WorldWideScience

Sample records for rotating frame imaging

  1. Magnetic resonance described in the excitation dependent rotating frame of reference.

    Science.gov (United States)

    Tahayori, Bahman; Johnston, Leigh A; Mareels, Iven M Y; Farrell, Peter M

    2008-01-01

    An excitation dependent rotating frame of reference to observe the magnetic resonance phenomenon is introduced in this paper that, to the best of our knowledge, has not been used previously in the nuclear magnetic resonance context. The mathematical framework for this new rotating frame of reference is presented based on time scaling the Bloch equation after transformation to the classical rotating frame of reference whose transverse plane is rotating at the Larmor frequency. To this end, the Bloch equation is rewritten in terms of a magnetisation vector observed from the excitation dependent rotating frame of reference. The resultant Bloch equation is referred to as the time scaled Bloch equation. In the excitation dependent rotating frame of reference whose coordinates are rotating at the instantaneous Rabi frequency the observed magnetisation vector is a much slower signal than the true magnetisation in the rotating frame of reference. As a result the ordinary differential equation solvers have the ability to solve the time scaled version of the Bloch equation with a larger step size resulting in a smaller number of samples for solving the equation to a desired level of accuracy. The simulation results for different types of excitation are presented in this paper. This method may be used in true Bloch simulators in order to reduce the simulation time or increase the accuracy of the numerical solution. Moreover, the time scaled Bloch equation may be employed to determine the optimal excitation pattern in magnetic resonance imaging as well as designing pulses with better slice selectivity which is an active area of research in this field.

  2. Quantitative rotating frame relaxometry methods in MRI.

    Science.gov (United States)

    Gilani, Irtiza Ali; Sepponen, Raimo

    2016-06-01

    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Biologically aggressive regions within glioblastoma identified by spin-lock contrast T1 relaxation in the rotating frame (T1ρ MRI

    Directory of Open Access Journals (Sweden)

    Ramon Francisco Barajas, Jr., MD

    2017-12-01

    Full Text Available Spin-lattice relaxation in the rotating frame magnetic resonance imaging allows for the quantitative assessment of spin-lock contrast within tissues. We describe the utility of spin-lattice relaxation in the rotating frame metrics in characterizing glioblastoma biological heterogeneity. A 84-year-old man presented to our institution with a right frontal temporal mass. Prior tissue sampling from a peripheral nonenhancing lesion was nondiagnostic. Stereotactic image-guided tissue sampling of the nonenhancing T2-fluid-attenuated inversion recovery hyperintense region involving the anterior cingulate gyrus with elevated spin-lattice relaxation in the rotating frame metrics provided a pathologic diagnosis of glioblastoma. This case illustrates the utility of spin-lattice relaxation in the rotating frame magnetic resonance imaging in identifying biologically aggressive regions within glioblastoma.

  4. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    Science.gov (United States)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  5. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  6. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    DEFF Research Database (Denmark)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.

    2000-01-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...

  7. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Roesch, Johannes; Baier, Kurt; Sweeney, Reinhart A; Flentje, Michael

    2012-01-01

    To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate

  8. Triggered streak and framing rotating-mirror cameras

    International Nuclear Information System (INIS)

    Huston, A.E.; Tabrar, A.

    1975-01-01

    A pulse motor has been developed which enables a mirror to be rotated to speeds in excess of 20,000 rpm with 10 -4 s. High-speed cameras of both streak and framing type have been assembled which incorporate this mirror drive, giving streak writing speeds up to 2,000ms -1 , and framing speeds up to 500,000 frames s -1 , in each case with the capability of triggering the camera from the event under investigation. (author)

  9. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  10. Some aspects of an induced electric dipole moment in rotating and non-rotating frames.

    Science.gov (United States)

    Oliveira, Abinael B; Bakke, Knut

    2017-06-01

    Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.

  11. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    Directory of Open Access Journals (Sweden)

    Guckenberger Matthias

    2012-04-01

    Full Text Available Abstract Background To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS for brain metastases. Methods and materials Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71 or single-layer (n = 27 thermoplastic masks. Pre-treatment set-up errors (n = 98 were evaluated with cone-beam CT (CBCT based image-guidance (IG and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64. Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume safety margins (SM were simulated. Results Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins.

  12. Eckart frame vibration-rotation Hamiltonians: Contravariant metric tensor

    International Nuclear Information System (INIS)

    Pesonen, Janne

    2014-01-01

    Eckart frame is a unique embedding in the theory of molecular vibrations and rotations. It is defined by the condition that the Coriolis coupling of the reference structure of the molecule is zero for every choice of the shape coordinates. It is far from trivial to set up Eckart kinetic energy operators (KEOs), when the shape of the molecule is described by curvilinear coordinates. In order to obtain the KEO, one needs to set up the corresponding contravariant metric tensor. Here, I derive explicitly the Eckart frame rotational measuring vectors. Their inner products with themselves give the rotational elements, and their inner products with the vibrational measuring vectors (which, in the absence of constraints, are the mass-weighted gradients of the shape coordinates) give the Coriolis elements of the contravariant metric tensor. The vibrational elements are given as the inner products of the vibrational measuring vectors with themselves, and these elements do not depend on the choice of the body-frame. The present approach has the advantage that it does not depend on any particular choice of the shape coordinates, but it can be used in conjunction with all shape coordinates. Furthermore, it does not involve evaluation of covariant metric tensors, chain rules of derivation, or numerical differentiation, and it can be easily modified if there are constraints on the shape of the molecule. Both the planar and non-planar reference structures are accounted for. The present method is particular suitable for numerical work. Its computational implementation is outlined in an example, where I discuss how to evaluate vibration-rotation energies and eigenfunctions of a general N-atomic molecule, the shape of which is described by a set of local polyspherical coordinates

  13. Entropy generation impact on peristaltic motion in a rotating frame

    Directory of Open Access Journals (Sweden)

    H. Zahir

    Full Text Available Outcome of entropy generation in peristalsis of Casson fluid in a rotating frame is intended. Formulation is based upon thermal radiation, viscous dissipation and slip conditions of velocity and temperature. Lubrication approach is followed. The velocity components, temperature and trapping are examined. Specifically the outcomes of Taylor number, fluid parameter, slip parameters, Brinkman, radiation and compliant wall effects are focused. In addition entropy generation and Bejan numbers are examined. It is observed that entropy is controlled through slip effects. Keywords: Casson fluid, Radiative heat flux, Entropy generation, Rotating frame, Slip conditions, Wall properties

  14. Geometric phase for a neutral particle in rotating frames in a cosmic string spacetime

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, Claudio

    2009-01-01

    We study of the appearance of geometric quantum phases in the dynamics of a neutral particle that possess a permanent magnetic dipole moment in rotating frames in a cosmic string spacetime. The relativistic dynamics of spin-1/2 particle in this frame is investigated and we obtain several contributions to relativistic geometric phase due rotation and topology of spacetime. We also study the geometric phase in the nonrelativistic limit. We obtain effects analogous to the Sagnac effect and Mashhoon effect in a rotating frame in the background of a cosmic string.

  15. Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhu, XueJun; Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao

    2016-01-01

    Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively. - Highlights: • A new misalignment calibration method by rotating a parallelepiped frame is proposed. • It does not need to know sensor attitude information or local dip angle. • The calibration system attitude change angle is not strictly required. • It can be widely used when sensors measure different physical information. • Geomagnetic vector measurement error is reduced evidently.

  16. Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Hongfeng [Academy of Equipment, Beijing 101416 (China); College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073 (China); Zhu, XueJun, E-mail: zhuxuejun1990@126.com [College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073 (China); Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao [College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073 (China)

    2016-12-01

    Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively. - Highlights: • A new misalignment calibration method by rotating a parallelepiped frame is proposed. • It does not need to know sensor attitude information or local dip angle. • The calibration system attitude change angle is not strictly required. • It can be widely used when sensors measure different physical information. • Geomagnetic vector measurement error is reduced evidently.

  17. On the Lippmann--Schwinger equation for atom--diatom collisions: A rotating frame treatment

    International Nuclear Information System (INIS)

    Kouri, D.J.; Heil, T.G.; Shimoni, Y.

