Numerical solutions for unsteady rotating high-porosity medium channel Couette hydrodynamics
Zueco, Joaquin; Bég, O. Anwar; Bég, Tasveer A.
2009-09-01
We investigate theoretically and numerically the unsteady, viscous, incompressible, hydrodynamic, Newtonian Couette flow in a Darcy-Forchheimer porous medium parallel-plate channel rotating with uniform angular velocity about an axis normal to the plates. The upper plate is translating at uniform velocity with the lower plate stationary. The two-dimensional reduced Navier-Stokes equations are transformed to a pair of nonlinear dimensionless momentum equations, neglecting convective inertial terms. The network simulation method, based on a thermoelectric analogy, is employed to solve the transformed dimensionless partial differential equations under prescribed boundary conditions. We examine here graphically the effect of Ekman number, Forchheimer number and Darcy number on the shear stresses at the plates over time. Excellent agreement is also obtained for the infinite permeability i.e. purely fluid (vanishing porous medium) case (Da→∞) with the analytical solutions of Guria et al (2006 Int. J. Nonlinear Mechanics 41 838-43). Backflow is observed in certain cases. Increasing Ekman number, Ek (corresponding to decreasing Coriolis force) is found to accentuate the primary shear stress component (τx) considerably but to reduce magnitudes of the secondary shear stress component (τy). The flow is also found to be accelerated generally with increasing Darcy number and decelerated with increasing Forchheimer number. The present model has applications in geophysical flows, chemical engineering systems and also fundamental studies in fluid dynamics.
Abdullah Ahmed Foisal
2016-01-01
Full Text Available MHD free convection over an inclined plate in a thermally stratified high porous medium in the presence of a magnetic field has been studied. The dimensionless momentum and temperature equations have been solved numerically by explicit finite difference technique with the help of a computer programming language Compaq Visual Fortran 6.6a. The obtained results of these studies have been discussed for the different values of well known parameters with different time steps. Also, the stability conditions and convergence criteria of the explicit finite difference scheme has been analyzed for finding the restriction of the values of various parameters to get more accuracy. The effects of various governing parameters on the fluid velocity, temperature, local and average shear stress and Nusselt number has been investigated and presented graphically.
Nonlinear Zel'dovich effect: Parametric amplification from medium rotation
Faccio, Daniele
2016-01-01
The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than 40 years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-PT symmetry induced by the medium rotation.
Nonlinear Zel'dovich Effect: Parametric Amplification from Medium Rotation
Faccio, Daniele; Wright, Ewan M.
2017-03-01
The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than forty years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-P T symmetry induced by the medium rotation.
Two prototypes for medium rotation forestry harvesting
L. Pari
2013-09-01
Full Text Available Five years old poplar (Populus spp. plantation represents an interesting model of productivity. The most attractive characteristics of this energy crop are the handling flexibility, the high yield of biomass per area unit and the good quality of the chips obtainable. The mechanical harvesting of five-years old poplar plantations requires the use of specialized forest machineries such as harvester, feller, forwarder and chipper. Usually, after felling, the working phases consist of extraction, stacking and chipping. Generally, the last one is carried out in a “static phase”, where the product is taken from staked logs by using a hydraulic arm having a gripper that feed the chipping machine. In order to introduce technological innovations for the medium rotation forestry harvesting, the Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di ricerca per l’Ingegneria agraria (CRAING of Monterotondo (Rome, Italy has developed a five years poplar cutwindrower and a self-propelled chipper equipped with a pick up system. The prototype of cut-windrower is a semi-trailed machine powered by a 95 kW tractor (at least. It mounts a cutting system and a double pincer with variable positioning. During the cutting phase the plant is grasped by the double pincer which conveys and unloads the stem along the inter-row. The trees are placed parallel to the progress of the tractor, but oriented in the opposite direction. The biomass windrowed is then chipped in a dynamic phase directly from the inter row using the self-propelled chipper equipped with the pick-up head. In the first tests, the cut-windrower has reached an operative working capacity of 0.22 ha h-1, with an operative production of 44 t h-1. On the other hand, the self-propelled chipper has showed an operative working capacity equal to 0.18 ha h-1, and an operative production of 35 t h-1 about. Both machines have shown good quality of the work performed and the results obtained
Relationship between tensile strength and porosity for high porosity metals
刘培生; 付超; 李铁藩; 师昌绪
1999-01-01
An analysis model has been established according to the structure feature of high porosity metals, and the mathematical relationship between the tensile strength and porosity for this material has been derived from the model. Moreover, the corresponding theoretical formula has been proved good to reflect the variation law of tensile strength with porosity for high porosity metals by the example experiment on nickel foam.
Relationship between elongation and porosity for high porosity metal materials
无
1999-01-01
A simplified model was proposed targeting at the isotropic high porosity metal materials with well-distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition.
Widespread rotationally hot hydronium ion in the galactic interstellar medium
Lis, D. C.; Phillips, T. G. [Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Schilke, P.; Comito, C.; Higgins, R., E-mail: dcl@caltech.edu, E-mail: tgp@submm.caltech.edu, E-mail: schilke@ph1.uni-koeln.de, E-mail: ccomito@ph1.uni-koeln.de, E-mail: higgins@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher Strasse 77, D-50937 Köln (Germany); and others
2014-04-20
We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H{sub 3}O{sup +} rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.
Crystal plasticity and grain crushing in high-porosity rocks
Rahmani, H.; Tjioe, M.; Borja, R. I.
2012-12-01
Previous studies show the significance of considering microstructure of individual crystals in modeling the inelastic behavior of high-porosity rocks. Plastic deformation of high-porosity crystalline rocks, exemplified by limestone, is mainly attributed to crystal plasticity and cataclastic flow. Crystal plasticity is defined as the plastic deformation along potential slip systems within the crystal lattice. In the context of continuum mechanics this micro-mechanism is modeled by a nonlinear relationship between stresses and strains. Two types of nonlinearity characterize the inelastic behavior of the crystal grains: material nonlinearity and geometric nonlinearity. Material nonlinearity defines the changes in stiffness matrix due to plastic slip along slip systems. Geometric nonlinearity contributes to the changes in stiffness matrix due to changes in the geometry of the crystal grains. Geometric nonlinearity is modeled using theory of finite deformation, which assumes the geometry of slip systems to be a function of crystal deformation. This type of nonlinearity is very important in modeling crystal deformation mainly because of plastic spin induced by anisotropy in the crystal structure. However, considering the geometry of slip systems as a function of crystal slip makes the equations highly nonlinear. As a result, many studies either ignore geometric nonlinearity or make other assumptions to simplify the equations. Cataclastic flow, on the other hand, is characterized by pervasive grain crushing in which larger grains are converted into smaller ones. We model cataclastic flow as strong discontinuity in the grain scale via an assumed enhanced strain method formulated within the context of nonlinear finite elements. The method allows the individual finite elements, identified to be in critical condition, to break into two pieces along a plane identified by theory of bifurcation. We show that modeling cataclastic flow combined with finite deformation crystal
The evolution of circumstellar medium around rotating massive stars
Chita, S.M.; Marle, A.J.; Langer, N.; García-Segura, G.
2007-01-01
A rotating 12Mȯ star, after its main-sequence evolution, becomes a redsupergiant when it starts core He burning. During core helium burning, as consequence of a variation of the hydrogen shell burning efficiency, the star undergoes a so called ``blue loop'', i.e. it evolves into a blue supergiant st
Processing and characterization of high porosity aerogel films
Hrubesh, L.W.; Poco, J.F.
1994-11-22
Aerogels are highly porous solids having unique morphology among materials because both the pores and particles making up the material have sizes less than wavelengths of visible light. Such a unique morphology modifies the normal molecular transport mechanisms within the material, resulting in exceptional thermal, acoustical, mechanical, and electrical properties. For example, aerogels have the lowest measured thermal conductivity and dielectric constant for any solid material. Special methods are required to make aerogel films with high porosity. In this paper, we discuss the special conditions needed to fabricate aerogel films having porosities greater than 75% and we describe methods of processing inorganic aerogel films having controllable thicknesses in the range 0.5 to 200 micrometers. We report methods and results of characterizing the films including thickness, refractive index, density (porosity), and dielectric constant. We also discuss results of metallization and patterning on the aerogel films for applications involving microminiature electronics and thermal detectors.
Ultrasound Attenuation in Liquid ^3He/High Porosity Aerogel
Choi, H. C.; Mulders, N.
2005-11-01
High porosity silica aerogels have been extensively used to study the influence of disorder in p-wave superfluid ^3He. Experimental investigations performed during the last decade revealed three distinct superfluid phases in liquid ^3He /98% aerogel system. The three phases found in this system are called as A, B, and A1-like phases (using the same nomenclature as in the bulk), although only the spin component of the order parameter has been studied and found to resemble that of corresponding bulk phases. A complete understanding of the microscopic structure of the p-wave superfluid phases requires identification of both orbital and spin components of the order parameter. Until now, there is no experimental attempt to directly probe the orbital structure in ^3He/aerogel system. To resolve this issue, we performed acoustic measurements by direct transmission of ultrasound through the ^3He/98% aerogel sample. We will present and discuss our preliminary results.
APPROXIMATE MEANS FOR EVALUATING TENSILE STRENGTH OF HIGH POROSITY MATERIALS
无
1999-01-01
Based on the simplified structure model of high porosity materials, the formulas for approximately evaluating the tensile strength of these materials have been derived from the corresponding deductions taken by means of the relative theories about geometry and mechanics. The results show that, the tensile strength of these materials not only associates with the material sort and production method, but do further have a direct value relationship with the porosity, θ. This value relationship can be specifically expressed by the power of the item (1-θ), and it makes the tensile strength variation display a complicated nonlinear law with the porosity. In addition, the application of those formulas has been investigated with the corresponding experiment on a nickel foam.
Numerical simulation of rotating body movement in medium with various densities
Tenenev, Valentin A.; Korolev, Stanislav A.; Rusyak, Ivan G.
2016-10-01
The paper proposes an approach to calculate the motion of rotating bodies in resisting medium by solving the Kirchhoff equations of motion in a coordinate system moving with the body and in determination of aerodynamic characteristics of the body with a given geometry by solving the Navier-Stokes equations. We present the phase trajectories of the perturbed motion of a rotating projectile in media with different densities: gas and liquid.
Grekova, E. F.
2012-09-01
We consider a linear reduced Cosserat medium: a linear elastic continuum, whose point bodies possess kinematically independent translational and rotational degrees of freedom, but the strain energy does not depend on the gradient of rotation of particles. In such a medium the force stress tensor is asymmetric, but the couple stress tensor is zero. This model can be applied for description of soils and granular media. Since for the time being the experimental technique for measurement of rotational deformations is not well developed, we investigate how the presence of rotational degrees of freedom affects the dynamics of translational displacements. We consider the case of the spherical tensor of inertia and isotropy with respect to the rotational degrees of freedom. Integration of the equation of balance of torques lets us in several cases to put in correspondence a linear reduced Cosserat continuum with the spherical tensor of inertia with a classical (non-polar elastic linear) medium with memory with the same equation for the balance of forces, written in terms of translational displacements. This is possible for the isotropic case and also if the anisotropy is present only in the tensor of elastic constants corresponding to the classical strain tensor. If the material is isotropic with respect to rotational deformations but the (anisotropic) coupling between rotational and classical translational strains is present, then the corresponding classical medium does not exist. If we ignore the rotational degrees of freedom when this coupling is present, this will lead us to the conclusion that the principle of material objectivity is violated.
Manufacturing Microporous Foam Zinc Materials with High Porosity By Electrodeposition
TIAN QinGhua; GUO Xueyi
2011-01-01
In order to get foam zinc materials of porous metal electrode,a novel method for preparing foam zinc was proposed,in which the polyurethane foam with diameter of 0.3 mm as substrate was processed by degreasing,roughening,activating,electroless plating and electrodeposition.The main factors affecting the process,such as ZnSO4 content,temperature,pH value,current density,and electrodes distance,were investigated comprehensively.The optimal process conditions are 250 g/L ZnSO4,20 g/L Al2(SO4)3,40 g/L KAl(SO4)2,30 g/L Na2SO4,pH=3.5,4.0 cm of electrodes distance and 0.04 A/cm2 current density at 30 ℃.The result shows that adding ultrasonic on the process can elevate the deepening plating ability and current efficiency.Foam zinc material with a high porosity of 92.2％ and a three-dimensional network structure can be fabricated by electrodeposition.
Emulsion Inks for 3D Printing of High Porosity Materials.
Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M
2016-08-01
Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques.
Calculation formula for apparent electrical resistivity of high porosity metal materials
刘培生; 付超; 李铁藩
1999-01-01
A geometrical model has been established based on the structure feature of high porosity metal materials,the mathematical relationship between electrical resistivity and porosity for high porosity materials with even structure has then been deduced conveniently, and the formula for calculating the electrical resistivity of high porosity materials through porosity, which is easy to know, has been acquired further. Besides, the theoretical formula was verified to coincide with the test results well by the application taking nickel foam as an example.
A novel method for detecting neutrons using low density high porosity aerogel and saturated foam
Nelson, Kyle A., E-mail: knelson1@ksu.edu [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Neihart, James L.; Riedel, Todd A.; Schmidt, Aaron J.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)
2012-09-11
As a result of the recent shortage of {sup 3}He for neutron detection, several new detectors have been proposed as viable alternatives. Thin-film coated diodes and boron-lined proportional counters are suggested options, but both suffer from the 'wall-effect', where only one interaction product can be measured per event. The 'wall-effect' greatly reduces the neutron detection efficiency of the device. A new method is presented using low-density high-porosity materials where both reaction products can escape the absorber and contribute to a single event. Measuring both reaction products simultaneously greatly increases the detection efficiency of the device. Experimentally obtained pulse-height spectra from saturated foam and borosilicate aerogel detectors are presented. Aerogel is a low-density solid, typically less than 50 mg/cm{sup 3}, and can be developed with {sup 10}B in the structure. The thermal neutron response pulse-height spectrum from borosilicate aerogel is presented. Additionally, polyurethane foam, another low-density high-porosity material, was saturated with LiF and B{sub 2}O{sub 3} to levels greater than 20 percent by weight and tested as a neutron detection medium. The foam saturated with 4.5 percent {sup 6}LiF was cut into 10 sheets, each 2 mm thick, and a neutron response pulse-height spectrum was collected. The thermal neutron detection efficiency was measured to be 7.3 percent, and the neutron to gamma-ray rejection ratio, acquired using a {sup 137}Cs gamma-ray source, was calculated to be 1.71 Multiplication-Sign 10{sup 6}. Theoretical calculations also show that neutron detection efficiencies above 60 percent can be easily achieved using enriched {sup 6}LiF foam at 20 percent or higher saturation levels.
On the rotational energy distributions of reactive, non-polar species in the interstellar medium
Glinski, Robert J; Downum, Clark R
2013-01-01
A basic model for the formation of non-equilibrium rotational energy distributions is described for reactive, homo-polar diatomic molecules and ions in the interstellar medium. Kinetic models were constructed to calculate the rotational populations of C2+ under the conditions it would experience in the diffuse interstellar medium. As the non-polar ion reacts with molecular hydrogen, but not atomic hydrogen, the thermalization of a hot nascent rotational population will be arrested by chemical reaction when the H2 density begins to be significant. Populations that deviate strongly from the local thermodynamic equilibrium are predicted for C2+ in environments where it may be detectable. Consequences of this are discussed and a new optical spectrum is calculated.
Joginder Singh Dhiman; Rajni Sharma
2016-03-01
The self-gravitating instability of an infinitely extending axisymmetric cylinder of viscoelastic medium permeated with non uniform magnetic field and rotation is studied for both the strongly coupled plasma (SCP) and weakly coupled plasma (WCP). The non uniform magnetic field and rotation are considered to act along the axial direction of the cylinder. The normal mode method of perturbations is applied to obtain the dispersion relation. The condition for the onset of gravitational instability has been derived from the dispersion relation under both strongly and weakly coupling limits. It is found that the Jeans criterion for gravitational collapse gets modified due to the presence of shear and bulk viscosities for the SCP, however, the magnetic field and rotation whether uniform or non uniform has no effect on the Jeans criterion of an infinitely extending axisymmetric cylinder of a self-gravitating viscoelastic medium.
NEW TYPE OF ELASTIC ROTATIONAL WAVES IN GEO-MEDIUM AND VORTEX GEODYNAMICS
Alexander V. Vikulin
2015-09-01
Full Text Available Natural-science concepts of rotational movements and the ‘lumpy’ structure of medium are reviewed with a focus on key aspects. Through using torsional traps for hunting and «implementing» mechanical torque for ignition, Homo sapiens developed to man. Vortex movements «impregnated» in spiral structures of shells and torsional movements of toothy whales and fish were intuitively perceived by man as major stable movements of the environment. Based on the above, the ancient philosophy established the concept of the uniform world represented by atomic («noncuttable» structure of medium and vortex movements of ether. Based on conclusive arguments stated by R. Dekart, H. Helmgolz, Lord Kelvin and others within the framework of classical physics and in the first half of the 20th century by scientists in quantum physics and cosmogony, both «quantum structure» («lumpiness» and rotation («vorticity» are integral features of matter – space – time throughout the whole range from elementary particles to galaxies and galactic clusters.Nowadays researchers in natural sciences, particularly in the Earth sciences, call attention again to the problem of structure of matter and its movements. In the 1920s, Chinese geologist Li Siguang established fundamentals of vortex geodynamics. In the second half of the 20th century, Li Siguan’s concepts were developed by geologists O.I. Slenzak and I.V. Melekestsev. Geologist A.V. Peive, mechanic L.I. Sedov and physicist M.A. Sadovsky put forward a concept of block structure of the geo-medium (geological and geophysical medium and proposed a justified assumption that such blocks can move by own torque. This method of movement is confirmed by results of geological and tectonophysical studies, as well as instrumental geophysical measurements obtained from a variety of stations and focal zones of strong earthquakes. Many researchers, including W. Elsasser and V.N. Nikolaevsky, develop fundamentals of
Thermoelastic wave propagation in a rotating elastic medium without energy dissipation
S. K. Roychoudhuri
2005-02-01
Full Text Available A study is made of the propagation of time-harmonic plane thermoelastic waves of assigned frequency in an infinite rotating medium using Green-Naghdi model (1993 of linear thermoelasticity without energy dissipation. A more general dispersion equation is derived to examine the effect of rotation on the phase velocity of the modified coupled thermal dilatational shear waves. It is observed that in thermoelasticity theory of type II (Green-Naghdi model, the modified coupled dilatational thermal waves propagate unattenuated in contrast to the classical thermoelasticity theory, where the thermoelastic waves undergo attenuation (Parkus, Chadwick, and Sneddon. The solutions of the more general dispersion equation are obtained for small thermoelastic coupling by perturbation technique. Cases of high and low frequencies are also analyzed. The rotation of the medium affects both quasielastic dilatational and shear wave speeds to the first order in ÃÂ‰ for low frequency, while the quasithermal wave speed is affected by rotation up to the second power in ÃÂ‰. However, for large frequency, rotation influences both the quasidilatational and shear wave speeds to first order in ÃÂ‰ and the quasithermal wave speed to the second order in 1/ÃÂ‰.
Effect of rotation in magneto-micropolar thermoelastic medium due to mechanical and thermal sources
Kumar, Rajneesh [Department of Mathematics, Kurukshetra University, Kurukshetra 136 119 (India)], E-mail: rajneesh_kuk@rediffmail.com; Rupender [Department of Mathematics, Kurukshetra University, Kurukshetra 136 119 (India)], E-mail: rupee_kuk@rediffmail.com
2009-08-30
In this work, a two dimensional problem in electromagnetic micropolar generalized thermoelastic medium, in the presence of a transverse magnetic field subjected to mechanical force or thermal source (concentrated or uniformly distributed), is investigated. The entire elastic medium is rotating with a uniform angular velocity. Laplace and Fourier transform techniques are used to solve the problem and the Descartes' method along with irreducible case of Cardan's method is used to obtain the roots of eight degree equation. The transformed components of normal strain, normal stress, tangential couple stress, temperature distribution, induced electric field and magnetic field are obtained. The integral transforms have been inverted by using a numerical technique. Magnetic effects and effect of rotation have been depicted graphically on the resulting quantities. Particular cases of interest are also deduced from the present investigation.
Heat Transfer on Steady MHD rotating flow through porous medium in a parallel plate channel
Dr. G. Prabhakara Rao,
2015-04-01
Full Text Available We discussed the combined effects of radiative heat transfer and a transverse magnetic field on steady rotating flow of an electrically conducting optically thin fluid through a porous medium in a parallel plate channel and non-uniform temperatures at the walls. The analytical solutions are obtained from coupled nonlinear partial differential equations for the problem. The computational results are discussed quantitatively with the aid of the dimensionless parameters entering in the solution.
Park, Ji Soon; Park, Hyung Jun; Kim, Sae Hoon; Oh, Joo Han
2015-10-01
Small and medium-sized rotator cuff tears usually have good clinical and anatomic outcomes. However, healing failure still occurs in some cases. To evaluate prognostic factors for rotator cuff healing in patients with only small to medium-sized rotator cuff tears. Case-control study; Level of evidence, 3. Data were prospectively collected from 339 patients with small to medium-sized rotator cuff tears who underwent arthroscopic repair by a single surgeon between March 2004 and August 2012 and who underwent magnetic resonance imaging or computed tomographic arthrography at least 1 year after surgery. The mean age of the patients was 59.8 years (range, 39-80 years), and the mean follow-up time was 20.8 months (range, 12-66 months). The functional evaluation included the visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons score, Constant-Murley score, and Simple Shoulder Test. Postoperative VAS for pain and functional scores improved significantly compared with preoperative values (P infraspinatus muscle, tear size (anteroposterior dimension), and age were significant factors affecting rotator cuff healing (P infraspinatus fatty degeneration correlated with a higher failure rate. The failure rate was also significantly higher in patients with a tear >2 cm in size (34.2%) compared with patients with a tear ≤2 cm (10.6%) (P infraspinatus muscle according to the Goutallier classification could be a reference point for successful healing, and anatomic outcomes might be better if repair is performed before the patient is 69 years old and the tear size exceeds 2 cm. © 2015 The Author(s).
Pattern Formation inside a Rotating Cylinder Partially Filled with Liquid and Granular Medium
Veronika Dyakova
2014-01-01
Full Text Available The paper focuses on the experimental study of the dynamics of liquid and granular medium in a rapidly rotating horizontal cylinder. In the cavity frame gravity field performs rotation and produces oscillatory liquid flow, which is responsible for the series of novel effects; the problem corresponds to “vibrational mechanics”—generation of steady flows and patterns by oscillating force field. The paper presents the initial results of experimental study of a novel pattern formation effect which is observed at the interface between fluid and sand and which takes the form of ripples extended along the axis of rotation. The initial results of experimental research of a novel effect of pattern formation at the interface between fluid and sand in the form of ripples extended along the axis of rotation are presented. The spatial period of the patterns is studied in dependence on liquid volume, viscosity, and rotation rate. The experimental study of long time dynamics of pattern formation manifests that regular ripples transform into a series of dunes within a few minutes or dozens of minutes. The variety of patterns is determined by the interaction of two types of liquid flows induced by gravity: oscillatory and steady azimuthal flows near the sand surface.
Xu, Zhong-Xuan; Liu, Liyang; Zhang, Jian
2016-07-01
Using lactic acid derivatives as chiral ligands, a pair of unprecedented homochiral metal-organic zeolites have been synthesized that feature zeotype CAN topology and have high porosity for enantioselective separation of racemates.
Radiation Effects in Flow through Porous Medium over a Rotating Disk with Variable Fluid Properties
Shalini Jain
2016-01-01
Full Text Available The present study investigates the radiation effects in flow through porous medium over a permeable rotating disk with velocity slip and temperature jump. Fluid properties density (ρ, viscosity (μ, and thermal conductivity (κ are taken to be dependent on temperature. Particular case considering these fluid properties’ constant is also discussed. The governing partial differential equations are converted into nonlinear normal differential equation using similarity alterations. Transformed system of equations is solved numerically by using Runge-Kutta method with shooting technique. Effects of various parameters such as porosity parameter K, suction parameter Ws, rotational Reynolds number Re, Knudsen number Kn, Prandtl number Pr, radiation parameter N, and relative temperature difference parameter ε on velocity profiles along radial, tangential, and axial direction and temperature distribution are investigated for both variable fluid properties and constant fluid properties. Results obtained are analyzed and depicted through graphs and table.
Unsteady Hydromagnetic Rotating Flow through an Oscillating Porous Plate Embedded in a Porous Medium
I. Khan
2013-01-01
Full Text Available This paper investigates unsteady hydromagnetic flow of a viscous fluid in a rotating frame. The fluid is bounded by an oscillating porous plate embedded in a porous medium. The Laplace transform and Fourier sine transform methods are employed to find the exact solutions. They satisfy all imposed initial and boundary conditions and as special cases are reduced to some published results from the literature. The graphical results are plotted for different values of pertinent parameters and some interesting conclusions are made.
Unsteady hydromagnetic Couette flow through a porous medium in a rotating system
无
2011-01-01
This paper investigates the unsteady hydromagnetic Couette fluid flow through a porous medium between two infinite horizontal plates induced by the non-torsional oscillations of one of the plates in a rotating system using boundary layer approximation.The fluid is assumed to be Newtonian and incompressible.Laplace transform technique is adopted to obtain a unified solution of the velocity fields.Such a flow model is of great interest,not only for its theoretical significance,but also for its wide applicatio...
Widespread Rotationally-Hot Hydronium Ion in the Galactic Interstellar Medium
Lis, D C; Bergin, E A; Gerin, M; Black, J H; Comito, C; De Luca, M; Godard, B; Higgins, R; Petit, F Le; Pearson, J C; Pellegrini, E W; Phillips, T G; Yu, S
2014-01-01
We present new observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ~ 500 K, rotational temperatures characterizing the population of the highly-excited metastable H3O+ rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone, but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ~ 380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic ray fluxes, shocks and high degree of turbulence, t...
GEODYNAMICS AS WAVE DYNAMICS OF THE MEDIUM COMPOSED OF ROTATING BLOCKS
Alexander V. Vikulin
2015-10-01
Full Text Available The geomedium block concept envisages that stresses in the medium composed of rotating blocks have torque and thus predetermine the medium's energy capacity (in terms of [Ponomarev, 2008]. The present paper describes the wave nature of the global geodynamic process taking place in the medium characterized by the existence of slow and fast rotation strain waves that are classified as a new type of waves. Movements may also occur as rheid, superplastic and/or superfluid motions and facilitate the formation of vortex geological structures in the geomedium.Our analysis of data on almost 800 strong volcanic eruptions shows that the magma chamber’s thickness is generally small, about 0.5 km, and this value is constant, independent of the volcanic process and predetermined by properties of the crust. A new magma chamber model is based on the idea of 'thermal explosion’/‘self-acceleration' manifested by intensive plastic movements along boundaries between the blocks in conditions of the low thermal conductivity of the geomedium. It is shown that if the solid rock in the magma chamber is overheated above its melting point, high stresses may occur in the surrounding area, and their elastic energy may amount to 1015 joules per 1 km3 of the overheated solid rock. In view of such stresses, it is possible to consider the interaction between volcano’s magma chambers as the migration of volcanic activity along the volcanic arc and provide an explanation of the interaction between volcanic activity and seismicity within the adjacent parallel arcs.The thin overheated interlayer/magma chamber concept may be valid for the entire Earth's crust. In our hypothesis, properties of the Moho are determined by the phase transition from the block structure of the crust to the nonblock structure of the upper mantle.
G Rana
2016-09-01
Full Text Available The thermosolutal instability of compressible Walters' (model B' elastico-viscous rotating fluid permeated with suspended particles (fine dust in the presence of vertical magnetic field in porous medium is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection the Walters' (model B' fluid behaves like an ordinary Newtonian fluid and it is observed that the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions.
Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion
Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas; Shafie, Sharidan [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-05-15
Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions with technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.
MHD flow of Burger's fluid over an off-centered rotating disk in a porous medium
Khan, Najeeb Alam; Khan, Sidra; Ullah, Saif
2015-08-01
In this study, off-centered stagnation flow of three dimensional Burger's fluid over an infinite rotating disk in a porous medium with a uniform magnetic field, which is applying normal to the disk, is investigated. A uniform suction/injection is applied through the surface of the porous disk. The structure has been modeled in the form of ordinary differential equations, which are reduced from partial differential equations by using the similarity transformation. Analytical solution is obtained by non-perturbation technique of homotopy analysis method (HAM). The influence of non-dimensional parameters on velocity profile is presented in graphical form and the numerical comparison is made with the viscous fluid as a special case.
A. A. Lubchich
2005-07-01
Full Text Available Characteristics of small amplitude plane waves within the medium separated by the plane discontinuity into two half spaces are analysed. The approximation of the ideal one-fluid magnetohydrodynamics (MHD is used. The discontinuities with the nonzero mass flux across them are mainly examined. These are fast or slow shock waves and rotational discontinuities. The dispersion equation for MHD waves within each of half space is obtained in the reference frame connected with the discontinuity surface. The solution of this equation permits one to determine the wave vectors versus the parameter c_{p}, which is the phase velocity of surface discontinuity oscillations. This value of c_{p} is common for all MHD waves and determined by an incident wave or by spontaneous oscillations of the discontinuity surface. The main purpose of the study is a detailed analysis of the dispersion equation solution. This analysis let us draw the following conclusions. (I For a given c_{p}, ahead or behind a discontinuity at most, one diverging wave can transform to a surface wave damping when moving away from the discontinuity. The surface wave can be a fast one or, in rare cases, a slow, magnetoacoustic one. The entropy and Alfvén waves always remain in a usual homogeneous mode. (II For certain values of c_{p} and parameters of the discontinuity behind the front of the fast shock wave, there can be four slow magnetoacoustic waves, satisfying the dispersion equation, and none of the fast magnetoacoustic waves. In this case, one of the four slow magnetoacoustic waves is incident on the fast shock wave from the side of a compressed medium. It is shown that its existence does not contradict the conditions of the evolutionarity of MHD shock waves. The four slow magnetoacoustic waves, satisfying the dispersion equation, can also exist from either side of a slow shock wave or rotational discontinuity. (III The
Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)
2013-12-15
In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.
Khan Ilyas
2015-01-01
Full Text Available The present paper is concerned with the magnetohydrodynamic unsteady rotating flows of generalized Burgers' fluid with a porous medium. The flows are created by the plate oscillations. Modified Darcy's law has been employed to model the governing problem. Closed-form solutions corresponding to cosine and sine oscillations are obtained by the Laplace transform method. The performed calculations disclose that Hartmann number, porosity of the medium, angular frequency, and oscillating frequency have strong influence on the velocity. The graphs are presented for such influence and examined carefully.
无
2002-01-01
Based on detailed studies, this paper proposes that in the Tarim Basin, hydrocarbon reservoirs widespread either in vertical sequences or in plane and high-porosity and high-permeability reservoirs are developed all over the basin. However, obvious difference and heterogeneity exist among different kinds of reservoirs. The lithologic characteristics, reservoir space types and reservoir properties in various strata have been probed. The result indicates that although the Paleozoic carbonates have been deeply buried for a long period, high-quality reservoirs with the porosity of up to 5%-8% (12% as the maximum) and the permeability of 10×10?3-100×10?3 ?m2 (1000×10?3 ?m2 as the maximum) can be found in certain areas. These include the area with the development of reefs and carbonate beaches, the weathered-crust buried-hill belts that have undergone the long-term exposure, weathering and leaching, the area with the development of dolomitization, and those areas that have experienced the resolution of carbonic acid and organic acid generated by the maturity of the organic matter. Finally, the genesis of the high-porosity and high-permeability reservoirs in deep-buried conditions (with the depth more than 3500 m) have been investigated thoroughly.
Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium
Jianhong Kang
2015-01-01
Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.
