WorldWideScience

Sample records for rotating machine rotor

  1. Vibration attenuation of rotating machines by application of magnetorheological dampers to minimize energy losses in the rotor support

    Science.gov (United States)

    Zapoměl, J.; Ferfecki, P.

    2016-09-01

    A frequently used technological solution for minimization of undesirable effects caused by vibration of rotating machines consists in placing damping devices in the rotor supports. The application of magnetorheological squeeze film dampers enables their optimum performance to be achieved in a wide range of rotating speeds by adapting their damping effect to the current operating conditions. The damping force, which is produced by squeezing the layer of magnetorheological oil, can be controlled by changing magnetic flux passing through the lubricant. The force acting between the rotor and its frame is transmitted through the rolling element bearing, the lubricating layer and the squirrel spring. The loading of the bearing produces a time variable friction moment, energy losses, uneven rotor running, and has an influence on the rotor service life and the current fluctuation in electric circuits. The carried out research consisted in the development of a mathematical model of a magnetorheological squeeze film damper, its implementation into the computational models of rotor systems, and in performing the study on the dependence of the energy losses and variation of the friction moment on the damping force and its control. The new and computationally stable mathematical model of a magnetorheological squeeze film damper, its implementation in the computational models of rigid rotors and learning more on the energy losses generated in the rotor supports in dependence on the damping effect are the principal contributions of this paper. The results of the computational simulations prove that a suitable control of the damping force enables the energy losses to be reduced in a wide velocity range.

  2. Comments on Frequency Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/bearing/seal Systems and Fluid Handling Machines

    Science.gov (United States)

    Muszynska, Agnes; Bently, Donald E.

    1991-01-01

    Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.

  3. System and method for smoothing a salient rotor in electrical machines

    Science.gov (United States)

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.

    2016-12-13

    An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.

  4. THE ASYNCHRONOUS MACHINE WITH THE MASSIVE FERROMAGNETIC ROTOR AND CAPACITOR EXCITATION

    Directory of Open Access Journals (Sweden)

    Birladean A.A.

    2010-04-01

    Full Text Available An asynchronous machine with a massive ferromagnetic rotor of the various designs, improving its energy indicators is considered. Elaboration and experimental tests results of the asynchronous machine working in a generating mode at the lowered speed of rotation of a massive ferromagnetic rotor are presented. Conditions and possibilities of the asynchronous generator creation with capacitor excitation on the basis of the asynchronous machine with a massive rotor are shown as well.

  5. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  6. Substantially parallel flux uncluttered rotor machines

    Science.gov (United States)

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  7. Impedance Calculations of Induction Machine Rotor Conductors ...

    African Journals Online (AJOL)

    The exact calculation of the impedance of induction machine rotor conductors at several operating frequencies are necessary if the dynamic behaviour of the machine is to give a good correlation between the simulated starting torque and current and the experimental results. This paper describes a method of' calculating ...

  8. An experimental study of rotational pressure loss in rotor-stator gap

    Directory of Open Access Journals (Sweden)

    Yew Chuan Chong

    2017-06-01

    Full Text Available The annular gap between rotor and stator is an inevitable flow path of a throughflow ventilated electrical machine, but the flow entering the rotor-stator gap is subjected to the effects of rotation. The pressure loss and volumetric flow rate across the rotor-stator gap were measured and compared between rotating and stationary conditions. The experimental measurements found that the flow entering the rotor-stator gap is affected by an additional pressure loss. In the present study, the rotational pressure loss at the entrance of rotor-stator gap is characterised. Based upon dimensional analysis, the coefficient of entrance loss can be correlated with a dimensionless parameter, i.e. rotation ratio. The investigation leads to an original correlation for the entrance loss coefficient of rotor-stator gap arisen from the Coriolis and centrifugal effects in rotating reference frame.

  9. rotor of the SC rotating condenser

    CERN Multimedia

    1974-01-01

    The rotor of the rotating condenser was installed instead of the tuning fork as the modulating element of the radiofrequency system, when the SC accelerator underwent extensive improvements between 1973 to 1975 (see object AC-025). The SC was the first accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990.

  10. Wireless Monitoring of Induction Machine Rotor Physical Variables

    Directory of Open Access Journals (Sweden)

    Jefferson Doolan Fernandes

    2017-11-01

    Full Text Available With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s and value(s that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20, as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  11. Wireless Monitoring of Induction Machine Rotor Physical Variables.

    Science.gov (United States)

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro

    2017-11-18

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  12. Design of Permanent Magnet Machines with Different Rotor Type

    OpenAIRE

    Tayfun Gundogdu; Guven Komurgoz

    2010-01-01

    This paper presents design, analysis and comparison of the different rotor type permanent magnet machines. The presented machines are designed as having same geometrical dimensions and same materials for comparison. The main machine parameters of interior and exterior rotor type machines including eddy current effect, torque-speed characteristics and magnetic analysis are investigated using MAXWELL program. With this program, the components of the permanent magnet machines can be calculated w...

  13. Calculation in the Field of Segmental Rotor Machines Taking into ...

    African Journals Online (AJOL)

    The stator mmf over a segment of the segmental rotor reluctance machine is treated as an infinite array of generators feeding a common busbar, and the magnetic potential of the rotor segment is obtained as the potential of the equivalent busbar. The rotor potential for any airgap profile is readily obtained and it is shown ...

  14. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria

    2013-01-01

    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  15. DESIGN EVALUATIONS OF DOUBLE ROTOR SWITCHED RELUCTANCE MACHINE

    Directory of Open Access Journals (Sweden)

    C.V. ARAVIND

    2016-02-01

    Full Text Available The absence of magnets makes the reluctance machine typical for low cogging operations with the torque depending on the stator rotor interaction area. The air gap between stator pole and rotor pole gives a huge effect on the reluctance variation. The primitive double rotor switched reluctance machine lags to improvise the effect of the ripple value though the torque density is higher compared to conventional machines. An optimised circular hole position and dimensioned in the stator pole of lowers the torque ripple and reduce the acoustic noise as presented in this paper. A comparative evaluation of the conventional double rotor machine with this improved structure is done through numerical design and evaluations for the same sizing. It is found that the motor constant square density. It is found that the double rotor switched reluctance machine is improved by 140% to conventional machine.

  16. Recycling rotating electrical machines

    Directory of Open Access Journals (Sweden)

    Rafael Hernández-Millán

    2017-01-01

    Full Text Available Este trabajo establece los principios de diseño para el reciclaje de máquinas eléctricas rotativas (sincrónicas y de inducción, en otras palabras, las máquinas eléctricas y sus componentes pueden ser reutilizados. Además, se cubren temas tecnológicos surgidos de las siguientes componentes de la máquina: núcleo del estator y rotor, devanados del estator y rotor, cojinetes, ejes, y carcasas. Los principios de diseño discutidos pueden extenderse a los transformadores. Este trabajo no consideró materiales de aislamiento en devanados de alta tensión. La economía de reciclaje no se discute ni consecuencias ambientales. Las máquinas rotativas consideradas en el presente estudio son de un rango de potencia entre 0,1 kW a 400 kW, frecuencias de 50 hertz y 60 hertz y polos 2, 4 y 6, aunque los conceptos generales podrían aplicarse a otras máquinas. Se discuten las normas de máquina necesarios para lograr estos objetivos, que abarca: velocidad, tensión nominal, capacidades, formas, dimensiones, de aislamiento, de los devanados, cojinetes, ejes y carcasas.

  17. Control strategy for permanent magnet synchronous motor with contra-rotating rotors under unbalanced loads condition

    DEFF Research Database (Denmark)

    Cheng, Shuangyin; Luo, Derong; Huang, Shoudao

    2015-01-01

    This study presents an investigation into the control of an axial-flux permanent magnet synchronous machine (PMSM) with contra-rotating rotors fed by a single inverter, which corresponds to two PMSM connected in series. In this study, the mathematic model of the PMSM with contra-rotating rotors i...... water vehicle propulsions. The control strategy is implemented on a DSP 28335 processor featured hardware platform and is tested on a 1.2 kW prototype machine. Experimental results validate the correctness of the analysis and control strategy....... is developed and the instability of the system with unbalanced loads is analysed. Based on the analysis, a control strategy which can keep synchronism of the two rotors under varying load is implemented. In addition, a method for starting the motor reliably is proposed, which is applicable to ship or under...

  18. Modeling of Exterior Rotor Permanent Magnet Machines with Concentrated Windings

    NARCIS (Netherlands)

    Vu Xuan, H.

    2012-01-01

    In this thesis modeling, analysis, design and measurement of exterior rotor permanent magnet (PM) machines with concentrated windings are dealt with. Special attention is paid to slotting effect. The PM machine is integrated in flywheel and used for small-scale ship application. Analytical model and

  19. ANALYSIS OF THE VARIABLE COMPONENT OF MAGNETIC FIELD ON THE ROTATING ROTOR SURFACE OF A TURBOGENERATOR.

    Directory of Open Access Journals (Sweden)

    V.I. Milykh

    2013-10-01

    Full Text Available The most deterministic method for calculating the variable component of the magnetic induction on the surface of the rotating rotor of a powerful turbogenerator is presented . It is based on multiposition numerical field calculations of the magnetic field under the rotor rotation and the stator winding currents change taking into account the real geometry of the electromagnetic system and the core saturation. The harmonic analysis of the separated variable component of the magnetic induction is performed at a number of points on the rotor surface in no-load and rated load modes. The conclusion is made that the classical solution of an analogous problem fails to give adequate results because of too rough assumptions. The method introduced is universal for any electric machines, modes of excitation, and geometrical structures of their design.

  20. A novel rotor design for a hybrid excited synchronous machine

    Directory of Open Access Journals (Sweden)

    Paplicki Piotr

    2017-03-01

    Full Text Available The paper presents three novel rotor design concepts for a three-phase electric controlled permanent magnet synchronous machine (ECPMS-machine with hybrid excitation. The influence of magnets and flux-barriers arrangement on the magnetic field distribution and field-weakening characteristics of the machine is examined, based on a three-dimensional finite element analysis (3D-FEA. Moreover, a prototype rotor design based on a new rotor concept with a good field-weakening capability is presented in detail. Finally, the experimental results of no-load back electromotive force (back-EMF waveforms and field-weakening characteristics versus a control coil current of the machine are reported.

  1. Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy

    Directory of Open Access Journals (Sweden)

    Podgornovs Andrejs

    2014-12-01

    Full Text Available In this paper the electromechanical battery (EMB with synchronous machine is described. Theoretically, if electrical machines rotor stored energy is known, it is possible to reduce the flywheel mass of electromechanical battery. For example, the efficiency of energy recovery (kilowatt-hours out versus kilowatthours in in nowadays appliances exceeds 95 % which is considerably better than of any electrochemical battery, such as lead-acid battery. For the rotor stored energy amount calculation, it is necessary to find all geometrical dimensions of the electrical machine. To achieve this goal the iterative calculation method was used. Electromechanical battery mass was analyzed as a discharge process rotation speed function. Taking into account the rotor stored energy, we can increase the minimum rotation speed thus reducing the electrical machine mass and increasing the flywheel mass, which provides EMB cost reduction. Additionally, the possibilities of using numerical approximation calculations of magnetization curves are discussed. Each iteration of numerical application necessary for the method for rapid calculation is essential when calculating the field problems. Nowadays there are a lot of computer added design programs for electromagnetic field calculation in different types of applications, electrical machines and apparatus. For the electromagnetic field calculation process some more commonly used magnetization curve approximation methods are described, and the machine calculation time is tested for different numbers of calculations.

  2. Rotation of artificial rotor axles in rotary molecular motors.

    Science.gov (United States)

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-10-04

    F 1 - and V 1 -ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F 1 or of V 1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F 1 or V 1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F 1 and V 1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F 1 -FliJ chimera generates only 10% of WT F 1 , the V 1 -FliJ chimera generates torque comparable to that of V 1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F 1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F 1 .

  3. impedance calculations of induction machine rotor conductors.

    African Journals Online (AJOL)

    Dr Obe

    desired steady-state or transient performances of induction machines. INTRODUCTION. For the past 30 years, the dynamic behaviour of induction machines has received a considerable attention in most researched works [1.2, 3.4.5.6]. However, the analysis is based on the simple idealised machine model without deep-bar ...

  4. Synthetic Amplitude Spectrum and Its Extensions for Analyzing the Two Perpendicular Directional Vibration Displacement Signals of a Rotating Rotor

    Directory of Open Access Journals (Sweden)

    Liang Yonggang

    2013-01-01

    Full Text Available Classical Amplitude Spectrum analysis and Full Amplitude Spectrum analysis exhibit deficiencies in analyzing the two perpendicular directional vibration displacement signals of a rotating rotor. The shape of Classical Amplitude Spectrum is influenced by the installing position of its sensor. Neither Classical Amplitude Spectrum nor Full Amplitude Spectrum can indicate the actual radial rotor vibration amplitude on every frequency. Therefore, the previous two methods are not convenient to be used in rotating machine diagnoses. To solve these problems, this paper proposes a new rotor vibration analyzing tool here called Synthetic Amplitude Spectrum (SAS. The paper discusses the principle of SAS analysis, provides the specific making process of SAS, and applies it to two other current important analyzing methods in rotating machine diagnoses, resulting in two SAS extensions. The two extensions include a short-time SAS array tool for rotor vibration time-frequency analysis and a SAS waterfall plot tool for analyzing rotor vibration during machine startup or shutdown. The experiments and theoretical analysis showed that SAS and its two extension methods are not influenced by the installation position of the two sensors, and each amplitude of the spectrums can represent the actual radial rotor vibration amplitude on the frequency.

  5. Performance evaluation of a five-phase modular external rotor PM machine with different rotor poles

    Directory of Open Access Journals (Sweden)

    A.S. Abdel-Khalik

    2012-12-01

    Full Text Available The performance of fault-tolerant modular permanent magnet (PM machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low order harmonics in the stator magneto motive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole (SPP ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional phase model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.

  6. Five-Phase Modular External Rotor PM Machines with Different Rotor Poles: A Comparative Simulation Study

    Directory of Open Access Journals (Sweden)

    A. S. Abdel-Khalik

    2012-01-01

    Full Text Available The performance of fault-tolerant modular permanent magnet machines depends on the proper selection of the pole and slot numbers which result in negligible coupling between phases. The preferred slot and pole number combinations eliminate the effect of low-order harmonics in the stator magnetomotive force and thereby the vibration and stray loss are reduced. In this paper, three external rotor machines with identical machine dimensions are designed with different slots per phase per pole ratios. A simulation study is carried out using finite element analysis to compare the performance of the three machines in terms of machine torque density, ripple torque, core loss, and machine efficiency. A mathematical model based on the conventional-phase-model approach is also used for the comparative study. The simulation study is extended to depict machine performance under fault conditions.

  7. impedance calculations of induction machine rotor conductors.

    African Journals Online (AJOL)

    Dr Obe

    4. Krause.P.C: Lipo, T.A.: Analysis and. Simplified Representations of a Rectifier- inverter indution motor drive. IEEE. Transactions on power Apparatus and systems. Vol. PAS-88. No.5. May 1969. PP. 588-596. 5. Jordan. H.E: Analysis of induction machines in Dynamic systems. I EEE. Transactions on power Apparatus and.

  8. Rotor apparatus for high strength undiffused brushless electric machine

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2006-01-24

    A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). Improvements of a laminated rotor, an end pole structure, and an arrangement of the PM elements for providing an arrangement of the flux paths from the auxiliary field coil assemblies are also disclosed.

  9. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  10. Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery

    Science.gov (United States)

    Lu, Na; Xiao, Zhihuai; Malik, O. P.

    2015-02-01

    State identification to diagnose the condition of rotating machinery is often converted to a classification problem of values of non-dimensional symptom parameters (NSPs). To improve the sensitivity of the NSPs to the changes in machine condition, a novel feature extraction method based on adaptive multiwavelets and the synthetic detection index (SDI) is proposed in this paper. Based on the SDI maximization principle, optimal multiwavelets are searched by genetic algorithms (GAs) from an adaptive multiwavelets library and used for extracting fault features from vibration signals. By the optimal multiwavelets, more sensitive NSPs can be extracted. To examine the effectiveness of the optimal multiwavelets, conventional methods are used for comparison study. The obtained NSPs are fed into K-means classifier to diagnose rotor faults. The results show that the proposed method can effectively improve the sensitivity of the NSPs and achieve a higher discrimination rate for rotor fault diagnosis than the conventional methods.

  11. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    Science.gov (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  12. Planar rotational magnetic micromotors with integrated shaft encoder and magnetic rotor levitation

    Science.gov (United States)

    Guckel, Henry; Christenson, T. R.; Skrobis, K. J.; Klein, J.; Karnowsky, M.

    1994-01-01

    Deep x-ray lithography and electroplating may be combined to form a fabrication tool for micromechanical devices with large structural heights, to 500 micron, and extreme edge acuities, less than 0.1 micron-run-out per 100 micron of height. This process concept which originated in Germany as LIGA may be further extended by adding surface micromachining. This extension permits the fabrication of precision metal and plastic parts which may be assembled into three-dimensional micromechanical components and systems. The processing tool may be used to fabricate devices from ferromagnetic material such as nickel and nickel-iron alloys. These materials when properly heat treated exhibit acceptable magnetic behavior for current to flux conversion and marginal behavior for permanent magnet applications. The tool and materials have been tested via planar, magnetic, rotational micromotor fabrication. Three phase reluctance machines of the 6:4 configuration with 280 micron diameter rotors have been tested and analyzed. Stable rotational speeds to 34,000 rpm with output torques above 10 x 10(exp -9) N-m have been obtained. The behavior is monitored with integrated shaft encoders which are photodiodes which measure the rotor response. Magnetic levitation of the rotor via reluctance forces has been achieved and has reduced frictional torque losses to less than 1 percent of the available torque. The results indicate that high speed limits of these actuators are related to torque ripple. Hysteresis motors with magnetic bearings are under consideration and will produce high speed rotational machines with excellent sensor application potential.

  13. Rotordynamic Analysis for a Turbo-Machine with Fluid-Solid Interaction and Rotation Effects

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2011-01-01

    Full Text Available The rotordynamics and fluid dynamics of a turbo-machine considering the effect of fluid-solid interaction (FSI are numerically investigated using finite element software ADINA. The iterative method is adopted in computation of coupled fields of displacement and fluid. What distinguishes the present study from previous ones is the use of ADINA's rotational meshes and the FSI interface that separates the rotor surface from its surrounding fluid. The rotor's center orbit and frequency response as well as the transient fluid dynamics are obtained with various axial flow speeds. By including real rotating motion of the rotor, this paper presents a better way to solve complicated rotordynamic problems of turbo-machines that are operated in FSI circumstances.

  14. Asynchronous machine rotor speed estimation using a tabulated numerical approach

    Science.gov (United States)

    Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane

    2017-12-01

    This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.

  15. A control strategy for stand-alone wound rotor induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Forchetti, D.G.; Garcia, G.O. [Grupo de Electronica Aplicada (GEA), Universidad Nacional de Rio Cuarto, X5804 BYA Rio Cuarto (Argentina); Solsona, J.A. [Instituto de Investigaciones en Ingenieria Electrica?Alfredo Desages?, Departamento de Ingenieria Electrica y de Computadoras, Universidad Nacional del Sur, Bahia Blanca (Argentina); Valla, M.I. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, 1900 La Plata (Argentina)

    2007-02-15

    A control strategy to regulate the frequency and voltage of a stand-alone wound rotor induction machine is presented. This strategy allows the machine to work as a generator in stand-alone systems (without grid connection) with variable rotor speed. A stator flux-oriented control is proposed using the rotor voltages as actuation variables. Two cascade control loops are used to regulate the stator flux and the rotor currents. A closed loop observer is designed to estimate the machine flux which is necessary to implement these control loops. The proposed control strategy is validated through simulations with satisfactory results. (author)

  16. Rotating electrical machines: Poynting flow

    Science.gov (United States)

    Donaghy-Spargo, C.

    2017-09-01

    This paper presents a complementary approach to the traditional Lorentz and Faraday approaches that are typically adopted in the classroom when teaching the fundamentals of electrical machines—motors and generators. The approach adopted is based upon the Poynting vector, which illustrates the ‘flow’ of electromagnetic energy. It is shown through simple vector analysis that the energy-flux density flow approach can provide insight into the operation of electrical machines and it is also shown that the results are in agreement with conventional Maxwell stress-based theory. The advantage of this approach is its complementary completion of the physical picture regarding the electromechanical energy conversion process—it is also a means of maintaining student interest in this subject and as an unconventional application of the Poynting vector during normal study of electromagnetism.

  17. Comparison of Nested-Loop Rotors in Brushless Doubly-Fed Induction Machines

    NARCIS (Netherlands)

    Wang, X.; Liu, D.; Lahaye, D.J.P.; Polinder, H.; Ferreira, J.A.

    2017-01-01

    The brushless doubly-fed induction machine (DFIM) has great potential as a variable-speed generator for wind turbine applications. This special machine has a richer space-harmonic spectrum due to its special nested-loop rotor construction compared with conventional induction machines. It may result

  18. Rotor for a line start permanent magnet machine

    Science.gov (United States)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  19. Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy

    OpenAIRE

    Podgornovs Andrejs; Sipovichs Antons

    2014-01-01

    In this paper the electromechanical battery (EMB) with synchronous machine is described. Theoretically, if electrical machines rotor stored energy is known, it is possible to reduce the flywheel mass of electromechanical battery. For example, the efficiency of energy recovery (kilowatt-hours out versus kilowatthours in) in nowadays appliances exceeds 95 % which is considerably better than of any electrochemical battery, such as lead-acid battery. For the rotor stored energy amount calculation...

  20. Analysis of indirect rotor field oriented control-based induction machine performance under inaccurate field-oriented condition

    DEFF Research Database (Denmark)

    Liu, Yang; Tao, Geng; Wang, Huai

    2017-01-01

    Indirect rotor field oriented control (IRFOC) plays an important role in the high performance induction machine drives. In the indirect rotor field oriented control — based induction machine adjustable speed control system, the rotor field angle is usually obtained by the rotor angular velocity...... and the slip angular velocity. The rotor angular velocity can be sensed by an encoder with sufficient accuracy. However, the slip angular velocity is affected by the rotor parameters variations and the current control performance degradation especially in the field-weakening region. Therefore, the field angle...

  1. Design and Optimization of a Brushless Wound-Rotor Vernier Machine

    Directory of Open Access Journals (Sweden)

    Qasim Ali

    2018-02-01

    Full Text Available In this paper, a permanent magnet (PM-less, brushless, wound-rotor vernier machine (BL-WRVM is proposed for variable speed applications such as electric vehicles and washing machines. The wound rotor is excited through an already existing brushless topology, which requires a dual inverter configuration to generate an additional subharmonic component in the stator magnetomotive force (MMF. Different from permanent magnet vernier machines (PMVMs, the proposed BL-WRVM provides easy regulation of the rotor flux for variable speed operation. A 24-slot, 4-pole stator, and 44-pole outer rotor were designed, and 2D finite element analysis (FEA was carried out to determine the performance of the proposed machine. To improve the performance of the proposed machine, optimization of the rotor and stator winding turns was done. The optimized model was further analyzed for wide-speed operation, and its performance was then compared with that of an equivalent permanent magnet vernier machine (PMVM. The proposed machine has the advantage of low cost due to its PM-less structure and is suitable for variable speed applications.

  2. Output Enhancement in the Transfer-Field Machine Using Rotor ...

    African Journals Online (AJOL)

    The rotor windings not only give rise to an increase in the induced emf but also augment output by effectively lowering the synchronous reactance of the output winding. The rotor circuit current can be increased by connecting it to a synchronous condenser load, and thereby further increase both the emf and the synchronous ...

  3. Thermal analysis of Double Stator Switched Reluctance Machine (DSSRM with and without a squirrel cage rotor

    Directory of Open Access Journals (Sweden)

    Abbasian Mohammadali

    2017-03-01

    Full Text Available Double Stator Switched Reluctance Machine (DSSRM is a novel switched reluctance machine with limited information about its heat distribution and dissipation. This paper presents a two dimensional (2-D thermal analysis of Double Stator Switched Reluctance Machine (DSSRM to observe actual heat distribution in the parts of the machine, using Finite Element Method (FEM. Two topologies for the rotor of DSSRM are considered, Non-Squirrel Cage Double Stator Switched Reluctance Machine (NSC-DSSRM and Squirrel Cage Double Stator Switched Reluctance Machine (SC-DSSRM. The heat distribution of these two topologies is analyzed, using Computational Fluid Dynamics (CFD. Finally the results are presented and compared.

  4. Analysis of Unbalanced Magnetic Pull in Wound Rotor Induction Machines using Finite Element Analysis – Transient, Motoring and Generating Modes

    DEFF Research Database (Denmark)

    Dorrell, David G.; Hermann, Alexander Niels August; Jensen, Bogi Bech

    2013-01-01

    There has been much literature on unbalanced magnetic pull in various types of electrical machine. This can lead to bearing wear and additional vibrations in the machine. In this paper a wound rotor induction is studied. Finite element analysis studies are conducted when the rotor has 10 % rotor...... eccentricity. The operating conditions are varied so that transient, motoring and doubly-fed induction generator modes are studied. This allows greater understanding of the radial forces involved. Wound rotor induction machines exhibit higher unbalanced magnetic pull than cage induction machines so...

  5. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shouliang Han

    2014-10-01

    Full Text Available The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

  6. Comparison of Nested-Loop Rotors in Brushless Doubly-Fed Induction Machines

    OpenAIRE

    Wang, X.; Liu, D; Lahaye, D.J.P.; Polinder, H.; Ferreira, J. A.

    2017-01-01

    The brushless doubly-fed induction machine (DFIM) has great potential as a variable-speed generator for wind turbine applications. This special machine has a richer space-harmonic spectrum due to its special nested-loop rotor construction compared with conventional induction machines. It may result in higher iron losses, higher torque ripple and more time-harmonics adding to the grid total harmonic distortion (THD). This paper applies the 2D finite element (FE) model to investigate several di...

  7. Characterization of the Rotor Magnetic Field in a Brushless Doubly Fed Induction Machine.

    OpenAIRE

    Blázquez García, Francisco; Veganzones Nicolas, Carlos; Ramírez Prieto, Dionisio; Platero Gaona, Carlos Antonio

    2009-01-01

    The large increase in wind generation could improve the final development of wind systems with brushless doubly-fed induction machines (BDFIM) as an alternative to the doubly-fed asynchronous machines. For this reason, a detailed study of several aspects of the BDFIM design, as well as of its rotor configuration, is absolutely essential. In this paper, the authors present an alternative formulation of the BDFIM operating principle in synchronous mode. Besides the basic equation of the machine...

  8. Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2013-09-01

    Full Text Available Double rotor machine, an electronic continuously variable transmission, has great potential in application of hybrid electric vehicles (HEVs, wind power and marine propulsion. In this paper, an axial magnetic-field-modulated brushless double rotor machine (MFM-BDRM, which can realize the speed decoupling between the shaft of the modulating ring rotor and that of the permanent magnet rotor is proposed. Without brushes and slip rings, the axial MFM-BDRM offers significant advantages such as excellent reliability and high efficiency. Since the number of pole pairs of the stator is not equal to that of the permanent magnet rotor, which differs from the traditional permanent magnet synchronous machine, the operating principle of the MFM-BDRM is deduced. The relations of corresponding speed and toque transmission are analytically discussed. The cogging toque characteristics, especially the order of the cogging torque are mathematically formulated. Matching principle of the number of pole pairs of the stator, that of the permanent magnet rotor and the number of ferromagnetic pole pieces is inferred since it affects MFM-BDRM’s performance greatly, especially in the respect of the cogging torque and electromagnetic torque ripple. The above analyses are assessed with the three-dimensional (3D finite-element method (FEM.

  9. Controlling the quantum rotational dynamics of a driven planar rotor ...

    Indian Academy of Sciences (India)

    Archana Shukla

    quantum dynamics as well. In particular, the efficiency of the phase space barriers towards controlling dynamical tunneling in the system is explored. Our studies are relevant to understanding the role of the chaotic regions in dynamical tunneling and for molecular alignment using bichromatic fields. Keywords. Rigid rotor ...

  10. FAULT DIAGNOSIS IN ROTATING MACHINE USING FULL SPECTRUM OF VIBRATION AND FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    ROGER R. DA SILVA

    2017-11-01

    Full Text Available Industries are always looking for more efficient maintenance systems to minimize machine downtime and productivity liabilities. Among several approaches, artificial intelligence techniques have been increasingly applied to machine diagnosis. Current paper forwards the development of a system for the diagnosis of mechanical faults in the rotating structures of machines, based on fuzzy logic, using rules foregrounded on the full spectrum of the machine´s complex vibration signal. The diagnostic system was developed in Matlab and it was applied to a rotor test rig where different faults were introduced. Results showed that the diagnostic system based on full spectra and fuzzy logic is capable of identifying with precision different types of faults, which have similar half spectrum. The methodology has a great potential to be implemented in predictive maintenance programs in industries and may be expanded to include the identification of other types of faults not covered in the case study under analysis.

  11. Reliability analysis on resonance for low-pressure compressor rotor blade based on least squares support vector machine with leave-one-out cross-validation

    Directory of Open Access Journals (Sweden)

    Haifeng Gao

    2015-04-01

    Full Text Available This research article analyzes the resonant reliability at the rotating speed of 6150.0 r/min for low-pressure compressor rotor blade. The aim is to improve the computational efficiency of reliability analysis. This study applies least squares support vector machine to predict the natural frequencies of the low-pressure compressor rotor blade considered. To build a more stable and reliable least squares support vector machine model, leave-one-out cross-validation is introduced to search for the optimal parameters of least squares support vector machine. Least squares support vector machine with leave-one-out cross-validation is presented to analyze the resonant reliability. Additionally, the modal analysis at the rotating speed of 6150.0 r/min for the rotor blade is considered as a tandem system to simplify the analysis and design process, and the randomness of influence factors on frequencies, such as material properties, structural dimension, and operating condition, is taken into consideration. Back-propagation neural network is compared to verify the proposed approach based on the same training and testing sets as least squares support vector machine with leave-one-out cross-validation. Finally, the statistical results prove that the proposed approach is considered to be effective and feasible and can be applied to structural reliability analysis.

  12. Generalized theory of mixed pole machines with a general rotor configuration

    Directory of Open Access Journals (Sweden)

    Ayman S. Abdel-khalik

    2013-03-01

    Full Text Available This paper introduces a generalized theory for the operation of mixed pole machines (MPMs. The MPM has two stator windings, namely the main winding with pole pairs P1 and the control winding with pole pairs P2. The MPM has shown promise in the field of adjustable speed drives for large machines and in the field of wind energy electrical generation. The operation of MPM relies on the interaction between the two fields produced by the two stator windings through the intermediate action of a specially designed rotor (nested-cage or reluctance rotor. The machine theory is described from a physical aspect rather than mathematical derivations. A simple representation is also presented, from which the machine d–q model can be readily deduced. The effect of mechanical loading on the relative positions of the machine fields is also presented.

  13. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...

  14. Voltage THD Improvement for an Outer Rotor Permanent Magnet Synchronous Machine

    Science.gov (United States)

    de la Cruz, Javier; Ramirez, Juan M.; Leyva, Luis

    2013-08-01

    This article deals with the design of an outer rotor Permanent Magnet Synchronous Machines (PMSM) driven by wind turbines. The Voltage Total Harmonic Distortion (VTHD) is especially addressed, under design parameters' handling, i.e., the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length and the core steel class. Seventy-six cases are simulated and the results provide information useful for designing this kind of machines. The study is conducted on a 5 kW PMSM.

  15. Advanced Model of Squirrel Cage Induction Machine for Broken Rotor Bars Fault Using Multi Indicators

    Directory of Open Access Journals (Sweden)

    Ilias Ouachtouk

    2016-01-01

    Full Text Available Squirrel cage induction machine are the most commonly used electrical drives, but like any other machine, they are vulnerable to faults. Among the widespread failures of the induction machine there are rotor faults. This paper focuses on the detection of broken rotor bars fault using multi-indicator. However, diagnostics of asynchronous machine rotor faults can be accomplished by analysing the anomalies of machine local variable such as torque, magnetic flux, stator current and neutral voltage signature analysis. The aim of this research is to summarize the existing models and to develop new models of squirrel cage induction motors with consideration of the neutral voltage and to study the effect of broken rotor bars on the different electrical quantities such as the park currents, torque, stator currents and neutral voltage. The performance of the model was assessed by comparing the simulation and experimental results. The obtained results show the effectiveness of the model, and allow detection and diagnosis of these defects.

  16. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2012-03-01

    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  17. Influence of rotor design on performance of PM machines for heavy-duty traction applications

    NARCIS (Netherlands)

    Jacob, J.; Paulides, J.J.H.; Lomonova, E.

    2014-01-01

    Purpose - The purpose of this paper is to study the performance and efficiency of two different permanent magnet (PM) machine rotor configurations under magnetic core saturation conditions. Design/methodology/approach - Since the accuracy of conventional analytical methods is limited under

  18. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Reluctance Wind Generator (SRWG) based on Extreme Learning Machine (ELM) which could build a nonlinear mapping between flux linkage-current and rotor position. The learning data are derived from magnetization curves of the SRWG which are obtained from Finite Element Analysis (FEA) of an SRG with 8/6 stator...

  19. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    Science.gov (United States)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  20. A 3D finite element model for the vibration analysis of asymmetric rotating machines

    Science.gov (United States)

    Lazarus, A.; Prabel, B.; Combescure, D.

    2010-08-01

    This paper suggests a 3D finite element method based on the modal theory in order to analyse linear periodically time-varying systems. Presentation of the method is given through the particular case of asymmetric rotating machines. First, Hill governing equations of asymmetric rotating oscillators with two degrees of freedom are investigated. These differential equations with periodic coefficients are solved with classic Floquet theory leading to parametric quasimodes. These mathematical entities are found to have the same fundamental properties as classic eigenmodes, but contain several harmonics possibly responsible for parametric instabilities. Extension to the vibration analysis (stability, frequency spectrum) of asymmetric rotating machines with multiple degrees of freedom is achieved with a fully 3D finite element model including stator and rotor coupling. Due to Hill expansion, the usual degrees of freedom are duplicated and associated with the relevant harmonic of the Floquet solutions in the frequency domain. Parametric quasimodes as well as steady-state response of the whole system are ingeniously computed with a component-mode synthesis method. Finally, experimental investigations are performed on a test rig composed of an asymmetric rotor running on nonisotropic supports. Numerical and experimental results are compared to highlight the potential of the numerical method.

  1. Frequency Dependent PD-pulse Distortion in Rotating Machines

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens

    1996-01-01

    at the machine terminals. The results show a variation of the attenuation of the discharge pulses inside the machine of about 20 dB highest for pulses from the far end, i.e. the neutral point. The capability of exact localization of the discharges in the winding gives a correct measure of the range...... of the current transformer based detection method, when being applied to rotating machines. The results are discussed with regard to the practical application of PD detection systems on rotating machines, particularly considering aspects of range and applicability of systems in the HF ranges...

  2. PENGEMBANGAN SISTEM PEMANTAUAN KONDISI UNTUK KESELAMATAN ROTATING MACHINE DI PWR DENGAN MOTOR CURRENT SIGNATURE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Syaiful Bakhri

    2015-03-01

    Full Text Available Pemantauan kondisi rotating machine sangat diperlukan untuk menjamin keselamatan operasi sekaligus untuk meningkatkan efisiensi operasi di PWR. Salah satu teknik pemantauan kondisi terbaik yang dewasa ini dipilih karena mudah, non-invasive dan murah dalam implementasinya adalah Motor Current Signature Analysis (MCSA. Namun sayangnya penelitian aplikasi teknik ini untuk perangkat keras yang compact, low cost, berkelas industri dan layak untuk aplikasi pembangkit daya bertenaga nuklir sangat terbatas. Penelitian ini bertujuan untuk mengembangkan metode pemantauan kondisi berbasis MCSA dengan perangkat keras berkelas industri yang kompak untuk pembangkit daya tenaga nuklir. Penelitian meliputi aspek pengembangan perangkat keras real-time berbasis FPGA-CompactRIO, pembuatan modul untuk penampil early warning, pengujian unjuk kerja algoritma perangkat kerasnya, analisis spektrum berbagai kerusakan komponen motor elektrik, serta pengujian kinerjanya dalam mendeteksi berbagai kerusakan. Sistem pemantauan mampu mengeksekusi dengan total waktu eksekusi berkisar 164 ms, berhasil mendeteksi spektrum frekuensi berbagai kerusakan di motor induksi seperti stator shorted turn berkisar 75%, rotor broken bar 95%, eccentricity 65%, dan mechanical misalignment 85%, termasuk gangguan catu daya voltage unbalance 100%. Berdasarkan unjuk kerja perangkatnya, sistem pemantauan kondisi rotating machine ini menjadi salah satu alternatif terbaik untuk sistem pemantauan berbagai perangkat pemantauan di reaktor nuklir. Kata kunci : Pemantauan kondisi, rotating machine, Motor Current Signature Analysis (MCSA, Field Programmable Gate Array (FPGA   Condition monitoring of rotating machine is essential to guarantee the safety operation as well as to improve the efficiency of nuclear power plants operations. One of the promising condition monitoring techniques which has been preferred currently since it is simple, non-invasive and inexpensive is Motor Stator Signature Analysis

  3. Design Enhancement and Performance Examination of External Rotor Switched Flux Permanent Magnet Machine for Downhole Application

    Science.gov (United States)

    Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.

    2017-08-01

    The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.

  4. Selected Harvesting Machines For Short Rotation Intensive Culture Biomass Plantations

    Science.gov (United States)

    Sammy Woodfin; Doug Frederick; Bryce Stokes

    1987-01-01

    Three different harvesting systems were observed and analyzed for productivity and costs in a short rotation.intensive culture plantation of 2 to 5 year old sycamore. Individual machines were compared to create an optimum system.

  5. Support vector machine used to diagnose the fault of rotor broken bars of induction motors

    DEFF Research Database (Denmark)

    Zhitong, Cao; Jiazhong, Fang; Hongpingn, Chen

    2003-01-01

    The data-based machine learning is an important aspect of modern intelligent technology, while statistical learning theory (SLT) is a new tool that studies the machine learning methods in the case of a small number of samples. As a common learning method, support vector machine (SVM) is derived...... from the SLT. Here we were done some analogical experiments of the rotor broken bar faults of induction motors used, analyzed the signals of the sample currents with Fourier transform, and constructed the spectrum characteristics from low frequency to high frequency used as learning sample vectors...

  6. Time-Frequency Analysis of Signals Generated by Rotating Machines

    OpenAIRE

    Zetik, R.; D. Kocur

    1999-01-01

    This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO) are defined. Then L-Wigner distribution (LWD) is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machin...

  7. A multi-machine scaling of halo current rotation

    Science.gov (United States)

    Myers, C. E.; Eidietis, N. W.; Gerasimov, S. N.; Gerhardt, S. P.; Granetz, R. S.; Hender, T. C.; Pautasso, G.; Contributors, JET

    2018-01-01

    Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: (1) the machine-specific minimum current quench time, \

  8. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    Science.gov (United States)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  9. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    Science.gov (United States)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  10. Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position.

    Science.gov (United States)

    Ukita, Hiroo; Kawashima, Hiroki

    2010-04-01

    A clockwise rotor and a counterclockwise rotor (a clockwise rotor placed upside down) are linked on the optical axis to control the rotation direction in optical tweezers by displacing the trapping (focus) position. The dependence of optical torque on the trapping position of this linked rotor is analyzed using an upward-directed focused beam as illumination, via an objective lens with a numerical aperture of 1.4, using a ray optics model under the condition that laser light is incident to not only the lower surfaces, but also to the side surfaces of both rotors. The rotation rate in water is also simulated for an SU-8 linked rotor with 20 microm diameter at a laser power of 200 mW, with rotor thickness as a parameter, by balancing the optical torque with the drag force evaluated using computational fluid dynamics. It is confirmed that the rotation direction changes from clockwise to counterclockwise with the displacement of the trapping position, that almost the same rotation speed is possible in both directions, and that both speeds increase, reach a maximum at a rotor thickness of 9 microm, and then decrease as the thickness increases.