    1976-01-01

    The use of a rotating frame description of molecular collisions is reconsidered within the framework of the Lippmann--Schwinger equation for the transition or T operator. The present approach explicitly displays the proper boundary conditions which apply to descriptions of such collisions in the rotating frame whose Z axis follows the scattering vector. The resulting body frame equations are shown to lead naturally to the introduction of ''body frame Bessel and Hankel functions,'' J/subJ//subj//sup lambda//sup lambda//sup prime/ and H/subJ//subj//sup lambda//sup lambda//sup prime/ (BFBF), which are solutions of the unperturbed Hamiltonian for the collision transformed to the rotating frame. It is found that the BFBF can be defined in several ways differing by phase factors that affect their asymptotic form. Two particular choices are examined, one of which leads to a simple asymptotic form of the wavefunction, and the other leads to a somewhat more complicated form. Both are shown to yield the j/subz/-conserving coupled states equations of McGuire and Kouri but slightly different approximations are required in the two cases. The implication of these results as to the accuracy of the j/subz/CCS method are discussed

  18. Quantum ring in a rotating frame in the presence of a topological defect

    International Nuclear Information System (INIS)

    Dantas, L.; Furtado, C.; Silva Netto, A.L.

    2015-01-01

    In this contribution, we study the effects caused by rotation of an electron/hole in the presence of a screw dislocation confined in a quantum ring potential, within a quantum dynamics. The Tan–Inkson potential is used to model the confinement of the particle in two-dimensional quantum ring. We suppose that the quantum ring is placed in the presence of an external uniform magnetic field and an Aharonov–Bohm flux in the center of the system, and that the frame rotates around the z-axis. The Schrödinger equation is solved and the eigenfunctions and energy eigenvalues are exactly obtained for this configuration. The influence of the dislocation and the rotation on both the persistent current and magnetization is also studied. - Highlights: • Quantum ring in a rotating frame. • Tan–Inkson potential in the presence of rotation. • Quantum ring in the presence of screw dislocation. • Landau levels

  19. Bound states for neutral particles in a rotating frame in the cosmic string spacetime

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, C.

    2010-01-01

    We study the noninertial effects of rotating frames on the Landau quantization for neutral particles with a permanent magnetic dipole moment in the presence of a linear topological defect. We build a rotating frame where the field configuration acts on the dipole moment of the neutral particle without any torque, which agrees with the Landau quantization established previously. We will show that the noninertial effects modify the cyclotron frequency obtained in the absence of rotation, but they do not break the infinity degeneracy of the Landau levels. However, the presence of the topological defect modifies the cyclotron frequency and breaks the degeneracy of the Landau levels.

  20. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer

    International Nuclear Information System (INIS)

    Riehle, F.; Kisters, T.; Witte, A.; Helmcke, J.; Borde, C.J.

    1991-01-01

    A calcium atomic beam excited in an optical Ramsey geometry was rotated about an axis perpendicular to the plane defined by the laser beams and the atomic beam. A frequency shift of the Ramsey fringes of several kHz has been measured which is proportional to the rotation frequency of the apparatus and to the distance between the laser beams. The results can be interpreted in three equivalent ways as the Sagnac effect in a calcium-atomic-beam interferometer: in the rotating frame of the laser beams either along straight paths or along the curved trajectories of the atoms, or in the inertial atomic frame

  1. Rotating frames in special relativity

    International Nuclear Information System (INIS)

    Strauss, M.

    1979-01-01

    The transformation theory for rotating frames presented in a previous paper is generalized by replacing the usual condition r = R for ωR < c (invariance of radius) by r = Rg(βsub(R)) so that r is now defined for all values of R, 0 <= R <= infinity. This generalization does not affect the kinematic transformation bracetheta, T → bracethetasup(r), bracesup(r) and the result group structure required by the theoretical constraints previously established, provided the old parameter 'r' (=R) is now identified throughout with either r or R; for physical reasons it must be identified with R. The function g, which cannot be fixed by theoretical constraints, determines the degree of geometrical anisotropy in the rotating plane z = const. More specifically, since g enters the expression for the ratio C/D (circumference/diameter) its choice corresponds to the choice of a congruence definition for lengths in radial and tangential directions. While on this (purely geometrical) level g remains undetermined, it can be uniquely determined experimentally on the kinematic level, e.g. by observing in Σsup(ω) the motion of a free particle. Thus the supremacy of kinematics over geometry is explicated by a further instance. At the same time, special relativity theory (SRT) is shown to belong to the class of theories with theoretically unsolvable problems. (author)

  2. Regional wall thickening in gated myocardial perfusion SPECT in a Japanese population: effect of sex, radiotracer, rotation angles and frame rates

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, Nasima; Nakajima, Kenichi; Okuda, Koichi; Matsuo, Shinro; Yoneyama, Tatsuya; Taki, Junichi; Kinuya, Seigo [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa, Ishikawa (Japan)

    2008-09-15

    Gated single-photon emission computed tomography (SPECT) imaging of myocardium by {sup 99m}Tc and {sup 201}Tl is used extensively to measure quantitative cardiac functional parameters. However, factors affecting normal values for myocardial functional parameters and population-specific standards have not yet been established. The aim of the study was to determine the effect of sex, radiotracer, rotation angles and frame rates on resting myocardial wall thickening (WT) and to develop a Japanese standard of normal values for WT. Data from a total of 202 patients with low possibility of having cardiac problems were collected from nine hospitals throughout Japan. Patients were divided into five groups according to study protocol, and WT was evaluated according to the 17-segment and four-region (basal, mid and apical regions and the apex) polar map distribution. WT was generally higher in women than in men irrespective of the use of radiotracers, rotation angles or frame rates, and the difference was highly significant in the mid and apical regions. In any protocol used, resting myocardial thickening in the apex was higher than in the mid and apical regions, and thickening was lowest in the basal region, suggesting heterogeneous regional myocardial thickening (%) in normal subjects. Different rotation angles showed no significant change on WT, but different frame rates and tracers showed significant WT change in both sexes. Percent thickening of the myocardium was significantly higher in imaging by {sup 99m}Tc-labelled tracers than in {sup 201}Tl. Sex, radiotracers and frame rates had a significant effect on myocardial thickening, and the importance of population-specific standards should be emphasized. A normal database can serve as a standard for gated SPECT evaluation of myocardial thickening in a Japanese population and might be applicable to Asian populations having a similar physique. (orig.)

  3. Design of large-format X-ray framing image tube

    International Nuclear Information System (INIS)

    Zong Fangke; Yang Qinlao; Gu Li; Li Xiang; Zhang Jingjin

    2012-01-01

    An implementation method of large-format framing image tube is proposed. An electrostatic focusing image tube with large input photocathode and small output image is designed. Coupling with common small-format microchannel plate (MCP) gated framing unit, image gating and enhancement can be realized. Compared to the tube with large-format MCP, this kind of framing tube avoids the high manufacturing cost of lager-format MCP and overcomes the transmission voltage loss and gain uniformity caused by long micro strips. The framing image tube has an effective input working diameter of 100 mm, an output image diameter of 40 mm, and a magnification of 0.4. The centre spatial resolution is 14.4 lp/mm, the marginal spatial resolution is 11.2 lp/mm, and the the geometric distortion is less than 15%. The framing characteristics is determined by the MCP framing unit. This method is an effective way for expanding the work area of framing image tubes. (authors)

  4. Extension of the PSE code NOLOT for transition analysis in rotating reference frames

    OpenAIRE

    Dechamps, Xavier; Hein, Stefan

    2016-01-01

    The present work aims at contributing to a better understanding of the effect of rotation on the stability properties of boundary layers. For this purpose, the Parabolized-Stability-Equations based NOLOT code was extended to rotating reference frames through the inclusion of the centrifugal and Coriolis forces. Stability analyses of three flow configurations were then considered for verification: the rotating Blasius Profile, the flow along a curved wall and the three-dimensional flow due to ...

  5. Rotation, Reflection, and Frame Changes; Orthogonal tensors in computational engineering mechanics

    Science.gov (United States)

    Brannon, R. M.