Govindarajan Arunachalam
2014-01-01
Full Text Available An investigation of unsteady MHD free convective flow and mass transfer during the motion of a viscous incompressible fluid through a porous medium, bounded by an infinite vertical porous surface, in a rotating system is presented. The porous plane surface and the porous medium are assumed to rotate in a solid body rotation. The vertical surface is subjected to uniform constant suction perpendicular to it and the temperature at this surface fluctuates in time about a non-zero constant mean. Analytical expressions for the velocity, temperature and concentration fields are obtained using the perturbation technique. The effects of R (rotation parameter, k0 (permeability parameter, M (Hartmann number and w (frequency parameter on the flow characteristics are discussed. It is observed that the primary velocity component decreases with the increase in either of the rotation parameter R, the permeability parameter k0, or the Hartmann number M. It is also noted that the primary skin friction increases whenever there is an increase in the Grashof number Gr or the modified Grashof number Gm. It is clear that the heat transfer coefficient in terms of the Nusselt number decreases in the case of both air and water when there is an increase in the Hartmann number M. It is observed that the magnitude of the secondary velocity profiles increases whenever there is an increase in either of the Grashof number or the modified Grashof number for mass transfer or the permeability of the porous media. Concentration profiles decreases with an increase in the Schmidt number.
Sahoo, Sushree S.; Bhowmick, Arup; Mohapatra, Ashok K.
2017-03-01
We have studied the rotation of an elliptically polarized light propagating through thermal rubidium vapor with efficient four-wave mixing (FWM) and cross-phase modulation (XPM). These nonlinear processes are enhanced by Zeeman coherence within the degenerate sub-levels of the two-level atomic system. The elliptically polarized light with small ellipticity is considered as the superposition of a strong-linearly-polarized pump beam and a weak-orthogonal-polarized probe beam. The interference of the probe and the newly generated light field due to degenerate FWM and their gain in the medium due to a large XPM induced by the pump beam leads to the rotation of the elliptical polarized light. A theoretical analysis of the probe propagation through the nonlinear medium was used to explain the experimental observation and the fitting of the experimental data gives the estimates of the third-order non-linear susceptibilities associated with FWM and XPM. Our study can provide useful parameters for the generation of efficient squeezed vacuum states and squeezed polarization states of light. Furthermore our study finds application in controlling the diffraction of a linearly-polarized light beam traversing the medium.
Maity, Narottam; Barik, S. P.; Chaudhuri, P. K.
2016-09-01
In this paper, plane wave propagation in a rotating anisotropic material of general nature under the action of a magnetic field of constant magnitude has been investigated. The material is supposed to be porous in nature and contains voids. Following the concept of [Cowin S. C. and Nunziato, J. W. [1983] “Linear elastic materials with voids,” J. Elasticity 13, 125-147.] the governing equations of motion have been written in tensor notation taking account of rotation, magnetic field effect and presence of voids in the medium and the possibility of plane wave propagation has been examined. A number of particular cases have been derived from our general results to match with previously obtained results in this area. Effects of various parameters on the velocity of wave propagation have been presented graphically.
A. M. Abd-Alla
2011-01-01
Full Text Available The surface waves propagation in generalized magneto-thermo-viscoelastic granular medium subjected to continuous boundary conditions has been investigated. In addition, it is also subjected to thermal boundary conditions. The solution of the more general equations are obtained for thermoelastic coupling. The frequency equation of Rayleigh waves is obtained in the form of a determinant containing a term involving the coefficient of friction of a granular media which determines Rayleigh waves velocity as a real part and the attenuation coefficient as an imaginary part, and the effects of rotation, magnetic field, initial stress, viscosity, and gravity field on Rayleigh waves velocity and attenuation coefficient of surface waves have been studied in detail. Dispersion curves are computed numerically for a specific model and presented graphically. Some special cases have also been deduced. The results indicate that the effect of rotation, magnetic field, initial stress, and gravity field is very pronounced.
Numerical investigation of conductive heat transfer in high-porosity foams
Coquard, R., E-mail: remi.coquard@ec2-ms.fr [Societe ' Etude Conseils Calcul en Mecanique des Structures' (EC2MS), 66, boulevard Niels Bohr, 69603 Villeurbanne Cedex (France); Baillis, D. [Centre Thermique de Lyon (CETHIL), UMR CNRS 5008, Domaine Scientifique de la Doua, INSA de Lyon, Batiment Sadi Carnot, 9 rue de la physique, 69621 Villeurbanne Cedex (France)
2009-10-15
The conductive heat transfer in heterogeneous cellular materials is generally treated by defining the homogeneous effective thermal conductivity. For high-porosity foams, a very large number of empirical or semi-empirical models have already been proposed to evaluate this conductivity. Each approach considered different cellular morphologies and used different solution methods, leading to noticeable discrepancies. In order to estimate the reliability of these models, a numerical finite volume method computing the effective thermal conductivity of discretised two-phase heterogeneous materials was developed. It was applied to different regular open or closed cellular structures and to structures generated from tomographic images of polyvinyl chloride, expanded polystyrene and NiCrAl foams. The comparison with the results of the different models allows their degree of reliability and their domain of applicability to be estimated quantitatively.
Maity N.
2017-06-01
Full Text Available The article is concernedwith the possibility of plane wave propagation in a rotating elastic medium under the action of magnetic and thermal fields. The material is assumed to be fibre-reinforced with increased stiffness, strength and load bearing capacity. Green and Nagdhi’s concepts of generalized thermoelastic models II and III have been followed in the governing equations expressed in tensor notation. The effects of various parameters of the applied fields on the plane wave velocity have been shown graphically.
Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir
2016-01-01
The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland’s approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387
Tasawar Hayat
Full Text Available The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland's approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems.
Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.
2010-01-01
Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.
Tjioe, M.; Choo, J.; Borja, R. I.
2013-12-01
In previous studies, it has been found that two dominant micro-mechanisms play important roles in the deformation of high-porosity rocks. They are grain fracturing and crystal plasticity. Grain fracturing is a phenomenon where larger grains cleave to their smaller constituents as they respond to the stress concentration exerted on them close to the open pore spaces. Specimen-scale modeling cannot reflect such mechanism so our investigation is carried out in the next smaller scale, namely the mesoscopic scale. We model a solid matrix microstructure using finite element in which displacement discontinuity is introduced in each element where the slip condition has been exceeded. Such discontinuity is termed strong discontinuity and is characterized by zero band thickness and localized strain in the band that reaches infinity. For grains under compression, this slip condition is the cohesive-frictional law governing the behavior on the surface of discontinuity. The strong discontinuity in the grain scale is modeled via an Assumed Enhanced Strain (AES) method formulated within the context of nonlinear finite elements. Through this method, we can model grain-splitting as well as halos of cataclastic damage that are usually observed before a macropore collapses. The overall stress-strain curve and plastic slip of the mesoscopic element are then obtained and comparison to the crystal plasticity behavior is made to show the differences between the two mechanisms. We demonstrate that the incorporation of grain-fracturing and crystal plasticity can shed light onto the pore-scale deformation of high-porosity rocks.
Production potential of 36 poplar clones grown at medium length rotation in Denmark
Nielsen, Ulrik Brauner; Madsen, Palle; Hansen, Jon Kehlet
2014-01-01
group's potential for use in Northern Europe and comparable growth conditions. Based on two trials with randomized block designs, 36 clones from 4 species and 5 groups of species hybrids, measurements of height and diameter were used for estimating biomass production for rotation lengths of 5 and 13...
Tasawar Hayat
Full Text Available This paper investigates the unsteady MHD flow of viscous fluid between two parallel rotating disks. Fluid fills the porous space. Energy equation has been constructed by taking Joule heating, thermal stratification and radiation effects into consideration. We convert system of partial differential equations into system of highly nonlinear ordinary differential equations after employing the suitable transformations. Convergent series solutions are obtained. Behavior of different involved parameters on velocity and temperature profiles is examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and inspected. It is found that tangential velocity profile is increasing function of rotational parameter. Fluid temperature reduces for increasing values of thermal stratification parameter. At upper disk heat transfer rate enhances for larger values of Eckert and Prandtl numbers.
Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed
2016-01-01
This paper investigates the unsteady MHD flow of viscous fluid between two parallel rotating disks. Fluid fills the porous space. Energy equation has been constructed by taking Joule heating, thermal stratification and radiation effects into consideration. We convert system of partial differential equations into system of highly nonlinear ordinary differential equations after employing the suitable transformations. Convergent series solutions are obtained. Behavior of different involved parameters on velocity and temperature profiles is examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and inspected. It is found that tangential velocity profile is increasing function of rotational parameter. Fluid temperature reduces for increasing values of thermal stratification parameter. At upper disk heat transfer rate enhances for larger values of Eckert and Prandtl numbers.
M Dwarf Activity in the Pan-STARRS 1 Medium-Deep Survey: First Catalog and Rotation Periods
Kado-Fong, Erin; Mann, Andrew W; Berger, Edo; Burgett, William S; Chambers, Kenneth C; Huber, Mark E; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A; Wainscoat, Richard J; Waters, Christopher
2016-01-01
We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS 1 Medium Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of $\\approx$ 4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multi-band periodogram analysis and visual vetting to identify 271 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of $\\lesssim$1-130 days in stars with estimated effective temperatures of $\\approx$ 2700-4000 K. Twenty-two of our sources have X-ray cross-matches, and they...
Singh R.
2016-02-01
Full Text Available In this study an eigen value approach has been employed to examine the mechanical force applied along with a transverse magnetic field in a two dimensional generalized magneto micropolar thermoelastic infinite space. Results have been obtained by treating rotational velocity to be invariant. Integral transforms have been applied to solve the system of partial differential equations. Components of displacement, normal stress, tangential couple stress, temperature distribution, electric field and magnetic field have been obtained in the transformed domain. Finally numerical inversion technique has been used to invert the result in the physical domain. Graphical analysis has been done to described the study.
Fabrication and Properties of Porous Si_3N_4 Ceramic with High Porosity
Xiangming Li; Litong Zhang; Xiaowei Yin
2012-01-01
A novel process combining oxidation-bonding and sintering was developed to fabricate porous Si3N4 ceramic with high porosity. After sintering at 1800℃, the SiO2 in porous Si3N4 ceramic transforms into Si2N2O because of the reaction of SiO2 and Si3N4 . Due to the reaction of SiO2 and carbon, the porosity of porous Si3N4 ceramic increases obviously from 40.2% to 76.8% with the weight decreasing by 35.6%. As the porosity increases, the dielectric constant and loss of the porous Si3N4 ceramic decrease obviously from 3.08 to 1.61 and from 3.70×10(-3) to 0.74×10(-3) , but due to the production of Si2N2O whose mechanical properties are much higher than SiO2 and the increase of the bonding strength among Si3N4 particles, the flexural strength and the fracture toughness of the porous Si3N4 ceramic decrease from 55 to 39 MPa and from 0.7 to 0.5 MPa·m(1/2) , respectively, but its Vickers hardness increases from 1.2 to 1.3 GPa.
Effect of High Porosity Screen on the Near Wake of a Circular Cylinder
Sahin B.
2013-04-01
Full Text Available The change in flow characteristics downstream of a circular cylinder (inner cylinder surrounded by a permeable cylinder (outer cylinder made of a high porosity screen was investigated in shallow water using Particle Image Velocimetry (PIV technique. The diameter of the inner cylinder, outer cylinder and the water height were kept constant during the experiments as d = 50 mm, D = 100 mm and hw = 50 mm, respectively. The depth-averaged free stream velocity was also kept constant as U = 180 mm/s which corresponded to a Reynolds number of Red = 9000 based on the inner cylinder diameter. It was shown that the outer permeable cylinder had a substantialeffect on the vortex formation and consequent vortex shedding downstream of the circular cylinder, especially in the near wake. The time averaged vorticity layers, streamlines and velocity vector field depict that the location of the interaction of vortices considerably changed by the presence of the outer cylinder. Turbulent statistics clearly demonstrated that in comparison to the natural cylinder, turbulent kinetic energy and Reynolds stresses decreased remarkably downstream of the inner cylinder. Moreover, spectra of streamwise velocity fluctuations showed that the vortex shedding frequency significantly reduced compared to the natural cylinder case.
A simple granulation technique for preparing high-porosity nano copper oxide(Ⅱ) catalyst beads
Seyed Javad Ahmadia; Mohammad Outokesh; Morteza Hosseinpour; Tahereh Mousavand
2011-01-01
A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure.In the first step,copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition.Then,they were immobilized in the polymeric matrix of calcium alginate,and followed by high-temperature calcination in an air stream as the third step,in which carbonaceous materials were oxidized,to result in a pebble-type catalyst of high porosity.The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm,X-ray diffractometry (XRD),and thermo gravimetric (TG)analysis.The catalysts were further investigated by BET test for measurement of their surface area,and by temperature-programmed reduction analysis (H2-TPR) for determination of catalytic activity.The results demonstrated that immobilization of the CuO nanoparticle in the polymeric matrix of calcium alginate,followed by calcination at elevated temperatures,could result in notable mechanical strength and enhanced catalytic activity due to preservation of the high surface area,both valuable for practical applications.
Ultrasonic measurements of normal and superfluid He-3 in high porosity aerogel
Lee, Yoonseok
2014-03-01
Ultrasound spectroscopy and nuclear magnetic resonance have been proven to be the most valuable spectroscopic tools in the study of superfluid 3He. These experimental methods provide complementary information on the orbital and spin structure of the Cooper pairs. In particular, the rich spectrum of the order parameter collective modes, a direct consequence of the exotic broken symmetry in the superfluid phases, have been mapped out by ultrasonic spectroscopic techniques. Aerogel possesses a unique structure, whose topology is at the antipode of conventional porous media such as Vycor glass and metallic sinters. High porosity aerogel presents additional scattering channel that substantially changes the ultrasonic behavior in both normal and superfluid phase of 3He. For example, in the normal fluid the classic first to zero sound crossover is effectively prohibited due to the residual elastic scattering from aerogel. However, the hydrodynamic-Knudsen crossover arises owing to the unique structure and the widely varying inelastic mean free path in 3He. In superfluid, no signatures of the order parameter collective modes were observed but the gapless superfluidity has been clearly verified through ultrasound measurements. In this paper, we will present the experimental results obtained in the past decade using ultrasonic techniques. Supported by NSF DMR-0803516 and DMR-1205891, and DMR-0654118 through National High Magnetic Field Laboratory and the State of Florida.
Interpretation of the structure function of rotation measure in the interstellar medium
Xu, Siyao
2016-01-01
The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian & Pogosyan (2016) are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when the SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent ...
MHD flow of Burger’s fluid over an off-centered rotating disk in a porous medium
Najeeb Alam Khan
2015-08-01
Full Text Available In this study, off-centered stagnation flow of three dimensional Burger’s fluid over an infinite rotating disk in a porous medium with a uniform magnetic field, which is applying normal to the disk, is investigated. A uniform suction/injection is applied through the surface of the porous disk. The structure has been modeled in the form of ordinary differential equations, which are reduced from partial differential equations by using the similarity transformation. Analytical solution is obtained by non-perturbation technique of homotopy analysis method (HAM. The influence of non-dimensional parameters on velocity profile is presented in graphical form and the numerical comparison is made with the viscous fluid as a special case.
Santos-Lima, R; Falceta-Gonçalves, D A; Nakwacki, M S; Kowal, G
2016-01-01
Statistical analysis of Faraday Rotation Measure (RM) maps of the intracluster medium (ICM) of galaxy clusters provides a unique tool to evaluate some spatial features of the magnetic fields there. Its combination with numerical simulations of magnetohydrodynamic (MHD) turbulence allows the diagnosis of the ICM turbulence. Being the ICM plasma weakly collisional, the thermal velocity distribution of the particles naturally develops anisotropies as a consequence of the large scale motions and the conservation of the magnetic moment of the charged particles. A previous study (Paper I) analyzed the impact of large scale thermal anisotropy on the statistics of RM maps synthesized from simulations of turbulence; these simulations employed a collisionless MHD model which considered a tensor pressure with uniform anisotropy. In the present work, we extend that analysis to a collisionless MHD model in which the thermal anisotropy develops according to the conservation of the magnetic moment of the thermal particles. ...
Zhang, Ge; He, Wenna; Fang, Lei
2013-01-01
and cavity would form, approximately, a consecutive parabola. The convective mass transfer inside the adsorbents would have little impact on the axial VOC transfer but could affect the average adsorption rate significantly at high porosities. The Peclet number Pe which is based on the inlet velocity...
Spurr, Robert [RT Solutions Inc., 9 Channing Street, Cambridge, MA 02138 (United States)], E-mail: rtsolutions@verizon.net; Haan, Johan de; Oss, Roeland van [KNMI, de Bilt (Netherlands); Vasilkov, Alexander [SSAI, Lanham, MD (United States)
2008-02-15
Rotational Raman scattering (RRS) by air molecules in the Earth's atmosphere is predominantly responsible for the Ring effect: Fraunhofer and absorption-feature filling-in observed in UV/visible backscatter spectra. Accurate determination of RRS effects requires detailed radiative transfer (RT) treatment. In this paper, we demonstrate that the discrete-ordinate RT equations may be solved analytically in a multi-layer multiple scattering atmosphere in the presence of RRS treated as a first-order perturbation. Based on this solution, we develop a generic pseudo-spherical RT model LIDORT-RRS for the determination of backscatter radiances with RRS included; the model will generate output at arbitrary viewing geometry and optical thickness. Model comparisons with measured RRS filling-in effects from OMI observations show very good agreement. We examine telluric RRS filling-in effects for satellite-view backscatter radiances in a spectral range covering the ozone Huggins absorption bands. The model is also used to investigate calcium H and K Fraunhofer filling-in through cloud layers in the atmosphere.
Dale, D A; Dale, Daniel A.; Uson, Juan M.
2000-01-01
We investigate the rich cluster Abell 2029 (z~0.08) using optical imaging and long-slit spectral observations of 52 disk galaxies distributed throughout the cluster field. No strong emission-line galaxies are present within ~400 kpc of the cluster center, a region largely dominated by the similarly-shaped X-ray and low surface brightness optical envelopes centered on the giant cD galaxy. However, two-thirds of the galaxies observed outside the cluster core exhibit line emission. H-alpha rotation curves of 14 cluster members are used in conjunction with a deep I band image to study the environmental dependence of the Tully-Fisher relation. The Tully-Fisher zero-point of Abell 2029 matches that of clusters at lower redshifts, although we do observe a relatively larger scatter about the Tully-Fisher relation. We do not observe any systematic variation in the data with projected distance to the cluster center: we see no environmental dependence of Tully-Fisher residuals, R-I color, H-alpha equivalent width, and t...
A.M. Rashad
2014-04-01
Full Text Available This work is focused on the study of unsteady magnetohydrodynamics boundary-layer flow and heat transfer for a viscous laminar incompressible electrically conducting and rotating fluid due to a stretching surface embedded in a saturated porous medium with a temperature-dependent viscosity in the presence of a magnetic field and thermal radiation effects. The fluid viscosity is assumed to vary as an inverse linear function of temperature. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. With appropriate transformations, the unsteady MHD boundary layer equations are reduced to local nonsimilarity equations. Numerical solutions of these equations are obtained by using the Runge–Kutta integration scheme as well as the local nonsimilarity method with second order truncation. Comparisons with previously published work have been conducted and the results are found to be in excellent agreement. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity in primary and secondary flows as well as the local skin-friction coefficients and the local Nusselt number are illustrated graphically to show interesting features of Darcy number, viscosity-variation, magnetic field, rotation of the fluid, and conduction radiation parameters.
Circum-stellar medium around rotating massive stars at solar metallicity
Georgy, Cyril; Folini, Doris; Bykov, Andrei; Marcowith, Alexandre; Favre, Jean M
2013-01-01
Aims. Observations show nebulae around some massive stars but not around others. If observed, their chemical composition is far from homogeneous. Our goal is to put these observational features into the context of the evolution of massive stars and their circumstellar medium (CSM) and, more generally, to quantify the role of massive stars for the chemical and dynamical evolution of the ISM. Methods. Using the A-MAZE code, we perform 2d-axisymmetric hydrodynamical simulations of the evolution of the CSM, shaped by stellar winds, for a whole grid of massive stellar models from 15 to 120 Msun and following the stellar evolution from the zero-age main-sequence to the time of supernova explosion. In addition to the usual quantities, we also follow five chemical species: H, He, C, N, and O. Results. We show how various quantities evolve as a function of time: size of the bubble, position of the wind termination shock, chemical composition of the bubble, etc. The chemical composition of the bubble changes considerab...
Jyoti Prakash
2014-07-01
Full Text Available In the present paper, a sufficient condition is derived for the validity of the “principle of the exchange of stabilities” in ferromagnetic convection with magnetic field dependent viscosity, for the case of free boundaries, in porous medium in the presence of a uniform vertical magnetic field and uniform rotation about the vertical axis.
Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Falceta-Gonçalves, D. A.; Nakwacki, M. S.; Kowal, G.
2017-03-01
Statistical analysis of Faraday rotation measure (RM) maps of the intracluster medium (ICM) of galaxy clusters provides a unique tool to evaluate some spatial features of the magnetic fields there. Its combination with numerical simulations of magnetohydrodynamic (MHD) turbulence allows the diagnosis of the ICM turbulence. Being the ICM plasma weakly collisional, the thermal velocity distribution of the particles naturally develops anisotropies as a consequence of the large-scale motions and the conservation of the magnetic moment of the charged particles. A previous study (Paper I) analysed the impact of large-scale thermal anisotropy on the statistics of RM maps synthesized from simulations of turbulence; these simulations employed a collisionless MHD model that considered a tensor pressure with uniform anisotropy. In this work, we extend that analysis to a collisionless MHD model in which the thermal anisotropy develops according to the conservation of the magnetic moment of the thermal particles. We also consider the effect of anisotropy relaxation caused by the microscale mirror and firehose instabilities. We show that if the relaxation rate is fast enough to keep the anisotropy limited by the threshold values of the instabilities, the dispersion and power spectrum of the RM maps are indistinguishable from those obtained from collisional MHD. Otherwise, there is a reduction in the dispersion and steepening of the power spectrum of the RM maps (compared to the collisional case). Considering the first scenario, the use of collisional MHD simulations for modelling the RM statistics in the ICM becomes better justified.
Strømme, M.; Niklasson, G. A.; Ek, R.
2003-01-01
The percolation theory is established as a useful tool in the field of pharmaceutical materials science. It is shown that percolation theory, developed for analyzing insulator-conductor transitions, can be applied to describe imperfect dc conduction in pharmaceutical microcrystalline cellulose during densification. The system, in fact, exactly reproduces the values of the percolation threshold and exponent estimated for a three-dimensional random continuum. Our data clearly show a crossover from a power-law percolation theory region to a linear effective medium theory region at a cellulose porosity of ˜0.7.
Suresh, M; Manglik, A
2014-01-01
This paper proposes the exact solution for unsteady flow of a viscous incompressible electrically conducting fluid past a impulsively started infinite horizontal surface which is rotating with an angular velocity embedded in a saturated porous medium under the influence of strong magnetic field with hall effect. Our study focuses on the change of direction of the external magnetic field on the flow system which leads to change in the flow behavior and skin frictional forces at the boundary. Systems of flow equations are solved using Laplace transform technique. The impacts of control parameters Hartman number, rotation of the system, hall effect, inclination of the magnetic field, and Darcy number on primary and secondary velocities are shown graphically, skin friction at horizontal boundary in tabular form. For validating our results, in the absence of permeability of the porous medium and inclination of the magnetic field the results are in good agreement with the published results.
Joginder S. Dhiman; Rekha Dadwal
2012-12-01
The problem of self-gravitational instability of an infinite, homogeneous stratified gaseous medium with finite thermal conductivity and infinite electrical conductivity, in the presence of non-uniform rotation and magnetic field in the Chandrasekhar’s frame of reference, is studied. It is found that the magnetic field, whether uniform or non-uniform, has no effect on the Jeans’ criterion for gravitational instability and remains essentially unaffected. However, the thermal conductivity has the usual stabilizing effect on the criterion that the adiabatic sound velocity occurring in the Jeans criterion is replaced by the isothermal sound velocity. Thus, the present analysis extends the results of Chandrasekhar for the case of heat conducting medium and for non-uniform rotation and magnetic field.
A New Approach for Manufacturing a High Porosity Ti-6Al-4V Scaffolds for Biomedical Applications
Montasser DEWIDAR; H.Fouad MOHAMED; Jae-Kyoo LIM
2008-01-01
Titanivm and its alloys are currently considered as one of the most important metallic materials used in the biomedical applications,due to their excellent mechanical properties and superior biocompatibility.In the present study,a new effective method for fabricating high porosity titanium alloy scaffolds was developed.Porous Ti-6Al-4V scaffolds are successfully fabricated with porosities ranging from 30% to 70% using space-holder and powder sintering technique.Based on its acceptable properties,spherical carbamide particles with different diameters (0.56,0.8,and 1 mm) were used as the space-holder material in the present investigation.The Ti-6Al-4V scaffolds porosity is characterized by using scanning electron microscopy.The results show that the scaffolds spherical-shaped pores are depending on the shape,size and distribution of the space-holder particles.This investigation shows that the present new manufacturing technique is promising to fabricate a controlled high porosity and high purity Ti-6Al-4V scaffolds for hard tissue replacement.
Guodong Cui
2016-06-01
Full Text Available High porosity (>40 vol % iron specimens with micro- and nanoscale isotropic pores were fabricated by carrying out free pressureless spark plasma sintering (FPSPS of submicron hollow Fe–N powders at 750 °C. Ultra-fine porous microstructures are obtained by imposing high heating rates during the preparation process. This specially designed approach not only avoids the extra procedures of adding and removing space holders during the formation of porous structures, but also triggers the continued phase transitions of the Fe–N system at relatively lower processing temperatures. The compressive strength and energy absorption characteristics of the FPSPS processed specimens are examined here to be correspondingly improved as a result of the refined microstructure.
邱晓宁; 费智敏; 张珏; 曹兆敏
2013-01-01
This paper studies the influence of a High-Porosity Mesh (HPM) stent on the hemodynamic characteristics in the intracra- nial aneurysm based on the Computational Fluid Dynamics (CFD). An idealized basilar tip aneurysm model and a HPM stent model are built. The pulsating blood flow in a cardiac cycle is computationally simulated for non-stented and stented models, to provide a wealth of information of the spatio-temporally varying blood flow field. The influence of the stent placement on the hemodynamic characteristics is analyzed in terms of distributions of velocity, pressure, Wall Shear Stress (WSS) and Energy Loss (EL), which are believed to play an important role in the development and rupture of the aneurysm. The numerical results clearly show that the velo- city, pressure, WSS and EL of the blood flow in the aneurysm are reduced by 30%-40% when the HPM stent is implanted. These computational results may provide valuable hemodynamic information for clinical neurosurgeon.
Da-rong Tian; Yu-hua Pang; Liang Yu; Li Sun
2016-01-01
Spherical carbamide particles were employed to produce porous Fe–Cr–C alloy with high porosity and large aperture via the space-holder leaching technique. A series of porous samples were prepared by regulating the processing parameters, which included the car-bamide content and the compaction pressure. The pore characteristics and compression properties of the produced samples were investigated. The samples were characterized by scanning electron microscopy, image analysis, and compression tests. The results showed that the macro-porosity and the mean pore size were in the ranges 40.4%–82.4% and 0.6–1.5 mm, respectively. The compressive strength varied be-tween 25.38 MPa and 127.9 MPa, and was observed to decrease with increasing total porosity.
A.M.Abd-Alla; S.M.Abo-Dahab; H.D.El-Shahrany
2013-01-01
In this paper,the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically.The material is represented by the constitutive equations for a second-order fluid.Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented.The analytical expressions for the pressure gradient,pressure rise,friction force,stream function,shear stress,and velocity are obtained in the physical domain.The effects of the non-dimensional wave amplitude,porosity,magnetic field,rotation,and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically.Numerical results are given and illustrated graphically in each case considered.Comparison was made with the results obtained in the presence and absence of rotation,magnetic field,and porosity.The results indicate that the effects of the non-dimensional wave amplitude,porosity,magnetic field,rotation,and the dimensionless time-mean flow are very pronounced in the phenomena.
Gomez, J -L; Jorstad, S G; Agudo, I; Roca-Sogorb, M
2008-01-01
We present a sequence of 12 monthly polarimetric 15, 22, and 43 GHz VLBA observations of the radio galaxy 3C 120 revealing a systematic presence of gradients in Faraday rotation and degree of polarization across and along the jet. The degree of polarization increases with distance from the core and toward the jet edges, and has an asymmetric profile in which the northern side of the jet is more highly polarized. The Faraday rotation measure is also stratified across the jet width, with larger values for the southern side. We find a localized region of high Faraday rotation measure superposed on this structure between approximately 3 and 4 mas from the core, with a peak of about 6000 rad/m^2. Interaction of the jet with the external medium or a cloud would explain the confined region of enhanced Faraday rotation, as well as the stratification in degree of polarization and the flaring of superluminal knots when crossing this region. The data are also consistent with a helical field in a two-fluid jet model, con...
Said, Samia M.; Othman, Mohamed I. A.
2016-09-01
In the present paper, the three-phase-lag model and Green-Naghdi theory without energy dissipation are used to study the effect of a mechanical force and a rotation on the wave propagation in a two-temperature fiber-reinforced thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. The methodology applied here is the use of the normal mode analysis to solve the problem of a thermal shock problem to obtain the exact expressions of the displacement components, force stresses, thermal temperature, and conductivity temperature. Numerical results for the considered variables are given and illustrated graphically in the absence and presence of a rotation as well as a mechanical force. A comparison is made with the results in the context of the two theories in the absence and presence of a moving internal heat source.
Hossain, Delowar; Samad, Abdus; Alam, Mahmud
2017-06-01
The ion-slip effects on unsteady MHD free convection flow past an infinite vertical porous plate with the effect of temperature stratified porous medium in a rotating system with viscous dissipation and Joule heating has been studied numerically. Introducing a time dependent suction to the plate, a similarity procedure has been adopted by taking a time dependent similarity parameter. The governing differential equations are transformed by introducing usual similarity variables. The resultant equations are solved numerically using Runge-Kutta method along with shooting technique. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters entering into the problem.
Dierckman, Brian D; Ni, Jake J; Karzel, Ronald P; Getelman, Mark H
2017-06-24
This study evaluated the repair integrity and patient clinical outcomes following arthroscopic rotator cuff repair of medium to large rotator cuff tears using a single-row technique consisting of medially based, triple-loaded anchors augmented with bone marrow vents in the rotator cuff footprint lateral to the repair. This is a retrospective study of 52 patients (53 shoulders) comprising 36 males and 16 females with a median age of 62 (range 44-82) with more than 24-month follow-up, tears between 2 and 4 cm in the anterior-posterior dimension and utilizing triple-loaded anchors. Mann-Whitney test compared Western Ontario Rotator Cuff (WORC) outcome scores between patients with healed and re-torn cuff repairs. Multivariate logistic regression analysed association of variables with healing status and WORC score. Cuff integrity was assessed on MRI, read by a musculoskeletal fellowship-trained radiologist. Magnetic resonance imaging (MRI) demonstrated an intact repair in 48 of 53 shoulders (91%). The overall median WORC score was 95.7 (range 27.6-100.0). A significant difference in WORC scores were seen between patients with healed repairs 96.7 (range 56.7-100.0) compared with a re-tear 64.6 (27.6-73.8), p rotator cuff tears using a triple-loaded single-row repair augmented with bone marrow vents resulted in a 91% healing rate by MRI and excellent patient reported clinical outcomes comparable to similar reported results in the literature. IV.
Strijker, G.; Beekman, F.; Bertotti, G.; Luthi, S.M.
2013-01-01
Stress distributions and deformation patterns in a medium with a pre-existing fracture set are analyzed as a function of the remote compressive stress orientation (σH) using finite element models with increasingly complex fracture configurations. Slip along the fractures causes deformation localizat
Strijker, G.; Beekman, F.; Bertotti, G.; Luthi, S.M.
