distributions in the water bath are also compared

  11. Spallation Neutron Spectrum on a Massive Lead/Paraffin Target Irradiated with 1 GeV Protons

    CERN Document Server

    Adam, J; Barashenkov, V S; Brandt, R; Golovatiouk, V M; Kalinnikov, V G; Katovsky, K; Krivopustov, M I; Kumar, V; Kumawat, H; Odoj, R; Pronskikh, V S; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Westmeier, W

    2004-01-01

    The spectra of gamma-ray emitted by decaying residual nuclei, produced by spallation neutrons with (n, xn), (n,xnyp), (n,p), (n,gamma) reactions in activation threshold detectors - namely, ^{209}Bi, ^{197}Au, ^{59}Co, ^{115}In, ^{232}Th, were measured in the Laboratory of Nuclear Problems (LNP), JINR, Dubna, Russia. Spallation neutrons were generated by bombarding a 20 cm long cylindrical lead target, 8 cm in diameter, surrounded by a 6 cm thick layer of paraffin moderator, with a 1 GeV proton beam from the Nuclotron accelerator. Reaction rates and spallation neutron spectrum were measured and compared with CASCADE code calculations.

  12. Consistent analysis of collective level structure and neutron interaction data for 12C in the framework of the soft-rotator model

    International Nuclear Information System (INIS)

    Sukhovitskii, E.Sh.; Porodzinskii, Yu.V.; Iwamoto, Osamu; Chiba, Satoshi.

    1997-09-01

    A systematic analysis of nuclear structure and neutron interaction data for 12 C was carried out in the framework of the soft-rotator model. The model was firstly applied to analyze the low-lying collective level structure of the 12 C nucleus, which turned out to be very successful. The intrinsic wave function obtained in such an analysis was then used to construct the coupling potentials in the coupled-channels formalism to calculate the neutron total and scattering cross sections. The quadrupole deformation parameter obtained in the present analysis was 0.164, which was much smaller in the absolute sense than the value used in the symmetric-rotator, vibrator model employed frequently in the past, i.e., ≅0.6. When averaged over the β-vibration function, however, the present result yields an effective quadrupole strength of about the same scale as the previous studies due to softness of the 12 C wave function with respect to β 2 degree of freedom. The soft-rotator model was found to be very successful in reproducing both the structure and neutron scattering data consistently for the first time in this mass region. (author)

  13. Survey on neutron pre-emission at the fusion of 11 Li halo nuclei with light targets

    International Nuclear Information System (INIS)

    Petrascu, M.

    1999-01-01

    The neutron halo nuclei characterized by very large matter radii, small separation energy and small internal momentum of the valence neutrons, were discovered by Tanihata and co-workers. Until now, the halo nuclei were investigated mostly by elastic, inelastic scattering and breakup processes. It was recently predicted, that due to the very large dimension of 11 Li, one may expect, that in a fusion experiment on a light target, the valence neutrons will not be absorbed together with the 9 Li core, but will be emitted in the early stage of the reaction process. The first experiment aiming to check this expectation, was performed at the RIKEN-RIPS facility. In the experimental setup, the MUSIC chamber, achieved in the frame of IFIN-HH - RIKEN cooperation, played an important role. The obtained results confirm the prediction, indicating to a novel pre-emission effect (near 40 %, for one or two neutrons). The pre-emission of neutron pairs was investigated by time-position coincidences. It is considered that the pre-emission of neutron pairs is responsible for the experimentally observed strong neutron focusing effect. An experiment aiming to a large number of n-n coincidences, based on a new neutron array detector built in the frame of IFIN-HH - RIKEN cooperation, is in preparation. A model for the pre-emission probabilities calculations has been also worked out. Good agreement with the experimental data has been obtained. (author)

  14. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  16. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source; Resolucao analitica da equacao de transporte de neutrons em um reator anelar com fonte pulsada rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) {delta} (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) {delta} (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  17. Implosion physics, alternative targets design and neutron effects on inertial fusion systems

    International Nuclear Information System (INIS)

    Velarde, G.; Martinez-Val, J.M.; Perlado, J.M.

    2001-01-01

    A new radiation transport code has been coupled with an existing multimaterial fluidynamics code using Adaptive Mesh Refinement (AMR) and its testing is presented, solving ray effect and shadow problems in SN classical methods. Important advances in atomic physics, opacity calculations and NLTE calculations, participating in significant experiments (LULI/France), have been obtained. Our new 1D target simulation model allows considering the effect of inverse Compton scattering in DT x targets (x<3%) working in a catalytic regime, showing the effectiveness of such tritium-less targets. Neutron activation of all natural elements in IFE reactors for waste management and that of target debris in NIF-type facilities have been completed. Pulse activation in structural walls is presented with a new modeling. Tritium atmospheric dispersion results indicate large uncertainties in environmental responses and needs to treat the two chemical forms. We recognise recombination barriers (metastable defects) and compute first systematic high-energy displacement cascade analysis in SiC, and radiation damage pulses by atomistic models in metals. Using Molecular Dynamics we explain the experimental evidence of low-temperature amorphization by damage accumulation in SiC. (author)

  18. Testing of a Code for the Calculation of Spectra of Neutrons Produced in a Target of a Neutron Generator

    Science.gov (United States)

    Gaganov, V. V.

    2017-12-01

    The correctness of calculations performed with the SRIANG code for modeling the spectra of DT neutrons is estimated by comparing the obtained spectra to the results of calculations carried out with five different codes based on the Monte Carlo method.

  19. Measurements of neutron spectra produced from a thick tungsten target bombarded with 5 and 15 GeV protons

    CERN Document Server

    Meigo, S; Shigyo, N; Iga, K; Iwamoto, Y; Kitsuki, H; Ishibashi, K; Maehata, K; Arima, H; Nakamo, T; Numajiri, M

    2002-01-01

    For validation of calculation codes that are employed in the design of a pulse spallation neutron source and accelerator driven system, the spectrum of neutrons produced from a thick target plays an important role. However, appropriate experimental data were scarce for incident energies higher than 0.8 GeV. In this study, the spectrum from a thick tungsten target was measured. The experiment was carried out at the pi 2 beam line of the 12-GeV proton synchrotron at KEK. The tungsten target was bombarded by 0.5- and 1.5-GeV secondary protons. The spectrum of neutrons was measured by the time-of-flight technique using organic scintillators of NE213. The calculated result with NMTC/JAM and MCNP-4A is compared with the measured data. It is found that the NMTC/JAM generally gives a good agreement with experiment. The NMTC/JAM, however, gives 50% lower neutron flux in the energy region 20~80 MeV, which is consistent with the results in a previous comparison of a lead target. For the neutrons between 20 and 80 MeV, t...

  20. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  1. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    International Nuclear Information System (INIS)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.; Burgess, Thomas W.; Ellis, Ronald James; Giuliano, D.; Howard, R.; Kiggans, James O.; Lessard, Timothy L.; Ohriner, Evan Keith; Perkins, Dale E.; Varma, Venugopal Koikal

    2015-01-01

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma-material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a ''. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.'' The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma-material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL's proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL's strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the ''signature facility'' FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material-Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of

  2. Schlieren diagnostics of the Los Alamos hypersonic gas target neutron generator

    International Nuclear Information System (INIS)

    Haasz, A.A.; Lever, J.H.

    1981-01-01

    The gasdynamic behaviour of a planar model of the Los Alamos geometry hypersonic gas target neutron generator (GTNG) was investigated using Schlieren flow visualization photographs, static and total pressure and spill flow measurements. The model consisted of two symmetrical expansion nozzles with 220 μm throats producing a combined flow of about Mach 4 in the GTNG channel. Stagnation pressures of 100-800 kPa were used. Two basic flow configurations, spill line closed and spill line open, were studied in order to gain insight into the complex boundary layer development near the nozzle exit planes. Both flow configurations are discussed qualitatively, making use of the pressure measurements and theoretical analysis. (orig.)

  3. Neutronic analysis for the fission Mo99 production by irradiation of leu targets in TRIGA 14 MW reactor

    International Nuclear Information System (INIS)

    Dulugeac, S. D.; Mladin, M.; Budriman, A. G.

    2013-01-01

    Molybdenum production can be a solution for the future in the utilization of the Romanian TRIGA, taking into account the international market supply needs. Generally, two different techniques are available for Mo 99 production for use in medical Tc 99 generation.The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in Mo 98 . In a second process, Mo 99 is obtained as a result of the neutron induced fission of U 235 according to U 235 (n,f) Mo 99 . The objectives of the paper are related to Mo 99 production as a result of fission. Neutron physics parameters are determined and presented, such as: thermal flux axial distribution for the critical reactor at 10 MW inside the irradiation location; reactivity introduced by three Uranium foil containers; neutron fluxes and fission rates in the Uranium foils; released and deposited power in the Uranium foils; Mo 99 activity in the Uranium foils. (authors)

  4. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    International Nuclear Information System (INIS)

    Smith, T

    2003-01-01

    This thesis describes a precision measurement of the neutron spin dependent structure function, g 1 n (x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a 3 He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized 3 He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the 3 He polarization. The fraction of events which originated in the 3 He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure 3 He reference cell in place of the polarized 3 He target. The spin dependent structure function g 1 n (z) was measured in the Bjorken x range of 0.014 2 of 5 (GeV/c) 2 . One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g 1 n (x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g 1 n (x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g 1 n (x) to low x. The precision of the measurement made by the E154 collaboration at SLAC puts a tighter

  5. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  6. A water-cooled target of a 14 MeV neutron source

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Seki, Masahiro; Kawamura, Hiroshi; Sanokawa, Konomo

    1979-09-01

    For the cooling system of a stationary target for the fusion neutronics source (FNS), designed to meet the structural, thermal and hydraulic requirements, thermohydraulic experiments were made. In the heat transfer experiment, in place of an accelerator, electric-heater assemblies were used. The relation of head loss and heat transfer was obtained as a function of Reynolds number. The head loss was not large for flow rates up to 1.3 l/s. Neither vibration of the apparatus nor cavitation of water was observed even at the maximum flow rate. The heat load of 1 kW for the beam diameter of 15mm, i.e. the requirement of FNS, could be removed by 0.2 l/s water flow, with the target-surface maximum temperature kept below 200 0 C. Extrapolation of the experimental results showed that with the target system, the maximum heat load is 2.3 kW for the beam of diameter 15 mm. The value is sufficiently large compared with the heat load of FNS; with finned cooling surfaces, the heat loads up to 3.7 kW may be removed. (author)

  7. Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takashi; Kurosawa, Tadahiro; Nakamura, Takashi E-mail: nakamura@cyric.tohoku.ac.jp

    2002-03-21

    A simple phenomenological analysis using the moving source model has been performed on the neutron energy spectra produced by bombarding thick targets with high energy heavy ions which have been systematically measured at the Heavy-Ion Medical Accelerator (HIMAC) facility (located in Chiba, Japan) of the National Institute of Radiological Sciences (NIRS). For the bombardment of both heavy ions and protons in the energy region of 100-500 MeV per nucleon, the moving source model incorporating the knock-on process could be generally successful in reproducing the measured neutron spectra within a factor of two margin of accuracy. This phenomenological analytical equation is expressed having several parameters as functions of atomic number Z{sub p}, mass number A{sub p}, energy per nucleon E{sub p} for projectile, and atomic number Z{sub T}, mass number A{sub T} for target. By inputting these basic data for projectile and target into this equation we can easily estimate the secondary neutron energy spectra at an emission angle of 0-90 deg. for bombardment with heavy ions and protons in the aforementioned energy region. This method will be quite useful to estimate the neutron source term in the neutron shielding design of high energy proton and heavy ion accelerators.

  8. Optimization of a neutron production target based on the 7Li (p,n)7Be reaction with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Kreiner, Andres J.; Minsky, Daniel; Valda, Alejandro A.; Somacal, Hector R.

    2003-01-01

    In order to optimize a neutron production target for accelerator-based boron neutron capture therapy (AB-BNCT) a Monte Carlo Neutron and Photon (MCNP) investigation has been performed. Neutron fields from a LiF thick target (with both a D 2 O-graphite and a Al/AlF 3 -graphite moderator/reflector assembly) were evaluated along the centerline in a head phantom. The target neutron beam was simulated from the 7 Li(p,n) 7 Be nuclear reaction for 1.89, 2.0 and 2.3 MeV protons. The results show that it is more advantageous to irradiate the target with near resonance energy protons (2.3 MeV) because of the high neutron yield at this energy. On the other hand, the Al/AlF 3 -graphite exhibits a more efficient performance than D 2 O. (author)

  9. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  10. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z. [Soreq NRC, Yavne 81800 (Israel); Paul, M., E-mail: paul@vms.huji.ac.il; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  11. Simulation of the Production of Secondary Particles from a Neutron Beam on Polyethylene Targets using the GEANT4 Simulation Tool

    CERN Document Server

    Ilgner, C

    2003-01-01

    In view of a beam test of RadFET semiconductor detectors and optically stimulated luminescence (OSL) detectors as on-line dosimeters for radiation monitoring purposes in the caverns of the Large Hadron Collider (LHC) experiments, a simulation on the production of secondary particles from a neutron beam on a polyethylene target was carried out. We describe the yield of recoil protons, scattered neutrons as well as electrons, positrons and photons, when neutrons of an average energy of 20 MeV hit polyethylene targets of several thicknesses. The simulation was carried out using the latest release 5.2 of the GEANT4 detector description and simulation tool, including advanced hadron interaction models.

  12. Measurement of induced radioactivity in a spallation neutron field of a mercury target for GeV-proton bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Y.; Takada, H.; Nakashima, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-03-01

    An integral experiment on radioactivity induced in spallation neutron fields was carried out under the ASTE (AGS-Spallation Target Experiment) collaboration using AGS (Alternative Gradient Synchrotron) at BNL (Brookhaven National Laboratory). The spallation neutrons were produced by bombarding a mercury target with protons of 1.6, 12 and 24 GeV. The number of protons was 3 - 4 x 10{sup 13} for each irradiation. The irradiated materials were titanium, nickel, cobalt, yttrium, and bismuth, and placed on the cylindrical surface of the mercury target at the distance of 15 - 16 cm from the beam-incident-surface of the target. Disintegration rates of induced radioactivities were measured at several cooling-time ranging from hours to months. The principal nuclides contributing to the radioactivity were pointed out for each material. The experimental results for bismuth were compared with the calculations with DCAHIN-SP code. (author)

  13. EURISOL-DS Multi-MW Target Preliminary Study of the Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Herrera-Martínez, A; CERN. Geneva. AB Department

    2006-01-01

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1]. A preliminary study was carried out in order to determine the optimum value of relevant parameters in the target design. Different scenarios were simulated using the Monte Carlo code FLUKA [2]. Namely, sensitivity studies were performed to assess the impact of the projectile particle energy on the neutronics and energy deposition in the spallation target. The optimal target dimensions were also studied for every case as well as the proper target material for the liquid metal proton-to-neutron converter, since mercury and lead-bismuth eutectic are reasonable options. The effect of the beam width on the power densities was also evaluated, taking into account the geometrical limitations of the facility. Finally, a comparison between protons and deuterons as primary particles was performed, acknowledging the limitations of using FLU...

  14. Measurement of induced radioactivity in a spallation neutron field of a mercury target for GeV-proton bombardment

    International Nuclear Information System (INIS)

    Kasugai, Y.; Takada, H.; Nakashima, H.

    2001-01-01

    An integral experiment on radioactivity induced in spallation neutron fields was carried out under the ASTE (AGS-Spallation Target Experiment) collaboration using AGS (Alternative Gradient Synchrotron) at BNL (Brookhaven National Laboratory). The spallation neutrons were produced by bombarding a mercury target with protons of 1.6, 12 and 24 GeV. The number of protons was 3 - 4 x 10 13 for each irradiation. The irradiated materials were titanium, nickel, cobalt, yttrium, and bismuth, and placed on the cylindrical surface of the mercury target at the distance of 15 - 16 cm from the beam-incident-surface of the target. Disintegration rates of induced radioactivities were measured at several cooling-time ranging from hours to months. The principal nuclides contributing to the radioactivity were pointed out for each material. The experimental results for bismuth were compared with the calculations with DCAHIN-SP code. (author)

  15. A critical assessment of boron target compounds for boron neutron capture therapy.

    Science.gov (United States)

    Hawthorne, M Frederick; Lee, Mark W

    2003-01-01

    Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study

  16. Hydrogen isotope double differential production cross sections induced by 62.7 MeV neutrons on a lead target

    International Nuclear Information System (INIS)

    Kerveno, M.; Haddad, F.; Eudes, Ph.; Kirchner, T.; Lebrun, C.; Slypen, I.; Meulders, J.P.; Le Brun, C.; Lecolley, F.R.; Lecolley, J.F.; Louvel, M.; Lefebvres, F.; Hilaire, S.; Koning, A.J.

    2002-01-01

    Double differential hydrogen isotope production cross sections have been extracted in 62.7 MeV neutron induced reactions on a lead target. The angular distribution was measured at eight angles from 20 deg. to 160 deg. allowing the extraction of angle-differential, energy differential, and total production cross sections. A first set of comparisons with several theoretical calculations is also presented

  17. A compact fast-neutron producing target for high resolution cross section measurements

    NARCIS (Netherlands)

    Flaska, M.

    2006-01-01

    A proper knowledge of neutron cross sections is very important for the operation safety of various nuclear facilities. Reducing uncertainties in the neutron cross sections can lead to an enhanced safety of present and future nuclear power systems. Accurate neutron cross sections also play a relevant

  18. Precise measurements of the thick target neutron yields of the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Matysiak, W., E-mail: matysiw@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ont., L8S 4K1 (Canada); Prestwich, W.V.; Byun, S.H. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ont., L8S 4K1 (Canada)

    2011-07-01

    Thick target neutron yield of the {sup 7}Li(p,n){sup 7}Be reaction was measured in the proton energy range from 1.95 to 2.3 MeV by determining induced activity of the {sup 7}Be. A HPGe detector was used to detect the 478 keV gamma-rays emitted through {sup 7}Be decay. A series of irradiations with nominal proton energies of 1.95, 2.0, 2.1, 2.2, and 2.3 MeV were carried out. In an independent experiment, raw neutron spectra were collected by a {sup 3}He ion chamber for the same series of proton energies. From the raw neutron spectra, it was noted, that the effective proton energies were lower than the nominal by 50-58 keV. After corrections for the proton energy offsets were applied, the measured neutron yields matched the analytically calculated yields within 20%. Long term stability of neutron yield was tested at two nominal proton energies, 2.1 and 1.95 MeV over an experimental period of one year. The results show that the yield at 2.1 MeV was stable within rmse variation coefficient of 4.7% and remained consistent even when the lithium target was replaced, whereas at 1.95 MeV, the maximum fluctuations reached a factor of 10.

  19. Rationale for a spallation neutron source target system test facility at the 1-MW Long-Pulse Spallation Source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1995-12-01

    The conceptual design study for a 1-MW Long-Pulse Spallation Source at the Los Alamos Neutron Science Center has shown the feasibility of including a spallation neutron test facility at a relatively low cost. This document presents a rationale for developing such a test bed. Currently, neutron scattering facilities operate at a maximum power of 0.2 MW. Proposed new designs call for power levels as high as 10 MW, and future transmutation activities may require as much as 200 MW. A test bed will allow assessment of target neutronics; thermal hydraulics; remote handling; mechanical structure; corrosion in aqueous, non-aqueous, liquid metal, and molten salt systems; thermal shock on systems and system components; and materials for target systems. Reliable data in these areas are crucial to the safe and reliable operation of new high-power facilities. These tests will provide data useful not only to spallation neutron sources proposed or under development, but also to other projects in accelerator-driven transmutation technologies such as the production of tritium

  20. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields

    International Nuclear Information System (INIS)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sunil, C.; Bandyopadhyay, T.; Sharma, S. C.; Ramjilal,; Ninawe, N. G.; Gupta, A. K.

    2014-01-01

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK-n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed

  1. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the µs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  2. Calculations of the main free path on neutron emission cross-section for spallation reaction of target and fuel nuclei

    International Nuclear Information System (INIS)

    Tel, E.; Kisoglu, H. F.; Topaksu, A. K.; Aydin, A.; Kaplan, A.