  11. ANALYSIS OF HARMONIC COMPOSITION OF THE ALTERNATING MAGNETIC FIELD ASSOCIATED WITH THE ROTATING ROTOR OF TURBOGENERATOR IN THE NO-LOAD AND SHORT-CIRCUITS MODES

    Directory of Open Access Journals (Sweden)

    V. I. Milykh

    2013-12-01

    Full Text Available The method of calculation of the magnetic field alternating component at the surface of the rotating rotor of turbo generator is presented. It is based on multiposition of the numerical calculations of the magnetic field with the rotor turns and changes of currents in the stator winding. Discrete time functions of the alternating component of the magnetic induction are selected in points of the surface . The harmonic analysis is conducted for them. The developed method is universal in terms of excitation modes, designs and the magnetic core saturation. The theory is confirmed by computational researches in the no-load and short circuit modes of large turbo generator. In it, the alternating component of the magnetic induction on the rotor surface in the short-circuit mode is much greater than in the no-load mode. Values and harmonic composition of the alternating component of the magnetic induction differ substantially at different points of the rotor surface. Harmonics are ponderable in the range from the level determined by the phase structure of stator winding to the level determined by the tooth structure of its core. The results obtained are qualitatively fit into the classical notion of oscillatory processes of the magnetic field on the rotor surface, but now the value and harmonic composition of the alternating component of the magnetic induction receive adequate numerical filling. The result of work can be used for designing of a turbogenerators and other synchronous machines.

  12. A Review of Neural Network Based Machine Learning Approaches for Rotor Angle Stability Control

    OpenAIRE

    Yousefian, Reza; Kamalasadan, Sukumar

    2017-01-01

    This paper reviews the current status and challenges of Neural Networks (NNs) based machine learning approaches for modern power grid stability control including their design and implementation methodologies. NNs are widely accepted as Artificial Intelligence (AI) approaches offering an alternative way to control complex and ill-defined problems. In this paper various application of NNs for power system rotor angle stabilization and control problem is discussed. The main focus of this paper i...

  13. Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions

    Science.gov (United States)

    Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.

    2015-01-01

    Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.

  14. Performance comparison between rotor flux-switching and stator flux-switching machines considering local demagnetization

    Science.gov (United States)

    Su, Peng; Hua, Wei

    2017-05-01

    This paper investigates the local permanent magnet (PM) demagnetization characteristics of stator-PM flux-switching (SPM-FS) machine and rotor-PM flux-switching (RPM-FS) machine. The partial demagnetization mechanisms of two machines are analyzed based on a simple magnetic circuit method, and verified by finite-element analysis (FEA). In addition, the performance degradation due to demagnetization effect is evaluated, and a comprehensive comparison of a pair of three-phase prototyped machines is conducted, where the two machines have the same stator outer diameter, stack length and rated current density. The predicted results indicate the demagnetization is generated in the corner parts of PMs near to air-gap for SPM-FS machines, and then the torque performances are degraded, while PMs in RPM-FS machine are hardly influenced by demagnetization effect. Hence, the anti-demagnetization capability of the RPM-FS machine is significantly stronger than that of the SPM-FS machine.

  15. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    National Research Council Canada - National Science Library

    Topor Marcel; Marignetti Fabrizio; Deaconu Sorin Ioan; Tutelea Lucian Nicolae

    2017-01-01

    This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control...

  16. Enhanced method of rotor speed and position estimation of permanent magnet synchronous Machine based on stator SRF-PLL

    Directory of Open Access Journals (Sweden)

    R. Vijayapriya

    2017-10-01

    Full Text Available A stator flux oriented synchronous reference frame - phase locked loop (SRF-PLL is proposed for the precise computation of rotor speed and position of permanent magnet synchronous machine (PMSM. A direct method of rotational speed computation based on the stator electromotive force (EMF is initially formulated. Using the speed as a reference to the inverse Park and Clarke transformation blocks, the three-phase positive sequence stator flux is derived. A pre-stage low pass filter (LPF is implemented to cancel out the ripples in the d-q components of the stator flux introduced by the dynamic operating conditions of inverter non-linearities and grid disturbances. The estimated three-phase positive sequence stator flux is used to compute the rotor position by aligning the total stator flux along the direct axis through a PLL block. Provision of the frequency amendment and ripple cancellation outside the PLL block results in a fast-dynamic response with an enhanced frequency adaptable capability. To validate the effectiveness of the proposed method, the sensorless vector control of grid integrated PMSM based wind-driven generator (WG is analytically verified using the PSCAD/EMTDC simulation tool under various dynamic operating conditions such as wind speed variation and grid disturbances.

  17. Enhanced Central System of the Traversing Rod for High-Performance Rotor Spinning Machines

    Directory of Open Access Journals (Sweden)

    Valtera Jan

    2017-03-01

    Full Text Available The paper deals with the improvement of central traversing system on rotor spinning machines, where rectilinear motion with variable stroke is used. A new system of traversing rod with implemented set of magnetic-mechanical energy accumulators is described. Mathematical model of this system is analysed in the MSC. Software Adams/View and verified by an experimental measurement on a real-length testing rig. Analysis results prove the enhancement of devised traversing system, where the overall dynamic force is reduced considerably. At the same time, the precision of the traversing movement over the machine length is increased. This enables to increase machine operating speed while satisfying both the maximal tensile strength of the traversing rod and also output bobbin size standards. The usage of the developed mathematical model for determination of the optimal number and distribution of accumulators over the traversing rod of optional parameters is proved. The potential of the devised system for high-performance rotor spinning machines with longer traversing rod is also discussed.

  18. Study of Axially-Laminated Anisotropic Rotor Reluctance Synchronous Machine and its Drive

    Science.gov (United States)

    Fu, Zhenxing

    1991-02-01

    This dissertation presents a relatively comprehensive study of 2-pole axially-laminated anisotropic (ALA) rotor reluctance synchronous machine in both motoring and generating modes. The theory, analysis techniques, and vector control strategies developed can be applied to other types of reluctance synchronous machines as well, with or without corresponding modifications. Space phasor models of the machine in stator or rotor coordinates are presented. Steady state performance, such as, maximum power factor and efficiency are studied. Transient torque capabilities for constant stator flux, current, and voltage are investigated together with transient state operations. Analytical determinations of d-axis and q -axis magnetic fields, and the corresponding inductances are presented. FEM numerical magnetic field analysis along the d-axis and q-axis is performed for refined design and parameter estimations. To meet the desired performance and high d-axis to q-axis inductances ratio from axially -laminated anisotropic rotor, multi-slot per phase per pole should be used. Experimental tests of the machine in both motoring and generating modes are performed, a high d-axis to q-axis inductances ratio of 21.3 and a maximum power factor of 0.914 and a maximum efficiency of 94% are obtained. Novel current vector control and torque vector control schemes are developed with extensive digital simulations. Sliding mode controller is used and compared with PI controller. Torque vector control principles and stator flux and torque estimation techniques are presented together with the table of optimal voltage vector switchings. A wide controllable speed range of 0.1 rpm to 5000 rpm (for current vector control) and 0.2 rpm to 12000 rpm (for torque vector control) are obtained. The dynamics of the vector controlled drive are fast and relatively robust. A novel fuzzy knowledge-based sensorless dc output voltage control of ALA-rotor reluctance generator is developed and digitally simulated

  19. Development of testing machine for tunnel inspection using multi-rotor UAV

    Science.gov (United States)

    Iwamoto, Tatsuya; Enaka, Tomoya; Tada, Keijirou

    2017-05-01

    Many concrete structures are deteriorating to dangerous levels throughout Japan. These concrete structures need to be inspected regularly to be sure that they are safe enough to be used. The inspection method for these concrete structures is typically the impact acoustic method. In the impact acoustic method, the worker taps the surface of the concrete with a hammer. Thus, it is necessary to set up scaffolding to access tunnel walls for inspection. Alternatively, aerial work platforms can be used. However, setting up scaffolding and aerial work platforms is not economical with regard to time or money. Therefore, we developed a testing machine using a multirotor UAV for tunnel inspection. This test machine flies by a plurality of rotors, and it is pushed along a concrete wall and moved by using rubber crawlers. The impact acoustic method is used in this testing machine. This testing machine has a hammer to make an impact, and a microphone to acquire the impact sound. The impact sound is converted into an electrical signal and is wirelessly transmitted to the computer. At the same time, the position of the testing machine is measured by image processing using a camera. The weight and dimensions of the testing machine are approximately 1.25 kg and 500 mm by 500 mm by 250 mm, respectively.

  20. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  1. Statistical Capability Study of a Helical Grinding Machine Producing Screw Rotors

    Science.gov (United States)

    Holmes, C. S.; Headley, M.; Hart, P. W.

    2017-08-01

    Screw compressors depend for their efficiency and reliability on the accuracy of the rotors, and therefore on the machinery used in their production. The machinery has evolved over more than half a century in response to customer demands for production accuracy, efficiency, and flexibility, and is now at a high level on all three criteria. Production equipment and processes must be capable of maintaining accuracy over a production run, and this must be assessed statistically under strictly controlled conditions. This paper gives numerical data from such a study of an innovative machine tool and shows that it is possible to meet the demanding statistical capability requirements.

  2. Design Comparison of Inner and Outer Rotor of Permanent Magnet Flux Switching Machine for Electric Bicycle Application

    Science.gov (United States)

    Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.

    2017-08-01

    Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.

  3. Feasibility of using PZT actuators to study the dynamic behavior of a rotating disk due to rotor-stator interaction.

    Science.gov (United States)

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-07-07

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids-air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.

  4. Electron beam machining using rotating and shaped beam power distribution

    Science.gov (United States)

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  5. Electron beam machining using rotating and shaped beam power distribution

    Science.gov (United States)

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  6. Influence of Different Rotor Teeth Shapes on the Performance of Flux Switching Permanent Magnet Machines Used for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2014-12-01

    Full Text Available This paper investigated a 12-slot/11-pole flux switching permanent magnet (FSPM machine used for electric vehicles (EVs. Five novel rotor teeth shapes are proposed and researched to reduce the cogging torque and torque ripple of the FSPM machine. These rotor teeth shapes are notched teeth, stepped teeth, eccentric teeth, combination of notched and stepped teeth, and combination of notched and eccentric teeth. They are applied on the rotor and optimized, respectively. The influences of different rotor teeth shapes on cogging torque, torque ripple and electromagnetic torque are analyzed by the 2-D finite-element method (FEM. Then, the performance of FSPMs with different rotor teeth shapes are compared and evaluated comprehensively from the points of view of cogging torque, torque ripple, electromagnetic torque, flux linkage, back electromotive force (EMF, and so on. The results show that the presented rotor teeth shapes, especially the combination of stepped and notched teeth, can greatly reduce the cogging torque and torque ripple with only slight changes in the average electromagnetic torque.

  7. Research on a new magnetic-field-modulated brushless double-rotor machine with sinusoidal-permeance modulating ring

    Directory of Open Access Journals (Sweden)

    Ping Zheng

    2017-05-01

    Full Text Available The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM, composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs. In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.

  8. Research on a new magnetic-field-modulated brushless double-rotor machine with sinusoidal-permeance modulating ring

    Science.gov (United States)

    Zheng, Ping; Liu, Jiaqi; Bai, Jingang; Song, Zhiyi; Liu, Yong

    2017-05-01

    The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs). In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM) is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.

  9. Development of the six-component rotating shaft balances for counter rotating open rotor testing

    Science.gov (United States)

    Bogdanov, V. V.; Lytov, V. V.; Manvelyan, V. S.

    2016-10-01

    Measurement of total aerodynamic loads acting on airplane's high speed CRORs, is one of the tasks of experimental aerodynamics. A special plant for this task solving was developed in TsAGI. One of the main challenges in the way of solving this problem is to develop a six-component rotating shaft balance (RSB) for the front and rear airscrews of CROR. The substantial stage of the balance development is the choice of the design. A promising design for the RSB was developed. It is a system of 12 non-prismatic beams, which is transmitting loads from the airscrews throughout a rim to a support. The rim connected to an airscrews hub and support rigidly connected to the shaft of VVP. Calculations have shown that this design has several advantages compared to known designs of eight beams.

  10. A data-based technique for monitoring of wound rotor induction machines: A simulation study

    Directory of Open Access Journals (Sweden)

    Fouzi Harrou

    2016-09-01

    Full Text Available Detecting faults induction machines is crucial for a safe operation of these machines. The aim of this paper is to present a statistical fault detection methodology for the detection of faults in three-phase wound rotor induction machines (WRIM. The proposed fault detection approach is based on the use of principal components analysis (PCA. However, conventional PCA-based detection indices, such as the T2 and the Q statistics, are not well suited to detect small faults because these indices only use information from the most recent available samples. Detection of small faults is one of the most crucial and challenging tasks in the area of fault detection and diagnosis. In this paper, a new statistical system monitoring strategy is proposed for detecting changes resulting from small shifts in several variables associated with WRIM. The proposed approach combines modeling using PCA modeling with the exponentially weighted moving average (EWMA control scheme. In the proposed approach, EWMA control scheme is applied on the ignored principal components to detect the presence of faults. The performance of the proposed method is compared with those of the traditional PCA-based fault detection indices. The simulation results clearly show the effectiveness of the proposed method over the conventional ones, especially in the presence of faults with small magnitudes.

  11. A data-based technique for monitoring of wound rotor induction machines: A simulation study

    KAUST Repository

    Harrou, Fouzi

    2016-05-09

    Detecting faults induction machines is crucial for a safe operation of these machines. The aim of this paper is to present a statistical fault detection methodology for the detection of faults in three-phase wound rotor induction machines (WRIM). The proposed fault detection approach is based on the use of principal components analysis (PCA). However, conventional PCA-based detection indices, such as the T2T2 and the Q statistics, are not well suited to detect small faults because these indices only use information from the most recent available samples. Detection of small faults is one of the most crucial and challenging tasks in the area of fault detection and diagnosis. In this paper, a new statistical system monitoring strategy is proposed for detecting changes resulting from small shifts in several variables associated with WRIM. The proposed approach combines modeling using PCA modeling with the exponentially weighted moving average (EWMA) control scheme. In the proposed approach, EWMA control scheme is applied on the ignored principal components to detect the presence of faults. The performance of the proposed method is compared with those of the traditional PCA-based fault detection indices. The simulation results clearly show the effectiveness of the proposed method over the conventional ones, especially in the presence of faults with small magnitudes.

  12. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  13. Research on the Temperature Field of High-Voltage High Power Line Start Permanent Magnet Synchronous Machines with Different Rotor Cage Structure

    Directory of Open Access Journals (Sweden)

    Zhaobin Cao

    2017-11-01

    Full Text Available For line start permanent magnet synchronous machines (LSPMSMs, the eddy current loss in the rotor, which has of significant effects on rotor working temperature, may cause thermal demagnetization to permanent magnet. Therefore, this paper addresses an investigation on the temperature distribution in LSPMSM based on a 6 kV, 315 kW prototype with solid starting cage bar. Firstly, the loss distributions, obtained from a 2-D transient electromagnetic field calculation, are determined as the distributed heat source in thermal analyses. Then, the fluid-thermal coupled analyses are performed, by which the temperature distributions in the machine are determined. Meanwhile, the calculated motor performance is verified via comparison with the measured results. The calculation results show that the temperatures in the rotor core and permanent magnets are relatively high. To find the solution for reducing the rotor working temperature, a rotor air slot structure was proposed in this analysis. The theoretical calculation indicates that the rotor working temperature reduction is obvious with the rotor air slot in the machine. Therefore, the operating situation of solid rotor LSPMSM could be improved effectively with the proposed rotor thermal solution, which also benefits the machine reliability and safety.

  14. THE FUZZY LOGIC BASED POWER INJECTION INTO ROTOR CIRCUIT FOR INSTANTANEOUS HIGH TORQUE AND SPEED CONTROL IN INDUCTION MACHINES

    Directory of Open Access Journals (Sweden)

    Selami KESLER

    2009-01-01

    Full Text Available The power flow of the rotor circuit is controlled by different methods in induction machines used for producing high torque in applications involved great power and constant output power with constant frequency in wind turbines. The voltage with slip frequency can be applied on rotor windings to produce controlled high torque and obtain optimal power factor and speed control. In this study, firstly, the dynamic effects of the voltage applying on rotor windings through the rings in slip-ring induction machines are researched and undesirable aspects of the method are exposed with simulations supported by experiments. Afterwards, a fuzzy logic based inverter model on rotor side is proposed with a view to improving the dynamic effects, controlling high torque producing and adjusting machine speed in instantaneous forced conditions. For the simulation model of the system in which the stator side is directly connected to the grid in steady state operation, a C/C++ algorithm is developed and the results obtained for different load conditions are discussed.

  15. Asymptotic behavior of a rotational population distribution in a molecular quantum-kicked rotor with ideal quantum resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Leo, E-mail: leo-matsuoka@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527 (Japan); Segawa, Etsuo [Graduate School of Information Sciences, Tohoku University, Aoba, Sendai 980-8579 (Japan); Yuki, Kenta [Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527 (Japan); Konno, Norio [Department of Applied Mathematics, Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan); Obata, Nobuaki [Graduate School of Information Sciences, Tohoku University, Aoba, Sendai 980-8579 (Japan)

    2017-06-09

    We performed a mathematical analysis of the time-dependent dynamics of a quantum-kicked rotor implemented in a diatomic molecule under the condition of ideal quantum resonance. We examined a model system featuring a diatomic molecule in a periodic train of terahertz pulses, regarding the molecule as a rigid rotor with the state-dependent transition moment and including the effect of the magnetic quantum number M. We derived the explicit expression for the asymptotic distribution of a rotational population by making the transition matrix correspondent with a sequence of ultraspherical polynomials. The mathematical results obtained were validated by numerical simulations. - Highlights: • The behavior of the molecular quantum-kicked rotor was mathematically investigated. • The matrix elements were made correspondent with the ultraspherical polynomials. • The explicit formula for asymptotic distribution was obtained. • Complete agreement with the numerical simulation was verified.

  16. Refined finite element modelling for the vibration analysis of large rotating machines: Application to the gas turbine modular helium reactor power conversion unit

    Science.gov (United States)

    Combescure, D.; Lazarus, A.

    2008-12-01

    This paper is aimed at presenting refined finite element modelling used for dynamic analysis of large rotating machines. The first part shows an equivalence between several levels of modelling: firstly, models made of beam elements and rigid disc with gyroscopic coupling representing the position of the rotating shaft in an inertial frame; secondly full three-dimensional (3D) or 3D shell models of the rotor and the blades represented in the rotating frame and finally two-dimensional (2D) Fourier model for both rotor and stator. Simple cases are studied to better understand the results given by analysis performed using a rotating frame and the equivalence with the standard calculations with beam elements. Complete analysis of rotating machines can be performed with models in the frames best adapted for each part of the structure. The effects of several defects are analysed and compared with this approach. In the last part of the paper, the modelling approach is applied to the analysis of the large rotating shaft part of the power conversion unit of the GT-MHR nuclear reactor.

  17. Refined finite element modelling for the vibration analysis of large rotating machines: Application to the gas turbine modular helium reactor power conversion unit

    Energy Technology Data Exchange (ETDEWEB)

    Combescure, D.; Lazarus, A. [CEA Saclay, DEN/DM2S/SEMT/DYN, Dynam Anal Lab, Saclay, (France); Lazarus, A. [Ecole Polytech, Mecan Solides Lab, F-91128 Palaiseau, (France)

    2008-07-01

    This paper is aimed at presenting refined finite element modelling used for dynamic analysis of large rotating machines. The first part shows an equivalence between several levels of modelling: firstly, models made of beam elements and rigid disc with gyroscopic coupling representing the position of the rotating shaft in an inertial frame; secondly full three-dimensional (3D) or 3D shell models of the rotor and the blades represented in the rotating frame and finally two-dimensional (2D) Fourier model for both rotor and stator. Simple cases are studied to better understand the results given by analysis performed using a rotating frame and the equivalence with the standard calculations with beam elements. Complete analysis of rotating machines can be performed with models in the frames best adapted for each part of the structure. The effects of several defects are analysed and compared with this approach. In the last part of the paper, the modelling approach is applied to the analysis of the large rotating shaft part of the power conversion unit of the GT-MHR nuclear reactor. (authors)

  18. Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers

    Science.gov (United States)

    Ukita, Hiroo; Ohnishi, Takakazu; Nonohara, Yasunari

    2008-03-01

    The optical torque and the trapping position (focal point) in optical tweezers are analyzed for upward-directed focused laser illumination using a ray optics model, considering that laser light is incident at not only the lower surface but also the side surface of a 3-wing rotor. The viscous drag force due to the pressure and the shearing stress on all surfaces of the rotor is evaluated using computational fluid dynamics. The rotation rate is simulated in water by balancing the optical torque with the drag force, resulting in 500 rpm for an SU-8 rotor with 20 μm diameter at a laser power of 200 mW. The trapping position is estimated to be 7.6 μm in the rotor with an upward-directed laser at 200 mW via an objective lens having a numerical aperture of 1.4. Both the rotation rate and the trapping position agree well with the values obtained in the experiment.

  19. Experimental study on gyroscopic effect of rotating rotor and wind heading angle on floating wind turbine responses

    OpenAIRE

    Bahramiasl, Shabnam; Abbaspour, Madjid; Karimirad, Madjid

    2017-01-01

    Limited fossil resources, daily increasing rate of demand for energy and the environmental pollution fact, have made people revert to renewable sources of energy as a solution. One type of renewable energy is offshore wind energy which has high potential without any sound and visual noises. Recently a lot of researchers have carried out on the issue of offshore wind turbine. Because of incapability of most of software programs to simulate gyroscopic effect of rotating rotors, in this articles...

  20. CFD analysis of rotating two-bladed flatback wind turbine rotor.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, David, CA); Chao, David D.; Berg, Dale E. (University of California, David, CA)

    2008-04-01

    The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

  1. Performance Analysis and Simulation of a Novel Brushless Double Rotor Machine for Power-Split HEV Applications

    Directory of Open Access Journals (Sweden)

    Jingang Bai

    2012-01-01

    Full Text Available A new type of brushless double rotor machine (BDRM is proposed in this paper. The BDRM is an important component in compound-structure permanent-magnet synchronous machine (CS-PMSM systems, which are promising for power-split hybrid electric vehicle (HEV applications. The BDRM can realize the speed adjustment between claw-pole rotor and permanent-magnet rotor without brushes and slip rings. The structural characteristics of the BDRM are described and its magnetic circuit model is built. Reactance parameters of the BDRM are deduced by an analytical method. It is found that the size characteristics of the BDRM are different from those of conventional machines. The new sizing and torque equations are analyzed and the theoretical results are used in the optimization process. Studies of the analytical magnetic circuit and finite element method (FEM model show that the BDRM tends to have high leakage flux and low power factor, and then the method to obtain high power factor is discussed. Furthermore, a practical methodology of the BDRM design is developed, which includes an analytical tool, 2D field calculation and performance evaluation by 3D field calculation. Finally, different topologies of the BDRM are compared and an optimum prototype is designed.

  2. Off-Center Rotation of CuPc Molecular Rotor on a Bi(111 Surface and the Chiral Feature

    Directory of Open Access Journals (Sweden)

    Kai Sun

    2017-05-01

    Full Text Available Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111 surface have been investigated by means of a scanning tunneling microscopy (STM at liquid nitrogen (LN2 temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111 substrate, and the intermolecular van der Waals interactions.

  3. A new vibration mechanism of balancing machine for satellite-borne spinning rotors

    Directory of Open Access Journals (Sweden)

    Wang Qiuxiao

    2014-10-01

    Full Text Available The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors’ low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine’s measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine’s performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite’s rotating payloads in terms of accuracy and stability.

  4. 9th IFToMM International Conference on Rotor Dynamics

    CERN Document Server

    2015-01-01

    This book presents the proceedings of the 9th IFToMM International Conference on Rotor Dynamics. This conference is a premier global event that brings together specialists from the university and industry sectors worldwide in order to promote the exchange of knowledge, ideas, and information on the latest developments and applied technologies in the dynamics of rotating machinery. The coverage is wide ranging, including, for example, new ideas and trends in various aspects of bearing technologies, issues in the analysis of blade dynamic behavior,  condition monitoring of different rotating machines, vibration control, electromechanical and fluid-structure interactions in rotating machinery, rotor dynamics of micro, nano, and cryogenic machines, and applications of rotor dynamics in transportation engineering. Since its inception 32 years ago, the IFToMM International Conference on Rotor Dynamics has become an irreplaceable point of reference for those working in the field, and this book reflects the high qua...

  5. A Two-Disk Extended Jeffcott Rotor Model Distinguishing a Shaft Crack from Other Rotating Asymmetries

    Directory of Open Access Journals (Sweden)

    Xi Wu

    2008-01-01

    Full Text Available A mathematical model of a cracked rotor and an asymmetric rotor with two disks representing a turbine and a generator is utilized to study the vibrations due to imbalance and side load. Nonlinearities typically related with a “breathing” crack are included using a Mayes steering function. Numerical simulations demonstrate how the variations of rotor parameters affect the vibration response and the effect of coupling between torsional and lateral modes. Bode, spectrum, and orbit plots are used to show the differences between the vibration signatures associated with cracked shafts versus asymmetric shafts. Results show how nonlinear lateral-torsional coupling shifts the resonance peaks in the torsional vibration response for cracked shafts and asymmetric rotors. The resonance peaks shift depending on the ratio of the lateral-to-torsional natural frequencies with the peak responses occurring at noninteger values of the lateral natural frequency. When the general nonlinear models used in this study are constrained to reduce to linear torsional vibration, the peak responses occur at commonly reported integer ratios. Full spectrum analyses of the X and Y vibrations reveal distinct vibration characteristics of both cracked and asymmetric rotors including reverse vibration components. Critical speeds and vibration orders predicted using the models presented herein include and extend diagnostic indicators commonly reported.

  6. Dynamic analysis of centrifugal machines rotors supported on ball bearings by combined application of 3D and beam finite element models

    Science.gov (United States)

    Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.

    2017-08-01

    This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.

  7. Rotating electrical machines - Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2000-01-01

    Gives definitions for standard degrees of protection provided by enclosures; protection of machines against harmful effects due to the ingress of water; protection of machines against ingress of solid foreign objects; Protection of persons against contact with or approach to live parts and against contact with moving parts. Gives designations for these protective degrees and tests to verify that the machines meet the requirements.

  8. Rotating electrical machines part 4: methods for determining synchronous machine quantities from tests

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1985-01-01

    Applies to three-phase synchronous machines of 1 kVA rating and larger with rated frequency of not more than 400 Hz and not less than 15 Hz. An appendix gives unconfirmed test methods for determining synchronous machine quantities. Notes: 1 -Tests are not applicable to synchronous machines such as permanent magnet field machines, inductor type machines, etc. 2 -They also apply to brushless machines, but certain variations exist and special precautions should be taken.

  9. Research on a novel axial-flux magnetic-field-modulated brushless double-rotor machine with low axial force and high efficiency

    Directory of Open Access Journals (Sweden)

    Chengde Tong

    2017-05-01

    Full Text Available The axial-flux magnetic-field-modulated brushless double-rotor machine (MFM-BDRM is a possible alternative as a power-split device for hybrid electric vehicles (HEVs. However, the existence of large axial force may lead to assembly problems and rich inner air-gap harmonics could result in high PM loss and low efficiency. This paper proposes a novel axial-flux MFM-BDRM with improved PM rotor structure. 2-D analytical method to predict the magnetic-field distribution of the proposed MFM-BDRM is developed and the design procedure of the proposed machine is illustrated. The impact of key geometrical parameters on axial force and torque is investigated. To evaluate the advantage of the proposed machine, a comparison is made with a conventional one with respect to electromagnetic performances. Results show that the proposed machine is effective in reducing PM eddy loss and axial force by 60% and 35%, respectively.

  10. Research on a novel axial-flux magnetic-field-modulated brushless double-rotor machine with low axial force and high efficiency

    Science.gov (United States)

    Tong, Chengde; Song, Zhiyi; Bai, Jingang; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    The axial-flux magnetic-field-modulated brushless double-rotor machine (MFM-BDRM) is a possible alternative as a power-split device for hybrid electric vehicles (HEVs). However, the existence of large axial force may lead to assembly problems and rich inner air-gap harmonics could result in high PM loss and low efficiency. This paper proposes a novel axial-flux MFM-BDRM with improved PM rotor structure. 2-D analytical method to predict the magnetic-field distribution of the proposed MFM-BDRM is developed and the design procedure of the proposed machine is illustrated. The impact of key geometrical parameters on axial force and torque is investigated. To evaluate the advantage of the proposed machine, a comparison is made with a conventional one with respect to electromagnetic performances. Results show that the proposed machine is effective in reducing PM eddy loss and axial force by 60% and 35%, respectively.

  11. A micro-machined gyroscope for rotating aircraft.

    Science.gov (United States)

    Yan, Qingwen; Zhang, Fuxue; Zhang, Wei

    2012-01-01

    In this paper we present recent work on the design, fabrication by silicon micromachining, and packaging of a new gyroscope for stabilizing the autopilot of rotating aircraft. It operates based on oscillation of the silicon pendulum between two torsion girders for detecting the Coriolis force. The oscillation of the pendulum is initiated by the rolling and deflecting motion of the rotating carrier. Therefore, the frequency and amplitude of the oscillation are proportional to the rolling frequency and deflecting angular rate of the rotating carrier, and are measured by the sensing electrodes. A modulated pulse with constant amplitude and unequal width is obtained by a linearizing process of the gyroscope output signal and used to control the deflection of the rotating aircraft. Experimental results show that the gyroscope has a resolution of 0.008 °/s and a bias of 56.18 °/h.

  12. A Micro-Machined Gyroscope for Rotating Aircraft

    Directory of Open Access Journals (Sweden)

    Fuxue Zhang

    2012-07-01

    Full Text Available In this paper we present recent work on the design, fabrication by silicon micromachining, and packaging of a new gyroscope for stabilizing the autopilot of rotating aircraft. It operates based on oscillation of the silicon pendulum between two torsion girders for detecting the Coriolis force. The oscillation of the pendulum is initiated by the rolling and deflecting motion of the rotating carrier. Therefore, the frequency and amplitude of the oscillation are proportional to the rolling frequency and deflecting angular rate of the rotating carrier, and are measured by the sensing electrodes. A modulated pulse with constant amplitude and unequal width is obtained by a linearizing process of the gyroscope output signal and used to control the deflection of the rotating aircraft. Experimental results show that the gyroscope has a resolution of 0.008 °/s and a bias of 56.18 °/h.

  13. Clustering of the Self-Organizing Map based Approach in Induction Machine Rotor Faults Diagnostics

    Directory of Open Access Journals (Sweden)

    Ahmed TOUMI

    2009-12-01

    Full Text Available Self-Organizing Maps (SOM is an excellent method of analyzingmultidimensional data. The SOM based classification is attractive, due to itsunsupervised learning and topology preserving properties. In this paper, theperformance of the self-organizing methods is investigated in induction motorrotor fault detection and severity evaluation. The SOM is based on motor currentsignature analysis (MCSA. The agglomerative hierarchical algorithms using theWard’s method is applied to automatically dividing the map into interestinginterpretable groups of map units that correspond to clusters in the input data. Theresults obtained with this approach make it possible to detect a rotor bar fault justdirectly from the visualization results. The system is also able to estimate theextent of rotor faults.

  14. Roles of Charged Residues of Rotor and Stator in Flagellar Rotation: Comparative Study using H+-Driven and Na+-Driven Motors in Escherichia coli

    Science.gov (United States)

    Yakushi, Toshiharu; Yang, Junghoon; Fukuoka, Hajime; Homma, Michio; Blair, David F.

    2006-01-01

    In Escherichia coli, rotation of the flagellar motor has been shown to depend upon electrostatic interactions between charged residues of the stator protein MotA and the rotor protein FliG. These charged residues are conserved in the Na+-driven polar flagellum of Vibrio alginolyticus, but mutational studies in V. alginolyticus suggested that they are relatively unimportant for motor rotation. The electrostatic interactions detected in E. coli therefore might not be a general feature of flagellar motors, or, alternatively, the V. alginolyticus motor might rely on similar interactions but incorporate additional features that make it more robust against mutation. Here, we have carried out a comparative study of chimeric motors that were resident in E. coli but engineered to use V. alginolyticus stator components, rotor components, or both. Charged residues in the V. alginolyticus rotor and stator proteins were found to be essential for motor rotation when the proteins functioned in the setting of the E. coli motor. Patterns of synergism and suppression in rotor/stator double mutants indicate that the V. alginolyticus proteins interact in essentially the same way as their counterparts in E. coli. The robustness of the rotor-stator interface in V. alginolyticus is in part due to the presence of additional charged residues in PomA but appears mainly due to other factors, because an E. coli motor using both rotor and stator components from V. alginolyticus remained sensitive to mutation. Motor function in V. alginolyticus may be enhanced by the proteins MotX and MotY. PMID:16452430

  15. Fault detection in rotating machines with beamforming: Spatial visualization of diagnosis features

    Science.gov (United States)

    Cardenas Cabada, E.; Leclere, Q.; Antoni, J.; Hamzaoui, N.

    2017-12-01

    Rotating machines diagnosis is conventionally related to vibration analysis. Sensors are usually placed on the machine to gather information about its components. The recorded signals are then processed through a fault detection algorithm allowing the identification of the failing part. This paper proposes an acoustic-based diagnosis method. A microphone array is used to record the acoustic field radiated by the machine. The main advantage over vibration-based diagnosis is that the contact between the sensors and the machine is no longer required. Moreover, the application of acoustic imaging makes possible the identification of the sources of acoustic radiation on the machine surface. The display of information is then spatially continuous while the accelerometers only give it discrete. Beamforming provides the time-varying signals radiated by the machine as a function of space. Any fault detection tool can be applied to the beamforming output. Spectral kurtosis, which highlights the impulsiveness of a signal as function of frequency, is used in this study. The combination of spectral kurtosis with acoustic imaging makes possible the mapping of the impulsiveness as a function of space and frequency. The efficiency of this approach lays on the source separation in the spatial and frequency domains. These mappings make possible the localization of such impulsive sources. The faulty components of the machine have an impulsive behavior and thus will be highlighted on the mappings. The study presents experimental validations of the method on rotating machines.

  16. Unbalance influence on the rotating assembly dynamics of a hydro

    Science.gov (United States)

    Jurcu, M.; Pădureanu, I.; Campian, C. V.; Haţiegan, C.

    2018-01-01

    The dynamics of the rotating parts of a hydro is characterized by the dynamic interaction between the rotor, the stator and the working fluid in order to operate the hydro. The main factors influencing the dynamics of the rotating parts of a hydro are: rotor unbalance, unbalanced magnetic pull, shaft misalignment and hydraulic flow regime. Rotor unbalanced is one of the most common factors influencing the dynamic stability of the rotating parts of a hydro. The unbalanced is determined by: uneven distribution of rotating masses, displacement of parts in the rotor during rotation, inhomogeneity of rotor component materials, expansion of the rotor due to heating, and rising speed during the transient discharge of the load. The mechanical imbalance of a rotor can lead to important forces, responsible for the vibration of the machine, which ultimately leads to a shorter operating time. Even a low unbalance can lead, in the case of high speed machines, to major unbalance forces that cause significant damage to the equipment. The unbalance forces cause additional vibrations in the bearings as well as in the foundation plate. To avoid these vibrations, it is necessary in the first stage to balance the static rotor in the construction plant and then to a dynamic rotation balancing.

  17. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Topor Marcel

    2017-01-01

    Full Text Available This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control. The proposed topologies, the circuit model, controlled dynamics simulation and preliminary 3D FEM torque production on a case study constitute the core of the paper. The proposed dual mechanical port system should be instrumental in parallel (with planetary gears or series hybrid electric vehicles (HEV aiming at a more compact and efficient electric propulsion system solution.

  18. Application of EDA methodology for assessment of the rotating machines insulation system condition

    Directory of Open Access Journals (Sweden)

    Ilić Denis

    2016-01-01

    Full Text Available The insulation system of rotating machines of high importance has always been the object of thorough screening with certified test methods that are getting constantly improved. Low-power machines and 'less important' machines like high voltage motors, are rarely subjected to detailed electrical tests because of low resources allocated for their maintenance. The introduction of the EDA methodology in practice creates the conditions for reliable and complete diagnostics of stator windings of big machines, as well as the fast, easy and inexpensive screening for low-power machines (i.e. HV motors. The aim of the paper is to present the EDA methodology and its possibilities, including the solutions within the hardware and software.

  19. Development of in-situ fatigue crack observing system for rotating bending fatigue testing machine

    OpenAIRE

    Lian, B.; Ueno, A; Iwashita, T

    2016-01-01

    To substitute for a traditional replication technique, an in-situ fatigue crack observing system for rotating bending testing machine has been newly developed. For verifying performance of this observing system, fatigue tests were carried out by using fatigue specimen having a small artificial defect. It is proved that this system can be detect a small fatigue crack and its propagation behavior.

  20. Development of in-situ fatigue crack observing system for rotating bending fatigue testing machine

    OpenAIRE

    Lian, B.; Ueno, A; Iwashita, T

    2015-01-01

    To substitute for a traditional replication technique, an in-situ fatigue crack observing system for rotating bending testing machine has been newly developed. For verifying performance of this observing system, fatigue tests were carried out by using fatigue specimen having a small artificial defect. It is proved that this system can be detect a small fatigue crack and its propagation behavior.

  1. Partial Discharge Measurements in HV Rotating Machines in Dependence on Pressure of Coolant

    Directory of Open Access Journals (Sweden)

    I. Kršňák

    2002-01-01

    Full Text Available The influence of the pressure of the coolant used in high voltage rotating machines on partial discharges occurring in stator insulation is discussed in this paper. The first part deals with a theoretical analysis of the topic. The second part deals with the results obtained on a real generator in industrial conditions. Finally, theoretical assumptions and obtained results are compared.

  2. A General Model for Describing the Performance of Brushless Doubly-Fed Induction Machines

    Directory of Open Access Journals (Sweden)

    S. M. Allam

    2010-12-01

    Full Text Available This paper presents a generalized model, by which the dynamic and steady-state behaviour of the Brushless Doubly-Fed Induction Machine (BDFIM can be precisely predicted. The investigated doubly-fed machine has two sets of three-phase stator windings with different pole numbers. The rotor is a squirrel-cage type with a simple modification in order to support the two air-gap rotating fields that are produced by the stator windings and have different pole numbers. The machine model is derived in the qdo-axis variables. The qdoaxes are attached to rotor and hence, it rotates at the rotor speed (

  3. Torque ripple reduction in electric machines

    Science.gov (United States)

    Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi; Galioto, Steven Joseph

    2017-08-22

    An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machine is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.

  4. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  5. Eccentrically mounted rotor pack and its influence on the vibration and noise of an asynchronous generator

    Science.gov (United States)

    Donát, Martin; Dušek, Daniel

    2015-05-01

    Time-varying magnetic forces are the main source of vibrations in rotating electrical machines. A number of papers dealing with computational modelling of the dynamic behaviour of rotating electrical machines have been published. Almost all of these papers do not consider electro-mechanical interaction between the stator and the rotor of the machine. A computational model including electro-mechanical interaction is proposed in this paper. The influence of the air gap eccentricity due to eccentric mounting of the rotor pack on the shaft of the rotor is investigated. Electromagnetic coupled-field analysis was performed to obtain the dependence of the magnetic forces, which act on the stator and the rotor pack, on the time and air gap eccentricity. Attention has been paid to the air gap eccentricity due to the interaction between the stator and the rotor and the influence of the air gap eccentricity on the vibration and sound power of the machine. The obtained results show that the air gap eccentricity affects the amplitude spectrum of the magnetic forces. This change of amplitude spectrum causes a significant increase in the torsional vibration of the stator of the examined machine. The air gap eccentricity is also significantly reflected in the trajectory of the rotor centre line and radial load of bearings in the machine.

  6. Internally geared screw machines with ported end plates

    Science.gov (United States)

    Read, M. G.; Smith, I. K.; Stosic, N.

    2017-08-01

    It is possible to design cylindrical helical gearing profiles such that an externally lobed inner gear rotates inside an internally lobed outer gear while maintaining continuous lines of contact between the gears. The continuous contact between the inner and outer rotors (analogous to the main and gate rotors in a conventional screw machine) creates a series of separate working chambers. In this type of machine the rotors have parallel axes of rotation, and if both rotors are free to rotate about their own axes, these axes can be fixed in space. The use of ported end plates is proposed to control the period during which fluid is allowed to enter or leave the working chambers of the internally geared screw machine. As with conventional screw machines, these internally geared rotors can then be used to achieve compression or expansion of a trapped mass of fluid, and the machine geometry can be designed in order to optimise performance for particular applications. This paper describes the geometrical analysis of some simple rotor profiles and explores the effect on rotor torques for particular applications of this novel screw configuration.