2013-01-01
Stress distributions and deformation patterns in a medium with a pre-existing fracture set are analyzed as a function of the remote compressive stress orientation (σH) using finite element models with increasingly complex fracture configurations. Slip along the fractures causes deformation
Krishna, M. Veera; Swarnalathamma, B. V.
2017-07-01
We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.
Garg B.P.
2015-02-01
Full Text Available An analysis of an oscillatory magnetohydrodynamic (MHD convective flow of a second order (viscoelastic, incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .
A. K. Satpati
2011-01-01
Full Text Available Dissolution characteristics of copper in hydrochloric acid medium and the effect of 4-amino 1,2,4-triazole (ATA on the corrosion process have been studied using conventional electrochemical techniques and rotating ring-disc electrodes (RRDEs. Corrosion potential (corr and corrosion current density (corr were obtained by Tafel extrapolation methods. Charge transfer resistance (ct and double-layer capacitance (dl were obtained from the electrochemical impedance spectroscopy (EIS. ATA was shown to be an effective inhibitor for the copper-corrosion inhibition in acid medium. The corrosion rate was retarded in presence of inhibitors mainly because of the adsorption of the inhibitor on the electrode surface. Adsorption of the inhibitor on the metal surface was found to follow the Langmuir adsorption isotherm. Standard free energy change of the adsorption process (Δ0ad was calculated to be −54.3 kJ mol−1; such a large negative value of Δ0ad suggests the prescence of a chemisorption process.
You, Chenghang; Zheng, Ruiping; Shu, Ting; Liu, Lina; Liao, Shijun
2016-08-01
A highly porous N self-doped carbon catalyst, with three dimensional morphology/structures and high surface area (810.8 m2 g-1), is prepared through a pyrolysis procedure with polyacrylonitrile as the precursor, and zinc oxide (ZnO) as the templates/pore former. The catalyst exhibits excellent activity and stability towards oxygen reduction reaction (ORR) in alkaline medium, as well as outstanding methanol tolerance and stability. For our optimal catalyst PAC/ZnO-900, its half-wave potential is 26 mV more positive (0.859 V, vs. RHE) than that of commercial Pt/C catalyst (0.833 V, vs. RHE), and its current density at 0.88 V (vs. RHE) is almost twice as high as that of Pt/C catalyst (-1.922 and -0.957 mA cm-2, respectively). It is found that the addition of ZnO plays a crucial role for the formation of catalysts' 3D porous structures and high ORR performance. With the addition of ZnO in precursor, the surface area of the catalyst is enhanced by 13 times, and the ORR activity is enhanced by 10 times. Also, pyrolyzing temperature seems to be another important factor significantly affected the structure and performance of the catalyst.
Preparation and Application of New Porous Environmental Ceramics Filter Medium
LI Meng; WU Jianfeng; JIN Jianhua; LIU Xinming
2005-01-01
A new kind of environmental ceramics medium which was made of industrial solid wastes discharged by Shandong Alum Corporation has been used in the process of drinking water treatment. New techniques were introduced to ensure its remarkable advantages such as high porosity and strength. The results of practical application show that this sort of filter medium has shorter filtration run, shorter mature period and higher filter deposit capability compared with traditional sand filter medium. Moreover, up to 25%- 30% of the daily running costs are expected to be reduced by using this ceramics medium.
Toelle, Brian E.
Among the most important properties controlling the production from conventional oil and gas reservoirs is the distribution of porosity and permeability within the producing geologic formation. The geometry of the pore space within these reservoirs, and the permeability associated with this pore space geometry, impacts not only where production can occur and at what flow rates but can also have significant influence on many other rock properties. Zones of high matrix porosity can result in an isotropic response for certain reservoir properties whereas aligned porosity/permeability, such as open, natural fracture trends, have been shown to result in reservoirs being anisotropic in many properties. The ability to identify zones within a subsurface reservoir where porosity/permeability is significantly higher and to characterize them according to their geometries would be of great significance when planning where new boreholes, particularly horizontal boreholes, should be drilled. The detection and characterization of these high porosity/permeability zones using their isotropic and anisotropic responses may be possible through the analysis of azimuthal (also referred to as azimuth-limited) 3D seismic volumes. During this study the porosity/permeability systems of a carbonate, pinnacle reef within the northern Michigan Basin undergoing enhanced oil recovery were investigated using selected seismic attributes extracted from azimuthal 3D seismic volumes. Based on the response of these seismic attributes an interpretation of the geometry of the porosity/permeability system within the reef was made. This interpretation was supported by well data that had been obtained during the primary production phase of the field. Additionally, 4D seismic data, obtained as part of the CO2 based EOR project, supported reservoir simulation results that were based on the porosity/permeability interpretation.
Childs, Peter R N
2010-01-01
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics
Lekner, John
2008-01-01
Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…
Poroelasticity of high porosity chalk under depletion
Andreassen, Katrine Alling; Fabricius, Ida Lykke
2013-01-01
levels of pore pressure. The chalk is oil-saturated Lixhe chalk from a quarry near Liège, Belgium, with a general porosity of 45%. Additionally, we compare the theoretical lateral stress to the experimentally determined lateral stress at the onset of pore collapse. The static Biot coefficient based...
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
FABRICATION OF POROUS ALUMINA CERAMICS WITH HIGH POROSITY AND HIGH STRENGTH%高气孔率及高强度多孔氧化铝陶瓷的制备
刘伟渊; 汪长安; 周立忠; 黄勇
2008-01-01
In an ultra low solid loading slurry system constituted of tert-butyl alcohol,acrylamide and alumina powder,the influences of different dispersants and pH values on the slurry theology were investigated.When the dispersant is citric acid with a pH value of around 6,alumina slurry with 1 0%(in volume)solid loading exhibits the lowest viscosity.Since tert-butyl alcohol is extremely easy to volatilize,porous alumina ceramics with high porosity and high strength Were successfully fabricated by the gel-casting method.The effects of solid loading and sintering temperature on the porosity and compressive strength were also researched.The eompressive strength of sintered alumina ceramics with 74%porosity can over 8MPa.%在叔丁醇、丙烯酰胺、氧化铝组成的超低固相含量的浆料体系中,研究了分散剂、pH值等参数对浆料流变学性能的影响规律.采用柠檬酸作为分散剂、pH值约为6时,体积分数为10%的Al2O3浆料具有最低的黏度.利用叔丁醇极易挥发的特点,采用凝胶注模的工艺,制备了高气孔率及高强度的多孔氧化铝陶瓷,研究了固相含量和烧结温度对气孔率和压缩强度的影响规律,当气孔率为74%时,多孔氧化铝陶瓷的压缩强度在8MPa以上.
Vacuum squeezing in atomic media with self-rotation
Matsko, A B; Scully, M O; Welch, G R; Budker, D; Kimball, D F; Rochester, S M; Yashchuk, V V
2002-01-01
When linearly polarized light propagates through a medium which causes self-rotation of elliptically polarized light, squeezed vacuum is produced in the orthogonal polarization. A simple relationship between the self-rotation angle for a given ellipticity and the degree of squeezing is developed. Taking into account absorption, we find the optimum condition for squeezing for any medium which causes self-rotation. Next, we analyze squeezing when the medium consists of a vapor of idealized, four-level atoms. Finally, we consider a medium consisting of a gas of multi-level Rb atoms, and analyze squeezing for light tuned near the D-lines under realistic conditions.
Optimizing of Culture Conditionin Horizontal Rotating Bioreactor
无
2005-01-01
1 IntroductionBioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world. 2 Rotating bioreactors2.1 Working principleThere are two kinds of horizontal rotating bioreactor: HARV(high aspect ratio vessel) and RCCS (rotary cell culture system). It is drived by step motor with horizontal rotation, the culture medium and cell is filled between ...
Helical Locomotion in a Granular Medium
Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco
2017-08-01
The physical mechanisms that bring about the propulsion of a rotating helix in a granular medium are considered. A propulsive motion along the axis of the rotating helix is induced by both symmetry breaking due to the helical shape, and the anisotropic frictional forces undergone by all segments of the helix in the medium. Helix dynamics is studied as a function of helix rotation speed and its geometrical parameters. The effect of the granular pressure and the applied external load were also investigated. A theoretical model is developed based on the anisotropic frictional force experienced by a slender body moving in a granular material, to account for the translation speed of the helix. A good agreement with experimental data is obtained, which allows for predicting the helix design to propel optimally within granular media. These results pave the way for the development of an efficient sand robot operating according to this mode of locomotion.
Vorticity production through rotation, shear and baroclinicity
Del Sordo, Fabio; Brandenburg, Axel
2010-01-01
In the absence of rotation and shear, and under the assumption of constant temperature or specific entropy, purely potential forcing by localized expansion waves is known to produce irrotational flows that have no vorticity. Here we study the production of vorticity under idealized conditions when there is rotation, shear, or baroclinicity, to address the problem of vorticity generation in the interstellar medium in a systematic fashion. We use three-dimensional periodic box numerical simulat...
Inwardly rotating spirals in nonuniform excitable media.
Gao, Xiang; Feng, Xia; Cai, Mei-chun; Li, Bing-wei; Ying, He-ping; Zhang, Hong
2012-01-01
Inwardly rotating spirals (IRSs) have attracted great attention since their observation in an oscillatory reaction-diffusion system. However, IRSs have not yet been reported in planar excitable media. In the present work we investigate rotating waves in a nonuniform excitable medium, consisting of an inner disk part surrounded by an outer ring part with different excitabilities, by numerical simulations of a simple FitzHugh-Nagumo model. Depending on the excitability of the medium as well as the inhomogeneity, we find the occurrence of IRSs, of which the excitation propagates inwardly to the geometrical spiral tip.
Rotational spectroscopy of interstellar PAHs
Ali-Haïmoud, Yacine
2013-01-01
Polycyclic aromatic hydrocarbons (PAHs) have long been part of the standard model of the interstellar medium, and are believed to play important roles in its physics and chemistry. Yet, up to now it has not been possible to identify any specific molecule among them. In this paper, a new observational avenue is suggested to detect individual PAHs, using their rotational line emission at radio frequencies. Previous PAH searches based on rotational spectroscopy have only targeted the bowl-shaped corannulene molecule, with the underlying assumption that other polar PAHs are triaxial and as a consequence their rotational emission is diluted over a very large number of lines and unusable for detection purposes. In this paper the rotational spectrum of quasi-symmetric PAHs is computed analytically, as a function of the level of triaxiality. It is shown that the asymmetry of planar, nitrogen-substituted symmetric PAHs is small enough that their rotational spectrum, when observed with a resolution of about a MHz, has ...
... this page: //medlineplus.gov/ency/patientinstructions/000357.htm Rotator cuff exercises To use the sharing features on this ... gov/pubmed/25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder ...
Rotating Cavitation Supression Project
National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating...
Measurement of the Optical Rotation Angle Using a Rotating-Wave-Plate Stokes Polarimeter
Chang C.C.
2010-06-01
Full Text Available A polarimeter based on Stokes-Mueller formalism and rotating-wave-plate Stokes polarimeter is successfully developed to measure the optical rotation angle in a chiral medium. The average relative error in the measured rotation angles of glucose solutions with concentrations ranging from 0 to 1.2g/dl is determined to be 3.78%. The correlation coefficient between the measured rotation angle and the glucose concentration is found to be 0.9995, while the standard deviation is just 0.00376 degrees. From the sol-gel materials containing C17H17ClO6 with concentrations ranging from 0 to 0.0665g/ml, the average relative error in the measured rotation angles is determined to be 3.63%. Consequently, the developed system is evaluated with a precision of 5.4% approximately in rotation angle measurement.
The Evolution of Circumstellar Medium around Rotating Massive Stars
S. M. Chitã
2007-01-01
Full Text Available Una estrella rotante de 12 M , despu es de su evoluci on de secuencia principal, se convierte en una supergigante roja cuando empieza el quemado de helio en el n ucleo. Durante el quemado de helio en el n ucleo, y como consecuencia de la variaci on en la e cacia del quemado de hidr ogeno en capa, la estrella pasa por el llamado \\lazo azul", i.e., esta evoluciona hacia una fase de supergigante azul, donde agota el quemado del helio en el n ucleo para convertirse de nuevo en una supergigante roja, antes de explotar como supernova. Nosotros intentamos explicar las estructuras en Sher 25 y SN 1987A a trav es de la asimetr a en el viento debida a la rotaci on. Usamos un modelo de evoluci on estelar que nos provee de los par ametros del viento dependientes del tiempo, tales como la velocidad del viento y su raz on de p erdida de masa. Estos par ametros sirven como entradas para simulaciones hidrodin amicas del medio circunestelar. El lazo azul causa una estructura muy asf erica debido a la rotaci on, mientras que las fases de secuencia principal y supergigante roja son b asicamente esf ericas. Se concluye que la asimetr a de Sher 25 puede ser explicada mediante la rotaci on estelar
Collisional quenching of highly rotationally excited HF
Yang, Benhui; Forrey, R C; Stancil, P C; Balakrishnan, N
2015-01-01
Collisional excitation rate coefficients play an important role in the dynamics of energy transfer in the interstellar medium. In particular, accurate rotational excitation rates are needed to interpret microwave and infrared observations of the interstellar gas for nonlocal thermodynamic equilibrium line formation. Theoretical cross sections and rate coefficients for collisional deexcitation of rotationally excited HF in the vibrational ground state are reported. The quantum-mechanical close-coupling approach implemented in the nonreactive scattering code MOLSCAT was applied in the cross section and rate coefficient calculations on an accurate 2D HF-He potential energy surface. Estimates of rate coefficients for H and H$_2$ colliders were obtained from the HF-He collisional data with a reduced-potential scaling approach. The calculation of state-to-state rotational quenching cross sections for HF due to He with initial rotational levels up to $j=20$ were performed for kinetic energies from 10$^{-5}$ to 15000...
Rotation planar extraction and rotation planar chromatography of oak (Quercus robur L.) bark.
Vovk, Irena; Simonovska, Breda; Andrensek, Samo; Vuorela, Heikki; Vuorela, Pia
2003-04-04
The versatile novel instrument for rotation planar extraction and rotation planar chromatography was exploited for the investigation of oak bark (Quercus robur L.). The same instrument enabled extraction of the bark, analytical proof of (+)-catechin directly in the crude extract and also its fractionation. Additionally, epimeric flavan-3-ols, (+)-catechin and (-)-epicatechin were separated by analytical ultra-micro rotation planar chromatography on cellulose plates with pure water as developing solvent. A comparison of the extraction of oak bark with 80% aqueous methanol by rotation planar extraction and medium pressure solid-liquid extraction was carried out and both techniques were shown to be suitable for the efficient extraction of oak bark. The raw extracts and fractions on thin-layer chromatography showed many compounds that possessed antioxidant activity after spraying with 1,1-diphenyl-2-picrylhydrazyl. Rotation planar fractionation of 840 mg of crude oak bark extract on silica gel gave 6.7 mg of pure (+)-catechin in one run.
U Mosel
2006-04-01
In these lectures I first give the motivation for investigations of in-medium properties of hadrons. I discuss the relevant symmetries of QCD and how they might affect the observed hadron properties. I then discuss at length the observable consequences of in-medium changes of hadronic properties in reactions with elementary probes, and in particular photons, on nuclei. Here I put an emphasis on new experiments on changes of the - and -mesons in medium.
Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling
Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.
1999-01-01
We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.
Rotator cuff repair - slideshow
... this page: //medlineplus.gov/ency/presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing ... to slide 4 out of 4 Overview The rotator cuff is a group of muscles and tendons that ...
Gramkow, Claus
1999-01-01
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...
孟元林; 周振东; 肖丽华; 刘文慧; 孟凡晋; 梁伯勋; 王建伟; 潘雪梅; 田伟志; 王维安; 丁桂霞
2011-01-01
为了解松辽盆地低孔低渗背景下优质储集层的形成和分布,文中应用岩心实测孔隙度、测井孔隙度以及铸体薄片等资料,研究了松辽盆地徐家围子断陷异常高孔带的分布特征及其成因.结果表明,松辽盆地北部纵向上发育3个异常高孔带(ⅰ-ⅲ),其深度分布范围分别为600～2350 m、2500～3500 m、3600～4400m,对应的孔隙度分别为12% ～ 35% ,6% ～ 28% ,5% ～ 20%.第ⅰ高孔带主要发育在中浅层,主要由Ⅰ、Ⅱ型干酪根形成的有机酸溶蚀砂岩储集层形成;第ⅱ、ⅲ异常高孔带发育在深层,主要由Ⅲ型干酪根产生的大量有机酸溶蚀砂砾岩储集层和火山岩储集层形成,大气水淋滤作用也有一定贡献.此外,裂缝和岩相对徐家围子断陷深层异常高孔带的形成具有特别重要的意义.%In order to identify the formation and distribution of high-quality reservoir under the conditions of low porosity and low permeability reservoirs, the distributions and origins of the anomalously high.porosity zones of the Xujiaweizi Fault Depression in the northern Songliao Basin were studied by using the data of measured porosity, logging porosity, thin sections, blue epoxy resin-impregnated thin sections and SEM. As the results show, there are three anomalously high porosity zones at depths of 600 ～ 2350 m,2500～3500 m, 3600 ～4000 m respectively, with porosity ranges of 12％ ～35％, 6％ ～28％, 5％ ～20％ correspondingly in the northern Songliao Basin. The first anomalously high porosity zone is distributed in the middle-shallow horizon, mainly formed by organic acids generated from kerogen I and IⅡ dissolving sandstone reservoirs. The second and the third ones are distributed in the deep horizons, formed by organic acid generated from kerogen ⅢI dissolving volcanic reservoirs and conglomerate reservoirs, and meteoric water leaching is important too. Moreover, fracture, lithology and lithofacies are of
Edwards, D. Gareth
1984-01-01
Examines the effect in the primary and secondary school levels of teaching through the medium of Welsh and the response of the University of Wales. The media and the educational system are two formal social organizations which help the threatened Welsh language to survive. Another would be the establishment of a Welsh-medium university. (SED)
Kuipers, G.; Ritzer, G.
2012-01-01
"The medium is the message" is a phrase coined by Canadian media theorist Marshall McLuhan (1911-1980), in his book Understanding Media: The Extensions of Man (1964). In this book, McLuhan examines the impact of media on societies and human relations, arguing for the primacy of the medium -
Kuipers, G.; Ritzer, G.
2012-01-01
"The medium is the message" is a phrase coined by Canadian media theorist Marshall McLuhan (1911-1980), in his book Understanding Media: The Extensions of Man (1964). In this book, McLuhan examines the impact of media on societies and human relations, arguing for the primacy of the medium - understo
Rotations with Rodrigues' Vector
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
Gramkow, Claus
2001-01-01
In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
Stokowski, Stanley E.
1989-01-01
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Experimental investigation of a rapidly rotating turbulent duct flow
Maartensson, G.E.; Johansson, A.V. [Department of Mechanics, KTH, 10044 Stockholm (Sweden); Gunnarsson, J. [Bombardier Transportation, Vaesteraas (Sweden); Moberg, H. [Alfa Laval, 14780 Tumba (Sweden)
2002-09-01
Rapidly rotating duct flow is studied experimentally with Rotation numbers in the interval. To achieve this, in combination with relatively high Reynolds numbers (5,000-30,000 based on the hydraulic radius), water was used as the working medium. Square and rectangular duct cross-sections were used and the angle between the rotation vector and the main axis of the duct was varied. The influence of the rotation on the pressure drop in the duct was investigated and suitable scalings of this quantity were studied. (orig.)
Effect of rotation on ferro thermohaline convection
Sekar, R; Ramanathan, A
2000-01-01
The ferro thermohaline convection in a rotating medium heated from below and salted from above has been analysed. The solute is magnetic oxide, which modifies the magnetic field established as a perturbation. The effect of salinity has been included in magnetisation and in the density of the ferrofluid. The conditions for both stationary and oscillatory modes have been obtained using linear stability analysis and it has been found that stationary mode is favoured in comparison with oscillatory mode. The numerical and graphical results are presented. It has been observed that rotation stabilises the system.
Risk matrix model for rotating equipment
Wassan Rano Khan
2014-07-01
Full Text Available Different industries have various residual risk levels for their rotating equipment. Accordingly the occurrence rate of the failures and associated failure consequences categories are different. Thus, a generalized risk matrix model is developed in this study which can fit various available risk matrix standards. This generalized risk matrix will be helpful to develop new risk matrix, to fit the required risk assessment scenario for rotating equipment. Power generation system was taken as case study. It was observed that eight subsystems were under risk. Only vibration monitor system was under high risk category, while remaining seven subsystems were under serious and medium risk categories.
Stochl, Jan; Croudace, Tim
2013-01-01
Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.
Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard
2013-01-01
to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases......This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...... the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...
Manolopoulou, Maria
2016-01-01
We study the possible rotation of cluster galaxies, developing, testing and applying a novel algorithm which identifies rotation, if such does exits, as well as its rotational centre, its axis orientation, rotational velocity amplitude and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte-Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z<~0.1 with member galaxies selected from the SDSS DR10 spectroscopic database. We find that ~35% of our clusters are rotating when using a set of strict criteria, while loosening the criteria we find this fraction increasing to ~48%. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation that the significance and strength of their...
Bjerrum, Peter
2005-01-01
The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program......The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program...
Defined medium for Moraxella bovis.
Juni, E; Heym, G A
1986-01-01
A defined medium (medium MB) for Moraxella bovis was formulated. Nineteen strains grew well on medium MB. One strain was auxotrophic for asparagine, and another was auxotrophic for methionine. Strains of M. equi and M. lacunata also grew on medium MB. All strains had an absolute requirement for thiamine and were stimulated by or actually required the other growth factors in the medium.
Defined medium for Moraxella bovis.
Juni, E; Heym, G A
1986-10-01
A defined medium (medium MB) for Moraxella bovis was formulated. Nineteen strains grew well on medium MB. One strain was auxotrophic for asparagine, and another was auxotrophic for methionine. Strains of M. equi and M. lacunata also grew on medium MB. All strains had an absolute requirement for thiamine and were stimulated by or actually required the other growth factors in the medium.
Defined medium for Moraxella bovis.
1986-01-01
A defined medium (medium MB) for Moraxella bovis was formulated. Nineteen strains grew well on medium MB. One strain was auxotrophic for asparagine, and another was auxotrophic for methionine. Strains of M. equi and M. lacunata also grew on medium MB. All strains had an absolute requirement for thiamine and were stimulated by or actually required the other growth factors in the medium.
Vorticity production through rotation, shear and baroclinicity
Del Sordo, Fabio
2010-01-01
In the absence of rotation and shear, and under the assumption of constant temperature or specific entropy, purely potential forcing by localized expansion waves is known to produce irrotational flows that have no vorticity. Here we study the production of vorticity under idealized conditions when there is rotation, shear, or baroclinicity, to address the problem of vorticity generation in the interstellar medium in a systematic fashion. We use three-dimensional periodic box numerical simulations to investigate the various effects in isolation. We find that for slow rotation, vorticity production in an isothermal gas is small in the sense that the ratio of the root-mean-square values of vorticity and velocity is small compared with the wavenumber of the energy carrying motions. For Coriolis numbers above a certain level, vorticity production saturates at a value where the aforementioned ratio becomes comparable with the wavenumber of the energy carrying motions. Shear also raises the vorticity production, but...
Faraday rotation measure synthesis of UGC 10288
Kamieneski, Patrick; Wang, Q. Daniel; Pare, Dylan; Sullivan, Kendall
2017-01-01
Faraday rotation measure synthesis is a powerful tool that has been employed in the past decade when studying line-of-sight magnetic fields of galactic and extragalactic sources. Rotation measures, which are sensitive to the strength and direction of fields in an intervening medium between the source and observer, were classically determined by assuming a single, uniform Faraday-rotating medium. Rotation measure synthesis, on the other hand, is a more robust method that allows for probing a more complicated scenario. We will outline results from a study of magnetic field structure in the disk and halo of edge-on galaxy UGC 10288, using 6 cm and 20 cm observations from CHANG-ES (Continuum Halos in Nearby Galaxies - an EVLA Survey). The presence of a strongly polarized complex background source situated perpendicular to the foreground disk allows for an investigation of the disk-halo magnetic fields of UGC 10288. In particular, we present evidence of magnetic field reversals above the plane of the disk. This finding is not easily explained solely by the prevailing α-Ω dynamo mechanism. Rather, a field reversal may be indicative of different parities of the poloidal field components for the individual disk and halo mechanisms.
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
Erosion dynamics of a wet granular medium.
Lefebvre, Gautier; Jop, Pierre
2013-09-01
Liquid may give strong cohesion properties to a granular medium, and confer a solidlike behavior. We study the erosion of a fixed circular aggregate of wet granular matter subjected to a flow of dry grains inside a half-filled rotating drum. During the rotation, the dry grains flow around the fixed obstacle. We show that its diameter decreases linearly with time for low liquid content, as wet grains are pulled out of the aggregate. This erosion phenomenon is governed by the properties of the liquids. The erosion rate decreases exponentially with the surface tension while it depends on the viscosity to the power -1. We propose a model based on the force fluctuations arising inside the flow, explaining both dependencies: The capillary force acts as a threshold and the viscosity controls the erosion time scale. We also provide experiments using different flowing grains, confirming our model.
Turbulent boundary layer measurements over high-porosity surfaces
Efstathiou, Christoph; Luhar, Mitul
2016-11-01
Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.
Deconstructing Mental Rotation
Larsen, Axel
2014-01-01
A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...... alignment take place during fixations at very high speed....
Philip E. Pope; Jeffery O. Dawson
1989-01-01
Short-rotation plantations offer several advantages over longer, more traditional rotations. They enhance the natural productivity of better sites and of tree species with rapid juvenile growth. Returns on investment are realized in a shorter period and the risk of loss is reduced compared with long term investments. Production of wood and fiber can be maximized by...
Faraday rotation measure synthesis
Brentjens, MA; de Bruyn, AG
2005-01-01
We extend the rotation measure work of Burn ( 1966, MNRAS, 133, 67) to the cases of limited sampling of lambda(2) space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n pi ambiguity problems with the lambda(2) coverag
Le Vine, David
2016-01-01
Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).
De Lorenci, V A
1996-01-01
We investigate which mapping we have to use to compare measurements made in a rotating frame to those made in an inertial frame. Using a "Lorentz-like" coordinate transformation we obtain that creation-anihilation operators of a massless scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state (a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. After this, introducing an apparatus device coupled linearly with the field we obtain that there is a strong correlation between number of rotating particles (in a given state) obtained via canonical quantization and via response function of the rotating detector. Finally, we analyse polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view.
Uniformly rotating neutron stars
Boshkayev, Kuantay
2016-01-01
In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...
Bjerrum, Peter
2003-01-01
The present essays is an attempt to dertermine the architecural project of the 21st century in realation to a modern conception of space as the medium of architecture, and of society as its program. This attempt adopts the internal point of view of an architect in describing a modern architectural...
Efficient Distributed Medium Access
Shah, Devavrat; Tetali, Prasad
2011-01-01
Consider a wireless network of n nodes represented by a graph G=(V, E) where an edge (i,j) models the fact that transmissions of i and j interfere with each other, i.e. simultaneous transmissions of i and j become unsuccessful. Hence it is required that at each time instance a set of non-interfering nodes (corresponding to an independent set in G) access the wireless medium. To utilize wireless resources efficiently, it is required to arbitrate the access of medium among interfering nodes properly. Moreover, to be of practical use, such a mechanism is required to be totally distributed as well as simple. As the main result of this paper, we provide such a medium access algorithm. It is randomized, totally distributed and simple: each node attempts to access medium at each time with probability that is a function of its local information. We establish efficiency of the algorithm by showing that the corresponding network Markov chain is positive recurrent as long as the demand imposed on the network can be supp...
The Facility and Process Technics of Polyethylene Rotational Molding
无
2001-01-01
@@ 1. Introduction Rotational molding is the process by which hollow plastic parts are formed. It mainly processes the product which Injection molding and Blow molding can not process medium-sized, large-sized and super large-sized plastic parts. The technics may turn out a tub, dustbin, stock tank, sailboat. The research institute of Lanzhou introduces a suit of RS-16 Rotational Molding Machine from Germany Reinhadt Co. on 1990. It mainly put up experiment and smallscale production. RS-16 rotational molding machine is a single arm and di-axial equipment. It is consisting of a gas heated sintering oven, cooling chamber, mouldcarrying carriage and a controlling unit.
Binzel, R. P.; Green, J. R.; Opal, C. B.
1986-01-01
Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.
Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-11-01
It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.
Redfield, S
2006-01-01
The Local Interstellar Medium (LISM) is a unique environment that presents an opportunity to study general interstellar phenomena in great detail and in three dimensions. In particular, high resolution optical and ultraviolet spectroscopy have proven to be powerful tools for addressing fundamental questions concerning the physical conditions and three-dimensional (3D) morphology of this local material. After reviewing our current understanding of the structure of gas in the solar neighborhood, I will discuss the influence that the LISM can have on stellar and planetary systems, including LISM dust deposition onto planetary atmospheres and the modulation of galactic cosmic rays through the astrosphere - the balancing interface between the outward pressure of the magnetized stellar wind and the inward pressure of the surrounding interstellar medium. On Earth, galactic cosmic rays may play a role as contributors to ozone layer chemistry, planetary electrical discharge frequency, biological mutation rates, and cl...
Zhao, Xingbo
2012-01-01
We investigate charmonium production in the hot medium created by heavy-ion collisions by setting up a framework in which in-medium charmonium properties are constrained by thermal lattice QCD (lQCD) and subsequently implemented into kinetic approaches. A Boltzmann transport equation is employed to describe the time evolution of the charmonium phase space distribution with the loss and gain term accounting for charmonium dissociation and regeneration (from charm quarks), respectively. The momentum dependence of the charmonium dissociation rate is worked out. The dominant process for in-medium charmonium regeneration is found to be a 3-to-2 process. Its corresponding regeneration rates from different input charm-quark momentum spectra are evaluated. Experimental data on $J/\\psi$ production at CERN-SPS and BNL-RHIC are compared with our numerical results in terms of both rapidity-dependent inclusive yields and transverse momentum ($p_t$) spectra. Within current uncertainties from (interpreting) lQCD data and fr...
... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...
Fractal Aggregation Under Rotation
WU Feng-Min; WU Li-Li; LU Hang-Jun; LI Qiao-Wen; YE Gao-Xiang
2004-01-01
By means of the Monte Carlo simulation, a fractal growth model is introduced to describe diffusion-limited aggregation (DLA) under rotation. Patterns which are different from the classical DLA model are observed and the fractal dimension of such clusters is calculated. It is found that the pattern of the clusters and their fractal dimension depend strongly on the rotation velocity of the diffusing particle. Our results indicate the transition from fractal to non-fractal behavior of growing cluster with increasing rotation velocity, i.e. for small enough angular velocity ω the fractal dimension decreases with increasing ω, but then, with increasing rotation velocity, the fractal dimension increases and the cluster becomes compact and tends to non-fractal.
Fractal Aggregation Under Rotation
WUFeng-Min; WULi-Li; LUHang-Jun; LIQiao-Wen; YEGao-Xiang
2004-01-01
By means of the Monte Carlo simulation, a fractal growth model is introduced to describe diffusion-limited aggregation (DLA) under rotation. Patterns which are different from the classical DLA model are observed and the fractal dimension of such clusters is calculated. It is found that the pattern of the clusters and their fractal dimension depend strongly on the rotation velocity of the diffusing particle. Our results indicate the transition from fractal to non-fractal behavior of growing cluster with increasing rotation velocity, i.e. for small enough angular velocity ω; thefractal dimension decreases with increasing ω;, but then, with increasing rotation velocity, the fractal dimension increases and the cluster becomes compact and tends to non-fractal.