    2018-04-01

    Whilst vast literature is available for the most common rotation-related tasks such as coordinate changes, most reference books tend to cover one or two methods, and resources for less-common tasks are scarce. Specialized research applications can be found in disparate journal articles, but a self-contained comprehensive review that covers both elementary and advanced concepts in a manner comprehensible to engineers is rare. Rotation, Reflection, and Frame Changes surveys a refreshingly broad range of rotation-related research that is routinely needed in engineering practice. By illustrating key concepts in computer source code, this book stands out as an unusually accessible guide for engineers and scientists in engineering mechanics.

  6. Metric in a static cylindrical elastic medium and in an empty rotating frame as solutions of Einstein's field equations

    International Nuclear Information System (INIS)

    Gron, O.

    1982-01-01

    Using the Weyl-type canonical coordinates, an integration of Einstein's field equations in the cylindrosymmetric case considered by Kursunoglu is reexamined. It is made clear that the resulting metric is not describing the spacetime in a rotating frame, but in a static cylindrical elastic medium. The conclusion of Kursunoglu that ''for an observer on a rotating disk there is no way of escape from a curved spacetime'' is therefore not valid. The metric in an empty rotating frame is found as a solution of Einstein's field equations, and is not orthogonal. It is shown that the corresponding orthogonal solution represents spacetime in an inertial frame expressed in cylindrical coordinates. Introducing a noncoordinate basis, the metric in a rotating frame is given the static form of Kursunoglu's solution. The essential role played by the nonvanishing structure coefficients in this case is made clear

  7. Spin in stationary gravitational fields and rotating frames

    International Nuclear Information System (INIS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2010-01-01

    A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.

  8. Hybrid state‐space time integration in a rotating frame of reference

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2011-01-01

    displacements and the global velocities are represented by the same shape functions. This leads to a simple generalization of the corresponding equations of motion in a stationary frame in which all inertial effects are represented via the classic global mass matrix. The formulation introduces two gyroscopic......A time integration algorithm is developed for the equations of motion of a flexible body in a rotating frame of reference. The equations are formulated in a hybrid state‐space, formed by the local displacement components and the global velocity components. In the spatial discretization the local...... terms, while the centrifugal forces are represented implicitly via the hybrid state‐space format. An angular momentum and energy conserving algorithm is developed, in which the angular velocity of the frame is represented by its mean value. A consistent algorithmic damping scheme is identified...

  9. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  10. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  11. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  12. Four-frame gated optical imager with 120-ps resolution

    International Nuclear Information System (INIS)

    Young, P.E.; Hares, J.D.; Kilkenny, J.D.; Phillion, D.W.; Campbell, E.M.

    1988-04-01

    In this paper we describe the operation and applications of a framing camera capable of four separate two-dimensional images with each frame having a 120-ps gate width. Fast gating of a single frame is accomplished by using a wafer image intensifier tube in which the cathode is capacitively coupled to an external electrode placed outside of the photocathode of the tube. This electrode is then pulsed relative to the microchannel plate by a narrow (120 ps), high-voltage pulse. Multiple frames are obtained by using multiple gated tubes which share a single bias supply and pulser with relative gate times selected by the cable lengths between the tubes and the pulser. A beamsplitter system has been constructed which produces a separate image for each tube from a single scene. Applications of the framing camera to inertial confinement fusion experiments are discussed

  13. Is the anomalous magnetic moment the consequence of a non-classical transformation for rotating frames?

    International Nuclear Information System (INIS)

    Gisin, B V

    2002-01-01

    We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment

  14. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    Science.gov (United States)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  15. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system

    Science.gov (United States)

    Stasicki, Boleslaw; Boden, Fritz

    2015-03-01

    The non-intrusive in-flight measurement of the deformation and pitch of the aircraft propeller is a demanding task. The idea of an imaging system integrated and rotating with the aircraft propeller has been presented on the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been constructed and tested in the laboratory as well as on the real aircraft. In this paper we outline the principle of Image Pattern Correlation Technique (IPCT) based on Digital Image Correlation (DIC) and describe the construction of a dedicated autarkic 3D camera system placed on the investigated propeller and rotating at its full speed. Furthermore, the results of the first ground and in-flight tests are shown and discussed. This development has been found by the European Commission within the 7th frame project AIM2 (contract no. 266107).

  16. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  17. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  18. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser

    International Nuclear Information System (INIS)

    Dem'yanenko, M. A.; Esaev, D. G.; Knyazev, B. A.; Vinokurov, N. A.; Kulipanov, G. N.

    2008-01-01

    An uncooled microbolometer focal plane array (FPA) has been developed and used for imaging of objects illuminated by monochromatic coherent radiation of a free electron laser tunable in the range of 1.25-2.5 THz. A sensitivity threshold of 1.3x10 -3 W/cm 2 was obtained for the FPA with a homemade absolute interferometric power meter. Videos up to 90 frames/s were recorded in both transmission and reflection/scattering modes. When objects were illuminated by laser radiation scattered by a rough metal surface, speckled images were observed. Good quality terahertz images were achieved through the fast rotation of the scatterer

  19. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  20. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Jonassen, Johnny; Jensen, Carsten; Schmidt, Mai Lykkegaard

    2015-01-01

    Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with a 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2

  1. Optical flow estimation on image sequences with differently exposed frames

    Science.gov (United States)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-09-01

    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  2. Effects of hyperbolic rotation in Minkowski space on the modeling of plasma accelerators in a Lorentz boosted frame

    International Nuclear Information System (INIS)

    Vay, J.-L.; Geddes, C. G. R.; Cormier-Michel, E.; Grote, D. P.

    2011-01-01

    The effects of hyperbolic rotation in Minkowski space resulting from the use of Lorentz boosted frames of calculation on laser propagation in plasmas are analyzed. Selection of a boost frame at the laser group velocity is shown to alter the laser spectrum, allowing the use of higher boost velocities. The technique is applied to simulations of laser driven plasma wakefield accelerators, which promise much smaller machines and whose development requires detailed simulations that challenge or exceed current capabilities. Speedups approaching the theoretical optima are demonstrated, producing the first direct simulations of stages up to 1 TeV. This is made possible by a million times speedup thanks to a frame boost with a relativistic factor γ b as high as 1300, taking advantage of the rotation to mitigate an instability that limited previous work.

  3. Quantum measurement of a rapidly rotating spin qubit in diamond.

    Science.gov (United States)

    Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M

    2018-05-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.

  4. Robust Manhattan Frame Estimation From a Single RGB-D Image

    KAUST Repository

    Bernard Ghanem; Heilbron, Fabian Caba; Niebles, Juan Carlos; Thabet, Ali Kassem

    2015-01-01

    This paper proposes a new framework for estimating the Manhattan Frame (MF) of an indoor scene from a single RGB-D image. Our technique formulates this problem as the estimation of a rotation matrix that best aligns the normals of the captured scene to a canonical world axes. By introducing sparsity constraints, our method can simultaneously estimate the scene MF, the surfaces in the scene that are best aligned to one of three coordinate axes, and the outlier surfaces that do not align with any of the axes. To test our approach, we contribute a new set of annotations to determine ground truth MFs in each image of the popular NYUv2 dataset. We use this new benchmark to experimentally demonstrate that our method is more accurate, faster, more reliable and more robust than the methods used in the literature. We further motivate our technique by showing how it can be used to address the RGB-D SLAM problem in indoor scenes by incorporating it into and improving the performance of a popular RGB-D SLAM method.

  5. Robust Manhattan Frame Estimation From a Single RGB-D Image

    KAUST Repository

    Bernard Ghanem

    2015-06-02

    This paper proposes a new framework for estimating the Manhattan Frame (MF) of an indoor scene from a single RGB-D image. Our technique formulates this problem as the estimation of a rotation matrix that best aligns the normals of the captured scene to a canonical world axes. By introducing sparsity constraints, our method can simultaneously estimate the scene MF, the surfaces in the scene that are best aligned to one of three coordinate axes, and the outlier surfaces that do not align with any of the axes. To test our approach, we contribute a new set of annotations to determine ground truth MFs in each image of the popular NYUv2 dataset. We use this new benchmark to experimentally demonstrate that our method is more accurate, faster, more reliable and more robust than the methods used in the literature. We further motivate our technique by showing how it can be used to address the RGB-D SLAM problem in indoor scenes by incorporating it into and improving the performance of a popular RGB-D SLAM method.