  7. The art and science of rotating field machines design a practical approach

    CERN Document Server

    Ostović, Vlado

    2017-01-01

    This book highlights procedures utilized by the design departments of leading global manufacturers, offering readers essential insights into the electromagnetic and thermal design of rotating field (induction and synchronous) electric machines. Further, it details the physics of the key phenomena involved in the machines’ operation, conducts a thorough analysis and synthesis of polyphase windings, and presents the tools and methods used in the evaluation of winding performance. The book develops and solves the machines’ magnetic circuits, and determines their electromagnetic forces and torques. Special attention is paid to thermal problems in electrical machines, along with fluid flow computations. With a clear emphasis on the practical aspects of electric machine design and synthesis, the author applies his nearly 40 years of professional experience with electric machine manufacturers – both as an employee and consultant – to provide readers with the tools they need to determine fluid flow parameters...

  8. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  9. A study on rotational augmentation using CFD analysis of flow in the inboard region of the MEXICO rotor blades

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.

    2015-01-01

    This work presents an analysis of data from existing as well as new full-rotor computational fluid dynamics computations on the MEXICO rotor, with focus on the flow around the inboard parts of the blades. The boundary layer separation characteristics on the airfoil sections in the inboard parts...

  10. Analysis and Control Aspects of Brushless Induction Machines with Rotating Power Electronic Converters

    OpenAIRE

    Malik, Naveed ur Rehman

    2012-01-01

    This thesis deals with the steady-state, dynamic and control aspects of new type of brushless configuration of a doubly-fed induction machine in which the slip rings and carbon brushes are replaced by rotating power electronics and a rotating exciter. The aim is to study the stability of this novel configuration of the generator under mechanical and grid disturbances for wind power applications. The derivation, development and analysis of the steady-state model of the brushless doubly-fed ind...

  11. Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations.

    Science.gov (United States)

    Lemouchi, Cyprien; Iliopoulos, Konstantinos; Zorina, Leokadiya; Simonov, Sergey; Wzietek, Pawel; Cauchy, Thomas; Rodríguez-Fortea, Antonio; Canadell, Enric; Kaleta, Jiří; Michl, Josef; Gindre, Denis; Chrysos, Michael; Batail, Patrick

    2013-06-26

    The rod-like molecule bis((4-(4-pyridyl)ethynyl)bicyclo[2.2.2]oct-1-yl)buta-1,3-diyne, 1, contains two 1,4-bis(ethynyl)bicyclo[2.2.2]octane (BCO) chiral rotators linked by a diyne fragment and self-assembles in a one-dimensional, monoclinic C2/c centrosymmetric structure where two equilibrium positions with large occupancy imbalance (88% versus 12%) are identified on a single rotor site. Combining variable-temperature (70-300 K) proton spin-lattice relaxation, (1)H T1(-1), at two different (1)H Larmor frequencies (55 and 210 MHz) and DFT calculations of rotational barriers, we were able to assign two types of Brownian rotators with different activation energies, 1.85 and 6.1 kcal mol(-1), to the two (1)H spin-lattice relaxation processes on the single rotor site. On the basis of DFT calculations, the low-energy process has been assigned to adjacent rotors in a well-correlated synchronous motion, whereas the high-energy process is the manifestation of an abrupt change in their kinematics once two blades of adjacent rotors are seen to rub together. Although crystals of 1 should be second harmonic inactive, a large second-order optical response is recorded when the electric field oscillates in a direction parallel to the unique rotor axle director. We conclude that conformational mutations by torsional interconversion of the three blades of the BCO units break space-inversion symmetry in sequences of mutamers in dynamic equilibrium in the crystal in domains at a mesoscopic scale comparable with the wavelength of light used. A control experiment was performed with a crystalline film of a similar tetrayne molecule, 1,4-bis(3-((trimethylsilyl)ethynyl)bicyclo[1.1.1]pent-1-yl)buta-1,3-diyne, whose bicyclopentane units can rotate but are achiral and produce no second-order optical response.

  12. MOUNTABILITY PARTS OF MACHINE WITH ROTATING SURFACE, FITTED WITH POSITIVE CLEARANCE

    OpenAIRE

    Zbigniew BUDNIAK

    2014-01-01

    In this paper demonstrates the conditions of automatic assembly the parts of machines with rotating surfaces, fitted with positive clearance. Determination of the general condition of asseblability allowed for designation of the acceptable relative displacement and torsion axle, combined parts on the mounting position. The designation of depending allowed for assess the technological capacity of the installation equipment. On the basis of this mathematical model was developed a computer progr...

  13. Development of in-situ fatigue crack observing system for rotating bending fatigue testing machine

    Directory of Open Access Journals (Sweden)

    B. Lian

    2016-02-01

    Full Text Available To substitute for a traditional replication technique, an in-situ fatigue crack observing system for rotating bending testing machine has been newly developed. For verifying performance of this observing system, fatigue tests were carried out by using fatigue specimen having a small artificial defect. It is proved that this system can be detect a small fatigue crack and its propagation behavior.

  14. Using Machine Learning To Predict Which Light Curves Will Yield Stellar Rotation Periods

    Science.gov (United States)

    Agüeros, Marcel; Teachey, Alexander

    2018-01-01

    Using time-domain photometry to reliably measure a solar-type star's rotation period requires that its light curve have a number of favorable characteristics. The probability of recovering a period will be a non-linear function of these light curve features, which are either astrophysical in nature or set by the observations. We employ standard machine learning algorithms (artificial neural networks and random forests) to predict whether a given light curve will produce a robust rotation period measurement from its Lomb-Scargle periodogram. The algorithms are trained and validated using salient statistics extracted from both simulated light curves and their corresponding periodograms, and we apply these classifiers to the most recent Intermediate Palomar Transient Factory (iPTF) data release. With this pipeline, we anticipate measuring rotation periods for a significant fraction of the ∼4x108 stars in the iPTF footprint.

  15. Prospects for Brushless ac Motors with HTS Rotors

    Science.gov (United States)

    McCulloch, M. D.; Jim, K.; Kawai, Y.; Dew-Hughes, D.; Morgan, C.; Goringe, M. J.; Grovenor, C. R. M.

    1997-03-01

    There is a superconducting equivalent for every type of brushless ac motor; permanent magnet, reluctance, hysteresis and induction (squirrel cage) motor. The particular advantage of superconducting versions of these machines is that they are expected to provide much higher power densities than their conventional equivalents. The behaviour of superconducting rotors fabricated in the form of (a) squirrell cages from silver coated with melt-processed Bi-2212, (b) tubes cast centifugally from Bi-2212, and (c) small cylinders of melt-processed and seeded YBCO has been studied in rotating magnetic fields provided by conventional motor coils. Measurements of static torque, and values of dynamic torque deduced from angular velocity and acceleration have been used to characterise the potential performance of these embryonic machines. Two broad types of behaviour have been observed. In the Bi-2212 rotors the torque decreases with increasing rotor speed; this behaviour is believed due to flux creep. By contrast the strong-pinning YBCO rotors maintain a constant torque up to synchronous speed. Mathematical modelling of flux penetration and distribution within the rotors is able to reproduce both types of the observed behaviour. Power densities some 5 to 10 times that of conventional machines are predicted to be achievable in optimised prototype machines.

  16. The Synthesis of Precise Rotating Machine Mathematical Model, Operating Natural Signals and Virtual Data

    Science.gov (United States)

    Zhilenkov, A. A.; Kapitonov, A. A.

    2017-07-01

    It is known that synchronous machines catalogue data are presented for the case of two-phase machine in rotating coordinate system, e.g. for their description with Park-Gorev’s equation system. Nevertheless, many problems require control of phase currents and voltages, for instance, in modeling of the systems, in which synchronous generators supply powerful rectifiers. Modeling of complex systems with synchronous generators, semiconductor convertors and etc. (with phase currents control necessary for power switch commutation algorithms) becomes achievable with the equation system described in this article. Given model can be used in digital control systems with internal model. It doesn’t require high capacity of computing resources and provides sufficient modeling accuracy.

  17. Bayesian analysis of rotating machines - A statistical approach to estimate and track the fundamental frequency

    DEFF Research Database (Denmark)

    Pedersen, Thorkild Find

    2003-01-01

    Rotating and reciprocating mechanical machines emit acoustic noise and vibrations when they operate. Typically, the noise and vibrations are concentrated in narrow frequency bands related to the running speed of the machine. The frequency of the running speed is referred to as the fundamental...... frequency estimation techniques are considered for predicting the true fundamental frequency from measured acoustic noise or vibration signal. Among the methods are auto-correlation based methods, subspace methods, interpolated Fourier transform methods, and adaptive filters. A modified version...... for the probability density function (PDF) of the parameters conditioned on observation. Considering the fundamental frequency as a parameter and the acoustic and vibration signals as observations, a novel Bayesian frequency estimator is developed. With simulations the new estimator is shown to be superior to any...

  18. A control system for and a method of controlling a superconductive rotating electrical machine

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a method of controlling and a control system (100) for a superconductive rotating electric machine (200) comprising at least one superconductive winding (102; 103), where the control system (100) is adapted to control a power unit (101) supplying during use the at least...... or more actual values (110, 111)of one or more parameters for a given superconductive winding (102; 103), each parameter representing a physical condition of the given superconductive winding (102; 103), and to dynamically derive one or more electrical current values to be maintained in the given...... superconductive winding (102; 103) by the power unit (101) where the one or more electrical current values is/are derived taking into account the received one or more actual values (110, 111). In this way,greater flexibility and more precise control of the performance of the superconducting rotating electrical...

  19. MOUNTABILITY PARTS OF MACHINE WITH ROTATING SURFACE, FITTED WITH POSITIVE CLEARANCE

    Directory of Open Access Journals (Sweden)

    Zbigniew BUDNIAK

    2014-06-01

    Full Text Available In this paper demonstrates the conditions of automatic assembly the parts of machines with rotating surfaces, fitted with positive clearance. Determination of the general condition of asseblability allowed for designation of the acceptable relative displacement and torsion axle, combined parts on the mounting position. The designation of depending allowed for assess the technological capacity of the installation equipment. On the basis of this mathematical model was developed a computer program that allows to determine the effect of geometric, strength and dynamic parameters of the assembly process. The examples of results of numerical calculations are shown in the graphs

  20. Potential distribution on stress grading of inverter-fed rotating machines under DC biased voltage

    Directory of Open Access Journals (Sweden)

    Takahiro Nakamura

    2016-01-01

    Full Text Available The erosion of the stress grading system of converter-fed rotating machines may occur by partial discharges and heat generation. There remain unclear issues in the formation of the potential and temperature distributions along the stress grading system of coils. In this paper, the potential distributions on the stress grading system of the model coil bar are measured under the application of 1 kHz square wave voltages of 10 kV in peak to peak value with/without 5 kV DC biased voltage. It turns out that DC bias voltage has little effect on potential distribution on a coil surface.

  1. Rotating Machinery Fault Diagnosis for Imbalanced Data Based on Fast Clustering Algorithm and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2017-01-01

    Full Text Available To diagnose rotating machinery fault for imbalanced data, a method based on fast clustering algorithm (FCA and support vector machine (SVM was proposed. Combined with variational mode decomposition (VMD and principal component analysis (PCA, sensitive features of the rotating machinery fault were obtained and constituted the imbalanced fault sample set. Next, a fast clustering algorithm was adopted to reduce the number of the majority data from the imbalanced fault sample set. Consequently, the balanced fault sample set consisted of the clustered data and the minority data from the imbalanced fault sample set. After that, SVM was trained with the balanced fault sample set and tested with the imbalanced fault sample set so the fault diagnosis model of the rotating machinery could be obtained. Finally, the gearbox fault data set and the rolling bearing fault data set were adopted to test the fault diagnosis model. The experimental results showed that the fault diagnosis model could effectively diagnose the rotating machinery fault for imbalanced data.

  2. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    Science.gov (United States)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  3. The method of the gas-dynamic centrifugal compressor stage characteristics recalculation for variable rotor rotational speeds and the rotation angle of inlet guide vanes blades if the kinematic and dynamic similitude conditions are not met

    Science.gov (United States)

    Vanyashov, A. D.; Karabanova, V. V.

    2017-08-01

    A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.

  4. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings

    Science.gov (United States)

    Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis

    2014-05-01

    The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.

  5. Exploratory wind-tunnel investigation of the effect of the main rotor wake on tail rotor noise. [langley anechoic noise facility

    Science.gov (United States)

    Pegg, R. J.; Shidler, P. A.

    1978-01-01

    Approaches to minimizing the noise generated by the interaction of the tail rotor blades with the wake of the main rotor considered include repositioning of the tail rotor with respect to the main rotor, changes in the rotational direction of the tail rotor, and modification of the main rotor tip vortex. A variable geometry model was built which had the capability of varying tail rotor position relative to the main rotor as well as direction of tail rotor rotation. Acoustic data taken from the model in the Langley anechoic noise facility indicates interaction effects due to both main rotor shed vortex and the main rotor turbulence.

  6. Method for providing slip energy control in permanent magnet electrical machines

    Science.gov (United States)

    Hsu, John S.

    2006-11-14

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  7. Rotor compound concept for designing an industrial HTS synchronous motor

    Science.gov (United States)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  8. Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems

    Science.gov (United States)

    Cablea, Georgia; Granjon, Pierre; Bérenguer, Christophe

    2017-08-01

    The current paper proposes a method to detect mechanical faults in rotating machines using three-phase electrical currents analysis. The proposed fault indicator relies on the use of instantaneous symmetrical components (ISCs), followed by a demodulation step enhancing the small modulations generated in electrical signals by mechanical faults. The limitations due to the multi-component nature of electrical signals, as well as to the noise naturally present in the measured signals are studied and taken into account in order to elaborate a proper and efficient algorithm to compute a mechanical fault indicator. It is theoretically shown that the ISCs based approach results in an increase of the signal-to-noise ratio compared to a single-phase approach, finally leading to an improvement of early fault detection capabilities. This result is validated using both synthetic and experimental signals where the proposed method is used to detect bearing faults and the obtained results are compared to single-phase results.

  9. Balancing of rotating machines using influence coefficients calculated by numerical models; Equilibrage des machines tournantes par coefficients d`influence a l`aide de modeles numeriques

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, R.; Bigret, R.; Karajani, R.; Vialard, S.

    1995-09-01

    The balancing of large rotating machines (turbine-generator sets and reactor coolant pumps) is generally carried out at Electricite de France using a influence coefficient method. For this, the influence of unbalances in the balancing planes have to be ascertained and, as a consequence, involves stopping and starting the machines several times. The purpose of the presented study is to analyse the possibility of reducing machine unavailability through the use of influence coefficients calculated with the help of a adjusted numerical (unbalance response) model for the balancing process. The principles of this method are shown and applied to a mock-up of a shaft line fitted with a full set of instruments (bearings and shaft) and having modal characteristics similar to common machines. The results are encouraging. They show the feasibility of the method.

  10. Variable geometry Darrieus wind machine

    Science.gov (United States)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  11. Characterization of Flow and Ohm's Law in the Rotating Wall Machine

    Science.gov (United States)

    Hannum, David; Brookhart, M.; Forest, C. B.; Kendrick, R.; Mengin, G.; Paz-Soldan, C.

    2010-11-01

    The rotating wall machine is a linear screw-pinch built to study the role of different electromagnetic boundary conditions on the Resistive Wall Mode (RWM). Its plasma is created by an array of electrostatic washer guns which can be biased to discharge up to 1 kA of current each. Individual flux ropes from the guns shear, merge, and expand into a 20 cm diameter, ˜1 m long plasma column. Langmuir (singletip) and tri-axial B-dot probes move throughout the column to measure radial and axial profiles of key plasma parameters. As the plasma current increases, more H2 fuel is ionized, raising ne to 5 x10^20 m-3 while Te stays at a constant 3 eV. The electron density expands to the wall while the current density (Jz) stays pinched to the central axis. E xB and diamagnetic drifts create radially and axially sheared plasma rotation. Plasma resistivity follows the Spitzer model in the core while exceeding it at the edge. These measurements improve the model used to predict the RWM growth rate.

  12. Work analysis of the machine Claas Jaguar 880 employed in short rotation coppice harvesting

    Directory of Open Access Journals (Sweden)

    Verani S

    2010-02-01

    Full Text Available Working times observed during different harvesting phases in a poplar short rotation coppice (second rotation were calculated. The main objective of the work was to evaluate the yard productivity and the economic gain in order to furnish good indications to the field operators about the harvesting planning. A comparisons between productivity and economic features was carried out on observed (experimental yard and optimized data (optimized yard, the latter characterized by the absence of the inproductive times due to suboptimal yard organization. The harvested gross time as a function of distance covered by machine was assessed using linear regressions methods. The observed average biomass in plantation was 47.32 t ha-1. The harvesting gross average productivity observed in experimental yard was 34.20 t h-1 and the optimized was 54.16 t h-1. The working ability was 0.76 and 1.18 ha h-1 for experimental and optimized yard, respectively. The final product (chips costs estimated was 9.81 euro t-1 and 444.46 euro ha-1 in the experimental yard. The optimized yard was 22-24% more efficient. This paper demonstrates the feasibilty to estimate harvesting times and costs per hectare using linear regressions with good approximation when the standing biomass in plantation is known.

  13. Liquid Self-Balancing Device Effects on Flexible Rotor Stability

    Directory of Open Access Journals (Sweden)

    Leonardo Urbiola-Soto

    2013-01-01

    Full Text Available Nearly a century ago, the liquid self-balancing device was first introduced by M. LeBlanc for passive balancing of turbine rotors. Although of common use in many types or rotating machines nowadays, little information is available on the unbalance response and stability characteristics of this device. Experimental fluid flow visualization evidences that radial and traverse circulatory waves arise due to the interaction of the fluid backward rotation and the baffle boards within the self-balancer annular cavity. The otherwise destabilizing force induced by trapped fluids in hollow rotors, becomes a stabilizing mechanism when the cavity is equipped with adequate baffle boards. Further experiments using Particle Image Velocimetry (PIV enable to assess the active fluid mass fraction to be one-third of the total fluid mass. An analytical model is introduced to study the effects of the active fluid mass fraction on a flexible rotor supported by flexible supports excited by bwo different destabilizing mechanisms; rotor internal friction damping and aerodynamic cross-coupling. It is found that the fluid radial and traverse forces contribute to the balancing action and to improve the rotor stability, respectively.

  14. Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.

    2013-01-01

    Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.

  15. Rotor blade assembly having internal loading features

    Science.gov (United States)

    Soloway, Daniel David

    2017-05-16

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.

  16. Sensitivity Analysis of the Dynamic Behavior of a Salient-Pole Synchronous Machine Considering the Static Rotor Eccentricity Effect

    Directory of Open Access Journals (Sweden)

    A. Román Messina

    2012-10-01

    Full Text Available This paper presents the sensitivity analysis of the behavior of a synchronous machine using the winding functiontheory considering the effect of static air-gap eccentricity. The winding function theory as a method to calculate theinductances of synchronous machines from the geometry and the actual arranging of the windings is presented. Then,detailed numerical simulations are carried out to examine the impact of eccentricity on the steady state regimes. Theimportant role of static eccentricity and its links with various symmetrical and asymmetrical operating conditions arediscussed as well as its influence on the machine parameters and performance are investigated. Experimental andanalytical parameter results are presented for a 60 Hz, six-pole laboratory synchronous machine connected to aninfinite bus under various static eccentricity conditions.

  17. Investigation of the influence of air gap thickness and eccentricity on the noise of the rotating electrical machine

    Directory of Open Access Journals (Sweden)

    Donát M.

    2013-12-01

    Full Text Available This article deals with the numerical modelling of the dynamic response of the rotating electrical machine on the application of the magnetic forces. The special attention is paid to the modelling of the magnetic forces that act on the stator winding of the machine and the computational model of the modal properties of the stator winding. The created computational model was used to investigation of the influence of the nominal air gap thickness and the air gap eccentricity on the sound power radiated by outer surface of the stator of the machine. The obtained results show that the nominal air gap thickness has slightly greater influence on the sound power of the machine than eccentricity of the air gap.

  18. Aerodynamic optimization of wind turbine rotors using a blade element momentum method with corrections for wake rotation and expansion

    DEFF Research Database (Denmark)

    Døssing, Mads; Aagaard Madsen, Helge; Bak, Christian

    2012-01-01

    by the positive effect of wake rotation, which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative effect, which is most important at high tip speed ratios. It was further found that by using , it is possible to obtain a 5% reduction in flap bending moment when compared with BEM...... out using BEM as well. Validation of shows good agreement with the flow calculated using an advanced actuator disk method. The maximum power was found at a tip speed ratio of 7 using , and this is lower than the optimum tip speed ratio of 8 found for BEM. The difference is primarily caused......The blade element momentum (BEM) method is widely used for calculating the quasi-steady aerodynamics of horizontal axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the pressure due to wake rotation (), and more accurate solutions can now...

  19. Hybrid-secondary uncluttered induction machine

    Science.gov (United States)

    Hsu, John S.

    2001-01-01

    An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

  20. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with an equal number of blades on each rotor, preliminary results

    Science.gov (United States)

    Mccurdy, David A.

    1988-01-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having an equal number of blades on each rotor. The objectives were: to determine the effects of total content on annoyance; and compare annoyance to n x n CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft. A computer synthesis system was used to generate 27 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent the factorial combinations of nine fundamental frequencies and three tone-to-broadband noise ratios. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at three D-weighted sound pressure levels to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three aircraft types and examined the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise metrics is also examined.

  1. Performance analysis of a novel planetary speed increaser used in single-rotor wind turbines with counter-rotating electric generator

    Science.gov (United States)

    Saulescu, R.; Neagoe, M.; Munteanu, O.; Cretescu, N.

    2016-08-01

    The paper presents a study on the kinematic and static performances of a new type of 1DOF (Degree Of Freedom) planetary speed increaser to be implemented in wind turbines, a transmission with three operating cases: a) one input and one output, b) one input and two outputs, in which the speed of the secondary output is equal to the input speed, and c) with one input and two outputs, where the secondary output speed is higher than the input speed. The proposed speed increaser contains two sun gears and a double satellite, allowing operation with an output connected to the fixed stator of a classic generator (case I) or with two counterrotating outputs that drive a counter-rotating generator (with a mobile stator). A new variant of planetary transmission capable of providing the speed increase of the generator stator and, thus, the increase of the relative speed between the generator rotor and stator is obtained by the parallel connection of the speed increaser with a planetary gear. The three conceptual variants of planetary transmission are analytically modelled and comparatively analysed based on a set of kinematic and static parameters. The proposed transmission has higher performances compared to the same transmission with one input and one output, the increase of the kinematic amplification ratio and efficiency being achieved simultaneously.

  2. Structural dynamics of turbo-machines

    CERN Document Server

    Rangwala, AS

    2009-01-01

    The book presents a detailed and comprehensive treatment of structural vibration evaluation of turbo-machines. Starting with the fundamentals of the theory of vibration as related to various aspects of rotating machines, the dynamic analysis procedures of a broad spectrum of turbo-machines is covered. An in-depth procedure for analyzing the torsional and flexural oscillations of the components and of the rotor-bearing system is presented. The latest trends in design and analysis are presented, chief among them: Blade and coupled disk-blade mod

  3. Control of Rotor-Blade Coupled Vibrations Using Shaft-Based Actuation

    DEFF Research Database (Denmark)

    Christensen, Rene H.; Santos, Ilmar

    2006-01-01

    When implementing active control into bladed rotating machines aiming at reducing blade vibrations, it can be shown that blade as well as rotor vibrations can in fact be controlled by the use of only shaft-based actuation. Thus the blades have to be deliberately mistuned. This paper investigates...... of modal controllability and observability converge toward steady levels as the degree of mistuning is increased. Finally, experimental control results are presented to prove the theoretical conclusions and to show the feasibility of controlling rotor and blade vibrations by means of shaft-based actuation...

  4. Rotating Machinery Predictive Maintenance Through Expert System

    Directory of Open Access Journals (Sweden)

    M. Sarath Kumar

    2000-01-01

    Full Text Available Modern rotating machines such as turbomachines, either produce or absorb huge amount of power. Some of the common applications are: steam turbine-generator and gas turbine-compressor-generator trains produce power and machines, such as pumps, centrifugal compressors, motors, generators, machine tool spindles, etc., are being used in industrial applications. Condition-based maintenance of rotating machinery is a common practice where the machine's condition is monitored constantly, so that timely maintenance can be done. Since modern machines are complex and the amount of data to be interpreted is huge, we need precise and fast methods in order to arrive at the best recommendations to prevent catastrophic failure and to prolong the life of the equipment. In the present work using vibration characteristics of a rotor-bearing system, the condition of a rotating machinery (electrical rotor is predicted using an off-line expert system. The analysis of the problem is carried out in an Object Oriented Programming (OOP framework using the finite element method. The expert system which is also developed in an OOP paradigm gives the type of the malfunctions, suggestions and recommendations. The system is implemented in C++.

  5. Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with a different number of blades on each rotor: Preliminary results

    Science.gov (United States)

    Mccurdy, David A.

    1988-01-01

    A laboratory experiment was conducted to quantify the annoyance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having a different number of blades on each rotor (nxm, e.g., 10 x 8, 12 x 11). The objectives were: (1) compare annoyance to nxm CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft; (2) determine the effects of tonal content on annoyance; and (3) determine the ability of aircraft noise measurement procedures and corrections to predict annoyance for this new class of aircraft. A computer synthesis system was used to generate 35 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent combinations of 15 fundamental frequency (blade passage frequency) combinations and three tone-to-broadband noise ratios. The fundamental frequencies, which represented blade number combinations from 6 x 5 to 13 x 12 and 7 x 5 to 13 x 11, ranged from 112.5 to 292.5 Hz. The three tone-to-broadband noise ratios were 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  6. Rotations

    Science.gov (United States)

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  7. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility...

  8. The treatment of moving problem for constant-frequency double-rotor generator in finite element analysis

    Directory of Open Access Journals (Sweden)

    Yongjiang Jiang

    2015-03-01

    Full Text Available The constant-frequency double-rotor generator has the potential to be used in the marine energy conversions, such as tides and marine current power generation system due to the advantages. However, there are two different rotational speed movement boundaries in the constant-frequency double-rotor generator, especially the inner moving part boundary between the inner wound rotor and outer permanent magnet rotor. This complicates the finite element analysis and greatly increases the analysis time. In this article, a new finite element analysis method based on double boundaries interpolation multiple reference frame is proposed. The principle of the interpolation multiple reference frame method is introduced, and the analysis and comparison with the traditional method are carried out. The analysis results show that the interpolation multiple reference frame method simplifies the preprocessing procedure, reduces computation time, ensures high calculation accuracy, and has the potential to be applied in all kinds of multiple mechanical port machines.

  9. Method and machine for high strength undiffused brushless operation

    Science.gov (United States)

    Hsu, John S.

    2003-06-03

    A brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34), the rotor (32) having pairs of rotor pole portions (22b, 22c, 32f, 32l) disposed at least partly around the axis of rotation (32p) and facing the main air gap (24b, 24c, 34), at least one stationary winding (20b, 20c, 33b) separated from the rotor (22b, 22c, 32) by a secondary air gap (23b, 23c, 35) so as to induce a rotor-side flux in the rotor (22b, 22c, 32) which controls a resultant flux in the main air gap (24b, 24c, 34). PM material (27b, 27c) is disposed in spaces between the rotor pole portions (22b, 22c, 32f, 32l) to inhibit the rotor-side flux from leaking from said pole portions (22b, 22c, 32f, 32l) prior to reaching the main air gap (24b, 24c, 34). By selecting the direction of current in the stationary winding (20b, 20c, 33b) both flux enhancement and flux weakening are provided for the main air gap (24b, 24c, 34). The stationary windings (31a, 33b) which are used for both primary and secondary excitation allow for easier adaptation to cooling systems as described. A method of non-diffused flux enhancement and flux weakening is also disclosed.

  10. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  11. Apparatus and method for magnetically unloading a rotor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Seth Robert

    2018-02-13

    An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.

  12. A Two-Phase Spherical Electric Machine for Generating Rotating Uniform Magnetic Fields

    Science.gov (United States)

    2007-06-01

    in ferrofluid research and in experimental research related to large rotating machinery. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...applications in ferrofluid research and in experimental research related to large rotating machinery. Thesis Supervisor: Markus Zahn Title: Thomas and Cerd...going efforts to understand and to use ferrofluids . I have truly enjoyed working with Dr. David Burke on this project and as his teaching assistant for

  13. Aerodynamic analysis of the Darrieus rotor including secondary effects

    Science.gov (United States)

    Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.

    1983-10-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).

  14. Influence of Torsional Excitation on Dynamic Responses of Rotors with a Breathing Slant Crack

    Science.gov (United States)

    Lu, Zhiwen; Hua, Chunrong; Dong, Dawei; Yan, Bing; Fan, Kang

    2017-05-01

    Focusing on a rotor-bearing system with a breathing slant crack in the power transmission machine, influence of torsional excitations on the coupled nonlinear responses of the system is studied in this work. The slant crack element stiffness matrix is derived based on energy principal and the crack breathing phenomenon is simulated by the Crack Closure Line Position (CCLP) model; and the time-varying coupled dynamic equation of a rotor with a slant breathing crack considering the eccentricity of static unbalance is established using the finite element method and is solved by the NEWMARK method; then the influences of static torque and periodic torsional excitations on rotor dynamic responses in transverse and torsional directions are discussed. Results show that with the increment of static torque, cracks will become open gradually and the nonlinearity degree of rotors will increase firstly and then decrease. For periodic torsional excitation, the torsional excitation frequency and its rotating frequency combination can be found in transverse vibration response, and the larger is the amplitude of excitation, the larger are the combinational frequency components. Then a crack monitoring method for power transmission machines can be suggested by monitoring the coupled response characteristics and their variation from transverse responses of rotors before and after the loads change.

  15. Experimental analysis of a rigid rotor supported on aerodynamic foil journal bearings

    Directory of Open Access Journals (Sweden)

    Arghir M.

    2014-01-01

    Full Text Available Aerodynamic foil bearings are highly non linear components used or intending to be used for supporting high speed rotors (>30 krpm of low size rotating machines (<400 kW. The non linear character comes from the highly deformable structure of the bearing made of thin steel sheets and from the Coulomb friction forces arising during dynamic displacements. The present work shows the non linear response of a rigid rotor supported by a pair of such bearings and entrained at 82 krpm. The measurements performed during the coast down revealed sub synchronous and asynchronous vibrations of the rotor and their multiples. A simplified theoretical model reproduces qualitatively some of these non linear characteristics.

  16. Mechanics of Cutting and Boring. Part 7. Dynamics and Energetics of Axial Rotation Machines,

    Science.gov (United States)

    1981-12-01

    systematic analytical scheme that can be used to facilitate future work on the mechanics of cutting and boring machines. In the industrial sector, rock...Proceedings. Chapter 66, p. 1149-1158. Mellor, M. and I. Hawkes (1972) How to rate a hard-rock borer. World Construction, Sept, p. 21-23. (Also in Ingenieria

  17. Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining

    Science.gov (United States)

    Wang, Dengyong; Zhu, Zengwei; Wang, Ningfeng; Zhu, Di

    2016-09-01

    Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 mm. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.

  18. Note: Attenuation motion of acoustically levitated spherical rotor

    Science.gov (United States)

    Lü, P.; Hong, Z. Y.; Yin, J. F.; Yan, N.; Zhai, W.; Wang, H. P.

    2016-11-01

    Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.

  19. Pendulum as a model system for driven rotation in molecular nanoscale machines

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Christiansen, Peter Leth; Nordén, B.

    2000-01-01

    and periodically. A pendulum driven by short impulses at its stable equilibrium point is shown to be a simple mechanical model which can be constructed easily and used for visual observation of the ratchet rotation. A possible application of this mechanism in nanotechnology is briefly discussed....

  20. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  1. Optical Shaft-Angle Encoder For Helicopter Rotor

    Science.gov (United States)

    Golub, Robert A.; Fitzpatrick, Fred; Dennis, Dale V.; Taylor, Bryant D.

    1993-01-01

    Angular position of helicopter rotor blade determined precisely. Accomplished by use of optical shaft-angle encoder called "256 Ring" on rotor swashplate. Each 360 degree rotation of helicopter main rotor broken down into 256 reflective segments. As rotor rotates, beam of light reflected in turn from each segment into optoelectronic system. One of 256 segments reflects larger pulse than others do. Position of rotor determined by counting number of pulses after this reference pulse. While swashplate mounting requirements unique to each type of helicopter, concept applicable to all types of rotorcraft.

  2. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.

    2015-04-01

    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  3. A Micro-Force Sensor with Beam-Membrane Structure for Measurement of Friction Torque in Rotating MEMS Machines

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2017-10-01

    Full Text Available In this paper, a beam-membrane (BM sensor for measuring friction torque in micro-electro-mechanical system (MEMS gas bearings is presented. The proposed sensor measures the force-arm-transformed force using a detecting probe and the piezoresistive effect. This solution incorporates a membrane into a conventional four-beam structure to meet the range requirements for the measurement of both the maximum static friction torque and the kinetic friction torque in rotating MEMS machines, as well as eliminate the problem of low sensitivity with neat membrane structure. A glass wafer is bonded onto the bottom of the sensor chip with a certain gap to protect the sensor when overloaded. The comparisons between the performances of beam-based sensor, membrane-based sensor and BM sensor are conducted by finite element method (FEM, and the final sensor dimensions are also determined. Calibration of the fabricated and packaged device is experimentally performed. The practical verification is also reported in the paper for estimating the friction torque in micro gas bearings by assembling the proposed sensor into a rotary table-based measurement system. The results demonstrate that the proposed force sensor has a potential application in measuring micro friction or force in MEMS machines.

  4. On cup anemometer rotor aerodynamics.

    Science.gov (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  5. A Rotor Flux and Speed Observer for Sensorless Single-Phase Induction Motor Applications

    Directory of Open Access Journals (Sweden)

    Massimo Caruso

    2012-01-01

    Full Text Available It is usual to find single-phase induction motor (SPIM in several house, office, shopping, farm, and industry applications, which are become each time more sophisticated and requiring the development of efficient alternatives to improve the operational performance of this machine. Although the rotor flux and rotational speed are essential variables in order to optimize the operation of a SPIM, the use of conventional sensors to measure them is not a viable option. Thus, the adoption of sensorless strategies is the more reasonable proposal for these cases. This paper presents a rotor flux and rotational speed observer for sensorless applications involving SPIMs. Computer simulations and the experimental results are used to verify the performance of the proposed observer.

  6. A feasibility study on a new brushless and gearless contra-rotating permanent magnet wind power generator

    Science.gov (United States)

    Niu, Shuangxia; Ho, S. L.; Fu, W. N.; Chau, K. T.; Lin, F.

    2014-05-01

    In this paper, a novel fully integrated contra-rotating permanent magnet (PM) generator is proposed. In order to efficiently capture wind energy, two contra-rotating rotors are integrated, based on magnetic field modulating principle, into a single PM machine. A relatively high angular velocity is created and the torque density is improved. The steady-state and transient performance of the machine is simulated using time-stepping finite-element method. The computation results are used to showcase the validity of the proposed machine design.

  7. Exploration of micro-diamagnetic levitation rotor

    Science.gov (United States)

    Su, Yufeng; Zhang, Kun; Ye, Zhitong; Xiao, Zhiming; Takahata, Kenichi

    2017-12-01

    We investigated a micro-diamagnetic levitation rotor system (MDLRS) in which the rotor freely levitates above the magnets. To explore the characteristics of the rotor, we carried out numerical simulations of and experiments on the MDLRS. Numerical simulation results show that the steady-state levitation height of the rotor is 130 µm, which is basically consistent with the experimental result (132 µm). Under the actuation of a regulated nitrogen flow, experimental results from the rotation speed of the rotor show that the maximum rate is 500 rpm at a flow rate of 28.16 sccm. Furthermore, an empirical model of the relationship between the flow rate and the rotation speed is proposed.

  8. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining

    Directory of Open Access Journals (Sweden)

    Masahiko Kanaoka et al

    2007-01-01

    Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.

  9. Non invasive sensors for monitoring the efficiency of AC electrical rotating machines.

    Science.gov (United States)

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer.

  10. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Directory of Open Access Journals (Sweden)

    Thierry Jacq

    2010-08-01

    Full Text Available This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee and they are centralized and stored on a PC computer.

  11. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Science.gov (United States)

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer. PMID:22163631

  12. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  13. Simulation Model of the Weaving Machine "Camel” and Selection of the Sufficient Driving Motor

    Directory of Open Access Journals (Sweden)

    Ondřej MAREK

    2013-12-01

    Full Text Available The paper deals with the mathematical model of the waving machine CAMEL. This machine consists of many moving parts (rotational and translational movements, belts, flexible elements and therefore it is very complex. CAMEL uses servomotors working in electronic cam regime. It means that the actual angular velocity of the rotor is not constant and therefore it is really important to reduce the moment of inertia of rotating elements. The inertia of the rotor of the drive is very important too. Existing simulation model can help to choose the optimal drive of the machine. It also allows selecting the best displacement laws for different speeds (rpm in order to decrease the effective torque which is proportional to the heating of the servomotor.

  14. VALVE DIRECT CURRENT MOTOR ON THE BASIS OF THE SYNCHRONOUS MACHINE OF INVERSE DESIGN

    Directory of Open Access Journals (Sweden)

    D. I. Morozov

    2014-12-01

    Full Text Available A mechanical collector of conventional DC machine is the element that limits the current and the armature speed and increases inertia. DC machine rectification realized on the basis of conventional DC machine is described; it externally rectifies the switch which is the analogue of the collector. The armature has a design similar to a phase-wound rotor of induction machine. It is shown that the switching frequency is determined by the armature rotation speed. Static mechanical characteristic of the rectifying DC machine is similar to that of the independent excitation of DC motor. The proposed variant of the DC motor is actually a synchronous machine of inverse design with armature regulation frequency. The motor is described as traditional salient pole synchronous machine. Starting dynamics simulation shows that the rectifying DC machine has better dynamic properties compared to the conventional DC motor due to overload capability and reduces the inertia of the armature

  15. Analysis of the dynamic response of pump-turbine impellers. Influence of the rotor

    Science.gov (United States)

    Egusquiza, Eduard; Valero, Carme; Presas, Alex; Huang, Xingxing; Guardo, Alfredo; Seidel, Ulrich

    2016-02-01

    This paper deals with the dynamic response of pump-turbine impellers. A pump-turbine impeller is a complex structure attached to a rotor and rotating inside a casing full of water with very small clearances between the rotating and the stationary parts. The dynamic response of this type of structures is very complex and it is very much affected by the connection to the rotor as well as by the added mass and boundary conditions. As a consequence its calculation presents several uncertainties. First, the dynamic response of pump-turbine impellers is introduced. Second an experimental investigation in a real impeller attached to the rotor and inside the machine was carried out. For this investigation, the impeller of an existing pump-turbine unit with an installed power of 110 MW and a diameter of 2.87 m was studied. For a better analysis of the experimental results a numerical model using FEM was also built-up. Frequencies and mode-shapes were identified numerically and experimentally and the characteristics of the structural response analyzed. To determine the influence of the rotor and supporting structures on the impeller response the results were compared with the ones obtained with the same impeller but suspended (non-connected to the rotor). Experimental and numerical simulation were also used for this case. The changes in the dynamic response due to the rotor connection were determined. Finally the results obtained are compared with the results from other pump-turbine impellers of different designs and general conclusions about the dynamics of this type of structures are given.