Solar rotation gravitational moments
A. Ajabshirizadeh
2005-09-01
Full Text Available Gravitational multipole moments of the Sun are still poorly known. Theoretically, the difficulty is mainly due to the differential rotation for which the velocity rate varies both on the surface and with the depth. From an observational point of view, the multipole moments cannot be directly measured. However, recent progresses have been made proving the existence of a strong radial differential rotation in a thin layer near the solar surface (the leptocline. Applying the theory of rotating stars, we will first compute values of J2 and J4 taking into account the radial gradient of rotation, then we will compare these values with the existing ones, giving a more complete review. We will explain some astrophysical outcomes, mainly on the relativistic Post Newtonian parameters. Finally we will conclude by indicating how space experiments (balloon SDS flights, Golf NG, Beppi-Colombo, Gaia... will be essential to unambiguously determine these parameters.
Green function of an electromagnetic field in cylindrically symmetric inhomogeneous medium
Grigorian, L S; Saharian, A A
1995-01-01
The Green function of classical electromagnetic field is derived for a medium consisting of an arbitrary number of coaxial cylindrical layers. As an application of the general formula the radiation intensity from a charged particle, rotating around the cylinder surrounded by a homogeneous medium, is calculated. 9 refs.
Electromagnetic rotational actuation.
Hogan, Alexander Lee
2010-08-01
There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.
Rotational spectrum of phenylglycinol
Simão, Alcides; Peña, Isabel; Cabezas, Carlos; Alonso, José L.
2014-11-01
Solid samples of phenylglycinol were vaporized by laser ablation and investigated through rotational spectroscopy in a supersonic expansion using two different techniques: chirped pulse Fourier transform microwave spectroscopy and narrow band molecular beam Fourier transform microwave spectroscopy. One conformer, bearing an O-H···N and an N-H···π intramolecular hydrogen bonds, could be successfully identified by comparison of the experimental rotational and 14N nuclear quadruple coupling constants with those predicted theoretically.
Earth rotation and geodynamics
Bogusz Janusz; Brzezinski Aleksander; Kosek Wieslaw; Nastula Jolanta
2015-01-01
This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals wit...
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
Haider, H; Athar, M Sajjad; Vacas, M J Vicente
2011-01-01
We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.
Economic investigations of short rotation intensively cultured hybrid poplars
David C. Lothner
1983-01-01
The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of $25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...
Regenerative Medicine in Rotator Cuff Injuries
Pietro Randelli
2014-01-01
Full Text Available Rotator cuff injuries are a common source of shoulder pathology and result in an important decrease in quality of patient life. Given the frequency of these injuries, as well as the relatively poor result of surgical intervention, it is not surprising that new and innovative strategies like tissue engineering have become more appealing. Tissue-engineering strategies involve the use of cells and/or bioactive factors to promote tendon regeneration via natural processes. The ability of numerous growth factors to affect tendon healing has been extensively analyzed in vitro and in animal models, showing promising results. Platelet-rich plasma (PRP is a whole blood fraction which contains several growth factors. Controlled clinical studies using different autologous PRP formulations have provided controversial results. However, favourable structural healing rates have been observed for surgical repair of small and medium rotator cuff tears. Cell-based approaches have also been suggested to enhance tendon healing. Bone marrow is a well known source of mesenchymal stem cells (MSCs. Recently, ex vivo human studies have isolated and cultured distinct populations of MSCs from rotator cuff tendons, long head of the biceps tendon, subacromial bursa, and glenohumeral synovia. Stem cells therapies represent a novel frontier in the management of rotator cuff disease that required further basic and clinical research.
Regenerative Medicine in Rotator Cuff Injuries
Randelli, Pietro; Ragone, Vincenza; Menon, Alessandra; Cabitza, Paolo; Banfi, Giuseppe
2014-01-01
Rotator cuff injuries are a common source of shoulder pathology and result in an important decrease in quality of patient life. Given the frequency of these injuries, as well as the relatively poor result of surgical intervention, it is not surprising that new and innovative strategies like tissue engineering have become more appealing. Tissue-engineering strategies involve the use of cells and/or bioactive factors to promote tendon regeneration via natural processes. The ability of numerous growth factors to affect tendon healing has been extensively analyzed in vitro and in animal models, showing promising results. Platelet-rich plasma (PRP) is a whole blood fraction which contains several growth factors. Controlled clinical studies using different autologous PRP formulations have provided controversial results. However, favourable structural healing rates have been observed for surgical repair of small and medium rotator cuff tears. Cell-based approaches have also been suggested to enhance tendon healing. Bone marrow is a well known source of mesenchymal stem cells (MSCs). Recently, ex vivo human studies have isolated and cultured distinct populations of MSCs from rotator cuff tendons, long head of the biceps tendon, subacromial bursa, and glenohumeral synovia. Stem cells therapies represent a novel frontier in the management of rotator cuff disease that required further basic and clinical research. PMID:25184132
Streaming potential near a rotating porous disk.
Prieve, Dennis C; Sides, Paul J
2014-09-23
Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.
Faraday rotation assisted by linearly polarized light
Choi, Jai Min; Kim, Jang Myun; Cho, D.
2007-11-01
We demonstrate a type of chiral effect of an atomic medium. Polarization rotation of a probe beam is observed only when both a magnetic field and a linearly polarized coupling beam are present. We compare it with other chiral effects like optical activity, the Faraday effect, and the optically induced Faraday effect from the viewpoint of spatial inversion and time reversal transformations. As a theoretical model we consider a five-level configuration involving the cesium D2 transition. We use spin-polarized cold cesium atoms trapped in a magneto-optical trap to measure the polarization rotation versus probe detuning. The result shows reasonable agreement with a calculation from the master equation of the five-level configuration.
Gehan, Charlotte; Michel, Eric
2016-01-01
Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the id...
DENSE MEDIUM CYCLONE OPTIMIZATON
Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood
2005-06-30
Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
Chiral Rotational Spectroscopy
Cameron, Robert P; Barnett, Stephen M
2015-01-01
We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.
Chiral rotational spectroscopy
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.
2016-09-01
We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.
Dorbolo, Stephane; Adami, Nicolas; Grasp Team
2014-11-01
The motion of ice discs released at the surface of a thermalized bath was investigated. As observed in some rare events in the Nature, the discs start spinning spontaneously. The motor of this motion is the cooling of the water close to the ice disc. As the density of water is maximum at 4°C, a downwards flow is generated from the surface of the ice block to the bottom. This flow generates the rotation of the disc. The speed of rotation depends on the mass of the ice disc and on the temperature of the bath. A model has been constructed to study the influence of the temperature of the bath. Finally, ice discs were put on a metallic plate. Again, a spontaneous rotation was observed. FNRS is thanked for financial support.
Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel
1997-01-01
The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...
Rotation of cometary meteoroids
Capek, David
2014-01-01
The aim of this study is to estimate the rotational characteristics of meteoroids after their release from a comet during normal activity. The results can serve as initial conditions for further analyses of subsequent evolution of rotation in the interplanetary space. A sophisticated numerical model was applied to meteoroids ejected from 2P/Encke comet. The meteoroid shapes were approximated by polyhedrons with several thousands of surface elements, which have been determined by 3D laser scanning method of 36 terrestrial rock samples. These samples came from three distinct sets with different origin and shape characteristics. Two types of gas-meteoroid interactions (diffuse and specular reflection of gas molecules from the surface of meteoroid) and three gas ejection models (leading to very different ejection velocities) were assumed. The rotational characteristics of ejected meteoroid population were obtained by numerical integration of equations of motion with random initial conditions and random shape sele...
Cherenkov radiation in moving medium
2010-01-01
Cherenkov radiation in uniformly moving homogenous isotropic medium without dispersion is studied. Formula for the spectrum of Cherenkov radiation of fermion was derived for the case when the speed of the medium is less than the speed of light in this medium at rest. The properties of Cherenkov spectrum are investigated.
Fermion dispersion in axion medium
Mikheev, N. V.; Narynskaya, E. N.
2008-01-01
The interaction of a fermion with the dense axion medium is investigated for the purpose of finding an axion medium effect on the fermion dispersion. It is shown that axion medium influence on the fermion dispersion under astrophysical conditions is negligible small if the correct Lagrangian of the axion-fermion interaction is used.
Natural frequencies of rotating disk-like structures submerged viewed from the stationary frame
Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Seidel, Ulrich; Weber, Wilhelm
2016-11-01
To understand the effect of rotation in the dynamic response of pump-turbine runners, simplified models such as disk-like structures can be used. In previous researches the natural frequencies and mode shapes of rotating disk-like structures submerged and confined have been analysed from the rotating frame. Nevertheless to measure these parameters experimentally from the rotating point of view can be a difficult task, since sensors have to withstand with large forces and dynamic loads. In this paper the dynamic response of rotating disk-like structures is analysed from the stationary frame. For this purpose an experimental test rig has been used. It consists on a disk confined that rotates inside a tank. The disk is excited with a PZT attached on it and the response is measured from both rotating frame (with miniature accelerometers) and from the stationary frame (with a Laser Doppler Vibrometer). In this way the natural frequencies and mode shapes of the rotating structure can be determined from the stationary reference frame. The transmission from the rotating to the stationary frame is compared for the case that the rotating structure rotates in a low density medium (air) and in a high density medium (water).
Horizontally rotated cell culture system with a coaxial tubular oxygenator
Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)
1991-01-01
The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.
Gupta, Shulabh
2015-01-01
Dispersion is at the heart of all ultrafast real-time signal processing systems across the entire electromagnetic spectrum ranging from radio-frequencies to optics. However, following Kramer-Kronig relations, these signal processing systems have been plagued with the parasitic amplitude distortions due to frequency dependent, and non-flat amplitude transmission of naturally dispersive media. This issue puts a serious limitation on the applicability and performance of these signal processing systems. To solve the above mentioned issue, a perfect dispersive medium is proposed in this work, which artificially violates the Kramer-Kronig relations, while satisfying all causality requirements. The proposed dispersive metamaterial is based on loss-gain metasurface pairs and exhibit a perfectly flat transmission response along with arbitrary dispersion in a broad bandwidth, thereby solving a seemingly unavoidable issue in all ultrafast signal processing systems. Such a metamaterial is further shown using sub-waveleng...
Haider, H; Athar, M Sajjad; Vacas, M J Vicente
2011-01-01
Nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ have been studied for deep inelastic neutrino/antineutrino reactions in iron nucleus by taking into account Fermi motion, binding, pion and rho meson cloud contributions, target mass correction, shadowing and anti-shadowing corrections. The calculations have been performed in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. Using these structure functions we have obtained the ratio $R_{F2,F3}^A(x,Q^2)= \\frac{2F_{2,3}^A(x,Q^2)}{AF_{2,3}^D(x,Q^2)}$, the differential scattering cross section $\\frac{1}{E}\\frac{d^2\\sigma}{dxdy}$ and the total scattering cross section $\\sigma$. The results of our numerical calculations in $^{56}Fe$ are compared with the experimental results of NuTeV and CDHSW collaborations.
Effect of rotation on a rotating hot-wire sensor
Hah, C.; Lakshminarayana, B.
1978-01-01
An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).
Rasmusson, Allan
2009-01-01
The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest befo...
Connors, G. Patrick
Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…
Connors, G. Patrick
Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…
Compact rotating cup anemometer
Wellman, J. B.
1968-01-01
Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.
Davies, Paul Charles William; Manogue, C A; Davies, Paul C W; Dray, Tevian; Manogue, Corinne A
1996-01-01
We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to their motion. Applications involving possible violations of the second law of thermodynamics are briefly addressed.
Rotationally Actuated Prosthetic Hand
Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.
1991-01-01
Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.
SPIRE spectroscopy of the interstellar medium
Habart, E.; Dartois, E.; Abergel, A.; Baluteau, J.-P.; Naylor, D.; Polehampton, E.; Joblin, C.
2010-12-01
The SPIRE Fourier Transform Spectrometer on-board Herschel allows us, for the first time, to simultaneously measure the complete far-infrared spectrum from 194 to 671 μm. A wealth of rotational lines of CO (and its isotopologues), fine structure lines of C^0 and N^+, and emission lines from radicals and molecules has been observed towards several galactic regions and nearby galaxies. The strengths of the atomic and molecular lines place fundamental constraints on the physical conditions but also the chemistry of the interstellar medium. FTS mapping capabilities are also extremely powerful in characterizing the spatial morphology of the extended region and understand how the gas properties vary within the studied region. Here, we present a first analysis of SPIRE spectroscopic observations of the prototypical Orion Bar photodissociation region.
A medium resolution fingerprint matching system
Ayman Mohammad Bahaa-Eldin
2013-09-01
Full Text Available In this paper, a novel minutiae based fingerprint matching system is proposed. The system is suitable for medium resolution fingerprint images obtained by low cost commercial sensors. The paper presents a new thinning algorithm, a new features extraction and representation, and a novel feature distance matching algorithm. The proposed system is rotation and translation invariant and is suitable for complete or partial fingerprint matching. The proposed algorithms are optimized to be executed on low resource environments both in CPU power and memory space. The system was evaluated using a standard fingerprint dataset and good performance and accuracy were achieved under certain image quality requirements. In addition, the proposed system was compared favorably to that of the state of the art systems.
Wave-driven Rotation in Supersonically Rotating Mirrors
A. Fetterman and N.J. Fisch
2010-02-15
Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.
Madau, P
2000-01-01
About half a million years after the Big Bang, the ever-fading cosmic blackbody radiation cooled below 3000 K and shifted first into the infrared and then into the radio, and the smooth baryonic plasma that filled the Universe became neutral. The Universe then entered a ``dark age'' which persisted until the first cosmic structures collapsed into gravitationally-bound systems, and evolved into stars, galaxies, and black holes that lit up the Universe again. Some time between redshift of 7 and 15, stars within protogalaxies created the first heavy elements; these systems, together perhaps with an early population of quasars, generated the ultraviolet radiation that reheated and reionized the cosmos. The history of the Universe during and soon after these crucial formative stages is recorded in the all-pervading intergalactic medium (IGM), which is believed to contain most of the ordinary baryonic material left over from the Big Bang. Throughout the epoch of structure formation, the IGM becomes clumpy and acqui...
The mechanics clarifying counterclockwise rotation in most IVF eggs in mice
Ishimoto, Kenta; Ikawa, Masahito; Okabe, Masaru
2017-01-01
In mammalian fertilization, a small spermatozoon interacts with an egg that is a few thousand times larger in volume. In spite of the big difference in size and mass, when spermatozoa are bound to eggs, they begin rotating the eggs in in vitro observation. This was dubbed the ‘fertilization dance’. Interestingly, some papers reported that the rotation was counterclockwise, although the reason for this skewed rotation was not clarified. We focused on a chirality of helical beating of spermatozoa and found that eggs rotate counterclockwise in simulations under a certain geometrical condition where the eggs were situated. This theory of egg rotation was validated by demonstrating egg rotation in a clockwise direction by floating eggs to the upper surface of the IVF medium. The enigma of skewed rotation of IVF eggs was clarified. PMID:28256541
Monitoring Vibration of A Model of Rotating Machine
Arko Djajadi
2012-03-01
Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level.
Rotator Cuff Injuries - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...
S. Wittig
1998-01-01
Full Text Available Cooling of high speed rotating components is a typical situation found in turbomachinery as well as in automobile engines. Accurate knowledge of discharge coefficients and heat transfer of related components is essential for the high performance of the whole engine. This can be achieved by minimized cooling air flows and avoidance of hot spots. In high speed rotating clutches for example aerodynamic investigations improving heat transfer have not been considered in the past. Advanced concepts of modern plate design try to reduce thermal loads by convective cooling methods. Therefore, secondary cooling air flows have to be enhanced by an appropriate design of the rotor stator system with orifices. CFD modelling is used to improve the basic understanding of the flow field in typical geometries used in these systems.
Rasmusson, Allan
2009-01-01
is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region...
Earth rotation and geodynamics
Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta
2015-12-01
This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.
Rotational spectrum of tryptophan
Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)
2014-05-28
The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.
Rotational Spectrum of Tryptophan
Sanz, M. Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, José L.
2014-06-01
The rotational spectrum of the natural amino acid tryptophan has been observed using a recently constructed LA-MB-FTMW spectrometer, specifically designed to optimize the detection of heavier molecules at a lower frequency range. Independent analyses of the rotational spectra of individual conformers have conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The experimental values of the 14N nuclear quadrupole coupling constants have been found capital in the discrimination of the conformers. Both observed conformers are stabilized by a O-H\\cdotsN hydrogen bond in the side chain and a N-H\\cdotsπ interaction forming a chain that reinforces the strength of hydrogen bonds through cooperative effects.
A Translational Polarization Rotator
Chuss, David T; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah
2012-01-01
We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident linear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.
Costella, J P; Rawlinson, A A; Costella, John P.; Kellar, Bruce H. J. Mc; Rawlinson, Andrew A.
2001-01-01
We review why the Thomas rotation is a crucial facet of special relativity, that is just as fundamental, and just as "unintuitive" and "paradoxical", as such traditional effects as length contraction, time dilation, and the ambiguity of simultaneity. We show how this phenomenon can be quite naturally introduced and investigated in the context of a typical introductory course on special relativity, in a way that is appropriate for, and completely accessible to, undergraduate students. We also demonstrate, in a more advanced section aimed at the graduate student studying the Dirac equation and relativistic quantum field theory, that careful consideration of the Thomas rotation will become vital as modern experiments in particle physics continue to move from unpolarized to polarized cross-sections.
Rotator cuff tendon connections with the rotator cable.
Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo
2017-07-01
The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.
Unified matrix approach to the description of phase-space rotators.
Gitin, Andrey V
2016-03-01
In optics, the rotation of a phase-space can be realized via light propagation through both an inhomogeneous medium with a radial gradient of refractive index and two special kinds of mirror-symmetrical optical systems suggested by Lohmann. Although light propagation through Lohmann's systems is described in terms of matrix optics, light propagation through the gradient-index medium is traditionally described as a solution of the wave equation. The difference in these descriptions hinders the understanding of the phase-space rotators. Fortunately, there is a matrix description of light propagation through a gradient-index medium too. A general description of the phase-space rotators is presented, which can be used to treat light propagation through both Lohmann's systems and the gradient-index medium in a unified matrix manner.
Properties of Rotating Neutron Star
Shailesh K. Singh
2015-08-01
Full Text Available Using the nuclear equation of states for a large variety of relativistic and non-relativistic force parameters, we calculate the static and rotating masses and radii of neutron stars. From these equation of states, we evaluate the properties of rotating neutron stars, such as rotational frequencies, moment of inertia, quadrupole deformation parameter, rotational ellipticity and gravitational wave strain amplitude. The estimated gravitational wave strain amplitude of the star is found to be~sim 10-23.
Broadband Rotational Spectroscopy
Pate, Brooks
2014-06-01
The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De
Allouche, Erez; Jaganathan, Arun P.
2016-10-11
The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.
Dobrovolskis, Anthony R.; Cuzzi, Jeffrey N. (Technical Monitor)
1995-01-01
The shape and spin of Neptune's outermost satellite Nereid are still unknown. Ground-based photometry indicates large brightness variations, but different observers report very different lightcurve amplitudes and periods. On the contrary, Voyager 2 images spanning 12 days show no evidence of variations greater than 0.1 mag. The latter suggest either that Nereid is nearly spherical, or that it is rotating slowly. We propose that tides have already despun Nereid's rotation to a period of a few weeks, during the time before the capture of Triton when Nereid was closer to Neptune. Since Nereid reached its present orbit, tides have further despun Nereid to a period on the order of a month. For Nereid's orbital eccentricity of 0.75, tidal evolution ceases when the spin period is still approximately 1/8 of the orbital period. Furthermore, the synchronous resonance becomes quite weak for such high eccentricities, along with other low-order spin orbit commensurabilities. In contrast, high-order resonances become very strong particularly the 6:1, 6.5:1, 7:1, 7.5:1, and 8:1 spin states. If Nereid departs by more than approximately 1% from a sphere, however, these resonances overlap, generating chaos. Our simulations show that Nereid is likely to be in chaotic rotation for any spin period longer than about 2 weeks.
Lee, S.Y.
1990-06-18
The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10{sup {minus}4} will be significant. 2 refs., 5 figs.
Bioreactor rotating wall vessel
2001-01-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.
Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn
2013-04-25
The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.
Bioreactor rotating wall vessel
2001-01-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.
Anomalous Faraday rotation in the ISM/ICM
Medvedev, Mikhail V.
2016-10-01
Faraday effect is a common and useful way to deduce cosmic magnetic fields in the interstellar and intracluster media (ISM and ICM). Faraday rotation is the result of magnetically-induced birefringence in a dielectric medium causing a linearly polarized wave to suffer a rotation of its polarization axis as it traverses such a medium. However, the standard λ2-law of the rotation angle may not hold in strongly turbulent plasmas. Electromagnetic high-frequency and/or small-scale fluctuations may lead to effective collisionality with the pitch-angle diffusion coefficient being an effective ``quasi-collision'' frequency. Recently, we showed that quasi-collisionality may radically alter radiative transport properties of plasmas, such as absorption, transmission and reflection and other effects, which can be very important in laboratory and astrophysical plasmas. Here we briefly discuss the quasi-collisional generalization of the classical Faraday effect, which is drastically modified and can even become negative. Furthermore, we explore the origin of the long-known anomaly of Faraday rotation in a famous Cygnus regions. We argue that the anomaly can be due to the anomalous Faraday rotation in a thin ``blanket'' of turbulent plasma at the front of an interstellar bubble/shock. Supported by KU CLAS and DOE Grant ID0000225143 (07/01/16).
Coordinate-Free Rotation Operator.
Leubner, C.
1979-01-01
Suggests the use of a coordinate-free rotation operator for the teaching of rotations in Euclidean three space because of its twofold didactic advantage. Illustrates the potentialities of the coordinate-free rotation operator approach by a number of examples. (Author/GA)
Trenkler, G.; Trenkler, D.
2008-01-01
Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by…
Differentially Rotating White Dwarfs I: Regimes of Internal Rotation
Ghosh, Pranab; Wheeler, J. Craig
2017-01-01
Most viable models of Type Ia supernovae (SNe Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SNe Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super-Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly uniform rotation and strongly differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri ≤slant 0.1, we find both the low-viscosity Zahn regime with a nonmonotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin–Helmholtz viscosity alone yields differential rotation. Large values of Ri ≫ 1 produce a regime of nearly uniform rotation for which the baroclinic viscosity is of intermediate value and scales as {σ }3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.
Stable ring resonator with bidirectional passes through the gain medium
Paxton, Alan H.; Miller, Harold C.
2014-03-01
Ring resonators have unique properties that are sometimes desirable. Spatial hole burning is eliminated. Beam transformation, such as image rotation which may reduce the magnitude of certain aberrations, can be implemented in a traveling-wave region. There is a drawback, however. As usually constructed, a ring resonator has half as many passes through the gain medium as can be achieved with a standing-wave resonator. This may have a detrimental effect on laser efficiency. We have constructed a type of ring resonator that allows counterpropagating collinear passes through the gain medium, while there is also a section with a unidirectional beam. The resonator includes a polarizing beam splitter. The linear polarization is transformed to the orthogonal state by optical elements at the two ends of the region with counter-propagating beams. The beams passing through the gain medium in opposite directions are linearly polarized with orthogonal states.
Rotation of cometary meteoroids
Čapek, D.
2014-08-01
Aims: The rotation of meteoroids caused by gas drag during the ejection from a cometary nucleus has not been studied yet. The aim of this study is to estimate the rotational characteristics of meteoroids after their release from a comet during normal activity. Methods: The basic dependence of spin rate on ejection velocity and meteoroid size is determined analytically. A sophisticated numerical model is then applied to meteoroids ejected from the 2P/Encke comet. The meteoroid shapes are approximated by polyhedrons, which have been determined by a 3D laser scanning method of 36 terrestrial rock samples. These samples come from three distinct sets with different origins and characteristics, such as surface roughness or angularity. Two types of gas-meteoroid interactions and three gas ejection models are assumed. The rotational characteristics of ejected meteoroid population are obtained by numerical integration of equations of motion with random initial conditions and random shape selection. Results: It is proved that the results do not depend on a specific set of shape models and that they are applicable to the (unknown) shapes of real meteoroids. A simple relationship between the median of meteoroid spin frequencies bar{f} (Hz), ejection velocities vej (m s-1), and sizes D (m) is determined. For diffuse reflection of gas molecules from meteoroid's surface it reads as bar{f≃ 2× 10-3 v_ej D-0.88}, and for specular reflection of gas molecules from meteoroid's surface it is bar{f≃ 5× 10-3 v_ej D-0.88}. The distribution of spin frequencies is roughly normal on log scale, and it is relatively wide: a 2σ-interval can be described as (0.1, 10)× bar{f}. Most of the meteoroids are non-principal axis rotators. The median angle between angular momentum vector and spin vector is 12°. About 60% of meteoroids rotate in long-axis mode. The distribution of angular momentum vectors is not random. They are concentrated in the perpendicular direction with respect to the gas
CISM Course on Rotating Fluids
1992-01-01
The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.
Counter-Rotating Accretion Discs
Dyda, Sergei; Lovelace, Richard V. E.; Ustyugova, Galina V.; Romanova, Marina M.; Koldoba, Alexander V.
2014-01-01
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the tw...
Upper medium segment cooling down
2008-01-01
<正>The sluggish growth of the passenger car market in top provinces was also reflected in a depression of the upper medium segment. In Jan-Apr, 2008, the top 3 upper medium models accounting for nearly 40% of this segment performed poorly, with the Passat-Lingyu and the Accord decreasing. The Camry also saw a decrease in three top provinces: Guangdong,
Medialized repair for retracted rotator cuff tears.
Kim, Young-Kyu; Jung, Kyu-Hak; Won, Jun-Sung; Cho, Seung-Hyun
2017-08-01
The purpose of this study was to evaluate the functional outcomes of medialized rotator cuff repair and the continuity of repaired tendon in chronic retracted rotator cuff tears. Thirty-five consecutive patients were selected from 153 cases that underwent arthroscopic rotator cuff repair for more than medium-sized posterosuperior rotator cuff tears between July 2009 and July 2012 performed with the medialized repair. All cases were available for at least 2 years of postoperative follow-up. The visual analog scale of pain, muscle strength, Constant score, American Shoulder and Elbow Surgeons (ASES) score, and University of California-Los Angeles score were evaluated. At the final follow-up, all clinical outcomes were significantly improved. The visual analog scale score for pain improved from 6 ± 1 preoperatively to 2 ± 1 postoperatively. The range of motion increased from preoperatively to postoperatively: active forward elevation, from 134° ± 49° to 150° ± 16°; active external rotation at the side, from 47° ± 15° to 55° ± 10°; and active internal rotation, from L3 to L1. The shoulder score also improved: Constant score, from 53.5 ± 16.7 to 79 ± 10; American Shoulder and Elbow Surgeons score, from 51 ± 15 to 82 ± 8; and University of California-Los Angeles score, from 14 ± 4 to 28 ± 4. The retear cases at the final follow-up were 6 (17%). Medialized repair may be useful in cases in which anatomic bone-to-tendon repair would be difficult because of the excessive tension of the repaired tendon and a torn tendon that does not reach the anatomic insertion. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Le Doeuff, René
2013-01-01
In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives). General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I
Optical fiber rotation sensing
Burns, William K; Kelley, Paul
1993-01-01
Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t
Zeps, Dainis
2009-01-01
Using a notation of corner between edges when graph has a fixed rotation, i.e. cyclical order of edges around vertices, we define combinatorial objects - combinatorial maps as pairs of permutations, one for vertices and one for faces. Further, we define multiplication of these objects, that coincides with the multiplication of permutations. We consider closed under multiplication classes of combinatorial maps that consist of closed classes of combinatorial maps with fixed edges where each such class is defined by a knot. One class among them is special, containing selfconjugate maps.
Soft initial-rotation and HΦ robust constant rotational speed control for rotational MEMS gyro
Ma Gaoyin; Chen Wenyuan; Cui Feng; Zhang Weiping; Wang Liqi
2009-01-01
A novel soft initial-rotation control system and an Hoo robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10-3 rad/s order.
Rotation of artificial rotor axles in rotary molecular motors.
Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken
2016-10-04
F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.
Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer
2016-11-01
For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.
Bambi, Cosimo
2013-01-01
The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type ...
Gregory, Ruth; Wills, Danielle
2013-01-01
A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that a such a system displays much richer phenomenology than its static Schwarzschild or Reissner--Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: Large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is con...
Rotge, J. R.; Simmons, B. J.; Kroncke, G. T.; Stech, D. J.
1986-05-01
Research efforts were concentrated on passive ring laser rotation sensor technology. Initial efforts were performed on supportive projects, e.g., laser stabilization, followed by a 0.62 sq m passive resonant ring laser gyro (PRRLG), leading to the development of a 60 sq m system mounted on the pneumatically supported isolation test platform (Iso-Pad) at FJSRL. Numerous sub-system tasks and a feasibility 0.62 sq m PRRLG were completed, supporting projections of very high resolution performance by a large 60 sq m PRRLG. The expected performance of the large PRRLG, on the order of 10 to the minus 10th power ERU (earth rate units), would provide an accurate error model applicable to Air Force operational ring laser gyros, a new source of geophysical data, e.g., earth wobble and variations in earth rotation, a proven design concept applicable to Air Force sensor needs as reference to MX instruments tests, and relativity experiments. This report documents the many accomplishments leading to, and the status of the large PRRLG at the date of the PRRLG stop order, November 1985.
Kissin, Yevgeni
2015-01-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches and the partitioning of angular momentum between the outer and inner envelope. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag as well as the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles $\\Omega(r)$ is considered in the deep convective envelope, ranging from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force on the inward pumping of angular momentum, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core ro...
Rotational Spectrum of Saccharine
Alonso, Elena R.; Mata, Santiago; Alonso, José L.
2017-06-01
A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).
Moo-Yeon Lee
2012-01-01
Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.
Bifurcations of rotating waves in rotating spherical shell convection.
Feudel, F; Tuckerman, L S; Gellert, M; Seehafer, N
2015-11-01
The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.
Visualizing rotations and composition of rotations with the Rodrigues vector
Valdenebro, Angel G.
2016-11-01
The purpose of this paper is to show that the mathematical treatment of three-dimensional rotations can be simplified, and its geometrical understanding improved, using the Rodrigues vector representation. We present a novel geometrical interpretation of the Rodrigues vector. Based on this interpretation and simple geometrical considerations, we derive the Euler-Rodrigues formula, Cayley’s rotation formula and the composition law for finite rotations. The level of this discussion should be suitable for undergraduate physics or engineering courses where rotations are discussed.
Hedegård, Erik D.; Jensen, Frank; Kongsted, Jacob
2012-01-01
of the optical rotation to the basis set limits for nine small or medium sized molecules, using basis sets developed specifically for DFT and magnetic properties (aug-pcS-n series). We suggest that assignment of absolute configuration by comparisons between theoretical and experimental optical rotations may......Even for pure substances, the deduction of the absolute configuration is not always straightforward since there is no direct link between the magnitude and sign of the optical rotation and the absolute configuration. It would be very useful to use computations of the optical rotation to link...... experimentally measured optical rotations to an absolute configuration. Such electronic structure calculations of the optical rotation typically employ regular energy optimized basis sets from wave function theory, and especially the aug-cc-pVDZ basis set has been popular. Here, we have carried out extrapolation...
An improved holographic recording medium
Gange, R. A.
1973-01-01
Solid, linear chain hydrocarbons with molecular weight ranging from about 300 to 2000 can serve as long-lived recording medium in optical memory system. Suitable recording hydrocarbons include microcrystalline waxes and low molecular weight polymers or ethylene.
Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?
De Colle, Fabio; Riera, Angels
2016-01-01
Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could ...