  6. Generalized Faraday law derived from classical forces in a rotating frame

    OpenAIRE

    Choi, Taeseung

    2009-01-01

    We show the additional spin dependent classical force due to the rotation of an electron spin's rest frame is essential to derive a spin-Faraday law by using an analogy with the usual Faraday law. The contribution of the additional spin dependent force to the spin-Faraday law is the same as that of the spin geometric phase. With this observations, Faraday law is generalized to include both the usual Faraday and the spin-Faraday laws in a unified manner.

  7. Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction

    International Nuclear Information System (INIS)

    Navare, Sachin M.; Liu, Yi-Hwa; Wackers, Frans J.T.

    2003-01-01

    Electrocardiographic (ECG) gated single-photon emission tomography (SPET) allows for simultaneous assessment of myocardial perfusion and left ventricular (LV) function. Presently 8-frame per cardiac cycle ECG gating of SPET images is standard. The aim of this study was to compare the effect of 8-frame and 16-frame gated SPET on measurements of LV volumes and to evaluate the effects of the presence of myocardial perfusion defects and of radiotracer dose administered on the calculation of LV volumes. A total of 86 patients underwent technetium-99m SPET myocardial perfusion imaging using 16-frame per cardiac cycle acquisition. Eight-frame gated SPET images were generated by summation of contiguous frames. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated from the 16-frame and 8-frame data sets. The patients were divided into groups according to the administered dose of the radiotracer and the size of the perfusion defect. Results. Sixteen frame per cardiac cycle acquisition resulted in significantly larger EDV (122±72 ml vs 115±68 ml, P<0.0001), smaller ESV (64±58.6 ml vs 67.6±59.5 ml, P<0.0001), and higher LVEF (55.3%±18% vs 49%±17.4%, P<0.0001) as compared to 8-frame SPET imaging. This effect was seen regardless of whether a high or a low dose was administered and whether or not significant perfusion defects were present. This study shows that EDV, ESV and LVEF determined by 16-frame gated SPET are significantly different from those determined by 8-frame gated SPET. The radiotracer dose and perfusion defects do not affect estimation of LV parameters by 16-frame gated SPET. (orig.)

  8. Temperature measurements on fast-rotating objects using a thermographic camera with an optomechanical image derotator

    Science.gov (United States)

    Altmann, Bettina; Pape, Christian; Reithmeier, Eduard

    2017-08-01

    Increasing requirements concerning the quality and lifetime of machine components in industrial and automotive applications require comprehensive investigations of the components in conditions close to the application. Irregularities in heating of mechanical parts reveal regions with increased loading of pressure, draft or friction. In the long run this leads to damage and total failure of the machine. Thermographic measurements of rotating objects, e.g., rolling bearings, brakes, and clutches provide an approach to investigate those defects. However, it is challenging to measure fast-rotating objects accurately. Currently one contact-free approach is performing stroboscopic measurements using an infrared sensor. The data acquisition is triggered so that the image is taken once per revolution. This leads to a huge loss of information on the majority of the movement and to motion blur. The objective of this research is showing the potential of using an optomechanical image derotator together with a thermographic camera. The derotator follows the rotation of the measurement object so that quasi-stationary thermal images during motion can be acquired by the infrared sensor. Unlike conventional derotators which use a glass prism to achieve this effect, the derotator within this work is equipped with a sophisticated reflector assembly. These reflectors are made of aluminum to transfer infrared radiation emitted by the rotating object. Because of the resulting stationary thermal image, the operation can be monitored continuously even for fast-rotating objects. The field of view can also be set to a small off-axis region of interest which then can be investigated with higher resolution or frame rate. To depict the potential of this approach, thermographic measurements on a rolling bearings in different operating states are presented.

  9. High-frame-rate digital radiographic videography

    Science.gov (United States)

    King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott

    1994-10-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  10. A novel rotational invariants target recognition method for rotating motion blurred images

    Science.gov (United States)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  11. Generalized Faraday law derived from classical forces in a rotating frame

    International Nuclear Information System (INIS)

    Choi, Taeseung

    2010-01-01

    We show that an additional spin-dependent classical force due to the rotation of an electron spin's rest frame is essential to derive a spin-Faraday law that has the same form as the usual Faraday law. We show that the contribution of the additional spin-dependent force to the spin-Faraday law is the same as the time derivative of the spin geometric phase. With this observations, the spin-Faraday law is generalized to include both an Aharonov-Casher (AC) effect and a scalar AC effect in a unified manner.

  12. Robotically-adjustable microstereotactic frames for image-guided neurosurgery

    Science.gov (United States)

    Kratchman, Louis B.; Fitzpatrick, J. Michael

    2013-03-01

    Stereotactic frames are a standard tool for neurosurgical targeting, but are uncomfortable for patients and obstruct the surgical field. Microstereotactic frames are more comfortable for patients, provide better access to the surgical site, and have grown in popularity as an alternative to traditional stereotactic devices. However, clinically available microstereotactic frames require either lengthy manufacturing delays or expensive image guidance systems. We introduce a robotically-adjusted, disposable microstereotactic frame for deep brain stimulation surgery that eliminates the drawbacks of existing microstereotactic frames. Our frame can be automatically adjusted in the operating room using a preoperative plan in less than five minutes. A validation study on phantoms shows that our approach provides a target positioning error of 0.14 mm, which exceeds the required accuracy for deep brain stimulation surgery.

  13. Body fixed frame, rigid gauge rotations and large N random fields in QCD

    International Nuclear Information System (INIS)

    Levit, S.

    1995-01-01

    The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)

  14. Image registration based on virtual frame sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  15. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    phased array, which is rotated over the volume of interest. The data is acquired using coded signals and synthetic transmit aperture imaging. Only one group of elements transmits at a time. The delays are set such as to form a cylindrical wave. The back-scattered signal carries information not only from......Current 3D real-time imaging is done either with sparse 2D arrays, or with mechanically moved phased arrays. The former results in a poor resolution and contrast due to a limited amount of elements. The latter has the disadvantage of low frame rates due to the sequential acquisition of the volume...... line-by-line and plane-by-plane. This paper describes an approach which combines mechanically moved phased array with synthetic transmit aperture imaging, resulting in high volume acquisition rates without a trade-off in image quality. The scan method uses a conventional fully populated 64 element...

  16. A reference Pelton turbine - High speed visualization in the rotating frame

    Science.gov (United States)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2016-11-01

    To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.

  17. A framed, 16-image Kirkpatrick-Baez x-ray microscope

    Science.gov (United States)

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.; Glebov, V. Yu.; Peng, B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2017-09-01

    A 16-image Kirkpatrick-Baez (KB)-type x-ray microscope consisting of compact KB mirrors [F. J. Marshall, Rev. Sci. Instrum. 83, 10E518 (2012)] has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ˜30 ps. Images are arranged four to a strip with ˜60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ˜15 ps is achieved. A framed resolution of ˜6-μm is achieved with this combination in a 400-μm region of laser-plasma x-ray emission in the 2- to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester's OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The unprecedented time and spatial resolutions achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. These core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 Gbar in OMEGA cryogenic target implosions [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)].

  18. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-06-15

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  19. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    International Nuclear Information System (INIS)

    Yip, Stephen; Rottmann, Joerg; Berbeco, Ross

    2014-01-01

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  20. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    Science.gov (United States)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  1. The impact of verbal framing on brain activity evoked by emotional images.

    Science.gov (United States)

    Kisley, Michael A; Campbell, Alana M; Larson, Jenna M; Naftz, Andrea E; Regnier, Jesse T; Davalos, Deana B

    2011-12-01

    Emotional stimuli generally command more brain processing resources than non-emotional stimuli, but the magnitude of this effect is subject to voluntary control. Cognitive reappraisal represents one type of emotion regulation that can be voluntarily employed to modulate responses to emotional stimuli. Here, the late positive potential (LPP), a specific event-related brain potential (ERP) component, was measured in response to neutral, positive and negative images while participants performed an evaluative categorization task. One experimental group adopted a "negative frame" in which images were categorized as negative or not. The other adopted a "positive frame" in which the exact same images were categorized as positive or not. Behavioral performance confirmed compliance with random group assignment, and peak LPP amplitude to negative images was affected by group membership: brain responses to negative images were significantly reduced in the "positive frame" group. This suggests that adopting a more positive appraisal frame can modulate brain activity elicited by negative stimuli in the environment.