  16. Hydroacoustic simulation of rotor-stator interaction in resonance conditions in Francis pump-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, C [Power Vision Engineering sarl, Ch. des Champs-Courbes 1, CH-1024 Ecublens (Switzerland); Ruchonnet, N; Alligne, S; Avellan, F [EPFL Laboratory for Hydraulic Machines, Av. de Cour 33bis, CH-1007 Lausanne (Switzerland); Koutnik, J, E-mail: christophe.nicolet@powervision-eng.c [Voith Hydro Holding GmbH and Co. KG, Alexanderstr. 11, 89522 Heidenheim (Germany)

    2010-08-15

    Combined effect of rotating pressure field related to runner blade and wakes of wicket gates leads to rotor stator interactions, RSI, in Francis pump-turbines. These interactions induce pressures waves propagating in the entire hydraulic machine. Superposition of those pressure waves may result in standing wave in the spiral casing and rotating diametrical mode in the guide vanes and can cause strong pressure fluctuations and vibrations. This paper presents the modeling, simulation and analysis of Rotor-Stator Interaction of a scale model of a Francis pump-turbine and related test rig using a one-dimensional approach. The hydroacoustic modeling of the Francis pump-turbine takes into account the spiral casing, the 20 guide vanes, the 9 rotating runner vanes. The connection between stationary and rotating parts is ensured by a valve network driven according to the unsteady flow distribution between guide vanes and runner vanes. Time domain simulations are performed for 2 different runner rotational speeds in turbine mode. The simulation results are analyzed in frequency domain and highlights hydroacoustic resonance between RSI excitations and the spiral case. Rotating diametrical mode in the vaneless gap and standing wave in the spiral case are identified. The influence of the resonance on phase and amplitude of pressure fluctuations obtained for both the spiral case and the vaneless gap is analyzed. The mode shape and frequencies are confirmed using eigenvalues analysis.

  17. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær

    2007-01-01

    -Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been......This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier...

  18. Dynamic behavior of the horizontal milling and drilling machine spindle assembly with Dynrot software

    Directory of Open Access Journals (Sweden)

    Căruţaşu Nicoleta Luminiţa

    2017-01-01

    Full Text Available This article presents research conducted to study the dynamic behavior of the assembly of a horizontal milling CNC machine spindle at the speed of 10 000 rpm and 50 000 rpm. This step aims to determine the critical rotation speeds of the complex system “spindle – bearings”, by drawing Campbell diagrams. The rotor is a subset of these machines, consisting of a shaft, in which the one or more discs, and which executes a rotating motion around the axis propyl. The curve Campbell contours in the diagram represents the variation of natural pulsations of spindle system, depending on the speed bearing spindle.

  19. Analytical methods in rotor dynamics

    CERN Document Server

    Dimarogonas, Andrew D; Chondros, Thomas G

    2013-01-01

    The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments. No topics related to the well-known classical problems are included, rather the book deals exclusively with modern high-power turbomachinery.

  20. Bifurcations of a flexible rotor response in squeeze-film dampers without centering springs

    Energy Technology Data Exchange (ETDEWEB)

    Inayat-Hussain, Jawaid I. [School of Engineering, Monash University Malaysia, No. 2, Jalan Kolej, Bandar Sunway, Petaling Jaya 46150, Selangor Darul Ehsan (Malaysia)]. E-mail: jawaid.inayat-hussain@eng.monash.edu.my

    2005-04-01

    Squeeze-film dampers are often utilized in high-speed rotating machinery to provide additional external damping to the rotor-bearing system for the purpose of reducing the synchronous response of the rotor especially while traversing critical speeds, or to eliminate rotor instability problems. The application of these dampers are widely found in aircraft gas turbine engines that are usually mounted on rolling element bearings, which are known to provide almost negligible damping to the system. Although the squeeze-film damper is an inherently stable machine element, its operation at certain parameters may give rise to undesirable non-synchronous vibration. The effects of the design and operating parameters, namely the bearing parameter, B, gravity parameter, W, and mass ratio, {alpha}, on the bifurcations in the response of a flexible rotor supported by squeeze-film dampers without centering springs were examined using direct numerical integration. Specifically, the effects of these parameters on the onset speed of bifurcation and the extent of non-synchronous response of the rotor within the range of speed parameter, {omega}, between 0.5 and 5.0 were determined. Numerical simulation results showed the occurrence of period-2, period-4 and quasi-periodic vibrations in the response of the rotor as the speed parameter, {omega}, was varied from 0.5 to 5. The results further showed that increasing B resulted in the increase of the onset speed of bifurcation, and a decrease in the range of {omega} where non-synchronous response was observed. With the exception of the case of W = 0.0, the increase of W was found to increase the onset speed of bifurcation and also the range of {omega} where non-synchronous response was observed. The effect of increasing {alpha} resulted in a decrease in the range of {omega} where non-synchronous response existed. The increase of {alpha} also caused the onset speed of bifurcation to increase, except for the case of B = 0.05, W = 0.0, where

  1. Complete control, direct observation and study of molecular super rotors

    CERN Document Server

    Korobenko, Aleksey; Milner, Valery

    2013-01-01

    Extremely fast rotating molecules carrying significantly more energy in their rotation than in any other degree of freedom are known as "super rotors". It has been speculated that super rotors may exhibit a number of unique and intriguing properties. Theoretical studies showed that ultrafast molecular rotation may change the character of molecular scattering from solid surfaces, alter molecular trajectories in external fields, make super rotors surprisingly stable against collisions, and lead to the formation of gas vortices. New ways of molecular cooling and selective chemical bond breaking by ultrafast spinning have been proposed. Owing to the fundamental laws of nature, bringing a large number of molecules to fast, directional and synchronous rotation is rather challenging. As a result, only indirect evidence of super rotors has been reported to date. Here we demonstrate the first controlled creation, direct observation and study of molecular super rotors. Using intense laser pulses tailored to produce an ...

  2. Design, fabrication, and performance of foil journal bearing for the brayton rotating unit

    Science.gov (United States)

    Licht, L.; Branger, M.

    1973-01-01

    Foil bearings were designed and manufactured to replace pivoted-shoe journal bearings in an existing Brayton Cycle turbo-alternator-compressor. The design of this unconventional rotor support was accomplished within the constraints and space limitations imposed by the present machine, and the substitution of foil bearings was effected without changes or modification other machine components. A housing and a test rig were constructed to incorporate the new foil-bearing support into a unified assemble with an air-driven rotor and the gimbal-mounted thrust bearing, seals, and shrouds of an actual Brayton Rotating Unit. The foil bearing required no external pressure source, and stable self-acting rotation was achieved at all speeds up to 43,200 rpm. Excellent wipe-wear characteristics of the foil bearing permitted well over 1000 start-stop cycles with no deterioriation of performance in the entire speed range.

  3. Large A.C. machines theory and investigation methods of currents and losses in stator and rotor meshes including operation with nonlinear loads

    CERN Document Server

    Boguslawsky, Iliya; Hayakawa, Masashi

    2017-01-01

    In this monograph the authors solve the modern scientific problems connected with A.C. motors and generators, based first on the detailed consideration of their physical phenomena. The authors describe the theory and investigative methods they developed and applied in practice, which are considered to be of essential interest for specialists in the field of the electrical engineering industry in European countries, the USA, Argentina, and Brazil, as well as in such countries as India, China, and Iran. This book will be of interest to engineers specialized in the field of the manufacture, operation, and repair of A.C. machines (motors and generators) as well as electric drives; to professors, lecturers, and post-graduate students of technical universities, who are specializing in the field of electric machine engineering and electric drives; and to students who are engaged in the field of high current techniques, electric drives, and electric machine engineering.

  4. Wireless Light-Emitting Electrochemical Rotors.

    Science.gov (United States)

    Eßmann, Vera; Voci, Silvia; Loget, Gabriel; Sojic, Neso; Schuhmann, Wolfgang; Kuhn, Alexander

    2017-10-05

    Bipolar electrochemistry has been shown to enable and control various kinds of propulsion of nonwired conducting objects: translation, rotation, and levitation. There is a very rapid development in the field of controlled motion combined with other functionalities. Here we integrate two different concepts in one system to generate wireless electrochemical motion of a specifically designed rotor and track its polarization simultaneously by electrochemical light emission. Locally produced hydrogen bubbles at the cathodic pole of the bipolar rotor are the driving force of the motion, whereas [Ru(bpy)3]Cl2 and tripropylamine react at the anodic extremity, thus generating an electrochemiluminescence signal with an intensity directly correlated with the orientation of the rotor arms. This allows in a straightforward way the qualitative visualization of the changing interfacial potential differences during rotation and shows for the first time that light emission can be coupled to autonomously rotating bipolar electrodes.

  5. Choice of material and development of technology to manufacture the working parts of a rotor operating in machine for turning of triangular heaps

    Directory of Open Access Journals (Sweden)

    W. Uhl

    2008-07-01

    Full Text Available The theoretical part of the study discloses the genesis of the research which originated from a possibility of replacing the so far used expensive machine parts with parts cheaper and yet offering similar quality and performance life. A short characteristic of the machine was given where the main operating parts made so far from steel were replaced with parts made from cast iron. The equipment and its main applications were described.In the research part of the study several types of alloys were proposed. Their use is expected to ensure the required performance life of parts combined with price reduction. A short characteristic of the proposed material was given. A technology of making moulds for the said machine parts was developed. Using this technology, the respective moulds were made and poured next with three cast alloys.One of the proposed materials was subjected to four types of the heat treatment, two alloys used as reference materials were left in as-cast state. The castings were fettled and weighed. The hardness of the cast materials was measured.The working (turning parts were delivered for operation to a sewage-treatment plant where, after assembly in a turning machine, the performance tests were conducted.

  6. Investigation on the Dynamics of an On-Board Rotor-Bearing System

    OpenAIRE

    Dakel, M. Zaki; Baguet, Sébastien; Dufour, Régis

    2012-01-01

    International audience; In ship and aircraft turbine rotors, the rotating mass unbalance and the different movements of the rotor base are among the main causes of vibrations in bending. The goal of this paper is to investigate the dynamic behavior of an on-board rotor under rigid base excitations. The modeling takes into consideration six types of base deterministic motions (rotations and translations) when the kinetic and strain energies in addition to the virtual work of the rotating flexi...

  7. An improved modelling of asynchronous machine with skin-effect ...

    African Journals Online (AJOL)

    The conventional method of analysis of Asynchronous machine fails to give accurate results especially when the machine is operated under high rotor frequency. At high rotor frequency, skin-effect dominates causing the rotor impedance to be frequency dependant. This paper therefore presents an improved method of ...

  8. Eigenfrequency Of Rotor Disk Assembly With Different Bearing ...

    African Journals Online (AJOL)

    In the design of Rotors, the identification of critical speed is essential for the smooth operation of machines and safety. In this paper, the effect of different types of support conditions and types of bearings on the critical frequency, of Rotors is investigated. Including gyroscopic damping and operational speed dependent ...

  9. Justification for parameters of a dynamic stabilizer of the experimental stand mobile unit in studying of active rotational working tools of tiller machines

    Directory of Open Access Journals (Sweden)

    Vladimir F. Kupryashkin

    2017-03-01

    Full Text Available Introduction: The article deals with design options and technological modes of the dynamic stabilizer of the experimental stand mobile unit for studying tillage machine active rotating work tools. Based on theoretical and experimental studies, the possibility the movable module instability was discovered. This negatively affects on implementing the experiment program trough the especific method. The need in engineering solutions for the defect correction is shown. In addition, the authors consider the structural features and characteristics of the used devices for providing the stabilization of the movable module in the study of active rotating work tools of tillage machines. An electromagnetic brake dynamic stabilizer in the structure of the existing rolling module was proposed as an engineering device. Materials and Methods: A theoretical study of rolling module stability, based on synthesis of basic regulations and laws of mechanics related to active rotating work tools was conducted. As a result of the theoretical research, a design scheme of movable module loading was created. This scheme includes the design features and structural power factors. Results: A database representing the settings of power specification in the motion stability determining the mobile unit was created. Further use of the database values allow supporting the most optimal location of the electromagnetic brake with its design options. Discussion and Conclusions: The research of the electromagnetic brake in a mobile unit promoted stabilizing the unit movement, increased the frequency of its use and provided data that are more precise during experiments.

  10. Motion capture and manipulation of a single synthetic molecular rotor by optical microscopy.

    Science.gov (United States)

    Ikeda, Tomohiro; Tsukahara, Takahiro; Iino, Ryota; Takeuchi, Masayuki; Noji, Hiroyuki

    2014-09-15

    Single-molecule imaging and manipulation with optical microscopy have become essential methods for studying biomolecular machines; however, only few efforts have been directed towards synthetic molecular machines. Single-molecule optical microscopy was now applied to a synthetic molecular rotor, a double-decker porphyrin (DD). By attaching a magnetic bead (ca. 200 nm) to the DD, its rotational dynamics were captured with a time resolution of 0.5 ms. DD showed rotational diffusion with 90° steps, which is consistent with its four-fold structural symmetry. Kinetic analysis revealed the first-order kinetics of the 90° step with a rate constant of 2.8 s(-1). The barrier height of the rotational potential was estimated to be greater than 7.4 kJ mol(-1) at 298 K. The DD was also forcibly rotated with magnetic tweezers, and again, four stable pausing angles that are separated by 90° were observed. These results demonstrate the potency of single-molecule optical microscopy for the elucidation of elementary properties of synthetic molecular machines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Research on wind turbine rotor models using NACA profiles

    Energy Technology Data Exchange (ETDEWEB)

    Vardar, Ali; Alibas, Ilknur [Department of Agricultural Machinery, Faculty of Agriculture, Uludag University, Gorukle Kampusu, 16059 Bursa (Turkey)

    2008-07-15

    In this study, rotation rates and power coefficients of miniature wind turbine rotor models manufactured using NACA profiles were investigated. For this purpose, miniature rotor models with 310 mm diameter were made from ''Balsa'' wood. When all properties of rotor models were taken into account, a total of 180 various combinations were obtained. Each combination was coded with rotor form code. These model rotors were tested in a wind tunnel measurement system. Rotation rates for each rotor form were determined based on wind speed. Power coefficient values were calculated using power and tip speed rates of wind. Rotor models produced a rotation rate up to 3077 rpm, with a power coefficient rate up to 0.425. Rotor models manufactured by using NACA 4412 profiles with 0 grade twisting angle, 5 grade blade angle, double blades had the highest rotation rate, while those manufactured by using NACA 4415 profiles with 0 grade twisting angle, 18 grade blade angle, 4 blades had the highest power coefficient. (author)

  12. An Analysis of the Torsion-Rotation-Vibration Rotational Spectrum of the Lowest In-Plane Bend and First Excited Torsional State of the C(3V) Internal Rotor C2H5CN

    Science.gov (United States)

    Pearson, J. C.; Pickett, Herbert M.; Sastry, K. V. L. N.

    2000-01-01

    C2H5CN (Propionitrile or ethyl cyanide) is a well known interstellar species abundantly observed in hot cores during the onset of star formation. The onset of star formation generally results in elevated temperature, which thermally populates may low lying vibrational states such as the 206/cm in-plane bend and the 212/cm first excited torsional state in C2H5CN. Unfortunately, these two states are strongly coupled through a complex series of torsion-vibration-rotation interactions, which dominate the spectrum. In order to understand the details of these interactions and develop models capable of predicting unmeasured transitions for astronomical observations in C2H5CN and similar molecules, several thousand rotational transitions in the lowest excited in-plane bend and first excited torsional state have been recorded, assigned and analyzed. The analysis reveals very strong a- and b-type Coriolis interactions and a number of other smaller interactions and has a number of important implications for other C3V torsion-rotation-vibration systems. The relative importance and the physical origins of the coupling among the rotational, vibrational and torsional motions will be presented along with a full spectroscopic analysis and supporting astronomical observations.

  13. Reference Model 2: "Rev 0" Rotor Design

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  14. A computational investigation of vibration attenuation of a rigid rotor turning at a variable speed by means of short magnetorheological dampers

    Directory of Open Access Journals (Sweden)

    Zapoměl J.

    2009-12-01

    Full Text Available Rotors of all rotating machines are always slightly imbalanced. When they rotate, the imbalance induces their lateral vibration and forces that are transmitted via the bearings into the foundations. These phenomena are significant if the rotor accelerates or decelerates and especially if it passes over the critical speeds. The vibration can be reduced if the rotor supports are equipped with damping elements. To achieve optimum performance of the damper, the damping effect must be controllable. At present time, semiactive magnetorheological squeeze film dampers are a subject of intensive research. They work on a principle of squeezing a thin film of magnetorheological liquid. If magnetic field is applied, the magnetorheological liquid starts to flow only if the shear stress between two neighbourhood layers exceeds a limit value which depends on intensity of the magnetic field. Its change enables to control the damping force. In the mathematical models, the magnetorheological liquid is usually considered as Bingham one. Application of the computer modelling method for analysis of rotors supported by rolling element bearings and magnetorheological squeeze film dampers and turning at variable angular speed requires to set up the equations of motion of the rotor and to develop a procedure for calculation of the damping force. Derivation of the equations of motion starts from the first and second impulse theorems. The pressure distribution in the thin lubricating film can be described by a Reynolds equation modified for the case of Bingham liquid. In cavitated areas, it is assumed that pressure of the medium remains constant. The hydraulic force acting on the rotor journal is then obtained by integration of the pressure distribution around the circumference and along the length of the damper. Applicability of the developed procedures was tested by means of computer simulations and influence of the control of the damping force on vibration of the rotor

  15. Fuzzy logic estimator of rotor time constant in induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Alminoja, J. [Tampere University of Technology (Finland). Control Engineering Laboratory; Koivo, H. [Helsinki University of Technology, Otaniemi (Finland). Control Engineering Laboratory

    1997-12-31

    Vector control of AC machines is a well-known and widely used technique in induction machine control. It offers an exact method for speed control of induction motors, but it is also sensitive to the changes in machine parameters. E.g. rotor time constant has a strong dependence on temperature. In this paper a fuzzy logic estimator is developed, with which the rotor time constant can be estimated when the machine has a load. It is more simple than the estimators proposed in the literature. The fuzzy estimator is tested by simulation when step-wise abrupt changes and slow drifting occurs. (orig.) 7 refs.

  16. The Evolution of Rotor and Blade Design

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.

    2000-08-01

    The objective of this paper is to provide a historical perspective of the evolution of rotor and blade design during the last 20 years. This evolution is a balanced integration of economic, aerodynamic, structural dynamic, noise, and aesthetic considerations, which are known to be machine type and size dependent.

  17. Recent Advances on Permanent Magnet Machines

    Institute of Scientific and Technical Information of China (English)

    诸自强

    2012-01-01

    This paper overviews advances on permanent magnet(PM) brushless machines over last 30 years,with particular reference to new and novel machine topologies.These include current states and trends for surface-mounted and interior PM machines,electrically and mechanically adjusted variable flux PM machines including memory machine,hybrid PM machines which uniquely integrate PM technology into induction machines,switched and synchronous reluctance machines and wound field machines,Halbach PM machines,dual-rotor PM machines,and magnetically geared PM machines,etc.The paper highlights their features and applications to various market sectors.

  18. Position Sensing for Rotor in Hybrid Stepper Motor

    Science.gov (United States)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)

    2011-01-01

    A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.

  19. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system targeting the collective...

  20. EXPERIMENTAL STUDY OF THE DYNAMICS OF CENTRIFUGAL CASTING MACHINES FOR PRODUCTION OF MILL ROLLS

    Directory of Open Access Journals (Sweden)

    P. G. Anofriev

    2017-06-01

    Full Text Available Purpose. The main purpose of experimental studies is to establish the adequacy of the developed mathematical models of machine fluctuations and the actual parameters of machine vibration. Almost all casting machines for the production of mill rolls have a unique design and performances. The additional aim of this work is to compare the vibration level of the casting machine with the requirements of the current vibration standards for new technological machines. Frequency analysis of the oscillations allows establishing defects in workmanship, errors of rotating parts installation and their influence on the dynamics of the machine. Methodology. Measurement of vibration parameters was performed on the moving parts of roller bearings of the machine. To measure the amplitudes of accelerations in three mutually perpendicular directions piezoelectric sensors with magnetic mount were used. Electrical signals from the sensors were recorded on magnetic tape. Further analysis of the oscillations was carried out and visualized using specialized frequency analyzer. The frequency analyzer implements the algorithm of fast Fourier transformation and/or integration of sensor input signal. After the first integration the data for plotting the vibration velocity spectrogram were obtained and as a result of the second integration there are the data of vibration displacements spectrogram of the machine supports. Findings. The results of experimental studies of centrifugal casting machine vibrations for the production of two-layer rolls were presented. There were obtained and analyzed the spectrograms of accelerations, velocities and displacements of moving parts of the upper and lower roller supports. The work of the machine is associated with the calculated values passing of critical frequencies and the short-term development of resonance oscillations of the rotor and roller bearings. Originality. For the first time the author obtained the frequency spectra of

  1. HELICOPTER ROTOR DESIGN

    Directory of Open Access Journals (Sweden)

    IONESCU Cristian Andrei

    2011-06-01

    Full Text Available The objective of this paper is to analyze the role of helicopter rotor, to classify them by type, and to imagine new types of helicopter rotors that can equip future helicopters. Finally, the author shows a coaxial rotor 3D model such a best alternative to equip the new helicopters.

  2. Coupled Thermal Field of the Rotor of Liquid Floated Gyroscope

    Directory of Open Access Journals (Sweden)

    Wang Zhengjun

    2015-01-01

    Full Text Available Inertial navigation devices include star sensor, GPS, and gyroscope. Optical fiber and laser gyroscopes provide high accuracy, and their manufacturing costs are also high. Magnetic suspension rotor gyroscope improves the accuracy and reduces the production cost of the device because of the influence of thermodynamic coupling. Therefore, the precision of the gyroscope is reduced and drift rate is increased. In this study, the rotor of liquid floated gyroscope, particularly the dished rotor gyroscope, was placed under a thermal field, which improved the measurement accuracy of the gyroscope. A dynamic theory of the rotor of liquid floated gyroscope was proposed, and the thermal field of the rotor was simulated. The maximum stress was in x, 1.4; y, 8.43; min 97.23; and max 154.34. This stress occurred at the border of the dished rotor at a high-speed rotation. The secondary flow reached 5549 r/min, and the generated heat increased. Meanwhile, the high-speed rotation of the rotor was volatile, and the dished rotor movement was unstable. Thus, nanomaterials must be added to reduce the thermal coupling fluctuations in the dished rotor and improve the accuracy of the measurement error and drift rate.

  3. Performance of a Horizontal Double Cylinder Type of Fresh Coffee Cherries Pulping Machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2009-05-01

    Full Text Available Pulping is one important step in wet coffee processing method. Usually, pulping process uses a machine which constructed using wood or metal materials. A horizontal single cylinder type coffee pulping machine is the most popular machine in coffee processor and market. One of the weakness of a horizontal single cylinder type coffee pulping machine is high of broken beans. Broken beans is one of major aspect in defect system that result in low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type coffee pulping machine. Material tested is Robusta cherry, mature, 60—65% (wet basis moisture content, which size compostition of coffee cherries was 50.8% more than 15 mm diameter, 32% more than 10 mm diameter, and 16.6% to get through 10 mm hole diameter; 690—695 kg/m3 bulk density, and clean from methal and foreign materials. The result showed that this machine has 420 kg/h optimal capacity in operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 53.08% whole parchment coffee, 16.92% broken beans, and 30% beans in the wet skin. For small size coffee cherries, 603 kg/h optimal capacity in operational conditions, 1600 rpm rotor rotation speed with composition 51.30% whole parchment coffee, 12.59% broken beans, and 36.1% beans in the wet skin. Finally, for medium size coffee cherries, 564 kg/h optimal capacity in operational conditions, 1800 rpm rotor rotation speed with composition 48.64% whole parchment coffee, 18.5% broken beans, and 32.86% beans in the wet skin.Key words : coffee, pulp, pulper, cylinder, quality.

  4. effect of number of rotor poles on ac losses of permanent magnet ...

    African Journals Online (AJOL)

    HOD

    A study on permanent magnet (PM) eddy current and core losses of dual-stator PM machines is investigated in this paper. The analyzed core losses include: the rotor core loss, stator core loss and the total core loss of the machines. Further, the effect of their different rotor pole number is also presented with quantitative ...

  5. Primal Domain Decomposition Method with Direct and Iterative Solver for Circuit-Field-Torque Coupled Parallel Finite Element Method to Electric Machine Modelling

    Directory of Open Access Journals (Sweden)

    Daniel Marcsa

    2015-01-01

    Full Text Available The analysis and design of electromechanical devices involve the solution of large sparse linear systems, and require therefore high performance algorithms. In this paper, the primal Domain Decomposition Method (DDM with parallel forward-backward and with parallel Preconditioned Conjugate Gradient (PCG solvers are introduced in two-dimensional parallel time-stepping finite element formulation to analyze rotating machine considering the electromagnetic field, external circuit and rotor movement. The proposed parallel direct and the iterative solver with two preconditioners are analyzed concerning its computational efficiency and number of iterations of the solver with different preconditioners. Simulation results of a rotating machine is also presented.

  6. Diagnosis of broken-bars fault in induction machines using higher order spectral analysis.

    Science.gov (United States)

    Saidi, L; Fnaiech, F; Henao, H; Capolino, G-A; Cirrincione, G

    2013-01-01

    Detection and identification of induction machine faults through the stator current signal using higher order spectra analysis is presented. This technique is known as motor current signature analysis (MCSA). This paper proposes two higher order spectra techniques, namely the power spectrum and the slices of bi-spectrum used for the analysis of induction machine stator current leading to the detection of electrical failures within the rotor cage. The method has been tested by using both healthy and broken rotor bars cases for an 18.5 kW-220 V/380 V-50 Hz-2 pair of poles induction motor under different load conditions. Experimental signals have been analyzed highlighting that bi-spectrum results show their superiority in the accurate detection of rotor broken bars. Even when the induction machine is rotating at a low level of shaft load (no-load condition), the rotor fault detection is efficient. We will also demonstrate through the analysis and experimental verification, that our proposed proposed-method has better detection performance in terms of receiver operation characteristics (ROC) curves and precision-recall graph. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    Science.gov (United States)

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  8. Energy harvesting using AC machines with high effective pole count

    Science.gov (United States)

    Geiger, Richard Theodore

    In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid "stepper" machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%. At low rotor speeds, with the addition of series capacitance, the power output of the hybrid "stepper" was more than 200% that of a similarly sized PMDC brushed motor. Finally, in this thesis a hybrid lumped parameter / finite element model was used to investigate the impact of number, shape and size of the rotor and stator teeth on machine performance. A typical off-the-shelf hybrid stepper machine has significant cogging torque by design. This cogging torque is a major problem in most small energy harvesting applications. In this thesis it was shown that the cogging and ripple torque can be dramatically reduced. These findings confirm that high-pole-count topologies, and specifically the hybrid stepper configuration, are an attractive choice for energy harvesting applications.

  9. A Novel Configuration of Feedback's Electric Machine Tutor (EMT ...

    African Journals Online (AJOL)

    This paper reports a successful adaptation of a laboratory teaching machine - Electrical Machine Tutor (EMT) model 180 as an asynchronous composite polyphase electric motor without rotor conductors. The device comprises two such identical machines without rotor conductors, all the conductors being on the stator side, ...

  10. Control of rotor motion in a light-driven molecular motor: towards a molecular gearbox.

    Science.gov (United States)

    Ter Wiel, Matthijs K J; van Delden, Richard A; Meetsma, Auke; Feringa, Ben L

    2005-11-21

    Controlled intramolecular movement and coupling of motor and rotor functions is exerted by this new molecular device. The rate of rotation of the rotor part of the molecule can be adjusted by alteration of the conformation of the motor part of the molecule. For all states of the motor part, different rates of rotation were measured for the rotor part. Conversion between the four propeller orientations was achieved by irradiation and heating.

  11. Techniques for the construction of an elliptical-cylindrical model using circular rotating tools in non CNC machines

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos Mendoza, Brenda; Cordero Davila, Alberto [Benemerita Universidad Autonoma de Puebla, 4 Sur 104 Centra Historico C.P. 72000, Puebla, Pue. (Mexico); Gonzalez Garcia, Jorge, E-mail: bvillalobosmendoza@gmail.com [Universidad Tecnologica de la Mixteca, Carretera Huajuapan-Acatlima, Km 2.5, CP. 6900, Huajuapan de Leon, Oaxaca (Mexico)

    2011-01-01

    This paper describes the construction of an elliptical-cylindrical model without spherical aberration using vertical rotating tools. The engine of the circular tool is placed on one arm so that the tool fits on the surface and this in turn is moved by an X-Y table. The test method and computer algorithms that predict the desired wear are described.

  12. Spin-stabilized magnetic levitation without vertical axis of rotation

    Science.gov (United States)

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  13. Heat transfer and flow region characteristics study in a non-annular channel between rotor and stator

    Directory of Open Access Journals (Sweden)

    Nili-Ahmadabadi M.

    2012-01-01

    Full Text Available This paper will present the results of the experimental investigation of heat transfer in a non-annular channel between rotor and stator similar to a real generator. Numerous experiments and numerical studies have examined flow and heat transfer characteristics of a fluid in an annulus with a rotating inner cylinder. In the current study, turbulent flow region and heat transfer characteristics have been studied in the air gap between the rotor and stator of a generator. The test rig has been built in a way which shows a very good agreement with the geometry of a real generator. The boundary condition supplies a non-homogenous heat flux through the passing air channel. The experimental devices and data acquisition method are carefully described in the paper. Surface-mounted thermocouples are located on the both stator and rotor surfaces and one slip ring transfers the collected temperature from rotor to the instrument display. The rotational speed of rotor is fixed at three under: 300rpm, 900 rpm and 1500 rpm. Based on these speeds and hydraulic diameter of the air gap, the Reynolds number has been considered in the range: 4000machines having similar heat flow characteristics.

  14. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  15. Condition monitoring of a rotor arrangement in particular a wind turbine

    DEFF Research Database (Denmark)

    2017-01-01

    the rotor arrangement rotates, recording corresponding values of azimuth angle and edgewise and flap wise root bending moments for a plurality of rotations of rotor arrangement, transforming by use of e.g. a multi blade coordinate transformation, a Park's transformation or similar transformation...... the recorded edgewise and flap wise root bending moments (q) into a coordinate system rotating with the rotational shaft, thereby obtaining transformed root bending moments (qf). The method further comprising identifying periodicity in each of the transformed root bending moments, determining the condition...... of the rotor arrangement to be faulty, in case the one or more periodicities are identified in the transformed root bending moments....

  16. A novel micro-mixer with a quasi-active rotor: fabrication and design improvement

    Science.gov (United States)

    Kim, Yongdae; Lee, Jongkwang; Kwon, Sejin

    2009-10-01

    In the present paper, a novel micro-mixer with a quasi-active rotor for micro-plant applications is proposed and design considerations for the improvement of the mixing performance of the proposed micro-mixer are derived. The proposed micro-rotor mixer combines an active micro-mixer with a passive micro-mixer. The micro-rotor, which is a moving part of an active micro-mixer, is added to the micro-chamber of a passive micro-mixer. The micro-rotor was rotated by inflows tangential to the chamber, causing strong perturbations. Two models of the micro-rotor mixer were fabricated with six layers of photosensitive glass which were individually fabricated and thermally bonded together. Improvement in the design of the micro-rotor mixer was achieved after the fabrication and experimental testing of the first model. In the design of the second model, the channel width and the rotor diameter were diminished and the number of rotor blades was increased from four to five. Through these design improvements, the micro-rotor started rotating at a lower Reynolds number; the rotor rotated at Re 1000 in the first model, whereas it did so at Re 200 in the second model. The mixing efficiency values of the micro-mixers were measured using an image analysis method. In the results, the mixing performance was dominated by molecular diffusion in the low Reynolds number region. On the other hand, convection flows such as twisted flows and Coanda flows dominated the mixing performance in the higher Reynolds number region. In the upper Reynolds number region, the micro-rotor was rotated and strong perturbations were induced. The mixing efficiency values of the micro-rotor mixers were found to exceed 90% when the rotor was rotated.

  17. Determination of High-Frequency d- and q-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Vetuschi, M.; Rasmussen, Peter Omand

    2010-01-01

    of sensorless controllers using high-frequency signal injection techniques. The proposed method employs a static locked-rotor test using an ac +dc power supply. By injecting a high-frequency rotating voltage vector into the machine, the d- and q-axis inductances may simultaneously be determined with no need......This paper presents a reliable method for the experimental determination of high-frequency d- and q -axis inductances for surface-mounted permanent-magnet synchronous machines (SMPMSMs). Knowledge of the high-frequency d- and q-axis inductances plays an important role in the efficient design...

  18. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    Science.gov (United States)

    Xu, Xiangbo; Chen, Shao

    2015-08-31

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  19. Disc rotors with permanent magnets for brushless DC motor

    Science.gov (United States)

    Hawsey, Robert A.; Bailey, J. Milton

    1992-01-01

    A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  20. Tunneling of coupled methyl quantum rotors in 4-methylpyridine: Single rotor potential versus coupling interaction

    Science.gov (United States)

    Khazaei, Somayeh; Sebastiani, Daniel

    2017-11-01

    We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the

  1. Electromechanical impedance-based fault detection in a rotating machine by using an operating condition compensation approach

    Science.gov (United States)

    Tsuruta, K. M.; Rabelo, D. S.; Guimarães, C. G.; Cavalini, A. A.; Finzi Neto, R. M.; Steffen, V.

    2017-04-01

    The electromechanical impedance is a condition-based maintenance (CBM) methodology that uses sensors network to evaluate health condition of mechanical systems. Piezoelectric transducers are used as sensors and actuators to damage detection. Such approach monitors changes in the electric impedance of piezoelectric transducers that are bonded to the host structure. Normally the evaluation of the impedance responses is performed by using damage metrics, which permit to quantify the influence of damage. This is possible since the sensor electrical impedance is directly related to the mechanical impedance of the structure. However, the frequency response functions (FRFs) resulting from this method are susceptible to environmental and operational conditions that must be accounted for in order to avoid false diagnostics. Thus, the aim of this paper relies on the correct detection of incipient faults in rotating shafts under operating condition by using a real-time Impedance-based Structural Health Monitoring (ISHM) method. For this purpose, a data normalization procedure for compensation of changes in environmental and operating conditions is used to minimize changes in impedance signatures resulting from these external influences. Changes on dynamic load result from altering the rotation speed and unbalance level, while temperature changes stem from daily room temperature variations. The compensation technique is based on a hybrid optimization method associated with a given damage metrics. Additionally, a statistical model is used for threshold determination based on the Statistical Process Control (SPC) method. Experimental results show that an incipient damage associated with temperature and dynamic loads effects could be successfully detected with a probability of detection above 95 % confidence for the majority of the sensors used.

  2. High-Speed Rotor Analytical Dynamics on Flexible Foundation Subjected to Internal and External Excitation

    Science.gov (United States)

    Jivkov, Venelin S.; Zahariev, Evtim V.

    2016-12-01

    The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process. Nonlinear and transitional effects are analyzed and compared to the analytical results. External excitations, as wave propagation and earthquakes, are discussed. Finite elements in relative and absolute coordinates are applied to model the flexible column and the high speed rotating machine. Generalized Newton - Euler dynamics equations are used to derive the precise dynamics equations. Examples of simulation of the system vibrations and nonstationary behaviour are presented.

  3. Performance of a Horizontal Triple Cylinder Type Pulping Machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2011-05-01

    Full Text Available Pulping is one important step in wet coffee processing method. Pulping process usually uses a machine which constructed by wood or metal materials. A horizontal single cylinder type of fresh coffee cherries pulping machine is the most popular machine in coffee processing. One of the weaknesses of a horizontal single cylinder type of fresh coffee cherries pulping machine is higher in broken beans. Broken bean is one of mayor aspects in defect system that contribute to low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type of fresh coffee cherries pulping machine which resulted in 12.6—21.4% of broken beans. To reduce percentage of broken beans, Indonesian Coffee and Cocoa Research Institute has developed and tested a horizontal triple cylinder type of fresh coffee cherries pulping machine. Material tested was fresh mature Robusta coffee cherries, 60—65% (wet basis moisture content; has classified on 3 levels i.e. unsorted, small and medium, and clean from metal and foreign materials. The result showed that the machine produced 6,340 kg/h in optimal capacity for operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 55.5% whole parchment coffee, 3.66% broken beans, and 1% beans in wet skin.Key words : coffee, pulp, pulper, cylinder, quality.

  4. Vibration-Based Method Developed to Detect Cracks in Rotors During Acceleration Through Resonance

    Science.gov (United States)

    Sawicki, Jerzy T.; Baaklini, George Y.; Gyekenyesi, Andrew L.

    2004-01-01

    In recent years, there has been an increasing interest in developing rotating machinery shaft crack-detection methodologies and online techniques. Shaft crack problems present a significant safety and loss hazard in nearly every application of modern turbomachinery. In many cases, the rotors of modern machines are rapidly accelerated from rest to operating speed, to reduce the excessive vibrations at the critical speeds. The vibration monitoring during startup or shutdown has been receiving growing attention (ref. 1), especially for machines such as aircraft engines, which are subjected to frequent starts and stops, as well as high speeds and acceleration rates. It has been recognized that the presence of angular acceleration strongly affects the rotor's maximum response to unbalance and the speed at which it occurs. Unfortunately, conventional nondestructive evaluation (NDE) methods have unacceptable limits in terms of their application for online crack detection. Some of these techniques are time consuming and inconvenient for turbomachinery service testing. Almost all of these techniques require that the vicinity of the damage be known in advance, and they can provide only local information, with no indication of the structural strength at a component or system level. In addition, the effectiveness of these experimental techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the use of vibration monitoring along with vibration analysis has been receiving increasing attention.

  5. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  6. Optimal design and performance analysis of an external circulation un-contact rotor pump

    Science.gov (United States)

    Su, H. S.; Yang, G. L.; Zhang, L. Q.; Fang, C. H.; Li, R. N.

    2013-12-01

    It's difficult to calculate the flow pulsation and efficiency of an un-contact rotor pump as there's a gap between the two rotors and internal leakage exists during the operation process. We analyze the primary cause that affects the volumetric efficiency of external circulation un-contact rotor pumps and discuss its gap leakage mechanisms. We establish the pump's 3d model, by using the calculation method and physical model provided from FLUENT software, and moving mesh grid and UDF technology are adopted in the unsteady flow field numerical simulation of the pump. Two rotors were set as rotating entities with fixed rotational speeds, while the boundary of the flow field calculation area changed as the rotors rotated, picking up each iterative step of the two rotors by the size of the moment and the outlet velocity through the function, and depositing them into the text file. The relationship between the two rotors' gap quantity, the rotor and the pump body's gap quantity, the transient flow characteristics and the pressure distribution of the pump's body were studied. The calculation results show that pump efficiency is the highest when the two rotors' minimum gap quantity is 0.17 millimetre, the rotor and the pump body's minimum axial gap quantity is 0.1 millimetre.

  7. Making molecular machines work

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Ben L.

    2006-01-01

    In this review we chart recent advances in what is at once an old and very new field of endeavour the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a

  8. Investigations on bending-torsional vibrations of rotor during rotor-stator rub using Lagrange multiplier method

    Science.gov (United States)

    Mokhtar, Md Asjad; Kamalakar Darpe, Ashish; Gupta, Kshitij

    2017-08-01

    The ever-increasing need of highly efficient rotating machinery causes reduction in the clearance between rotating and non-rotating parts and increase in the chances of interaction between these parts. The rotor-stator contact, known as rub, has always been recognized as one of the potential causes of rotor system malfunctions and a source of secondary failures. It is one of few causes that influence both lateral and torsional vibrations. In this paper, the rotor stator interaction phenomenon is investigated in the finite element framework using Lagrange multiplier based contact mechanics approach. The stator is modelled as a beam that can respond to axial penetration and lateral friction force during the contact with the rotor. It ensures dynamic stator contact boundary and more realistic contact conditions in contrast to most of the earlier approaches. The rotor bending-torsional mode coupling during contact is considered and the vibration response in bending and torsion are analysed. The effect of parameters such as clearance, friction coefficient and stator stiffness are studied at various operating speeds and it has been found that certain parameter values generate peculiar rub related features. Presence of sub-harmonics in the lateral vibration frequency spectra are prominently observed when the rotor operates near the integer multiple of its lateral critical speed. The spectrum cascade of torsional vibration shows the presence of bending critical speed along with the larger amplitudes of frequencies close to torsional natural frequency of the rotor. When m × 1/n X frequency component of rotational frequency comes closer to the torsional natural frequency, stronger torsional vibration amplitude is noticed in the spectrum cascade. The combined information from the stator vibration and rotor lateral-torsional vibration spectral features is proposed for robust rub identification.

  9. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  10. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Zahle, Frederik; Sørensen, Niels N.