The Facility and Process Technics of Polyethylene Rotational Molding
LI; BaiShun
2001-01-01
1. Introduction Rotational molding is the process by which hollow plastic parts are formed. It mainly processes the product which Injection molding and Blow molding can not process medium-sized, large-sized and super large-sized plastic parts. The technics may turn out a tub, dustbin, stock tank, sailboat. The research institute of Lanzhou introduces a suit of RS-16 Rotational Molding Machine from Germany Reinhadt Co. on 1990. It mainly put up experiment and smallscale production. RS-16 rotational molding machine is a single arm and di-axial equipment. It is consisting of a gas heated sintering oven, cooling chamber, mouldcarrying carriage and a controlling unit. ……
Triaxial rotation in atomic nuclei
CHEN Yong-Shou; GAO Zao-Chun
2009-01-01
The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.
Optical anisotropy of schwarzschild metric within equivalent medium framework
Khorasani, Sina; Rashidian, Bizhan
2010-04-01
It is has been long known that the curved space in the presence of gravitation can be described as a non-homogeneous anisotropic medium in flat geometry with different constitutive equations. In this article, we show that the eigenpolarizations of such medium can be exactly solved, leading to a pseudo-isotropic description of curved vacuum with two refractive index eigenvalues having opposite signs, which correspond to forward and backward travel in time. We conclude that for a rotating universe, time-reversal symmetry is broken. We also demonstrate the applicability of this method to Schwarzschild metric and derive exact forms of refractive index. We derive the subtle optical anisotropy of space around a spherically symmetric, non-rotating and uncharged blackhole in the form of an elegant closed-form expression, and show that the refractive index in such a pseudo-isotropic system would be a function of coordinates as well as the direction of propagation. Corrections arising from such anisotropy in the bending of light are shown and a simplified system of equations for ray-tracing in the equivalent medium of Schwarzschild metric is found.
Rotations, quaternions, and double groups
Altmann, Simon L
2005-01-01
This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g
Electronic Control Of Slow Rotations
Howard, David E.; Smith, Dennis A.
1992-01-01
Digital/analog circuit controls both angular position and speed of rotation of motor shaft with high precision. Locks angular position of motor to phase of rotation-command clock signal at binary submultiple of master clock signal. Circuit or modified version used to control precisely position and velocity of robotic manipulator, to control translation mechanism of crystal-growing furnace, to position hands of mechanical clock, or to control angular position and rate of rotation in any of large variety of rotating mechanisms.
Hanasoge, Shravan M.; Duvall, Thomas L., Jr.; Sreenivasan, Katepalli R.
2012-01-01
Convection in the solar interior is thought to comprise structures at a continuum of scales, from large to small. This conclusion emerges from phenomenological studies and numerical simulations though neither covers the proper range of dynamical parameters of solar convection. In the present work, imaging techniques of time-distance helioseismology applied to observational data reveal no long-range order in the convective motion. We conservatively bound the associated velocity magnitudes, as a function of depth and the spherical-harmonic degree l to be 20-100 times weaker than prevailing estimates within the wavenumber band l ux of a solar luminosity outwards? The Sun is seemingly a much faster rotator than previously thought, with advection dominated by Coriolis forces at scales l < 60.
Cohen, S.A.; Budny, R.V.; Corso, V.; Boychuck, J.; Grisham, L.; Heifetz, D.; Hosea, J.; Luyber, S.; Loprest, P.; Manos, D.
1984-07-01
A limiter with a specially contoured front face and the ability to rotate during tokamak discharges has been installed in a PLT pump duct. These features have been selected to handle the unique particle removal and heat load requirements of ICRF heating and lower-hybrid current-drive experiments. The limiter has been conditioned and commissioned in an ion-beam test stand by irradiation with 1 MW power, 200 ms duration beams of 40 keV hydrogen ions. Operation in PLT during ohmic discharges has proven the ability of the limiter to reduce localized heating caused by energetic electron bombardment and to remove about 2% of the ions lost to the PLT walls and limiters.
Rotational Baroclinic Adjustment
Holtegård Nielsen, Steen Morten
In stratified waters like those around Denmark there is a close correlation between the biology of the water masses and their structure and currents; this is known as dynamic biologicaloceanography. The currents are particularly strong near the fronts, which can be seen in several places throughout...... the reciprocal of the socalled Coriolis parameter, and the length scale, which is known as the Rossby radius. Also, because of their limited width currents influenced by rotation are quite persistent. The flow which results from the introduction of a surface level discontinuity across a wide channel is discussed...... of the numerical model a mechanism for the generation of along-frontal instabilities and eddies is suggested. Also, the effect of an irregular bathymetry is studied.Together with observations of wind and water levels some of the oceanographical observations from the old lightvessels are used to study...
Sporcularda rotator cuff problemleri
Guven, Osman; Guven, Zeynep; Gundes, Hakan; Yalcin, Selim
2004-01-01
Rotator cuff tendinitinin etyolojisinde genellikle birden çok faktörün kombinasyonu görülür. Yüzme, raket sporları ve fırlatma sporlarının özellikle gelişmiş ülkelerde giderek yaygınlaşması bu konuya olan ilginin artmasına sebep olmuştur. Eski konseptlerde aktif bir sporcuda tedavinin başarısı genellikle eski atletik seviyesine dönmesi ile ölçülürdü. Son zamanlarda atletik tekniklerin analizi, atroskopik evaluasyon gibi yeni bir Iükse sahip olmamız ve Iiteratürün yeniden gözden geçirilmesi il...
Electromagnetic instabilities in rotating magnetized viscous objects
Nekrasov, Anatoly
2009-01-01
We study electromagnetic streaming instabilities in thermal viscous regions of rotating astrophysical objects, such as, magnetized accretion disks, molecular clouds, their cores, and elephant trunks. The obtained results can also be applied to any regions of interstellar medium, where different equilibrium velocities between charged species can arise. We consider a weakly ionized multicomponent plasma consisting of neutrals and magnetized electrons, ions, and dust grains. The effect of perturbation of collisional frequencies due to density perturbations of species is taken into account. We obtain general expressions for perturbed velocities of species involving the thermal pressure and viscosity in the case in which perturbations propagate perpendicular to the background magnetic field. The dispersion relation is derived and investigated for axisymmetric perturbations. New compressible instabilities generated due to different equilibrium velocities of different charged species are found in the cold and therma...
Magnetic field tomography and differential Faraday rotation
Horellou, Cathy
2014-01-01
Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along its propagation path). In order to proceed reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper we examine how variations of the intrinsic angle of polarized emission chi0 with the Faraday depth phi within a source affect the observable quantities. Using simple models for the Faraday dispersion F(phi) and chi0(phi), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimised by combining observations in different wa...
Modeling rigid magnetically rotated microswimmers: rotation axes, bistability, and controllability.
Meshkati, Farshad; Fu, Henry Chien
2014-12-01
Magnetically actuated microswimmers have recently attracted attention due to many possible biomedical applications. In this study we investigate the dynamics of rigid magnetically rotated microswimmers with permanent magnetic dipoles. Our approach uses a boundary element method to calculate a mobility matrix, accurate for arbitrary geometries, which is then used to identify the steady periodically rotating orbits in a co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We map the magnetoviscous behavior as a function of dimensionless Mason number and as a function of the angle that the magnetic field makes with its rotation axis. We describe the wobbling motion of these swimmers by investigating how the rotation axis changes as a function of experimental parameters. We show that for a given magnetic field strength and rotation frequency, swimmers can have more than one stable periodic orbit with different rotation axes. Finally, we demonstrate that one can improve the controllability of these types of microswimmers by adjusting the relative angle between the magnetic field and its axis of rotation.
Regimes of Internal Rotation in Differentially Rotating White Dwarfs
Wheeler, J. Craig; Ghosh, Pranab
2017-01-01
Most viable models of Type Ia supernovae (SN Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri > 1 produce a regime of nearly-uniform rotation for which the baroclinic viscosity is of intermediate value and scales as σ3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.
Unidirectional Rotation of Molecules Measured by the Rotational Doppler Effect
Prior Yehiam
2013-03-01
Full Text Available A pair of linearly polarized pump pulses induce field-free unidirectional molecular rotation, which is detected by a delayed circularly polarized probe. The polarization and spectrum of the probe are modified by the interaction with the molecules, in accordance with the Rotational Doppler Effect.
Medium for presumptive identification of Yersinia enterocolitica.
Weagant, S D
1983-01-01
A medium, lysine-arginine-iron agar, was developed for the presumptive identification of Yersinia enterocolitica isolates. This medium was a modification of lysine-iron agar and allowed for the testing of five biochemical characteristics in a single tube medium. The reactions of Y. enterocolitica on this medium were reliable and distinctive. The medium significantly simplified the identification of Y. enterocolitica isolates.
Medium for presumptive identification of Yersinia enterocolitica.
Weagant, S D
1983-01-01
A medium, lysine-arginine-iron agar, was developed for the presumptive identification of Yersinia enterocolitica isolates. This medium was a modification of lysine-iron agar and allowed for the testing of five biochemical characteristics in a single tube medium. The reactions of Y. enterocolitica on this medium were reliable and distinctive. The medium significantly simplified the identification of Y. enterocolitica isolates.
Medium for presumptive identification of Yersinia enterocolitica.
Weagant, S D
1983-02-01
A medium, lysine-arginine-iron agar, was developed for the presumptive identification of Yersinia enterocolitica isolates. This medium was a modification of lysine-iron agar and allowed for the testing of five biochemical characteristics in a single tube medium. The reactions of Y. enterocolitica on this medium were reliable and distinctive. The medium significantly simplified the identification of Y. enterocolitica isolates.
AC electric field induced dipole-based on-chip 3D cell rotation.
Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui
2014-08-01
The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.
Trapped ion mode in toroidally rotating plasmas
Artun, M.; Tang, W.M.; Rewoldt, G.
1995-04-01
The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k{sub {tau}}{rho}{sub bi} {much_lt} 1, where {rho}{sub bi} is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented.
Quasilocal rotating conformal Killing horizons
Chatterjee, Ayan
2015-01-01
The formulation of quasi-local conformal Killling horizons(CKH) is extended to include rotation. This necessitates that the horizon be foliated by 2-spheres which may be distorted. Matter degrees of freedom which fall through the horizon is taken to be a real scalar field. We show that these rotating CKHs also admit a first law in differential form.
Rotation of the planet mercury.
Jefferys, W H
1966-04-08
The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.
KEPLER RAPIDLY ROTATING GIANT STARS
Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)
2015-07-10
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
Kepler rapidly rotating giant stars
Costa, A D; Bravo, J P; Paz-Chinchón, F; Chagas, M L das; Leão, I C; de Oliveira, G Pereira; da Silva, R Rodrigues; Roque, S; de Oliveira, L L A; da Silva, D Freire; De Medeiros, J R
2015-01-01
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
Slowly rotating homogeneous masses revisited
Reina, Borja
2015-01-01
Hartle's model for slowly rotating stars has been extensively used to compute equilibrium configurations of slowly rotating stars to second order in perturbation theory in General Relativity, given a barotropic equation of state (EOS). A recent study based on the modern theory of perturbed matchings show that the model must be amended to accommodate EOS's in which the energy density does not vanish at the surface of the non rotating star. In particular, the expression for the change in mass given in the original model, i.e. a contribution to the mass that arises when the perturbations are chosen so that the pressure of the rotating and non rotating configurations agree, must be modified with an additional term. In this paper, the amended change in mass is calculated for the case of constant density stars.
Bidirectional optical rotation of cells
Jiyi Wu
2017-08-01
Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.
Bidirectional optical rotation of cells
Wu, Jiyi; Zhang, Weina; Li, Juan
2017-08-01
Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.
Optomechanics for absolute rotation detection
Davuluri, Sankar
2016-07-01
In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.
Advances in Rotational Seismic Measurements
Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)
2016-10-19
Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.
Rotational superradiance in fluid laboratories
Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke
2016-01-01
Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.
The effect of Coriolis force on nonlinear convection in a porous medium
D. H. Riahi
1994-01-01
Full Text Available Nonlinear convection in a porous medium and rotating about vertical axis is studied in this paper. An upper bound to the heat flux is calculated by the method initiated first by Howard [6] for the case of infinite Prandtl number.
Rotational evolution of slow-rotators sequence stars
Lanzafame, Alessandro C
2015-01-01
The observed mass-age-rotation relationship in open clusters shows the progressive development of a slow-rotators sequence at masses lower than 1.2 $M_{\\odot}$. After 0.6 Gyr, almost all stars have settled on this sequence. The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, crucial to our understanding of the stellar angular momentum evolution. We couple a rotational evolution model that takes into account internal differential rotation with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov Chain method tailored to the case at hand. We explore the extent to which these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotators sequence. The description of the early evolution (0.1-0.6 Gyr) of the slow-rotators sequence requires taking into account the transfer of angular momentum f...
Kagome Hollow-Core Photonic Crystal Fiber Resonator for Rotation Sensing
Fsaifes, Ihsan; Debord, Benoît; Gérôme, Frédéric; Baz, Assaad; Humbert, Georges; Benabid, Fetah; Schwartz, Sylvain; Bretenaker, Fabien
2016-01-01
We investigate the performances of a Kagome Hollow-Core Photonic Crystal Fiber resonator for rotation sensing applications. The use of a large mode field diameter Kagome fiber permits to reduce the free space fiber-to-fiber coupling losses, allowing the realization of cavities with finesses compatible with the angular random walk required for medium to high performance rotation sensing, while minimizing the Kerr effect induced non reciprocities. Experiments show encouraging results that could lead to a compact, low cost, and robust medium for high performance gyroscope.
Magnetostrophic Rotating Magnetoconvection
King, Eric; Aurnou, Jonathan
2016-11-01
Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.
Asymmetric core-collapse of rapidly-rotating massive star
Gilkis, Avishai
2016-01-01
Non-axisymmetric features are found in the core-collapse of a rapidly-rotating massive star, which may have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly-rotating massive star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This process might contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity may induce strong r-process nucleosynthesis. The rapidly-rotating PNS possesses a rotational energy of E>10foe, some of which may possibly be deposited later on in the SN ejecta through a magnetar spin down process. These processes may be...
Rotationally resolved spectroscopy of dwarf planet (136472) Makemake
Lorenzi, V; Licandro, J
2015-01-01
Context. Icy dwarf planets are key for studying the chemical and physical states of ices in the outer solar system. The study of secular and rotational variations gives us hints of the processes that contribute to the evolution of their surface. Aims. The aim of this work is to search for rotational variability on the surface composition of the dwarf planet (136472) Makemake Methods. We observed Makemake in April 2008 with the medium-resolution spectrograph ISIS, at the William Herschel Telescope (La Palma, Spain) and obtained a set of spectra in the 0.28 - 0.52 {\\mu}m and 0.70 - 0.95 {\\mu}m ranges, covering 82% of its rotational period. For the rotational analysis, we organized the spectra in four different sets corresponding to different rotational phases, and after discarding one with low signal to noise, we analyzed three of them that cover 71% of the surface. For these spectra we computed the spectral slope and compared the observed spectral bands of methane ice with reflectances of pure methane ice to s...
Shin, Sang-Jin; Chung, Jaeyoon; Lee, Juyeob; Ko, Young-Won
2016-04-01
The recovery of muscle strength after arthroscopic rotator cuff repair based on the preoperative tear size has not yet been well described. The purpose of this study was to evaluate the recovery period of muscle strength by a serial assessment of isometric strength after arthroscopic rotator cuff repair based on the preoperative tear size. The hypothesis was that muscle strength in patients with small and medium tears would recover faster than that in those with large-to-massive tears. Cohort study; Level of evidence, 3. A total of 164 patients who underwent arthroscopic rotator cuff repair were included. Isometric strength in forward flexion (FF), internal rotation (IR), and external rotation (ER) was evaluated preoperatively and at 6, 12, 18, and 24 months after surgery. Preoperative magnetic resonance imaging scans were assessed to evaluate the quality of the rotator cuff muscle, including fatty infiltration, occupation ratio, and tangent sign. Patient satisfaction as well as visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons (ASES), and Constant scores were assessed at every follow-up. Muscle strength demonstrated the slowest recovery in pain relief and the restoration of shoulder function. To reach the strength of the uninjured contralateral shoulder in all 3 planes of motion, recovery took 6 months in patients with small tears and 18 months in patients with medium tears. Patients with large-to-massive tears showed continuous improvement in strength up to 18 months; however, they did not reach the strength of the contralateral shoulder at final follow-up. At final follow-up, mean strength in FF, IR, and ER was 113.0%, 118.0%, and 112.6% of the contralateral shoulder in patients with small tears, respectively; 105.0%, 112.1%, and 102.6% in patients with medium tears, respectively; and 87.6%, 89.5%, and 85.2% in patients with large-to-massive tears, respectively. Muscle strength in any direction did not significantly correlate with
de Melo, J P B C; El-Bennich, Bruno; Rojas, E; Frederico, T
2014-01-01
Using the light-front pion wave function based on a Bethe-Salpeter amplitude model, we study the properties of the pion in symmetric nuclear matter. The pion model we adopt is well constrained by previous studies to explain the pion properties in vacuum. In order to consistently incorporate the constituent up and down quarks of the pion immersed in symmetric nuclear matter, we use the quark-meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modifications of the pion lectromagnetic form factor, charge radius and weak decay constant in symmetric nuclear matter.
Ørum, Tania
2016-01-01
Danish avant-garde artists did not have the access to professional sound studios and public radio open to their colleagues in Swede, but they were equally interested in working with sound as a medium and in gaining acces to the electronic mass media. This essay examines one of the few experimenta...... series of sound art broadcast by Radio Denmark.......Danish avant-garde artists did not have the access to professional sound studios and public radio open to their colleagues in Swede, but they were equally interested in working with sound as a medium and in gaining acces to the electronic mass media. This essay examines one of the few experimental...
Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)
2015-08-15
The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.
Ikemoto,Roberto Yukio; Murachovsky, Joel; Nascimento, Luís Gustavo Prata; Bueno,Rogério Serpone; Almeida,Luis Henrique; Strose,Eric; Castiglia,Marcello Teixeira
2015-01-01
Objective: To evaluate the clinical and functional outcomes from arthroscopic repairs on small and medium-sized tears of the supraspinatus muscle tendon. Methods: 129 cases of isolated small and medium tears of the supraspinatus muscle tendon were evaluated retrospectively. The average duration of pain was 29 months. The average joint range of motion comprised active elevation of 136°, lateral rotation of 58° and medial rotation at T12 level; and the preoperative functional UCLA score average...
Micropropagation of dahlia in static liquid medium using slow-release tools of medium ingredients
Klerk, de G.J.M.; Brugge, ter J.
2011-01-01
Growth of dahlia shoots in vitro was ca. 4 times faster in liquid medium than on solidified medium. In liquid standard medium (3% sucrose, macroelements according to Driver–Kuniyuki Walnut medium, microelements according to Murashige–Skoog medium, 0.44 µM benzylaminopurine), the major medium
Micropropagation of dahlia in static liquid medium using slow-release tools of medium ingredients
Klerk, de G.J.M.; Brugge, ter J.
2011-01-01
Growth of dahlia shoots in vitro was ca. 4 times faster in liquid medium than on solidified medium. In liquid standard medium (3% sucrose, macroelements according to Driver–Kuniyuki Walnut medium, microelements according to Murashige–Skoog medium, 0.44 µM benzylaminopurine), the major medium ingredi
Micropropagation of dahlia in static liquid medium using slow-release tools of medium ingredients
Klerk, de G.J.M.; Brugge, ter J.
2011-01-01
Growth of dahlia shoots in vitro was ca. 4 times faster in liquid medium than on solidified medium. In liquid standard medium (3% sucrose, macroelements according to Driver–Kuniyuki Walnut medium, microelements according to Murashige–Skoog medium, 0.44 µM benzylaminopurine), the major medium ingredi
Medium Theory and Social Systems
Tække, Jesper
The paper first gives a tentative theoretical explanation of the concept of media, based on the dichotomies of actual/potential (meaning), form/medium (appearance), and substratum/material content (extension in time and space). This theoretical explanation presents...... the possibility for observation both of a social micro and a social macro level from a medium perspective. In the next section the paper frames the macro level by a tentative synthesis of the medium theory and the sociological systems theory briefly describing a socio...... seen as medium for formation. Finally the paper takes the micro level perspective by applying the theory to newsgroups, interpreting them as self-organizing interactive systems giving a differentiated and diversified scope for social inclusion. ...
Krein, Gastão [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 São Paulo, SP (Brazil)
2016-01-22
I review the present status in the theoretical and phenomenological understanding of hadron properties in strongly interacting matter. The topics covered are the EMC effect, nucleon structure functions in cold nuclear matter, spectral properties of light vector mesons in hot and cold nuclear matter, and in-medium properties of heavy flavored hadrons.
Invariant quantities of a Mueller matrix under rotation and retarder transformations
Gil, Jose J
2015-01-01
Mueller matrices are defined with respect to appropriate Cartesian reference frames for the representation of the states of polarization of the input and output electromagnetic waves. The polarimetric quantities that are invariant under rotations of the said reference frames about the respective directions of propagation (rotation transformations) provide particularly interesting physical information. Moreover, certain properties are also invariant with respect to the action of birefringent devices located at both sides of the medium under consideration (retarder transformations). The polarimetric properties that remain invariant under rotation and retarder transformations are analyzed and interpreted, providing significant parameterizations of Mueller matrices in terms of meaningful physical quantities.
On regular rotating black holes
Torres, R.; Fayos, F.
2017-01-01
Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.
On regular rotating black holes
Torres, Ramon
2016-01-01
Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.
Cooling system for rotating machine
Gerstler, William Dwight; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Alexander, James Pellegrino; Quirion, Owen Scott; Palafox, Pepe; Shen, Xiaochun; Salasoo, Lembit
2011-08-09
An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.
Motor processes in mental rotation
Wexler, Mark; Kosslyn, Stephen; Berthoz, Alain
1997-01-01
Much indirect evidence supports the hypothesis that transformations of mental images are at least in part guided by motor processes, even in the case of images of abstract objects rather than of body parts. For example, rotation may be guided by processes that also prime one to see results of a specific motor action. We directly test the hypothesis by means of a dual-task paradigm in which subjects perform the Cooper-Shepard mental rotation task while executing an unseen motor rotation in a g...
Rotational spectra and molecular structure
Wollrab, James E
1967-01-01
Physical Chemistry, A Series of Monographs: Rotational Spectra and Molecular Structure covers the energy levels and rotational transitions. This book is divided into nine chapters that evaluate the rigid asymmetric top molecules and the nuclear spin statistics for asymmetric tops. Some of the topics covered in the book are the asymmetric rotor functions; rotational transition intensities; classes of molecules; nuclear spin statistics for linear molecules and symmetric tops; and classical appearance of centrifugal and coriolis forces. Other chapters deal with the energy levels and effects of ce
Rotated and Scaled Alamouti Coding
Willems, Frans M J
2008-01-01
Repetition-based retransmission is used in Alamouti-modulation [1998] for $2\\times 2$ MIMO systems. We propose to use instead of ordinary repetition so-called "scaled repetition" together with rotation. It is shown that the rotated and scaled Alamouti code has a hard-decision performance which is only slightly worse than that of the Golden code [2005], the best known $2\\times 2$ space-time code. Decoding the Golden code requires an exhaustive search over all codewords, while our rotated and scaled Alamouti code can be decoded with an acceptable complexity however.
Differentially Rotating White Dwarfs I: Regimes of Internal Rotation
Ghosh, Pranab
2016-01-01
Most viable models of Type Ia supernovae (SN~Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN~Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. {\\sl Differential rotation} is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri $\\leq$ 0.1, we find both the low-viscosity Zahn regime with a non-monot...
Predicted rotation signatures in MHD disc winds and comparison to DG Tau observations
Pesenti, N; Cabrit, S; Ferreira, J; Casse, F; García, P; O'Brien, D
2004-01-01
Motivated by the first detections of rotation signatures in the DG Tau jet (Bacciotti et al. 2002), we examine possible biases affecting the relation between detected rotation signatures and true azimuthal velocity for self-similar MHD disc winds, taking into account projection, convolution as well as excitation gradients effects. We find that computed velocity shifts are systematically smaller than the true underlying rotation curve. When outer slower streamlines dominate the emission, we predict observed shifts increasing with transverse distance to the jet axis, opposite to the true rotation profile. Determination of the full transverse rotation profile thus requires high angular resolution observations ( 50) are ruled out for the medium-velocity component in the DG Tau jet.
Predicted rotation signatures in MHD disc winds and comparison to DG Tau observations.
Pesenti, N.; Dougados, C.; Cabrit, S.; Ferreira, J.; Casse, F.; Garcia, P.; O'Brien, D.
2004-03-01
Motivated by the first detections of rotation signatures in the DG Tau jet (Bacciotti et al. \\cite{bacciotti2002}), we examine possible biases affecting the relation between detected rotation signatures and true azimuthal velocity for self-similar MHD disc winds, taking into account projection, convolution as well as excitation gradients effects. We find that computed velocity shifts are systematically smaller than the true underlying rotation curve. When outer slower streamlines dominate the emission, we predict observed shifts increasing with transverse distance to the jet axis, opposite to the true rotation profile. Determination of the full transverse rotation profile thus requires high angular resolution observations ( 50) are ruled out for the medium-velocity component in the DG Tau jet.
Rotational ratchets with dipolar interactions.
Jäger, Sebastian; Klapp, Sabine H L
2012-12-01
We report results from a computer simulation study on the rotational ratchet effect in systems of magnetic particles interacting via dipolar interactions. The ratchet effect consists of directed rotations of the particles in an oscillating magnetic field, which lacks a net rotating component. Our investigations are based on Brownian dynamics simulations of such many-particle systems. We investigate the influence of both the random and deterministic contributions to the equations of motion on the ratchet effect. As a main result, we show that dipolar interactions can have an enhancing as well as a dampening effect on the ratchet behavior depending on the dipolar coupling strength of the system under consideration. The enhancement is shown to be caused by an increase in the effective field on a particle generated by neighboring magnetic particles, while the dampening is due to restricted rotational motion in the effective field. Moreover, we find a nontrivial influence of the short-range, repulsive interaction between the particles.
Scholz, Aleks
2016-01-01
One of the characteristic features of low-mass stars is their propensity to shed large amounts of angular momentum throughout their evolution. This distinguishs them from brown dwarfs which remain fast rotators over timescales of gigayears. Brown dwarfs with rotation periods longer than a couple of days have only been found in star forming regions and young clusters. This is a useful constraint on the mass dependency of mechanisms for angular momentum regular in stars. Rotational braking by disks and winds become highly inefficient in the substellar regime. In this short review I discuss the observational evidence for the fast rotation in brown dwarfs, the implications, and the link to the spin-mass relation in planets.
Structural dynamics in rotating systems
Kiraly, Louis J.
1993-01-01
Major issues and recent advances in the structural dynamics of rotating systems are summarized. The objectives and benefits of such systems are briefly discussed. Directions for future research are suggested.
Spontaneous Rotational Inversion in Phycomyces
Goriely, Alain
2011-03-01
The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.
Ovgun, A.
2016-11-01
We construct a rotating thin-shell wormhole using a Myers-Perry black hole in five dimensions, using the Darmois-Israel junction conditions. The stability of the wormhole is analyzed under perturbations. We find that exotic matter is required at the throat of the wormhole to keep it stable. Our analysis shows that stability of the rotating thin-shell wormhole is possible if suitable parameter values are chosen.
Rotationally symmetric viscous gas flows
Weigant, W.; Plotnikov, P. I.
2017-03-01
The Dirichlet boundary value problem for the Navier-Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.
Rotating Shadowband Spectroradiometer (RSS) Handbook
Kiedron, P; Schlemmer, J; Klassen, M
2005-01-01
The rotating shawdowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally-resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to 1050-nm range.
Ovgun, A
2016-01-01
In this article, we construct rotating thin shell wormhole using a Myers-Perry black hole in five dimensions. The stability of the wormhole is analyzed under perturbations follows from the Darmois-Israel junction conditions. We find that it required exotic matter at the throat to keep throat of wormhole stable. Our analysis shows that the stability of the rotating thin-shell wormhole is available with choosing suitable values of parameters.
Jupiter and Saturn Rotation Periods
Helled, Ravit; Anderson, John D
2009-01-01
Anderson & Schubert (2007, Science,317,1384) proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10h 32m 35s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9h 54m 29s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9h 55m 30s and 10h 32m 35s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn. We derive Jupiter and Saturn rotation periods using equilibrium theory in ...
Counter-Rotating Accretion Discs
Dyda, Sergei; Ustyugova, Galina V; Romanova, Marina M; Koldoba, Alexander V
2014-01-01
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic $\\alpha-$viscosity including all terms in the viscous stress tensor. For the vertically separated components a shear layer forms between them. The middle of this layer free-falls to the disk center. The accretion rates are increased by factors $\\sim 10^2-10^4$ over that of a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dep...
The rotation of Galaxy Clusters
Tovmassian, Hrant M
2015-01-01
The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with $a/b>1.8$ and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60\\%, and clusters of BMI type with dominant cD galaxy, ~ 35%. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have merging with other clusters and groups of galaxies, in the result of which the rotation has been prevented.
Radiation from an accelerating neutral body: The case of rotation
Yarman, Tolga; Arik, Metin; Kholmetskii, Alexander L.
2013-11-01
diatomic molecule, for instance). If the object reaches its final state in a given medium, say air, and "friction" is present, such as the case of a dental drill, then energy should keep being supplied to it, to overcome friction, which is present either inside the "inner mechanism of rotation" or in its surroundings. In other words, the object in the latter case, would be constantly subject to a friction force, countering its motion, and tending to make it fall to lower rotational energy states. Any fluctuations in the power supply, on the other hand, will slow down the rotating object, no matter how indiscernibly. The small decrease in the rotational velocity is yet reincreased by restoring the power supply, thus perpetually securing a stationary rotational motion. Thereby, the object in this final state, due to fluctuations in either friction or power supply, or both, shall further be expected to emit a radiation of energy , where is the final angular velocity of the object in rotation. What is more is that our team has very successfully measured what is predicted here, and they will report their experimental results in a subsequent article. The approach presented here seems to shed light on the mysterious sonoluminescence. It also triggers the possibility of sensing earthquakes due to radiation that should be emitted by the faults, on which the seismic stress keeps increasing until the crackdown. By the same token, also two colliding (neutral) objects are expected to emit radiation.
Medium Modification of Vector Mesons
Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour
2011-03-01
The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.
Holographic Renormalization in Dense Medium
Chanyong Park
2014-01-01
describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.
Medium modifications with recoil polarization
Brand, J.F.J. van den [Nationaal Instituut voor Kernfysica en Hoge Energiefysica, Amsterdam (Netherlands); Ent, R. [CEBAF, Newport News, VA (United States)
1994-04-01
The authors show that the virtual Compton scattering process allows for a precise study of the off-shell electron-nucleon vertex. In a separable model, they show the sensitivity to new unconstrained structure functions of the nucleon, beyond the usual Dirac and Pauli form factors. In addition, they show the sensitivity to bound nucleon form factors using the reaction 4He({rvec e},e{prime},{rvec p}){sup 3}H. A nucleon embedded in a nucleus represents a complex system. Firstly, the bound nucleon is necessarily off-shell and in principle a complete understanding of the dynamical structure of the nucleon is required in order to calculate its off-shell electromagnetic interaction. Secondly, one faces the possibility of genuine medium effects, such as for example quark-exchange contributions. Furthermore, the electromagnetic coupling to the bound nucleon is dependent on the nuclear dynamics through the self-energy of the nucleon in the nuclear medium.
Turbulence in the Interstellar Medium
Falceta-Goncalves, D; Falgarone, E; Chian, A C -L
2014-01-01
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
Dillon, Michael J.; Eleftheriou, Despina; Brogan, Paul A
2009-01-01
Medium-size-artery vasculitides do occur in childhood and manifest, in the main, as polyarteritis nodosa (PAN), cutaneous PAN and Kawasaki disease. Of these, PAN is the most serious, with high morbidity and not inconsequential mortality rates. New classification criteria for PAN have been validated that will have value in epidemiological studies and clinical trials. Renal involvement is common and recent therapeutic advances may result in improved treatment options. Cutaneous PAN is a milder ...