  2. A relativistic rotating frame with physics majors, photons and mirrors: causality lost

    International Nuclear Information System (INIS)

    West, Joseph

    2008-01-01

    An analysis of cylinders rotating at relativistic speeds is considered from the point of view of observers living on the cylinders and from the point of view of observers in an inertial frame at rest with respect to translational motion of the cylinder. All of the observers measure time and distance using the recently introduced floor mirrored Einstein-Langevin light clock (FMEL). Two 'obvious' choices for synchronizing clocks, the traditional Einstein method and the well-known 'global' method, will be compared. It is shown that Selleri's paradox does not actually illustrate a contradiction, and it is shown that the Einstein method seems to allow apparent time ordering violations of causality. The global method leads to a disagreement with those in the inertial frame about velocities, and to a non-isotropic value for the speed of light. Ehrenfest's paradox is explained from the point of view of observers using each choice of synchronization

  3. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    International Nuclear Information System (INIS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-01-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l 1 -regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method. (paper)

  4. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  5. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  6. Automatic Thresholding for Frame-Repositioning Using External Tracking in PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Keller, Sune; Sibomana, Merence

    2010-01-01

    Motion correction (MC) in positron emission tomography (PET) brain imaging become of higher importance with increasing scanner resolution. Several motion correction methods have been suggested and so far the Polaris Vicra tracking system has been the preferred one for motion registration. We...... present an automated algorithm for dividing PET acquisitions into subframes based on the registered head motion to correct for intra-frame motion with the frame repositioning MC method. The method is tested on real patient data (five 11C-SB studies and five 11C-PIB studies) and compared with an image...... based registration method (AIR). Quantitative evaluation was done using a correlation measure. The study shows that MC improves the correlation of the PET images and that AIR performed slightly better than the Polaris Vicra. We found significant intra-frame motion of 1-5 mm in 9 frames...

  7. Sparsity- and continuity-promoting seismic image recovery with curvelet frames

    NARCIS (Netherlands)

    Herrmann, Felix J.; Moghaddam, Peyman; Stolk, C.C.

    2008-01-01

    A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging

  8. Improvement of Quality of Reconstructed Images in Multi-Frame Fresnel Digital Holography

    International Nuclear Information System (INIS)

    Xiao-Wei, Lu; Jing-Zhen, Li; Hong-Yi, Chen

    2010-01-01

    A modified reconstruction algorithm to improve the quality of reconstructed images of multi-frame Fresnel digital holography is presented. When the reference beams are plane or spherical waves with azimuth encoding, by introducing two spherical wave factors, images can be reconstructed with only one time Fourier transform. In numerical simulation, this algorithm could simplify the reconstruction process and improve the signal-to-noise ratio of the reconstructed images. In single-frame reconstruction experiments, the accurate reconstructed image is obtained with this simplified algorithm

  9. Imaging characteristics in rotational panoramic radiography

    International Nuclear Information System (INIS)

    Sanderink, G.C.H.

    1987-01-01

    This study is concerned with imaging quality in rotational panoramic radiography. This imaging technique records an image of a curved layer within the object radiographed. The shape of this layer normally corresponds with the average form of the dental arch. In the centre of the layer a plane can be found which is depicted with a minimum of unsharpness. Unsharpness increases and the horizontal magnification changes as distance increases from that central plane. The image quality of the layer has been analyzed with the use of mathematical models to estimate the performance of the radiographic diagnostic system. Despite the application of these increasingly sophisticated models the question remains: will the results of the calculations based on these models adequately predict the diagnostic effectiveness of this type of imaging system? In this study a comparison is made between the theoretically determined quality of the system and the diagnostic quality using the observer as a measuring instrument. Experiments were carried out to measure the total unsharpness occurring in rotational panoramic radiography. 116 refs.; 114 figs.; 54 tabs

  10. Black hole vacua and rotation

    International Nuclear Information System (INIS)

    Krishnan, Chethan

    2011-01-01

    Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.

  11. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  12. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  13. An electronic pan/tilt/magnify and rotate camera system

    International Nuclear Information System (INIS)

    Zimmermann, S.; Martin, H.L.

    1992-01-01

    A new camera system has been developed for omnidirectional image-viewing applications that provides pan, tilt, magnify, and rotational orientation within a hemispherical field of view (FOV) without any moving parts. The imaging device is based on the fact that the image from a fish-eye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high-speed electronic circuitry. More specifically, an incoming fish-eye image from any image acquisition source is captured in the memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment. As a result, this device can accomplish the functions of pan, tilt, rotation, and magnification throughout a hemispherical FOV without the need for any mechanical devices. Multiple images, each with different image magnifications and pan-tilt-rotate parameters, can be obtained from a single camera

  14. Fluoroscopic dose reduction by acquisition frame rate reduction and image processing

    International Nuclear Information System (INIS)

    Fritz, S.L.; Mirvis, S.E.; Pals, S.O.

    1986-01-01

    A new design for fluoroscopic exposure reduction incorporates pulsed x-ray exposure, progressive scan video acquisition at frame rates below 30 Hz, interlaced video display at 30 Hz, and a video rate image processing. To evaluate this design, a variety of phantom systems have been developed to measure the impact of low frame rate pulsed digital fluoroscopy on the performance of several clinical tasks (e.g., catheter placement). The authors are currently using these phantoms with a digital fluoroscopy system using continuous x-ray, interlaced video acquisition and variable acquisition frame rate. The design of their target digital fluoroscopic system, sample image sequences, and the results of some preliminary phantom studies are reported

  15. Garnet film rotator applied in polarizing microscope for domain image modulation (abstract)

    Science.gov (United States)

    Wakabayashi, K.; Numata, T.; Inokuchi, S.

    1991-04-01

    A garnet film polarization rotator placed before the analyzer in a polarizing microscope was investigated to obtain the difference image of a positive and a negative one of magnetic domain in real time along with an image processor. In the difference image, a nonmagnetic image can be reduced and hence the weak magnetic contrast enhanced. Theoretical calculation of S/N and contrast C of the domain image as a function of the rotation shows they take maxima at the rotation angle of 2.6° and 0.1°, respectively, with the extinction ratio of e=4×10-6 of a polarizing microscope. Thus, since the thickness of the garnet film required is 1 μm or so, the absorption by the garnet rotator does not bring a serious problem even in a visible region for the domain observation. The optimum rotation of the rotator for a high quality observation was obtained by a quantitative study of images obtained experimentally as well as by a visual evaluation. A magnetically unsaturated garnet film with perpendicular magnetization (i.e., multidomain) was employed as a rotator, in which the polarization rotation angle θm of the undeflected beam with respect to the light diffraction could be continuously varied by an applied magnetic field. The dependences of S/N and C on θm were measured, resulting in a well agreement between the measured and the calculated. The visually best image was obtained at θm=0.5° which made the product of S/N and C maximum. The domain image of the Kerr rotation angle of θk=0.22° was observed in S/N=47 dB and C=0.4 when Ar+ laser (λ=515 nm) of tenths of a watt was employed as a light source. Since the domain image with 47 dB S/N does not need an image summation for a noise reduction, a garnet film rotator makes it possible to invert the contrast of a domain image in a real time for an improved domain observation.

  16. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  17. MR imaging of rotator cuff tears

    International Nuclear Information System (INIS)

    Kumagai, Hideo

    1992-01-01

    A total of 115 patients with clinical symptoms and signs suggesting rotator cuff tears underwent MR imaging with a 1.5-Tesla system. The body coil was used as the receiver coil in 24 patients and a single 10 cm surface coil in 91. Arthrography or MR imaging with intra-articular Gd-DTPA (MR arthrography) was performed in 95 of the 115. T2-weighted images with the body coil showed high signal intensity lesions in rotator cuffs in only seven of the 10 patients who had tears demonstrated by arthrography or MR arthrography. On the other hand, T2-weighted images with the surface coil demonstrated high signal intensity lesions in cuffs in all 27 patients who were diagnosed to have tears by arthrography or MR arthrography. In 12 patietns, T2-wighted images with the surface coil showed high signal intensity lesions in cuffs, while arthrography and MR arthrography did not show tears. Surgery was performed in four of the 12 patients and partial tears were confirmed. A single 10 cm surface coil, 3 mm slice thickness and 2.5 second repetition time seem to account for the fine visualization of cuff tears by the T2-weighted images. These results suggest that T2-weighted images obtained with the surface coil are superior to arthrography and MR arthrography. (author)

  18. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  19. Restoration of three-dimensional MR images degraded by rotational movements

    International Nuclear Information System (INIS)

    Wood, M.L.