    2007-01-01

    There are several new technological application fields of fast neutrons such as accelerator-driven incineration/ transmutation of the long-lived radioactive nuclear wastes (in particular transuranium nuclides) to short-lived or stable isotopes by secondary spallation neutrons produced by high-intensity, intermediate-energy, charged-particle beams, prolonged planetary space missions, shielding for particle accelerators. Especially, accelerator driven subcritical systems (ADS) can be used for fission energy production and /or nuclear waste transmutation as well as in the intermediate-energy accelerator driven neutron sources, ions and neutrons with energies beyond 20 MeV, the upper limit of exiting data files that produced for fusion and fission applications. In these systems, the neutron scattering cross sections and emission differential data are very important for reactor neutronics calculations. The transition rate calculation involves the introduction of the parameter of mean free path determines the mean free path of the nucleon in the nuclear matter. This parameter allows an increase in mean free path, with simulation of effect, which is not considered in the calculations, such as conservation of parity and angular momentum in intra nuclear transitions. In this study, we have investigated the multiple preequilibrium matrix element constant from internal transition for Uranium, Thorium, (n,xn) neutron emission spectra. The neutron-emission spectra produced by (n,xn) reactions on nuclei of some target (for spallation) have been calculated. In the calculations, we have used the geometry dependent hybrid model and the cascade exciton model including the effects of the preequilibrium. The pre-equilibrium direct effects have been examined by using full exciton model. All calculated results have been compared with the experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other

  3. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  4. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems

    Energy Technology Data Exchange (ETDEWEB)

    Eder, D.C.; Song, P.M.; Latkowski, J.F.; Reyes, S.; O' Brien, D.W.; Lee, F.D.; Young, B.K.; Koch, J.A.; Moran, M.J.; Watts, P.W.; Kimbrough, J.R.; Ng, E.W.; Landen, O.L.; MacGowan, B.J. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2006-06-15

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3-dimensional Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range (about 3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields. (authors)

  5. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems

    Science.gov (United States)

    Eder, D. C.; Song, P. M.; Latkowski, J. F.; Reyes, S.; O'Brien, D. W.; Lee, F. D.; Young, B. K.; Koch, J. A.; Moran, M. J.; Watts, P. W.; Kimbrough, J. R.; Ng, E. W.; Landen, O. L.; MacGowan, B. J.

    2006-06-01

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3D Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range (˜ 3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields.

  6. Time reversal tests in polarized neutron reactions

    International Nuclear Information System (INIS)

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized 3 He gas targets. Using the polarized 3 He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a 139 La sample

  7. Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60.

    Science.gov (United States)

    Xu, Minzhong; Jiménez-Ruiz, Mónica; Johnson, Mark R; Rols, Stéphane; Ye, Shufeng; Carravetta, Marina; Denning, Mark S; Lei, Xuegong; Bačić, Zlatko; Horsewill, Anthony J

    2014-09-19

    We report an inelastic neutron scattering (INS) study of a H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules.

  8. Experimental study on neutronics in bombardment of thick targets by high energy proton beams for accelerator-driven sub-critical system

    CERN Document Server

    Guo Shi Lun; Shi Yong Qian; Shen Qing Biao; Wan Jun Sheng; Brandt, R; Vater, P; Kulakov, B A; Krivopustov, M I; Sosnin, A N

    2002-01-01

    The experimental study on neutronics in the target region of accelerator-driven sub-critical system is carried out by using the high energy accelerator in Joint Institute for Nuclear Research, Dubna, Russia. The experiments with targets U(Pb), Pb and Hg bombarded by 0.533, 1.0, 3.7 and 7.4 GeV proton beams show that the neutron yield ratio of U(Pb) to Hg and Pb to Hg targets is (2.10 +- 0.10) and (1.76 +- 0.33), respectively. Hg target is disadvantageous to U(Pb) and Pb targets to get more neutrons. Neutron yield drops along 20 cm thick targets as the thickness penetrated by protons increases. The lower the energy of protons, the steeper the neutron yield drops. In order to get more uniform field of neutrons in the targets, the energy of protons from accelerators should not be lower than 1 GeV. The spectra of secondary neutrons produced by different energies of protons are similar, but the proportion of neutrons with higher energy gradually increases as the proton energy increases

  9. Angular measurement of the energy distribution of neutrons from the thick target 7Li(p,n)7Be source

    International Nuclear Information System (INIS)

    Rose, A.

    1981-11-01

    The energy spectrum of neutrons emitted from a thick lithium target bombarded by protons has been measured as a function of neutron angle of emission. The measurements were done at proton energies up to 2.8 MeV and at 30 deg. intervals in the range 0 to 120 deg. using proportional detectors with gas fillings of hydrogen and methane. A review is given of papers published on the 7 Li(p,n) 7 Be reactions at 0 deg.; where applicable, comparisons are made with the present results

  10. Photo-neutron yields from thin and thick targets irradiated by 2.0 GeV electrons

    International Nuclear Information System (INIS)

    Hee-Seock, Lee; Syuichi, Ban; Toshiya, Sanami; Kazutoshi, Takahashi; Tatsuhiko, Sato; Kazuo, Shin

    2005-01-01

    The photo-neutron yields from thin and thick targets irradiated by high energy electrons were studied. The photo-neutron spectra at 90 deg C relative to the incident 2.0 GeV electrons were measured by the pulsed beam time-of-flight technique using the Pilot-U plastic scintillator and the NE213 liquid scintillator with 2 inches in length and 2 inches in diameter. Targets, from low-Z element (carbon) to high-Z element (bismuth) and with thin (0.5 Xo) and thick (10 Xo) thickness, were used in this study. The differential photo-neutron yields between 2 MeV (mainly 8 MeV) and 400 MeV were obtained. The systematics was studied to make empirical yield terms for shielding application. Recently, the study of the angular distributed yields was conducted at two other observing angles, 48 deg C and 140 deg C. The photo-neutron yields between 8 MeV and 250 MeV were obtained for thick targets. The experimental data were compared with results calculated using the EGS4+PICA3 or the MCNPX 2.5d code. (authors)

  11. Measurements of neutron spectrum from stopping-length target irradiated by several tens-MeV/u particles

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Takada, Hiroshi; Nakashima, Hiroshi; Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Susumu; Shin, Kazuo; Ono, Shinji

    1997-03-01

    Using a Time-of-Flight technique, we have measured neutron spectra from stopping-length targets bombarded with 68-MeV protons and 100-MeV {alpha}-particles. The measured spectra were used to validate the results calculated by the Quantum Molecular Dynamics (QMD) plus Statistical Decay Model (SDM). The results of QMD plus SDM code agreed fairly well with the experimental data for the light target. On the other hand, the QMD plus SDM gives a larger value than the experimental for the heavy target. (author)

  12. Measurements of neutron spectra produced from a thick iron target bombarded with 1.5 GeV protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Takada, Hiroshi

    2001-01-01

    For validation of calculation codes which are employed in the design of accelerator facilities, spectra of neutrons produced from a thick iron target bombarded with 1.5-GeV protons were measured. The calculated results with NMTC/JAM were compared with the present experimental results. It is found the NMTC/JAM generally shows in good agreement with experiment. Furthermore, the calculation gives good agreement with the experiment for the energy region 20-80 MeV, whereas the NMTC/JAM gives 50% of the experimental data for the heavy nuclide target such as lead and tungsten target. (author)

  13. Pressure and stress waves in a spallation neutron source mercury target generated by high-power proton pulses

    CERN Document Server

    Futakawa, M; Conrad, H; Stechemesser, H

    2000-01-01

    The international ASTE collaboration has performed a first series of measurements on a spallation neutron source target at the Alternating Gradient Synchrotron (AGS) in Brookhaven. The dynamic response of a liquid mercury target hit by high-power proton pulses of about 40 ns duration has been measured by a laser Doppler technique and compared with finite elements calculations using the ABAQUS code. It is shown that the calculation can describe the experimental results for at least the time interval up to 100 mu s after the pulse injection. Furthermore, it has been observed that piezoelectric pressure transducers cannot be applied in the high gamma-radiation field of a spallation target.

  14. Monte Carlo model for a thick target T(D,n)4 He neutron source

    International Nuclear Information System (INIS)

    Webster, W.M.

    1976-01-01

    A brief description is given of a calculational model developed to simulate a T(D,n) 4 He neutron source which is anisotropic in energy and intensity. The model also provides a means for including the time dependency of the neutron source. Although the model has been applied specifically to the Lawrence Livermore Laboratory ICT accelerator, the technique is general and can be applied to any similar neutron source

  15. High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy.

    Science.gov (United States)

    Murdock, Richard J; Putnam, Shawn A; Das, Soumen; Gupta, Ankur; Chase, Elyse D Z; Seal, Sudipta

    2017-03-01

    A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL -1 and broad detection range of 10 pg mL -1 ≲ c BSA ≲ 100 µg mL -1 are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL -1 ≲ c BSA ≲ 500 ng mL -1 . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solubility of helium in mercury for bubbling technology of the spallation neutron mercury target

    International Nuclear Information System (INIS)

    Hasegawa, S.; Naoe, T.; Futakawa, M.

    2010-01-01

    The pitting damage of mercury target container that originates in the pressure wave excited by the proton beam incidence becomes a large problem to reach the high-power neutron source in JSNS and SNS. The lifetime of mercury container is decreased remarkably by the pitting damage. As one of solutions, the pressure wave is mitigated by injecting the helium micro bubbles in mercury. In order to inject the helium micro bubbles into mercury, it is important to understand the characteristic of micro bubbles in mercury. The solubility of mercury-helium system is a key factor to decide bubbling conditions, because the disappearance behavior, i.e. the lifetime of micro bubbles, depends on the solubility. In addition, the bubble generation method is affected by it. Moreover, the experimental data related to the solubility of helium in mercury hardly exist. In this work, the solubility was obtained experimentally by measuring precisely the pressure drop of the gas that is facing to mercury surface. The pressure drop was attributed to the helium dissolution into mercury. Based on the measured solubility, the lifetime of micro bubbles and the method of the bubble generation is estimated using the solubility data.

  17. Neutronic and thermal hydraulic analyses of LEU targets irradiated in a research reactor for Molybdenum-99 production

    International Nuclear Information System (INIS)

    Jo, Daeseong; Lee, Kyung-Hoon; Kim, Hong-Chul; Chae, Heetaek

    2014-01-01

    Highlights: • Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99. • Heat production during and after irradiation was evaluated using MCNP and ORIGEN-APR. • Cooling capacities under various cooling conditions were evaluated using TMAP. • Natural convective cooling was adequate for the decay power after 0.03 h from withdrawal. • Maximum temperature of the target decayed for 24 h does not exceed the blistering threshold. - Abstract: Neutronic and thermal hydraulic analyses of irradiated fuel plates for Molybdenum-99 production in a research reactor were performed to investigate (1) the heat production during irradiation, (2) decay heat after irradiation, and (3) cooling capacities under various cooling conditions. The heat production on the target plates irradiated in the core was evaluated using the MCNP code. The decay heat after irradiation was evaluated using the ORIGEN-APR code, and compared against ANSI/ANS-5.1-1979. The cooling capacities of forced convective cooling during irradiation and natural convective cooling after irradiation were estimated using the TMAP code. An equilibrium core with different core statuses i.e., BOC, MOC, and EOC was used to evaluate power released from the targets and the axial power distribution. Based on the neutronic calculations, thermal margins i.e., the maximum wall temperature, minimum ONB temperature margin, and minimum CHF ratio were estimated, and the cooling strategy of the fission Mo targets was discussed. The targets were cooled by forced convective cooling during irradiation, and cooled by natural convective cooling after irradiation. For a further production process, the targets transported to a hot cell were exposed to the air, and cooled by natural convection cooling in air. As a result, the maximum wall temperature remained below the ONB temperature while the targets were under water, and the maximum wall temperature remained under the blistering limit while the targets

  18. Conceptual design of the handling and storage system of the spent target vessel for neutron scattering facility 2

    International Nuclear Information System (INIS)

    Adachi, Junichi; Kaminaga, Masanori; Sasaki, Shinobu; Haga, Katsuhiro; Aso, Tomokazu; Kinoshita, Hidetaka; Hino, Ryutaro

    2002-01-01

    In designing the neutron scattering facility, a spent target vessel should be replaced with remote handling devices in order to protect radioactive exposure, since it would be highly activated through the high energy neutron irradiation caused by the spallation reaction between mercury of the target material and the MW-class proton beam. In the storage of the spent target vessel, it is necessary to consider decay heat of the target vessel and mercury contamination caused by vaporization of the residual mercury in the vessel. A conceptual design has been carried out to establish basic concept and to clarify its specification of main equipments on handling and storage systems for the spent target vessel. This report presents the basic concept and a system plot plan based on latest design works of remote handling devices such as a spent target vessel storage cask and a target vessel exchange trolley, which aim at reasonability and simplification. In addition, storage systems for the spent moderator vessel, the spent proton beam window and the spent reflector vessel are also investigated based on the plot plan. (author)

  19. Energy behaviour of neutrons generated by Witch-type distributed axi-symmetrical deuteron beams accelerated onto plane tritium targets

    International Nuclear Information System (INIS)

    Timus, D.M.; Bradley, D.A.; Timus, B.D.; Kalla, S.L.; Srivastava, H.M.

    2000-01-01

    This paper is an analytical study of the spatial dependency of the d-T neutron energy in the vicinity of a homogeneous tritium-occluded plane target. Close to the target, and along the path of incidence of axially symmetric deuteron beams, the transverse density of accelerated deuterons is assumed to be governed by a law approximated by the 'Witch' function. In particular circumstances, the elementary neutron emission process in non-dispersive media can be considered to be omni-directional (due consideration being paid to collision kinetics, depending upon mass and kinetic energy of particles involved in the nuclear collision, nuclear reaction energy, etc.). Consequently, analytical expressions can be considerably simplified. By applying the classical kinetic energy and momentum conservation laws to nuclear processes, a theoretical description is obtained, taking into account the exoergic character of d-T fusion reaction. A number of expressions for energetic prediction of the fast neutron field are proposed. The associated relations, involving elementary functions, can be investigated using a desk-top computer. Computationally tractable tools are of importance in the study of diverse situations such as induced reactions and activation analysis using 14 MeV neutron generators, investigations in health-physics, radiation dose measurements, nuclear medicine, damage effects, and simulation studies

  20. Current status and future prospect of space and time reversal symmetry violation on low energy neutron reactions

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro

    1993-01-01

    In this report, the papers on symmetry violation under space reflection and time reversal and neutron spin, neutron spin rotation and P-violation, parity nonconservation in neutron capture reaction, some advantage of the search for CP-violation in neutron scattering, dynamic polarization of 139 La target, alexandrite laser for optical pumping, polarized 3 He system for T- and P-violation neutron experiments, control of neutron spin in T-violation neutron experiment, symmetry regarding time and space and angular distribution and angular correlation of radiation and particle beams, T-violation due to low temperature nuclear polarization and axion exploration using nuclear transition are collected. (K.I.)

  1. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    Science.gov (United States)

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  2. Study on the 21 MeV neutron flux characteristics obtained in the 3H(d,n)4He reaction using of gas target

    International Nuclear Information System (INIS)

    Lovchikova, G.N.; Polyakov, A.V.; Sal'nikov, O.A.; Simakov, S.P.; Sukhikh, S.Eh.; Trufanov, A.M.

    1983-01-01

    The possibility to use gas tritium target as neutron source with the energy 2 MeV for nuclear-physical studies has been considered. Characteristics of neutron flux crested in the reaction 3 H(d, n) 4 He to obtain neutrons are investigated. The study of inelastic scattering processes at the energies permits to expand the experiments conducted up to the present day on the study of spectra of inelastically scattered neutrons in a lower energy region and it is of interest for the clarification of appearance mechanism of high-energy neutrons in the spectra. Characteristics of neutron flux as a result of the reaction 3 (α, n) 4 He at the energy of falling deuterons Esub(d)=5.54 MeV are investigated. Measurements of spectra of scattered neutrons on carbon-12 at the angles 30, 45, 60, 90, 120, 150 degrees are made. Differential cross sections of elastic scattering are obtained

  3. Overview of the national spallation neutron source with emphasis on the target station

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1997-01-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described

  4. 25-ps neutron detector for measuring ICF-target burn history

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

    1994-01-01

    We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response 8 and 2 x 10 13 neutrons

  5. Structural integrity of heavy liquid-metal target installed in spallation neutron facility. Part 4: Consideration by fracture mechanics of target container window

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kikuchi, Kenji; Haga, Katsuhiro; Kaminaga, Masanori; Hino, Ryutaro

    2004-01-01

    Developments of the neutron scattering facility is carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (mercury) target used as a spallation neutron source in a MW-class neutron scattering facility, static and dynamic stress (including pressure wave in mercury) behaviors due to the incident of 1MW-pulsed proton beam (Maximum heat density is 461W/cc) were analyzed. In the analyses, two type target containers with semi-cylindrical type and flat-type beam windows were used as analytical models. As a result, it is confirmed that the stress generated by the pressure wave becomes the largest at the center of the beam window, and the flat-type beam window is more advantageous from the structural viewpoint than the semi-cylindrical type beam window. It has been understood that the stress generated in the beam window by the pressure wave can be treated as the secondary stress. Then, it has been understood that the stress and the stress range generated in the target window were bellow the allowable stress level defined by the standard of JIS on the maximum stress and fatigue strength. It has been experimentally confirmed that a cavitation was generated by generating the negative pressure in mercury near the target beam window and a collapse of cavitation damaged to the target container material, as pits. Then, the fracture mechanical analyses were carried out on the pit and a crack on pit tip. Consequently, it was clarified that the crack would not propagate because the inner surface of the beam window was become the compressive stress field due to the steady state thermal stress. Moreover, the evaluation technique of the cavitation which would be needed in the future was summarized. (author)

  6. Studies on neutron production in the interaction of 7.4 GeV protons with extended lead target

    CERN Document Server

    Hashemi-Nezhad, S R; Ochs, M; Wan, J S; Schmidt, T; Langrock, E J; Vater, P; Adam, J; Bamblevskij, V P; Bradnova, V; Gelovani, L K; Kalinnikov, V K; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Perelygin, V P; Pronskikh, V S; Stegailov, V I; Tsoupko-Sitnikov, V M; Modolo, G; Odoj, R; Phlippen, P W; Adloff, J C; Debeauvais, M; Zamani-Valassiadou, M; Dwivedi, K K; Wilson, B

    1999-01-01

    A cylindrical lead target of diameter 8 cm and length 20 cm was irradiated with 7.4 GeV protons along the axis of the cylinder. The lead target was surrounded with a paraffin layer of thickness 6 cm to moderate the neutrons produced in p + Pb reactions. The spatial distribution of the slow and fast neutrons on different surfaces of the moderator were determined using LR 115 2B detectors (through sup 1 sup 0 B(n,alpha) sup 7 Li reactions) and CR39 detectors (through proton recoils) respectively. Such results can be valuable in the studies and design of Accelerator Driven Subcritical Nuclear Reactors and Nuclear Waste Incinerators.

  7. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets

    International Nuclear Information System (INIS)

    Munoz-Garcia, Javier; Cuerno, Rodolfo; Castro, Mario

    2009-01-01

    Continuum models have proved their applicability to describe nanopatterns produced by ion-beam sputtering of amorphous or amorphizable targets at low and medium energies. Here we pursue the recently introduced 'hydrodynamic approach' in the cases of bombardment at normal incidence, or of oblique incidence onto rotating targets, known to lead to self-organized arrangements of nanodots. Our approach stresses the dynamical roles of material (defect) transport at the target surface and of local redeposition. By applying results previously derived for arbitrary angles of incidence, we derive effective evolution equations for these geometries of incidence, which are then numerically studied. Moreover, we show that within our model these equations are identical (albeit with different coefficients) in both cases, provided surface tension is isotropic in the target. We thus account for the common dynamics for both types of incidence conditions, namely formation of dots with short-range order and long-wavelength disorder, and an intermediate coarsening of dot features that improves the local order of the patterns. We provide for the first time approximate analytical predictions for the dependence of stationary dot features (amplitude and wavelength) on phenomenological parameters, that improve upon previous linear estimates. Finally, our theoretical results are discussed in terms of experimental data.