$\\Delta$ decay in nuclear medium
Jain, B K; Kundu, Bijoy
1996-01-01
Proton-nucleus collisions, where the beam proton gets excited to the delta resonance and then decays to p\\pi ^+, either inside or outside the nuclear medium, are studied. Cross-sections for various kinematics for the (p,p' \\pi ^+) reaction between 500 MeV and 1 GeV beam energy are calculated to see the effects of the nuclear medium on the propagation and decay of the resonance. The cross-sections studied include proton energy spectra in coincidence with the pion, four momentum transfer distributions, and the invariant p\\pi^+ mass distributions. We find that the effect of the nuclear medium on these cross-sections mainly reduces their magnitudes. Comparing these cross-sections with those considering the decay of the delta outside the nucleus only, we further find that at 500 MeV the two sets of cross-sections have large differences, while by 1 GeV the differences between them become much smaller.
Rotation, differential rotation, and gyrochronology of active Kepler stars
Reinhold, Timo
2015-01-01
The high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars. Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements in different gyrochronology relations. Multiple rotation periods are interpreted as surface differential rotation (DR). We re-analyze the sample of 24,124 Kepler stars from Reinhold et al. (2013) using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series, and different segments thereof are analyzed. For more than 18,500 stars our results are consistent with the rotation periods from McQuillan et al. (2014). Thereof, more than 12,300 stars show multiple significant peaks, which we interpret as DR. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17,000 stars using different gyrochronology relations. We find a bimodal...
Rotator cuff tear and sarcopenia: are these related?
Chung, Seok Won; Yoon, Jong Pil; Oh, Kyung-Soo; Kim, Hyung Sup; Kim, Young Gun; Lee, Hyun-Joo; Jeong, Won-Ju; Kim, Dong-Hyun; Lee, Jong Soo; Yoon, Jee Wook
2016-09-01
Sarcopenia is the loss of muscle mass and consequent loss of muscle function with aging. Its prevalence among the general population is 12% to 30% in those aged >60 years. We evaluated (1) the difference in the prevalence of sarcopenia between patients with rotator cuff tear and controls and (2) the sarcopenia severity according to the size of the rotator cuff tear. Group 1 included 48 consecutive patients with chronic symptomatic full-thickness rotator cuff tears (mean age, 60.1 ± 6.5 years; range, 46-76 years), and group 2 included 48 age- and sex-matched patients. The sarcopenic index was evaluated by using the grip strength of the asymptomatic contralateral side and the skeletal muscle mass. No significant differences were found in the baseline data and demographic factors between the groups. The sarcopenic index was significantly inferior in the rotator cuff tear group than in the age- and sex-matched control groups (P = .041, .007, and .05, respectively). Patients with large to massive tears had a significantly inferior sarcopenic index than those with small and medium tears. The results showed that sarcopenia was more severe in patients with a chronic symptomatic full-thickness rotator cuff tear than in the age- and sex-matched control population and was correlated with the size of the tear, with the numbers available. Despite the individual variance in the underlying medical condition and physical activities, this study suggests that clinicians should consider the sarcopenic condition of patients with a rotator cuff tear, especially in elderly patients with large to massive tears. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
TiO{sub 2}-coated foams as a medium for solar catalysis
Plantard, G., E-mail: plantard@univ-perp.fr [PROMES-CNRS, UPR 8521, PROcedes Materiaux et Energie Solaire, Rambla de la Thermodynamique, Technosud, 66100 Perpignan Cedex (France); Universite de Perpignan Via Domitia 52 Avenue Paul Alduy, 66860 Perpignan (France); Goetz, V. [PROMES-CNRS, UPR 8521, PROcedes Materiaux et Energie Solaire, Rambla de la Thermodynamique, Technosud, 66100 Perpignan Cedex (France); Sacco, D. [PROMES-CNRS, UPR 8521, PROcedes Materiaux et Energie Solaire, Rambla de la Thermodynamique, Technosud, 66100 Perpignan Cedex (France); Universite de Perpignan Via Domitia 52 Avenue Paul Alduy, 66860 Perpignan (France)
2011-02-15
Graphical abstract: Photographs taken at the Scanning Electron Microscope of (a) a surface coating of TiO{sub 2}, (b) a mesh of a foam (mesh diameter of 2 mm) and (c) a foam. Research highlights: {yields} Assess the efficiency of the foams as a photocatalytic media. {yields} Foam to improve the apparent quantum yield. {yields} Foam makes good use of the UV rays to break down molecules. -- Abstract: Sunlight irradiating the surface of the Earth represents a maximum input available for a solar catalytic process of 50 W{sub UV} m{sup -2}. We propose using high-porosity, metallic, reticulated foams as the support medium for the photocatalyst in order to improve the apparent quantum yield. The layer of TiO{sub 2} was applied by dip-coating. The measurement of the degradation kinetics was carried out on a model target molecule, 2,4 dichlorophenol, at an initial concentration of 10 mg l{sup -1}. The aim was to assess the efficiency of the foams as a photocatalytic media compared to that of a suspension of catalytic powder (Degussa P25) and the flat 2D support (Ahlstrom cellulose media). The apparent quantum yield of the foam scaffold carrying the TiO{sub 2} was high, showing that, as with the powder suspension, foam makes good use of the UV rays to break down molecules. It is noteworthy that the apparent quantum yield of the foam tended towards that observed for suspensions which form the ideal support thanks to their optimal ability to harness the light.
Rehabilitation after Rotator Cuff Repair.
Nikolaidou, Ourania; Migkou, Stefania; Karampalis, Christos
2017-01-01
Rotator cuff tears are a very common condition that is often incapacitating. Whether non-surgical or surgical, successful management of rotator cuff disease is dependent on appropriate rehabilitation. If conservative management is insufficient, surgical repair is often indicated. Postsurgical outcomes for patients having had rotator cuff repair can be quite good. A successful outcome is much dependent on surgical technique as it is on rehabilitation. Numerous rehabilitation protocols for the management of rotator cuff disease are based primarily on clinical experience and expert opinion. This article describes the different rehabilitation protocols that aim to protect the repair in the immediate postoperative period, minimize postoperative stiffness and muscle atrophy. A review of currently available literature on rehabilitation after arthroscopic rotator cuff tear repair was performed to illustrate the available evidence behind various postoperative treatment modalities. There were no statistically significant differences between a conservative and an accelerated rehabilitation protocol . Early passive range of motion (ROM) following arthroscopic cuff repair is thought to decrease postoperative stiffness and improve functionality. However, early aggressive rehabilitation may compromise repair integrity. The currently available literature did not identify any significant differences in functional outcomes and relative risks of re-tears between delayed and early motion in patients undergoing arthroscopic rotator cuff repairs. A gentle rehabilitation protocol with limits in range of motion and exercise times after arthroscopic rotator cuff repair would be better for tendon healing without taking any substantial risks. A close communication between the surgeon, the patient and the physical therapy team is important and should continue throughout the whole recovery process.
The influence of rotator cuff pathology on functional outcome in total shoulder replacement
Nathanael Ahearn
2013-01-01
Conclusions: TSR is an efficacious treatment option for patients with primary glenohumeral osteoarthritis in the medium term, even in the presence of rotator cuff tendonopathy or partial tearing. Minor changes within the cuff do not significantly affect functional outcome following TSR.
THE STEWARTSON LAYER OF A ROTATING-DISK OF FINITE RADIUS
1992-01-01
It is shown that if a disk of finite radius and the surrounding medium rotate coaxially with slightly different angular velocities, an axial layer in the form of a cylindrical shell exists at the edge of the disk. This shell of thickness O(E1/3) has length O(E-1) in axial direction, where E is the E
Combined free and forced convection flow in a rotating channel with ...
user
Heat transfer characteristics of the flow is considered taking viscous and Joule ... flow of a viscous incompressible electrically conducting fluid between two ... with the fundamental equations of magnetohydrodynamics in a rotating medium. ..... The non-dimensional mass flow rates Qx/ρυ and Qy/ρυ, in the primary and ...
ExoMol molecular line lists - XIV. The rotation-vibration spectrum of hot SO2
Underwood, Daniel S.; Tennyson, Jonathan; Yurchenko, Sergei N.;
2016-01-01
Sulphur dioxide is well-known in the atmospheres of planets and satellites, where its presence is often associated with volcanism, and in circumstellar envelopes of young and evolved stars as well as the interstellar medium. This work presents a line list of 1.3 billion 32S16O2 vibration-rotation...
THE CONNECTION BETWEEN EKMAN AND STEWARTSON LAYERS FOR A ROTATING-DISK
When a disk of finite radius and the surrounding medium rotate coaxially with slightly different angular velocities, a so-called Stewartson layer exists at the edge of the disk. The properties of this layer outside the boundary layer of the disk have been given in a previous publication. In the
Counter-Rotation in Disk Galaxies
Corsini, E M
2014-01-01
Counter-rotating galaxies host two components rotating in opposite directions with respect to each other. The kinematic and morphological properties of lenticulars and spirals hosting counter-rotating components are reviewed. Statistics of the counter-rotating galaxies and analysis of their stellar populations provide constraints on the formation scenarios which include both environmental and internal processes.
Transitions in turbulent rotating convection
Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team
2015-11-01
This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.
Rapidly rotating neutron star progenitors
Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.
2016-12-01
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.
Rapidly rotating neutron star progenitors
Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.
2016-08-01
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.
Measurement of the Relativistic Potential Difference Across a Rotating Dielectric Cylinder
Hertzberg, J B; Hummon, M T; Krause, D; Peck, S K; Hunter, L R
2001-01-01
According to the Special Theory of Relativity, a rotating magnetic dielectric cylinder in an axial magnetic field should exhibit a contribution to the radial electric potential that is associated with the motion of the material's magnetic dipoles. In 1913 Wilson and Wilson reported a measurement of the potential difference across a magnetic dielectric constructed from wax and steel balls. Their measurement has long been regarded as a verification of this prediction. In 1995 Pelligrini and Swift questioned the theoretical basis of experiment. In particular, they pointed out that it is not obvious that a rotating medium may be treated as if each point in the medium is locally inertial. They calculated the effect in the rotating frame and predicted a potential different from both Wilson's theory and experiment. Subsequent analysis of the experiment suggests that Wilson's experiment does not distinguish between the two predictions due to the fact that their composite steel-wax cylinder is conductive in the region...
A view through Faraday's Fog: Parsec scale Rotation Measures in AGN
Zavala, R. T.; Taylor, G. B.
2002-12-01
The magnetic field orientations and strengths, and thermal gas densities and pressures can all be probed on parsec scales in active galactic nuclei using VLBA polarimetry. Faraday's Fog, a foreground Faraday rotating medium in the AGN core, is what makes this possible. To take advantage of this effect to explore the central engine we have completed a rotation measure survey of 40 quasars, BL Lac objects, and radio galaxies. We summarize a few interesting results here. Quasars and radio galaxies show substantial rotation measures (> 1000 rad m-2) but BL Lacertae objects do not. A decreasing core percent polarization appears correlated with an increasing Faraday rotation measure. Faraday depolarization cannot account for this as the rotation measures are approximately two orders of magnitude too small to cause depolarization across an observing bandwidth. A more likely explanation for the depolarization is a gradient in the rotation measure across the synthesized beam. Multi-epoch observations of 3C 279 suggest that rotation measure variations may be tracked over time by changes in the percent polarization. The core rotation measures of the sample appears to be independent of core dominance. We will suggest possible identifications of the Faraday screen. R.T.Z gratefully acknowledges support from a pre-doctoral research appointment at NRAO and from the New Mexico Alliance for Graduate Education and the Professiorate through NSF grant HRD-0086701.
The structure of rotational discontinuities
Neugebauer, M. (California Institute of Technology, Pasadena (USA))
1989-11-01
This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle {theta} between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When {theta} is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when {theta} is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes.
Electromagnetism of rotating conductors revisited
Redzic, Dragan V. [Faculty of Physics, University of Belgrade, Belgrade (Yugoslavia)]. E-mail: redzic@ff.bg.ac.yu
2002-03-01
The charge distribution and electromagnetic fields in a rotating, charged conductor under stationary conditions are investigated, assuming that the electrons are at rest relative to the conductor. The basic equations are found, referred to the inertial rest frame of the rotational axis, in the relativistic case, and applied to the case of a cylindrical conductor. The results obtained are compared with those of Groen and Voeyenli (Groen Oe and Voeyenli K 1982 Eur. J. Phys. 3 210-4) who considered the same problem but without taking into account the relative permittivity of the rotating conductor. It is found that the E- and B-fields do not depend on {epsilon}{sub r} and coincide with those calculated by Groen and Voeyenli; the space and surface charge densities, however, depend on {epsilon}{sub r}. (author)
Rotational Mixing and Lithium Depletion
Pinsonneault, M H
2010-01-01
I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...
Wormhole shadows in rotating dust
Ohgami, Takayuki; Sakai, Nobuyuki
2016-09-01
As an extension of our previous work, which investigated the shadows of the Ellis wormhole surrounded by nonrotating dust, in this paper we study wormhole shadows in a rotating dust flow. First, we derive steady-state solutions of slowly rotating dust surrounding the wormhole by solving relativistic Euler equations. Solving null geodesic equations and radiation transfer equations, we investigate the images of the wormhole surrounded by dust for the above steady-state solutions. Because the Ellis wormhole spacetime possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime. The bright ring looks distorted due to rotation. Aside from the bright ring, there appear weakly luminous complex patterns by the emission from the other side of the throat. These structure could be detected by high-resolution very-long-baseline-interferometry observations in the near future.
Rotating Rayleigh-Taylor turbulence
Boffetta, G.; Mazzino, A.; Musacchio, S.
2016-09-01
The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.
Rotating Ellis Wormholes in Four Dimensions
Kleihaus, Burkhard
2014-01-01
We present rotating wormhole solutions in General Relativity, which are supported by a phantom scalar field. These solutions evolve from the static Ellis wormhole, when the throat is set into rotation. As the rotational velocity increases, the throat deforms until at a maximal value of the rotational velocity, an extremal Kerr solution is encountered. The rotating wormholes attain a finite mass and quadrupole moment. They exhibit ergospheres and possess bound orbits.
Translation and Rotation of Transformation Media under Electromagnetic Pulse
Gao, Fei; Lin, Xiao; Xu, Hongyi; Zhang, Baile
2016-01-01
It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwells equations, which recently has spawned a booming field called transformation optics. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through.
Translation and Rotation of Transformation Media under Electromagnetic Pulse
Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile
2016-06-01
It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through.
Rotational bands terminating at maximal spin in the valence space
Ragnarsson, I.; Afanasjev, A.V. [Lund Institute of Technology (Sweden)
1996-12-31
For nuclei with mass A {le} 120, the spin available in {open_quotes}normal deformation configurations{close_quotes} is experimentally accessible with present detector systems. Of special interest are the nuclei which show collective features at low or medium-high spin and where the corresponding rotational bands with increasing spin can be followed in a continuous way to or close to a non-collective terminating state. Some specific features in this context are discussed for nuclei in the A = 80 region and for {sup 117,118}Xe.
Translation and Rotation of Transformation Media under Electromagnetic Pulse
Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile
2016-01-01
It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through. PMID:27321246
Rotated balance in humans due to repetitive rotational movement.
Zakynthinaki, M S; Milla, J Madera; De Durana, A López Diaz; Martínez, C A Cordente; Romo, G Rodríguez; Quintana, M Sillero; Molinuevo, J Sampedro
2010-03-01
We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.
Rotational mixing in close binaries
de Mink, S E; Langer, N; Yoon, S -Ch; Brott, I; Glebbeek, E; Verkoulen, M; Pols, O R
2008-01-01
Rotational mixing is a very important but uncertain process in the evolution of massive stars. We propose to use close binaries to test its efficiency. Based on rotating single stellar models we predict nitrogen surface enhancements for tidally locked binaries. Furthermore we demonstrate the possibility of a new evolutionary scenario for very massive (M > 40 solar mass) close (P < 3 days) binaries: Case M, in which mixing is so efficient that the stars evolve quasi-chemically homogeneously, stay compact and avoid any Roche-lobe overflow, leading to very close (double) WR binaries.
The rotational spectrum of tyrosine.
Pérez, Cristóbal; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L
2015-04-23
In this work neutral tyrosine has been generated in the gas phase by laser ablation of solid samples, and its most abundant conformers characterized through their rotational spectra. Their identification has been made by comparison between the experimental and ab initio values of the rotational and quadrupole coupling constants. Both conformers are stabilized by an O-H•••N hydrogen bond established within the amino acid skeleton chain and an additional weak N-H•••π hydrogen bond. The observed conformers differ in the orientation of the phenolic -OH group.
Butterflies with rotation and charge
Reynolds, Alan P.; Ross, Simon F.
2016-11-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2 + 1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.
Butterflies with rotation and charge
Reynolds, Alan P
2016-01-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.
Relativity on Rotated Graph Paper
Salgado, Roberto B
2011-01-01
We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called "light-clock diamonds") represent units of measurement modeled on the ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra. We use the Doppler Effect, in the spirit of the Bondi k-calculus, to motivate the method.
Rotationally actuated prosthetic helping hand
Norton, William E. (Inventor); Belcher, Jewell G., Jr. (Inventor); Carden, James R. (Inventor); West, Thomas W. (Inventor)
1991-01-01
A prosthetic device has been developed for below-the-elbow amputees. The device consists of a cuff, a stem, a housing, two hook-like fingers, an elastic band for holding the fingers together, and a brace. The fingers are pivotally mounted on a housing that is secured to the amputee's upper arm with the brace. The stem, which also contains a cam, is rotationally mounted within the housing and is secured to the cuff, which fits over the amputee's stump. By rotating the cammed stem between the fingers with the lower arm, the amputee can open and close the fingers.
Rotation sensing with trapped ions
Campbell, W C
2016-01-01
We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.
Energy Transfer in Rotating Turbulence
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the
NEW RSW & Wall Medium Fully Tetrahedral Grid
National Aeronautics and Space Administration — New Medium Fully Tetrahedral RSW Grid with viscous wind tunnel wall at the root. This grid is for a node-based unstructured solver. Medium Tet: Quad Surface Faces= 0...
Gravitational lensing in plasmic medium
Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Midterm clinical outcomes following arthroscopic transosseous rotator cuff repair
Brody A Flanagin
2016-01-01
leads to statistically significant midterm improvement in ROM and satisfactory midterm subjective outcome scores with low complication/failure rates in patients with average medium-sized rotator cuff tears with minimal fatty infiltration. Further work is required to evaluate radiographic healing rates with this technique and to compare outcomes following suture anchor repair. Level of Evidence: Level IV
27 CFR 19.914 - Medium plants.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Medium plants. 19.914 Section 19.914 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Medium plants. Any person wishing to establish a medium plant shall make application for and obtain in...
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Test medium. 195.306 Section 195.306... PIPELINE Pressure Testing § 195.306 Test medium. (a) Except as provided in paragraphs (b), (c), and (d) of this section, water must be used as the test medium. (b) Except for offshore pipelines, liquid...
Mapping of moveout in a TTI medium
Stovas, A.
2012-01-01
To compute moveout in a transversely isotropic medium with tilted symmetry axis is a very complicated problem. We propose to split this problem into two parts. First, to compute the moveout in a corresponding VTI medium. Second, to map the computed moveout to a TTI medium.
Rapidly rotating neutron star progenitors
Postnov, K A; Kolesnikov, D A; Popov, S B; Porayko, N K
2016-01-01
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, $\\tau_c$. The validity of this approach is checked by direct MESA calculations ...
Complications of intertrochanteric rotational osteotomy
Braunstein, E.M.; Weissman, B.N.; Sosman, J.L.; Drew, M.
1983-11-01
Intertrochanteric anterior rotational osteotomy is a recently developed surgical procedure to treat osteonecrosis of the femoral head. We reviewed the radiographic findings in four cases to acquaint radiologists with the usual appearance of the procedure and to assess surgical complications. In all cases, immediate postoperative radiographs showed rotation of the necrotic portion of the femoral head anteriorly so that it was no longer weight-bearing. Clinical and radiologic follow-up ranged from 12 to 30 months. In this time, three patients developed complications, including nonunion of the osteotomy, further osteonecrosis with collapse of the femoral head, and worsening pain in the absence of progressive radiologic change. Radiology provides an important means of assessing rotational osteotomy, particularly in demonstrating sufficient rotation of the femoral head to assure nonweight-bearing by diseased bone. Also, surgical complications such as nonunion and hardware loosening may be identified. Nevertheless, the patient may deteriorate clinically even in the absence of radiologic demonstration of disease pregression, and the absence of radiographic change does not assure a successful surgical outcome.
ENGINEERING BULLETIN: ROTATING BIOLOGICAL CONTACTORS
Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...
Holder for rotating glass body
Kolleck, Floyd W.
1978-04-04
A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.
Pattern formation in rotating fluids
Bühler, Karl
2009-06-01
Flows in nature and technology are often associated with specific structures and pattern. This paper deals with the development and behaviour of such flow pattern. Flow structures are important for the mass, momentum and energy transport. The behaviour of different flow pattern is used by engineers to obtain an efficient mass and energy consumption. Mechanical power is transmitted via the momentum of rotating machine parts. Therefore the physical and mathematical knowledge of these basic concepts is important. Theoretical and experimental investigations of principle experiments are described in the following. We start with the classical problem of the flow between two concentric cylinders where the inner cylinder rotates. Periodic instabilities occur which are called Taylor vortices. The analogy between the cylindrical gap flow, the heat transfer in a horizontal fluid layer exposed to the gravity field and the boundary layer flow along concave boundaries concerning their stability behaviour is addressed. The vortex breakdown phenomenon in a cylinder with rotating cover is also described. A generalization to spherical sectors leads then to investigations with different boundary conditions. The spherical gap flow exhibits interesting phenomena concerning the nonlinear character of the Navier-Stokes equations. Multiple solutions in the nonlinear regime give rise to different routes during the laminar-turbulent transition. The interaction of two rotating spheres results in flow structures with separation and stagnation lines. Experimental results are confirmed by numerical simulations.
Ultrasonography of the Rotator Cuff
Yoon, Yong Cheol [Samsung Medica Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)
2006-09-15
The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance
Rotatable fixture for spray coating
Katvala, V.; Porter, E.; Smith, M.
1979-01-01
Fixture that rotates about two axes ensures uniform coating and minimizes handling of coated workpiece. Each side of tile is coated in sequence by moving turntables until surface is perpendicular to spray. Process is repeated until desired thickness has built up.
Holographic imaging through a scattering medium by diffuser-aided statistical averaging.
Purcell, Michael J; Kumar, Manish; Rand, Stephen C; Lakshminarayanan, Vasudevan
2016-07-01
We introduce a practical digital holographic method capable of imaging through a diffusive or scattering medium. The method relies on statistical averaging from a rotating ground glass diffuser to negate the adverse effects caused by speckle introduced by a static diffuser or scattering medium. In particular, a setup based on Fourier transform holography is used to show that an image can be recovered after scattering by introducing an additional diffuser in the optical setup. This method is capable of recovering object information from behind a scattering layer in biomedical or military imaging applications.
Holographic imaging through a scattering medium by diffuser-aided statistical averaging
Purcell, Michael J; Rand, Stephen C; Lakshminarayanan, Vasudevan
2016-01-01
We introduce a practical digital holographic method capable of imaging through a diffusive or scattering medium. The method relies on statistical averaging from a rotating ground glass diffuser to negate the adverse effects caused by speckle introduced by a first, static diffuser or scattering medium. In particular, a setup based on Fourier transform holography is used to show that an image can be recovered after scattering by introducing an additional diffuser in the optical setup. This method is capable of recovering object information from behind a scattering layer in biomedical or military imaging applications.
Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu
2016-04-01
Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.
Ouazzani, R-M
2012-01-01
Information about the rotation rate is contained in the low frequency part of power spectra, where signatures of nonuniform surface rotation are expected, as well as in the frequency splittings induced by the internal rotation rate. We wish to figure out whether the differences between the seismic rotation period as determined by a mean rotational splitting, and the rotation period measured from the low frequency peak in the Fourier spectrum (observed for some of CoRoT's targets) can provide constraints on the rotation profile. For uniform moderate rotators,perturbative corrections to second and third order in terms of the rotation angular velocity \\Omega, may mimic differential rotation. We apply our perturbation method to evaluate mode frequencies accurate up to \\Omega^3 for uniform rotation. Effects of latitudinal dependence are calculated in the linear approximation. In \\beta Cephei pulsators models, third order effects become comparable to that of a horizontal shear similar to the solar one at rotation r...
Oscillatory and Steady Flows in the Annular Fluid Layer inside a Rotating Cylinder
Veronika Dyakova
2016-01-01
Full Text Available The dynamics of a low-viscosity fluid inside a rapidly rotating horizontal cylinder were experimentally studied. In the rotating frame, the force of gravity induces azimuthal fluid oscillations at a frequency equal to the velocity of the cylinder’s rotation. This flow is responsible for a series of phenomena, such as the onset of centrifugal instability in the Stokes layer and the growth of the relief at the interface between the fluid and the granular medium inside the rotating cylinder. The phase inhomogeneity of the oscillatory fluid flow in the viscous boundary layers near the rigid wall and the free surface generates the azimuthal steady streaming. We studied the relative contribution of the viscous boundary layers in the generation of the steady streaming. It is revealed that the velocity of the steady streaming can be calculated using the velocity of the oscillatory fluid motion.
Synchrotron and Smith-Purcell radiations from a charge rotating around a cylindrical grating
Saharian, A A; Mkrtchyan, A R; Khachatryan, B V
2016-01-01
We investigate the radiation from a charge rotating around conductors with cylindrical symmetry. First the problem is considered with a charge rotating around a conducting cylinder immersed in a homogeneous medium. The surface charge and current densities induced on the cylinder surface are evaluated. A formula is derived for the spectral-angular density of the radiation intensity. In the second part, we study the radiation for a charge rotating around a diffraction grating on a cylindrical surface with metallic strips parallel to the cylinder axis. The effect of the grating on the radiation intensity is approximated by the surface currents induced on the strips by the field of the rotating charge. The expressions are derived for the electric and magnetic fields and for the angular density of the radiation intensity on a given harmonic. We show that the interference between the synchrotron and Smith-Purcell radiations may lead to interesting features. In particular, the behavior of the radiation intensity on ...
Theory of interstellar medium diagnostics
Fahr, H. J.
1983-01-01
The theoretical interpretation of observed interplanetary resonance luminescence patterns is used as one of the must promising methods to determine the state of the local interstellar medium (LISM). However, these methods lead to discrepant results that would be hard to understand in the framework of any physical LISM scenario. Assuming that the observational data are reliable, two possibilities which could help to resolve these discrepancies are discussed: (1) the current modeling of resonance luminescence patterns is unsatisfactory and has to be improved, and (2) the extrapolated interstellar parameters are not indicative of the unperturbed LISM state, but rather designate an intermediate state attained in the outer regions of the solar system. It is shown that a quantitative treatment of the neutral gas-plasma interaction effects in the interface between the heliospheric and the interstellar plasmas is of major importance for the correct understanding of the whole complex.
Conductivities in an anisotropic medium
Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong
2016-10-01
In order to imitate the anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its maximum value.
Conductivities in an anisotropic medium
Khimphun, Sunly; Park, Chanyong
2016-01-01
In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.
Spin rotators and split Siberian Snakes
Roser, Thomas
1994-03-01
The study of spin effects in the collision of polarized high energy beams requires flexible and compact spin rotators to manipulate the beam polarization direction. Design criteria and specific examples are presented for high energy, orbit transparent spin rotators ranging from small angle rotators to be used for the excitation of spin resonances to large angle rotators to be used as Siberian Snakes. It is shown that all the requirements for spin rotators can be met with a simple 6-magnet spin rotator design, for which a complete continuous solution is presented.
Spin rotators and split Siberian Snakes
Roser, T. (Brookhaven National Lab., Upton, NY (United States))
1994-03-22
The study of spin effects in the collision of polarized high energy beams requires flexible and compact spin rotators to manipulate the beam polarization direction. Design criteria and specific examples are presented for high energy, orbit transparent spin rotators ranging from small angle rotators to be used for the excitation of spin resonances to large angle rotators to be used as Siberian Snakes. It is shown that all the requirements for spin rotators can be met with a simple 6-magnet spin rotator design, for which a complete continuous solution is presented. (orig.)
Structure of molecules and internal rotation
Mizushima, San-Ichiro
1954-01-01
Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi
Tattoo: a multifaceted medium of communication
Christian Wymann
2010-11-01
Full Text Available This article suggests the systems theoretical distinction of form/medium as a useful tool for distinguishing social phenomena that might look as if they stem from the same process. This is shown to be the case for the tattoo and tattooing. The tattoo is conceived as a medium of communication through which different forms of communication emerge. Tattooing is one of these forms of communication that shapes the medium in a particular way. The current article sheds a special light on its intricate, communicational constellation, for which the concept of parallax is suggested. Law, medicine and cosmetics as other forms of communication use the medium of tattoo in their own way as well. The form/medium distinction allows us to grasp these different forms of communication, while it shows that they share the tattoo as medium. The article’s ultimate goal is to illustrate that the tattoo figures as a multifaceted medium of communication.
G. Nath
2012-12-01
Full Text Available Self-similar solutions are obtained for unsteady, one-dimensional isothermal flow behind a shock wave in a rotational axisymmetric non-ideal gas in the presence of an azimuthal magnetic field. The shock wave is driven out by a piston moving with time according to power law. The fluid velocities and the azimuthal magnetic field in the ambient medium are assumed to be varying and obeying a power law. The density of the ambient medium is assumed to be constant. The gas is assumed to be non-ideal having infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The effects of the non-idealness of the gas and the Alfven-Mach number on the flow-field are obtained. It is shown that the presence of azimuthal magnetic field and the rotation of the medium has decaying effect on the shock wave. Also, a comparison is made between rotating and non-rotating cases.
Medium-Based Design: Extending a Medium to Create an Exploratory Learning Environment
Rick, Jochen; Lamberty, K. K.
2005-01-01
This article introduces "medium-based" design -- an approach to creating "exploratory learning environments" using the method of "extending a medium". First, the characteristics of exploratory learning environments and medium-based design are described and grounded in related work. Particular attention is given to "extending a medium" --…
Reduction of Sample Rotation in Electrostatic Levitation
Hyers, R. W; Johnson, W. L.; Savage, L.; Rogers, J. R.
2000-01-01
In many containerless processing systems, control of sample rotation is an important issue. Sample rotation is even more important for microgravity containerless processing systems, where the centrifugal acceleration can approach 1 g for even a small rotation rate. Prior work on rotation control by Rhim focused on driving the sample rotation at a controlled rate for droplet dynamics experiments and measurement of electrical conductivity. His technique allows controlled, fast rotation, but for many microgravity experiments the goal is zero rotation. To minimize sample rotation, two approaches are apparent: first, to identify and balance or eliminate the driving forces for undesired sample rotation, or second, implement a feedback-based rotation control loop in parallel with the position control loop. In this work, we have taken the first approach. To minimize sample rotation, the simplest approach is to identify and balance or eliminate the driving forces for undesired sample rotation. Our experiments show that the dominant driving force for rotation of machined Zr spheres in the MSFC ESL is photon pressure from the heating laser. Experimental results showing the correlation between heating power and torque are compared to theoretical predictions, and a strategy for minimizing the torque due to photon pressure is presented.
Higher Order Statistsics of Stokes Parameters in a Random Birefringent Medium
Said, Salem; Bihan, Nicolas le
2007-01-01
We present a new model for the propagation of polarized light in a random birefringent medium. This model is based on a decomposition of the higher order statistics of the reduced Stokes parameters along the irreducible representations of the rotation group. We show how this model allows a detailed description of the propagation, giving analytical expressions for the probability densities of the Mueller matrix and the Stokes vector throughout the propagation. It also allows an exact descripti...