    2013-01-01

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0:3 for...... to predictions of a lifting line based computational tool based on 2D airfoil polars to highlight the 3D rotational effects on airfoil coefficients of the slatted inner airfoil sections....

  11. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0:3 for...... to predictions of a lifting line based computational tool based on 2D airfoil polars to highlight the 3D rotational effects on airfoil coefficients of the slatted inner airfoil sections....

  12. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part I: Theory

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    actuators fixed directly in the blades. However, due to the impracticability and problems by fixing actuators in the rotating blades, it is for practical application of great interest to study whether the vibrations can be controlled using shaft-based actuators, i.e. electro-magnetic bearings......This is the first paper in a two-part study on active rotor-blade vibration control. Blade faults are a major problem in bladed machines, such as turbines and compressors. Moreover, increasing demands for higher efficiency, lower weight and higher speed imply that blades become even more...... susceptible to vibrational problems. Passive damping methods, such as frictional damping, are typically used for this kind of machines, working very well at the specific design conditions. However, when the running conditions exceed the design specification, then passive damping devices become inefficient...

  13. Balancing of Rigid and Flexible Rotors

    Science.gov (United States)

    1986-01-01

    IA14 nf~VO1lS t’ , f,~ riabtiB SVM-12 Balancing of Rigid and Flexible Rotors Neville F. Rieger Stress Technology, Inc. 1986 The Shock end Vibration...a bearing or other Atructural components by fatigue . Unbalance is therefore recognized as an important potential cause of machinery failure. A number...runout on slow rotation, stress relaxation with time often heavy vibration during rota- "tion Section of blade or vane broken Visually observable; bearing

  14. High power for rotors; Rotor unter Starkstrom

    Energy Technology Data Exchange (ETDEWEB)

    Marter, H.J.

    2003-08-01

    Tidal energy is going strong: A new tidal power plant is projected off the coast of southern England. Of the envisaged underwater rotors, one has been installed for test purposes. (orig.) [German] Wellenenergie ist en vogue: Vor der Kueste Suedenglands wird ein neuartiges Tidenkraftwerk getestet. Die starke Stroemung soll maechtige Unterwasser-Rotoren antreiben. Zum Test dreht sich erst einmal nur einer. (orig.)

  15. Rotor Losses in a Switched Reluctance Motor - Analysis and Reduction Methods

    Science.gov (United States)

    Schweighofer, B.; Recheis, M.; Fulmek, P.; Wegleiter, H.

    2013-01-01

    Due to the increasing hybridization and electrification of vehicles, flywheel energy storage devices are an important area of research. In automotive application besides the weight criteria, some additionally constrains, such as size, efficiency and especially cost have to be fulfilled. Therefore typically a compact design, in which the rotor of the needed electrical machine simultaneously acts as storage mass is chosen. Since the machine is running in vacuum and the rotor can dissipate its heat only by means of thermal radiation or through the bearings if conventional bearings are used, the rotor losses play a vital role. In this work the rotor losses of a switched reluctance machine are analyzed in detail and a method to reduce the rotor losses is proposed.

  16. Rotor Losses in a Switched Reluctance Motor - Analysis and Reduction Methods

    Directory of Open Access Journals (Sweden)

    Wegleiter H.

    2013-01-01

    Full Text Available Due to the increasing hybridization and electrification of vehicles, flywheel energy storage devices are an important area of research. In automotive application besides the weight criteria, some additionally constrains, such as size, efficiency and especially cost have to be fulfilled. Therefore typically a compact design, in which the rotor of the needed electrical machine simultaneously acts as storage mass is chosen. Since the machine is running in vacuum and the rotor can dissipate its heat only by means of thermal radiation or through the bearings if conventional bearings are used, the rotor losses play a vital role. In this work the rotor losses of a switched reluctance machine are analyzed in detail and a method to reduce the rotor losses is proposed.

  17. Rotors stress analysis and design

    CERN Document Server

    Vullo, Vincenzo

    2013-01-01

    Stress and strain analysis of rotors subjected to surface and body loads, as well as to thermal loads deriving from temperature variation along the radius, constitutes a classic subject of machine design. Nevertheless attention is limited to rotor profiles for which governing equations are solvable in closed form. Furthermore very few actual engineering issues may relate to structures for which stress and strain analysis in the linear elastic field and, even more, under non-linear conditions (i.e. plastic or viscoelastic conditions) produces equations to be solved in closed form. Moreover, when a product is still in its design stage, an analytical formulation with closed-form solution is of course simpler and more versatile than numerical methods, and it allows to quickly define a general configuration, which may then be fine-tuned using such numerical methods. In this view, all subjects are based on analytical-methodological approach, and some new solutions in closed form are presented. The analytical formul...

  18. Excited-State Decay Pathways of Molecular Rotors: Twisted Intermediate or Conical Intersection?

    Science.gov (United States)

    Suhina, Tomislav; Amirjalayer, Saeed; Mennucci, Benedetta; Woutersen, Sander; Hilbers, Michiel; Bonn, Daniel; Brouwer, Albert M

    2016-11-03

    The fluorescence intensity of molecular rotors containing the dicyanomethylenedihydrofuran (DCDHF) motif increases strongly with solvent viscosity. Single-bond and double-bond rotations have been proposed as pathways of nonradiative decay for this and related molecular rotors. We show here that both are involved in the case of DCDHF rotors: Fluorescence is quenched by rotation around the dicyanomethylene double bond in nonpolar solvents, but in a sufficiently polar environment rotation about a formally single bond leads to a dark internal charge-transfer state.

  19. Driving corrugated donut rotors with Laguerre-Gauss beams.

    Science.gov (United States)

    Loke, Vincent L Y; Asavei, Theodor; Stilgoe, Alexander B; Nieminen, Timo A; Rubinsztein-Dunlop, Halina

    2014-08-11

    Tightly-focused laser beams that carry angular momentum have been used to trap and rotate microrotors. In particular, a Laguerre-Gauss mode laser beam can be used to transfer its orbital angular momentum to drive microrotors. We increase the torque efficiency by a factor of about 2 by designing the rotor such that its geometry is compatible with the driving beam, when driving the rotation with the optimum beam, rather than beams of higher or lower orbital angular momentum. Based on Floquet's theorem, the order of discrete rotational symmetry of the rotor can be made to couple with the azimuthal mode of the Laguerre-Gauss beam. We design corrugated donut rotors, that have a flat disc-like profile, with the help of the discrete dipole approximation and the T-matrix methods in parallel with experimental demonstrations of stable trapping and torque measurement. We produce and test such a rotor using two-photon photopolymerization. With a rotor that has 8-fold discrete rotational symmetry, an outer radius of 1.85 μm and a hollow core radius of 0.5 μm, we were able to transfer approximately 0.3 h̄ per photon of the orbital angular momentum from an LG04 beam.

  20. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    Science.gov (United States)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  1. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    Science.gov (United States)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  2. Modeling and Robust Trajectory Tracking Control for a Novel Six-Rotor Unmanned Aerial Vehicle

    OpenAIRE

    Yang, Chengshun; Yang, Zhong; Huang, Xiaoning; Li, Shaobin; Zhang, Qiang

    2013-01-01

    Modeling and trajectory tracking control of a novel six-rotor unmanned aerial vehicle (UAV) is concerned to solve problems such as smaller payload capacity and lack of both hardware redundancy and anticrosswind capability for quad-rotor. The mathematical modeling for the six-rotor UAV is developed on the basis of the Newton-Euler formalism, and a second-order sliding-mode disturbance observer (SOSMDO) is proposed to reconstruct the disturbances of the rotational dynamics. In consideration of ...

  3. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations. Phase 6-B: Experiments with progressing/regressing forced rotor flapping modes

    Science.gov (United States)

    Hohenemser, K. H.; Crews, S. T.

    1972-01-01

    A two bladed 16-inch hingeless rotor model was built and tested outside and inside a 24 by 24 inch wind tunnel test section at collective pitch settings up to 5 deg and rotor advance ratios up to .4. The rotor model has a simple eccentric mechanism to provide progressing or regressing cyclic pitch excitation. The flapping responses were compared to analytically determined responses which included flap-bending elasticity but excluded rotor wake effects. Substantial systematic deviations of the measured responses from the computed responses were found, which were interpreted as the effects of interaction of the blades with a rotating asymmetrical wake.

  4. Design of the OffWindChina 5 MW Wind Turbine Rotor

    DEFF Research Database (Denmark)

    Sun, Zhenye; Sessarego, Matias; Chen, Jin

    2017-01-01

    The current article describes the conceptual design of a rotor for a 5 MW machine situated at an offshore site in China (OffWindChina). The OffWindChina 5 MW rotor design work was divided into two parts between the Technical University of Denmark (DTU) and the Chong Qing University (CQU). The two...

  5. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  6. Large Rotor Test Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  7. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  8. Control of rotor motion in a light-driven molecular motor : Towards a molecular gearbox

    NARCIS (Netherlands)

    Ter Wiel, M.K.J.; van Delden, R.A.; Meetsma, A.; Feringa, B.L.

    2005-01-01

    Controlled intramolecular movement and coupling of motor and rotor functions is exerted by this new molecular device. The rate of rotation of the rotor part of the molecule can be adjusted by alteration of the conformation of the motor part of the molecule. For all states of the motor part,

  9. Aero dynamical and mechanical behaviour of the Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Batna Univ., (Algeria). Applied Energetic Physics Laboratory

    2009-07-01

    Although the Savonius wind turbine is not as efficient as the traditional Darrieus wind turbine, its rotor design has many advantages such as simple construction; acceptance of wind from all directions; high starting torque; operation at relatively low speed; and easy adaptation to urban sites. These advantages may outweigh its low efficiency and make it suitable for small-scale power requirements such as pumping and rural electrification. This paper presented a study of the aerodynamic behaviour of a Savonius rotor, based on blade pressure measurements. A two-dimensional analysis method was used to determine the aerodynamic strengths, which leads to the Magnus effect and the generation of the vibrations on the rotor. The study explained the vibratory behaviour of the rotor and proposed an antivibration system to protect the machine. 14 refs., 1 tab., 9 figs.

  10. Flettner Rotor Concept for Marine Applications: A Systematic Study

    Directory of Open Access Journals (Sweden)

    A. De Marco

    2016-01-01

    Full Text Available The concept of Flettner rotor, a rotating cylinder immersed in a fluid current, with a top-mounted disk, has been analyzed by means of unsteady Reynolds averaged Navier-Stokes simulations, with the aim of creating a suitable tool for the preliminary design of the Flettner rotor as a ship’s auxiliary propulsion system. The simulation has been executed to evaluate the performance sensitivity of the Flettner rotor with respect to systematic variations of several parameters, that is, the spin ratio, the rotor aspect ratio, the effect of the end plates, and their dimensions. The Flettner rotor device has been characterized in terms of lift and drag coefficients, and these data were compared with experimental trends available in literature. A verification study has been conducted in order to evaluate the accuracy of the simulation results and the main sources of numerical uncertainty. All the simulation results were used to achieve a surrogate model of lift and drag coefficients. This model is an effective mathematical tool for the preliminary design of Flettner rotor. Finally, an example of assessment of the Flettner rotor performance as an auxiliary propulsion device on a real tanker ship is reported.

  11. CFD simulation of rotor aerodynamic performance when using additional surface structure array

    Science.gov (United States)

    Wang, Bing; Kong, Deyi

    2017-10-01

    The present work analyses the aerodynamic performance of the rotor with additional surface structure array in an attempt to maximize its performance in hover flight. The unstructured grids and the Reynolds Average Navier-Stokes equations were used to calculate the performance of the prototype rotor and the rotor with additional surface structure array in the air. The computational fluid dynamics software FLUENT was used to simulate the thrust of the rotors. The results of the calculations are in reasonable agreement with experimental data, which shows that the calculation model used in this work is useful in simulating the performance of the rotor with additional surface structure array. With this theoretical calculation model, the thrusts of the rotors with arrays of surface structure in three different shapes were calculated. According to the simulation results and the experimental data, the rotor with triangle surface structure array has better aerodynamic performance than the other rotors. In contrast with the prototype rotor, the thrust of the rotor with triangle surface structure array increases by 5.2% at the operating rotating speed of 3000r/min, and the additional triangle surface structure array has almost no influence on the efficiency of the rotor.

  12. Simulated Microgravity Regulates Gene Transcript Profiles of 2T3 Preosteoblasts: Comparison of the Random Positioning Machine and the Rotating Wall Vessel Bioreactor

    Science.gov (United States)

    Patel, Mamta J.; Liu, Wenbin; Sykes, Michelle C.; Ward, Nancy E.; Risin, Semyon A.; Risin, Diana; Hanjoong, Jo

    2007-01-01

    Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders.

  13. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  14. Combined effects of channel curvature and rotor configuration on the performance of two-stage viscous micropumps

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Jin [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-06-15

    The combined effects of channel curvature and rotor configuration on the performance of two-stage viscous micropumps were studied numerically. The Navier-Stokes equations were simulated to investigate the performance of two-stage micropumps. The performance of two-stage micropumps was studied in terms of the dimensionless mass flow rate and dimensionless driving power. Four different rotor configurations were designed by changing placement of two rotors inside a microchannel: Two aligned and two staggered configurations. The aligned rotor configuration of type 1 is to place the two rotors along the convex wall, while type 2 is to place them along the concave wall. Numerical results show that the rotor configuration plays a significant role in the performance of two-stage micropumps. The chan-nel curvature acts in a different way according to the rotor configuration. The mass flow rate of aligned rotor configuration of type 1 is greatly improved by the channel curvature, while it diminishes the mass flow rate of type 2. The maximum mass flow rate for the aligned rotor configuration of type 1 is obtained when the two rotors are placed at the junction of the circular and straight sections of the channel. The performance of staggered configurations is negligibly affected by the channel curvature. This characteristics is found due to rotation direction of the rotors. As the two rotors rotate in the opposite direction for the staggered configurations, the flow characteristics in the circular section is little affected by the channel curvature. The circumferential distance between the two rotors can be optimized in terms of the mass flow rate. The optimal value of the circumferential distance is about L = 1.4 for the staggered rotor configurations, and it is almost independent of the channel curvature. As the channel height increases, the circumferential distance becomes less significant for the staggered rotor configurations while it becomes significant for the aligned

  15. Topology Optimisation of PMSM rotor for pump application

    DEFF Research Database (Denmark)

    Hermann, Alexander Niels August; Mijatovic, Nenad; Henriksen, Matthew Lee

    2016-01-01

    . For the gradient search the “Method of Moving Asymptotes” algorithm is applied to the rotor design of an internal permanent magnet synchronous motor for a circulation pump. The objective of the optimisation is to improve the torque of the machine with any given magnet placement or shape. The optimisation method...

  16. Control of Magnetic Bearings for Rotor Unbalance With Plug-In Time-Varying Resonators.

    Science.gov (United States)

    Kang, Christopher; Tsao, Tsu-Chin

    2016-01-01

    Rotor unbalance, common phenomenon of rotational systems, manifests itself as a periodic disturbance synchronized with the rotor's angular velocity. In active magnetic bearing (AMB) systems, feedback control is required to stabilize the open-loop unstable electromagnetic levitation. Further, feedback action can be added to suppress the repeatable runout but maintain closed-loop stability. In this paper, a plug-in time-varying resonator is designed by inverting cascaded notch filters. This formulation allows flexibility in designing the internal model for appropriate disturbance rejection. The plug-in structure ensures that stability can be maintained for varying rotor speeds. Experimental results of an AMB-rotor system are presented.

  17. Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model

    DEFF Research Database (Denmark)

    Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul

    2010-01-01

    -blade/control-system aeroelastic analysis. The rotor blade analysis was in good agreement and validated by comparing with DYMORE. Numerical results were obtained for a four-bladed, small-scale, articulated rotor rotating in vacuum and in a wind tunnel to simulate forward-flight conditions and its aerodynamic effects. The complete...... rotor-blade/control-system model was loosely coupled with various inflow and wake models in order to simulate both hover and forward-flight conditions. The resulting rotor blade response and pitch link loads are in good agreement with those predicted byCAMRADII. The present analysis features both model...

  18. Energetics and electronic structure of nanoscale rotors consisting of triptycene and hydrocarbon molecules

    Science.gov (United States)

    Akiba, Miki; Okada, Susumu

    2017-10-01

    Using the density functional theory with generalized gradient approximation, we studied the energetics and electronic structures of nanoscale rotors consisting of tryptycene and hydrocarbon molecules with respect to their mutual orientation. Energy barriers for the rotational motion of an attached hydrocarbon molecule range from 40 to 200 meV, depending on the attached molecular species and arrangements. The electronic structure of the nanoscale molecular rotors does not depend on the rotational angle of the attached hydrocarbon molecules.

  19. Development and industrial utilisation of rotor balancing techniques at EDF; Developpement et utilisation industrielle des techniques d`equilibrage a EDF

    Energy Technology Data Exchange (ETDEWEB)

    Fanton, J.P.; Rondelet, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    For turbogenerators, the practice of balancing is based on a policy for a good knowledge of the vibratory behaviour of the machines throughout their lifetime. Gains brought by a balancing operation are generally important, but this is obviously depending upon the degradation state met on the machines. For main coolant pumps, balancing tests are constraining, owing to the fact that they take place inside the reactor building, otherwise they do not raise major technical difficulties. For auxiliary rotating machinery, two situations can be met: the on-bench balancing, and the on-site balancing. On the bench, the objective for the balancing is defined in terms of balancing quality. The main difficulty to mention is the relative increase of time required to intervene on `hot`, i.e. contaminated rotors. On the site balancing tests concern mainly ventilators, pumps and motors. Concerning developments, the experimental approach of the balancing problem has frequently been privileged, in the sense that it allows an immediate intervention on an unknown machine. The influence coefficients methods is the basis of the balancing procedures. A large part of the realised work has therefore, quite logically, been focused on the development of the a computation program implementing this method: the EQUILOP software. In the framework a numerical validation of this program, numerical modelling work has been led, consisting in simulating the placement of balancing masses on a test rig. Comparison of this simulation with experimental results has led to satisfactory results. Independently of conventional balancing techniques by characterisation, and then of the intervention on rotors, a new process allowing to correct in real time the state of imbalance of a rotor has been devised. The possible contribution of numerical models in the area of balancing has been studied. In principle, a finite element model of a machine allows, by making use of response calculations, to simulate the whole

  20. A magnetic damper for first mode vibration reduction in multimass flexible rotors

    Science.gov (United States)

    Kasarda, M. E. F.; Allaire, P. E.; Humphris, R. R.; Barrett, L. E.

    1989-01-01

    Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.

  1. DESARROLLO DE UN INSTRUMENTO VIRTUAL PARA EL BALANCEAMIENTO DINAMICO DE ROTORES DEVELOPMENT OF A VIRTUAL INSTRUMENT FOR ROTOR DYNAMICS BALANCING

    Directory of Open Access Journals (Sweden)

    Edgar Estupiñán P

    2006-08-01

    Full Text Available El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD. El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano y en dos planos, a partir de la medición de los datos de vibración, utilizando el procedimiento de los coeficientes de influencia o utilizando un procedimiento de medición sin fase. También se ha incluido un módulo para determinar la severidad vibratoria del rotor y un módulo de análisis de vibraciones, que incluye análisis espectral y de la forma de onda. Este instrumento virtual es una herramienta útil para el balanceamiento de rotores en laboratorio así como también en la industria.This article highlights the importance of rotor balancing like the most important corrective action included in a predictive maintenance program, whose main objective is reducing the vibrations level and its secondary effect in rotary machines. A virtual instrument, based in a data acquisition system has been developed for rotor balancing. With this instrument it is possible to balance rotors in a single or two-plane, using the influence coefficient method or a no phase method. Also the instrument includes a function to determine the vibration severity and a function of vibration analysis with spectral and waveform analysis included. This virtual instrument is useful for rotor balancing in the laboratory as well as in the industry.

  2. Prediction of aerodynamic performance for MEXICO rotor

    DEFF Research Database (Denmark)

    Hong, Zedong; Yang, Hua; Xu, Haoran

    2013-01-01

    results by Shen is adopted in this paper. In order to accurately simulate the separation point and the separation area which is caused by the adverse pressure gradient, the CFD method using SST turbulence model is used to solve the three-dimensional Reynolds averaged equations. The first order upwind....... The boundaries of fan-shaped both sides are defined as rotationally periodic connection, and the freeze rotor model is applied at the interface of the rotating and stationary domains, which means the relative position of rotating and stationary domains is fixed when calculating the flow field. Speed no...... of this paper will be illustrated from the following points: first, the comparison of the calculated and the experimental angle of attack distribution along the span direction shows that the maximum relative errors of the attack angle calculated by BEM and CFD respectively are -0.402 and 0.099; it further...

  3. The use of active controls to augment rotor/fuselage stability

    Science.gov (United States)

    Straub, F. K.; Warmbrodt, W.

    1985-01-01

    The use of active blade pitch control to increase helicopter rotor/body damping is studied. Control is introduced through a conventional nonrotating swashplate. State variable feedback of rotor and body states is used. Feedback parameters include cyclic rotor flap and lead-lag states, and body pitch and roll rotations. The use of position, rate, and acceleration feedback is studied for the various state variables. In particular, the influence of the closed loop feedback gain and phase on system stability is investigated. For the rotor/body configuration analyzed, rotor cyclic inplane motion and body roll-rate and roll-acceleration feedback can considerably augment system damping levels and eliminate ground resonance instabilities. Scheduling of the feedback state, phase, and gain with rotor rotation speed can be used to maximize the damping augmentation. This increase in lead-lag damping can be accomplished without altering any of the system modal frequencies. Investigating various rotor design parameters (effective hinge offset, blade precone, blade flap stiffness) indicates that active control for augmenting rotor/body damping will be particularly powerful for hingeless and bearingless rotor hubs.

  4. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    Science.gov (United States)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  5. Validation of the Actuator Line Model for Simulating Flows past Yawed Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua

    2015-01-01

    The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of −2.3˚, wind speeds of 10, 15, 24 m/s and yaw angles of 15......˚, 30˚ and 45˚. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm......, a pitch angle of 3˚, a wind speed of 5 m/s and yaw angles of 10˚ and 30˚. The computed loads are compared to the loads measured from pressure measurement....

  6. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  7. Torque characteristics of double-stator permanent magnet synchronous machines

    Directory of Open Access Journals (Sweden)

    Awah Chukwuemeka Chijioke

    2017-12-01

    Full Text Available The torque profile of a double-stator permanent magnet (PM synchronous machine of 90 mm stator diameter having different rotor pole numbers as well as dual excitation is investigated in this paper. The analysis includes a comparative study of the machine’s torque and power-speed curves, static torque and inductance characteristics, losses and unbalanced magnetic force. The most promising flux-weakening potential is revealed in 13- and 7-rotor pole machines. Moreover, the machines having different rotor/stator (Nr/Ns pole combinations of the form Nr = Ns ± 1 have balanced and symmetric static torque waveforms variation with the rotor position in contrast to the machines having Nr = Ns ± 2. Further, the inductance results of the analyzed machines reveal that the machines with odd rotor pole numbers have better fault-tolerant capability than their even rotor pole equivalents. A prototype of the developed double-stator machine having a 13-pole rotor is manufactured and tested for verification.

  8. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  9. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions

    Science.gov (United States)

    Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei

    2017-09-01

    Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.

  10. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  11. Application de la methode de la reponse frequentielle a l'arret "SSFR", sur une machine synchrone a poles saillants de grande puissance

    Science.gov (United States)

    Belqorchi, Abdelghafour

    Forty years after Watson and Manchur conducted the Stand-Still Frequency Response (SSFR) test on a large turbogenerator, the applicability of this technic on a powerful salient pole synchronous generator has yet to be confirmed. The scientific literature on the subject is rare and very few have attempted to compare SSFR parameter results with those deduced by classical tests. The validity of SSFR on large salient pole machines has still to be proven. The present work aims in participating to fill this knowledge gap. It can be used to build a database of measurements highly needed to draw the validity of the technic. Also, the author hopes to demonstrate the potential of SSFR model to represent the machine, not only in cases of weak disturbances but also strong ones such as instantaneous three-phase short-circuit faults. The difficulties raised by previous searchers are: The lack of accuracy in very low frequency measurements; The difficulty in rotor positioning, according to d and q axes, in case of salient pole machines; The measurement current level influence on magnetizing inductances, in axes-d and; The rotation impact on damper circuits for some rotors design. Aware of the above difficulties, the author conducted an SSFR test on a large salient pole machine (285 MVA). The generator under test has laminated non isolated rotor and an integral slot number. The damper windings in adjacent poles are connected together, via the polar core and the rotor rim. Finally, the damping circuit is unaffected by rotation. To improve the measurement accuracy, in very low frequencies, the most precise frequency response analyser available on the market was used. Besides, the frequency responses of the signals conditioning modules (i.e., isolation, amplification...) were accounted for to correct the four measured SSFR transfer functions. Immunization against noise and use of instrumentation in their optimum range, were other technics rigorously applied. Magnetizing inductances

  12. PERFORMANCE ANALYSIS OF A HELICAL SAVONIUS ROTOR WITHOUT SHAFT AT 45° TWIST ANGLE USING CFD

    Directory of Open Access Journals (Sweden)

    Bachu Deb

    2013-06-01

    Full Text Available Helical Savonius rotor exhibits better performance characteristics at all the rotor angles compared to conventional Savonius rotor. However studies related to the performance measurement and flow physics of such rotor are very scarce. Keeping this in view, in this paper, a three dimensional Computational Fluid Dynamics analysis using commercial Fluent 6.2 software was done to predict the performance of a two-bucket helical Savonius rotor without shaft and with end plates in a complete cycle of rotation. A two-bucket helical Savonius rotor having height of 60 cm and diameter of 17 cm with 45° bucket twist angle was designed using Gambit. The buckets were connected at the top and bottom circular end plates, which are 1.1 times the rotor diameter. The k-ε turbulence model with second order upwind discretization scheme was adopted with standard wall condition. Power coefficients (Cp and torque coefficients (Ct at different tip speed ratios were evaluated at different rotor angles. From the investigation, it was observed that power coefficient increased with increase of tip speed ratio up to an optimum limit, but then decreased even further tip speed ratio was increased. Further investigation was done on the variations of Cp & Ct in a complete cycle of rotation from 0° to 360° in a step of 45° rotor corresponding to the optimum tip speed ratio. The value of Cp at all the rotor angles is positive. Moreover, velocity magnitude contours were analyzed for each rotor angle and it could be concluded that high aerodynamic torque and power can be expected when the rotor is positioned at 45º & 90º with respect to incoming flow.

  13. Electromagnetic Field Analysis of the Performance of Single-Phase Capacitor-Run Induction Motor Using Composite Rotor Conductor

    Directory of Open Access Journals (Sweden)

    Mohd Afaque Iqbal

    2014-06-01

    Full Text Available Single-phase induction motor (SPIM has very crucial role in industrial, domestic and commercial sectors. So, the efficient SPIM is a major requirement of today’s market. For efficient motors, many research methodologies and suggestions have been given by researchers in past. Various parameters like as stator/rotor slot variation, size and shape of stator/rotor slots, stator/rotor winding configuration, choice of core material etc. have significant impact on machine design. Rotor slot geometry influences the distribution of the magnetic field to a degree. Even a little difference of the magnetic field distribution can make big difference on the performance of the induction motor. The rotor slot geometry influences the skin effect and slot leakage flux in order to increase the torque and efficiency. In this paper, three types of rotor slot configurations are designed and simulated with different rotor slot configuration and rotor bars composition by changing the rotor slot configuration of base model. Aluminum and Copper are used simultaneously as rotor winding material. The rotor bar is a composite conductor which carries Aluminum as well as Copper sub-conductors running parallel in the same slot. Overall cross section area of rotor bar in each model kept same and work is carried out with difference proportion of Aluminum and Copper sub conductors. All models are investigated and simulated in FEMM and finally the simulated results are compared for optimal solution.

  14. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    Directory of Open Access Journals (Sweden)

    Ruben Ruiz-Gonzalez

    2014-11-01

    Full Text Available The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.

  15. A new dynamic model of rotor-blade systems

    Science.gov (United States)

    Ma, Hui; Lu, Yang; Wu, Zhiyuan; Tai, Xingyu; Li, Hui; Wen, Bangchun

    2015-11-01

    A new dynamic model of rotor-blade systems is developed in this paper considering the lateral and torsional deformations of the shaft, gyroscopic effects of the rotor which consists of shaft and disk, and the centrifugal stiffening, spin softening and Coriolis force of the blades. In this model, the rotating flexible blades are represented by Timoshenko beams. The shaft and rigid disk are described by multiple lumped mass points (LMPs), and these points are connected by massless springs which have both lateral and torsional stiffness. LMPs are represented by the corresponding masses and mass moments of inertia in lateral and rotational directions, where each point has five degrees of freedom (dofs) excluding axial dof. Equations of motion of the rotor-blade system are derived using Hamilton's principle in conjunction with the assumed modes method to describe blade deformation. The proposed model is compared with both finite element (FE) model and real experiments. The proposed model is first validated by comparing the model natural frequencies and vibration responses with those obtained from an FE model. A further verification of the model is then performed by comparing the model natural frequencies at zero rotational speed with those obtained from experimental studies. The results shown a good agreement between the model predicted system characteristics and those obtained from the FE model and experimental tests. Moreover, the following interesting phenomena have been revealed from the new model based analysis: The torsional natural frequency of the system decreases with the increase of rotational speed, and the frequency veering phenomenon has been observed at high rotational speed; The complicated coupling modes, such as the blade-blade coupling mode (BB), the coupling mode between the rotor lateral vibration and blade bending (RBL), and the coupling mode between the rotor torsional vibration and blade bending (RBT), have also been observed when the number of

  16. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    Directory of Open Access Journals (Sweden)

    Jiancheng Fang

    2013-11-01

    Full Text Available Unbalance in magnetically levitated rotor (MLR can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor’s unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR’s rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC method, using a general band-pass filter (GPF to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  17. Dipolar rotors orderly aligned in mesoporous fluorinated organosilica architectures

    KAUST Repository

    Bracco, Silvia

    2015-02-16

    New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p-divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid-state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl-fluoro-phenylene rotors, affecting their motion and the dielectric properties. Oriented molecular rotors: Fluorinated molecular rotors (see picture) were engineered in mesoporous hybrid organosilica architectures with crystalline order in their walls. The rotor dynamics was established by magic angle spinning NMR and dielectric measurements, indicating a rotational correlation time as short as 10-9 s at 325 K. The dynamics was modulated by I2 vapors entering the pores.

  18. Design of a Bearingless Outer Rotor Induction Motor

    Directory of Open Access Journals (Sweden)

    Yuxin Sun

    2017-05-01

    Full Text Available A bearingless induction (BI motor with an outer rotor for flywheel energy storage systems is proposed due to the perceived advantages of simple rotor structure, non-contact support and high speed operation. Firstly, the configuration and operation principle of the proposed motor are described. Then several leading dimensional parameters are optimally calculated for achieving the maximum average values and the minimum ripples of torque output and suspension force. Finally, by using the finite element method, the characteristics and performance of the proposed machine are analyzed and verified.

  19. Vibration analysis to characterize the behavior of fracture rotors operating in line; Analisis de vibracion para caracterizar el comportamiento de rotores fracturados operando en linea

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Illescas, Rafael

    2001-07-01

    A theoretical numerical and experimental analysis of the dynamics and vibratory stability of a rotor-bearing system with a cracked shaft is presented. A new mathematical model was built to simulate the system, incorporating all possible conditions existing in reality. The presence of a transverse crack is taken into account by considering a structural rotating stiffness variation as a time-function (angular dependent). The damping of the system includes the effect of the external fluid (steam) where the shaft is rotating and, the most significant, the viscous damping of the journal bearings due to the oil film. The present problem consists in a cracked flexible Jeffcott rotor supported on identical journal bearings, which has a mass disk and a crack at the midspan of the shaft. An innovator aspect that complicates the analysis is that the mass effect of the journal bearings is also considered. A linear stability analysis of the system is accomplished including all aspects mentioned using the Floquet Theory. Some results are compared with previous work obtained by other researchers in the field like Gasch, Meng, et cetera. The resulting parametrically excited system is analyzed using a perturbation solution. The system equations are written in terms of complex variables and an associated computer code in MATLAB has been developed by the author for numerical simulation studies. A simple rotor system is studied in order to illustrate the basic properties of rotors with cracks of real machines. The experimental results were obtained in the Vibrations and Rotor dynamics Laboratory of the SEPI ESIME IPN to complement numerical analysis. The option of including the non-linear effect of the bearings is presented. The latter is under research by Dr. Gonzalez Mancilla who has implemented this non-linear model in his program called MAQUI. Proper calculation of nonlinear coefficients impact numerical simulation results and can produce adequate or inaccurate frequency spectrum

  20. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...

  1. High-efficiency approach for fabricating MTE rotor by micro-EDM and micro-extrusion

    Science.gov (United States)

    Geng, Xuesong; Chi, Guanxin; Wang, Yukui; Wang, Zhenlong

    2014-07-01

    Micro-gas turbine engine (MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining (micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.

  2. Structural Considerations of a 20MW Multi-Rotor Wind Energy System

    Science.gov (United States)

    Jamieson, P.; Branney, M.

    2014-12-01

    The drive to upscale offshore wind turbines relates especially to possiblereductions in O&M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept.

  3. Time-Varying Total Stiffness Matrix of a Rigid Machine Spindle-Angular Contact Ball Bearings Assembly: Theory and Analytical/Experimental Verifications

    Directory of Open Access Journals (Sweden)

    Fawzi M.A. El-Saeidy

    2011-01-01

    Full Text Available A lagrangian formulation is presented for the total dynamic stiffness and damping matrices of a rigid rotor carrying noncentral rigid disk and supported on angular contact ball bearings (ACBBs. The bearing dynamic stiffness/damping marix is derived in terms of the bearing motions (displacements/rotations and then the principal of virtual work is used to transfer it from the bearing location to the rotor mass center to obtain the total dynamic stiffness/damping matrix. The bearing analyses take into account the bearing nonlinearities, cage rotation and bearing axial preload. The coefficients of these time-dependent matrices are presented analytically. The equations of motion of a rigid rotor-ACBBs assembly are derived using Lagrange's equation. The proposed analyses on deriving the bearing stiffness matrix are verified against existing bearing analyses of SKF researchers that, in turn, were verified using both SKF softwares/experiments and we obtained typical agreements. The presented total stiffness matrix is applied to a typical grinding machine spindle studied experimentally by other researchers and excellent agreements are obtained between our analytical eigenvalues and the experimental ones. The effect of using the total full stiffness matrix versus using the total diagonal stiffness matrix on the natural frequencies and dynamic response of the rigid rotor-bearings system is studied. It is found that using the diagonal matrix affects natural frequencies values (except the axial frequency and response amplitudes and pattern and causes important vibration tones to be missig from the response spectrum. Therefore it is recommended to use the full total stiffness matrix and not the diagonal matrix in the design/vibration analysis of these rotating machines. For a machine spindle-ACBBs assembly under mass unbalnce and a horizontal force at the spindle cutting nose when the bearing time-varying stiffness matrix (bearing cage rotation is considered

  4. Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets

    Directory of Open Access Journals (Sweden)

    Alireza Rasekh

    2016-11-01

    Full Text Available In this paper, a set of correlations for the windage power losses in a 4 kW axial flux permanent magnet synchronous machine (AFPMSM is presented. In order to have an efficient machine, it is necessary to optimize the total electromagnetic and mechanical losses. Therefore, fast equations are needed to estimate the windage power losses of the machine. The geometry consists of an open rotor–stator with sixteen magnets at the periphery of the rotor with an annular opening in the entire disk. Air can flow in a channel being formed between the magnets and in a small gap region between the magnets and the stator surface. To construct the correlations, computational fluid dynamics (CFD simulations through the frozen rotor (FR method are performed at the practical ranges of the geometrical parameters, namely the gap size distance, the rotational speed of the rotor, the magnet thickness and the magnet angle. Thereafter, two categories of formulations are defined to make the windage losses dimensionless based on whether the losses are mainly due to the viscous forces or the pressure forces. At the end, the correlations can be achieved via curve fittings from the numerical data. The results reveal that the pressure forces are responsible for the windage losses for the side surfaces in the air-channel, whereas for the surfaces facing the stator surface in the gap, the viscous forces mainly contribute to the windage losses. Additionally, the results of the parametric study demonstrate that the overall windage losses in the machine escalate with an increase in either the rotational Reynolds number or the magnet thickness ratio. By contrast, the windage losses decrease once the magnet angle ratio enlarges. Moreover, it can be concluded that the proposed correlations are very useful tools in the design and optimizations of this type of electrical machine.

  5. Testing of rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, H.G.; Kensche, C.; Berg-Pollack, A.; Buerkner, F.; Sayer, F.; Wiemann, K. [Fraunhofer-Center fuer Windenergie- und Meerestechnik, Bremerhaven (Germany)

    2007-02-15

    Current approval of rotor blades comprises characterization of materials, full-blade tests with static up- and down-bending, and a modal analysis. In addition to these tests, cyclic testing of full-size rotor blades is increasingly discussed to become subject of official certification procedures. Open questions regarding their operational relevance, large investment costs and long duration of up to 4 months for forthcoming large blades now deepen the demand for a new testing methodology. Component testing and scaling methods, highly developed calculation methods, and the definition of blade families of closely related structures are proposed to increase the relevance as well as to decrease costs and duration of the approval procedure. (orig.)

  6. Data Summary Report for the Open Rotor Propulsion Rig Equipped With F31/A31 Rotor Blades

    Science.gov (United States)

    Stephens, David

    2014-01-01

    An extensive wind tunnel test campaign was undertaken to quantify the performance and acoustics of a counter-rotating open rotor system. The present document summarizes the portion of this test performed with the so-called Historical Baseline rotor blades, designated F31A31. It includes performance and acoustic data acquired at Mach numbers from take-off to cruise. It also includes the effect of propulsor angle of attack as well as an upstream pylon. This report is accompanied by an electronic data set including relevant acoustic and performance measurements for all of the F31A31 data.

  7. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  8. Coupled bending and torsional vibration of a rotor system with nonlinear friction

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Chunli; Cao, Guohua; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China); Rao, Zhushi; Ta, Na [Shanghai Jiao Tong University, Shanghai (China)

    2017-06-15

    Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.

  9. Simulation of Rotor Blade Element Turbulence

    Science.gov (United States)

    McFarland, R. E.; Duisenberg, Ken

    1996-01-01

    A turbulence model has been developed for blade-element helicopter simulation. This model, called Simulation of Rotor Blade Element Turbulence (SORBET), uses an innovative temporal and geometrical distribution algorithm that preserves the statistical characteristics of the turbulence spectra over the rotor disc, while providing velocity components in real time to each of five blade-element stations along each of four blades. An initial investigation of SORBET has been performed using a piloted, motion-based simulation of the Sikorsky UH60A Black Hawk. Although only the vertical component of stochastic turbulence was used in this investigation, vertical turbulence components induce vehicle responses in all translational and rotational degrees of freedom of the helicopter. The single-degree-of-freedom configuration of SORBET was compared to a conventional full 6-degrees-of-freedom baseline configuration, where translational velocity inputs are superimposed at the vehicle center of gravity, and rotational velocity inputs are created from filters that approximate the immersion rate into the turbulent field. For high-speed flight the vehicle responses were satisfactory for both models. Test pilots could not distinguish differences between the baseline configuration and SORBET. In low-speed flight the baseline configuration received criticism for its high frequency content, whereas the SORBET model elicited favorable pilot opinion. For this helicopter, which has fully articulated blades, results from SORBET show that vehicle responses to turbulent blade-station disturbances are severely attenuated. This is corroborated by in-flight observation of the rotor tip path plane as compared to vehicle responses.

  10. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  11. Variable Speed Rotor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  12. Isovector rotational model

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Inst. fuer Theoretische Physik, Univ. Tuebingen (Germany))

    1994-04-18

    The explicit form of the canonical angle operator is found and the isovector rotor is quantized in canonical relative variables ensuring the exact separation of the spurious mode. The main characteristics of the resulting joint mode, together with the low- and high-frequency parts of the split mode are obtained. It is found that the isovector rotational mode exhausts all the non-spurious M1 strength at low and high energy, providing a strong support for the interpretation of all the orbital 1[sup +] excitations as a scissors mode. Self-consistent residual interactions do not change the non-spurious restoring force of the deformed potential. Simple numerical estimates, derived from a schematic deformed oscillator, are in a good qualitative agreement with microscopic RPA results. Relationships with the results of the two-rotor model and the microscopic realization of the scissors state are established. (orig.)