  8. Developing plan and pre-conceptual design of target system for JAERI`s high intensity neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Kaminaga, Masanori; Haga, Katsuhiro; Ishikura, Syuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Fumito; Uchida, Shoji

    1997-11-01

    This paper presents an outline of developing plan of a target system and topics obtained by a pre-conceptual design, which aims to establish a technology base of the target system and to make clear a system concept. In the plan, two types of target - solid and mercury targets - are to be developed for a neutron scattering facility. Information obtained through the development shall be applied to designs of an irradiation and a transmutation facilities. Through the pre-conceptual design, system arrangement, scale etc. were made clear: total weight will be 12000 ton, and 26 beam lines with beam shutters will be equipped for 4 moderators. Engineering problems were also made clear through the design; high flux heat removal, dynamic stress caused by thermal shock and pressure wave, loop technology for the mercury target and a slurry moderator consisting of methane pellets and liquefied hydrogen. We are now constructing new test apparatuses and arranging computer codes for solving these problems. (author)

  9. Hindered rotational energy barriers of BH4- tetrahedra in β-Mg(BH4)2 from quasielastic neutron scattering and DFT calculations

    DEFF Research Database (Denmark)

    Blanchard, Didier; Maronsson, Jon Bergmann; Riktor, M.D.

    2012-01-01

    , around the 2-fold (C2) and 3-fold (C3) axes were observed at temperatures from 120 to 440 K. The experimentally obtained activation energies (EaC2 = 39 and 76 meV and EaC3 = 214 meV) and mean residence times between reorientational jumps are comparable with the energy barriers obtained from DFT......In this work, hindered rotations of the BH4- tetrahedra in Mg(BH4)2 were studied by quasielastic neutron scattering, using two instruments with different energy resolution, in combination with density functional theory (DFT) calculations. Two thermally activated reorientations of the BH4- units...... calculations. A linear dependency of the energy barriers for rotations around the C2 axis parallel to the Mg-Mg axis with the distance between these two axes was revealed by the DFT calculations. At the lowest temperature (120 K) only 15% of the BH4- units undergo rotational motion and from comparison with DFT...

  10. On the use of lead/tin alloys as target material for the production of spallation neutrons

    International Nuclear Information System (INIS)

    Atchison, F.; Baumann, P.; Brys, T.; Daum, M.; Egorov, A.; Fierlinger, P.; Fuchs, P.; Henneck, R.; Joray, St.; Keil, R.; Kirch, K.; Krutova, R.; Kuehne, G.; Lebedev, V.T.; Obermeier, H.; Orlova, D.N.; Perret, Ch.; Pichlmaier, A.; Richard, Ph.; Serebrov, A.; Thies, S.

    2005-01-01

    We have examined the suitability of lead (Pb)/tin (Sn) alloys with atomic ratios between 4:1 and 12:1 for use as a spallation target material for the PSI spallation ultracold neutron source. The measured corrosion rate with distilled water, R c -5 cm/year, is more than a factor of 80, less than for normal Pb; this corrosion rate is satisfactory. Microscopic investigations of the surface after the exposure to water revealed no visual changes. Small angle neutron scattering showed that the alloy is mechanically stable under thermal cycling. An experimental simulation of a water-cooled spallation neutron target made of Pb/Sn pebbles with a filling factor of 60% was investigated; the pulsed proton beam was simulated using hot and cold water in the target 'cooling' circuit. With realistic operational parameters for the cooling circuit, serious deformation of the PbSn pebbles occurred which finally blocked the cooling circuit. The Pb/Sn alloys solve the corrosion problem but its mechanical properties are inadequate leading to too short a lifetime to be practical in the PSI spallation source

  11. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Science.gov (United States)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  12. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G.; Perlado, J.M. E-mail: mperlado@denim.upm.es; Alonso, E.; Alonso, M.; Dominguez, E.; Rubiano, J.G.; Gil, J.M.; Gomez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Minguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P

    2001-05-21

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT{sub x} fuel with a small tritium initial content (x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures ({>=}100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower T{sub e} and to enhance radiation losses, reducing the plasma temperature, T{sub i}. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination

  13. Design of a TOF-SANS instrument for the proposed long wavelength target station at the spallation neutron source

    International Nuclear Information System (INIS)

    Thiyagarajan, P.; Littrell, K.; Seeger, P.A.

    2001-01-01

    We have designed a versatile high-throughput SANS instrument [Broad Range Intense Multipurpose SANS (BRIMS)] for the proposed Long Wavelength Target Station at the SNS by using acceptance diagrams and the Los Alamos NISP Monte Carlo simulation package. This instrument has been fully optimized to take advantage of the 10 Hz source frequency (broad wavelength bandwidth) and the cold neutron spectrum from a tall coupled solid methane moderator (12 cm x 20 cm). BRIMS has been designed to produce data in a Q range spanning from 0.0025 to 0.7 A -1 in a single measurement by simultaneously using neutrons with wavelengths ranging from 1 to 14.5 A in a time of flight mode. A supermirror guide and bender assembly is employed to separate and redirect the useful portion of the neutron spectrum with λ>1 A, by 2.3deg away from the direct beam containing high energy neutrons and γ rays. The effects of various collimation choices on count rate, resolution and Q min have been characterized using spherical particle and delta function scatterers. The overall performance of BRIMS has been compared with that of the best existing reactor-based SANS instrument D22 at ILL. (author)

  14. Neutron production by 0.8 and 1.5 GeV protons on Fe and Pb targets at the most-forward region

    International Nuclear Information System (INIS)

    Satoh, Daiki; Shigyo, Nobuhiro; Ishibashi, Kenji

    2003-01-01

    Neutron-production double-differential cross-sections for 0.8 and 1.5 GeV protons incident on Fe and Pb targets were measured at the most-forward region. Neutrons were measured by the time-of-flight (TOF) method. An NE213 liquid organic scintillator was set at 0-degree as neutron detector. Neutron detection efficiencies are calculated by a Monte Carlo simulation code SCINFUL-QMD. Experimental data were compared with other experimental data and the results of calculation codes based on Intranuclear-Cascade-Evaporation (INC/E) and Quantum Molecular Dynamics (QMD) models. Disagreement with the codes is discussed. (author)

  15. Tritium-target performance at RTNS-II

    International Nuclear Information System (INIS)

    Heikkinen, D.W.; Logan, C.M.

    1982-01-01

    The Rotating Target Neutron Source (RTNS-II) uses a 360-keV deuteron beam and the 3 He(d,n) 4 He reaction to generate 14-MeV neutrons. The neutrons are used for fusion materials damage studies. The tritium target consists of a band of titanium tritide on copper alloy substrates of 23- or 50-cm diameter. During operation, the substrates are internally cooled and rotated at approx. 4000 rpm to withstand beam intensities in excess of 100 mA. Neutron production data have been accumulated for fifty-eight 23-cm and five 50-cm targets. From these data, using a non-linear least-squares fitting procedure, target performance parameters have been obtained which permit a quantitative comparison of individual targets. Average parameters are obtained for the 23- and 50-cm targets

  16. Neutrons production during the interaction of monoenergetic electrons with a thin tungsten target

    International Nuclear Information System (INIS)

    Soto B, T. G.; Medina C, D.; Baltazar R, A.; Vega C, H. R.

    2016-10-01

    When a linear accelerator for radiotherapy operates with acceleration voltages higher than 8 MV, neutrons are produced, as secondary radiation which deposits an undesirable and undesirable dose in the patient. Depending on the type of tumor, its location in the body and the characteristics of the patient, the cancer treatment with a Linac is performed with photon or electron beams, which produce neutrons through reactions (γ, n) and (e, e n) respectively. Because the effective section for the neutrons production by reactions (γ, n) is approximately two orders of magnitude larger than the effective section of the reactions (e, e n), studies on the effects of this secondary radiation have focused on photo neutrons. en a Linac operates with electron beams, the beam coming out of the magnetic deflector is impinged on the dispersion lamella in order to cause quasi-elastic interactions and to expand the spatial distribution of the electrons; the objective of this work is to determine the characteristics of the photons and neutrons that occur when a mono-energetic electron beam of 2 mm in diameter (pencil beam) is made to impinge on a tungsten lamella of 1 cm in diameter and 0.5 mm of thickness. The study was done using Monte Carlo methods with code MCNP6 for electron beams of 8, 10, 12, 15 and 18 MeV. The spectra of photons and neutrons were estimated in 4 point detectors placed at different equidistant points from the center of the lamella. (Author)

  17. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    Science.gov (United States)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the

  18. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    Science.gov (United States)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  19. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    International Nuclear Information System (INIS)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested

  20. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested.

  1. Reaction cross sections for 8He and 14B on proton target for the separation of proton and neutron density distributions

    International Nuclear Information System (INIS)

    Tanaka, Masaomi; Fukuda, Mitsunori; Nishimura, Daiki

    2015-01-01

    We utilized the proton-neutron asymmetry of nucleon–nucleon total cross sections in the intermediate energy region (σ pn ≠σ pp(nn) ) to obtain the information of proton and neutron distributions respectively. We have measured reaction cross sections (σ R ) for 14 B and 8 He on proton targets as isospin asymmetric targets in addition to symmetric ones. Proton and neutron density distributions were derived respectively through the χ 2 -fitting procedure with the modified Glauber calculation. The result suggests a necessity for 14 B of a long tail, and also a necessity for 8 He of a neutron tail. Root-mean-square proton, neutron and matter radii for 14 B and 8 He are also derived. Each radius is consistent with some of the other experimental values and also with some of the several theoretical values. (author)

  2. Preliminary results on neutron production from a Pb/U target irradiated by deuteron beam at 1.25 GeV/amu

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Jokic, S.; Zamani, M.; Krivopustov, M.; Sosnin, A.; Stoulos, S.

    2008-01-01

    A spallation neutron source consisted of a cylindrical Pb target and surrounded by uranium blanket was irradiated by deuteron beam 1.25 GeV/amu provided from the Nuclotron accelerator at High Energy Laboratory, JINR, Dubna. For radiation protection purpose a polyethylene shielding was placed around the spallation neutron source. Neutron distributions along the surface of the U-blanket were measured by using solid state nuclear track detectors (SSNTDs) as particle and fission detectors. The neutron distributions appear to be similar to those obtained by proton irradiations. Applying a fitting procedure to the experimental data the inelastic cross section of deuteron in Pb was estimated. The escaping neutron distribution from the polyethylene shielding and parallel to the target was also measured and presented to be two orders of magnitude less than that over the U-blanket surface

  3. Experimental investigation of neutron generation in thick target blocks of Pb, Hg and W with 0.4 to 2.5 GeV proton beams

    International Nuclear Information System (INIS)

    Jahnke, U.; Enke, M.; Filges, D.

    2002-01-01

    Detailed experimental neutron data relevant to the design of the target station of neutron spallation sources have been gathered by the NESSI-collaboration at the COSY accelerator in FZ Juelich. Numerous neutron multiplicity distributions and reaction probabilities have been measured for 0.4 to 2.5 GeV protons bombarding highly segmented target blocks from Pb, Hg and W of up to 35 cm in length and 15 cm in diameter with the intention to provide a comprehensive data base for the improvement and validation of existing reaction simulation codes. (author)

  4. Update of neutron dose yields as a function of energy for protons and deuterons incident on beryllium targets

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Awschalom, M.; Rosenberg, I.

    1982-11-01

    Neutron absorbed dose yields (absorbed dose rates per unit incident current on targets at a given SAD or SSD) increase with incident charged particle energy for both protons and deuterons. Analyses of neutron dose yield versus incident particle energy have been performed for both deuterons and protons. It is the purpose of this report to update those analyses by pooling all of the more recent published results and to reanalyze the trend of yield, Y, versus incident energy, E, which in the past has been described by an expression of the form Y = aE/sup b/, where a and b are empirical constants. From the reanalyzed trend it is concluded that for a given size cyclotron (E/sub p/ = 2E/sub d/), the dose yields using protons are higher than those using deuterons up to a proton energy E/sub p/ of 64 MeV

  5. Production, separation and target preparation of {sup 171}Tm and {sup 147}Pm for neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heinitz, Stephan; Maugeri, Emilio A.; Schumann, Dorothea; Dressler, Rugard; Kivel, Niko [Paul Scherrer Institute, Villigen (Switzerland); Guerrero, Carlos [Sevilla Univ. (Spain); Koester, Ullrich [Institut Laue-Langevin, Grenoble (France); Tessler, Moshe; Paul, Michael [Hebrew Univ. of Jerusalem (Israel); Halfon, Shlomi [Soreq Nuclear Research Center, Yavne (Israel); Collaboration: nTOF Collaboration

    2017-07-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg {sup 171}Tm from 240 mg {sup 170}Er{sub 2}O{sub 3} and 72 μg {sup 147}Pm from 100 mg {sup 146}Nd{sub 2}O{sub 3} irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at nTOF CERN and the SARAF-LiLiT facility.

  6. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  7. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    International Nuclear Information System (INIS)

    Escher, J.E.; Burke, J.T.; Dietrich, F.S.; Lesher, S.R.; Scielzo, N.D.; Thompson, I.J.; Younes, W.

    2009-01-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,γ) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  8. Monte Carlo simulation for neutron yield produced by bombarding thick targets with high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Yoon, Moo Hyun; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2013-04-15

    One of radiation shielding issues at heavy-ion accelerator facilities is to estimate neutron production by primary heavy ions. A few Monte Carlo transport codes such as FLUKA and PHITS can work with primary heavy ions. Recently IBS/RISP((Rare Isotope Science Project) started to design a high-energy, high-power rare isotope accelerator complex for nuclear physics, medical and material science and applications. There is a lack of experimental and simulated data about the interaction of major beam, {sup 238}U with materials. For the shielding design of the end of first accelerating section section, we calculate a differential neutron yield using the FLUKA code for the interaction of 18.5 MeV/u uranium ion beam with thin carbon stripper of 1.3 μm). The benchmarking studies were also done to prove the yield calculation for 400 MeV/n {sup 131}Xe and other heavy ions. In this study, the benchmarking for Xe-C, Xe-Cu, Xe-Al, Xe-Pb and U-C, other interactions were performed using the FLUKA code. All of results show that the FLUKA can evaluate the heavy ion induced reaction with good uncertainty. For the evaluation of neutron source term, the calculated neutron yields are shown in Fig. 2. The energy of Uranium ion beam is only 18.5 MeV/u, but the energy of produced secondary neutrons was extended over 100 MeV. So the neutron shielding and the damage by those neutrons is expected to be serious. Because of thin stripper, the neutron intensity at forward direction was high. But the the intensity of produced secondary photons was relatively low and mostly the angular property was isotropic. For the detail shielding design of stripper section of RISP rare istope accelerator, the benchmarking study and preliminary evaluation of neutron source term from uranium beam have been carried out using the FLUKA code. This study is also compared with the evaluation results using the PHITS code performed coincidently. Both studies shows that two monte carlo codes can give a good results for

  9. Directionally positionable neutron beam

    International Nuclear Information System (INIS)

    Dance, W.E.; Bumgardner, H.M.

    1981-01-01

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positioned on the axis of rotation of the enclosed housing but not rotating with the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center. (author)

  10. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source arrangement is provided in which a sealed cylindrical chamber encloses a rotatable rotor member carrying a plurality of elongated target strips of material which emits neutrons when bombarded with alpha particles emitted by the plurality of source material strips. The rotor may be locked in a so-called ON position by an electromagnetic clutch drive mechanism controllable from the earth's surface so as to permit the making of various types of logs utilizing a continuously emitting neutron source. (Patent Office Record)

  11. IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets

    Science.gov (United States)

    Capote, R.; Trkov, A.; Sin, M.; Pigni, M. T.; Pronyaev, V. G.; Balibrea, J.; Bernard, D.; Cano-Ott, D.; Danon, Y.; Daskalakis, A.; Goričanec, T.; Herman, M. W.; Kiedrowski, B.; Kopecky, S.; Mendoza, E.; Neudecker, D.; Leal, L.; Noguere, G.; Schillebeeckx, P.; Sirakov, I.; Soukhovitskii, E. S.; Stetcu, I.; Talou, P.

    2018-02-01

    Evaluations of nuclear reaction data for the major uranium isotopes 238U and 235U were performed within the scope of the CIELO Project on the initiative of the OECD/NEA Data Bank under Working Party on Evaluation Co-operation (WPEC) Subgroup 40 coordinated by the IAEA Nuclear Data Section. Both the mean values and covariances are evaluated from 10-5 eV up to 30 MeV. The resonance parameters of 238U and 235U were re-evaluated with the addition of newly available data to the existing experimental database. The evaluations in the fast neutron range are based on nuclear model calculations with the code EMPIRE-3.2 Malta above the resonance range up to 30 MeV. 235U(n,f), 238U(n,f), and 238U(n,γ) cross sections and 235U(nth,f) prompt fission neutron spectrum (PFNS) were evaluated within the Neutron Standards project and are representative of the experimental state-of-the-art measurements. The Standards cross sections were matched in model calculations as closely as possible to guarantee a good predictive power for cross sections of competing neutron scattering channels. 235U(n,γ) cross section includes fluctuations observed in recent experiments. 235U(n,f) PFNS for incident neutron energies from 500 keV to 20 MeV were measured at Los Alamos Chi-Nu facility and re-evaluated using all available experimental data. While respecting the measured differential data, several compensating errors in previous evaluations were identified and removed so that the performance in integral benchmarks was restored or improved. Covariance matrices for 235U and 238U cross sections, angular distributions, spectra and neutron multiplicities were evaluated using the GANDR system that combines experimental data with model uncertainties. Unrecognized systematic uncertainties were considered in the uncertainty quantification for fission and capture cross sections above the thermal range, and for neutron multiplicities. Evaluated files were extensively benchmarked to ensure good performance in

  12. Spallation Neutron Emission Spectra in Some Amphoter Target Nuclei by Proton Beam Up to 140 MeV Energy

    International Nuclear Information System (INIS)

    Yildirim, G.

    2008-01-01

    In the present study, the (p,xn) reaction neutron-emission spectra for some amphoter target nuclei as 27 A l, 64 Z n, 120 S n, and 208 P b were investigated up to 140 MeV incident proton energy. The pre-equilibrium calculations were calculated by using the hybrid model, the geometry dependent hybrid model, the full exciton model and the cascade exciton model. The reaction equilibrium component was calculated with a traditional compound nucleus model developed by Weisskopf Ewing. Calculation results have been discussed and compared with the available experimental data in literature

  13. Measurements of Neutron Spectra Produced from a Thick Iron Target Bombarded with 1.5-GeV Protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Shigyo, Nobuhiro; Iga, Kiminori; Iwamoto, Yosuke; Kitsuki, Hirohiko; Ishibashi, Kenji; Maehata, Keisuke; Arima, Hidehiko; Nakamoto, Tatsushi; Numajiri, Masaharu

    2005-01-01

    For validation of calculation codes that are employed in the design of accelerator facilities, spectra of neutrons produced from a thick iron target bombarded with 1.5-GeV protons were measured. The calculated results with NMTC/JAM were compared with the present experimental results. It is found that the NMTC/JAM generally shows good agreement with experiment. Furthermore, the calculation gives good agreement with the experiment for the energy region 20 to 80 MeV for iron, whereas the NMTC/JAM gives 50% of the experimental data for the heavy-nuclides such as lead and tungsten

  14. DETECTORS AND EXPERIMENTAL METHODS: Studies of a scintillator-bar detector for a neutron wall at an external target facility

    Science.gov (United States)

    Yu, Yu-Hong; Xu, Hua-Gen; Xu, Hu-Shan; Zhan, Wen-Long; Sun, Zhi-Yu; Guo, Zhong-Yan; Hu, Zheng-Guo; Wang, Jian-Song; Chen, Jun-Ling; Zheng, Chuan

    2009-07-01

    To achieve a better time resolution of a scintillator-bar detector for a neutron wall at the external target facility of HIRFL-CSR, we have carried out a detailed study of the photomultiplier, the wrapping material and the coupling media. The timing properties of a scintillator-bar detector have been studied in detail with cosmic rays using a high and low level signal coincidence. A time resolution of 80 ps has been achieved in the center of the scintillator-bar detector.

  15. Spatial distribution of neutrons in paraffin moderator surrounding a lead target irradiated with protons at intermediate energies

    International Nuclear Information System (INIS)

    Adam, J.; Barabanov, M.Yu.; Bradnova, V.