Probing the intergalactic medium with fast radio bursts
Zheng, Z. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East #201, Salt Lake City, UT 84112 (United States); Ofek, E. O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Kulkarni, S. R. [Caltech Optical Observatories 249-17, California Institute of Technology, Pasadena, CA 91125 (United States); Neill, J. D. [Space Radiation Laboratory 290-17, California Institute of Technology, Pasadena, CA 91125 (United States); Juric, M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)
2014-12-10
The recently discovered fast radio bursts (FRBs), presumably of extragalactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the He II reionization and the IGM magnetic field. Finally, we calculate the microlensing effect from an isolated, extragalactic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.
Plasma Diagnostics of the Interstellar Medium with Radio Astronomy
Haverkorn, Marijke
2013-01-01
We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurements provide unique information on turbulence in the ISM as well as the mean plasma properties such as density and magnetic field strength. Radio propagation observations can provide input to the major contemporary questions on the nature of ISM turbulence, such as its dissipation mechanisms and the processes responsible for generating the turbulence on large spatial scales. Measurements of the large scale Galactic magnetic field via Faraday rotation provide unique observational input to theories of the generation of the ...
Dynamic lossless polarization gate using a coherently prepared atomic medium.
Wu, J X; Zhu, Chengjie; Yang, Y P
2015-11-01
We propose a dynamic lossless all-optical polarization gate using coherently prepared atomic media. We show that the loss/gain of two circularly polarized components of a linearly polarized probe field can be simultaneously eliminated by locking the power of the pump field and the external magnetic field intensity simultaneously. Using the polarization selective Kerr phase shift method, we can write π/2 (-π/2) phase shift to the right (left) circularly polarized component of the linearly polarized probe field with a choice of "magic" wavelength for the probe field. Consequently, the linear polarization state for the probe field acquires a 90° rotation at the exit of the medium. The scheme proposed in this Letter is helpful for applications in optical and quantum information processing and computation.
Tissue Engineering for Rotator Cuff Repair: An Evidence-Based Systematic Review
Nicola Maffulli
2012-01-01
Full Text Available The purpose of this systematic review was to address the treatment of rotator cuff tears by applying tissue engineering approaches to improve tendon healing, specifically platelet rich plasma (PRP augmentation, stem cells, and scaffolds. Our systematic search was performed using the combination of the following terms: “rotator cuff”, “shoulder”, “PRP”, “platelet rich plasma”, “stemcells”, “scaffold”, “growth factors”, and “tissue engineering”. No level I or II studies were found on the use of scaffolds and stem cells for rotator cuff repair. Three studies compared rotator cuff repair with or without PRP augmentation. All authors performed arthroscopic rotator cuff repair with different techniques of suture anchor fixation and different PRP augmentation. The three studies found no difference in clinical rating scales and functional outcomes between PRP and control groups. Only one study showed clinical statistically significant difference between the two groups at the 3-month followup. Any statistically significant difference in the rates of tendon rerupture between the control group and the PRP group was found using the magnetic resonance imaging. The current literature on tissue engineering application for rotator cuff repair is scanty. Comparative studies included in this review suggest that PRP augmented repair of a rotator cuff does not yield improved functional and clinical outcome compared with non-augmented repair at a medium and long-term followup.
Aden Evens
2009-01-01
Full Text Available Problematic at best, the desire for a transparent interface nevertheless drives much of digital culture and technology. But not the Web; or at least, not Web 1.0. Thoroughly commercialized, comfortably parsed into genres, serving billions of pages of predigested content to passive consumers, the World Wide Web as developed in the '90s unabashedly embraces its role as medium. While so many digital technologies work to hide their mediacy--drawing in the user with a total simulated sensorium, dematerializing the resistances of size and weight, untangling the knots of cables tying user to machine and machine to cubicle, minimizing the interface--Web 1.0 proudly clings to the browser as a glaring reminder of its medial character. While Web 2.0 has not forsaken the browser altogether, it nevertheless seems to offer a different sort of mediation. Arising alongside the atomization of browser functions, the ubiquitization of connectivity, and the coincidence of producer and user, Web 2.0 retains the form of a medium while reaching for the experiential logic of immediacy. This is not the immediacy of the transparent interface; rather, Web 2.0 effects an immediate relationship between the individual and culture. The interface does not disappear, but its mediacy is subsumed under the general form of cultural participation. Focusing on the "version upgrade" from Web 1.0 to 2.0, this essay will explore the implications for mediacy of this transition, noting that the fantasy of immediacy which drives Web 2.0 is layered and complex. The typical account of immediacy proposes to eliminate the interface and so construct a virtual reality (VR. But Web 2.0 mostly sidesteps the virtual, propelled instead by a fantasy of intuition in which the Web already knows what you want because it is you. Crucially, fantasies about the digital are effective: the computer's futurity inhabits our world, finding its expression in politics, advertising, budgeting, strategic planning
FLUID FLOW IN ROTATING HELICAL SQUARE DUCTS
Chen Hua-jun; Zhang Ben-zhao; Zhang Jin-suo
2003-01-01
A numerical study is made for a fully developed laminar flow in rotating helical pipes.Due to the rotation, the Coriolis force can also contribute to the secondary flow.The interaction between rotation, torsion, and curvature complicates the flow characteristics.The effects of rotation and torsion on the flow transitions are studied in details.The results show that there are obvious differences between the flow in rotating ducts and in helical ducts without rotation.Certain hitherto unknown flow patterns are found.The effects of rotation and torsion on the friction factor are also examined.Present results show the characteristics of the fluid flow in rotating helical square ducts.
Area spectrum of slowly rotating black holes
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
SEG Advances in Rotational Seismic Measurements
Pierson, Robert; Laughlin, Darren; Brune, Bob
2016-10-17
Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.
Electric Deflection of Rotating Molecules
Gershnabel, E
2010-01-01
We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate that one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields.
Faraday rotation system. Topical report
Bauman, L.E.; Wang, W.
1994-07-01
The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.
The chaotic rotation of Hyperion
Wisdom, J.; Peale, S. J.; Mignard, F.
1984-01-01
Under the assumption that the satellite is rotating about a principal axis that is normal to its orbit plane, a plot of spin rate-versus-orientation for Hyperion at the pericenter of its orbit has revealed a large, chaotic zone surrounding Hyperion's synchronous spin-orbit state. The chaotic zone is so large that it surrounds the 1/2 and 2 states, and libration in the 3/2 state is not possible. Rotation in the chaotic zone is also attitude-unstable. As tidal dissipation drives Hyperion's spin toward a nearly synchronous value, Hyperion necessarily enters the large chaotic zone, becoming attitude-unstable and tumbling. It is therefore predicted that Hyperion will be found to be tumbling chaotically.
Characterization of the rotating display.
Keyes, J W; Fahey, F H; Harkness, B A; Eggli, D F; Balseiro, J; Ziessman, H A
1988-09-01
The rotating display is a useful method for reviewing single photon emission computed tomography (SPECT) data. This study evaluated the requirements for a subjectively pleasing and useful implementation of this technique. Twelve SPECT data sets were modified and viewed by several observers who recorded the minimum framing rates for apparent smooth rotation, 3D effect, effects of image size, and other parameters. The results showed that a minimum of 16 frames was needed for a useful display. Smaller image sizes and more frames were preferred. The recommended minimal framing rate for a 64-frame study is 16-17 frames per second and for a 32-frame study, 12-13 frames per second. Other enhancements also were useful.
Hydrodynamic Instabilities in Rotating Fluids
KarlBuehler
2000-01-01
Rotating flow systems are often used to study stability phenomena and structure developments.The closed spherical gap prblem is generalized into an open flow system by superimposing a mass flux in meridional direction.The basic solutions at low Reynolds numbers are described by analytical methods.The nonlinear supercritical solutions are simulated numerically and realized in experiments.Novel steady and time-dependent modes of flows are obtained.The extensive results concern the stability behaviour.non-uniqueness of supercritical solutions,symmetry behaviour and transitions between steady and time-dependent solutions.The experimental investigations concern the visualization of the various instabilities and the quatitative description of the flow structures including the laminar-turbulent transition.A Comparison between theoretical and experimental results shows good agreement within the limit of rotational symmetric solutions from the theory.
Alignment of suprathermally rotating grains
Lazarian, A.
1995-12-01
It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.
Whirling skirts and rotating cones
Guven, Jemal; Müller, Martin Michael
2013-01-01
Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalized-conical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a three-parameter family of potentials. One parameter is associated with the stress in the sheet, the second is the Noether current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirt-like solutions. Fully non-linear solutions with three-fold symmetry are presented, which bear a suggestive resemblance to the observ...
What Is Rotating in Exploratory Factor Analysis?
Jason W. Osborne
2015-01-01
Full Text Available Exploratory factor analysis (EFA is one of the most commonly-reported quantitative methodology in the social sciences, yet much of the detail regarding what happens during an EFA remains unclear. The goal of this brief technical note is to explore what - rotation- is, what exactly is rotating, and why we use rotation when performing EFAs. Some commentary about the relative utility and desirability of different rotation methods concludes the narrative.
Contra rotative propeller performance estimation
Coca Casanueva, Vladimir
2008-01-01
Due to the continuous increase in the fuel price, the propeller engine solution (the most efficient in fuel saving terms) becomes very attractive to airlines and thus, to aircraft manufacturers. However, airlines aren’t ready to fly an aircraft at lower cruise Mach number than the traditional Mach 0,84, which jeopardizes the fuel efficiency of propellers. At this stage is where the contra-rotative concept appears, which let us to increase the cruise speed while reducing fuel consumption...
Ruiz-Granados, Beatriz; Battaner, Eduardo; Florido, Estrella
2016-10-01
WMAP CMB polarization maps have been used to detect a low signal of Faraday Rotation (FR). If this detection is not interpreted as simple noise, it could be produced: at the last scattering surface (LSS) (z=1100), being primordial, at Reionization (z=10), in the Milky Way. The second interpretation is favoured here. In this case magnetic fields at Reionization with peak values of the order of 10-8 G should produce this observational FR.
Ultracold Rotational Quenching Study of CO with H+
Kaur, Rajwant; Kumar, T. J. Dhilip
2016-05-01
Cooling and trapping of polar molecules have stimulated research in precise monitoring and controlling dynamics in ultracold regime. There has been considerable interest in the study of molecular inelastic collision processes at cold and ultracold temperatures. Collisional study of polar interstellar species CO, adds an additional astrophysical importance to model interstellar medium. Present work focuses on rotational quenching of abundant interstellar species, CO with H+ using quantum-mechanical scattering calculation. Rate coefficients for molecular rotational transitions of CO due to collision with H+ are obtained in the range of 10-5 K to 200 K from cross sections which are computed using close coupling calculations as implemented in MOLSCAT. The data generated from ultracold to higher temperatures assist in investigating the chemistry of interstellar clouds. Calculations are performed on ground state ab initio potential energy surface using MRCI/cc-pVTZ method. Rotational transitions are studied in the rigid-rotor approximation with CO bond length fixed at an equilibrium value of 2.138 a.u. Asymptotic potentials are computed using the dipole and quadrupole moments, and the dipole polarizability components.
The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States
Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago
2017-06-01
The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).
Dust in the Interplanetary Medium
Mann, Ingrid; Meyer-Vernet, Nicole; Zaslavsky, Arnaud; Lamy, Herve
2010-01-01
The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nano dust particles of sizes 1 - 10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nano dust are detected near 1AU with the plasma wave instrument onboard the STEREO spacecraft. Though such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.
The Circumgalactic Medium of Andromeda
Lehner, Nicolas; Project AMIGA team
2017-03-01
Our view of galaxies has been transformed in recent years with diffuse halo gas surrounding galaxies that contains at least as many metals and baryons as their disks. While single sight lines through galaxy halos seen in absorption have provided key new constraints, they provide only average properties. Our massive neighbor, the Andromeda (M31) galaxy, provides an unique way to study its circumgalactic medium whereby we can study it using not one or two, but ~36 sightlines thanks to its proximity. With our Large HST program - Project AMIGA (Absorption Maps In the Gas of Andromeda), our goals are to determine the spatial distribution of the halo properties of a L* galaxy using 36 background targets at different radii and azimuths. In this brief paper, I discuss briefly the scientific rationale of Project AMIGA and some early science results. In particular, for the first time we have demonstrated that M31 has a gaseous halo that extends to R vir with as much as metal and baryonic masses than in its disk and has substantial change in its ionization properties with more highly ionized gas found at R ~ R vir than cooler gas found near the disk.
The interstellar medium in galaxies
1997-01-01
It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was n...
Dust in the interplanetary medium
Mann, Ingrid; Lamy, Herve [Belgian Institute for Space Aeronomy, Brussels (Belgium); Czechowski, Andrzej [Space Research Center, Polish Academy of Sciences, Warsaw (Poland); Meyer-Vernet, Nicole; Zaslavsky, Arnaud, E-mail: ingrid.mann@aeronomie.b [LESIA, Observatoire de Paris, Meudon (France)
2010-12-15
The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nanodust particles of sizes {approx_equal}1-10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nanodust are detected near 1 AU with the plasma wave instrument onboard the STEREO spacecraft. Although such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.
Instabilities in Coaxial Rotating Jets
无
2000-01-01
The aim of this study is the characterization of the cylindrical mixing layer resulting layer resulting from the interaction of two coaxial swirling jets.The experimental part of this study was performed in a cylindrical water tunnel,permitting an independent rotation of two coaxial jets.The rotations are generated by means of 2×36 blades localized in two swirling chambers.As expected,the evolution of the main instabiltiy modes presents certain differences compared to the plane-mixing-layer case ,Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex paris in the near field region.This method also permitted the observation of the evolution and interaction of different modes.PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distrots the typical top-hat axial velocity profile.The transition of the the axial velocity profile from jet-like into wake-like is also observed.
The Stellar Activity - Rotation Relationship
Wright, Nicholas J; Mamajek, Eric E; Henry, Gregory W
2012-01-01
Using a new catalog of 824 solar and late-type stars with X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity. From an unbiased subset of this sample the power law slope of the unsaturated regime, $L_X/L_{bol}\\propto Ro^\\beta$, is fit as $\\beta=-2.70\\pm0.13$. This is inconsistent with the canonical $\\beta=-2$ slope to a confidence of 5$\\sigma$ and argues for an interface-type dynamo. Super-saturation is observed for the fastest rotators in our sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory being supported by other observations. We also present a new X-ray population synthesis model of the mature stellar component of our Galaxy and use it to reproduce deep observations of a high Galactic latitude field. The model, XStar, can be used to test models of stellar spin-down and dynamo decay, as well as for estimating stellar X-ray contamin...
Simultaneity on the Rotating Disk
Koks, Don
2017-04-01
The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".
On the coherent rotation of diffuse matter in numerical simulations of clusters of galaxies
Baldi, Anna Silvia; De Petris, Marco; Sembolini, Federico; Yepes, Gustavo; Lamagna, Luca; Rasia, Elena
2017-03-01
We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the gas physics: (i) non-radiative, (ii) radiative without active galactic nuclei (AGN) feedback and (iii) radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.
Natural history of infraspinatus fatty infiltration in rotator cuff tears.
Melis, Barbara; Wall, Bryan; Walch, Gilles
2010-07-01
Muscular fatty infiltration (FI) represents an important prognostic factor in rotator cuff repair. The goal of this study was to analyze the natural history of infraspinatus FI in rotator cuff tears to determine the timing of the appearance and the speed of progression of this phenomenon. The preoperative MRI or CT-arthrograms of 1688 patients operated for rotator cuff tears were reviewed. The degree of infraspinatus FI was correlated with the type of tendon tear, patient sex, dominant hand, presence of traumatic injury, delay between the onset of symptoms and imaging studies, and age of the patients at imaging. Infraspinatus FI was graded on axial images according to Goutallier classification and described as minimal (stage 0 or 1), medium (stage 2), and severe (stages 3 and 4). Statistical regression was used to determine the most significant factors. Infraspinatus FI increased significantly in presence of an infraspinatus tendon tear and when multiple tendons were torn (P < .0005), with increasing delay between the onset of symptoms and imaging studies (P < .0005) and increasing patient age (P < .0005). Medium FI appeared on average 2 and a half years after the onset of symptoms, and severe FI appeared at an average of 4 years after symptom onset. Larger tendon tears, longer delays after tendon rupture and older patient age are associated with more severe and frequent FI. Stage 2 FI appears at an average of 2 and a half years after the onset of symptoms, and surgical repair should be done within this time frame if possible. 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Rotating Polygons on a Fluid Surface
Bohr, Tomas; Jansson, Thomas; Haspang, Martin
The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can break...
Magnetism and rotation in relativistic field theory
Mameda, Kazuya; Yamamoto, Arata
2016-09-01
We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.
What Is Rotating in Exploratory Factor Analysis?
Osborne, Jason W.
2015-01-01
Exploratory factor analysis (EFA) is one of the most commonly-reported quantitative methodology in the social sciences, yet much of the detail regarding what happens during an EFA remains unclear. The goal of this brief technical note is to explore what "rotation" is, what exactly is rotating, and why we use rotation when performing…
Visualizing Compound Rotations with Virtual Reality
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
Motor Processes in Children's Mental Rotation
Frick, Andrea; Daum, Moritz M.; Walser, Simone; Mast, Fred W.
2009-01-01
Previous studies with adult human participants revealed that motor activities can influence mental rotation of body parts and abstract shapes. In this study, we investigated the influence of a rotational hand movement on mental rotation performance from a developmental perspective. Children at the age of 5, 8, and 11 years and adults performed a…
Trade Space Analysis: Rotational Analyst Research Project
2015-09-01
TRAC-M-TR-15-028 September 2015 Trade Space Analysis: Rotational Analyst Research Project TRADOC Analysis...PAGE INTENTIONALLY LEFT BLANK TRAC-M-TR-15-028 September 2015 Trade Space Analysis: Rotational Analyst Research Project...NUMBERS Trade Space Analysis : Rotational Analyst Research Project TRAC Project Code 060128 6. AUTHOR(S) Kirstin D Smead 7. PERFORMING
Manual Training of Mental Rotation in Children
Wiedenbauer, Gunnar; Jansen-Osmann, Petra
2008-01-01
When deciding whether two stimuli rotated in space are identical or mirror reversed, subjects employ mental rotation to solve the task. In children mental rotation can be trained by extensive repetition of the task, but the improvement seems to rely on the retrieval of previously learned stimuli. We assumed that due to the close relation between…
Visualizing Compound Rotations with Virtual Reality
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
Medium of Instruction in Thai Science Learning
Chanjavanakul, Natpat
The goal of this study is to compare classroom discourse in Thai 9th grade science lessons with English or Thai as a medium of instruction. This is a cross-sectional study of video recordings from five lessons in an English-medium instruction class and five lessons in a Thai- medium instruction class from a Thai secondary school. The study involved two teachers and two groups of students. The findings show the use of both English and Thai in English-medium lessons. Students tend to be more responsive to teacher questions in Thai than in English. The findings suggest the use of students' native language during English-medium lessons to help facilitate learning in certain situations. Additionally, the study provides implications for research, practice and policy for using English as a medium of instruction.
New Medium for Pharmaceutical Grade Arthrospira
2013-01-01
The aim of this study is to produce a pharmaceutical grade single cell product of Arthrospira from a mixed culture. We have designed a medium derived from a combination between George’s and Zarrouk’s media. Our new medium has the ability to inhibit different forms of cyanobacterium and microalgae except the Chlorella. The medium and the cultivation conditions have been investigated to map the points where only Arthrospira could survive. For that, a mixed culture of pure Chlorella and Arthros...
Medium-induced multi-photon radiation
Ma, Hao; Tywoniuk, Konrad
2011-01-01
We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Moli\\`{e}re limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.
Strong Completeness of Medium Logic System
Pan Zhenghua; Zhu Wujia
2005-01-01
The strong completeness of medium logic system is discussed. The following results are proved: medium propositional logic system MP and its extension MP * are strong complete; medium predicate logic system MF and its extensions ( MF * and ME * ) are not strong complete; and generally, if a consistent formal system is not strong complete, then any consistent extensions of this formai system are not strong complete either.
Flow between two stretchable rotating disks with Cattaneo-Christov heat flux model
Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed
An analysis is performed to investigate flow between two stretchable rotating disks. Thermal equation is constructed by Cattaneo-Christov heat flux theory. Porous medium is also taken into account. The nonlinear partial differential equations are first converted to ordinary differential equations and then computed for the convergent series solutions. Discussion about impact of dimensionless parameters on velocities, temperature and skin friction coefficient is given. It is observed that the radial velocity at upper disk enhances for larger values of ratio of corresponding stretching rate to angular velocity. Velocity in y-direction decays with an increase in rotational parameter. Magnitude of temperature profile decays for larger Prandtl number and thermal relaxation parameter.
In-Medium Pion Valence Distribution Amplitude
Tsushima, K
2016-01-01
After a brief review of the quark-based model for nuclear matter, and some pion properties in medium presented in our previous works, we report new results for the pion valence wave function as well as the valence distribution amplitude in medium, which are presented in our recent article. We find that both the in-medium pion valence distribution and the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
In-Medium Pion Valence Distribution Amplitude
Tsushima, K.; de Melo, J. P. B. C.
2017-03-01
After a brief review of the quark-based model for nuclear matter, and some pion properties in medium presented in our previous works, we report new results for the pion valence wave function as well as the valence distribution amplitude in medium, which are presented in our recent article. We find that both the in-medium pion valence distribution and the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
Chemically defined medium and Caenorhabditis elegans
Szewczyk, Nathaniel J.; Kozak, Elena; Conley, Catharine A.
2003-01-01
BACKGROUND: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. RESULTS: We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats to using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change the composition of the defined medium. CONCLUSIONS: As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.
Visual perception of axes of head rotation
David Mattijs Arnoldussen
2013-02-01
Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into
Rotation and massive close binary evolution
Langer, N; Yoon, S -C; Hunter, I; Brott, I; Lennon, D J; de Mink, S E; Verheijdt, M
2008-01-01
We review the role of rotation in massive close binary systems. Rotation has been advocated as an essential ingredient in massive single star models. However, rotation clearly is most important in massive binaries where one star accretes matter from a close companion, as the resulting spin-up drives the accretor towards critical rotation. Here, we explore our understanding of this process, and its observable consequences. When accounting for these consequences, the question remains whether rotational effects in massive single stars are still needed to explain the observations.
Rotation of microscopic propellers in laser tweezers
Galajda, Peter; Ormos, Pal [Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, PO Box 521, H-6701 (Hungary)
2002-04-01
Particles of helical shape trapped in laser tweezers are rotated by light, independently of its polarization state. Light scattering by such propeller-like particles generates the momentum to drive the rotation. The efficiency of the rotation depends on the geometry of the particles. We used photopolymerization of light curing resins to create micrometre-size rotors with different shapes. The rotation of such particles was studied: the effect of shape and size on the rotation, as well as on the stability of the position in the laser tweezers.
Rotating samples in FT-RAMAN spectrometers
De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.
1997-11-01
It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.
Rotating optical microcavities with broken chiral symmetry
Sarma, Raktim; Wiersig, Jan; Cao, Hui
2014-01-01
We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.
Sun, Ling; Zhu, Zesheng
2017-08-01
This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.
Unstable ring resonator with bidirectional propagation through the gain medium: analysis
Paxton, Alan H.
2011-03-01
Unique properties of unstable ring resonators are sometimes useful. A collimated beam in the gain medium may be desirable. Spatial hole burning is eliminated. Beam rotation may be helpful. There is a drawback, however. As usually constructed, a ring resonator has half as many passes through the gain medium as can be achieved with a standing-wave resonator. We have performed a geometrical and a wave-optics numerical simulation of a type of ring resonator that allows counter-propagating collinear passes through the gain medium, while there is also a section with a unidirectional beam. The resonator includes a polarizing beam splitter. The linear polarization is transformed to the orthogonal state by optical elements at the two ends of the region with counter-propagating beams. The wave-optics simulation treats a UR90, for which the output beam is unobscured.
Locomotion gaits of a rotating cylinder pair
van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.
2015-11-01
Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.
Stellar rotation effects in polarimetric microlensing
Sajadian, Sedighe
2016-01-01
It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rapidly rotate around their stellar axes. The stellar rotation makes ellipticity and gravity-darkening effects which break the spherical symmetry of the source shape and the circular symmetry of the source surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetry microlensing of fast rotating stars. For moderate rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetry observations. The gravity-darkening effect due to a rotating source star makes asymmetric perturbations in polarimetry and photometry microlensing curves whose maximum happens when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity makes a time shift (i) in the position of ...
Dimensionality constraints of light induced rotation
Oroszi, László; Galajda, Péter; Kelemen, Lóránd; Mathesz, Anna; Vicsek, Tamás; Vizsnyiczai, Gaszton; Ormos, Pál
2015-01-01
We have studied the conditions of rotation induced by collimated light carrying no angular momentum. Objects of different shapes and optical properties were examined in the nontrivial case where the rotation axis is perpendicular to the direction of light propagation. This geometry offers important advantages for application as it fundamentally broadens the possible practical arrangements to be realised. We found that collimated light cannot drive permanent rotation of 2D or prism-like 3D objects (i.e. fixed cross-sectional profile along the rotation axis) in the case of fully reflective or fully transparent materials. Based on both geometrical optics simulations and theoretical analysis, we derived a general condition for rotation induced by collimated light carrying no angular momentum valid for any arrangement: Permanent rotation is not possible if the scattering interaction is two-dimensional and lossless. In contrast, light induced rotation can be sustained if partial absorption is present or the object ...
Omni rotational driving and steering wheel
2008-01-01
Abstract of WO 2008138346 (A1) There is disclosed a driving and steering wheel (112) module (102) with an omni rotational part (106), the module comprising a flange part (104) fixable on a robot, and the omni rotational part (106) comprises an upper omni rotational part (105) and a driving...... and steering wheel part (108), where the omni rotational part (106) is provided for infinite rotation relative to the flange part (104) by both a drive motor (110) and a steering motor (114) being positionable on the flange part (104), and the driving and steering wheel part (108) is suspended from the upper...... omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...
Effects of Huge Earthquakes on Earth Rotation and the length of Day
Changyi Xu
2013-01-01
Full Text Available We calculated the co-seismic Earth rotation changes for several typical great earthquakes since 1960 based on Dahlen¡¦s analytical expression of Earth inertia moment change, the excitation functions of polar motion and, variation in the length of a day (ΔLOD. Then, we derived a mathematical relation between polar motion and earthquake parameters, to prove that the amplitude of polar motion is independent of longitude. Because the analytical expression of Dahlen¡¦s theory is useful to theoretically estimate rotation changes by earthquakes having different seismic parameters, we show results for polar motion and ΔLOD for various types of earthquakes in a comprehensive manner. The modeled results show that the seismic effect on the Earth¡¦s rotation decreases gradually with increased latitude if other parameters are unchanged. The Earth¡¦s rotational change is symmetrical for a 45° dip angle and the maximum changes appear at the equator and poles. Earthquakes at a medium dip angle and low latitudes produce large rotation changes. As an example, we calculate the polar motion and ΔLOD caused by the 2011 Tohoku-Oki Earthquake using two different fault models. Results show that a fine slip fault model is useful to compute co-seismic Earth rotation change. The obtained results indicate Dahlen¡¦s method gives good approximations for computation of co-seismic rotation changes, but there are some differences if one considers detailed fault slip distributions. Finally we analyze and discuss the co-seismic Earth rotation change signal using GRACE data, showing that such a signal is hard to be detected at present, but it might be detected under some conditions. Numerical results of this study will serve as a good indicator to check if satellite observations such as GRACE can detect a seismic rotation change when a great earthquake occur.
Interaction of gravitational waves with an elastic solid medium
Carter, B.
2001-01-01
Contents. 1. Introduction. 2. Kinematics of a Material Medium: Material Representation. 3. Kinematics of a Material Medium: Convected Differentials. 4. Kinematics of a Perfect Elastic Medium. 5. Small Gravitational Perturbations of an Elastic Medium.
Differential rotation of geomagnetic field
WEI Zigang; XU Wenyao
2003-01-01
The latitudinal dependence of the westward drift in the main geomagnetic field is examined by using the correlation analysis of moving random pattern. The study reveals the characteristics in the differential rotation of the main field. The results show that the global geomagnetic field drifts westward with an average speed of 0.18°/a during 1900-2000. The westward drift rate is not symmetrical with respect to the equator. The maximum westward drift rate, 0.31°/a, occurs at the latitude --= -15°, forming a Rapid Westward Drift Belt (RDB) around this latitude. Going northward and southward from this belt, the drift rate decreases and reaches the minimum (0.12°/a) at --= 50° and the minimum (0.14°/a) at --= -56°, forming a Northern Hemisphere Slow Westward Drift Belt (N-SDB) and a Southern Hemisphere Slow Westward Drift Belt (S-SDB). Three phases can be detected in the evolution of the westward drift. In the first phase (1900-1940), the RDB dominates the global drift pattern. The westward drifts in this belt are much faster than those in other areas. In the second phase (1940-1960), the drift rates in the RDB are less than those in the first phase, while the drifts in the N-SDB and S-SDB are relatively large. In this phase, the differential rotation becomes less obvious. In the third phase (1960-2000), the westward drift in the RDB increases again and the differential rotation gradually becomes apparent.
Cosmology and galactic rotation curves
Mannheim, P D
1995-01-01
We explore the possibility that the entire departure of galactic rotational velocities from their luminous Newtonian expectation be cosmological in origin, and show that within the framework of conformal gravity (but not Einstein gravity apparently) every static observer sees the overall Hubble flow as a local universal linear potential which is able to account for available data without any need for dark matter. We find that the Universe is necessarily an open one with 3-space scalar curvature given by k = -3.5\\times 10^{-60}cm^{-2}.
Generalization of stochastic visuomotor rotations.
Hugo L Fernandes
Full Text Available Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty.
Design of rotating electrical machines
Pyrhonen , Juha; Hrabovcova , Valeria
2013-01-01
In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo
DISCRETE ROTATIONS AND CELLULAR AUTOMATA
Nouvel, Bertrand
2006-01-01
In a discrete space, such as the set of integer-coordinate points, the modelization of isotropy may lead to noticeable theoretical difficulties. At this time, we do not know any gerometric theory on $\\ZZ^n$ that would be suitable to describe the isotropy the same way it is perceived by Euclidean geometry. With respect to this problematic, our aim is to describe some algorithms that would give to the discrete rotations some properties that would be similar to the properties of the Euclidean ro...
Analysis of superdeformed rotational bands
Lalazissis, G. A.; Hara, K.
1998-07-01
Available experimental data for the ΔI=2 transition energies in superdeformed bands are analyzed by using an extended one-point formula. The existence of deviations from the smooth behavior is confirmed in many bands. However, we stress that one cannot necessarily speak about regular staggering patterns as they are mostly irregular. We present a simulation of the experimental data in terms of a simple model, which suggests that the irregularities may stem from the presence of irregular kinks in the rotational spectrum. However, at present, where such kinks may come from is an open question.
Rotational Electromagnetic Energy Harvesting System
Dinulovic, Dragan; Brooks, Michael; Haug, Martin; Petrovic, Tomislav
This paper presents development of the rotational electromagnetic energy harvesting transducer. The transducer is driven mechanically by pushing a button; therefore, the mechanical energy will be converted into electrical energy. The energy harvesting (EH) transducer consists of multilayer planar coils embedded in a PCB, multipolar NdFeB hard magnets, and a mechanical system for movement conversion. The EH transducer generate an energy of about 4 mJ at a load of 10 Ω. The maximum open circuit output voltage is as high as 2 V and the maximum short circuit output current is 800 mA.
49 CFR 236.811 - Speed, medium.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Speed, medium. 236.811 Section 236.811 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Speed, medium. A speed not exceeding 40 miles per hour. ...
Electromagnetic Sources in a Moving Conducting Medium
Johannsen, Günther
1971-01-01
The problem of an arbitrary source distribution in a uniformly moving, homogeneous, isotropic, nondispersive, conducting medium is solved. The technique used is to solve the problem in the rest system of the medium and then write the result in an appropriate four-dimensional, covariant form which...