  13. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  14. Dynamic stability of a rotor blade using finite element analysis

    Science.gov (United States)

    Sivaneri, N. T.; Chopra, I.

    1981-01-01

    The aeroelastic stability of flap bending, lead-lag bending, and torsion of a helicopter rotor blade in hover is examined using a finite element formulation based on the principle of virtual work. Quasi-steady two-dimensional airfoil theory is used to obtain the aerodynamic loads. The rotor blade is discretized into beam elements, each with ten modal degrees of freedom. The resulting nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The flutter solution is calculated assuming blade motion to be a small perturbation about the steady solution. The normal mode method based on the coupled rotating natural modes about the steady deflections is used to reduce the number of equations in the flutter eigenanalysis. Results are presented for hingeless and articulated rotor blade configurations.

  15. Synchronous motor with hybrid permanent magnets on the rotor.

    Science.gov (United States)

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-07-10

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  16. Diamond machine tool face lapping machine

    Science.gov (United States)

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  17. Electric machines with axial magnetic flux

    Science.gov (United States)

    Nuca, I.; Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Turcanu, A.

    2018-01-01

    The paper contains information on the performance of axial machines compared to cylindrical ones. At the same time, various constructive schemes of synchronous electromechanical converters with permanent magnets and asynchronous with short-circuited rotor are presented. In the developed constructions, the aim is to maximize the usage of the material of the stator windings. The design elements of the axial machine magnetic system are presented. The FEMM application depicted the array of the magnetic field of an axial machine.

  18. Design and analysis of a new axial flux coreless PMSG with three rotors and double stators

    Science.gov (United States)

    Minaz, Mehmet Recep; Çelebi, Mehmet

    In this study, axial flux coreless permanent magnet synchronous generator (PMSG) is designed as double stators and three rotors and its electromagnetic and structural characteristics are analyzed. Designing aimed the axial flux generator is placed into the single end of the side rotor in the machine and permanent magnets are placed into the double ends of the middle rotor. One more rotor than the number of stators here is used. Core is not used in the stator of the machine intended to be designed. Aim of this study is to provide both reduction of iron loss and making the machine become lighter by reducing the number of the rotors to be used. Moreover, easiness in the production stage of the machine is provided. Three-dimensioned electromagnetic analysis of the designed machine has been done through the finite element method and transient solutions are suggested based on this. Within this study, arrangements have been made depending on certain standards in order that permanent magnets and coils obtain direct alternating current. The designed new axial flux generator move as permanent speed of 500 rpm and so maximum voltage of approximately 120 V per phase is obtained. Furthermore, this PMSG does not need a gear system due to its design structure.

  19. Design of a Weighted-Rotor Energy Harvester Based on Dynamic Analysis and Optimization of Circular Halbach Array Magnetic Disk

    National Research Council Canada - National Science Library

    Yu-Jen Wang; Yu-Ti Hao; Hao-Yu Lin

    2015-01-01

      This paper proposes the design of a weighted-rotor energy harvester (WREH) in which the oscillation is caused by the periodic change of the tangential component of gravity, to harvest kinetic energy from a rotating wheel...

  20. Non-linear control of a doubly fed induction machine; Commande non-lineaire d'une machine asynchrone a double alimentation

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, P.E.

    2004-12-15

    This study deals with linear and non-linear control strategies applied to the rotation speed feedback of a doubly fed induction machine (DFIM), whose stator and rotor windings are connected to two Pulse Width Modulation voltage source inverters. We choose to distribute the active powers between the stator and the rotor following a certain proportionality ratio. This leads to guarantee, in steady state operation, a stator and rotor angular frequencies sharing. This distribution is initially assured by two shared angular frequencies controllers, and in a second time by the means of the Park transformation angles directly. Two models are established: the first express the currents, and the second is linked with the fluxes. The simulations results of the linear control (field oriented control), and non-linear control (sliding mode control), show a good independence between the main flux and the torque. An experimental validation is also presented. The results presented show the satisfactory DFIM flux control. Special attention is paid to the active power dispatching. (author)

  1. Measurement of the dimensions and abutment rotational freedom of gold-machined 3i UCLA-type abutments in the as-received condition, after casting with a noble metal alloy and porcelain firing.

    Science.gov (United States)

    Vigolo, P; Majzoub, Z; Cordioli, G

    2000-11-01

    Laboratory processing of implant-supported prostheses may alter the surface of the abutment in contact with the implant head and thus the interface fit. This study assessed changes at the implant interface of gold-machined UCLA abutments after casting and porcelain baking in the case of single-tooth restorations. The depth (d) and width (w) of the hexagonal portion of the abutment, the apical diameter (D) of the abutment, and the abutment rotational freedom (R) were assessed for 30 gold-machined UCLA abutments before casting procedures (time 0), after casting with a noble metal alloy (time 1), and after the addition of porcelain (time 2) to detect any eventual fitting change in the abutments on the top of the implant hexagon. No significant differences relative to all study parameters (d, w, D, and R) were observed between times 0, 1, and 2 (P=.576). The results of this investigation suggest that, if all laboratory steps are observed carefully, changes at the implant interface of gold-machined UCLA abutments do not occur.

  2. Dynamique d'un rotor embarqué soumis à des excitations combinées de la base

    OpenAIRE

    Dakel, M. Zaki; Baguet, Sébastien; Dufour, Régis

    2011-01-01

    National audience; The proposed on-board rotor model is based on the Timoshenko beam finite elements. It takes into accountthe six translations and rotations of the rigid support and the geometric asymmetry of disks and/or shaft.Thus the obtained equations of motion contain time-varying parametric terms which can lead to lateraldynamic instability. The influence of combined rotational and translational support motions is analyzed bymeans of Campbell diagram and rotor stability chart.; Le modè...

  3. A New Sensorless MRAS Based on Active Power Calculations for Rotor Position Estimation of a DFIG

    Directory of Open Access Journals (Sweden)

    Gil Domingos Marques

    2011-01-01

    Full Text Available A sensorless method for the estimation of the rotor position of the wound-rotor induction machine is described in this paper. The method is based on the MRAS methodology and consists in the comparison of two models for the evaluation of the active power transferred across the air gap: the reference model and the adaptive model. The reference model obtains the power transferred across the air gap using directly available and measured stator variables. The adaptive model obtains the same quantity in function of electromotive forces and rotor currents that are measurable on the rotor position, which is under estimation. The method does not need any information about the stator or rotor flux and can be implemented in the rotor or in the stator reference frames with a hysteresis or with a PI controller. The stability analysis gives an unstable region on the rotor current dq plane. Simulation and experimental results show that the method is appropriate for the vector control of the doubly fed induction machine under the stability region.

  4. EVALUATION OF PERFORMANCE OF HORIZONTAL AXIS WIND TURBINE BLADES BASED ON OPTIMAL ROTOR THEORY

    Directory of Open Access Journals (Sweden)

    Nitin Tenguria

    2011-01-01

    Full Text Available Wind energy is a very popular renewable energy resource. In order to increase the use of wind energy, it is important to develop wind turbine rotor with high rotations rates and power coefficient. In this paper, a method for the determination of the aerodynamic performance characteristics using NACA airfoils is given for three bladed horizontal axis wind turbine. Blade geometry is obtained from the best approximation of the calculated theoretical optimum chord and twist distribution of the rotating blade. Optimal rotor theory is used, which is simple enough and accurate enough for rotor design. In this work, eight different airfoils are used to investigate the changes in performance of the blade. Rotor diameter taken is 82 m which is the diameter of VESTAS V82-1.65MW. The airfoils taken are same from root to tip in every blade. The design lift coefficient taken is 1.1. A computer program is generated to automate the complete procedure.

  5. EVALUATION OF PERFORMANCE OF HORIZONTAL AXIS WIND TURBINE BLADES BASED ON OPTIMAL ROTOR THEORY

    Directory of Open Access Journals (Sweden)

    Nitin Tenguria

    2011-06-01

    Full Text Available Wind energy is a very popular renewable energy resource. In order to increase the use of wind energy, it is important to develop wind turbine rotor with high rotations rates and power coefficient. In this paper, a method for the determination of the aerodynamic performance characteristics using NACA airfoils is given for three bladed horizontal axis wind turbine. Blade geometry is obtained from the best approximation of the calculated theoretical optimum chord and twist distribution of the rotating blade. Optimal rotor theory is used, which is simple enough and accurate enough for rotor design. In this work, eight different airfoils are used to investigate the changes in performance of the blade. Rotor diameter taken is 82 m which is the diameter of VESTAS V82-1.65MW. The airfoils taken are same from root to tip in every blade. The design lift coefficient taken is 1.1. A computer program is generated to automate the complete procedure.

  6. Rotor and wind turbine formalism

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...

  7. Exchange of rotor components in functioning bacterial flagellar motor

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Hajime; Inoue, Yuichi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); Terasawa, Shun [Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); Takahashi, Hiroto [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); Ishijima, Akihiko, E-mail: ishijima@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan)

    2010-03-26

    The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP, and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s{sup -1}, meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.

  8. Influence of the speed of turn in the rotating machines of absorption (Part I); Influencia de la velocidad de giro en las maquinas rotativas de absorcion (Parte I)

    Energy Technology Data Exchange (ETDEWEB)

    Monne, C.; Guallar, J.; Alonso, S.; Palacin, F.

    2008-07-01

    A type of machine of absorption of simple effect of Br Li-H{sub 2}O this characterized to realise the thermodynamic cycle inside a closing that turns continuously. The present article studies the effect that has the turn in the different thermodynamic variables: Teg Vs. COP, Pref, Psol y Tse. (Author)

  9. Influence of the speed of turn in the rotating machines of absorption (Part II); Influencia de la velocidad de giro en las maquinas rotativas de absorcion (Parte II)

    Energy Technology Data Exchange (ETDEWEB)

    Monne, C.; Guallar, J.; Alonso, S.; Palacin, F.

    2008-07-01

    A type of machine of absorption of simple effect of Br Li-H{sub 2}O this characterized to realise the thermodynamic cycle inside a closing that turns continuously. The present article studies the effect that has the turn in the different thermodynamic variables: Tamb Vs. COP, Pref, y Tse. (Author)

  10. Model and Stability Analysis of a Flexible Bladed Rotor

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This paper presents a fully bladed flexible rotor and outlines the associated stability analysis. From an energetic approach based on the complete energies and potentials for Euler-Bernoulli beams, a system of equations is derived, in the rotational frame, for the rotor. This later one is made of a hollow shaft modelled by an Euler-Bernoulli beam supported by a set of bearings. It is connected to a rigid disk having a rotational inertia. A full set of flexible blades is also modelled by Euler-Bernoulli beams clamped in the disk. The flexural vibrations of the blades as well as those of the shaft are considered. The evolution of the eigenvalues of this rotor, in the corotational frame, is studied. A stability detection method, bringing coalescence and loci separation phenomena to the fore, in case of an asymmetric rotor, is undertaken in order to determine a parametric domain where turbomachinery cannot encounter damage. Finally, extensive parametric studies including the length and the stagger angle of the blades as well as their flexibility are presented in order to obtain robust criteria for stable and unstable areas prediction.

  11. Molecular Viscosity Sensors with Two Rotators for Optimizing the Fluorescence Intensity-Contrast Trade-Off.

    Science.gov (United States)

    Lee, Seung-Chul; Lee, Chang-Lyoul; Heo, Jeongyun; Jeong, Chan-Uk; Lee, Gyeong-Hui; Kim, Sehoon; Yoon, Woojin; Yun, Hoseop; Park, Sung O; Kwak, Sang Kyu; Park, Sung-Ha; Kwon, O-Pil

    2018-02-26

    A series of fluorescent molecular rotors obtained by introducing two rotational groups ("rotators"), which exhibit different rotational and electron-donating abilities, are discussed. Whereas the control molecular rotor, PH, includes a single rotator (the widely used phenyl group), the PO molecular rotors consist of two rotators (a phenyl group and an alkoxy group), which exhibit simultaneous strongly electron-donating and easy rotational abilities. Compared with the control rotor PH, PO molecular rotors exhibited one order of magnitude higher quantum yield (fluorescence intensity) and simultaneously exhibited significantly higher fluorescence contrast. These properties are directly related to the strong electron-donating ability and low energy barrier of rotation of the alkoxy group, as confirmed by dynamic fluorescence experiments and quantum chemical calculations. The PO molecular rotors exhibited two fluorescence relaxation pathways, whereas the PH molecular rotor exhibited a single fluorescence relaxation pathway. Cellular fluorescence imaging with PO molecular rotors for mapping cellular viscosity was successfully demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Measurement of the deformation of an extremely flexible rotor blade using digital image correlation

    Science.gov (United States)

    Sicard, Jérôme; Sirohi, Jayant

    2013-06-01

    This paper describes the measurement of the deformation of an extremely flexible rotor blade in hover using a novel application of three-dimensional digital image correlation (3D DIC). In this optical method, images of the rotor blade painted with a high-contrast, random speckle pattern are captured using two digital cameras and a strobe light. Photogrammetry is used to calculate a whole-field, three-dimensional map of the rotor blade. Cross-correlation between images captured under two load conditions is used to calculate deformation. The technique was first validated in the rotating frame by correlating DIC measurements on a stiff rotor blade of known geometry with measurements made by two other laser sensors. The technique was then used to measure the deformation of extremely flexible blades on a 46 cm diameter rotor, rotating at 1200 RPM. The blades of this rotor are so flexible that they can be rolled up into a compact volume. The spanwise variation of extension, lead-lag and flap bending, as well as pitch angle, were extracted from DIC measurements. The technique yielded surface heights with a spatial resolution of 0.15 mm and three-dimensional deformation vectors with a spatial resolution of 2.37 mm (1.04% of the rotor radius), at a calculated accuracy of 15 μm. Tip displacement of up to 7.59 mm (3.3% of the rotor radius) and a tip twist of up to 10.8° were measured. Based on DIC measurements, it is concluded that an accurate aeroelastic model of the rotor blade must include flap and lead-lag bending as well as twist degrees of freedom. In addition, the elastic twist must be considered of the same order of magnitude as the blade root pitch. Finally, the scalability of this technique to the measurement of full-scale rotor blade deformation is discussed.

  13. Helicopter rotor noise investigation during ice accretion

    Science.gov (United States)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the

  14. Bifurcation Analysis of a Non-linear On-Board Rotor-Bearing System

    OpenAIRE

    Dakel, M. Zaki; Baguet, Sébastien; Dufour, Régis

    2014-01-01

    International audience; The non-linear dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings and subject to rigid base excitations is investigated in this work. The proposed finite element rotor model takes into account the geometric asymmetry of shaft and/or rigid disk and considers six types of base deterministic motions (rotations and translations) and non-linear fluid film forces obtained from the Reynoldsequation. The equations of motion contain time-varying para...

  15. Friction effect of stator in a multi-walled CNT-based rotation transmission system

    Science.gov (United States)

    Zhang, Xiao-Ni; Cai, Kun; Shi, Jiao; Qin, Qing-Hua

    2018-01-01

    The rotation transmission system (RTS) made from co-axial multi-walled nanotubes (MWNTs) has the function of regulating the input rotation from a nanomotor. The mechanism for the regulation is that the friction among the tubes during rotation governs the rotation of the rotors in the nanosystem. By integrating a rotary nanomotor and a nanobearing into an MWNT-based RTS, it is discovered that the stator (outer tube) provides relatively greater friction on the rotors by penetrating the motor tube, which has a higher stable rotational frequency. And the output rotation of the rotors in the system depends significantly on the temperature of the system, as the rotor tubes are slightly longer than the motor tube. Briefly, at low temperatures, say 8 K, the rotors rotate synchronously with the motor. However, at high temperatures, the rotors rotate slower than the motor with a bigger difference between their rotational frequencies. Hence, the output rotational frequencies can be adjusted by changing the temperature as well as the input rotational frequency.

  16. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part II: Experiment

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    mistuning, can easily be generated by substitution or rearranging the blades. Six sets of electro-magnetic actuators are applied to the system in order to control the blades as well as the rotor vibrations. Four sets of actuators are mounted in the rotating disc acting directly onto each one of the blades......This is the second paper in a two-part study on active rotor-blade vibration control. This part presents an experimental contribution into the work of active controller design for rotor-blade systems. The primary aim is to give an experimental validation and show the applicability...... of the theoretical results presented in part 1 of the study. A test rig of a coupled rotor-blade system, where blades flexible motion is coupled to rotor lateral motion, is build for the experimental research. The rig is build by four flexible blades radially attached onto a rotating rigid disc and shaft. The rigid...

  17. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  18. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  19. Sensorless Characteristics of Hybrid PM Machines at Zero and Low Speed

    DEFF Research Database (Denmark)

    Matzen, Torben N.; Rasmussen, Peter Omand

    2009-01-01

    Sensorless methods for zero and low speed operation in drives with hybrid PM machines make use of the machine saliency to determine the rotor position in an indirect fashion. When integrating the position measurement in the electrical power supply to the machine, i.e. make the machine self-sensin...

  20. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices

    Science.gov (United States)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  1. Dynamical localization in molecular alignment of kicked quantum rotors

    Energy Technology Data Exchange (ETDEWEB)

    Kamalov, A.; Broege, D. W.; Bucksbaum, P. H.

    2015-07-13

    The periodically δ -kicked quantum linear rotor is known to experience nonclassical bounded energy growth due to quantum dynamical localization in angular momentum space. We study the effect of random deviations of the kick period in simulations and experiments. This breaks the energy and angular momentum localization and increases the rotational alignment, which is the analog of the onset of Anderson localization in one-dimensional chains.

  2. The effect of changing disk parameters on whirling frequency of high speed rotor system

    Science.gov (United States)

    Wahab, A. M. Abdul; Rasid, Z. A.; Abu, A.; Rudin, N. F. Mohd Noor; Yakub, F.

    2017-12-01

    The requirement for efficiency improvement of machines has caused machine rotor to be designed to rotate at high speeds. It is known that whirling natural frequency of a shaft changes with the change of shaft speed and the design needs to avoid points of resonance where the whirling frequency equals the shaft speed. At high speeds, a shaft may have to carry a huge torque along and this torsional effect has been neglected in past shaft analyses. Whirling behaviour of high speed rotating shaft is investigated in this study with consideration of the torsional effect of the shaft. The shaft system under study consists of a shaft, discs and two bearings, and the focus is on the effect of the disc parameters. A finite element formulation is developed based on Nelson’s 5 degrees of freedom (DOF) per node element that includes the torsional degree of freedom. Bolotin’s method is applied to the derived Mathieu-Hill type of equation to get quadratic eigenvalues problem that gives the forward and backward frequencies of the shaft. Campbell’s diagrams are drawn in studying the effect of discs on the whirling behaviour of the shaft. It is found that the addition of disks on the shaft decreases the whirling frequency of the shaft and the frequency is lower for mass located at the centre of the shaft compared to the one located near to the end. The effect of torsional motion is found to be significant where the difference between critical speed of 4DOF and 5DOF models can be as high as 15%.

  3. The Finite-Bladed Betz Rotor

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    The finite-bladed optimum Betz rotor is treated. It is first very recently that a complete description of this rotor has been derived. In the chapter, a full analytical solution to the Betz rotor problem will be given, and the results will be compared to other optimum rotor models, both...

  4. Use of double correlation techniques for the improvement of rotation speed measurement based on electrostatic sensors

    Science.gov (United States)

    Li, Lin; Wang, Xiaoxin; Hu, Hongli; Liu, Xiao

    2016-02-01

    Electrostatic sensing technology using correlation signal processing offers an approach to the measurement of rotational speed in the automatic control system of large generators and centrifugal machines. In this article, a double autocorrelation method was proposed to improve the accuracy and robustness of the measurement on the designed test rig. An electrostatic sensor was used to obtain signals from the rotor surface. Then, the rotational speed was determined from the period of rotational motion calculated from a double autocorrelation method. At the same time, experiments with sampling rates of 2ksps (kilo samples per second), 5ksps, 10ksps, 20ksps were carried out on a laboratory-scale test rig under a rotational speed range from 400 r min-1 to 4200 r min-1. The results show that the double autocorrelation method improves the accuracy and robustness. The measurement accuracy also improves with the sampling rate-the relative errors using 2ksps, 5ksps, 10ksps, and 20ksps are within 1.5%, 1%, 0.4%, and 0.3% respectively. The linearity of them is 1.47%, 0.61%, 0.28%, 0.17% correspondingly. The experiments also reveal that the measurement error has a tendency to increase with the rotational speed.

  5. Aircraft Rotor Surface Coating Qualification Testing Aircraft Rotor Surface Coating

    National Research Council Canada - National Science Library

    2006-01-01

    .... The Aviation and Missile Research, Development and Engineering Center "AMRDEC" located at Redstone Arsenal, AL selected the NCDMM to coordinate the initial effort to qualify a new aircraft rotor...

  6. A new rotor speed observer for stand-alone brushless doubly-fed induction generators

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Long, Teng

    2017-01-01

    Brushless doubly-fed induction generator (BDFIG) is a new type of ac induction machine and can be used for both grid-connected and stand-alone power generation. The conventional control methods for the BDFIG almost all rely on the encoder, which brings many limitations in terms of cost, complexity......, reliability, and so on. This paper presents a new rotor speed observer (RSO) for the encoderless operation of the stand-alone BDFIG, which is based on a rotor position phase-locked loop (PLL) and a second-order generalized integrator (SOGI) and independent of any other machine parameters except for the pole...

  7. A Comparative Study of Control Strategies for Performance Optimisation of Brushless Doubly- Fed Reluctance Machines

    OpenAIRE

    Jovanović, Milutin G.

    2006-01-01

    The brushless doubly-fed machine (BDFM) allows the use of a partially rated inverter and represents an attractive cost-effective candidate for variable speed applications with limited speed ranges. In its induction machine form (BDFIM), the BDFM has significant rotor losses and poor efficiency due to the cage rotor design which makes the machine dynamic models heavily parameter dependent and the resulting controller configuration complicated and difficult to implement. A reluctance version of...

  8. Contribution to the Synchronous Reluctance Machine Performance Improvement by Design Optimization and Current Harmonics Injection

    OpenAIRE

    Yammine, Samer

    2015-01-01

    This thesis is dedicated to the evaluation and the improvement of the synchronous reluctance machine’s performance for variable speed drive applications in general and for automotive applications in particular. The two axes of development are machine design and phase current harmonics injection. The rotor is an important element in the machine design and particular emphasis is placed to the design and evaluation of the rotor for enhancing the machine performance. An analytical procedure is pr...

  9. A study of electrodischarge machining–pulse electrochemical machining combined machining for holes with high surface quality on superalloy

    OpenAIRE

    Ning Ma; Xiaolong Yang; Mingqian Gao; Jinlong Song; Ganlin Liu; Wenji Xu

    2015-01-01

    Noncircular holes on the surface of turbine rotor blades are usually machined by electrodischarge machining. A recast layer containing numerous micropores and microcracks is easily generated during the electrodischarge machining process due to the rapid heating and cooling effects, which restrict the wide applications of noncircular holes in aerospace and aircraft industries. Owing to the outstanding advantages of pulse electrochemical machining, electrodischarge machining–pulse electrochemic...

  10. Genetics Home Reference: Rotor syndrome

    Science.gov (United States)

    ... TYPE Sources for This Page Strassburg CP. Hyperbilirubinemia syndromes (Gilbert-Meulengracht, Crigler-Najjar, Dubin-Johnson, and Rotor syndrome). Best Pract Res Clin Gastroenterol. 2010 Oct;24( ...

  11. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.

    Science.gov (United States)

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2002-01-01

    Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously.

  12. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature

    Science.gov (United States)

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H.

    2017-04-01

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude—especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  13. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  14. Auralization of Tonal Rotor Noise Components of a Quadcopter Flyover

    Science.gov (United States)

    Christian, Andrew W.; Boyd, David D.; Zawodny, Nikolas S.; Rizzi, Stephen A.

    2015-01-01

    The capabilities offered by small unmanned vertical lift aerial vehicles, for example, quadcopters, continue to captivate entrepreneurs across the private, public, and civil sectors. As this industry rapidly expands, the public will be exposed to these devices (and to the noise these devices generate) with increasing frequency and proximity. Accordingly, an assessment of the human response to these machines will be needed shortly by decision makers in many facets of this burgeoning industry, from hardware manufacturers all the way to government regulators. One factor of this response is that of the annoyance to the noise that is generated by these devices. This paper presents work currently being pursued by NASA toward this goal. First, physics-based (CFD) predictions are performed on a single isolated rotor typical of these devices. The result of these predictions are time records of the discrete tonal components of the rotor noise. These time records are calculated for a number of points that appear on a lattice of locations spread over the lower hemisphere of the rotor. The source noise is then generated by interpolating between these time records. The sound from four rotors are combined and simulated-propagation techniques are used to produce complete flyover auralizations.

  15. Study of aerodynamical and mechanical behaviours of Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Hadj Lakhdar Univ., Batna (Algeria). Applied Energetic Physic Laboratory

    2007-07-01

    Although the efficiency of a Savonius rotor is not as high conventional propeller-type and Darrieus wind turbines, it has the advantage of simple construction; acceptance of wind from various directions, thereby eliminating the need for reorientation; high starting torque; and, relatively low operating speed. These advantages outweigh its low efficiency and make it an ideal economic source to meet small-scale power requirements. The instantaneous pressure field on the blades surface was determined in order to analyze the flow around a Savonius rotor. A two dimensional analysis was used to determine the aerodynamic strengths, which led to underline the Magnus effect and to vibrations on the rotor. An anti-vibratory system was also proposed to stabilize or avoid these vibrations. The drag and lift coefficients were found to be in good agreement with results reported in literature. This study identified an inversion lift effect on a Savonius rotor, which closely resembled the Reynolds number, particularly in the peripheral speed coefficient values. It was shown that the machine does not move in accordance with the Magnus effect. 22 refs., 1 tab., 9 figs.

  16. New type of wind turbine with composite rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Rys, J. [Cracow Univ. of Technology, Krakow (Poland)

    1995-11-01

    During the last three years a new type of a wind turbine has been designed and tested in Division of Machine Design at Cracow University of Technology. The wind turbine consists of four main units: (1) rotor with two blades, each of them having an aerodynamically formed surface made of a laminated composite material bordered by a metallic frame; (2) directing system consisting of one rotor unit which drives blades about their own axis and controls the orientation of the turbine towards the wind; (3) supporting and transmissing system; and (4) foundation consisting of typical reinforced concrete plates fastened together, convenient to transport. The paper presents the method describing simulation of motion of the turbine. Such an approach gives one the possibility to analyze the maximum load acting in the vicinity of the blade and the load response of the elements of the turbine. A certain useful technique is demonstrated which can be applied to determine the load distribution. It is used to find e.g. the optimal fastening of internal metallic frame of the rotor blade. Specific and important advantages of the new type of engine are summarized in the final remarks as follows: perfect static and dynamic balancing, nice geometric shape of rotor which can be made of typical materials, low mass and cost per unit, typical technology of elements, easy mounting and dismounting. Several designing and technological solutions are illustrated in graphs and drawings.

  17. Dynamic model of cage induction motor with number of rotor bars as parameter

    Directory of Open Access Journals (Sweden)

    Gojko Joksimović

    2017-05-01

    Full Text Available A dynamic mathematical model, using number of rotor bars as parameter, is reached for cage induction motors through the use of coupled-circuits and the concept of winding functions. The exact MMFs waveforms are accounted for by the model which is derived in natural frames of reference. By knowing the initial motor parameters for a priori adopted number of stator slots and rotor bars model allows change of rotor bars number what results in new model parameters. During this process, the rated machine power, number of stator slots and stator winding scheme remain the same. Although presented model has a potentially broad application area it is primarily suitable for the analysis of the different stator/rotor slot combination on motor behaviour during the transients or in steady-state regime. The model is significant in its potential to provide analysis of dozen of different number of rotor bars in a few tens of minutes. Numerical example on cage rotor induction motor exemplifies this application, including three variants of number of rotor bars.

  18. A numerical model for dynamic wave rotor analysis

    Science.gov (United States)

    Paxson, D. E.

    1995-01-01

    A numerical model has been developed which can predict the dynamic (and steady state) performance of a wave rotor, given the geometry and time dependent boundary conditions. The one-dimensional, perfect gas, CFD based code tracks the gasdynamics in each of the wave rotor passages as they rotate past the various ducts. The model can operate both on and off-design, allowing dynamic behavior to be studied throughout the operating range of the wave rotor. The model accounts for several major loss mechanisms including finite passage opening time, fluid friction, heat transfer to and from the passage walls, and leakage to and from the passage ends. In addition, it can calculate the amount of work transferred to and from the fluid when the flow in the ducts is not aligned with the passages such as occurs in off-design operation. Since it is one-dimensional, the model runs reasonably fast on a typical workstation. This paper will describe the model and present the results of some transient calculations for a conceptual four port wave rotor designed as a topping cycle for a small gas turbine engine.

  19. Quad-Rotor Unmanned Aerial Vehicle Helicopter Modelling & Control

    Directory of Open Access Journals (Sweden)

    Yogianandh Naidoo

    2011-09-01

    Full Text Available This paper presents the investigation of the modelling and control of a quad-rotor helicopter and forms part of research involving the development of an unmanned aerial vehicle (UAV to be used in search and rescue applications. Quad-rotor helicopters consist of two pairs of counter rotating rotors situated at the ends of a cross, symmetric about the centre of gravity, which coincides with the origin of the reference system used. These rotors provide the predominant aerodynamic forces which act on the rotorcraft, and are modelled using momentum theory as well as blade element theory. From this, one can determine the expected payload capacity and lift performance of the rotorcraft. The Euler-Lagrange method has been used to derive the defining equations of motion of the six degree-of-freedom system. The Lagrangian was obtained by modelling the kinetic and potential energy of the system and the external forces obtained from the aerodynamic analysis. Based on this model, a control strategy was developed using linear PD controllers. A numerical simulation was then conducted using MATLAB® Simulink®. First, the derived model was simulated to investigate the behaviour of the rotorcraft, and then a second investigation was conducted to determine the effectiveness of the implemented control system. The results and findings of these investigations are then presented and discussed.

  20. Application of FPGA to Rotor Position Detection of SR Motor Using Rotary Encoder

    Science.gov (United States)

    Ohyama, Kazuhiro; Fujii, Kouzaburo; Fujii, Hiroaki; Uehara, Kazusi

    The Field Programmable Gate Array (FPGA)-based control system for the Switched Reluctance Motor (SRM) drive with a rotor position sensor are designed and constructed. The control algorithm of the SRM requires the information of rotor position. Conventional estimation algorithms of the rotor position are deteriorated by the switching noise of the inverter. Therefore, this paper proposes the new estimation algorithm of the rotor position with suppression mode of noise. The estimation algorithm is based on the state machine which is one of the popular description methods of Very high speed integrated circuit Hardware Description Language (VHDL). The SRM drive using the proposed algorithm is tested with experimental system to confirm the operation.

  1. Rotor speed estimation for indirect stator flux oriented induction motor drive based on MRAS scheme

    Directory of Open Access Journals (Sweden)

    Youssef Agrebi

    2007-09-01

    Full Text Available In this paper, a conventional indirect stator flux oriented controlled (ISFOC induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the model reference adaptive system (MRAS scheme, the rotor speed is tuned to obtain an exact ISFOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor peed from measured terminal voltages and currents. The IP gains speed controller and PI gains current controller are calculated and tuned at each sampling time according to the new estimated rotor speed. The proposed algorithm has been tested by numerical simulation, showing the capability of driving active load; and stability is preserved. Experimental results obtained with a general-purpose 1-kW induction machine are presented showing the effectiveness of the proposed approach in terms of dynamic performance.

  2. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus.

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kishikawa

    Full Text Available The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F(1-γ or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F(1-γ could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin.

  3. Modeling and simulation of coaxial helicopter rotor aerodynamics

    Science.gov (United States)

    Gecgel, Murat

    A framework is developed for the computational fluid dynamics (CFD) analyses of a series of helicopter rotor flowfields in hover and in forward flight. The methodology is based on the unsteady solutions of the three-dimensional, compressible Navier-Stokes equations recast in a rotating frame of reference. The simulations are carried out by solving the developed mathematical model on hybrid meshes that aim to optimally exploit the benefits of both the structured and the unstructured grids around complex configurations. The computer code is prepared for parallel processing with distributed memory utilization in order to significantly reduce the computational time and the memory requirements. The developed model and the simulation methodology are validated for single-rotor-in-hover flowfields by comparing the present results with the published experimental data. The predictive merit of different turbulence models for complex helicopter aerodynamics are tested extensively. All but the kappa-o and LES results demonstrate acceptable agreement with the experimental data. It was deemed best to use the one-equation Spalart-Allmaras turbulence model for the subsequent rotor flowfield computations. First, the flowfield around a single rotor in forward flight is simulated. These time---accurate computations help to analyze an adverse effect of increasing the forward flight speed. A dissymmetry of the lift on the advancing and the retreating blades is observed for six different advance ratios. Since the coaxial rotor is proposed to mitigate the dissymmetry, it is selected as the next logical step of the present investigation. The time---accurate simulations are successfully obtained for the flowfields generated by first a hovering then a forward-flying coaxial rotor. The results for the coaxial rotor in forward flight verify the aerodynamic balance proposed by the previously published advancing blade concept. The final set of analyses aims to investigate if the gap between the

  4. Investigation of Counter-Rotating Wind Turbine Performance using Computational Fluid Dynamics Simulation

    Science.gov (United States)

    Koehuan, V. A.; Sugiyono; Kamal, S.

    2017-11-01

    Investigation of the dual rotor counter-rotating wind turbine (CRWT) performance using non-dimensional parameters of the rotor diameter ratio and the rotor axial distance ratio against the characteristics of power coefficient with tip speed ratio (TSR) as input parameters have been successfully carried through CFD simulation. CFD simulation used k-e turbulence realizable with hexahedral meshing to predict the CRWT performance to the rotor diameter ratio of D1/D2 1 and rotor axial distance ratio with the s826 airfoil that has been applied to the single rotor wind turbine. The best CRWT performance obtained on the rotor diameter ratio of D1/D2 = 1.0 with the peak power coefficient of 0.5219 or increased to ΔCp, max = 16.49% from the single rotor. CRWT performance through the addition of rotor axial distance ratio showed the power coefficient of the front rotor continued to rise closely to the single rotor performance while the rear rotor will continue to decline. However, the overall CRWT performance were relatively stable after the ratio of the distance Z/D1 = 0.5 with the peak power coefficient of 0.5348 or increased to ΔCp, max = 19.37%.

  5. Simulation Tools for Electrical Machines Modelling: Teaching and ...

    African Journals Online (AJOL)

    Simulation tools are used both for research and teaching to allow a good comprehension of the systems under study before practical implementations. This paper illustrates the way MATLAB is used to model non-linearites in synchronous machine. The machine is modeled in rotor reference frame with currents as state ...

  6. Fault diagnosis of a Wind Turbine Rotor using a Multi-blade Coordinate Framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2012-01-01

    Fault diagnosis of a wind turbine rotor is considered. The faults considered are sensor faults and blades mounted with a pitch offset. A fault at a single blade will result in asymmetries in the rotor, which can be applied for fault diagnosis. The diagnosis is derived by using the multiblade...... coordinate (MBC) transformation also known as the Coleman transformation together with active fault diagnosis (AFD). This transforms the setup from rotating to fixed frame coordinates. The rotor speed acts as the auxiliary input for the active diagnosis. The applied method take the varying rotor speed...... into account. Operation at different mean wind speeds is examined and it is discussed how to exploit the findings acquired by the investigation of the various faults....

  7. Analysis of generator bearing vibration data for diagnosing rotor circuit malfunction in DFIGs

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Sweeney, Christian W.; Jensen, Bogi Bech

    2014-01-01

    Doubly fed induction generators (DFIGs) are the most popular configuration met in the wind energy sector occu- pying approximately 65 % of the total market share. Condition monitoring of wind turbine generators is performed based on vibration data collected from accelerometers mounted on the drive...... the slip ring unit and the rotor circuit is manifested as excessive vibration seen in both ends of the generator. The consistent and accurate diagnosis of a rotor circuit malfunction is of crucial importance in regards to proper troubleshooting of the fault and the overall health of the generator....... In this paper generator bearing vibration signature for a DFIG under operation with one rotor phase coil open is analysed and presented. Further this failure mode is compared to rotor dynamics fault, such as rotational looseness, and the difference in signature is discussed. Vibration data from a multi...

  8. Friction in carborane-based molecular rotors driven by gas flow or electric field: classical molecular dynamics.

    Science.gov (United States)

    Prokop, Alexandr; Vacek, Jaroslav; Michl, Josef

    2012-03-27

    Friction in molecular rotors is examined by classical molecular dynamics simulations for grid-mounted azimuthal dipolar molecular rotors, whose rotation is either allowed to decay freely or is driven at GHz frequencies by a flow of rare gas or by a rotating electric field. The rotating parts (rotators) are propeller-shaped. Their two to six blades consist of condensed aromatic rings and are attached to a deltahedral carborane hub, whose antipodal carbons carry [n]staffane axles mounted on a square molecular grid. The dynamic friction constant η has been derived in several independent ways with similar results. Analysis of free rotation decay yields η as a continuous exponentially decreasing function of rotor frequency. The calculated dependence of friction torque on frequency resembles the classical macroscopic Stribeck curve. Its relation to rotational potential energy barriers and the key role of the rate of intramolecular vibrational redistribution (IVR) of energy and angular momentum from rotator rotation to other modes are considered in two limiting regimes. (i) In the strongly overdamped regime, rotation is much slower than IVR, and effective friction can be expressed through potential barriers to rotation. (ii) In the strongly underdamped regime, rotation is much faster than IVR, whose rate then determines friction. © 2012 American Chemical Society

  9. Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit

    Directory of Open Access Journals (Sweden)

    Flávio Oliveira

    2015-12-01

    Full Text Available This paper have studied the dynamic of a 2.0 MW Doubly Fed Induction Generator (DFIG during a severe voltage sag. Using the dynamic model of a DFIG, it was possible to determine the current, Electromagnetic Force and flux behavior during three-phase symmetrical voltage dip. Among the technologies of wind turbines the DFIG is widely employed; however, this machine is extremely susceptible to disturbances from the grid. In order to improve DFIG Low Voltage Ride-Through (LVRT, it is proposed a novel solution, using Superconducting Current Limiter (SCL in two arrangements: one, the SCL is placed between the machine rotor and the rotor side converter (RSC, and another placed in the RSC DC-link. The proposal is validated through simulation using PSCAD™/EMTDC™ and according to requirements of specific regulations. The analysis ensure that both SCL arrangements behave likewise, and are effective in decrement the rotor currents during the disturbance.

  10. Rotor instrumentation study for high-temperature superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Schwenterly, S.W.; Wilson, C.T.

    1996-06-01

    In FY 9195, ORNL carried out work on rotor instrumentation systems in support of the General Electric (GE) Superconductivity Partnership Initiative (SPI) on Superconducting Generator Development. The objective was to develop a system for tramsitting data from sensors in the spinning rotor to a stationary data acquisition system. Previous work at ORNL had investigated an optical method of cryogenic temperature measurement using laser-induced fluorescence in certain phosphors. Later follow-up discussions with experts in the ORNL Engineering Technology Division indicated that this method could also be extended to measure strain and magnetic field. Another optical alternative using standard fiber optic transmission modules was also investigated. The equipment is very inexpensive, but needs to be adapted for operation in a high-g-force rotating environment. An optical analog of a commutator or slip ring also needs to be developed to couple the light signals from the rotor to the stationary frame. Sealed mercury-film rotary contacts are manufactured by Meridian Laboratory. Unlike conventional slipring assemblies, these offer low noise and long lifetime, with low costs per channel. Standard units may need some upgrading for 3600-rpm or high-voltage operation. A commercial electronic telemetry system offered by Wireless Data Corporation (WDC) was identified as a viable candidate, and information on this system was presented to GE. GE has since ordered two of these systems from WDC for temperature measurements in their rotating test cryostat.

  11. Single-Molecule Rotational Switch on a Dangling Bond Dimer Bearing.

    Science.gov (United States)

    Godlewski, Szymon; Kawai, Hiroyo; Kolmer, Marek; Zuzak, Rafał; Echavarren, Antonio M; Joachim, Christian; Szymonski, Marek; Saeys, Mark

    2016-09-27

    One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices.