    2002-01-01

    The distribution of neutrons emitted during the irradiation with 0.65, 1.0 and 1.5 GeV protons from a lead target (O / = 8 cm, l = 20 cm) and moderated by a surrounding paraffin moderator of 6 cm thick was studied with a radiochemical sensor along the beam axis on top of the moderator. Small 139 La-sensors of approximately 1 g were used to measure essentially the thermal neutron fluence at different depths near the surface: i.e., on top of the moderator, in 10 mm deep holes and in 20 mm deep holes. The reaction 139 La(n, γ) 140 La (τ 1/2 = 40.27 h) was studied using standard procedures of gamma spectroscopy and data analysis. The neutron induced activity of 140 La increases strongly with the depth of the hole inside the moderator, its activity distribution along the beam direction on top of the moderator has its maximum about 10 cm downstream the entrance of the protons into the lead and the induced activity increases about linearity with the proton energy. Some comparisons of the experimental results with model estimations based on the LAHET code are also presented. The experiments were carried out using the Nuclotron accelerator of the Laboratory of High Energies (JINR)

  16. Spatial distribution of neutrons in paraffin moderator surrounding a lead target irradiated with protons at intermediate energies

    CERN Document Server

    Adam, J; Bradnova, V

    2002-01-01

    The distribution of neutrons emitted during the irradiation with 0.65, 1.0 and 1.5 GeV protons from a lead target (O / = 8 cm, l = 20 cm) and moderated by a surrounding paraffin moderator of 6 cm thick was studied with a radiochemical sensor along the beam axis on top of the moderator. Small sup 1 sup 3 sup 9 La-sensors of approximately 1 g were used to measure essentially the thermal neutron fluence at different depths near the surface: i.e., on top of the moderator, in 10 mm deep holes and in 20 mm deep holes. The reaction sup 1 sup 3 sup 9 La(n, gamma) sup 1 sup 4 sup 0 La (tau sub 1 sub / sub 2 = 40.27 h) was studied using standard procedures of gamma spectroscopy and data analysis. The neutron induced activity of sup 1 sup 4 sup 0 La increases strongly with the depth of the hole inside the moderator, its activity distribution along the beam direction on top of the moderator has its maximum about 10 cm downstream the entrance of the protons into the lead and the induced activity increases about linearity ...

  17. About the possibility of use of different types of targets as a neutron source for subcritical nuclear reactor driven by particle beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, E.F.; Dorokhovich, S.L.; Chusov, I.A. [Obninsk Institute of Nuclear Power Engineering (Russian Federation)

    1995-10-01

    The schemes of jet gas and liquid targets as well as the gastargets with a solid phase dispersion are introduced to use to receive the neutrons admitted to a subcritical reactor core. The possible variants of target position in the reactor are considered, target characteristics are calculated. The authors pay a great attention to the estimation of radioactive products yield receiving due to the interaction of the beam with the target.

  18. Meeting the challenge of homogenous boron targeting of heterogeneous tumors for effective boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Trivillin, Veronica A.; Itoiz, Maria E.; Rebagliati, J. Raul; Batistoni, Daniel; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.; Gonzalez, Beatriz N.

    2006-01-01

    BNCT is a tumor cell targeted radiation therapy. Inadequately boron targeted tumor populations jeopardize tumor control. Meeting the to date unresolved challenge of homogeneous targeting of heterogeneous tumors with effective boron carriers would contribute to therapeutic efficacy. The aim of the present study was to evaluate the degree of variation in boron content delivered by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of (BPA+GB-10) in different portions of tumor, precancerous tissue around tumor and normal pouch tissue in the hamster cheek pouch oral cancer model. Boron content was evaluated by ICP-AES. The degree of homogeneity in boron targeting was assessed in terms of the coefficient of variation ([S.D./Mean]x100) of boron values. Statistical analysis of the results was performed by one-way ANOVA and the least significant difference test. GB-10 and GB-10 plus BPA achieved respectively a statistically significant 1.8-fold and 3.3-fold increase in targeting homogeneity over BPA. The combined boron compound administration protocol contributes to homogeneous targeting of heterogeneous tumors and would increase therapeutic efficacy of BNCT by exposing all tumor populations to neutron capture reactions in boron. (author)

  19. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  20. Method and apparatus for generating neutrons

    International Nuclear Information System (INIS)

    Cranberg, L.

    1978-01-01

    An apparatus and method for generating high-energy neutrons are disclosed. Neutron emissive target material is deposited on one or more surfaces on a rotatable, hollow, toroidal target support. The surfaces are bombarded by beams of ions of generally rectangular cross section, so that when the bombarded surfaces are viewed end-wise, a compact, generally square source of neutrons is provided, such as is required for collimation. A combination of molecular and atomic ions emitted from at least one conventional accelerator are passed through a magnetic field for the purpose of separating the ions into one homogeneous group of atomic and one homogeneous group of molecular ions before the ions are allowed to impinge on the target surfaces. One accelerator directs ions to each target surface as the target rotates. Coolant is directed through a cavity within the toroidal support for the purpose of cooling the target support and target material. A refrigerated surface is placed in close proximity to the target surface to condense vapors which might prove harmful to the target and for thermally cooling said target

  1. Measurements of spallation neutrons from a thick lead target bombarded with 0.5 and 1.5 GeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Takada, Hiroshi; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-03-01

    Double differential neutron spectra from a thick lead target bombarded with 0.5 and 1.5 GeV protons have been measured with the time-of-flight technique. In order to obtain the neutron spectra without the effect of the flight time fluctuation by neutron scattering in the target, an unfolding technique has also been employed in the low energy region below 3 MeV. The measured data have been compared with the calculated results of NMTC/JAERI-MCNP-4A code system. It has been found that the code system gives about 50 % lower neutron yield than the experimental ones in the energy region between 20 and 80 MeV for both incident energies. The disagreements, however, have been improved well by taking account of the inmedium nucleon-nucleon scattering cross sections in the NMTC/JAERI code. (author)

  2. 90 deg.Neutron emission from high energy protons and lead ions on a thin lead target

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: sup 2 sup 0 sup 8 Pb sup 8 sup 2 sup + lead ions at 40 GeV/c per nucleon and 158 GeV/c per nucleon, and 40 GeV/c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90 deg.with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that--for such high energy heavy ion beams--a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0...

  3. EURISOL-DS Multi-MW Target Comparative Neutronic Performance of the Baseline Configuration vs. the Hg-Jet Option

    CERN Document Server

    Herrera-Martínez, A

    2006-01-01

    This technical report summarises the comparative study between several design options for the Multi-MW target station performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS) [1]. Previous analyses were carried out, using the Monte Carlo code FLUKA [2], to determine optimal values for relevant parameters in the target design [3] and to analyse a preliminary Multi-MW target assembly configuration [4]. The second report showed that the aimed fission rates, i.e. ~1015 fissions/s, could be achieved with such a configuration. Nevertheless, a preliminary study of the target assembly integration [5] suggested reducing some of the dimensions. Moreover, the yields of specific isotopes have yet to be assessed and compared to other target configurations. This note presents a detailed comparison of the baseline configuration and the Hg-jet option, in terms of primary and neutron distribution, power densities and fission product yields. A scaled-down versi...

  4. Thermal-hydraulic performance of a water-cooled tungsten-rod target for a spallation neutron source

    International Nuclear Information System (INIS)

    Poston, D.I.

    1997-08-01

    A thermal-hydraulic (T-H) analysis is conducted to determine the feasibility and limitations of a water-cooled tungsten-rod target at powers of 1 MW and above. The target evaluated has a 10-cm x 10-cm cross section perpendicular to the beam axis, which is typical of an experimental spallation neutron source - both for a short-pulse spallation source and long-pulse spallation source. This report describes the T-H model and assumptions that are used to evaluate the target. A 1-MW baseline target is examined, and the results indicate that this target should easily handle the T-H requirements. The possibility of operating at powers >1 MW is also examined. The T-H design is limited by the condition that the coolant does not boil (actual limits are on surface subcooling and wall heat flux); material temperature limits are not approached. Three possible methods of enhancing the target power capability are presented: reducing peak power density, altering pin dimensions, and improving coolant conditions (pressure and temperature). Based on simple calculations, it appears that this target concept should have little trouble reaching the 2-MW range (from a purely T-H standpoint), and possibly much higher powers. However, one must keep in mind that these conclusions are based solely on thermal-hydraulics. It is possible, and perhaps likely, that target performance could be limited by structural issues at higher powers, particularly for a short-pulse spallation source because of thermal shock issues

  5. Study of Ne and Kr production in Mg, Al, Rb, Sr and Y targets by 0-180 MeV neutrons. Cosmochemical application

    International Nuclear Information System (INIS)

    Bertin, P.

    1989-07-01

    High sensitivity mass spectrometry technique has been used to measure production of noble gases Ne and Kr induced by 0-180 MeV neutrons in Mg, Al, Rb, Sr and Y targets. This experiment allowed us an evaluation of the implied excitation functions, in an energy range where no experimental data were available. These results have exhibited the importance of secondary neutrons induced in the interaction of cosmic rays with meteorites and moon surface [fr

  6. The thick-target 9Be(d,n) neutron spectra for deuteron energies between 2.6 and 7.0-MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1991-11-01

    The measurement of the zero deg. neutron spectra and yields from deuterons incident on thick beryllium metal targets is described. 235 U and 238 U fission ion chambers were used as neutron detectors to span the neutron energy range above 0.05-MeV with a time resolution of ≤ 3 nanosec. Measurements were made for incident deuteron energies from 2.6 to 7.0-MeV, at 0.4-MeV intervals, using time-of-flight techniques with flight paths of 2.7 and 6.8 meters. The results are presented in graphical form and in tables

  7. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  8. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  9. Improved Dose Targeting for a Clinical Epithermal Neutron Capture Beam Using Optional 6Li Filtration

    International Nuclear Information System (INIS)

    Binns, Peter J.; Riley, Kent J.; Ostrovsky, Yakov; Gao Wei; Albritton, J. Raymond; Kiger, W.S.; Harling, Otto K.

    2007-01-01

    Purpose: The aim of this study was to construct a 6 Li filter and to improve penetration of thermal neutrons produced by the fission converter-based epithermal neutron beam (FCB) for brain irradiation during boron neutron capture therapy (BNCT). Methods and Materials: Design of the 6 Li filter was evaluated using Monte Carlo simulations of the existing beam line and radiation transport through an ellipsoidal water phantom. Changes in beam performance were determined using three figures of merit: (1) advantage depth (AD), the depth at which the total biologically weighted dose to tumor equals the maximum weighted dose to normal tissue; (2) advantage ratio (AR), the ratio of the integral tumor dose to that of normal tissue averaged from the surface to the AD; and (3) advantage depth dose rate (ADDR), the therapeutic dose rate at the AD. Dosimetry performed with the new filter installed provided calibration data for treatment planning. Past treatment plans were recalculated to illustrate the clinical potential of the filter. Results: The 8-mm-thick Li filter is more effective for smaller field sizes, increasing the AD from 9.3 to 9.9 cm, leaving the AR unchanged at 5.7 but decreasing the ADDR from 114 to 55 cGy min -1 for the 12 cm diameter aperture. Using the filter increases the minimum deliverable dose to deep seated tumors by up to 9% for the same maximum dose to normal tissue. Conclusions: Optional 6 Li filtration provides an incremental improvement in clinical beam performance of the FCB that could help to establish a therapeutic window in the future treatment of deep-seated tumors

  10. Stress calculations for RTNS-iI 50-cm targets

    International Nuclear Information System (INIS)

    Schumacher, B.J.; House, P.A.

    1981-04-01

    Structural calculations made during design of a 50-cm target for the Rotating Target Neutron Source (RTNS-II) are detailed. The limited ability of the current 23-cm diameter target to dissipate the additional beam power required for a yield increase from 2 x 10 13 to 4 x 10 13 neutrons/second has resulted in the need for a larger target. The stresses of several design configurations for a 50-cm target were calculated. The stress contours that would occur in several different target designs with and without various types of structural reinforcement that reduce stress and deflection are presented

  11. New experimental possibility to search for the ratio of a possible T-violating amplitude to the weak-interaction amplitude in polarized neutron transmission through a polarized nuclear target

    CERN Document Server

    Lukashevich, V V; Dallman, David

    2011-01-01

    This paper considers a spin-dependent neutron interaction with optical potentials (fields) from the strong interaction, the weak interaction, and an assumed T-violating interaction. The vector sum of these fields and their interferences determines an effective field of the target with an angular position in space due to polar and azimuthal angles. The phase of the azimuthal component is found to be the sum of two angles. The tangent of the first angle is equal to the ratio of the T-violating forward-scattering amplitude D to the weak-interaction amplitude C. The quantity is of interest. The tangent of the second angle depends on the spin rotation in the residual pseudomagnetic field of the target, and it can be treated as a background effect. This paper shows that the second angle has different signs in measurements with polarized and unpolarized neutrons; thus, two measurements allow it to be compensated for. In addition, the use of the Ramsey method of separated oscillatory fields for measurement of the neu...

  12. A polarized solid {sup 3}He target for neutron transmission experiments

    Energy Technology Data Exchange (ETDEWEB)

    Keith, C.D. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Gould, C.R. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Haase, D.G. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Huffman, P.R. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Roberson, N.R. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Wilburn, W.S. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    1995-04-01

    We describe the construction and operation of a solid {sup 3}He polarized nuclear target which we have used for measurements of the spin dependence of the n-{sup 3}He interaction at MeV energies. The target, which contains 0.4 mole of {sup 3}He was polarized to 38% at 12 mK in a field of 7 T. The target is suitable for nuclear physics measurements which are insensitive to the large magnetic field and produce beam heating of tenths of microwatts.We discuss refinements and paths to improved solid {sup 3}He targets at higher polarizations and lower fields. ((orig.)).

  13. Three-dimensional rotational angiography fused with multimodal imaging modalities for targeted endomyocardial injections in the ischaemic heart.

    Science.gov (United States)

    Dauwe, Dieter Frans; Nuyens, Dieter; De Buck, Stijn; Claus, Piet; Gheysens, Olivier; Koole, Michel; Coudyzer, Walter; Vanden Driessche, Nina; Janssens, Laurens; Ector, Joris; Dymarkowski, Steven; Bogaert, Jan; Heidbuchel, Hein; Janssens, Stefan

    2014-08-01

    Biological therapies for ischaemic heart disease require efficient, safe, and affordable intramyocardial delivery. Integration of multiple imaging modalities within the fluoroscopy framework can provide valuable information to guide these procedures. We compared an anatomo-electric method (LARCA) with a non-fluoroscopic electromechanical mapping system (NOGA(®)). LARCA integrates selective three-dimensional-rotational angiograms with biplane fluoroscopy. To identify the infarct region, we studied LARCA-fusion with pre-procedural magnetic resonance imaging (MRI), dedicated CT, or (18)F-FDG-PET/CT. We induced myocardial infarction in 20 pigs by 90-min LAD occlusion. Six weeks later, we compared peri-infarct delivery accuracy of coloured fluospheres using sequential NOGA(®)- and LARCA-MRI-guided vs. LARCA-CT- and LARCA-(18)F-FDG-PET/CT-guided intramyocardial injections. MRI after 6 weeks revealed significant left ventricular (LV) functional impairment and remodelling (LVEF 31 ± 3%, LVEDV 178 ± 15 mL, infarct size 17 ± 2% LV mass). During NOGA(®)-procedures, three of five animals required DC-shock for major ventricular arrhythmias vs. one of ten during LARCA-procedures. Online procedure time was shorter for LARCA than NOGA(®) (77 ± 6 vs. 130 ± 3 min, P integration allowed closer approximation of the targeted border zone than LARCA-PET (4.0 ± 0.5 mm vs. 6.2 ± 0.6 mm, P technology for cardiac biological therapies. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  14. Measurements of neutron spectra produced from a thick tungsten target bombarded with 0.5- and 1.5-GeV protons

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Takada, Hiroshi

    2002-01-01

    For validation of calculation codes that are employed in the design of pulse spallation neutron source and accelerator driven system, spectrum of neutrons produced from a thick target plays an important role. However, appropriate experimental data were scarce for the incident energies higher than 0.8 GeV. In this study, the spectrum from a thick tungsten target was measured. The experiment was carried out at the π2 beam line of the 12-GeV proton synchrotron at KEK. The tungsten target was bombarded by the 0.5- and 1.5-GeV secondary protons. Spectrum of neutrons was measured by the time-of-flight technique using organic scintillators of NE213. The calculated result with NMTC/JAM and MCNP-4A is compared with the measured data. It is found that the NMTC/JAM generally gives a good agreement with experiment. The NMTC/JAM, however, gives 50% lower neutron flux in the energy region 20∼80 MeV, which is consistent with the results in previous comparison of lead target. For the neutrons between 20 and 80 MeV, the calculation using with the in-medium nucleon-nucleon cross sections reproduced the experiment fairly well. (author)

  15. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1996-08-01

    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  16. Conceptual design considerations and neutronics of lithium fall laser fusion target chambers

    International Nuclear Information System (INIS)

    Meier, W.R.; Thomson, W.B.

    1978-01-01

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage

  17. Conceptual design considerations and neutronics of lithium fall laser target chambers

    International Nuclear Information System (INIS)

    Meier, W.R.; Thomson, W.B.

    1978-01-01

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage

  18. Measurements of attenuation lengths through concrete and iron for neutrons produced by 800-MeV proton on tantalum target at ISIS

    CERN Document Server

    Nunomiya, T; Wright, P; Nakamura, T; Kim, E; Kurosawa, T; Taniguchi, S; Sasaki, M; Iwase, H; Uwamino, Y; Shibata, T; Ito, S; Perry, D R

    2002-01-01

    A deep penetration experiment through a thick bulk shield was performed at an intense spallation neutron source facility, ISIS, of the Rutherford Appleton Laboratory (RAL), United Kingdom. ISIS is a 800 MeV-200 mu A proton accelerator facility. Neutrons are produced from a tantalum target, and are shielded with approximately 3-m thick steel and 1-m thick ordinary concrete. On top of the shield, we measured the neutron flux attenuation through concrete and iron shields, which were additionally placed up to 120-cm and 60-cm thickness, respectively, using activation detectors of graphite and bismuth. The attenuation lengths of concrete and iron for high-energy neutrons above 20 MeV were obtained from the sup 1 sup 2 C(n, 2n) sup 1 sup 1 C reaction of graphite.

  19. Neutron data evaluation of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M.; Porodzinskij, Y.V.; Hasegawa, Akira; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    Cross sections for neutron-induced reactions on {sup 238}U are calculated by using the Hauser-Feshbach-Moldauer theory, the coupled channel model and the double-humped fission barrier model. The direct excitation of ground state band levels is calculated with a rigid-rotator model. The direct excitation of vibrational octupole and K = 2{sup +} quadrupole bands is included using a soft (deformable) rotator model. The competition of inelastic scattering to fission reaction is shown to be sensitive to the target nucleus level density at excitations above the pairing gap. As for fission, (n,2n), (n,3n), and (n,4n) reactions, secondary neutron spectra data are consistently reproduced. Pre-equilibrium emission of first neutron is included. Shell effects in the level densities are shown to be important for estimation of energy dependence of non-emissive fission cross section. (author). 105 refs.

  20. Comparison of (alpha, n) thick-target neutron yields and spectra from ORIGEN-S and SOURCES

    International Nuclear Information System (INIS)

    Brown, T.H.; Wilson, W.B.; Perry, R.T.; Charlton, W.S.

    1998-01-01

    Both ORIGEN-S and SOURCES generate thick-target neutron yields and energy spectra from (α,n) reactions in homogeneous materials. SOURCES calculates yield and spectra for any material containing α-emitting and (α,n) target elements by simulating reaction physics, using α-emission energy spectra, elemental stopping cross sections, (α,n) cross sections for target nuclei, and branching fractions to produce-nuclide energy levels. This methodology results in accurate yield and spectra. ORIGEN-S has two options for calculating yields and spectra. The UO 2 option (default) estimates yields and spectra assuming the input α-emitters to be infinitely dilute in UO 2 . The borosilicate-glass option estimates yields from the total input material composition and generates spectra purportedly representative of spectra generated by 238 Pu, 241 Am, 242 Cm, and 244 Cm infinitely dilute in borosilicate glass, even if none of these four α-emitters are present in the input material composition. Because yields from the borosilicate-glass option in ORIGEN-S are based on entire input material composition and are reasonably accurate, the same is often assumed to be true for spectra. The input/output functionality of the borosilicate-glass option, along with ambiguity in ORIGEN-S documentation, gives the incorrect impression that spectra representative of input compositions are generated. This impression is reinforced by wide usage of the SCALE code system and its ORIGEN-S module and their sponsorship by the US Nuclear Regulatory Commission

  1. A method for measuring the corrosion rate of materials in spallation neutron source target/blanket cooling loops

    International Nuclear Information System (INIS)

    Lillard, R.S.; Butt, D.P.