Rethinking English in Maori-Medium Education
Hill, Richard
2011-01-01
English language instruction in New Zealand's Maori-medium schools is controversial, with many schools either excluding it from their curriculum or adopting a tokenistic approach. Yet, how Maori-medium educators can best support their students' academic English language growth is still an under-researched and unresolved question. This paper…
Effective medium theory for anisotropic metamaterials
Zhang, Xiujuan
2015-01-20
Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.
International Electrotechnical Commission. Geneva
1974-01-01
Describes methods for measuring the efficiency of electrical rotating machines either by determining total losses on load or by determination of the segregated losses for air and water cooling mediums. Applies to large generators but may be used for other machines.
Assessment of the rotator cable in various rotator cuff conditions using indirect MR arthrography.
Choo, Hye Jung; Lee, Sun Joo; Kim, Dong Wook; Park, Young-Mi; Kim, Jung-Han
2014-11-01
The rotator cable is an important structure providing stress shield to the rotator cuff, similar to the mechanism of suspension bridge. To evaluate the visibility and appearance of the rotator cable in various conditions of the rotator cuff, using indirect magnetic resonance (MR) arthrography. Indirect MR arthrography images from 27 patients (age range, 20-63 years) with normal rotator cuffs, and 47 (age range, 20-73 years) with tendinosis, 32 (age range, 49-71 years) with partial-thickness tears, and 55 (age range, 44-75 years) with full-thickness tears in the supraspinatus and infraspinatus tendons (SST-ISTs) were included in this study. In these various rotator cuff conditions, the visibility and appearance (thickness and width) of the rotator cable and the relationships between the rotator cable appearance, rotator cuff tear size, rotator cuff thickness, and patient's age were assessed. On the sagittal MR images, all rotator cables were visible in the normal rotator cuffs and tendinosis/partial-thickness tears of SST-ISTs. In the order of normal cuff, tendinosis, partial-thickness tear, and full-thickness tear of SST-ISTs, the rotator cable tended to become thicker (1.07, 1.27, 1.32, and 1.59 mm, respectively) and narrower (12.1, 10.68, 10.90, and 8.55 mm, respectively). The thickness of the rotator cable was significantly positively correlated with the rotator cuff thickness in the normal rotator cuffs (coefficient, 0.49; P = 0.010) and tendinosis of SST-ISTs (coefficient, 0.53; P < 0.001), but was not correlated with patients' age. On sagittal plane of indirect MR arthrography, most rotator cables were visible. The appearance of the rotator cable changed according to the rotator cuff condition. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Wave propagation in thermoelastic saturated porous medium
M D Sharma
2008-12-01
Biot ’s theory for wave propagation in saturated porous solid is modiﬁed to study the propagation of thermoelastic waves in poroelastic medium. Propagation of plane harmonic waves is considered in isotropic poroelastic medium. Relations are derived among the wave-induced temperature in the medium and the displacements of ﬂuid and solid particles. Christoffel equations obtained are modiﬁed with the thermal as well as thermoelastic coupling parameters. These equations explain the existence and propagation of four waves in the medium. Three of the waves are attenuating longitudinal waves and one is a non-attenuating transverse wave. Thermal properties of the medium have no effect on the transverse wave. The velocities and attenuation of the longitudinal waves are computed for a numerical model of liquid-saturated sandstone. Their variations with thermal as well as poroelastic parameters are exhibited through numerical examples.
Ring wormholes via duality rotations
Gary W. Gibbons
2016-09-01
Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.
Differentiating the differential rotation effect.
Boyarskaya, Evgenia; Hecht, Heiko
2012-07-01
As an observer views a picture from different viewing angles, objects in the picture appear to maintain their orientation relative to the observer. For instance, the eyes of a portrait appear to follow the observer as he or she views the image from different angles. We have explored this rotation effect, often called the Mona Lisa effect. We report three experiments that used portrait photographs to test variations of the Mona Lisa effect. The first experiment introduced picture displacements relative to the observer in directions beyond the horizontal plane. The Mona Lisa effect remained robust for vertical and/or diagonal observer displacements. The experiment also included conditions in which the portrait had averted gaze directions. An interaction between picture position relative to the observer and gaze direction was found. The second experiment followed up on very pronounced individual differences, suggesting that the Mona Lisa effect is even stronger than it should be for half of all observers (over-rotators). These individual differences do not correlate with any of the standard personality dimensions (Big Five) or with spatial intelligence. In the third experiment, we extended the experiment to virtual 3D heads using the same gaze directions and picture displacements as for the 2D portrait faces. Besides the picture displacements relative to the observer, we also added observer displacements relative to the picture. 3D pictures showed the Mona Lisa effect, but to a smaller extent than did 2D pictures. Copyright © 2012 Elsevier B.V. All rights reserved.
Metalloproteases and rotator cuff disease.
Del Buono, Angelo; Oliva, Francesco; Longo, Umile Giuseppe; Rodeo, Scott A; Orchard, John; Denaro, Vincenzo; Maffulli, Nicola
2012-02-01
The molecular changes occurring in rotator cuff tears are still unknown, but much attention has been paid to better understand the role of matrix metalloproteinases (MMP) in the development of tendinopathy. These are potent enzymes that, once activated, can completely degrade all components of the connective tissue, modify the extracellular matrix (ECM), and mediatethe development of painful tendinopathy and tendon rupture. To control the local activity of activated proteinases, the same cells produce tissue inhibitors of metalloproteinases (TIMP) that bind to the enzymes and prevent degradation. The balance between the activities of MMPs and TIMPs regulates tendon remodeling, whereas an imbalance produces a collagen dis-regulation and disturbances intendons. ADAMs (a disintegrin and metalloproteinase) are cell membrane-linked enzymes with proteolytic and cell signaling functions. ADAMTSs (ADAM with thrombospondin motifs) are secreted into the circulation, and constitute a heterogenous family of proteases with both anabolic and catabolic functions. Biologic modulation of endogenous MMP activity to basal levels may reduce pathologic tissue degradation and favorably influence healing after rotator cuff repair. Further studies are needed to better define the mechanism of action, and whether these new strategies are safe and effective in larger models. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
A nonsingular rotating black hole
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)
2015-11-15
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Rotating black hole and quintessence
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)
2016-04-15
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)
Reciprocally-Rotating Velocity Obstacles
Giese, Andrew
2014-05-01
© 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.
Short rotation Wood Crops Program
Wright, L.L.; Ehrenshaft, A.R.
1990-08-01
This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.
Ring wormholes via duality rotations
Gibbons, Gary W
2016-01-01
We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy-Voorhees-Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than $-c^4/4G$. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a whole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes...
Trirotron: triode rotating beam radio frequency amplifier
Lebacqz, Jean V.
1980-01-01
High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.
Micropropagation of Alstroemeria in liquid medium using slow release of medium components
Klerk, de G.J.M.; Brugge, ter J.
2010-01-01
Alstroemeria rhizomes were micropropagated on semi-solid medium (AM) and in liquid medium (LM). In LM, growth was much enhanced (ca. 70%). Adequate gas exchange was crucial. This was obtained by agitation and in static medium by a sufficient large contact area of the explant and the gaseous
Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis.
Ren, Yukun; Liu, Weiyu; Liu, Jiangwei; Tao, Ye; Guo, Yongbo; Jiang, Hongyuan
2016-09-01
We describe a novel rotating trait of induced-charge electroosmotic slip above a planar metal surface, a phenomenon termed "Rotating induced-charge electro-osmosis" (ROT-ICEO), in the context of a new microfluidic technology for tunable particle rotation or rotational trap. ROT-ICEO has a dynamic flow stagnation line (FSL) that rotates synchronously with a background circularly polarized electric field. We reveal that the rotating FSL of ROT-ICEO gives rise to a net hydrodynamic torque that is responsible for rotating fluids or particles in the direction of the applied rotating electric field either synchronously or asynchronously, the magnitude of which is adjusted by a balance between rotation of FSL and amplitude of angular-direction flow component oscillating at twice the field frequency. Supported by experimental observation, our physical demonstration with ROT-ICEO proves invaluable for the design of flexible electrokinetic framework in modern microfluidic system.
Collaborative Manufacturing for Small-Medium Enterprises
Irianto, D.
2016-02-01
Manufacturing systems involve decisions concerning production processes, capacity, planning, and control. In a MTO manufacturing systems, strategic decisions concerning fulfilment of customer requirement, manufacturing cost, and due date of delivery are the most important. In order to accelerate the decision making process, research on decision making structure when receiving order and sequencing activities under limited capacity is required. An effective decision making process is typically required by small-medium components and tools maker as supporting industries to large industries. On one side, metal small-medium enterprises are expected to produce parts, components or tools (i.e. jigs, fixture, mold, and dies) with high precision, low cost, and exact delivery time. On the other side, a metal small- medium enterprise may have weak bargaining position due to aspects such as low production capacity, limited budget for material procurement, and limited high precision machine and equipment. Instead of receiving order exclusively, a small-medium enterprise can collaborate with other small-medium enterprise in order to fulfill requirements high quality, low manufacturing cost, and just in time delivery. Small-medium enterprises can share their best capabilities to form effective supporting industries. Independent body such as community service at university can take a role as a collaboration manager. The Laboratory of Production Systems at Bandung Institute of Technology has implemented shared manufacturing systems for small-medium enterprise collaboration.
Boundary layer control of rotating convection systems.
King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M
2009-01-15
Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.
Full Rotational Control of Levitated Silicon Nanorods
Kuhn, Stefan; Stickler, Benjamin A; Patolsky, Fernando; Hornberger, Klaus; Arndt, Markus; Millen, James
2016-01-01
We study a nanofabricated silicon rod levitated in an optical trap. By manipulating the polarization of the light we gain full control over the ro-translational dynamics of the rod. We are able to trap both its centre-of-mass and align it along the linear polarization of the laser field. The rod can be set into rotation at a tuned frequency by exploiting the radiation pressure exerted by elliptically polarized light. The rotational motion of the rod dynamically modifies the optical potential, which allows tuning of the rotational frequency over hundreds of Kilohertz. This ability to trap and control the motion and alignment of nanoparticles opens up the field of rotational optomechanics, rotational ground state cooling and the study of rotational thermodynamics in the underdamped regime.
The effect of rotations on Michelson interferometers
Maraner, Paolo
2014-11-01
In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer's speed to the speed of light, further suppressed by the ratio of the interferometer's arms length to the radius of rotation and depends on the interferometer's position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth's rotated kilometer-scale Fabry-Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations.
Inertial measurement unit using rotatable MEMS sensors
Kohler, Stewart M.; Allen, James J.
2006-06-27
A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.
Inertial measurement unit using rotatable MEMS sensors
Kohler, Stewart M. (Albuquerque, NM); Allen, James J. (Albuquerque, NM)
2007-05-01
A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.
Contained Modes In Mirrors With Sheared Rotation
Abraham J. Fetterman and Nathaniel J. Fisch
2010-10-08
In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________
Inertial measurement unit using rotatable MEMS sensors
Kohler, Stewart M.; Allen, James J.
2007-05-01
A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.
Confirmation of bistable stellar differential rotation profiles
Käpylä, P J; Brandenburg, A
2014-01-01
(abridged) Context: Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive ($\\Lambda$-effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We perform three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential r...
Are rotating planes of satellite galaxies ubiquitous?
Phillips, John I; Bullock, James S; Boylan-Kolchin, Michael
2015-01-01
We compare the dynamics of satellite galaxies in the Sloan Digital Sky Survey to simple models in order to test the hypothesis that a large fraction of satellites co-rotate in coherent planes. We confirm the previously-reported excess of co-rotating satellite pairs located near diametric opposition with respect to the host, but show that this signal is unlikely to be due to rotating discs (or planes) of satellites. In particular, no overabundance of co-rotating satellites pairs is observed within $\\sim 20^{\\circ}-50^{\\circ}$ of direct opposition, as would be expected for planar distributions inclined relative to the line-of-sight. Instead, the excess co-rotation for satellite pairs within $\\sim 10^{\\circ}$ of opposition is consistent with random noise associated with undersampling of an underlying isotropic velocity distribution. We conclude that at most $10\\%$ of the hosts in our sample harbor co-rotating satellite planes (as traced by the luminous satellite population).
Physics, Formation and Evolution of Rotating Stars
Maeder, André
2009-01-01
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...
A surface-bound molecule that undergoes optically biased Brownian rotation
Hutchison, James A.; Uji-I, Hiroshi; Deres, Ania; Vosch, Tom; Rocha, Susana; Müller, Sibylle; Bastian, Andreas A.; Enderlein, Jörg; Nourouzi, Hassan; Li, Chen; Herrmann, Andreas; Müllen, Klaus; de Schryver, Frans; Hofkens, Johan
2014-02-01
Developing molecular systems with functions analogous to those of macroscopic machine components, such as rotors, gyroscopes and valves, is a long-standing goal of nanotechnology. However, macroscopic analogies go only so far in predicting function in nanoscale environments, where friction dominates over inertia. In some instances, ratchet mechanisms have been used to bias the ever-present random, thermally driven (Brownian) motion and drive molecular diffusion in desired directions. Here, we visualize the motions of surface-bound molecular rotors using defocused fluorescence imaging, and observe the transition from hindered to free Brownian rotation by tuning medium viscosity. We show that the otherwise random rotations can be biased by the polarization of the excitation light field, even though the associated optical torque is insufficient to overcome thermal fluctuations. The biased rotation is attributed instead to a fluctuating-friction mechanism in which photoexcitation of the rotor strongly inhibits its diffusion rate.
van den Beld, Wesley T E; Cadena, Natalia L; Bomer, Johan; de Weerd, Eddy L; Abelmann, Leon; van den Berg, Albert; Eijkel, Jan C T
2015-07-07
We demonstrate a novel, flexible and programmable method to pump liquid through microchannels in lab-on-a-chip systems without the use of an external pump. The pumping principle is based on the rotation of ferromagnetic Janus microspheres around permalloy disks, driven by an external rotating magnetic field. By placing the disks close to the edge of the microchannel, a pumping rate of at least 0.3 nL min(-1) was measured using tracking microspheres. Geometric programming of the pumping direction is possible by positioning the magnetic disk close to the side wall. A second degree of freedom in the pumping direction is offered by the rotational direction of the external magnetic field. This method is especially suited for flow-controlled recirculation of chemical and biological species in microchannels - for example, medium recirculation in culture chambers - opening the way towards novel, portable, on-chip applications without the need for external fluidic or electrical connections.
王敖金; 胡坤生
2002-01-01
Membrane viscosity of the reconstituted vesicles was calibrated by rotational diffusion of bacteriorhodopsin (BR) in dimyristoylphosphatidylcholine (DMPC) and egg phosphatidylcholine (PC) vesicles. Rotational diffusion of BR in the vesicles was measured by flash-induced absorption anisotropy decay. BR was, for the first time, reconstituted successfully into DMPC and egg PC vesicles. From the measurement of flash-induced absorption anisotropy decay of BR, the value of rotational diffusion coefficient D was obtained from each curve fitting by a global fitting procedure and, in turn, membrane viscosity η was estimated from D. The results have shown that membrane viscosity is temperature-dependent. It was decreased as temperature increased, but a transition occurred in the region of the respective phase transition of DMPC and egg PC, respectively. The decrease of η was fast near the phase transition for DMPC and egg PC. Few effects of lipid/BR ratio and glycerol or sucrose in suspension medium on membrane viscosity were found.
Design and synthesis of reticular MOFs with high porosity and gas storage
Tan, Chenrong
2013-01-01
This thesis comprises six chapters. Chapter 1 introduces the background to the project. In this chapter, issues of energy problems, the advantages of H2 and materials and methods for storage are introduced and then the subject is focused on porous metal-organic frameworks (MOFs), a new class of porous materials which are good candidates as on-board storage materials combining with the fuel cell technology. Three topics are discussed about porous materials, (i) metal nodes as secondary bui...
Strength and Biot's coefficient for high-porosity oil- or water-saturated chalk
Andreassen, Katrine Alling
considerations for the size of the drilling window and the magnitude of the lateral stress involve the Biot coefficient. Additionally, the fluid effect of oil-saturated chalk behaving much stronger than water-saturated chalk affects geomechanical considerations related to e.g. water injection into a reservoir...
High=porosity Cenozoic carbonate rocks of South Florida: progressive loss of porosity with depth
Halley, Robert B.; Schmoker, James W.
1983-01-01
Porosity measurements by borehole gravity meter in subsurface Cenozoic carbonates of South Florida reveal an extremely porous mass of limestone and dolomite which is transitional in total pore volume between typical porosity values for modern carbonate sediments and ancient carbonate rocks. A persistent decrease of porosity with depth, similar to that of chalks of the Gulf Coast, occurs in these rocks. Carbonate strata with less than 20% porosity are absent from the rocks studied here. Aquifers and aquicludes cannot be distinguished on the basis of porosity. Aquifers are not exceptionally porous when compared to other Tertiary carbonate rocks in South Florida. Permeability in these strata is governed more by the spacial distribution of pore space and matrix than by total volume of porosity present. Dolomite is as porous as, or slightly less porous than, limestones in these rocks. This observation places limits on any model proposed for dolomitization and suggests that dolomitization does not take place by a simple ion-for-ion replacement of magnesium for calcium. Dolomitization may be selective for less porous limestone, or it may involve the incorporation of significant amounts of carbonate as well as magnesium into the rock. The great volume of pore space in these rocks serves to highlight the inefficiency of early diagenesis in reducing carbonate porosity and to emphasize the importance of later porosity reduction which occurs during the burial or late near-surface history of limestones and dolomites.
Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.
Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter
2016-01-21
We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.
Laursen, Anders B.; Vesborg, Peter C. K.; Chorkendorff, Ib
2013-01-01
This work describes a highly active and stable acid activated carbon fibre and amorphous MoSx composite hydrogen evolution catalyst. The increased electrochemical-surface area is demonstrated to cause increased catalyst electrodeposition and activity. These composite electrodes also show an impro......This work describes a highly active and stable acid activated carbon fibre and amorphous MoSx composite hydrogen evolution catalyst. The increased electrochemical-surface area is demonstrated to cause increased catalyst electrodeposition and activity. These composite electrodes also show...
Mechanical Properties of NiTi-Based Foam with High Porosity for Implant Applications
Qiu, Ying; Yu, Hao; Young, Marcus L.
2015-11-01
In order to better understand NiTi-based shape memory alloy foams for implant applications, Ni40Ti50Cu10 foams were heat treated and then deformed under incremental and cyclic compression loading. After heat treatment, the microstructure consists of a (Ni,Cu)Ti matrix with small (Ni,Cu)4Ti3 precipitates and a large Ti2(Ni,Cu) secondary phase. The heat-treated Ni40Ti50Cu10 foam exhibits a two-step transformation, involving B19' → B19 and B19 → B2 on heating and B2 → B19 and B19 → B19' on cooling, respectively. One Ni40Ti50Cu10 foam was compression loaded for 10 cycles at each subsequent strain level, i.e., 1, 2, 3, 4, 5, and 6 % strain. In each set of compressive stress-strain loops, the maximum stress level decreases due to plastic damage accumulation and/or retention of transformed martensite. Cross-sectional images from micro-computed tomography were collected during compression loading, which shows very uniform deformation without severe structural damage even up to 5 % strain. Localized deformation is visible at 6 % strain.
Rotating Drive for Electrical-Arc Machining
Fransen, C. D.
1986-01-01
Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.
Dynamics of Rotating, Magnetized Neutron Stars
Liebling, Steven L.
2010-01-01
Using a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions, the dynamics of magnetized, rigidly rotating neutron stars are studied. Beginning with fully consistent initial data constructed with Magstar, part of the Lorene project, we study the dynamics and stability of rotating, magnetized polytropic stars as models of neutron stars. Evolutions suggest that some of these rotating, magnetized stars may be minimally uns...
Detecting Rotational Superradiance in Fluid Laboratories
Cardoso, Vitor; Coutant, Antonin; Richartz, Mauricio; Weinfurtner, Silke
2016-01-01
Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material...
Ultrasound fields in an attenuating medium
Jensen, Jørgen Arendt; Gandhi,, D; O'Brien,, W.D., Jr.
1993-01-01
Ultrasound fields propagating in tissue will undergo changes in shape not only due to diffraction, but also due to the frequency dependent attenuation. Linear fields can be fairly well predicted for a non-attenuating medium like water by using the Tupholme-Stepanishen method for calculating...... the spatial impulse response, whereas the field cannot readily be found for an attenuating medium. In this paper we present a simulation program capable of calculating the field in a homogeneous attenuating medium. The program splits the aperture into rectangles and uses a far-field approximation for each...
Physical processes in the interstellar medium
Spitzer, Lyman
2008-01-01
Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.
Meson's Correlation Functions in a Nuclear Medium
Park, Chanyong
2016-01-01
We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the rho-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Meson's correlation functions in a nuclear medium
Park, Chanyong
2016-09-01
We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Method to prepare nanoparticles on porous mediums
Vieth, Gabriel M [Knoxville, TN; Dudney, Nancy J [Oak Ridge, TN; Dai, Sheng [Knoxville, TN
2010-08-10
A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.
Cesare Tomasoni
2011-03-01
Full Text Available This paper reports results from a field experiment established in 1995 and still on going. It is located in Lodi, in the irrigated lowlands of Lombardy, Northern Italy. The experiment compares two rotations: the annual double cropping system, Italian ryegrass + silage maize (R1; and the 6-year rotation, in which three years of double crop Italian ryegrass + silage maize are followed by three years of alfalfa harvested for hay (R6 Each rotation have received two types of dairy manure: i farmyard manure (FYM; ii semi-liquid manure (SLM. The intent was to apply to each unit land area the excreta produced by the number of adult dairy cows sustained, in terms of net energy, by the forage produced in each rotation, corresponding to about 6 adult cows ha-1 for R1 and 4 adult cows ha-1 for R6. Manure was applied with (N1 or without (N0 an extra supply of mineral N in the form of urea. The objectives of this study were: i to assess whether the recycling of two types of manure in two forage rotation systems can sustain crop yields in the medium and long term without additional N fertilization; ii to evaluate the nutrient balance of these integrated forage rotations and manure management systems; iii to compare the effects of farmyard manure and semi-liquid manure on soil organic matter. The application of FYM, compared to SLM, increased yield of silage maize by 19% and alfalfa by 23%, while Italian ryegrass was not influenced by the manure treatment. Yet, silage maize produced 6% more in rotation R6 compared to rotation R1. The mineral nitrogen fertilization increased yield of Italian ryegrass by 11% and of silage maize by 10%. Alfalfa, not directly fertilized with mineral nitrogen, was not influenced by the nitrogen applied to the other crops in rotation. The application of FYM, compared to SLM, increased soil organic matter (SOM by +37 % for the rotation R1, and by +20% for the rotation R6. Conversely, no significant difference on SOM was observed
Rotation induced flow suppression around two tandem circular cylinders at low Reynolds number
Chatterjee, Dipankar; Gupta, Krishan; Kumar, Virendra; Varghese, Sachin Abraham
2017-08-01
The rotation to a bluff object is known to have a stabilizing effect on the fluid dynamic transport around the body. An unsteady periodic flow can be degenerated into a steady flow pattern depending on the rate of rotation imparted to the body. On the other hand, multiple bodies placed in tandem arrangement with respect to an incoming flow can cause destabilization to the flow as a result of the complicated wake interaction between the bodies. Accordingly, the spacing between the bodies and the rate of rotation have significant impact on the overall fluid dynamic transport around them. The present work aims to understand how these two competing factors are actually influencing the fluidic transport across a pair of identical rotating circular cylinders kept in tandem arrangement in an unconfined medium. The cylinders are subjected to a uniform free stream flow and the gaps between the cylinders are varied as 0.2, 0.7, 1.5 and 3.0. Both the cylinders are made to rotate in the clockwise sense. The Reynolds number based on the free stream flow is taken as 100. A two-dimensional finite volume based transient computation is performed for a range of dimensionless rotational speeds of the cylinders (0 ≤ Ω ≤ 2.75). The results show that the shedding phenomena can be observed up to a critical rate of rotation (Ωcr) depending on the gap spacing. Beyond Ωcr, the flow becomes stabilized and finally completely steady as Ω increases further. Increasing the gap initially causes a slight decrease in the critical rotational speed, however, it increases at a rapid rate for larger gap spacing.
Measuring stellar rotation periods with Kepler
Nielsen, M B; Schunker, H; Karoff, C
2015-01-01
We measure rotation periods for 12151 stars in the Kepler field, based on the photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample of stars enables us to study the rotation periods as a function of spectral type. We find good agreement with previous studies and vsini measurements for F, G and K stars. Combining rotation periods, B-V color, and gyrochronology relations, we find that the cool stars in our sample are predominantly younger than ~1Gyr.
Rotational spectroscopy with an optical centrifuge
Korobenko, Aleksey; Hepburn, John W; Milner, Valery
2013-01-01
We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of $^{16}$O$_2$. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between $X^3\\Sigma_{g}^{-}$ and $C^3\\Pi_{g}$ electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as $N\\gtrsim 120$, enables us to interpret the complex structure of rotational spectra of $C^3\\Pi_{g}$ beyond thermally accessible levels.
Instability of counter-rotating stellar disks
Hohlfeld, R. G.; Lovelace, R. V. E.
2015-09-01
We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.
Dynamic behaviour of a rotating cracked beam
Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil
2016-09-01
This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.
Rotation of vertically oriented objects during earthquakes
Hinzen, Klaus-G.
2012-10-01
Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.
Rotational structure in molecular infrared spectra
di Lauro, Carlo
2013-01-01
Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in ma
The effect of rotations on Michelson interferometers
Maraner, Paolo, E-mail: pmaraner@unibz.it
2014-11-15
In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.
Ultrasound determination of rotator cuff tear repairability
Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa
2015-01-01
Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p rotator cuff repairability were tear size (p rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996
[Rotational stability of angiography catheters].
Schröder, J; Weber, M
1992-10-01
Rotatory stability is a parameter that reflects the ability of a catheter to transmit a rotation applied at the outer end to the catheter tip for the purpose of selective probing. A method for measuring the rotatory stability is described, and the results of rotatory stability measurements of 70 different commercially available catheters are reported. There is an almost linear correlation between the rotatory stability and the difference between the respective fourth power of the external and internal diameter or, approximately, to the fourth power of the external diameter for catheters without wire reinforcement. With the same cross-sectional dimensions, the rotatory stability of teflon, polyethylene, and nylon catheters has an approximate ratio of 1:2:4. Wire reinforcement increases rotatory stability by an average factor of about 3. For catheters of calibers 5 F and 6 F, a correlation between the rotatory stability and the weight of the reinforcing wire mesh is apparent.
Vibration of imperfect rotating disk
Půst L.
2011-12-01
Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.
Modulation field induces universe rotation
Chen, Chien Yu
2008-01-01
Noncommutative field theory is a theory concerning a background field on the string world sheet. Whole of the universe is survived on background field situation. In this paper, we consider a module field on spacetime expansion without modifying commutative relation, and omit the deformed effects by $\\star$ production. Lorentz symmetry is conserved on module and unmodule coordinate, the violation point is under the translation between each others by module expansion. However, considering a background field on spacetime geodesic we could understand that even magnetic force could not be generated by putting a module $Poincar\\check{e}$ boost due to CPT conservation. Which phenomenon, each particle field will be rotated and expanded. Assembling the commutative and anti-commutative null vector by putting an operated coefficients on three orthogonal states. Spacetime is homogeneous but anisotropic, since the energy fluid is not uniformed by a distribution of modulation field. Therefore, concentrating on which signif...
Relativity on rotated graph paper
Salgado, Roberto B.
2016-05-01
We demonstrate a method for constructing spacetime diagrams for special relativity on graph paper that has been rotated by 45°. The diagonal grid lines represent light-flash worldlines in Minkowski spacetime, and the boxes in the grid (called "clock diamonds") represent units of measurement corresponding to the ticks of an inertial observer's light clock. We show that many quantitative results can be read off a spacetime diagram simply by counting boxes, with very little algebra. In particular, we show that the squared interval between two events is equal to the signed area of the parallelogram on the grid (called the "causal diamond") with opposite vertices corresponding to those events. We use the Doppler effect—without explicit use of the Doppler formula—to motivate the method.
A Block Cipher using Rotation and Logical XOR Operations
D. Sravan Kumar
2011-11-01
Full Text Available Cryptography is the study of methods of sending messages in disguised form so that only the intended recipients can remove the disguise and read the messages. Information security has become a very critical aspect of modern communication systems. With the global acceptance of the Internet as a medium of communication, virtually every computer in the world is connected to every other. It has created a new risk for the users of the computers with a constant threat of being hacked and being victims of data theft. In this connection data encryption has become an essential part of secure communication of the messages. In the present paper we propose a new method of encryption of data in blocks using the operations Rotation and Logical XOR.
Specific rotation as a property to validate monosaccharide conformations.
Andrade, Renato R; da Silva, Clarissa O
2012-03-01
Specific rotation ([α](D)) values were calculated for the 15 conformations of xylopyranose that are the most stable in the gas phase and in aqueous solution. The effects of different theoretical descriptions and the medium on the geometry of the conformers and the [α](D) values are evaluated. Differences in [α](D) values found for the same conformer in all descriptions used were smaller than those found between any two different conformers in the same description. The difference between [α](D) values is prominent, even for two conformations that are distinguished from each other only by the orientation of one secondary hydroxyl group. This finding suggests that [α](D) values may potentially be used in the validation of monosaccharide conformations that are theoretically sampled. Copyright © 2011 Elsevier Ltd. All rights reserved.
Compressible streaming instabilities in rotating thermal viscous objects
Nekrasov, A K
2009-01-01
We study electromagnetic streaming instabilities in thermal viscous regions of rotating astrophysical objects, such as, protostellar and protoplanetary magnetized accretion disks, molecular clouds, their cores, and elephant trunks. The obtained results can also be applied to any regions of interstellar medium, where different equilibrium velocities between charged species can arise. We consider a weakly and highly ionized three-component plasma consisting of neutrals and magnetized electrons and ions. The vertical perturbations along the background magnetic field are investigated. The effect of perturbation of collisional frequencies due to density perturbations of species is taken into account. The growth rates of perturbations are found in a wide region of wave number spectrum for media, where the thermal pressure is larger than the magnetic pressure. It is shown that in cases of strong collisional coupling of neutrals with ions the contribution of the viscosity is negligible.
Using Faraday Rotation to Probe MHD Instabilities in Intracluster Media
Bogdanovic, Tamara; Massey, Richard
2010-01-01
It has recently been suggested that conduction-driven magnetohydrodynamic (MHD) instabilities may operate at all radii within an intracluster medium (ICM), and profoundly affect the structure of a cluster's magnetic field. Where MHD instabilities dominate the dynamics of an ICM, they will re-orient magnetic field lines perpendicular to the temperature gradient inside a cooling core, or parallel to the temperature gradient outside it. This characteristic structure of magnetic field could be probed by measurements of polarized radio emission from background sources. Motivated by this possibility we have constructed 3-d models of a magnetized cooling core cluster and calculated Faraday rotation measure (RM) maps in the plane of the sky under realistic observing conditions. We compare a scenario in which magnetic field geometry is characterized by conduction driven MHD instabilities to that where it is determined by the turbulent motions. We find that future high-sensitivity spectro-polarimetric measurements of R...
A Block Cipher using Rotation and Logical XOR Operations
Kumar, D Sravana; Chandrasekhar, A
2012-01-01
Cryptography is the study of methods of sending messages in disguised form so that only the intended recipients can remove the disguise and read the messages. Information security has become a very critical aspect of modern communication systems. With the global acceptance of the Internet as a medium of communication, virtually every computer in the world is connected to every other. It has created a new risk for the users of the computers with a constant threat of being hacked and being victims of data theft. In this connection data encryption has become an essential part of secure communication of the messages. In the present paper we propose a new method of encryption of data in blocks using the operations Rotation and Logical XOR