  12. Rotor losses in laminated magnets and an anisotropic carbon fiber sleeve

    NARCIS (Netherlands)

    Van der Geest, M.; Wolmarans, J.J.; Polinder, H.; Ferreira, J.A.; Zeilstra, D.

    2012-01-01

    High speed fault tolerant permanent magnet machines have strong asynchronous airgap harmonics, making them susceptible to rotor eddy-current losses. These losses can be reduced by using novel high resistivity materials like plastic bonded magnets and carbon fiber reinforced retaining sleeves. This

  13. None of the rotor residues of F1-ATPase are essential for torque generation.

    Science.gov (United States)

    Chiwata, Ryohei; Kohori, Ayako; Kawakami, Tomonari; Shiroguchi, Katsuyuki; Furuike, Shou; Adachi, Kengo; Sutoh, Kazuo; Yoshida, Masasuke; Kinosita, Kazuhiko

    2014-05-20

    F1-ATPase is a powerful rotary molecular motor that can rotate an object several hundred times as large as the motor itself against the viscous friction of water. Forced reverse rotation has been shown to lead to ATP synthesis, implying that the mechanical work against the motor's high torque can be converted into the chemical energy of ATP. The minimal composition of the motor protein is α3β3γ subunits, where the central rotor subunit γ turns inside a stator cylinder made of alternately arranged α3β3 subunits using the energy derived from ATP hydrolysis. The rotor consists of an axle, a coiled coil of the amino- and carboxyl-terminal α-helices of γ, which deeply penetrates the stator cylinder, and a globular protrusion that juts out from the stator. Previous work has shown that, for a thermophilic F1, significant portions of the axle can be truncated and the motor still rotates a submicron sized bead duplex, indicating generation of up to half the wild-type (WT) torque. Here, we inquire if any specific interactions between the stator and the rest of the rotor are needed for the generation of a sizable torque. We truncated the protruding portion of the rotor and replaced part of the remaining axle residues such that every residue of the rotor has been deleted or replaced in this or previous truncation mutants. This protrusionless construct showed an unloaded rotary speed about a quarter of the WT, and generated one-third to one-half of the WT torque. No residue-specific interactions are needed for this much performance. F1 is so designed that the basic rotor-stator interactions for torque generation and control of catalysis rely solely upon the shape and size of the rotor at very low resolution. Additional tailored interactions augment the torque to allow ATP synthesis under physiological conditions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Locked synchronous rotor motion in a molecular motor.

    Science.gov (United States)

    Štacko, Peter; Kistemaker, Jos C M; van Leeuwen, Thomas; Chang, Mu-Chieh; Otten, Edwin; Feringa, Ben L

    2017-06-02

    Biological molecular motors translate their local directional motion into ordered movement of other parts of the system to empower controlled mechanical functions. The design of analogous geared systems that couple motion in a directional manner, which is pivotal for molecular machinery operating at the nanoscale, remains highly challenging. Here, we report a molecular rotary motor that translates light-driven unidirectional rotary motion to controlled movement of a connected biaryl rotor. Achieving coupled motion of the distinct parts of this multicomponent mechanical system required precise control of multiple kinetic barriers for isomerization and synchronous motion, resulting in sliding and rotation during a full rotary cycle, with the motor always facing the same face of the rotor. Copyright © 2017, American Association for the Advancement of Science.

  15. Slide system for machine tools

    Science.gov (United States)

    Douglass, S.S.; Green, W.L.

    1980-06-12

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  16. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    Directory of Open Access Journals (Sweden)

    Peter W. Tse

    2017-02-01

    Full Text Available Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL. Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  17. 14 CFR 29.1565 - Tail rotor.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail rotor. 29.1565 Section 29.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS....1565 Tail rotor. Each tail rotor must be marked so that its disc is conspicuous under normal daylight...

  18. 14 CFR 27.1565 - Tail rotor.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail rotor. 27.1565 Section 27.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Tail rotor. Each tail rotor must be marked so that its disc is conspicuous under normal daylight ground...

  19. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    DEFF Research Database (Denmark)

    Gamstedt, Kristofer; Andersen, Svend Ib Smidt

    2001-01-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage,marine and aeronautical propellers, and rolls...

  20. The influence of asymmetry in centralizing spring of squeeze film damper on stability and bifurcation of rigid rotor response

    OpenAIRE

    Hamidreza Heidari; Mohammadreza Ashkooh

    2016-01-01

    One of the main challenges in the design of rotating machinery is the occurrence of undesirable vibration. In this paper, stability and bifurcation of the unbalance response of a rigid rotor supported by squeeze film damper with asymmetry in centralizing spring are investigated. The unbalanced rotor response is determined by the shooting method and the stability of these solutions is examined by using the Floquet theorem. Numerical examples are given for both symmetric (Kx=Ky) and asymmetry (...

  1. Wireless Sensor Network for Helicopter Rotor Blade Vibration Monitoring: Requirements Definition and Technological Aspects

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Das, Kallol; Loendersloot, Richard; Tinga, Tiedo; Havinga, Paul J.M.; Basu, Biswajit

    The main rotor accounts for the largest vibration source for a helicopter fuselage and its components. However, accurate blade monitoring has been limited due to the practical restrictions on instrumenting rotating blades. The use of Wireless Sensor Networks (WSNs) for real time vibration monitoring

  2. Optimal control of the motion of a helical body in a liquid using rotors

    Science.gov (United States)

    Vetchanin, E. V.; Mamaev, I. S.

    2017-07-01

    The motion controlled by the rotation of three internal rotors of a body with helical symmetry in an ideal liquid is considered. The problem is to select controls that ensure the displacement of the body with minimum effort. The optimality of particular solutions found earlier is studied.

  3. Comparison of far wakes behind a solid disk and a three-blade rotor

    DEFF Research Database (Denmark)

    Litvinov, I. V.; Naumov, I.V.; Okulov, Valery

    2015-01-01

    A comparison of the wakes developed behind an immobile bluff body (solid disk) and a three-blade rotor at different rotational speeds is studied to find a correlation between them. LDA and PIV were applied to study the wakes behind both models in a water flume (Re ≈ 2.3·105). Everywhere in both...

  4. Ultrafast isomerization dynamics of a unidirectional molecular rotor revealed by femtosecond stimulated raman spectroscopy (FSRS)

    NARCIS (Netherlands)

    Hall, Christopher R.; Conyard, Jamie; Laptenok, Siarhei; Browne, Wesley R.; Feringa, Ben L.; Heisler, Ismael A.; Meech, Stephen R.

    2016-01-01

    Unidirectional molecular rotors based on chiral overcrowded alkenes operate via sequential photochemical- and thermal-activated steps. Over the last decade the rotation rate limiting thermal step has been optimized through modification of the molecular structure. In recent years we have shown the

  5. Rotational actuator of motor based on carbon nanotubes

    Science.gov (United States)

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  6. Finite Element Computational Dynamics of Rotating Systems

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.

  7. A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect.

    Science.gov (United States)

    Chen, Dianzhong; Liu, Xiaowei; Zhang, Haifeng; Li, Hai; Weng, Rui; Li, Ling; Rong, Wanting; Zhang, Zhongzhao

    2018-01-31

    Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h.

  8. A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect

    Directory of Open Access Journals (Sweden)

    Dianzhong Chen

    2018-01-01

    Full Text Available Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG and electrostatically suspended gyroscopes (ESG with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current. Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM. Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h.

  9. Reluctance Machine for a Hollow Cylinder Flywheel

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2017-03-01

    Full Text Available A hollow cylinder flywheel rotor with a novel outer rotor switched reluctance machine (SRM mounted on the interior rim is presented, with measurements, numerical analysis and analytical models. Practical experiences from the construction process are also discussed. The flywheel rotor does not have a shaft and spokes and is predicted to store 181 Wh / kg at ultimate tensile strength (UTS according to simulations. The novel SRM is an axial flux machine, chosen due to its robustness and tolerance for high strain. The computed maximum tip speed of the motor at UTS is 1050 m / s . A small-scale proof-of-concept electric machine prototype has been constructed, and the machine inductance has been estimated from measurements of voltage and current and compared against results from analytical models and finite element analysis (FEA. The prototype measurements were used to simulate operation during maximal speed for a comparison towards other high-speed electric machines, in terms of tip speed and power. The mechanical design of the flywheel was performed with an analytical formulation assuming planar stress in concentric shells of orthotropic (unidirectionally circumferentially wound carbon composites. The analytical approach was verified with 3D FEA in terms of stress and strain.

  10. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  11. Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor

    Science.gov (United States)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben

    2016-01-01

    At the most fundamental level, main rotor loading noise is caused by the harmonically-varying aerodynamic loads (acoustic pressures) exerted by the rotating blades on the air. Rotorcraft main rotor noise is therefore, in principle, a function of rotor control inputs, and thus the forces and moments required to achieve steady, or "trim", flight equilibrium. In certain flight conditions, the ensuing aerodynamic loading on the rotor(s) can result in highly obtrusive harmonic noise. The effect of the propulsive force, or X-force, on Blade-Vortex Interaction (BVI) noise is well documented. This paper presents an acoustics parametric sensitivity analysis of the effect of varying rotor aerodynamic pitch hub trim moments on BVI noise radiated by an S-70 helicopter main rotor. Results show that changing the hub pitching moment for an isolated rotor, trimmed in nominal 80 knot, 6 and 12 deg descent, flight conditions, alters the miss distance between the blades and the vortex in ways that have varied and noticeable effects on the BVI radiated-noise directionality. Peak BVI noise level is however not significantly altered. The application of hub pitching moment allows the attitude of the fuselage to be controlled; for example, to compensate for the uncomfortable change in fuselage pitch attitude introduced by a fuselage-mounted X-force controller.

  12. Modal Tilt/Translate Control and Stability of a Rigid Rotor with Gyroscopics on Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Timothy Dimond

    2012-01-01

    Full Text Available Most industrial rotors supported in active magnetic bearings (AMBs are operated well below the first bending critical speed. Also, they are usually controlled using proportional, integral and derivative controllers, which are set up as modally uncoupled parallel and tilt rotor axes. Gyroscopic effects create mode splitting and a speed-dependent plant. Two AMBs with four axes of control must simultaneously control and stabilize the rotor/AMB system. Various analyses have been published considering this problem for different rotor/AMB configurations. There has not been a fully dimensionless analysis of these rigid rotor AMB systems. This paper will perform this analysis with a modal PD controller in terms of translation mode and tilt mode dimensionless eigenvalues and eigenvectors. The number of independent system parameters is significantly reduced. Dimensionless PD controller gains, the ratio of rotor polar to transverse moments of inertia and a dimensionless speed ratio are used to evaluate a fully general system stability rigid rotor analysis. An objective of this work is to quantify the effects of gyroscopics on rigid rotor AMB systems. These gyroscopic forces reduce the system stability margin. The paper is also intended to help provide a common framework for communication between rotating machinery designers and controls engineers

  13. Rotational nuclear models and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moya de Guerra, E.

    1986-05-01

    A review is made of the basic formalism involved in the application of nuclear rotational models to the problem of electron scattering from axially symmetric deformed nuclei. Emphasis is made on the use of electron scattering to extract information on the nature of the collective rotational model. In this respect, the interest of using polarized beam and target is discussed with the help of illustrative examples. Concerning the nuclear structure four rotational models are considered: Two microscopic models, namely the Projected Hartree-Fock (PHF) and cranking models; and two collective models, the rigid rotor and the irrotational flow models. The problem of current conservation within the different models is also discussed.

  14. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  15. Data collection and analysis software development for rotor dynamics testing in spin laboratory

    Science.gov (United States)

    Abdul-Aziz, Ali; Arble, Daniel; Woike, Mark

    2017-04-01

    Gas turbine engine components undergo high rotational loading another complex environmental conditions. Such operating environment leads these components to experience damages and cracks that can cause catastrophic failure during flights. There are traditional crack detections and health monitoring methodologies currently being used which rely on periodic routine maintenances, nondestructive inspections that often times involve engine and components dis-assemblies. These methods do not also offer adequate information about the faults, especially, if these faults at subsurface or not clearly evident. At NASA Glenn research center, the rotor dynamics laboratory is presently involved in developing newer techniques that are highly dependent on sensor technology to enable health monitoring and prediction of damage and cracks in rotor disks. These approaches are noninvasive and relatively economical. Spin tests are performed using a subscale test article mimicking turbine rotor disk undergoing rotational load. Non-contact instruments such as capacitive and microwave sensors are used to measure the blade tip gap displacement and blade vibrations characteristics in an attempt develop a physics based model to assess/predict the faults in the rotor disk. Data collection is a major component in this experimental-analytical procedure and as a result, an upgrade to an older version of the data acquisition software which is based on LabVIEW program has been implemented to support efficiently running tests and analyze the results. Outcomes obtained from the tests data and related experimental and analytical rotor dynamics modeling including key features of the updated software are presented and discussed.

  16. FEM Analysis of a New Electromechanical Converter with Rolling Rotor and Axial Air-Gap

    Directory of Open Access Journals (Sweden)

    UNGUREANU, C.

    2015-11-01

    Full Text Available The paper presents the modeling of a new type of electromechanical converter with rolling rotor (ECRR in order to obtain an optimisation at functional level. The ECRR prototype comprises a stator composed of twelve magnetic poles and a disk-shaped rolling rotor made of ferromagnetic material, without windings. Each magnetic pole is made of an E-shaped magnetic system and a winding placed on its central column. The electromechanical converter with rolling rotor is analyzed through a magnetic field study with Flux2D software in magnetostatic application. The field study examines the influence of the rotor thickness, axial air-gap size and current density on the magnetic attraction force that changes the position of the disk-shaped rolling rotor. Also, it is analyzed the variation of the magnetic attraction force for different inclination angles of the rolling rotor. The main advantage of the ECRR is represented by a low rotational speed without using mechanical gearboxes. The ECRR prototype can be used in photovoltaic panels tracking systems.

  17. Computation of Electromagnetic Torque in a Double Rotor Switched Reluctance Motor Using Flux Tube Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Hamiruce Marhaban

    2012-10-01

    Full Text Available With their highly robust nature and simple design, switched reluctance machines are finding their way into numerous modern day applications. However, they produce oscillatory torque that generates torque ripple and mechanical vibrations. A double rotor structure to maximize the flux linkage and thereby increase the torque generating capability is proposed. As the machine operates close to saturation, the torque computation depends heavily on the energy conversion as the rotor rolls over the stator for a fixed pole pitch. The flux linkage characteristics are highly non-linear, hence estimation of the magnetic and mechanical parameters is extremely cumbersome. Magnetic circuit analysis by interpretation of the number of flux tubes using integration techniques at different positions of the machine to develop the flux linkage characteristics of the double rotor structure is presented. Computation of the inductances during the movement of rotor from unaligned to aligned is crucial in determining the generated torque. Relevant equations of calculations for inductance and flux linkages in the aligned, partially aligned and unaligned positions are computed. The partially aligned computation is based on the average on two intermediate positions, namely the 1/4th aligned and 3/4th aligned conditions. The static torque characteristics based on the energy conversion principles are used to compute the torque value. Results from simulation and experiments used for performance evaluation of the proposed flux tube analysis for computation of the electro-magnetic torque are presented.

  18. Brushless machine having ferromagnetic side plates and side magnets

    Science.gov (United States)

    Hsu, John S

    2012-10-23

    An apparatus is provided having a cylindrical stator and a rotor that is spaced from a stator to define an annular primary air gap that receives AC flux from the stator. The rotor has a plurality of longitudinal pole portions disposed parallel to the axis of rotation and alternating in polarity around a circumference of the rotor. Each longitudinal pole portion includes portions of permanent magnet (PM) material and at least one of the longitudinal pole portions has a first end and an opposing second end and a side magnet is disposed adjacent the first end and a side pole is disposed adjacent the second end.

  19. Field oriented control design of inset rotor PMSM drive

    Science.gov (United States)

    Mukti, Ersalina Werda; Wijanarko, Sulistyo; Muqorobin, Anwar; Rozaqi, Latif

    2017-06-01

    The main challenge of PMSM implementation in the adjustable-speed drives especially in automotive industry is to attain the optimal PMSM drive performance. Vector control is proved to be the best method in controlling synchronous machine such as PMSM. This paper objective is to design a speed control system for the manufactured inset rotor PMSM, which integrates the interleaved DC-DC boost converter, inverter, and sinusoidal pulse width modulation and fed by the battery bank DC source. The proposed speed control in this paper employs FOC vector control technique with PI controller which control both converter and inverter independently. This paper investigates the effectiveness of the proposed speed control method for driving the manufactured inset rotor PMSM. To verify the effectiveness of the designed speed control system, computer simulation is conducted. The motor performances are observed in operating condition with disturbance in form of sudden change of load torque. The simulation results show that the control method is stable but the rotor speed still affected by the given disturbance.

  20. Aerodynamic seals for rotary machine

    Science.gov (United States)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  1. A study of electrodischarge machining–pulse electrochemical machining combined machining for holes with high surface quality on superalloy

    Directory of Open Access Journals (Sweden)

    Ning Ma

    2015-11-01

    Full Text Available Noncircular holes on the surface of turbine rotor blades are usually machined by electrodischarge machining. A recast layer containing numerous micropores and microcracks is easily generated during the electrodischarge machining process due to the rapid heating and cooling effects, which restrict the wide applications of noncircular holes in aerospace and aircraft industries. Owing to the outstanding advantages of pulse electrochemical machining, electrodischarge machining–pulse electrochemical machining combined technique is provided to improve the overall quality of electrodischarge machining-drilled holes. The influence of pulse electrochemical machining processing parameters on the surface roughness and the influence of the electrodischarge machining–pulse electrochemical machining method on the surface quality and accuracy of holes have been studied experimentally. The results indicate that the pulse electrochemical machining processing time for complete removal of the recast layer decreases with the increase in the pulse electrochemical machining current. The low pulse electrochemical machining current results in uneven dissolution of the recast layer, while the higher pulse electrochemical machining current induces relatively homogeneous dissolution. The surface roughness is reduced from 4.277 to 0.299 µm, and the hole taper induced by top-down electrodischarge machining process was reduced from 1.04° to 0.17° after pulse electrochemical machining. On account of the advantages of electrodischarge machining and the pulse electrochemical machining, the electrodischarge machining–pulse electrochemical machining combined technique could be applied for machining noncircular holes with high shape accuracy and surface quality.

  2. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gamstedt, E.K.; Andersen, S.I.

    2001-03-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage, marine and aeronautical propellers, and rolls for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies, which would allow more reliable and slender structures, improved test methods are necessary. Furthermore, the relation between structural, component and specimen test results should be better understood than what is presently the case. Improved predictive methods rely on a better understanding of the underlying damage mechanisms. With mechanism-based models, the component substructure or even the material microstructure could be optimised for best possible fatigue resistance. These issues are addressed in the present report, with special emphasis on test methods, and scaling from damage mechanisms to relevant material properties. (au)

  3. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    Science.gov (United States)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  4. Darmstadt Rotor No. 2, II: Design of Leaning Rotor Blades

    Directory of Open Access Journals (Sweden)

    Jörg Bergner

    2003-01-01

    Full Text Available For Darmstadt University of Technology's axial singlestage transonic compressor rig, a new three-dimensional aft-swept rotor was designed and manufactured at MTU Aero Engines in Munich, Germany. The application of carbon fiber–reinforced plastic made it possible to overcome structural constraints and therefore to further increase the amount of lean and sweep of the blade. The aim of the design was to improve the mechanical stability at operation that is close to stall.

  5. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    Science.gov (United States)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  6. Advanced turbocharger rotor for variable geometry turbocharging systems

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, R.J.; Mulloy, J.M.; Yonushonis, T.M.; Weber, H.G.; Patel, M.J. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1997-12-31

    Turbocharging of diesel engines has enhanced fuel economy and reduced diesel engine emissions. The initial applications of turbochargers to heavy duty diesel engines during the early 1970`s reduced Bosch smoke (a measure of particulate matter used at the time) from 2.4 to 0.6 units. Current turbochargers are optimized at one set of engine conditions and by necessity, at the off-design conditions or transient conditions the fuel economy and emissions performance are penalized. A rotor was designed and a prototype fabricated which showed as much as a 10% efficiency improvement at off-design conditions. The leading edges are blunt and rounded to accept the flow from the turbine nozzles at a variety of inlet conditions with a minimum of losses. The rotor efficiency is better at all conditions and the advantage improves as it operates at conditions further from the design point. Unfortunately, the conventional materials from which this turbine rotor was constructed had inadequate strength to allow its use on engines, and had such high rotational inertia that transient response would have been severely compromised.

  7. Inductor Machines with Longitudinally-Transversal Comb-Wise Tooth Zone

    Directory of Open Access Journals (Sweden)

    Serebryakov A.

    2017-02-01

    Full Text Available The method considered in the present paper concerns the operational efficiency of the inductor electric machine, which can be improved by placing on the stator and rotor teeth the combs combined from differently shaped teeth and slots. The use on the inductor electric machine stator and rotor teeth of combs as a combination of differently shaped hills (teeth and valleys (slots allows raising the specific power of the machine. This effect is determined by the chosen type of a comb element as well as by technological possibilities of the manufacturer. The proposed method could be used moderately in the inductor machines with longitudinally-transversal combing.

  8. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  9. System for manufacturing wooden rotor blades for small wind mills

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, B.

    1991-05-01

    Acknowledging the need (also in developing countries) for small windmill wings with various patterns and aerodynamic characteristics a simple, low-cost hand-controlled copying milling machine was built (with standard parts) to reduce production time for one wing to 1-2 hours. A sensor-roll transfers the airfoil pattern to a set of two saw blades, driven by an electric motor, which carves the airfoil out of a wooden beam. It is thus possible to cut out each cross section of the wing and manufacture a constantly reproducible rotor blade. The hard-foam airfoil models - their shapes, material and production, the laminated beam - the preparation of the wood and the lamination, and the copying milling machine itself - its design and how to build, operate and maintain it, are described in detail. (AB)

  10. On the bifurcations of a rigid rotor response in squeeze-film dampers

    Science.gov (United States)

    Inayat-Hussain, J. I.; Kanki, H.; Mureithi, N. W.

    2003-03-01

    The effectiveness of squeeze-film dampers in controlling vibrations in rotating machinery may be limited by the nonlinear interactions between large rotor imbalance forces with fluid-film forces induced by dampers operating in cavitated conditions. From a practical point of view, the occurrence of nonsynchronous and chaotic motion in rotating machinery is undesirable and should be avoided as they introduce cyclic stresses in the rotor, which in turn may rapidly induce fatigue failure. The bifurcations in the response of a rigid rotor supported by cavitated squeeze-film dampers resulting from such interactions are presented in this paper. The effects of design and operating parameters, namely the bearing parameter (/B), gravity parameter (/W), spring parameter (/S) and unbalance parameter (/U), on the bifurcations of the rotor response are investigated. Spring parameter (/S) values between 0 and 1 are considered. A spring parameter value of /S=0 represents the special case of dampers without centering springs. With the exception of the case /S=1, jump phenomena appeared to be a common bifurcation that occurred at certain combinations of /B, /W and /U irrespective of the value of /S. Period-doubling and secondary Hopf bifurcations which occurred for low values of /S (=0.5. For very low stiffness values (/Sfilm forces in cavitated dampers, occurring in industrial rotating machinery, cannot be de-emphasized.

  11. Synthesis and evaluation of molecular rotors with large and bulky tert-butyldiphenylsilyloxy-substituted trityl stators.

    Science.gov (United States)

    Arcos-Ramos, Rafael; Rodríguez-Molina, Braulio; Romero, Margarita; Méndez-Stivalet, J Manuel; Ochoa, María Eugenia; Ramírez-Montes, Pedro I; Santillan, Rosa; Garcia-Garibay, Miguel A; Farfán, Norberto

    2012-08-17

    The search for voluminous stators that may accommodate large rotator units and speed rotational dynamics in the solid state led us to investigate a simple and efficient method for the synthesis of molecular rotors with tert-butyldiphenylsilyl-protected (TBDPS) triphenylmethyl stators. Additionally, solid state characterization of these systems with two-, four-, and six-TBDPS groups provided us with a description of their crystallinity and thermal stability. Among them, molecular rotor 7c with the largest and most symmetric stator resulting from six peripheral silyl groups showed the best tendency to crystallize, and the study of its isotopologue 7c-d(4) by solid state (2)H NMR revealed a 2-fold motion of the 1,4-diethynylphenylene-d(4) rotator in the kHz regime.

  12. Bifurcation and chaos response of a cracked rotor with random disturbance

    Science.gov (United States)

    Leng, Xiaolei; Meng, Guang; Zhang, Tao; Fang, Tong

    2007-01-01

    The Monte-Carlo method is used to investigate the bifurcation and chaos characteristics of a cracked rotor with a white noise process as its random disturbance. Special attention is paid to the influence of the stiffness change ratio and the rotating speed ratio on the bifurcation and chaos response of the system. Numerical simulations show that the affect of the random disturbance is significant as the undisturbed response of the cracked rotor system is a quasi-periodic or chaos one, and such affect is smaller as the undisturbed response is a periodic one.

  13. Classical theory of rotational rainbow scattering from uncorrugated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovoth (Israel)

    2010-08-04

    A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.

  14. ANALYSIS OF THE PRE-ROTATION ENGINE LOADS IN THE AUTOGYRO

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2016-09-01

    Full Text Available The paper presents the analyzes of the pre-rotation engine loads in the Taurus autogyro manufactured by Aviation Artur Trendak from Poland. Based on the NACA-9 H-12 airfoil characteristics of the drag coefficient, on which the rotor blade was made, forces acting on the rotor during pre-rotation have been calculated. The paper presents the characteristics of the drag coefficient as a function of angle of attack for Re = 1,800,000 and Re = 2,600,000. For the speed range of 0 to 400 rpm torque resulting from the drag forces and the power required to drive the rotor were calculated.

  15. GAROS, an aeroelastic code for coupled fixed-rotating structures

    Energy Technology Data Exchange (ETDEWEB)

    Rees, M. [Aerodyn Energiestyseme GmbH, Rendsburg (Germany); Vollan, A. [Pilatus Flugzeugwerke, Stans (Switzerland)

    1996-09-01

    The GAROS (General Analysis of Rotating Structures) program system has been specially designed to calculate aeroelastic stability and dynamic response of horizontal axis wind energy converters. Nevertheless it is also suitable for the dynamic analysis of helicopter rotors and has been used in the analysis of car bodies taking account of rotating wheels. GAROS was developed over the last 17 years. In the following the mechanical and the aerodynamic model will be discussed in detail. A short overview of the solution methods for the equation of motion in time and frequency domain will ge given. After this one example for the FEM model of the rotor and tower will be discussed. (EG)

  16. Stability analysis of a power system made up of an intermittent renewable energy source directly tied to a conventional rotating power generator; Analisi della stabilita` di un sistema di generazione di elettricita` costituito da un generatore rotativo convenzionale e una fonte rinnovabile intermittente

    Energy Technology Data Exchange (ETDEWEB)

    Coiante, D. [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    1997-02-01

    A simple power system made up of a conventional rotating power generator in direct connection to an intermittent renewable energy source (with energy or photovoltaic) is modelled on the base of respective functional schemes. The relative variations of the voltage frequency are calculated as an output to an abrupt variation of intermittent tied power and in function of electro-mechanical parameters of the rotating generator (dumping coefficient and inertial rotor coefficient). The stability conditions and the tolerance allowed on the frequency variations are considered in relation to toad service requires. As a consequence, the maximum intermittent power amount, which can be accepted in direct connection, is obtained. For usual conventional rotating machines, the resulting limit is placed in the range of (12-19)% of nominal capacity of power generator.

  17. Rotor blades for turbine engines

    Science.gov (United States)

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  18. Permanent-magnet-less machine having an enclosed air gap

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  19. Permanent-magnet-less machine having an enclosed air gap

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  20. Development of an engineering model of centrifuge rotor for a gravity generator; Doryoku hassei sochi centrifuge rotor no EM no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Commissioned from the National Space Development Agency of Japan, the Company is developing a gravity generator intended for life science experiments in space environment. The centrifuge rotor is mounted on a space station being built by America on an orbit. The rotor has a capability of generating artificial gravity of 0.1 to 2.2 G by rotating a rotating body with a diameter of about 2.5 m, which mounts a maximum of eight living organism breeding boxes called habitats. The key point in the development is a high-level vibration suppressing technology to provide the experimenters with a stabilized artificial gravity environment, and minimize effects on other gravity-free experiments performed in the space station. An engineering model (EM) is being fabricated and tested, and the development is moved forward toward the launch in August 2004. (translated by NEDO)

  1. Electromagnetic Radial Forces in a Hybrid Eight-Stator-Pole, Six-Rotor-Pole Bearingless Switched-Reluctance Motor

    Science.gov (United States)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2007-01-01

    Analysis and experimental measurement of the electromagnet force loads on the hybrid rotor in a novel bearingless switched-reluctance motor (BSRM) have been performed. A BSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The BSRM has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of stator poles. A second set of stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Analysis was done for nonrotating rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental results and the theoretical predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  2. Nonlinear Analysis of Rotors Supported by Air Foil Journal Bearings – Theory and Experiments

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen

    the nonlinear dynamic behaviour of AFBs, both isolated and coupled with the rotor. Large emphasis is put on the experimental validation of the obtained theoretical results. Two experimental test rigs were designed and manufactured specifically for this purpose. With the first rig, the isolated nonlinear......Direct driven compressors supported by air foil bearings (AFB) are gaining increasing popularity, for example within the waste water treatment industry where the demand for larger machines up to 250 kW is growing. In order to keep production costs low, the shaft and bearing design need to be simple...... and allow manufacturing using conventional materials and production facilities. As a consequence, the assembled rotor weight can be up to 50 kg. The compressors are operated at variable speed and load and are subjected to several starts and stops per day. Therefore, the rotor bearing design must be robust...

  3. Flywheel Rotor Safe-Life Technology

    Science.gov (United States)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  4. Machine Translation

    Institute of Scientific and Technical Information of China (English)

    张严心

    2015-01-01

    As a kind of ancillary translation tool, Machine Translation has been paid increasing attention to and received different kinds of study by a great deal of researchers and scholars for a long time. To know the definition of Machine Translation and to analyse its benefits and problems are significant for translators in order to make good use of Machine Translation, and helpful to develop and consummate Machine Translation Systems in the future.

  5. Rotor Flapping Response to Active Control

    Science.gov (United States)

    Nguyen, Khanh; Johnson, Wayne

    2004-01-01

    Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.

  6. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  7. Experimental Dynamic Analysis of a Breathing Cracked Rotor

    Science.gov (United States)

    Guo, Chao-Zhong; Yan, Ji-Hong; Bergman, Lawrence A.

    2017-09-01

    Crack fault diagnostics plays a critical role for rotating machinery in the traditional and Industry 4.0 factory. In this paper, an experiment is set up to study the dynamic response of a rotor with a breathing crack as it passes through its 1/2, 1/3, 1/4 and 1/5 subcritical speeds. A cracked shaft is made by applying fatigue loads through a three-point bending apparatus and then placed in a rotor testbed. The vibration signals of the testbed during the coasting-up process are collected. Whirl orbit evolution at these subcritical speed zones is analyzed. The Fourier spectra obtained by FFT are used to investigate the internal frequencies corresponding to the typical orbit characteristics. The results show that the appearance of the inner loops and orientation change of whirl orbits in the experiment are agreed well with the theoretical results obtained previously. The presence of higher frequencies 2X, 3X, 4X and 5X in Fourier spectra reveals the causes of subharmonic resonances at these subcritical speed zones. The experimental investigation is more systematic and thorough than previously reported in the literature. The unique dynamic behavior of the orbits and frequency spectra are feasible features for practical crack diagnosis. This paper provides a critical technology support for the self-aware health management of rotating machinery in the Industry 4.0 factory.

  8. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  9. Coherent backscattering and forward-scattering peaks in the quantum kicked rotor

    Science.gov (United States)

    Lemarié, G.; Müller, Cord A.; Guéry-Odelin, D.; Miniatura, C.

    2017-04-01

    We propose and analyze an experimental scheme using the quantum kicked rotor to observe the newly predicted coherent forward-scattering peak together with its long-known twin brother, the coherent backscattering peak. Contrary to coherent backscattering, which arises already under weak-localization conditions, coherent forward scattering is only triggered by Anderson or strong localization. So far, coherent forward scattering has not been observed in conservative systems with elastic scattering by spatial disorder. We propose to turn to the quantum kicked rotor, which has a long and successful history as an accurate experimental platform to observe dynamical localization, i.e., Anderson localization in momentum space. We analyze the coherent forward-scattering effect for the quantum kicked rotor by extensive numerical simulations, both in the orthogonal and unitary class of disordered quantum systems, and show that an experimental realization involving phase-space rotation techniques is within reach of state-of-the-art cold-atom experiments.

  10. Wind energy conversion. Volume VI. Nonlinear response of wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, I.

    1978-09-01

    The nonlinear equations of motor for a rigid rotor restrained by three flexible springs representing, respectively, the flapping, lagging, and feathering motions are derived using Lagrange's equations, for arbitrary angular rotations. These are reduced to a consistent set of nonlinear equations using nonlinear terms up to third order. The complete analysis is divided into three parts, A, B, and C. Part A consists of forced response of two-degree flapping-lagging rotor under the excitation of pure gravitational field (i.e., no aerodynamic forces). In Part B, the effect of aerodynamic forces on the dynamic response of two-degree flapping-lagging rotor is investigated. In Part C, the effect of third degree of motion, feathering, is considered.

  11. Numerical and Experimental Modal Control of Flexible Rotor Using Electromagnetic Actuator

    Directory of Open Access Journals (Sweden)

    Edson Hideki Koroishi

    2014-01-01

    Full Text Available The present work is dedicated to active modal control applied to flexible rotors. The effectiveness of the corresponding techniques for controlling a flexible rotor is tested numerically and experimentally. Two different approaches are used to determine the appropriate controllers. The first uses the linear quadratic regulator and the second approach is the fuzzy modal control. This paper is focused on the electromagnetic actuator, which in this case is part of a hybrid bearing. Due to numerical reasons it was necessary to reduce the size of the model of the rotating system so that the design of the controllers and estimator could be performed. The role of the Kalman estimator in the present contribution is to estimate the modal states of the system and to determine the displacement of the rotor at the position of the hybrid bearing. Finally, numerical and experimental results demonstrate the success of the methodology conveyed.

  12. Loads and Performance Data from a Wind-Tunnel Test of Generic Model Helicopter Rotor Blades

    Science.gov (United States)

    Yeager, William T., Jr.; Wilbur, Matthew L.

    2005-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to acquire data for use in assessing the ability of current and future comprehensive analyses to predict helicopter rotating-system and fixed-system vibratory loads. The investigation was conducted with a generic model helicopter rotor system using blades with rectangular planform, no built-in twist, uniform radial distribution of mass and stiffnesses, and a NACA 0012 airfoil section. Rotor performance data, as well as mean and vibratory components of blade bending and torsion moments, fixed-system forces and moments, and pitch link loads were obtained at advance ratios up to 0.35 for various combinations of rotor shaft angle-of-attack and collective pitch. The data are presented without analysis.

  13. Experimental study on the wave loads on a rotor of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    Experimental tests have been performed to investigate the wave load on the rotor in design wave conditions. These wave loads should give an indication of the required structural strength around the rotors as well as for other equipment such as the bearings. During the lab tests, the wave loads have...... been measured for the following configurations: • Head and beam seas (wave coming from the front and the side) • For three different submergence levels • For three different dispositions of the rotor (free to rotate, and fixed at 50° and 90°) Based on this results, an estimation of the maximum wave...... loads has been made on the maximum wave loads at the DanWEC test site....

  14. Instantaneous Purified Orbit: A New Tool for Analysis of Nonstationary Vibration of Rotor System

    Directory of Open Access Journals (Sweden)

    Shi Dongfeng

    2001-01-01

    Full Text Available In some circumstances, vibration signals of large rotating machinery possess time-varying characteristics to some extent. Traditional diagnosis methods, such as FFT spectrum and orbit diagram, are confronted with a huge challenge to deal with this problem. This work aims at studying the four intrinsic drawbacks of conventional vibration signal processing method and instantaneous purified orbit (IPO on the basis of improved Fourier spectrum (IFS to analyze nonstationary vibration. On account of integration, the benefits of short period Fourier transform (SPFT and regular holospectrum, this method can intuitively reflect vibration characteristics of’a rotor system by means of parameter analysis for corresponding frequency ellipses. Practical examples, such as transient vibration in run-up stages and bistable condition of rotor show that IPO is a powerful tool for diagnosis and analysis of the vibration behavior of rotor systems.

  15. XII International Conference on the Theory of Machines and Mechanisms

    CERN Document Server

    Bílek, Martin; Žabka, Petr

    2017-01-01

    This book presents the most recent advances in the research of machines and mechanisms. It collects 54 reviewed papers presented at the XII International Conference on the Theory of Machines and mechanisms (TMM 2016) held in Liberec, Czech Republic, September 6-8, 2016. This volume offers an international selection of the most important new results and developments, grouped in six different parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, linkages and cams, robots and manipulators, dynamics of machines and mechanisms, rotor dynamics, computational mechanics, vibration and noise in machines, optimization of mechanisms and machines, mechanisms of textile machines, mechatronics to the control and monitoring systems of machines. This conference is traditionally organised every four year under the auspices of the international organisation IFToMM and the Czech Society for Mechanics.

  16. Intensity of convective mass/heat transfer in a rotary regenerator rotor with the transverse needle-fins

    Science.gov (United States)

    Bieniasz, Bogumił

    2014-09-01

    A forced convective mass transfer coefficient was electrochemically measured for a cylindrical bundle of transverse needle-fins ϕ1 × 10.9, applied as the rotor porous matrix of a rotary heat regenerator. The baffle inside the rotor was present. The technique based on the ferricyanide-ferrocyanide redox reaction controlled at the cathode, in the presence of a sodium hydroxide based electrolyte, was used in this experiment. A set of the six neighbouring fins, connected in parallel, was the cathode. The distribution of the mass transfer coefficient according to different static rotor angle position and the mean mass transfer Chilton-Colburn coefficient correlation j M = j M ( Re) for rotation numbers, Ro: 0, 0.8, 1.6 and 2.0 were stated in the mean Reynolds number, Re, range 180-985. The comparison was made between the convective heat fluxes of the pin-fins and the sheet rotor, for Ro = 0.

  17. Rotor cage fault diagnosis in three-phase induction motors based on a current and virtual flux approach

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Dulce F. [Escola Sup. Tecnologia Setubal/Inst. Politecnico Setubal, Setubal (Portugal); Pires, V. Fernao [Escola Sup. Tecnologia Setubal/Inst. Politecnico Setubal, Setubal (Portugal)]|[LabSEI - Laboratorio de Sistemas Electricos Industriais, Setubal (Portugal); Martins, J.F. [CTS, Faculdade de Ciencias e Tecnologia/UNL, Lisboa (Portugal); Pires, A.J. [Escola Sup. Tecnologia Setubal/Inst. Politecnico Setubal, Setubal (Portugal)]|[LabSEI - Laboratorio de Sistemas Electricos Industriais, Setubal (Portugal)]|[CTS, Faculdade de Ciencias e Tecnologia/UNL, Lisboa (Portugal)

    2009-04-15

    This paper focuses on the detection of a rotor cage fault in a three-phase PWM feed induction motor. In inverter-fed machines there are some difficulties for the detection of a rotor cage fault. These difficulties are due to the fault signature that will be contained in the currents or voltages applied to the machine. In this way, a new approach based on the current and a virtual flux is proposed. The use of the virtual flux allows the improving of the signal to noise ratio. This approach also allows the identification of a rotor cage fault independently of the type of control used in the ac drive. The theoretical principle of this method is discussed. Simulation and experimental results are presented in order to show the effectiveness of the proposed approach. (author)

  18. Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor

    Science.gov (United States)

    Qu, Timing; Song, Peng; Yu, Xiaoyu; Gu, Chen; Li, Longnian; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Zeng, Pan; Han, Zhenghe

    2014-04-01

    High temperature superconducting (HTS) armature windings have the potential for increasing the electric loading of a synchronous generator due to their high current transport capacity, which could increase the power density of an HTS rotating machine. In this work, a novel synchronous generator prototype with an HTS stator and permanent magnet rotor has been developed. It has a basic structure of four poles and six slots. The armature winding was constructed from six double-pancake race-track coils with 44 turns each. It was designed to deliver 2.5 kW at 300 rpm. A concentrated winding configuration was proposed, to prevent interference at the ends of adjacent HTS coils. The HTS stator was pressure mounted into a hollow Dewar cooled with liquid nitrogen. The whole stator could be cooled down to around 82 K by conduction cooling. In the preliminary testing, the machine worked properly and could deliver 1.8 kW power when the armature current was 14.4 A. Ic for the HTS coils was found to be suppressed due to the influence of the temperature and the leakage field.