    1999-01-01

    This paper summarizes the ongoing evaluation of the susceptibility of materials in accelerator target/blanket cooling loops to corrosion. To simulate the exposure environment in a target/blanket cooling loop, samples were irradiated by an 800 MeV proton beam at the A6 Target Station of the Los Alamos Neutron Science Center (LANSCE). To accomplish this, a cooling water loop capable of exposing corrosion samples to an 800 MeV proton beam at currents upwards of 1 mA was constructed. This loop allowed control and evaluation hydrogen water chemistry, water conductivity, and solution pH. Specially designed ceramic sealed samples were used to measure the real-time corrosion rates of materials placed directly in the proton beam using electrochemical impedance spectroscopy (EIS). EIS was also used to measure real-time corrosion rates of samples that were out of the proton beam and downstream from the in-beam samples. These out-of-beam probes primarily examined the effects of long lived water radiolysis products from proton irradiation on corrosion rates. An overview of the LANSCE corrosion loop, the corrosion probes, and data from an in-beam alloy 718 probe are presented

  2. Investigation of thick-target neutron emission from Be-9(d,n)B-10 at E/sub d/ = 7 MeV for angles other than zero degrees

    International Nuclear Information System (INIS)

    Smith, D.L.; Meadows, J.W.; Guenther, P.T.

    1985-01-01

    Double-differential measurements of neutron emission from a thick beryllium target bombarded with 7-MeV deuterons are made for neutrons above 800 keV, over the angular range of 0 to 155 0 . The angular dependence of the neutron yield is found to be quite anisotropic. The importance of this anisotropy in integral neutron-induced reaction cross-section investigations is illustrated. 7 refs.,

  3. DT fusion neutron irradiation of BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1976-01-01

    The following samples were irradiated with the LLL rotating target neutron source: 19-core Nb 3 Sn multifilament wires, Nb 3 Sn single core, V 3 Ga single core, NbTi Supercon 402, and NbTi cupronickel jacketed. No test results are given

  4. Neutron production in bombardments of thin and thick W, Hg, Pb targets by 0.4, 0.8, 1.2, 1.8 and 2.5 GeV protons

    International Nuclear Information System (INIS)

    Letrourneau, A.; Galin, J.; Goldenbaum, F.; Lott, B.; Peghaire, A.; Enke, M.; Hilscher, D.; Jahnke, U.; Nuenighoff, K.; Filges, D.; Neef, R.D.; Paul, N.; Schaal, H.; Sterzenbach, G.; Tietze, A.

    2000-05-01

    Neutron experimental data relevant to the design of the target of neutron spallation sources are presented and discussed. The data include the reaction cross sections for W, Hg and Pb investigated with 0.4, 0.8, 1.2, 1.8 and 2.5 GeV proton beams as well as the neutron production, neutron multiplicity distribution, as determined event per event using a high efficiency detector. The production as a function of target material is investigated for both thin (with a single reaction) and thick targets (multiple reactions). Comparisons are made with the predictions of a high energy transport code. (authors)

  5. Neutron production from 158 GeV/c per nucleon lead ions on thin copper and lead targets in the angular range 30-135 deg

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Gini, L; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from 5, 10 and 20 mm thick lead and 10 and 20 mm thick copper targets bombarded by a lead ion beam with momentum of 158 GeV/c per nucleon were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident ion on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg. with respect to beam direction. Monte Carlo simulations with the FLUKA code were performed to establish a guess spectrum for the unfolding of the experimental data. The results have shown that, lacking Monte Carlo radiation transport codes dealing with ions with masses larger than 1 amu, a reasonable prediction can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number to the power of 0.85-0.95 for a lead target and 0.88-1.03 for a copper target.

  6. Determination of intensity and energy spectrum of neutrons by bombardment of thallium-203 thick target and its copper substrate with 28.5 MeV protons

    International Nuclear Information System (INIS)

    Hajiloo, N.; Raisali, Gh.; Hamidi, S.; Aslani, Gh.

    2007-01-01

    In this research we have determined neutrons spectrum and the intensity that produced from thallium target bombardment. We have applied SRIM and ALICE computer codes to thallium target and its copper substrate for 145 μA of 28.5 MeV incident proton beam from cyclotron Cyclone30. Because of the energy degradation of protons while passing through the thallium target and its copper substrate, the average energy of protons in different depths has been calculated by using SRIM computer code. Then, by applying ALICE computer code for each sub-layer, the neutron production cross sections and their energy spectrum have been calculated to determine the total neutron intensity and spectrum. Using the calculated neutron intensity of 1.22x10 13 n/s as the source, the equivalent dose rate at the distance 6 meters from the target has been calculated by MCNP computer code and the result has been compared with the measured value. The Pb 201 activity has also been calculated as 13.5 Curies. The measured Pb 201 activity by Curie meter CAPINTEC CRC-712 is 13.1 Ci which is in reasonable agreement with the calculated value, bearing in mind the uncertainties in the proposed models and the measurements

  7. Measurement of neutron activation cross sections in the energy range between 2 and 7 MeV by using a Ti-deuteron target and a deuteron gas target

    Energy Technology Data Exchange (ETDEWEB)

    Senga, T.; Sakane, H.; Shibata, M.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Kasugai, Yoshimi; Ikeda, Yujiro; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    Using a Ti-deuteron target in the neutron energy range between 2 and 4.5 MeV and a deuteron gas target between 4.5 and 7 MeV, mono-energetic neutrons could be generated enough for activation cross section measurements. The KN-3750 Van de Grraff accelerator at Nagoya University and the Fusion Neutronics Source (FNS) at Japan Atomic Energy Research Institute (JAERI) were used. Preliminary results of activation cross sections were obtained for reactions of {sup 27}Al(n,p){sup 27}Mg, {sup 47}Ti(n,p){sup 47}Sc, {sup 58}Ni(n,p){sup 58}Co. The evaluation data of JENDL-3.2 showed reasonable agreement with our results. (author)

  8. Advances in radiation-hydrodynamics and atomic physics simulation for current and new neutron-less targets

    International Nuclear Information System (INIS)

    Velarde, G.; Minguez, E.; Bravo, E.

    2003-01-01

    We present advances in advanced fusion cycles, atomic physics and radiation hydrodynamics. With ARWEN code we analyze a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. Opacity calculations are obtained with ANALOP code, which uses parametric potentials fitting to self-consistent potentials. It includes temperature and density effects by linearized Debye-Hueckel and it treats excited configurations and H+He-like lines. Advanced fusion cycles, as the a neutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented. (author)

  9. Neutrons production during the interaction of monoenergetic electrons with a thin tungsten target; Produccion de neutrones durante la interaccion de electrones monoenergeticos con un blanco delgado de tungsteno

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, T. G.; Medina C, D. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: tzinnia.soto@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    When a linear accelerator for radiotherapy operates with acceleration voltages higher than 8 MV, neutrons are produced, as secondary radiation which deposits an undesirable and undesirable dose in the patient. Depending on the type of tumor, its location in the body and the characteristics of the patient, the cancer treatment with a Linac is performed with photon or electron beams, which produce neutrons through reactions (γ, n) and (e, e n) respectively. Because the effective section for the neutrons production by reactions (γ, n) is approximately two orders of magnitude larger than the effective section of the reactions (e, e n), studies on the effects of this secondary radiation have focused on photo neutrons. en a Linac operates with electron beams, the beam coming out of the magnetic deflector is impinged on the dispersion lamella in order to cause quasi-elastic interactions and to expand the spatial distribution of the electrons; the objective of this work is to determine the characteristics of the photons and neutrons that occur when a mono-energetic electron beam of 2 mm in diameter (pencil beam) is made to impinge on a tungsten lamella of 1 cm in diameter and 0.5 mm of thickness. The study was done using Monte Carlo methods with code MCNP6 for electron beams of 8, 10, 12, 15 and 18 MeV. The spectra of photons and neutrons were estimated in 4 point detectors placed at different equidistant points from the center of the lamella. (Author)

  10. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  11. Investigating the effect of a targets time-varying doppler generating axis of rotation on isar image distortion

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2007-10-01

    Full Text Available , contributes to ISAR image blurring. Quaternion algebra is used to aid the characterisation of a time-varying Doppler generating axis of rotation on the migration through cross-range cells. Real motion data of a sailing yacht is used to examine the effects of 3...

  12. Isotopic distributions of the sup 1 sup 8 N fragmentation products in coincidence with neutrons on targets sup 1 sup 9 sup 7 Au and sup 9 Be

    CERN Document Server

    Li Xiang Qing; Ye Yan Lin; Hua Hui; Chen Tao; Li Zhi Huan; Ge Yuch Eng; Wang Quan Jin; Wu He Yu; Jin Ge; Duan Li Min; Xiao Zhi Gang; Wang Hong Wei; Li Zhu Yu; Wang Su Fang

    2002-01-01

    The authors present the experimental isotopic distributions of the sup 1 sup 8 N projectile fragmentation products Li, Be, B and C in coincidence with neutrons, as well as the inclusive ones on sup 1 sup 9 sup 7 Au and sup 9 Be targets. In the framework of the abrasion-ablation model, these distributions are calculated for various nucleon density distributions of the projectile. The comparison with experimental isotopic distributions of the projectile-like fragments in coincidence with neutrons shows that the information on the nucleon density distribution of the sup 1 sup 8 N projectile can be extracted

  13. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter J.M.

    1996-01-01

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmosphere or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source

  14. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  15. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  16. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  17. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    International Nuclear Information System (INIS)

    Williams, R.E.

    1981-01-01

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed

  18. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    Science.gov (United States)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  19. Determination of neutron spectra formed by 40-MeV deuteron bombardment of a lithium target with multi-foil activation technique

    CERN Document Server

    Maekawa, F; Wada, M; Wilson, P P H; Ikeda, Y

    2000-01-01

    Neutron flux spectra at an irradiation field produced by a 40-MeV deuteron bombardment on a thick lithium-target at Forschungszentrum Karlsruhe, Germany, have been determined by the multi-foil activation technique. Twenty-seven dosimetry reactions having a wide energy range of threshold energies up to 38 MeV were employed as detectors for the neutron flux spectra extending to 55 MeV. The spectra were adjusted with the SAND-II code with the experimental reaction rates based on an iterative method. The adjusted spectra validated quantitatively the Monte Carlo deuteron-lithium (d-Li) neutron source model code (M sup C DeLi) which was used to calculate initial guess spectra and also has been used for IFMIF nuclear designs. Accuracy of the adjusted spectra was approx 10% that was suitable for successive integral tests of activation cross section data.

  20. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  1. THERMAL NEUTRON FLUX MAPPING ON A TARGET CAPSULE AT RABBIT FACILITY OF RSG-GAS REACTOR FOR USE IN k0-INAA

    Directory of Open Access Journals (Sweden)

    Sutisna Sutisna

    2015-03-01

    Full Text Available Instrumental neutron activation analysis based on the k0 method (k0-INAA requires the availability of the accurate reactor parameter data, in particular a thermal neutron flux that interact with a targets inside the target capsule. This research aims to determine and map the thermal neutron flux inside the capsule and irradiation channels used for the elemental quantification using the k0-AANI. Mapping of the thermal neutron flux (фth on two type of irradiation capsule have been done for RS01 and RS02 facilities of RSG-GAS reactor. Thermal neutron flux determined using Al-0,1%Au alloy through 197Au(n,g 198Au nuclear reaction, while the flux mapping done using statistics R. Thermal neutron flux are calculated using k0-IAEA software provided by IAEA. The results showed the average thermal neutron flux is (5.6±0.3×10+13 n.cm-2.s-1; (5.6±0.4×10+13 n.cm-2.s-1; (5.2±0.4×10+13 n.cm-2.s-1 and (5.3±0.4×10+13 n.cm-2.s-1 for Polyethylene capsule of 1st , 2nd, 3rd and 4th layer respectively. In the case of Aluminum capsule, the thermal neutron flux was lower compared to that on Polyethylene capsule. There were (3.0±0.2×10+13 n.cm-2.s-1; (2.8±0.1×10+13 n.cm-2.s-1; (3.2±0.3×10+13 n.cm-2.s-1 for 1st, 2nd and 3rd layers respectively. For each layer in the capsule, the thermal neutron flux is not uniform and it was no degradation flux in the axial direction, both for polyethylene and aluminum capsules. Contour map of eight layer on polyethylene capsule and six layers on aluminum capsule for RS01 and RS02 irradiation channels had a similar pattern with a small diversity for all type of the irradiation capsule. Keywords: thermal neutron, flux, capsule, NAA   Analisis aktivasi neutron instrumental berbasis metode k0 (k0-AANI memerlukan ketersediaan data parameter reaktor yang akurat, khususnya data fluks neutron termal yang berinteraksi dengan inti sasaran di dalam kapsul target. Penelitian ini bertujuan menentukan dan memetakan fluks neutron termal

  2. Optimization of the testing volumes with respect to neutron flux levels in the two-target high flux D-Li neutron source for the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Kelleher, W.P.; Varsamis, G.L.

    1989-01-01

    An economic and fusion-relevant source of high-energy neutrons is an essential element in the fusion nuclear technology and development program. This source can be generated by directing a high energy deuteron beam onto a flowing liquid lithium target, producing neutrons via the D-Lithium stripping reaction. Previous work on this type of source concentrated on a design employing one deuteron beam of modest amperage. This design was shown to have a relatively small testing volume with high flux gradients and was therefor considered somewhat unattractive from a materials testing standpoint. A design using two lithium targets and two high-amperage beams has recently been proposed. This two beam design has been examined in an effort to maximize the test volume while minimizing the flux gradients and minimizing the effect of radiation damage on one target due to the other. A spatial, energy and angle dependent neutron source modeling the D-Lithium source was developed. Using this source, a 3-dimensional map of uncollided flux within the test volume was calculated. The results showed that the target separation has little effect on the available experimental volume and that a testing volume of ∼35 liters is available with a volume averaged flux above 10 14 n/cm 2 /s. The collided flux within the test volume was then determined by coupling the source model with a Monte Carlo code. The spectral effects of the high-energy tail in the flux were examined and evaluated as to possible effects on materials response. Calculations comparing the radiation damage to materials from the D-Lithium source to that cause by a standard DT fusion first-wall neutron flux spectrum showed that the number of appm and dpa, as well as the ratio appm/dpa and dpa/MW/m 2 are within 30% for the two sources. 8 refs., 8 figs

  3. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  4. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  5. Industrial production and purification of 32P by sulfur irradiation with partially moderated neutron fluxes and target melting

    International Nuclear Information System (INIS)

    Alanis, J.; Navarrete, M.

    2007-01-01

    Target purification of S α is carried out by distillation at 444±2 deg C under N atmosphere and diluting the vapors in CS 2 . The solution is filtered through fiberglass, Teflon and cellulose to obtain S α by CS 2 evaporation. Once 30 g of this target are irradiated with fast neutron fluxes from 4.5 to 7.4 x 10 12 n x cm -2 x s -1 from 6 to 12 hours, the nuclear reaction 32 S(n,p) 32 P takes place. So, the irradiated S α sample is placed in a Pyrex container situated inside a furnace as the most important piece of equipment in one aluminum and Lucite glove box. The distillation of irradiated sulfur takes place at 444±2 deg C under N atmosphere during 1-2 hours. The vapors are connected to a sulfur diluter containing 20% CS 2 aqueous solution, followed by an activated carbon filter and the two similar additional sulfur diluters. Once cooled, the distillation chamber keeps the radioactive, carrier-free 32 P stuck to the wall. Then 25-50 ml of 0.1N HCl acid was injected by suction and heated again at 110±2 deg C during 1 hour. The corresponding chemical reaction takes place and the labeled H 3 32 PO 4 solution is produced. In such a way, industrial production of 32 P labeled molecules has started in Mexico, with an initial production of 3700-5550 MBq per week. (author)

  6. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets

    International Nuclear Information System (INIS)

    Lee, H. S.; Ban, S.; Sanami, T.; Takahashi, K.; Sato, T.; Shin, K.; Chung, C.

    2005-01-01

    A study of differential photo-neutron yields by irradiation with 2 GeV electrons has been carried out. In this extension of a previous study in which measurements were made at an angle of 90 deg. relative to incident electrons, the differential photo-neutron yield was obtained at two other angles, 48 deg. and 140 deg., to study its angular characteristics. Photo-neutron spectra were measured using a pulsed beam time-of-flight method and a BC418 plastic scintillator. The reliable range of neutron energy measurement was 8-250 MeV. The neutron spectra were measured for 10 Xo-thick Cu, Sn, W and Pb targets. The angular distribution characteristics, together with the previous results for 90 deg., are presented in the study. The experimental results are compared with Monte Carlo calculation results. The yields predicted by MCNPX 2.5 tend to underestimate the measured ones. The same trend holds for the comparison results using the EGS4 and PICA3 codes. (authors)

  7. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets.

    Science.gov (United States)

    Lee, Hee-Seock; Ban, Syuichi; Sanami, Toshiya; Takahashi, Kazutoshi; Sato, Tatsuhiko; Shin, Kazuo; Chung, Chinwha

    2005-01-01

    A study of differential photo-neutron yields by irradiation with 2 GeV electrons has been carried out. In this extension of a previous study in which measurements were made at an angle of 90 degrees relative to incident electrons, the differential photo-neutron yield was obtained at two other angles, 48 degrees and 140 degrees, to study its angular characteristics. Photo-neutron spectra were measured using a pulsed beam time-of-flight method and a BC418 plastic scintillator. The reliable range of neutron energy measurement was 8-250 MeV. The neutron spectra were measured for 10 Xo-thick Cu, Sn, W and Pb targets. The angular distribution characteristics, together with the previous results for 90 degrees, are presented in the study. The experimental results are compared with Monte Carlo calculation results. The yields predicted by MCNPX 2.5 tend to underestimate the measured ones. The same trend holds for the comparison results using the EGS4 and PICA3 codes.

  8. Fast neutron spectrometry by bolometers lithium target for the reduction of background experiences of direct detection of dark matter

    International Nuclear Information System (INIS)

    Gironnet, J.

    2010-01-01

    Fast neutron spectrometry is a common interest for both direct dark matter detection and for nuclear research centres. Fast neutrons are usually detected indirectly. Neutrons are first slowed down by moderating materials for being detected in low energy range. Nevertheless, these detection techniques are and are limited in energy resolution. A new kind of fast neutron spectroscopy has been developed at the Institut d'Astrophysique Spatiale (IAS) in the aim of having a better knowledge of neutron backgrounds by the association of the bolometric technique with neutron sensitive crystals containing Li. Lithium-6 is indeed an element which has one the highest cross section for neutron capture with the 6 Li(n,α) 3 H reaction. This reaction releases 4,78 MeV tagging energetically each neutron capture. In particular for fast neutrons, the total energy measured by the bolometer would be the sum of this energy reaction and of the incoming fast neutron energy. To validate this principle, a spectrometer for fast neutrons, compact and semi-transportable, was built in IAS. This cryogenic detector, operated at 300 - 400 mK, consists of a 0.5 g LiF 95% 6 Li enriched crystal read out by a NTD-Ge sensor. This PhD thesis was on the study of the spectrometer characteristics, from the first measurements at IAS, to the measurements in the nuclear research centre of the Paul Scherrer Institute (PSI) until the final calibration with the Amande instrument of the Institut de Radioprotection et de Surete Nucleaire (IRSN). (author)

  9. Simulation study of neutron production in thick beryllium targets by 35 MeV and 50.5 MeV proton beams

    Science.gov (United States)

    Shin, Jae Won; Park, Tae-Sun

    2017-09-01

    A data-driven nuclear model dedicated to an accurate description of neutron productions in beryllium targets bombarded by proton beams is developed as a custom development that can be used as an add-on to GEANT4 code. The developed model, G4Data(Endf7.1), takes as inputs the total and differential cross section data of ENDF/B-VII.1 for not only the charge-exchange 9Be(p,n)9B reaction which produces discrete neutrons but also the nuclear reactions relevant for the production of continuum neutrons such as 9Be(p,pn)8Be and 9Be(p,n α) 5Li . In our benchmarking simulations for two experiments with 35 MeV and 50.5 MeV proton beams impinged on 1.16 and 1.05 cm thick beryllium targets, respectively, we find that the G4Data(Endf7.1) model can reproduce both the total amounts and the spectral shapes of the measured neutron yield data in a satisfactory manner, while all the considered hadronic models of GEANT4 cannot.