    1990-01-01

    This paper describes a method to restore three-dimensional (3D) magnetic resonance (MR) images that have been degraded by rotational movements, such as head nodding by a restless patient. The technique for acquiring the 3D MR images includes additional MR signals, which provide one-dimensional (1D) and two-dimensional (2D) projections of anatomy. The 1D projections detect gross movements, and the 2D projections resolve displacements in one plane. The 2D projections are transformed from Cartesian coordinates to polar coordinates to identify rotation. A spatial transformation to reverse the rotation is applied to the imaging data after they have been Fourier transformed to resolve structures in the plane of rotation, but before the Fourier transform for the third direction

  20. D Modelling of AN Indoor Space Using a Rotating Stereo Frame Camera System

    Science.gov (United States)

    Kang, J.; Lee, I.

    2016-06-01

    Sophisticated indoor design and growing development in urban architecture make indoor spaces more complex. And the indoor spaces are easily connected to public transportations such as subway and train stations. These phenomena allow to transfer outdoor activities to the indoor spaces. Constant development of technology has a significant impact on people knowledge about services such as location awareness services in the indoor spaces. Thus, it is required to develop the low-cost system to create the 3D model of the indoor spaces for services based on the indoor models. In this paper, we thus introduce the rotating stereo frame camera system that has two cameras and generate the indoor 3D model using the system. First, select a test site and acquired images eight times during one day with different positions and heights of the system. Measurements were complemented by object control points obtained from a total station. As the data were obtained from the different positions and heights of the system, it was possible to make various combinations of data and choose several suitable combinations for input data. Next, we generated the 3D model of the test site using commercial software with previously chosen input data. The last part of the processes will be to evaluate the accuracy of the generated indoor model from selected input data. In summary, this paper introduces the low-cost system to acquire indoor spatial data and generate the 3D model using images acquired by the system. Through this experiments, we ensure that the introduced system is suitable for generating indoor spatial information. The proposed low-cost system will be applied to indoor services based on the indoor spatial information.

  1. Contained modes in mirrors with sheared rotation

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with ExB rotation, a fixed azimuthal perturbation in the laboratory frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and nonpeaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  2. A robust color image watermarking algorithm against rotation attacks

    Science.gov (United States)

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  3. Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame

    Science.gov (United States)

    Paxson, Daniel E.

    2014-01-01

    A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.

  4. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  5. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot

    Directory of Open Access Journals (Sweden)

    Yajing Shen

    2015-12-01

    Full Text Available Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  6. Smear correction of highly variable, frame-transfer CCD images with application to polarimetry.

    Science.gov (United States)

    Iglesias, Francisco A; Feller, Alex; Nagaraju, Krishnappa

    2015-07-01

    Image smear, produced by the shutterless operation of frame-transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear do not contemplate cases where intensity levels change considerably between consecutive frame exposures. In this report, we reformulate the smearing model to include specific variations of the sensor illumination. The corresponding desmearing expression and its noise properties are also presented and demonstrated in the context of fast imaging polarimetry.

  7. REFLECTANCE CALIBRATION SCHEME FOR AIRBORNE FRAME CAMERA IMAGES

    Directory of Open Access Journals (Sweden)

    U. Beisl

    2012-07-01

    Full Text Available The image quality of photogrammetric images is influenced by various effects from outside the camera. One effect is the scattered light from the atmosphere that lowers contrast in the images and creates a colour shift towards the blue. Another is the changing illumination during the day which results in changing image brightness within an image block. In addition, there is the so-called bidirectional reflectance of the ground (BRDF effects that is giving rise to a view and sun angle dependent brightness gradient in the image itself. To correct for the first two effects an atmospheric correction with reflectance calibration is chosen. The effects have been corrected successfully for ADS linescan sensor data by using a parametrization of the atmospheric quantities. Following Kaufman et al. the actual atmospheric condition is estimated by the brightness of a dark pixel taken from the image. The BRDF effects are corrected using a semi-empirical modelling of the brightness gradient. Both methods are now extended to frame cameras. Linescan sensors have a viewing geometry that is only dependent from the cross track view zenith angle. The difference for frame cameras now is to include the extra dimension of the view azimuth into the modelling. Since both the atmospheric correction and the BRDF correction require a model inversion with the help of image data, a different image sampling strategy is necessary which includes the azimuth angle dependence. For the atmospheric correction a sixth variable is added to the existing five variables visibility, view zenith angle, sun zenith angle, ground altitude, and flight altitude – thus multiplying the number of modelling input combinations for the offline-inversion. The parametrization has to reflect the view azimuth angle dependence. The BRDF model already contains the view azimuth dependence and is combined with a new sampling strategy.

  8. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  9. Sheep head frame validation for CT and MRI studies

    Directory of Open Access Journals (Sweden)

    marco trovatelli

    2017-05-01

    Full Text Available Abstract   Introductions Aim of EDEN 2020 project’s Milestone 5 is the development of a steerable catheter for CED system in glioblastoma therapy. The VET group is involved in realization and validation of the proper animal model. Materials and methods In this part of the study two fresh sheep’s head from the local slaughter were used. The heads were located into an ad hoc Frame system based on anatomical measures and CT images, producted by Renishaw plc partner in this project. The frame was adapted and every components were checked for the ex vivo validation tests. CT imaging was taken in Lodi at Università degli studi di Milano, Facoltà di Medicina Veterinaria, with CT scanner and MRI imaging was taken in La Cittadina, Cremona Results System validation was approved by the ex vivo trial. The frame system doesn’t compromise the imaging acquisition in MRI and CT systems. Every system components are functional to their aims. Discussion The Frame system is adapted to the sheep head. It is composed by elements able to lock the head during the imaging acquisition. Frame system is characterized by a support base helpings the animals to keep the head straight forward during imaging time, under general anesthesia. The design of these device support the airways anatomy, avoiding damaging or obstruction of airflows during anesthesia period. The role of elements like mouth bar and ovine head pins is to lock the head in a stable position during imaging acquisition; fixing is guaranteed by V shape head pins, that are arranged against the zygomatic arches. Lateral compression forces to the cranium, and the V shape pins avoid the vertical shifting of the head and any kind of rotations. (fig. 1

  10. Body frames and frame singularities for three-atom systems

    International Nuclear Information System (INIS)

    Littlejohn, R.G.; Mitchell, K.A.; Aquilanti, V.; Cavalli, S.

    1998-01-01

    The subject of body frames and their singularities for three-particle systems is important not only for large-amplitude rovibrational coupling in molecular spectroscopy, but also for reactive scattering calculations. This paper presents a geometrical analysis of the meaning of body frame conventions and their singularities in three-particle systems. Special attention is devoted to the principal axis frame, a certain version of the Eckart frame, and the topological inevitability of frame singularities. The emphasis is on a geometrical picture, which is intended as a preliminary study for the more difficult case of four-particle systems, where one must work in higher-dimensional spaces. The analysis makes extensive use of kinematic rotations. copyright 1998 The American Physical Society

  11. Contained Modes In Mirrors With Sheared Rotation

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with E x B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  12. Contained Modes In Mirrors With Sheared Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  13. Compact Beamformer Design with High Frame Rate for Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-04-01

    Full Text Available In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The compactness is acquired by employing receive synthetic aperture, harmonic imaging, time sharing and linear interpolation. Besides that, multi-beams method is used to improve the frame rate of the ultrasound imaging system. Online dynamic configuration is employed to expand system’s flexibility to two kinds of transducers with multi-scanning modes. The design is verified on a prototype scanner board. Simulation results have shown that on-chip memories can be saved and the frame rate can be improved on the case of 64 effective channels which will meet the requirement of real-time application.

  14. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    , current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI...