  19. Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges

    Science.gov (United States)

    Liu, Jing; Shao, Yimin

    2017-06-01

    Rotor bearing systems (RBSs) play a very valuable role for wind turbine gearboxes, aero-engines, high speed spindles, and other rotational machinery. An in-depth understanding of vibrations of the RBSs is very useful for condition monitoring and diagnosis applications of these machines. A new twelve-degree-of-freedom dynamic model for rigid RBSs with a localized defect (LOD) is proposed. This model can formulate the housing support stiffness, interfacial frictional moments including load dependent and load independent components, time-varying displacement excitation caused by a LOD, additional deformations at the sharp edges of the LOD, and lubricating oil film. The time-varying displacement model is determined by a half-sine function. A new method for calculating the additional deformations at the sharp edges of the LOD is analytical derived based on an elastic quarter-space method presented in the literature. The proposed dynamic model is utilized to analyze the influences of the housing support stiffness and LOD sizes on the vibration characteristics of the rigid RBS, which cannot be predicted by the previous dynamic models in the literature. The results show that the presented method can give a new dynamic modeling method for vibration formulation for a rigid RBS with and without the LOD on the races.

  20. Synthesis and Investigation of Algorithm for Estimation of Active Stator Resistance of Asynchronous Motor with Fixed Rotor

    Directory of Open Access Journals (Sweden)

    D. Odnolko

    2012-01-01

    Full Text Available The paper proposes an algorithm for online identification of active stator resistance. Algorithm synthesis has been developed on the basis of a recursive least squares method. The problem has been solved for induction motor model defined in the stationary stator frame α–β-coordinating system. An analysis of negative factors deteriorating the identifier operation has been made in the paper. The analysis has revealed the following: measured signals are noisy due to quantization and differentiation; dynamic model of an induction motor provides only approximate presentation about actual processes in the electromagnetic system of the machine. The paper presents results of  a system simulation while applying the proposed algorithm that confirm the fact that the estimated value of the active stator resistance tends to a true value with high accuracy. The identification test assumes a fixed rotor and nominal parameters uncertainty, but the flexible structure of the algorithm allows to use it as  for single-phase excitation so for full-phase control of the induction motor with freely rotating motor.

  1. Flow development through HP & LP turbines, Part I: Inward rotating cavity flow with superimposed throughflow

    Science.gov (United States)

    Gao, Jinhai; Du, Qiang; Liu, Jun; Liu, Guang; Wang, Pei; Liu, Hongrui; Du, Meimei

    2017-08-01

    With the aid of numerical method, both flow field and its accompanied loss mechanism within the rotating cavity are investigated in detail in the 1st part of the two parts paper. For ease of comparison, rotating cavity is further classified as the rotor-stator cavity case and the rotor-rotor cavity case. Results indicate that flow within both kinds of the cavity act as the inviscid flow except that the flow near walls, neighboring the lower G region and in the vicinity of the rotating orifices. In the regions except such inviscid-flow-dominate domains, the theoretical core rotation factor can be safely used to predict the swirl ratio within the cavity. When detailed flow pattern is considered, Ekman-type flow exists near periphery of the surface's boundary layer where viscous effect is non-negligible. However, due to the complex profile of the simulated cavity case, vortices structure is varied within the cavity. By comparison, swirl ratio can be used to predict the magnitude of loss. Due to the relatively evident rotating effects of the rotor-rotor cavity, swirl ratio even increases to 1.4 in the current model, which means that flow is moving faster than the surrounding disc. Further investigation finds that this kind of highly rotating flow is accompanied with serious undesirable pressure loss. Parenthetically, unlike its counterpart, swirl ratio above 1.0 doesn't happen when fluid passes through the rotor-stator cavity. So it is suggested that rotor-rotor flow cavity with the superimposed inward throughflow should be avoided in the engine design or certain measurements should be provided when such structure design is unavoidable. Simulation done in the current paper is meaningful since these dimensional parameters are typical in the design of state-of-art. Relatively lower range of Re φ and C w is not considered in the current two parts paper.

  2. Artificial Molecular Machines.

    Science.gov (United States)

    Balzani; Credi; Raymo; Stoddart

    2000-10-02

    of molecular machines by focusing on past achievements, present limitations, and future perspectives. After analyzing a few important examples of natural molecular machines, the most significant developments in the field of artificial molecular machines are highlighted. The systems reviewed include 1) chemical rotors, 2) photochemically and electrochemically induced molecular (conformational) rearrangements, and 3) chemically, photochemically, and electrochemically controllable (co-conformational) motions in interlocked molecules (catenanes and rotaxanes), as well as in coordination and supramolecular complexes, including pseudorotaxanes. Artificial molecular machines based on biomolecules and interfacing artificial molecular machines with surfaces and solid supports are amongst some of the cutting-edge topics featured in this review. The extension of the concept of a machine to the molecular level is of interest not only for the sake of basic research, but also for the growth of nanoscience and the subsequent development of nanotechnology.

  3. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  4. Non-equilibrium quantum heat machines

    OpenAIRE

    Alicki, Robert; Gelbwaser, David

    2015-01-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system ("working fluid") coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) called sometimes work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical m...

  5. Modeling and Robust Trajectory Tracking Control for a Novel Six-Rotor Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chengshun Yang

    2013-01-01

    Full Text Available Modeling and trajectory tracking control of a novel six-rotor unmanned aerial vehicle (UAV is concerned to solve problems such as smaller payload capacity and lack of both hardware redundancy and anticrosswind capability for quad-rotor. The mathematical modeling for the six-rotor UAV is developed on the basis of the Newton-Euler formalism, and a second-order sliding-mode disturbance observer (SOSMDO is proposed to reconstruct the disturbances of the rotational dynamics. In consideration of the under-actuated and strong coupling properties of the six-rotor UAV, a nested double loops trajectory tracking control strategy is adopted. In the outer loop, a position error PID controller is designed, of which the task is to compare the desired trajectory with real position of the six-rotor UAV and export the desired attitude angles to the inner loop. In the inner loop, a rapid-convergent nonlinear differentiator (RCND is proposed to calculate the derivatives of the virtual control signal, instead of using the analytical differentiation, to avoid “differential expansion” in the procedure of the attitude controller design. Finally, the validity and effectiveness of the proposed technique are demonstrated by the simulation results.

  6. Analysis of Dynamic Characteristics for a Rotor System with Pedestal Looseness

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2011-01-01

    Full Text Available This paper presents a finite element model of a rotor system with pedestal looseness stemming from a loosened bolt and analyzes the effects of the looseness parameters on its dynamic characteristics. When the displacement of the pedestal is less than or equal to the looseness clearance, the motion of the rotor varies from period-one through period-two and period-three to period-five with the decreasing of stiffness of the non-loosened bolts. The similar bifurcation phenomenon can be also observed during the increasing process of the rotational speed. But the rotor motion is from period-six through period-three to period-four with the decreasing of the foundation stiffness. When the stiffness of the foundation is small and the displacement of pedestal is greater than the looseness clearance, the response of the rotor exhibits period-one and high order harmonic components with the decreasing of looseness clearance, such as 2X, 3X etc. However, when the stiffness of the foundation is great, the spectrum of the response of the rotor will be from combined frequency components to the continuous spectrum with the decreasing of the looseness clearance.

  7. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  8. Rotor theories by Professor Joukowsky: Momentum theories

    DEFF Research Database (Denmark)

    van Kuik, G. A. M.; Sørensen, Jens Nørkær; Okulov, V. L.

    2015-01-01

    This paper is the first of two papers on the history of rotor aerodynamics with special emphasis on the role of Joukowsky. The present one focuses on the development of the momentum theory while the second one surveys the development of vortex theory for rotors. Joukowsky has played a major role ...

  9. 14 CFR 33.34 - Turbocharger rotors.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34 Turbocharger rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of a... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34...

  10. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  11. Contribution a l'etude et a la conception d'une machine synchrone a flux transverse destinee au degivrage d'aeronefs en cours de vol

    Science.gov (United States)

    Boussetoua, Mohammed

    During winter, the climate in the northern region is known for its icing and freezing conditions. However, emergency services often use helicopters to reach isolated locations. The difficult situations, generally experiences in the North particularly in Quebec, may prevent rescuers to intervene. The main reason preventing such operations is the lack of a de-icing system in the small helicopter blades. The overall objective of the project is research, development, design and manufacture of a system composed of an on-board rotating low speed generator and heating elements. It consumes a part of the power supplied by the turbine through the axis of the main rotor of the small aircraft and converts it to electrical power to be used by the heating elements. This innovation will allow to fly safely everywhere throughout the year protect the lives of the users even in the worst weather conditions. Firstly, the research focuses on the identification of problems related to the use of protection systems against the hoarfrost on main rotor blades of different aircrafts during flight. In this phase, we specifically focused on the difficulties encountered by the aircraft companies using the existing and operational systems for protection against hoarfrost. Main rotor blades are difficult to protect on helicopters. Several systems were considered by the helicopter manufacturers, such as electrothermal systems, pneumatic systems or using anti-icing fluids. In the current state of technological knowledge, all helicopters that have been certified to fly in icing conditions use electrothermal systems for protection against hoarfrost on their main rotor Small helicopters addressed by this work, are forbidden to fly in icing conditions due to lack of energy source to operate these systems. The electrothermal system has been considered for this thesis work to protect the main rotor blades of small aircraft in-flight. The second part of this thesis is based on the source of power

  12. The Application of Counter-Rotating Turbine in Rocket Turbopump

    Directory of Open Access Journals (Sweden)

    Tang Fei

    2008-01-01

    Full Text Available Counter rotating turbine offers advantages on weight, volume, efficiency, and maneuverability relative to the conventional turbine because of its special architecture. Nowadays, it has been a worldwide research emphasis and has been used widely in the aeronautic field, while its application in the astronautic field is seldom investigated. Researches of counter rotating turbine for rocket turbopump are reviewed in this paper. A primary analysis of a vaneless counter rotating-turbine configuration with rotors of different diameters and rotational speeds is presented. This unconventional configuration meets the requirements of turbopump and may benefit the performance and reliability of rocket engines.

  13. Control of IPMSM drive system for drum washing machine

    Science.gov (United States)

    Lee, Woncheol; Park, Sang-Hoon; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen

    2007-12-01

    The use of the interior permanent magnet synchronous motor (IPMSM) has increased in the industrial field because of its excellent characteristics such as high efficiency, wide range of speed operation, and flexibility of the rotor structure. Therefore, IPMSM, especially one using the rare earth permanent magnet, is being actively studied. In IPMSM using the rare earth permanent magnet, typically the permanent magnet is deeply embedded in the rotor. The washing machine has large load variation and needs high torque. So, IPMSM is better than any other motor types for washing machines. This paper suggests a control algorithm of IPMSM for washing machines. Some experimental results are given in order to show the feasibility of the proposed control schemes for washing machines.

  14. Nonlinear analysis of cylindrical and conical hysteretic whirl motions in rotor-dynamics

    Science.gov (United States)

    Sorge, Francesco

    2014-09-01

    The internal friction of a rotor-shaft-support system is mainly due to the shaft structural hysteresis and to some possible shrink-fit release of the assembly. The experimentation points out the destabilizing effect of the internal friction in the over-critical rotor running. Nevertheless, this detrimental influence may be efficiently counterbalanced by other external dissipative sources located in the supports or by a proper anisotropic configuration of the support stiffness. The present analysis considers a rotor-shaft system which is symmetric with respect to the mid-span and is constrained by viscous-flexible supports with different stiffness on two orthogonal planes. The cylindrical and conical whirling modes are easily uncoupled and separately analysed. The internal dissipation is modelled by nonlinear Coulombian forces and moments, which counteract the translational and rotational motion of the rotor relative to a frame rotating with the shaft ends. The nonlinear equations of motion are solved by averaging approaches of the Krylov-Bogoliubov type. In both the over-critical whirling motions, cylindrical and conical, stable limit cycles may be attained whose amplitude is as large as the external dissipation applied by the supports is low. The stiffness anisotropy of the supports may be recognised as quite beneficial for the cylindrical whirl.

  15. Counteracting Rotor Imbalance in a Bearingless Motor System with Feedforward Control

    Science.gov (United States)

    Kascak, Peter Eugene; Jansen, Ralph H.; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2012-01-01

    In standard motor applications, traditional mechanical bearings represent the most economical approach to rotor suspension. However, in certain high performance applications, rotor suspension without bearing contact is either required or highly beneficial. Such applications include very high speed, extreme environment, or limited maintenance access applications. This paper extends upon a novel bearingless motor concept, in which full five-axis levitation and rotation of the rotor is achieved using two motors with opposing conical air-gaps. By leaving the motors' pole-pairs unconnected, different d-axis flux in each pole-pair is created, generating a flux imbalance which creates lateral force. Note this is approach is different than that used in previous bearingless motors, which use separate windings for levitation and rotation. This paper will examine the use of feedforward control to counteract synchronous whirl caused by rotor imbalance. Experimental results will be presented showing the performance of a prototype bearingless system, which was sized for a high speed flywheel energy storage application, with and without feedforward control.

  16. Demonstration of a MEMS-based turbocharger on a single rotor

    Science.gov (United States)

    Kang, Piljoong; Tanaka, Shuji; Esashi, Masayoshi

    2005-05-01

    A MEMS-based turbocharger with a novel configuration was developed and demonstrated. The compressor and turbine are installed on the same plane of the rotor. The advantages of this configuration include structural simplicity and good rotor balance. For the fabrication, we developed a special deep RIE condition to realize spike-free, uniform etching. And, we found a low wafer warp condition of five times of the anodic bonding. The device rotated at 50 000 rpm. The tip speed of the compressor approached 25 m s-1 and it is only a twentieth of the aimed tip speed. The device could not pass the natural frequency of the rotor. From the test results, we found some issues to be solved for high speed rotation. Concerning fabrication, the accurate manufacturing of bearing orifices, and a flat, uniform etched surface are required for the thrust bearing. A straight journal bearing wall is required for the hydrostatic journal bearing. Concerning bearing design, the journal bearing does not have sufficient stiffness or load capacity to support the centrifugal force of the rotor because of the remarkably short bearing length.

  17. MACHINE MOTION EQUATIONS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2015-09-01

    Full Text Available This paper presents the dynamic, original, machine motion equations. The equation of motion of the machine that generates angular speed of the shaft (which varies with position and rotation speed is deduced by conservation kinetic energy of the machine. An additional variation of angular speed is added by multiplying by the coefficient dynamic D (generated by the forces out of mechanism and or by the forces generated by the elasticity of the system. Kinetic energy conservation shows angular speed variation (from the shaft with inertial masses, while the dynamic coefficient introduces the variation of w with forces acting in the mechanism. Deriving the first equation of motion of the machine one can obtain the second equation of motion dynamic. From the second equation of motion of the machine it determines the angular acceleration of the shaft. It shows the distribution of the forces on the mechanism to the internal combustion heat engines. Dynamic, the velocities can be distributed in the same way as forces. Practically, in the dynamic regimes, the velocities have the same timing as the forces. Calculations should be made for an engine with a single cylinder. Originally exemplification is done for a classic distribution mechanism, and then even the module B distribution mechanism of an Otto engine type.

  18. Open Rotor - Analysis of Diagnostic Data

    Science.gov (United States)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  19. Magnetic Coupled Circuits Modeling of Induction Machines Oriented to Diagnostics

    Directory of Open Access Journals (Sweden)

    Tarek AROUI

    2008-12-01

    Full Text Available In this paper, a transient model of the faulty machine is developed. The model is referred to a three phase stator winding, while the rotor has been represented by all the meshes allowing for the representation of various faults. The model is based on coupled magnetic circuit theory by considering that the current in each bar is an independent variable. The model incorporates non-sinusoidal air-gap magneto motive force (MMF produced by both stator and rotor, therefore it will include all the space harmonics in the machine. Simulations and experimental results were then used to study rotor faults cause-effect relationships in the stator current and the frequency signature.

  20. Proposed fault diagnostics of a broken rotor bar induction motor fed from PWM inverter

    Directory of Open Access Journals (Sweden)

    Faeka M.H. Khater

    2016-12-01

    Full Text Available This paper presents a fault diagnostics technique for a three-phase squirrel cage induction motor. The method is developed using a simplified model affected by bar resistance variation. Based on 3-phase time domain model, the rotor broken bar with different conditions has been simulated to investigate the resulting torque speed characteristic in each condition. The developed fault diagnostics system is capable of identifying the type of the broken-bar faults in the squirrel cage induction machines.

  1. Experimental Determination of the Relative Flow at the Tip of a Transonic Axial Compressor Rotor.

    Science.gov (United States)

    1983-09-01

    assembly of machined aluminum. The rotor has eighteen single-circular-arc blades. The diameter of the case wall is 11.0 inches and the hub to tip...249#8 5iZTI.9201 4CPI@Jl*J28,pJ1~lI8 128 FILE4 WKCONCP FORTRAN A NAVAL POSTGADUATE SCJ400L n~ina*90Q F ORNATSP 910 PORN ,51.’AVERAGE LKSTEAOY WALL PR

  2. Double U-Core Switched Reluctance Machine

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to an electrical machine stator comprising a plurality of stator segments (131,132,133), each segment comprises a first U-core and a second U-core wound with a winding, where the winding being arranged with at least one coil turn, each coil turn comprises a first axial......(s), wherein the first U-core and the second U-core are located adjacent to each other, whereby the winding spans the first and second U-cores. The invention also relates to a SRM machine with a stator mentioned above and a rotor....

  3. Contribution to the modelling of induction machines by fractional order; Contribution a la modelisation dynamique d'ordre non entier de la machine asynchrone a cage

    Energy Technology Data Exchange (ETDEWEB)

    Canat, S.

    2005-07-15

    Induction machine is most widespread in industry. Its traditional modeling does not take into account the eddy current in the rotor bars which however induce strong variations as well of the resistance as of the resistance of the rotor. This diffusive phenomenon, called 'skin effect' could be modeled by a compact transfer function using fractional derivative (non integer order). This report theoretically analyzes the electromagnetic phenomenon on a single rotor bar before approaching the rotor as a whole. This analysis is confirmed by the results of finite elements calculations of the magnetic field, exploited to identify a fractional order model of the induction machine (identification method of Levenberg-Marquardt). Then, the model is confronted with an identification of experimental results. Finally, an automatic method is carried out to approximate the dynamic model by integer order transfer function on a frequency band. (author)

  4. Effects of Inlet Distortion on the Development of Secondary Flows in a Subsonic Axial Inlet Compressor Rotor.

    Science.gov (United States)

    1991-04-01

    relative reference frame. In this reference frame, the rotational speed of the rotor is vectorially added to the fluid velocity. This section will...it can be said that the inlet velocity differences are minimized in the rotating reference frame by the vectorial addition of the wheel speed. The...a~ a WIa UgW 14 143 COMPNENTLIST TABLE I COMONET LST ORLASER ANEMOMETER SYSTEM NMIBE COMPONENT FUNCION OR SPECIIFCATION (1) Lexel Lar G(mn b 14.5

  5. Magnetic Induction Machines Integrated into Bulk-Micromachined Silicon

    Science.gov (United States)

    2006-04-01

    machines were characterized in three stages: (A) electrical measurements of the stators, (B) ferrofluid tests of the stator, and (C) tethered rotor torque...the upper and lower coils for each machine. B. Ferrofluid Tests A ferrofluid , a colloidal suspension of magnetic particles in a liquid (oil) carrier...Kapton film and placed over the stator, as shown in Fig. 10. The tub was filled with a thin layer of ferrofluid (Ferrotec Corporation, Nashua, NH) that

  6. Modeling and Design of Brushless Doubly-Fed Induction Machines

    OpenAIRE

    Wang, X.

    2017-01-01

    The rapid increase of wind power in the power grid results in high grid connection requirements for wind turbines. Moreover, the reliability of wind turbines becomes more and more important, especially in offshore applications. One potential solution for these demands is the wind turbine drive-train based on the brushless doubly-fed induction machine (DFIM). This machine type has no brushes or slip-rings on the rotor side which provides an attractive alternative to the DFIM which is commonly ...

  7. ROTATING PLASMA DEVICE

    Science.gov (United States)

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  8. High-Resolution Rotational Spectroscopy of a Molecular Rotary Motor

    Science.gov (United States)

    Domingos, Sergio R.; Cnossen, Arjen; Perez, Cristobal; Buma, Wybren Jan; Browne, Wesley R.; Feringa, Ben L.; Schnell, Melanie

    2017-06-01

    To develop synthetic molecular motors and machinery that can mimic their biological counterparts has become a stimulating quest in modern synthetic chemistry. Gas phase studies of these simpler synthetic model systems provide the necessary isolated conditions that facilitate the elucidation of their structural intricacies. We report the first high-resolution rotational study of a synthetic molecular rotary motor based on chiral overcrowded alkenes using chirp-pulsed Fourier transform microwave spectroscopy. Rotational constants and quartic centrifugal distortion constants were determined based on a fit using more than two hundred rotational transitions spanning 5≤J≤21 in the 2-4 GHz frequency range. Despite the lack of polar groups, the rotor's asymmetry produces strong a- and b-type rotational transitions arising from a single predominant conformer. Evidence for fragmentation of the rotor allows for unambiguous identification of the isolated rotor components. The experimental spectroscopic parameters of the rotor are compared and discussed against current high-level ab initio and density functional theory methods. Vicario et al. Chem. Commun., 5910-5912 (2005) Brown et al. Rev. Sci. Instrum., 79, 053103 (2008)

  9. Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine; Yokutan shoyoku Mie ben ni yoru suiheijiku fusha yokumenjo no atsuryoku bunpu no kaizen to seino kojo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Maeda, T.; Kamada, Y. [Mie Univ., Mie (Japan); Seto, H. [Mitsubishi Motors Corp., Tokyo (Japan)

    2000-04-01

    By recent developments of exclusive rotor blade, the efficiency of wind turbine is improved substantially. By measuring pressure on rotor blades of horizontal axis wind turbines rotating in wind tunnels, this report clarified relation between improvement of pressure distribution on main rotor blades by Mie vane and upgrade of wind turbine performance. The results under mentioned have been got by measuring pressure distribution on rotor blades, visualization by tuft, and measuring resistance of Mie vane. (1) The difference of pressure between suction surface and pressure surface on the end of rotor blade increase, and output power of wind turbine improves. (2) Vortex of blade end is inhibited by Mie vane. (3) The reason of reduction on wind turbine performance with Mie vane in aria of high rotating speed ratio is the increase of Mie vane flow resistance.(NEDO)

  10. Vector control of three-phase AC machines system development in the practice

    CERN Document Server

    Quang, Nguyen Phung

    2008-01-01

    Covers the area of vector control of 3-phase AC machines, in particular induction motors with squirrel-cage rotor, permanent excited synchronous motors and doubly-fed induction machines. This title summarizes the basic structure of a field-oriented controlled 3-phase AC drive and grid voltage orientated controlled wind power plant.

  11. Methanol: The Simplest C3V Internal Rotor and Ubiquitous Interstellar Weed

    Science.gov (United States)

    Pearson, J. C.; Drouin, B. J.; Yu, S.; Brown, L. R.; Brauer, C. S.; Gupta, H.; Sung, K.; Xu, L.-H.; Wang, S.; Bergin, E. A.

    2011-05-01

    Methanol is the simplest three-fold internal rotor by virtue of the internal rotation of the CH3 top with respect to the OH frame. Without the internal rotation methanol would be a relatively benign nearly prolate asymmetric top molecule. The internal rotation results in an A-state that acts as an asymmetric top and two symmetric top like E-states. The ground state is best described as rotation problem perturbed by internal rotation, but by the time the second excited torsional state is reached a more apt description would be of a free-rotor perturbed by a rotation problem. Herschel observations have detected methanol through at least the second excited torsional state and with J > 30 including many levels above the range of transitions included in the latest analysis. A number of new laboratory spectra have made it possible to assess the ability of the ρ-axis method methanol Hamiltonian models to be used in extrapolation. The validity of using the permanent electric dipole moment in calculation of torsional line strengths has also been assessed through FTIR intensities. We report the extension of methanol data to J = 45 and K = 16 in the lowest 3 torsional states and compare the results with Herschel observations.

  12. Fault Diagnosis of Rotating Machinery Based on Multisensor Information Fusion Using SVM and Time-Domain Features

    Directory of Open Access Journals (Sweden)

    Ling-li Jiang

    2014-01-01

    Full Text Available Multisensor information fusion, when applied to fault diagnosis, the time-space scope, and the quantity of information are expanded compared to what could be acquired by a single sensor, so the diagnostic object can be described more comprehensively. This paper presents a methodology of fault diagnosis in rotating machinery using multisensor information fusion that all the features are calculated using vibration data in time domain to constitute fusional vector and the support vector machine (SVM is used for classification. The effectiveness of the presented methodology is tested by three case studies: diagnostic of faulty gear, rolling bearing, and identification of rotor crack. For each case study, the sensibilities of the features are analyzed. The results indicate that the peak factor is the most sensitive feature in the twelve time-domain features for identifying gear defect, and the mean, amplitude square, root mean square, root amplitude, and standard deviation are all sensitive for identifying gear, rolling bearing, and rotor crack defect comparatively.

  13. Rotational isovector vibrations in titanium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.; Taigel, T.

    1989-01-30

    The strong M1 states with K/sup ..pi../ = 1/sup +/ in /sup 44,46,48,50/Ti are described microscopically with a deformed Woods-Saxon potential plus QRPA using a parameter-free self-consistent quadrupole force and an interaction, which restores the rotational symmetry. The available experimental data (energies, B(M1) values and (e,e') form factors in /sup 46,48/Ti) are well described in terms of isovector quadrupole rotational vibrations. These RPA states correspond to the scissor-type of isovector motion described by the two-rotor model, but they overlap only 20-30% with the collective isovector rotational state of this model since only few quasiparticle configurations take part in the RPA rotational vibration.

  14. The Research of Influence of Blood upon the Dynamics of Artificial Ventricle Rotor on Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    E. E. Ovsiannikova

    2015-01-01

    Full Text Available The article studies dynamics of rotor on active magnetic bearings within the mathematical model development of rotor in artificial ventricle. The problem of stabilization of rigid titanium rotor with magnetic inserts on active magnetic bearings is analyzed.The relevance of the research field is caused by high percent of people who are suffering from heart disease. The purposes of work are to create a mathematical model of the rigid rotor and position its center to meet specified requirements for displacement of no more than 0.2 millimeter while rotating with the speed from 5 000 rpm to 10 000 rpm in constant blood flow. The work of AMBs is based on the principle of active magnetic pendant of ferromagnetic solid. The stabilization in adjusted position is accomplished by magnetic forces, which affect the solid from the control electromagnets.The article presents initial data, design scheme, assumptions accepted to solve the problem and derivation of dynamic equation of rotating rigid rotor on AMBs. The decentralized control of magnetic pendant was implemented. The PD control – proportional differential control - was chosen as the base of control system. Its application is widespread due to the simplicity, industrial use and operation stability. The use of decentralized control in dynamics modeling of a rigid rotor in AMBs is physically occurred and has some advantages. One of the most important advantages is the calculation of control parameters by selection of appropriate values of rigidity and damping parameters.The analysis of rotor dynamics was conducted in MATLAB© software package.The modeling was performed to allow observing the system action while the parameters were varied.The conducted research showed that to meet the specified requirements of maximal rotor displacement no more than 0.2 mm the following values of coefficients were required:                                       and The stabilization of the rotor

  15. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  16. Comparing of cogging torque reduction methods in permanent magnet machines with fractional slot windings

    Science.gov (United States)

    Pristup, A. G.; Toporkov, D. M.

    2017-10-01

    The results of the investigation of the cogging torque in permanent magnet synchronous machines, which is caused by the stator slotting and the rotor eccentricity, are presented in the paper. A new design of the machine has been developed in the course of the investigation, and the value of the cogging torque in this construction is less considerably compared to other constructions. In contrast to the available methods of the cogging torque reduction, the solution suggested not only decreases the level of the cogging torque but also has negligibly small influence on characteristics of the machine with the rotor eccentricity which is typical of the mass production and long-term usage.

  17. Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings

    Science.gov (United States)

    Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.

    2017-04-01

    In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.

  18. Comparison with Tilted Axis Cranking and particle rotor model for triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, Shin-ichi; Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    An extension of the cranking model in such a way to allow a rotation axis to deviate from the principal axes of the deformed mean-field is a promising tool for the spectroscopic study of rapidly rotating nuclei. We have applied such a `Tilted Axis Cranking` (TAC) method to a simple system of one-quasiparticle coupled to a triaxial rotor and compared it with a particle-rotor coupling calculation in order to check whether the spin-orientation degrees of freedom can be well described within the mean-field approximation. The result shows that the TAC method gives a good approximation to observable quantities and it is a suitable method to understand the dynamical interplay between the collective and single-particle angular momenta. (author)

  19. High-speed helicopter rotor noise - Shock waves as a potent source of sound

    Science.gov (United States)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.

    1991-01-01

    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  20. Generic icing effects on forward flight performance of a model helicopter rotor

    Science.gov (United States)

    Tinetti, Ana F.; Korkan, Kenneth D.

    1989-01-01

    An experimental program using a commercially available model helicopter has been conducted in the TAMU 7 ft x 10 ft Subsonic Wind Tunnel to investigate main rotor performance degradation due to generic ice adhesion. Base and iced performance data were gathered as functions of fuselage incidence, blade collective pitch, main rotor rotational velocity, and freestream velocity. The experimental values have shown that, in general, the presence of generic ice introduces decrements in performance caused by leading edge separation regions and increased surface roughness. In addition to the expected changes in aerodynamic forces caused by variations in test Reynolds number, forward flight data seemed to be influenced by changes in freestream and rotational velocity. The dependence of the data upon such velocity variations was apparently enhanced by increases in blade chord.

  1. Non-equilibrium quantum heat machines

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  2. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    Science.gov (United States)

    Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.

    2013-12-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the

  3. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  4. Machining Three Prongs on a Shaft

    Science.gov (United States)

    Hewitt, C.

    1983-01-01

    Simple tool reduces set-up and machining time by more than 70 percent. Unorthodox tooling arrangement used to machine three prongs on end of specialpurpose wrench. Modified carbide-tipped spot-facing tool rotated at 1,400 to 1,600 revolutions per minute in small milling machine and applied to work piece, held with its corners in spaces of three-cornered collect.

  5. Trends and correlation analysis in diagnosing turbine rotor bow

    Directory of Open Access Journals (Sweden)

    Tomasz GAŁKA

    2009-01-01

    Full Text Available Permanent rotor bow in a steam turbine is a serious failure which usually demands a time-consuming and costly repair. Its vibration-related symptoms are not specific and qualitative diagnosis typically has to employ results obtained during transients.In a 230 MW power steam turbine, gradual dynamic behavior deterioration was observed, immediately after commissioning. Increase of the fundamental component of rear intermediate-pressure turbine bearing vertical vibration was detected, with the time constant of the order of months. Permanent rotor bow, exceeding 200 m, turned out to be the cause. Rotor repair resulted in a dramatic improvement of dynamic behavior, which, however, soon began to deteriorate again. Vibration spectra had been detected in the off-line mode since commissioning, which allowed to determine vibration time histories.Vibration trends analysis does not provide sufficient information to determine root cause, but allows for eliminating a number of possible malfunctions that give similar symptoms. In particular, the possibility of a sudden random-type damage due to human error is eliminated, which in fact is the most common cause of a permanent bow.Analysis of vibration amplitude correlation between vertical and axial directions reveals very strong correlation between fundamental components in the turbine under consideration, as well in the other one, in which similar failure has been observed. Third unit of the same type, apart from qualitatively different vibration trends, is characterized by correlation factors lower by a few times.This particular case is indicative of the importance of evolutionary symptoms (vibration amplitude time dependence and increase rate, as well as correlation factors in qualitative diagnosis. Such symptoms can be very useful in distinguishing between possible failures which result in similar changes of machine vibration behavior.

  6. Experimental hingeless rotor characteristics at low advance ratio with thrust. [wind tunnel tests of rotary wing operating at moderate to high lift

    Science.gov (United States)

    London, R. J.; Watts, G. A.; Sissingh, G. J.

    1973-01-01

    An experimental investigation to determine the dynamic characteristics of a hingeless rotor operating at moderate to high lift was conducted on a small scale, 7.5-foot diameter, four-bladed hingeless rotor model in a 7 x 10-foot wind tunnel. The primary objective of this research program was the empirical determination of the rotor steady-state and frequency responses to swashplate and body excitations. Collective pitch was set from 0 to 20 degrees, with the setting at a particular advance ratio limited by the cyclic pitch available for hub moment trim. Advance ratio varied from 0.00 to 0.36 for blades with nondimensional first-flap frequencies at 1.15, 1.28 and 1.33 times the rotor rotation frequency. Several conditions were run with the rotor operating in the transition regime. Rotor response at high lift is shown to be generally nonlinear in this region. As a secondary objective an experimental investigation of the rotor response to 4/revolution swashplate excitations at advance ratios of 0.2 to 0.85 and at a nondimensional, first-flap modal frequency of 1.34 was also conducted, using the 7 x 10-foot wind tunnel. It is shown that 4/revolution swashplate inputs are a method for substantially reducing rotor-induced, shafttransmitted vibratory forces.

  7. The near-field acoustic levitation of high-mass rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  8. The near-field acoustic levitation of high-mass rotors.

    Science.gov (United States)

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  9. Dynamic Analysis of a Hybrid Squeeze Film Damper Mounted Rub-Impact Rotor-Stator System

    OpenAIRE

    Chang-Jian, Cai-Wan

    2012-01-01

    An investigation is carried out on the systematic analysis of the dynamic behavior of the hybrid squeeze-film damper (HSFD) mounted a rotor-bearing system with strongly nonlinear oil-film force and nonlinear rub-impact force in the present study. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless rotating speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, bifu...

  10. 14 CFR 27.547 - Main rotor structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following loads...

  11. Wind rotor with vertical axis. Vindrotor med vertikal axel

    Energy Technology Data Exchange (ETDEWEB)

    Colling, J.; Sjoenell, B.

    1987-06-15

    This rotor is of dual type i.e. a paddle wheel shaped rotor close to the vertical axis and a second rotor consisting of vertical blades with wing profile and attached to radial spokes which are fixed to the axis together with the paddle wheel rotor. (L.F.).

  12. Static and Restricted Rigid Rotor Configurations of Three Classical 12-6-Lennard-Jones Particles

    Science.gov (United States)

    Rupp, Florian

    2015-03-01

    Motivated by the continuous search for stable geometric configurations of atom and molecule clusters, we analyse the planar evolution of two freely movable point particles around a third immovable one subject to the 12-6-Lennard-Jones potential. This tailors our discussion to systems with one very heavy particle that can be assumed to be permanently at rest in the moving reference frame for the whole ensemble. Relating to Lennard-Jones interactions, we allow all three point particles to take different parameters. This breaks the symmetry conditions that are usually imposed on such systems. Through a classical non-regularized Hamiltonian description of our restricted three particle system, we study the existence of genuine equilibria and rigid rotor solutions around a single axis of rotation. We prove, depending on the choice of the Lennard-Jones parameters, that for these genuine equilibria, collinear alignments and triangular configurations of any shape can occur. Moreover, for the discussed type of relative equilibria a complete classification is provided by proving the existence of rigid rotor configurations in the plane of rotation (collinear cis and trans as well as triangle shaped configurations) and out of the plane of rotation (triangle shaped and flag-like configurations). Furthermore, we show that there are no further rigid rotor solutions of the underlying equations of motion.

  13. Dynamic Analysis of a Hybrid Squeeze Film Damper Mounted Rub-Impact Rotor-Stator System

    Directory of Open Access Journals (Sweden)

    Cai-Wan Chang-Jian

    2012-01-01

    Full Text Available An investigation is carried out on the systematic analysis of the dynamic behavior of the hybrid squeeze-film damper (HSFD mounted a rotor-bearing system with strongly nonlinear oil-film force and nonlinear rub-impact force in the present study. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless rotating speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, bifurcation diagrams, maximum Lyapunov exponents, and fractal dimension of the rotor-bearing system. The dynamic behaviors are unlike the usual ways into chaos (1⇒2⇒4⇒8⇒16⇒32⋯⇒ chaos or periodic ⇒ quasi-periodic ⇒ chaotic, it suddenly gets in chaos from the periodic motion without any transition. The results presented in this study provide some useful insights into the design and development of a rotor-bearing system for rotating machinery that operates in highly rotating speed and highly nonlinear regimes.

  14. Permutation Machines.

    Science.gov (United States)

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems.

  15. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  16. Cyclic Control Optimization for a Smart Rotor

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Henriksen, Lars Christian

    2012-01-01

    bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic......The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... flap and pitch allows to reduce the action (and hence the wear) on the pitch actuators, and still to achieve considerable load alleviation....

  17. Rotor inflow variability with advance ratio

    Science.gov (United States)

    Hoad, Danny R.; Althoff, Susan L.; Elliott, Joe W.

    1988-01-01

    A comparative study is conducted for the results of inflow calculations based on several analytical wake methods and laser-velocimeter rotor inflow measurements near a rectangular four-bladed rotor system operating in forward flight. The induced-flow characteristics at all advance ratios were found to be unsymmetrical about the longitudinal centerline, with maximum downwash in the rear portion of the disk, and skewed toward the advancing blade-side. Comparisons among analytical methods show that the region of induced upflow over the rotor disk was effectively modeled only at an advance ratio value of 0.15.

  18. Helicopter rotor induced velocities theory and experiment

    Science.gov (United States)

    Berry, John D.; Hoad, Danny R.; Elliott, Joe W.; Althoff, Susan L.

    1987-01-01

    An investigation has been performed to assess methods used for rotor inflow modeling. A key element of this assessment has been the recent acquisition of high quality experimental measurements of inflow velocities taken in the proximity of a lifting rotor in forward flight. Widely used rotor performance predictive methods are based on blade element strip theory coupled with an inflow model. The inflow prediction models assessed in this paper include the uniform inflow based on momentum, a skewed disk model, and two methods based on a vortex wake structure.

  19. Prediction of sand particle trajectories and sand erosion damage on helicopter rotor blades

    Science.gov (United States)

    Shin, Bong Gun

    Therefore, in this dissertation, accurate and time-efficient methodologies were developed for performing sand particle tracking and predicting sand erosion damage on actual helicopter rotor blades under realistic hover and vertical lift conditions. In this dissertation, first, injection (release) conditions of solid particles with new injection parameter, sand particle mass flow rate (SPmFR), were specified to deal with the effect of non-uniform and unsteady flow conditions surrounding at each injection point from which solid particles are released. The SPmFR defines the number of solid particles released from the same injection position per unit time. Secondly, a general definition of erosion rate, "mass or volume loss from the metal surface due to the impact of a unit "mass" of solid particles" was also modified by multiplying with SPmFR in order to solve the limitation for predicting erosion damage on actual helicopter rotor blade. Next, a suitable empirical particle rebound model and an erosion damage model for spherical sand particles with diameters ranging from 10 microm to 500 microm impacting on the material Ti-6A1-4V, the material of helicopter rotor blade, were developed. Finally, C++ language based codes in the form of User Defined Functions (UDFs) were developed and implemented into the commercially available multi-dimensional viscous flow solver ANSYS-FLUENT in order to develop and integrate with the general purpose flow solver, ANSYS-FLUENT, for a specific Lagrangian particle trajectory computing algorithm and rebound and erosion quantification purposes. In the erosion simulation, a reasonably accurate fluid flow solution is necessary. In order to validate the numerical results obtained in this dissertation, computations for flow-only around 2D RAE2822 airfoil and 3D rotating rotor blade (NACA0012) without any sand particle were performed. In the comparison of these results with experimental results, it is found that the flow solutions are in good

  20. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2017-08-01

    Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.