  10. Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non-target crayfish (Procambarus clarkii) associated with rice-crayfish crop rotations.

    Science.gov (United States)

    Barbee, Gary C; Stout, Michael J

    2009-11-01

    Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non-target crayfish associated with rice-crayfish crop rotations. One solution to the near-exclusive reliance on pyrethroids in a rice-crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice-crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda-cyhalothrin and etofenprox. Neonicotinoid insecticides are at least 2-3 orders of magnitude less acutely toxic (96 h LC(50)) than pyrethroids to juvenile Procambarid crayfish: lambda-cyhalothrin (0.16 microg AI L(-1)) = etofenprox (0.29 microg AI L(-1)) > clothianidin (59 microg AI L(-1)) > thiamethoxam (967 microg AI L(-1)) > dinotefuran (2032 microg AI L(-1)). Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice-crayfish crop rotations. Further field-level neonicotinoid acute and chronic toxicity testing with crayfish is needed. (c) 2009 Society of Chemical Industry.

  11. Neutron capture therapy (NCT) and in-hospital neutron irradiator (IHNI) a new technology on binary targeting radiation therapy of cancer

    International Nuclear Information System (INIS)

    Zhou Yongmao

    2009-01-01

    BNCT is finally becoming 'a new option against cancer'. The difficulties for its development progress of that firstly is to improve the performance of boron compounds,secondly, it is the requirements of quantification and accuracy upon radiation dosimetry evaluation in clinical trials. Furthermore, that is long anticipation on hospital base neutron sources. It includes dedicated new NCT reactor, accelerator based neutron sources, and isotope source facilities. In addition to reactors, so far, the technology of other types of sources for clinical trials is not yet completely proven. The In-Hospital Neutron Irradiator specially designed for NCT, based on the MNSR successfully developed by China, can be installed inside or near the hospital and operated directly by doctors. The Irradiator has two neutron beams for respective treatment of the shallow and deep tumors. It is expected to initiate operation in the end of this year. It would provide a safe, low cost, and effective treatment tool for the NCT routine application in near future. (authors)

  12. Development and testing of a deuterium gas target assembly for neutron production via the H-2(d,n)He-3 reaction at a low-energy accelerator facility

    International Nuclear Information System (INIS)

    Feautrier, D.; Smith, D.L.

    1992-03-01

    This report describes the development and testing of a deuterium gas target intended for use at a low-energy accelerator facility to produce neutrons for basic research and various nuclear applications. The principle source reaction is H-2(d,n)He-3. It produces a nearly mono-energetic group of neutrons. However, a lower-energy continuum neutron spectrum is produced by the H-2(d;n,p)H-2 reaction and also by deuterons which strike various components in the target assembly. The present target is designed to achieve the following objectives: (1) minimize unwanted background neutron production from the target assembly, (2) provide a relatively low level of residual long-term activity within the target components, (3) have the capacity to dissipate up to 150 watts of beam power with good target longevity, and (4) possess a relatively modest target mass in order to minimize neutron scattering from the target components. The basic physical principles that have to be considered in designing an accelerator target are discussed and the major engineering features of this particular target design are outlined. The results of initial performance tests on this target are documented and some conclusions concerning the viability of the target design are presented

  13. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  14. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 deg

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milan (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Birattari, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133 Milan (Italy); Dimovasili, E. [CERN, 1211 Geneva 23 (Switzerland); Foglio Para, A. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milan (Italy); Silari, M. [CERN, 1211 Geneva 23 (Switzerland)]. E-mail: marco.silari@cern.ch; Ulrici, L. [CERN, 1211 Geneva 23 (Switzerland); Vincke, H. [CERN, 1211 Geneva 23 (Switzerland)

    2005-02-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.

  15. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 deg

    International Nuclear Information System (INIS)

    Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.

    2005-01-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number

  16. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135°

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.

    2005-02-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135° with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.

  17. Neutron emission probability at high excitation and isospin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2005-01-01

    One-neutron and two-neutron emission probability at different excitations and varying isospin have been studied. Several degrees of freedom like deformation, rotations, temperature, isospin fluctuations and shell structure are incorporated via statistical theory of hot rotating nuclei

  18. A Flexure-Based Mechanism for Precision Adjustment of National Ignition Facility Target Shrouds in Three Rotational Degrees of Freedom

    International Nuclear Information System (INIS)

    Boehm, K.-J.; Gibson, C. R.; Hollaway, J. R.; Espinoza-Loza, F.

    2016-01-01

    This study presents the design of a flexure-based mount allowing adjustment in three rotational degrees of freedom (DOFs) through high-precision set-screw actuators. The requirements of the application called for small but controlled angular adjustments for mounting a cantilevered beam. The proposed design is based on an array of parallel beams to provide sufficiently high stiffness in the translational directions while allowing angular adjustment through the actuators. A simplified physical model in combination with standard beam theory was applied to estimate the deflection profile and maximum stresses in the beams. A finite element model was built to calculate the stresses and beam profiles for scenarios in which the flexure is simultaneously actuated in more than one DOF.

  19. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Doi, Atsushi; Miyatake, Shin-ichi; Iida, Kyouko

    2006-01-01

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10 B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10 B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10 B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10 B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10 B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10 B/kg) intravenously. We analyzed 10 B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10 B concentration in blood and normal tissue while it maintained high 10 B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10 B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10 B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  20. Procedures for multielement analysis using high-flux fast-neutron activation

    International Nuclear Information System (INIS)

    Williams, R.E.; Hopke, P.K.; Meyer, R.A.

    1981-06-01

    Improvements have been made in the rabbit system used for multi-element fast-neutron activation analysis at the Lawrence Livermore National Laboratory Rotating Target Neutron Source, RTNS-I. Procedures have been developed for the analysis of 20 to 25 elements in samples with an inorganic matrix and 10 to 15 elements in biological samples, without the need for prohibitively expensive, long irradiations. Results are presented for the analysis of fly ash, orchard leaves, and bovine liver

  1. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  2. Cold neutron beam studies of parity-violation in the n-α and n-p systems

    International Nuclear Information System (INIS)

    Markoff, D.M.

    2001-01-01

    Long wavelength neutrons (λ>1 A) in a cold neutron beam provide a valuable probe to study the strong and weak nuclear forces in hadronic systems, where the description is complicated by the quark structure of the particles. As a consequence of parity-violation (PV) arising from the weak interaction, the low-energy neutron transverse spin-polarization vector rotates as the neutrons transverse a medium. The magnitude of the PV spin-rotation observable in the n-α system provides important new data to determine the strength of the neutron-nucleus weak interaction. Measurement of the spin-rotation in the bare neutron-proton system with a parahydrogen target, will provide important constraints on the weak nucleon-nucleon (NN) interaction including the neutral current contribution, and will increase our understanding of the strong NN interaction. This paper will review the recent spin-rotation measurement in a liquid helium target, and the proposed measurement in a parahydrogen target

  3. Neutron radiation field due to 6.6 MeV/amu 58Ni ions bombarding a thick Cu target

    International Nuclear Information System (INIS)

    Aleinikov, V.E.; Cherevatenko, A.P.; Clapier, F.B.; Tsovbun, V.I.

    1985-01-01

    The angular distribution of the dose equivalent rate and neutron spectra were obtained using the Bonner sphere spectrometry method. The quality factor was measured by a tissue-equivalent Rem-2 chamber at several angles. The agreement between the results of the measurements and an empirical parameterisation of the angular distribution is satisfactory. The total yield is estimated to be 1.6+-0.4x10 -3 neutrons per heavy ion. (author)

  4. Feasibility study for the spallation neutron source (SNQ). Pt. 1

    International Nuclear Information System (INIS)

    Bauer, G.S.; Sebening, H.; Vetter, J.E.; Willax, H.

    1981-06-01

    A concept for a new neutron source for fundamental research has been developed and is described in this report. The spallation neutron source SNQ is characterized in its first stage by a time average thermal neutron flux of 7 x 10 14 cm -2 s -1 and a peak flux of 1.3 x 10 16 cm -2 s -1 at 100 Hz repetition rate. The scientific case is presented with particular emphasis on solid state and nuclear physics. In these research domains, unique conditions are given for experimental use. The proposed machine consists in its basic stage of a 1.1 GeV, 5 mA time average, 100 mA peak current proton linear accelerator, a rotating lead target, and H 2 O and D 2 O moderators. Additional beam channels are provided for experiments with protons at 350 MeV and at the final energy. Construction of the SNQ is considered feasible within eight years at a cost of 680 million DM. As future options, use of uranium as a target material, increase of the accelerator beam power by a factor of 2, addition of a pulse compressor and a second target station for pulsed neutron and neutrino research are described. As a back-up solution to the rotating target, a liquid metal target was studied. (orig.) [de

  5. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  6. Monte Carlo simulations and experimental results on neutron production in the spallation target QUINTA irradiated with 660 MeV protons

    International Nuclear Information System (INIS)

    Khushvaktov, J.H.; Yuldashev, B.S.; Adam, J.; Vrzalova, J.; Baldin, A.A.; Furman, W.I.; Gustov, S.A.; Kish, Yu.V.; Solnyshkin, A.A.; Stegailov, V.I.; Tichy, P.; Tsoupko-Sitnikov, V.M.; Tyutyunnikov, S.I.; Zavorka, L.; Svoboda, J.; Zeman, M.; Vespalec, R.; Wagner, V.

    2017-01-01

    The activation experiment was performed using the accelerated beam of the Phasotron accelerator at the Joint Institute for Nuclear Research (JINR). The natural uranium spallation target QUINTA was irradiated with protons of energy 660 MeV. Monte Carlo simulations were performed using the FLUKA and Geant4 codes. The number of leakage neutrons from the sections of the uranium target surrounded by the lead shielding and the number of leakage neutrons from the lead shield were determined. The total number of fissions in the setup QUINTA were determined. Experimental values of reaction rates for the produced nuclei in the "1"2"7I sample were obtained, and several values of the reaction rates were compared with the results of simulations by the FLUKA and Geant4 codes. The experimentally determined fluence of neutrons in the energy range of 10-200 MeV using the (n, xn) reactions in the "1"2"7I(NaI) sample was compared with the results of simulations. Possibility of transmutation of the long-lived radionuclide "1"2"9I in the QUINTA setup was estimated. [ru

  7. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 degree

    CERN Document Server

    Agosteo, S; Dimovasili, E; Foglio-Para, A; Silari, M; Ulrici, L; Vincke, H

    2005-01-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 degree with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: less than 100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normaliza...

  8. EURISOL-DS multi-MW target unit: Neutronics performance and shielding assessment, dose rate and material activation calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Kadi, Y; Luis, R; Goncalves, I F; Tecchio, L; Kharoua, C; Vaz, P; Ene, D; David, J C; Rocca, R; Negoita, F

    2010-01-01

    One of the objectives of the EURISOL (EURopean Isotope Separation On-Line Radioactive Ion Beam) Design Study consisted of providing a safe and reliable facility layout and design for the following operational parameters and characteristics: (a) a 4 MW proton beam of 1 GeV energy impinging on a mercury target (the converter); (b) high neutron fluxes (similar to 3 x 10(16) neutrons/s) generated by spallation reactions of the protons impinging in the converter and (c) fission rate on fissile U-235 targets in excess of 10(15) fissions/s. In this work, the state-of-the-art Monte Carlo codes MCNPX (Pelowitz, 2005) and FLUKA (Vlachoudis, 2009; Ferrari et al., 2008) were used to characterize the neutronics performance and to perform the shielding assessment (Herrera-Martinez and Kadi, 2006; Cornell, 2003) of the EURISOLTarget Unit and to provide estimations of dose rate and activation of different components, in view of the radiation safety assessment of the facility. Dosimetry and activation calculations were perfor...

  9. The Neutron Star Interior Composition Explorer (NICER)

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  10. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    International Nuclear Information System (INIS)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-01-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  11. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    Science.gov (United States)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-11-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  12. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter

    2012-01-01

    Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position

  13. The Low-Temperature Inflection Observed in Neutron Scattering Measurements of Proteins Is Due to Methyl Rotation : Direct Evidence Using Isotope Labeling and Molecular Dynamics Simulations

    NARCIS (Netherlands)

    Wood, Kathleen; Tobias, Douglas J.; Kessler, Brigitte; Gabel, Frank; Oesterhelt, Dieter; Mulder, Frans A. A.; Zaccai, Giuseppe; Weik, Martin

    2010-01-01

    There is increasing interest in the contribution of methyl groups to the overall dynamics measured by neutron scattering experiments of proteins. In particular an inflection observed in atomic mean square displacements measured as a function of temperature on high resolution spectrometers (similar

  14. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  15. Measurement of thick target neutron yield from the reaction (p+181 Ta) with projectiles in the range of 6-20 MeV

    Science.gov (United States)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.

    2018-02-01

    181Ta is a commonly used backing material for many targets in nuclear reaction studies. When the target thickness is less than the range of bombarded projectiles, the interaction via Ta(p,n) reactions in the backing can be a significant source of background. In this study, the neutron spectral yields from the reaction of protons of different energies (between 6 to 20 MeV) with a thick Ta target were determined using CR-39 detectors. The results from this study can be used as a correction factor in such situations. The parameters of registered tracks in CR-39 were analysed using an in-house image analysing program autoTRAK_n and then to derive the associated dose values. The spectral yields obtained experimentally were compared with those obtained from the theoretical calculations. The neutron yield was found to increase with increase in projectile energy mainly due to the opening of reaction channels from (p, n) to (p, 3n).

  16. Production of a {sup 44} Ti target and its cross section of thermal neutron capture; Producao de um alvo de {sup 44} Ti e sua secao de choque para captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Ejnisman, R

    1994-12-31

    A study of the production of a {sup 44} Ti target was carried out aiming the determination of its thermal neutron capture cross-section. With this purpose, the cross-section of the reaction {sup 45} Sc(p,2 n) {sup 44} Ti was determined in the energies 16-, 18-, 20-22- and 45 MeV. The cross-section of the reactions (p,n) {sup 45} Ti, (p,pn) {sup 44m} Sc, (p,pn) {sup 44g} Sc and (p,p2n){sup 43} Sc were also measured. The results in the low energy region are in good agreement with a previous work by McGee et al. On the other hand, the cross-section at 45 MeV is different from McGee`s result and indicates the existence of an abnormal behavior of the excitation function at higher energies. Furthermore, a radiochemical separation method was developed in order to eliminate Sc from the {sup 44} Ti target which was irradiated with neutrons. It was possible to determine an upper limit for the cross-section of the reaction {sup 44} Ti (n, {gamma}) of 4 x 10{sup 3} b. At last, it is presented a discussion of the results obtained and their possible astrophysical implications. (author) 94 refs.

  17. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  18. Confirmatory experiments for the United States Department of Energy Accelerator Production of Tritium Program: Neutron, triton and radionuclide production by thick targets of lead and tungsten bombarded by 800 MeV protons

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Cappiello, M.; Ullmann, J.L.; Gavron, A.; King, J.D.; Laird, R.; Mayo, D.; Waters, L.; Zoeller, C.; Staples, P.

    1994-01-01

    Neutron and Triton Production by 800 MeV Protons: The experiments presented in this report were performed in support of the Accelerator Production of Tritium (APT) project at the Los Alamos Weapons Neutron Research (WNR) facility in order to provide data to benchmark and validate physics simulations used in the APT target/blanket design. An experimental apparatus was built that incorporated many of the features of the neutron source region of the 3 He target/blanket. Those features included a tungsten neutron source, flux traps, neutron moderator, lead backstop, lead multiplying annulus, neutron absorbing blanket and a combination neutron de-coupler and tritium producing gas ( 3 He). The experiments were performed in two separate proton irradiations each with approximately 100 nA-hr of 800 MeV protons. The first irradiation was made with a small neutron moderating blanket, allowing the authors to measure tritium production in the 3 He gas by sampling, and counting the amount of tritium. The second irradiation was performed with a large neutron moderating blanket (light water with a 1% manganese sulfate solution) that allowed them to measure both the tritium production in the central region and the total neutron production. The authors did this by sampling and counting the tritium produced and by measuring the activation of the manganese solution. Results of the three tritium production measurements show large disagreements with each other and therefore with the values predicted using the LAHET-MCNP code system. The source of the discrepancies may lie with the sampling system or adsorption on the tungsten surfaces. The authors discuss tests that may resolve that issue. The data for the total neutron production measurement is much more consistent. Those results show excellent agreement between calculation and experiment

  19. Radiation transport analyses in support of the SNS Target Station Neutron Beam Line Shutters Title I Design

    International Nuclear Information System (INIS)

    Miller, T.M.; Pevey, R.E.; Lillie, R.A.; Johnson, J.O.

    2000-01-01

    A detailed radiation transport analysis of the Spallation Neutron Source (SNS) shutters is important for the construction of the SNS because of its impact on conventional facility design, normal operation of the facility, and maintenance operations. Thus far the analysis of the SNS shutter travel gaps has been completed. This analysis was performed using coupled Monte Carlo and multi-dimensional discrete ordinates calculations

  20. Neutron-induced transmutation reactions in Np-237, Pu-238, and Pu-239 at the massive natural uranium spallation target

    Czech Academy of Sciences Publication Activity Database

    Závorka, L.; Adam, Jindřich; Baldin, A. A.; Čaloun, Pavel; Chilap, V. V.; Furman, W.; Kadykov, M. G.; Khushvaktov, J.; Pronskikh, V. S.; Solnyshkin, A. A.; Sotnikov, V.; Stegailov, V. I.; Suchopár, Martin; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Voronko, V.; Vrzalová, Jitka

    2015-01-01

    Roč. 349, APR (2015), s. 31-38 ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : ADS * spent nuclear fuel * transmutation reaction * spallation neutrons Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  1. Subcellular targets of mercaptoborate (BSH), a carrier of 10B for neutron capture therapy (BNCT) of brain tumors

    Czech Academy of Sciences Publication Activity Database

    Mareš, Vladislav; Krajčí, D.; Lisá, Věra

    2003-01-01

    Roč. 52, č. 5 (2003), s. 629-635 ISSN 0862-8408 R&D Projects: GA MPO FD-K/048 Institutional research plan: CEZ:AV0Z5011922 Keywords : thermal neutrons * brain tumors * sodium borocaptate Subject RIV: FD - Oncology ; Hematology Impact factor: 0.939, year: 2003

  2. Neutrons produced in thick targets of Be, {sup 238}U and C by means of 100 MeV/A deutons and 95 MeV/A {sup 36}Ar. Dose rate due to uranium activation; Neutrons produits dans des cibles epaisses de Be et {sup 238}U par des deutons de 100 MeV/A et de C par des {sup 36}Ar de 95 MeV/A. Debit de dose resultant de l`activation de l`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N.; Proust, J.; Clapier, F.; Gara, P.; Mirea, M.; Obert, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Granier, T.; Belier, G.; Ethvignot, T. [CEA, Service de Physique Nucleaire, 91 - Bruyeres-le-Chatel (France)

    1998-12-01

    This study presents the results of two experiments, one lead in GANIL facilities and the other at Saturn National Laboratory. Both aim at neutron production. The energy spectra of neutrons are given for different targets and ion beams. The efficiency of deuteron beams in term of neutron production is reinforced. The neutron flux appears to be higher in any forward direction when using a beryllium target. In order to optimize shielding the neutron attenuation length in 15 cm thick concrete slab is revalued. (A.C.) 13 refs.

  3. Unique furnace system for high-energy-neutron experiments

    International Nuclear Information System (INIS)

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    1982-03-01

    The low flux of high energy neutron sources requires optimum utilization of the available neutron field. A furnace system has been developed in support of the US DOE fusion materials program which meets this challenge. Specimens positioned in two temperature zones just 1 mm away from the outside surface of a neutron window in the furnace enclosure can be irradiated simultaneously at two independent, isothermal (+- 1 0 C) temperatures. The temperature difference between these closely spaced isothermal zones is controllable from 0 to 320 0 C and the maximum temperature is 400 0 C. The design of the system also provides a controlled specimen environment, rapid heating and cooling and easy access to heaters and thermocouples. This furnace system is in use at the Rotating Target Neutron Source-II of Lawrence Livermore National Laboratory

  4. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Odera, M.