  15. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  16. MR arthrography gadolinium versus standard MR imaging in rotator cuff pathology

    International Nuclear Information System (INIS)

    Hodler, J.; Brahme, S.K.; Karzel, R.; Cervilla, V.; Snyder, S.; Schweitzer, M.; Flannigan, B.; Resnick, D.

    1990-01-01

    This paper compares the accuracy of MR imaging with and without intraarticular gadolinium in the diagnosis of rotator cuff pathology, using arthroscopy as the gold standard. The authors examined 36 patients, first with T2-weighted sequences and then with T1-weighted sequences after the injection of 15-20 mL of diluted gadolinium. The images were read blindly by three radiologists experienced in musculoskeletal MR imaging. The results were compared with those of arthroscopy. In 16 of 19 arthroscopically intact rotator cuffs, both sequences demonstrated no evidence of rotator cuff tear. The remaining three cases were interpreted as partial or full-thickness tears. Of 12 partial tears, T1-weighted images with intraarticular gadolinium demonstrated a partial tear in five, degeneration in four, a full thickness tear in two, and a normal rotator cuff in one

  17. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S; Rottmann, J; Berbeco, R [Brigham and Women' s Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  18. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    International Nuclear Information System (INIS)

    Yip, S; Rottmann, J; Berbeco, R

    2014-01-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  19. Frames as visual links between paintings and the museum environment: An analysis of statistical image properties

    Directory of Open Access Journals (Sweden)

    Christoph eRedies

    2013-11-01

    Full Text Available Frames provide a visual link between artworks and their surround. We asked how image properties change as an observer zooms out from viewing a painting alone, to viewing the painting with its frame and, finally, the framed painting in its museum environment (museum scene. To address this question, we determined three higher-order image properties that are based on histograms of oriented luminance gradients. First, complexity was measured as the sum of the strengths of all gradients in the image. Second, we determined the self-similarity of histograms of the orientated gradients at different levels of spatial analysis. Third, we analyzed how much gradient strength varied across orientations (anisotropy. Results were obtained for three art museums that exhibited paintings from three major periods of Western art. In all three museums, the mean complexity of the frames was higher than that of the paintings or the museum scenes. Frames thus provide a barrier of complexity between the paintings and their exterior. By contrast, self-similarity and anisotropy values of images of framed paintings were intermediate between the images of the paintings and the museum scenes, i.e., the frames provided a transition between the paintings and their surround. We also observed differences between the three museums that may reflect modified frame usage in different art periods. For example, frames in the museum for 20th century art tended to be smaller and less complex than in the two other two museums that exhibit paintings from earlier art periods (13th-18th century and 19th century, respectively. Finally, we found that the three properties did not depend on the type of reproduction of the paintings (photographs in museums, scans from books or images from the Google Art Project. To the best of our knowledge, this study is the first to investigate the relation between frames and paintings by measuring physically defined, higher-order image properties.

  20. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    Directory of Open Access Journals (Sweden)

    Dongming Li

    2017-04-01

    Full Text Available An adaptive optics (AO system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  1. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collect through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an ''encoded'' form which does not resemble the object, and then filtered (or ''decoded'') to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  2. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collected through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an encoded form which does not resemble the object, and then filtered (or decoded) to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  3. Establishment of frame image in dynamic function renal studies

    International Nuclear Information System (INIS)

    Guedes, Germano P.; Brunetto, Sergio Q.

    1996-01-01

    Statistical procedures applied to a set of images of renal function study are described to define a region of interest (ROI) on the kidneys's contours. The kidneys geometry is considered to adapt to the emitting area in every frames

  4. Novel driver method to improve ordinary CCD frame rate for high-speed imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tong-Ding, E-mail: snuohui@126.com; Li, Bin-Kang; Yang, Shao-Hua; Guo, Ming-An; Yan, Ming

    2016-06-21

    The use of ordinary Charge-coupled-Device (CCD) imagers for the analysis of fast physical phenomenon is restricted because of the low-speed performance resulting from their long output times. Even though the form of Intensified-CCD (ICCD), coupled with a gated image intensifier, has extended their use for high speed imaging, the deficiency remains to be solved that ICDD could record only one image in a single shot. This paper presents a novel driver method designed to significantly improve the ordinary interline CCD burst frame rate for high-speed photography. This method is based on the use of vertical registers as storage, so that a small number of additional frames comprised of reduced-spatial-resolution images obtained via a specific sampling operation can be buffered. Hence, the interval time of the received series of images is related to the exposure and vertical transfer times only and, thus, the burst frame rate can be increased significantly. A prototype camera based on this method is designed as part of this study, exhibiting a burst rate of up to 250,000 frames per second (fps) and a capacity to record three continuous images. This device exhibits a speed enhancement of approximately 16,000 times compared with the conventional speed, with a spatial resolution reduction of only 1/4.

  5. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Jonassen, Johnny; Schmidt, Mai Lykkegaard

    2015-01-01

    of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without...... absolute error of 2.0% for the gold marker. Conclusions: A device that triggers readout of unexposed frames during kV fluoroscopy was built and shown to greatly improve the quality of intratreatment kV images. A simple theoretical model successfully described the CNR improvements with the device.......Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used forreal-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout...

  6. Rotation Estimation for Wide-Angle Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-01-01

    Full Text Available To present focused ISAR imaging results in the homogenous range and cross-range domain, an integrated scheme is proposed to estimate both the targets equivalent rotational velocity (RV and rotational center (RC. The RV estimation is improved by radial projection combined with keystone processing, and then the RC is estimated through image entropy minimization. Finally, delicate imaging results may be obtained for wide-angle scenarios. Experiment results are provided to demonstrate the effectiveness of the proposed method.

  7. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  8. Comparison between T2*- and T2-weighted images in diagnosing rotator cuff tears

    International Nuclear Information System (INIS)

    Kumagai, Hideo; Ito, Hisao; Kubo, Atsushi.

    1995-01-01

    This study was performed to determine the merits of T2 * -weighted images in diagnosing rotator cuff tear, compared with T2-weighted images. T2- and T2 * -weighted images were obtained in 10 asymptomatic volunteers and 94 patients with symptoms referable to the rotator cuff. The increased signal with full thickness of the rotator cuff was not shown on either T2- or T2 * -weighted images in the volunteers. These findings on T2-weighted images and on T2 * -weighted images were observed in 33 and 58 of 94 patients with symptoms, respectively. Every patient who showed these abnormal findings on T2-weighted images had the abnormal findings on T2 * -weighted images. These findings on T2 * -weighted images were wider than those on T2-weighted images in 20 of 33 patients. Surgical findings were available in 21 of 94 patients. Rotator cuff tears were surgically confirmed in 20 patients whose MR images showed increased signal lesions on both T2- and T2 * -weighted images. On the other hand, one patient who did not have rotator cuff tear showed increased signal lesion with full thickness on T2 * -weighted images, but not on T2-weighted images. We think increased signal lesions on T2-weighted images may strongly suggest rotator cuff tear, whereas those on T2 * -weighted images are not specific. (author)

  9. 100-ps framing-camera tube

    International Nuclear Information System (INIS)

    Kalibjian, R.

    1978-01-01

    The optoelectronic framing-camera tube described is capable of recording two-dimensional image frames with high spatial resolution in the <100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits. The resulting dissected electron line images from the slits are restored into framed images by a restorer deflector operating synchronously with the dissector deflector. The number of framed images on the tube's viewing screen equals the number of dissecting slits in the tube. Performance has been demonstrated in a prototype tube by recording 135-ps-duration framed images of 2.5-mm patterns at the cathode. The limitation in the framing speed is in the external drivers for the deflectors and not in the tube design characteristics. Faster frame speeds in the <100-ps range can be obtained by use of faster deflection drivers

  10. Evaluation of post-exercise magnetic resonance images of the rotator cuff

    International Nuclear Information System (INIS)

    Cahoy, P.M.; Orwin, J.F.; Tuite, M.J.