    1989-01-01

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  5. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P., E-mail: paolo.colautti@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Esposito, J., E-mail: juan.esposito@tin.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Fazzi, A.; Introini, M.V.; Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Neutron energy spectra at different emission angles, between 0 Degree-Sign and 120 Degree-Sign from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0 Degree-Sign resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  6. T-violation in neutron optics

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Experimental method to detect a T-odd correlation term in neutron propagation through a nuclear target is discussed. The correlation term is between the neutron spin, neutron momentum and nuclear spin. (author)

  7. Neutron scattering with deuterium labeling reveals the nature of complexes formed by Ca{sup 2+}-binding proteins and their regulatory targets

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Small-angle neutron scattering with deuterium labeling is extremely useful for studying the structures of complex biomolecular assemblies in solution. The different neutron scattering properties of their isotopes of hydrogen combines with the ability to uniformly label biomolecules with deuterium allow one to characterize the structures and relative dispositions of the individual components of an assembly using methods of {open_quotes}contrast variation.{close_quotes} We have applied these techniques to studies of the evolutionarily related dumbbell-shaped Ca{sup 2+}-binding proteins calmodulin and troponin C and their interactions with the target proteins whose activities they regulate. Ca{sup 2+} is one of the simplest of nature`s messengers used in the communication pathways between physiological stimulus and cellular response. The signaling mechanism generally involves Ca{sup 2+} binding to a protein and inducing a conformational change that transmits a signal to modify the activity of a specific target protein. Ca{sup 2+} is thus important in the regulation of a diverse array of intracellular responses, including neurotransmitter release, muscle contraction, the degradation of glycogen to glucose to generate energy, microtubule assembly, membrane phosphorylation, etc. It is the conformational language of the Ca{sup 2+} induced signal transduction that we have sought to understand because of its central importance to biochemical regulation and, hence, to healthy cellular function.

  8. Measurement of the high-energy neutron flux on the surface of the natural uranium target assembly QUINTA irradiated by deuterons of 4- and 8-GeV energy

    International Nuclear Information System (INIS)

    Adam, J.; Baldin, A.A.; Chilap, V.

    2014-01-01

    Experiments with a natural uranium target assembly QUINTA exposed to 4- and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The 129 I, 232 Th, 233 U, 235 U, nat U, 237 Np, 238 Pu, 239 Pu and 241 Am radioactive samples were installed on the surface of the QUINTA set-up and irradiated with secondary neutrons. The neutron flux through the RA samples was monitored by Al foils. The reaction rates of 27 Al(n, y 1 ) 24 Na, 27 Al(n, y 2 ) 22 Na and 27 Al(n, y 3 ) 7 Be reactions with the effective threshold energies of 5, 27 and 119 MeV were measured at both 4- and 8-GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for energy of 4- or 8-GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with MCNPX2.7 and MARS15 codes.

  9. Livermore intense neutron source: design concepts

    International Nuclear Information System (INIS)

    Davis, J.C.; Anderson, J.D.; Booth, R.; Logan, C.M.; Osher, J.E.

    1975-07-01

    The Lawrence Livermore laboratory proposes to build an irradiation facility containing several 14 MeV T(d,n) neutron sources for materials damage experimentation. A source strength of 4 x 10 13 n/s can be produced with 400 keV D + beam on the tritium in titanium target system now used on the Livermore Rotating Target Neutron Source (RTNS). To produce the desired source strength an accelerator which can deliver 150 mA of 400 keV D + ions must be built. For the target to remain within the time-temperature regime of the present system it must have a diameter of 46 cm and rotate at 5000 rpm. With a beam spot 1 cm fwhm the useful target lifetime is expected to be the 100 hours typical of the present system. A maximum flux of 1.5 x 10 13 n/cm 2 s will be attainable over a sample 1 mm thick by 8 mm in diameter. (U.S.)

  10. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  11. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  12. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  13. Rotation-aligned coupling and axial asymmetry in the neutron deficient lanthanum nuclei. Progress report, May 15, 1975--May 14, 1976

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1976-01-01

    The work on the neutron deficient nuclei in the Au region was brought nearer to completion, and systems necessary to extend the investigation to the La nuclei were developed. Twelve reports, including five journals articles, were generated during the reporting period, and the principal investigator received invitations to two international conferences. The LSU nuclear spectroscopy group was given a good deal of support and added strength (by the Department of Physics and Astronomy) through the addition of a nuclear structure theorist and a departmentally sponsored postdoctoral position

  14. Nanosecond neutron generator

    International Nuclear Information System (INIS)

    Lobov, S.I.; Pavlovskaya, N.G.; Pukhov, S.P.

    1991-01-01

    High-voltage nanosecond neutron generator for obtaining neutrons in D-T reaction is described. Yield of 6x10 6 neutron/pulse was generated in a sealed gas-filled diode with a target on the cathode by accelerating pulse voltage of approximately 0.5 MV and length at half-height of 0.5 ns and deuterium pressure of 6x10 -2 Torr. Ways of increasing neutron yield and possibilities of creating generators of nanosecond neutron pulses with great service life are considered

  15. Influence of differentiation of potential parameters for each excited level of the target nucleus on neutron inelastic cross section calculations

    International Nuclear Information System (INIS)

    Cabezas, R.; Lubian, J.; Moreno, E.

    1992-01-01

    In this paper scattering of neutron in medium mass nuclei (48 < a < 64) at low energies (1-5 Mev) is analyzed. The Hauser-Feshbach-Moldauer formalism and the coupled channel method is used in a combined way. In both cases, the deformed optical potential in the frame of the harmonic vibrational models is considered of integral and total cross section and angular distribution enphasized. It's shown that the use of different set parameters has a mose influence at low energies and represented a contribution of 10% of the calculated cross section with the same potential

  16. Transmutation of 239Pu and other nuclides using spallation neutrons produced by relativistic protons reacting with massive U- and Pb- targets

    International Nuclear Information System (INIS)

    Adam, J.; Balabekyan, A.; Bamblevskij, V.P.

    2001-01-01

    Experimental studies on the transmutation of some long-lived radioactive waste nuclei, such as 129 I, 237 Np, and 239 Pu, as well as on natural uranium and lanthanum (all of them used as sensors) were carried out at the Synchrophasotron of the Laboratory of High Energies (JINR, Dubna). Spallation neutrons were produced by relativistic protons with energies in the range of 0.5 GeV ≤ E(p) ≤ 1.5 GeV interacting with 20 cm long uranium or lead target stacks. The targets were surrounded by 6 cm paraffin moderators. The radioactive sensors mentioned above were positioned on the outside surface of the moderator and contained typically approximately 0.5 up to 1 gram of long-lived isotopes. The highly radioactive targets were produced perfectly well-sealed in aluminium containers by the Institute of Physics and Power Engineering, Obninsk, Russia. From the experimentally observed transmutation rates one can easily extrapolate, that in a subcritical nuclear power assembly (or 'energy amplifier') using a 10 mA proton beam of 1 GeV onto a Pb-target as used here, one can transmute in one gram samples of the isotope within one month about 3 mg 129 I, 21 mg 237 Np, 3.3 mg 238 U, and 200 mg 239 Pu under the same geometrical conditions. Our observations show, that the transmutation ability of our system increases linearly with the proton energy within the energy interval studied

  17. Neutronic and thermal-hydraulic analysis of a device for irradiation of LEU UAlx-Al targets for 99Mo production in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Nishiyama, Pedro Julio Batista de Oliveira

    2012-01-01

    Technetium-99m ( 99m Tc), the product of radioactive decay of molybdenum-99 ( Mo), is one of the most widely used radioisotope in nuclear medicine, covering approximately 80% of all radiodiagnosis procedures in the world. Nowadays, Brazil requires an amount of about 450 Ci of 99 Mo per week. Due to the crisis and the shortage of 99 Mo supply chain that has been observed on the world since 2008, IPEN/CNEN-SP decided to develop a project to produce 99 Mo through fission of uranium-235. The objective of this dissertation was the development of neutronic and thermal-hydraulic calculations to evaluate the operational safety of a device for 99 Mo production to be irradiated in the IEA-Rl reactor core at 5 MW. In this device will be placed ten targets of UAl x -Al dispersion fuel with low enriched uranium (LEU) and density of 2.889 gU/cm 3 . For the neutronic calculations were utilized the computer codes HAMMER-TECHNION and CITATION and the maximum temperatures reached in the targets were calculated with the code MTRCR-IEA-R1. The analysis demonstrated that the device irradiation will occur without adverse consequences to the operation of the reactor. The total amount of 99 Mo was calculated with the program SCALE and considering that the time needed for the chemical processing and recovering of the 99 Mo will be five days after the irradiation, we have that the 99 Mo activity available for distribution will be 176 Ci for 3 days of irradiation, 236 Ci for 5 days of irradiation and 272 Ci for 7 days of targets irradiation. (author)'

  18. Design and testing of a rotating, cooled device for extra-corporate treatment of liver cancer by BNCT in the epithermal neutron beam at the HFR Petten

    International Nuclear Information System (INIS)

    Moss, Ray; Nievaart, Sander; Pott, Lucien; Wittig, Andrea; Sauerwein, Wolfgang

    2006-01-01

    As part of the joint project on extra-corporal treatment of liver cancer by BNCT between JRC Petten and the University Hospital Essen, a facility has been designed and built to contain the liver during its irradiation treatment at the HFR Petten. The design consists of a rotating spheroid shaped PMMA holder, manufactured to open at the equator and closed by screwing together, surrounded by PMMA and graphite blocks. A validation exercise has been performed regarding both the nuclear conditions and the physical conditions. For the former, activation foil sets of Au, Cu and Mn, were irradiated at positions inside the liver holder filled with water, whilst a second measurement campaign has been performed using gel dosimetry. For the physical test, it is required to operate (rotate) the facility for up to 4 hours and to maintain the liver at approximately 4degC. The latter test was performed using 'cold gun sprays' that inject cold air near the liver holder. Both the nuclear and physical validation tests were performed successfully. (author)

  19. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  20. Optical model with multiple band couplings using soft rotator structure

    Science.gov (United States)

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  1. Synthesis of o-carboranylmethyl ethers of steroids as potential target substrates for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Schneiderova, L.; Gruener, B.; Strouf, O.; Kimlova, I.

    1992-01-01

    o-carboranylmethyl ethers of steroids were synthesized by insertion of steroidal 2-propynyloxy derivatives into 6,9-bis(acetonitrile)decarborane. This reaction provided compounds with an estrane and androstane skeleton, potentially useful in boron neutron capture therapy of hormone-sensitive forms of cancer: 17β-o-carboranylmethyl ether of estradiol IXb (yield 14%) and 3β- and 17β-carboranylmethyl ethers of androstenediol Vb and VIIb (yield 12% and 13%, respectively). Jones oxidation gave the carboranyl derivative of androsten-17-one VIb in 75% yield. As shown by a study of insertion of 3β-(2-propynyloxy)cholest-5-ene (IVa), the low yields of the insertion reaction cannot be increased by change in the reaction conditions. The relative binding affinity of compound IXb to the estrogen receptor from rat uterine and human breast tumor cytosol was 3.0 and 0.29%, respectively, of that of estradiol. (author) 2 figs., 2 tabs., 20 refs

  2. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  3. Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    Science.gov (United States)

    Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.

    2018-04-01

    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.

  4. Performance of the multiple target He/PbI sub 2 aerosol jet system for mass separation of neutron-deficient actinide isotopes

    CERN Document Server

    Ichikawa, S; Asai, M; Haba, H; Sakama, M; Kojima, Y; Shibata, M; Nagame, Y; Oura, Y; Kawade, K

    2002-01-01

    A multiple target He/PbI sub 2 aerosol jet system coupled with a thermal ion source was installed in the isotope separator on line (JAERI-ISOL) at the JAERI tandem accelerator facility. The neutron-deficient americium and curium isotopes produced in the sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 U( sup 6 Li, xn) and sup 2 sup 3 sup 7 Np( sup 6 Li, xn) reactions were successfully mass-separated and the overall efficiency including the ionization of Am atoms was evaluated to be 0.3-0.4%. The identification of a new isotope sup 2 sup 3 sup 7 Cm with the present system is reported.

  5. Neutron and photon measurements through concrete from a 15 GeV electron beam on a target-comparison with models and calculations. [Intermediate energy source term, Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, T M [Stanford Linear Accelerator Center, CA (USA)

    1979-02-15

    Measurements of neutron and photon dose equivalents from a 15 GeV electron beam striking an iron target inside a scale model of a PEP IR hall are described, and compared with analytic-empirical calculations and with the Monte Carlo code, MORSE. The MORSE code is able to predict both absolute neutron and photon dose equivalents for geometries where the shield is relatively thin, but fails as the shield thickness is increased. An intermediate energy source term is postulated for analytic-empirical neutron shielding calculations to go along with the giant resonance and high energy terms, and a new source term due to neutron capture is postulated for analytic-empirical photon shielding calculations. The source strengths for each energy source term, and each type, are given from analysis of the measurements.

  6. Transmutation of $^{239}$Pu and Other Nuclides Using Spallation Neutrons Produced by Relativistic Protons Reacting with Massive U- and Pb-Targets

    CERN Document Server

    Adam, J; Bamblevski, V P; Barabanov, M Yu; Bradnova, V; Chaloun, P; Hella, K M; Kalinnikov, V G; Krivopustov, M I; Kulakov, B A; Perelygin, V P; Pronskikh, V S; Pavliouk, A V; Solnyshkin, A A; Sosnin, A N; Stegailov, V I; Tsoupko-Sitnikov, V M; Zaverioukha, O S; Adloff, J C; Debeauvais, M; Brandt, R; Langrock, E J; Vater, P; Van, J S; Westmeier, W; Dwivedi, K K; Guo Shi Lun; Li Li Qiang; Hashemi-Nezhad, S R; Kievets, M K; Lomonosova, E M; Zhuk, I V; Modolo, G; Odoj, R; Zamani-Valassiadou, M

    2001-01-01

    Experimental studies on the transmutation of some long-lived radioactive waste nuclei, such as ^{129}I, ^{237}Np, and ^{239}Pu, as well as on natural uranium and lanthanum (all of them used as sensors) were carried out at the Synchrophasotron of the Laboratory for High Energies (JINR, Dubna). Spallation neutrons were produced by relativistic protons with energies in the range of 0.5 GeV\\le E(p)\\le 1.5 GeV interacting with 20 cm long uranium or lead target stacks. The targets were surrounded by 6 cm paraffin moderators. The radioactive sensors mentioned above were positioned on the outside surface of the moderator and contained typically approximately 0.5 up to 1 gram of long-lived isotopes. The highly radioactive targets were produced perfectly well-sealed in aluminum containers by the Institute of Physics and Power Engineering, Obninsk, Russia. From the experimentally observed transmutation rates one can easily extrapolate, that in a subcritical nuclear power assembly (or "energy amplifier") using a 10 mA pr...

  7. Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, C, Ne, Ar, Fe and Xe ions on various targets

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S.; Nakamura, T.; Silari, M. E-mail: marco.silari@cern.ch; Zajacova, Z

    2004-04-01

    Data on transmission of neutrons in concrete generated by heavy ions of intermediate energies (of typically up to 1 GeV per nucleon) are of interest for shielding design of accelerators for use in both the research and in the medical field. The energy distributions of neutrons produced by ions of different species (from He to Xe) striking various targets at energies from 100 to 800 MeV per nucleon were recently measured by Kurosawa et al. in the angular range 0-90 deg. . These spectra were used as input data for Monte Carlo simulations to determine source terms and attenuation lengths in ordinary concrete. The present paper presents calculations for 100 MeV/u helium ions on a Cu target, 100 MeV/u carbon ions on C, Al, Cu and Pb, 100 MeV/u neon ions on Cu and Pb, 400 MeV/u carbon ions on C, Al, Cu and Pb, 400 MeV/u neon ions on Cu, 400 MeV/u Ar ions on Cu, 400 MeV/u Fe ions on Cu and 400 MeV/u Xe ions on Cu. The results include the contributions of all secondaries. Some of the resulting attenuation curves are best fitted by a double-exponential function rather than the usual single-exponential. The effect of various approximations introduced in the simulations is discussed. A comparison is made with shielding data for protons scaled with the ion mass number. A comparison is also made with a simple analytical model in use at GANIL.

  8. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  9. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  10. Source characterization of Purnima Neutron Generator (PNG)

    International Nuclear Information System (INIS)

    Bishnoi, Saroj; Patel, T.; Paul, Ram K.; Sarkar, P.S.; Adhikari, P.S.; Sinha, Amar

    2011-01-01

    The use of 14.1 MeV neutron generators for the applications such as elemental analysis, Accelerated Driven System (ADS) study, fast neutron radiography requires the characterization of neutron source i.e neutron yield (emission rate in n/sec), neutron dose, beam spot size and energy spectrum. In this paper, a series of experiments carried out to characterize this neutron source. The neutron source has been quantified with neutron emission rate, neutron dose at various source strength and beam spot size at target position

  11. Production of 14 MeV neutrons from D-D neutron generators

    International Nuclear Information System (INIS)

    Cecil, F.E.; Nieschmidt, E.B.

    1986-01-01

    The production of 14 MeV neutrons from a D-D neutron generator resulting from tritium buildup from the d(d,p)t reaction in the target is discussed. The effect of the 14 MeV neutrons on fast neutron activation analysis with D-D neutron generators is evaluated. (orig.)

  12. Tensile property changes of metals and irradiated to low doses with fission, fusion and spallation neutrons

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructures and mechanical properties of metals. Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36-55 C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90 C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa

  13. Development of High Intensity D-T fusion NEutron Generator (HINEG)

    Science.gov (United States)

    Wu, Yican; Liu, Chao; Song, Gang; Wang, Yongfeng; Li, Taosheng; Jiang, Jieqiong; Song, Yong; Ji, Xiang

    2017-09-01

    A high intensity D-T fusion neutron generator (HINEG) is keenly needed for the research and development (R&D) of nuclear technology and safety of the advanced nuclear energy system, especially for the radiation protection and shielding. The R&D of HINEG includes two phases: HINEG-I and HINEG-II. HINEG-I is designed to have both the steady beam and pulsed beam. The neutron yield of the steady beam is up to 1012 n/s. The width of pulse neutron beam is less than 1.5 ns. HINEG-I is used for the basic neutronics study, such as measurement of nuclear data, validation of neutronics methods and software, validation of radiation protection and so on. HINEG-II aims to generate a high neutron yield of 1013 n/s neutrons by adopting high speed rotating tritium target system integrated with jet/spray array enhanced cooling techniques, and can further upgrade to obtain neutron yield of 1014 1015n/s by using of accelerators-array in a later stage. HINEG-II can be used for fundamentals research of nuclear technology including mechanism of materials radiation damage and neutronics performance of components, radiation shielding as well as other nuclear technology applications.

  14. Development of High Intensity D-T fusion NEutron Generator (HINEG

    Directory of Open Access Journals (Sweden)

    Wu Yican

    2017-01-01

    Full Text Available A high intensity D-T fusion neutron generator (HINEG is keenly needed for the research and development (R&D of nuclear technology and safety of the advanced nuclear energy system, especially for the radiation protection and shielding. The R&D of HINEG includes two phases: HINEG-I and HINEG-II. HINEG-I is designed to have both the steady beam and pulsed beam. The neutron yield of the steady beam is up to 1012 n/s. The width of pulse neutron beam is less than 1.5 ns. HINEG-I is used for the basic neutronics study, such as measurement of nuclear data, validation of neutronics methods and software, validation of radiation protection and so on. HINEG-II aims to generate a high neutron yield of 1013 n/s neutrons by adopting high speed rotating tritium target system integrated with jet/spray array enhanced cooling techniques, and can further upgrade to obtain neutron yield of 1014~1015n/s by using of accelerators-array in a later stage. HINEG-II can be used for fundamentals research of nuclear technology including mechanism of materials radiation damage and neutronics performance of components, radiation shielding as well as other nuclear technology applications.

  15. Temperature effects on the mechanical properties of candidate SNS target container materials after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Mansur, L.K.; Maloy, S.A.; James, M.R.; Johnson, W.R.

    2002-01-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54-2.53 dpa at 30-100 deg. C. Tensile testing was performed at room temperature (20 deg. C) and 164 deg. C. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative hardening in the engineering stress-strain curves. In the EC316LN stainless steel, increasing the test temperature from 20 to 164 deg. C decreased the strength by 13-18% and the ductility by 8-36%. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. A calculation using reduction of area measurements and stress-strain data predicted positive strain hardening during plastic instability

  16. Transferrin-loaded nido-carborane liposomes. Synthesis and intracellular targeting to solid tumors for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Nakamura, Hiroyuki; Miyajima, Yusuke; Kuwata, Yasuhiro; Maruyama, Kazuo; Masunaga, Shinichiro; Ono, Koji

    2006-01-01

    The boron ion cluster lipids, as a double-tailed boron lipid synthesized from heptadecanol, formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO 2 H moieties of PEG-CL liposomes. The biodistribution of Tf-PEG-CL liposomes showed that Tf-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor:blood concentration ratio. A 10 B concentration of 22 ppm in tumor tissues was achieved by the injection of Tf-PEG-CL liposome at 7.2 mg/kg body weight 10 B in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf-PEG-CL liposomes; one of them even survived for 52 days after BNCT. (author)

  17. Numerical study of rotating relativistic stars

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    The equations of structure for rotating stars in general relativity are presented and put in a form suitable for computer calculations. The results of equilibrium calculations for supermassive stars, neutron stars, and magnetically supported stars are reported, as are calculations of collapsing, rotating, and magnetized stars in the slowly changing gravitational field approximation. (auth)

  18. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  19. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  20. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  1. Temperature Effects on the Mechanical Properties of Candidate SNS Target Container Materials after Proton and Neutron Irradiation; TOPICAL

    International Nuclear Information System (INIS)

    Byun, T.S.

    2001-01-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54 to 2.53 dpa. Irradiation temperatures were in the range 30 to 100 C. Tensile testing was performed at room temperature (20 C) and 164 C to study the effects of test temperature on the tensile properties. Test materials displayed significant radiation-induced hardening and loss of ductility due to irradiation. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative strain hardening. In the EC316LN stainless steel, increasing the test temperature from 20 C to 164 C decreased the strength by 13 to 18% and the ductility by 8 to 36%. The tensile data for the EC316LN stainless steel irradiated in spallation conditions were in line with the values in a database for 316 stainless steels for doses up to 1 dpa irradiated in fission reactors at temperatures below 200 C. However, extra strengthening induced by helium and hydrogen contents is evident in some specimens irradiated to above about 1 dpa. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. It was estimated that the 316 stainless steels would retain more than 1% true stains to necking at 164 C after irradiation to 5 dpa. A calculation using reduction of area (RA) measurements and stress-strain data predicted positive strain hardening during plastic instability

  2. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    International Nuclear Information System (INIS)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-01-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  3. 2010 American Conference on Neutron Scattering (ACNS 2010)

    Energy Technology Data Exchange (ETDEWEB)

    Billinge, Simon

    2011-06-17

    The ACNS provides a focal point for the national neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as “would-be” neutron users. The American Conference on Neutron Scattering thus serves a dual role as a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. As a “super-user” meeting, the ACNS fulfills the main objectives of users' meetings previously held periodically at individual national neutron facilities, with the advantage of a larger and more diverse audience. To this end, each of the major national neutron facilities (NIST, LANSCE, HFIR and SNS) have an opportunity to exchange information and update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities. For many of the national facilities, this super-user meeting should obviate the need for separate user meetings that tax the time, energy and budgets of facility staff and the users alike, at least in years when the ACNS is held. We rely upon strong participation from the national facilities. The NSSA intends that the American Conference on Neutron Scattering (ACNS) will occur approximately every two years, but not in years that coincide with the International or European Conferences on Neutron Scattering. The ACNS is to be held in association with one of the national neutron centers in a rotating sequence, with the host facility providing local

  4. Design of the 50 kW neutron converter for SPIRAL2 facility

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, M.S. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, SB RAS (Russian Federation); Tecchio, L.B., E-mail: tecchio@lnl.infn.i [Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Titov, A.T. [Boreskov Institute of Catalysis, 630090 Novosibirsk, SB RAS (Russian Federation); Tsybulya, V.S. [Trofimuk Institute of Geology, 630090 Novosibirsk, SB RAS (Russian Federation); Zhmurikov, E.I. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, SB RAS (Russian Federation)

    2010-06-21

    SPIRAL2 is a facility for the study of fundamental nuclear physics and multidisciplinary research. SPIRAL2 represents a major advance for research on exotic nuclei. The radioactive ion beam (RIB) production system is comprised of a neutron converter, a target and an ion source. This paper is dedicated to the designing of the 50 kW neutron converter for the SPIRAL2 facility. Among the different variants of the neutron converter, the one based on a rotating solid disk seems quite attractive due to its safety, ease in production and relatively low cost. Dense graphite used as the converter's material allows the production of high-intensity neutron flux and, at the same time, the heat removal from the converter by means of radiation cooling. Thermo-mechanical simulations performed in order to determine the basic geometry and physical characteristics of the neutron production target for SPIRAL2 facility, to define the appropriate beam power distribution, and to predict the target behaviour under the deuteron beam of nominal parameters (40 MeV, 1.2 mA, 50 kW) are presented. To study the main physical and mechanical properties and serviceability under operating conditions, several kinds of graphite have been analyzed and tested. The paper reports the results of such measurements. Radiation damage is the most important issue for the application of graphite as neutron converter. It is well known that the thermal conductivity of the neutron-irradiated graphite is reduced by a factor of 10 from the initial value after irradiation. Difference in volume expansions between the matrix and the fiber results in serious damage of neutron-irradiated C/C composites. Calculations showed that at high temperature the effect of neutron radiation is not so critical and that the change in thermal conductivity does not prevent the use of graphite as neutron converter.

  5. Design of the 50 kW neutron converter for SPIRAL2 facility

    International Nuclear Information System (INIS)

    Avilov, M.S.; Tecchio, L.B.; Titov, A.T.; Tsybulya, V.S.; Zhmurikov, E.I.

    2010-01-01

    SPIRAL2 is a facility for the study of fundamental nuclear physics and multidisciplinary research. SPIRAL2 represents a major advance for research on exotic nuclei. The radioactive ion beam (RIB) production system is comprised of a neutron converter, a target and an ion source. This paper is dedicated to the designing of the 50 kW neutron converter for the SPIRAL2 facility. Among the different variants of the neutron converter, the one based on a rotating solid disk seems quite attractive due to its safety, ease in production and relatively low cost. Dense graphite used as the converter's material allows the production of high-intensity neutron flux and, at the same time, the heat removal from the converter by means of radiation cooling. Thermo-mechanical simulations performed in order to determine the basic geometry and physical characteristics of the neutron production target for SPIRAL2 facility, to define the appropriate beam power distribution, and to predict the target behaviour under the deuteron beam of nominal parameters (40 MeV, 1.2 mA, 50 kW) are presented. To study the main physical and mechanical properties and serviceability under operating conditions, several kinds of graphite have been analyzed and tested. The paper reports the results of such measurements. Radiation damage is the most important issue for the application of graphite as neutron converter. It is well known that the thermal conductivity of the neutron-irradiated graphite is reduced by a factor of 10 from the initial value after irradiation. Difference in volume expansions between the matrix and the fiber results in serious damage of neutron-irradiated C/C composites. Calculations showed that at high temperature the effect of neutron radiation is not so critical and that the change in thermal conductivity does not prevent the use of graphite as neutron converter.

  6. A Wide Spectrum Neutron Polarizer for a Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.

    1994-01-01

    A wide spectrum neutron polarizer for a pulsed neutron source is considered. The polarizer is made in a form of a set of magnetized mirrors placed on a drum. Homogeneous rotation of the polarizer is synchronized with the power pulses of the neutron source. The polarizer may be utilized in a collimated neutron beam with cross section of the order of magnitude of 100 cm 2 within a wavelength from 2 up to 20 A on sources with a pulse repetition frequency up to 50 Hz. (author). 5 refs.; 3 figs

  7. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  8. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  9. Multipurpose intense 14 MeV neutron source at Bratislava: Design study

    International Nuclear Information System (INIS)

    Pivarc, J.; Hlavac, S.; Kral, J.; Oblozinsky, P.; Ribansky, I.; Turzo, I.

    1980-05-01

    The present state of design of the multipurpose intense 14 MeV neutron source based on a D + ion beam and a metal tritide target is reported. It is essentially a 300 keV electrostatic air insulated accelerator capable to accelerate a deuterium ion beam up to 10 mA. With such a beam and a beam spot of 1 cm 2 , a neutron yield typically 10 12 n/s and a useful target lifetime of around 10 h are expected. Various users requirements are met by means of three beam lines: an intense, low current dc and a low current fast pulsed. The key components of the intense source section are the rotating target and the ion source. The rotating target is proposed, with respect of the heat dissipation and the removal of 3 kW/cm 2 , in continuous operation. A rotation speed up to 1100 rpm is considered. The ion source should deliver about 0.5 kW of extracted D + ion beam power. A duoplasmatron source with an electrostatic beam focusing system has been selected. Low current sections of the neutron source may operate with a high frequency ion source as well. The dc section for maximum yields around 10 10 n/s is designed with special regard to beam monitoring. The fast pulsed section should produce up to 1 ns compressible pulsed D + ion beam on a target spot with 5 MHz repetition rate. The report includes information about other components of the neutron source as a high voltage power supply, a vacuum system, beam transport, a diagnostic and control system and basic information about neutron source cells and radiation protection. (author)

  10. An electroamalgamation approach to separate 47Sc from neutron activated CaO target for use in cancer theranostics

    International Nuclear Information System (INIS)

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2016-01-01

    Over the last few years, 47 Sc has attracted significant attention for potential use in cancer theranostics due to its favorable nuclear decay characteristics (t 1/2 = 3.35 d; average β energy, 162 keV; Eγ, 159 keV). No-carrier-added (NCA) 47 Sc can be produced via the 46 Ca(n,γ)→ 47 Sc reaction in a nuclear reactor. For this purpose, 1 mg of CaO (98 % enrichment of 46 Ca) target was irradiated for 7 d at a flux of 1 × 10 14 n.cm -2 .s -1 at the Dhruva reactor of our research centre. The irradiated target was dissolved in 5 ml of 1 M HCl inside a lead shielded facility. The resultant solution was evaporated to near dryness, reconstituted in 20 ml of 0.15 M lithium citrate solution and transferred to the electrochemical cell. The electrochemical separation involved selective amalgamation of Ca from Ca/Sc mixture into mercury-pool cathode. The influence of different experimental parameters (such as applied potential, pH of the electrolyte, time of electrolysis and amount of Ca 2+ ions in the electrolyte) on the separation process was investigated and optimized for the quantitative electroamalgamation of Ca

  11. Effect of Projectile Rotation Rate on Lateral Effect of PELE Penetrating Reinforced Concrete Target%弹丸转速对PELE侵彻钢筋混凝土靶横向效应的影响

    Institute of Scientific and Technical Information of China (English)

    何俊; 徐立志; 程春; 郑绍君; 杜忠华; 蒋洪章

    2017-01-01

    为了研究弹丸转速对横向效应增强型侵彻体(PELE)侵彻钢筋混凝土靶横向效应的影响,运用ANSYS/LS-DYNA软件在着靶速度600、700和800m/s条件下,对具有不同转速的PELE侵彻钢筋混凝土靶进行数值模拟,并通过试验方法对不同着靶条件下的仿真模型进行验证.结果表明,开孔尺寸的数值模拟结果与实验结果之间的误差小于5%,仿真模型能够准确模拟PELE侵彻钢筋混凝土靶的过程;随着转速的不断提高,损失更多的转速动能转化为钢筋混凝土靶开孔破坏所需的能量,使钢筋混凝土靶的开孔尺寸增大;在同一着靶速度下,转速从10000r/min提高至25000r/min,开孔尺寸提高了约(8±2)%.因此,在同一着靶速度下,增加弹丸转速有利于提高PELE对钢筋混凝土靶的开孔尺寸.%To study the effect of projectile rotation rate on the lateral effect of penetrator with enhanced lateral effects (PELE)penetrating reinforced concrete target, the numerical simulation of PELE penetrating reinforced concrete target with different rotation rates was performed under the condition of three impact target velocities of 600,700 and 800m/s,and the simulation model under the conditions of different impact target was verified by testing method.The results show that the error of opening size between the simulation results and the experimental ones is less than 5%, showing that the simulation model can accurately simulate the process of PELE penetrating reinforced concrete target.With increasing the rotation rate, more rotation rate kinetic energy lost translates into the energy that used to break the reinforced concrete target and make the opening size of reinforced concrete target increase.Under the same impact target velocity, opening size is improved by (8±2)% when the rotation rate increases from 10000r/min to 25000r/min.Therefore, increasing projectile rotation rate is beneficial to improve the opening size of the PELE penetrating

  12. Coupled moderator neutronics

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-01-01

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source

  13. Neutronic and thermal-hydraulic analysis of devices for irradiation of LEU targets type of UALx-Al and U-Ni to production of 99Mo in reactor IEA-R1 and RMB

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2014-01-01

    In this work neutronic and thermal-hydraulic analyses were made to compare three types of targets (UAl 2 -Al, U-Ni cylindrical and U-Ni plate) used for the production of 99 Mo by fission of 235 U. Some experiments were conducted to validate the neutronic and thermal-hydraulics methodologies used in this work. For the neutronic calculations the computational programs NJOY99.0, AMPX-II and HAMMERTECHNION were used to generate the cross sections. SCALE 6.0 and CITATION computational programs were used for three-dimensional calculations of the reactor cores, fuel burning and the production of 99 Mo. The computational programs MTRCR-IEAR1 and ANSYS CFX were used to calculate the thermal and hydraulic parameters of the irradiation devices and for comparing them to limits and design criteria. First were performed neutronic and thermal-hydraulic analyzes for the reactor IEA-R1 with the targets of UAl 2 -Al (10 mini plates). Analyses have shown that the total activity obtained for 99 Mo on the mini plates does not meet the demand of Brazilian hospitals (450 Ci/week) and that no limit of thermo-hydraulic design is overtaken. Next, the same calculations were performed for the three target types in Multipurpose Brazilian Reactor (MBR). The neutronic analyzes demonstrated that the three targets meet the demand of Brazilian hospitals. The thermal hydraulic analysis shows that a minimum speed of 7 m/s for the target UAl 2 -Al, 8 m/s for the cylindrical target U-Ni and 9 m/s for the target U-Ni plate will be necessary in the irradiation device to not exceed the design limits. Were performed experiments using a test bench for validate the methodologies for the thermal-hydraulic calculation. The experiments performed to validate the neutronic calculations were made in the reactor IPEN/MB-01. All experiments were simulated with the methodologies described above and the results compared. The simulations results showed good agreement with experimental results. (author)

  14. Fast neutron dosimetry. Progress report, 1 July 1983-30 June 1984

    International Nuclear Information System (INIS)

    Attix, F.H.

    1984-08-01

    Progress was made in several anticipated areas and a few rather unexpected ones. Development and testing of the hemispherical LET was completed. At Wisconsin and at the Rotating Target Neutron Source-Model I, Lawrence Livermore National Laboratory (LLNL), this counter was used to measure LET spectra in lead, carbon, and A-150 plastic. An anticipated design goal to directly measure kerma by particle type was met. Alpha-particle production and kerma in carbon were measured at several neutron energies from 14.1- to 15-MeV neutron energy. To supplement these kerma factor measurements, carbon and A-150 plastic kerma factor calculations were performed in the same neutron energy regions. Various microscopic cross sections were used in this effort to study the observed energy dependence. Calculations of LET spectra for A-150 plastic and carbon were also carried out

  15. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  16. The Clatterbridge high-energy neutron therapy facility: specification and performance

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Blake, S.W.; Shaw, J.E.; Bewley, D.K.

    1988-01-01

    A high energy neutron therapy facility has been installed at the Douglas Cyclotron Centre, Clatterbridge Hospital Merseyside, to extend M.R.C. clinical trials of fast neutrons. The neutron beam is produced by bombarding a beryllium target with 62 MeV protons. The target is isocentrically mounted with potential for 360 0 rotation, with a fully variable collimator, giving a range of rectilinear field sizes from 5 cm x 5 cm to 30 cm x 30 cm. Basic neutron beam data including output, field flatness, penumbra and depth-dose data have been measured. For a 10 cm x 10 cm field, 50% depth dose occurs at 16.2 cm in water and output is 1.63 cGy μ A -1 min -1 at maximum dose depth. Effectiveness of the target shielding and neutron-induced radioactivity in the treatment head were also measured. It is concluded that the equipment meets design specifications and fully satisfies criticisms of earlier neutron therapy equipment. A full radiation survey showed that radiation levels present no significant staff hazard. (UK)

  17. Postirradiation evaluations of capsules HANS-1 and HANS-2 irradiated in the HFIR target region in support of fuel development for the advanced neutron source

    International Nuclear Information System (INIS)

    Hofman, G.L.; Snelgrove, J.L.; Copeland, G.L.

    1995-08-01

    This report describes the design, fabrication, irradiation, and evaluation of two capsule tests containing U 3 Si 2 fuel particles in contact with aluminum. The tests were in support of fuel qualification for the Advanced Neutron Source (ANS) reactor, a high-powered research reactor that was planned for the Oak Ridge National Laboratory. At the time of these tests, the fuel consisted of U 3 Si 2 , containing highly enriched uranium dispersed in aluminum at a volume fraction of ∼0.15. The extremely high thermal flux in the target region of the High Flux Isotope Reactor provided up to 90% burnup in one 23-d cycle. Temperatures up to 450 degrees C were maintained by gamma heating. Passive SiC temperature monitors were employed. The very small specimen size allowed only microstructural examination of the fuel particles but also allowed many specimens to be tested at a range of temperatures. The determination of fission gas bubble morphology by microstructural examination has been beneficial in developing a fuel performance model that allows prediction of fuel performance under these extreme conditions. The results indicate that performance of the reference fuel would be satisfactory under the ANS conditions. In addition to U 3 Si 2 , particles of U 3 Si, UAl 2 , UAl x , and U 3 O 8 were tested

  18. A low background pulsed neutron polyenergetic beam

    International Nuclear Information System (INIS)

    Adib, M.; Abdelkawy, A.; Habib, N.; abuelela, M.; Wahba, M.; kilany, M.; Kalebebin, S.M.

    1992-01-01

    A low background pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a rotor and rotating collimator suspended in magnetic fields. Each of them is mounted on its mobile platform and whose centres are 66 cm apart, rotating synchronously at speeds up to 16000 rpm. It was found that the neutron burst produced by the rotor with almost 100% transmission passes through the collimator, when the rotation phase between them is 28.8 degree Moreover the background level achieved at the detector position is low, constant and free from peaks due to gamma rays and fast neutrons accompanying the reactor thermal beam.3 fig

  19. Neutron Research in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho

    2005-01-01

    HANARO (High-flux Advanced Neutron Application Reactor), which was designed and constructed by indigenous technology, is a world-class multi-purpose research reactor with a design thermal power of 30 MW, providing high neutron flux for various applications in Korea. HANARO has been operated since its first criticality in February 1995, and is now successfully utilized in such areas as neutron beam research, fuel and materials tests, radioisotopes and radiopharmaceuticals production, neutron activation analysis, and neutron transmutation doping, etc. A number of experimental facilities have been developed and installed since the beginning of reactor operation, and R and D activities for installing more facilities are actively under progress. Three flux traps in the core (CT, IR1, IR2), providing a high fast neutron flux, can be used for materials and fuel irradiation tests. They are also proper for production of high specific activity radioisotopes. Four vertical holes in the outer core region, abundant in epithermal neutrons, are used for fuel or material tests and radioisotope production. In the heavy water reflector region, 25 vertical holes with high quality thermal neutrons are located for radioisotope production, neutron activation analysis, neutron transmutation doping and cold neutron source installation. The two largest holes named NTD1 and NTD2 are for neutron transmutation doping, CNS for the cold neutron source installation, and LH for the irradiation of large targets. The high resolution powder diffractometer (HRPD) became operational in 1998, followed by the four circle diffractometer (FCD) in 1999, the residual stress instrument (RSI) in 2000, and the small angle neutron spectrometer (SANS) in 2001, respectively. HRPD and SANS became the most popular instruments these days, attracting wide range of users from academia, institutes and industries. We have made a lot of efforts during the last 10 years to develop some key components such as

  20. Two-layer targets for the D-D reaction

    International Nuclear Information System (INIS)

    Dekhtyar, M.I.; Primenko, G.I.; Strizhak, V.I.

    1980-01-01

    Neutron concentration and neutron output from twolayer loading target during deuteron beam braking in first layer of target is studied theoretically. Struggling effect on neutron output is discussed [ru