    1996-01-01

    Objective. To examine the effect of strenuous exercise on the magnetic resonance imaging (MRI) characteristics of the rotator cuff tendon. A second objective was to define an optimal time to image the rotator cuff and possibly eliminate exercise-induced false positives. Design and patients. Five male subjects from 24 to 38 years old with normal rotator cuffs by history, physical examination, and screening MRI underwent a rotator cuff exercise session on the Biodex System 2 (Biodex, Shirley, New York). The exercise sessions were followed by sequential MRI scans of the exercised shoulder. These were performed immediately and at 8 h and 24 h after exercise. Results and conclusions. The rotator cuff tendon and subacromial-subdeltoid bursal signal remained unchanged from the pre-exercise through the 24-h post-exercise scans. The rotator cuff muscle signal was increased in five of five subjects on the immediate post-exercise fat-suppressed T2-weighted images. This signal returned to baseline by the 8-h scan. Positive findings of rotator cuff pathology on MRI after strenuous athletic activity should not be discounted as normal exercise-induced changes. Also, diagnostic MRI scanning may take place after a practice session without an increased risk of false positives. (orig.). With 1 fig

  11. Evaluation of post-exercise magnetic resonance images of the rotator cuff

    Energy Technology Data Exchange (ETDEWEB)

    Cahoy, P M [Division of Orthopedic Surgery G5/358, University of Wisconsin Hospital and Clinics, Madison, WI (United States); Orwin, J F [Division of Orthopedic Surgery G5/358, University of Wisconsin Hospital and Clinics, Madison, WI (United States); Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, Madison, WI (United States)

    1996-11-01

    Objective. To examine the effect of strenuous exercise on the magnetic resonance imaging (MRI) characteristics of the rotator cuff tendon. A second objective was to define an optimal time to image the rotator cuff and possibly eliminate exercise-induced false positives. Design and patients. Five male subjects from 24 to 38 years old with normal rotator cuffs by history, physical examination, and screening MRI underwent a rotator cuff exercise session on the Biodex System 2 (Biodex, Shirley, New York). The exercise sessions were followed by sequential MRI scans of the exercised shoulder. These were performed immediately and at 8 h and 24 h after exercise. Results and conclusions. The rotator cuff tendon and subacromial-subdeltoid bursal signal remained unchanged from the pre-exercise through the 24-h post-exercise scans. The rotator cuff muscle signal was increased in five of five subjects on the immediate post-exercise fat-suppressed T2-weighted images. This signal returned to baseline by the 8-h scan. Positive findings of rotator cuff pathology on MRI after strenuous athletic activity should not be discounted as normal exercise-induced changes. Also, diagnostic MRI scanning may take place after a practice session without an increased risk of false positives. (orig.). With 1 fig.

  12. Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames

    Directory of Open Access Journals (Sweden)

    Jaroon Rungamornrat

    2014-01-01

    Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.

  13. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    Science.gov (United States)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  14. Rotation invariant deep binary hashing for fast image retrieval

    Science.gov (United States)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen

    2017-07-01

    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  15. Preliminary study of lateral cerebral angiography with reverse rotation in the digital image registration and subtraction

    International Nuclear Information System (INIS)

    Shen Zhenglin; Liu Dongyang; Shen Zhenghai; Li Shuping; Zhang Ziyan; Wu Yongjuan; Liu Peijun

    2012-01-01

    Objective: Investigate the value and feasibility of image registration with reverse rotation in lateral cerebral DSA. Methods: (1) Experimental study: the target images were subtracted directly, and subtracted again after reverse rotation. Software of registration and subtraction with reverse rotation edited by the author utilizing Visual Basic. The function of the automatic angle detection by the software were evaluated to see whether it detected the angle of line. The subtraction function of DSA by the software was evaluated. (2) Clinical retrospective study: the untreated mask and target images of 15 patients with motion along vertical axis during lateral cerebral DSA were uploaded to the software. The target images were processed with and without the software to get two sets of images. (3) Evaluation: four experienced radiologists read and compared the two sets of the images,and graded their findings. Results: (1) The automatic detection by the software suggested that the target images should be rotated counterclockwise 1.3°. The subtraction result of the software was satisfactory. (2) In the 15 sets of images, there were only three sets of images deemed optimal after traditional subtraction. After reverse rotation, artifacts were significantly reduced and the image sharper. There were ten cases with significant artifacts after traditional subtraction, and those images were sharper and showed more peripheral vessels after reverse rotation. The traditional subtraction images of two sets could not be interpreted,the reverse rotation registration images reached the diagnostic quality. (3) Subjective evaluation: there were more information and less noise and distortion in the registration images with reverse rotation than in the traditional subtraction. But the image resolution decreased slightly after reverse rotation registration. Conclusion: The registration of digital angiography with reverse rotation can improve the image quality in lateral cerebral DSA

  16. 3D MODELLING OF AN INDOOR SPACE USING A ROTATING STEREO FRAME CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    J. Kang

    2016-06-01

    Full Text Available Sophisticated indoor design and growing development in urban architecture make indoor spaces more complex. And the indoor spaces are easily connected to public transportations such as subway and train stations. These phenomena allow to transfer outdoor activities to the indoor spaces. Constant development of technology has a significant impact on people knowledge about services such as location awareness services in the indoor spaces. Thus, it is required to develop the low-cost system to create the 3D model of the indoor spaces for services based on the indoor models. In this paper, we thus introduce the rotating stereo frame camera system that has two cameras and generate the indoor 3D model using the system. First, select a test site and acquired images eight times during one day with different positions and heights of the system. Measurements were complemented by object control points obtained from a total station. As the data were obtained from the different positions and heights of the system, it was possible to make various combinations of data and choose several suitable combinations for input data. Next, we generated the 3D model of the test site using commercial software with previously chosen input data. The last part of the processes will be to evaluate the accuracy of the generated indoor model from selected input data. In summary, this paper introduces the low-cost system to acquire indoor spatial data and generate the 3D model using images acquired by the system. Through this experiments, we ensure that the introduced system is suitable for generating indoor spatial information. The proposed low-cost system will be applied to indoor services based on the indoor spatial information.

  17. X-ray framing cameras for > 5 keV imaging

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; Costa, R.; Kalantar, D.H.; Bradley, D.K.

    1995-01-01

    Recent and proposed improvements in spatial resolution, temporal resolution, contrast, and detection efficiency for x-ray framing cameras are discussed in light of present and future laser-plasma diagnostic needs. In particular, improvements in image contrast above hard x-ray background levels is demonstrated by using high aspect ratio tapered pinholes

  18. Diagnostic imaging of shoulder rotator cuff lesions

    Directory of Open Access Journals (Sweden)

    Nogueira-Barbosa Marcello Henrique

    2002-01-01

    Full Text Available Shoulder rotator cuff tendon tears were evaluated with ultrasonography (US and magnetic resonance imaging (MRI. Surgical or arthroscopical correlation were available in 25 cases. Overall costs were also considered. Shoulder impingement syndrome diagnosis was done on a clinical basis. Surgery or arthroscopy was considered when conservative treatment failure for 6 months, or when rotator cuff repair was indicated. Ultrasound was performed in 22 patients and MRI in 17 of the 25 patients. Sensitivity, specificity and accuracy were 80%, 100% and 90.9% for US and 90%, 100% and 94.12% for MRI, respectively. In 16 cases both US and MRI were obtained and in this subgroup statistical correlation was excellent (p< 0.001. We concluded that both methods are reliable for rotator cuff full thickness tear evaluation. Since US is less expensive, it could be considered as the screening method when rotator cuff integrity is the main question, and when well trained radiologists and high resolution equipment are available.

  19. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  20. Robust super-resolution by fusion of interpolated frames for color and grayscale images

    Directory of Open Access Journals (Sweden)

    Barry eKarch

    2015-04-01

    Full Text Available Multi-frame super-resolution (SR processing seeks to overcome undersampling issues that can lead to undesirable aliasing artifacts. The key to effective multi-frame SR is accurate subpixel inter-frame registration. This accurate registration is challenging when the motion does not obey a simple global translational model and may include local motion. SR processing is further complicated when the camera uses a division-of-focal-plane (DoFP sensor, such as the Bayer color filter array. Various aspects of these SR challenges have been previously investigated. Fast SR algorithms tend to have difficulty accommodating complex motion and DoFP sensors. Furthermore, methods that can tolerate these complexities tend to be iterative in nature and may not be amenable to real-time processing. In this paper, we present a new fast approach for performing SR in the presence of these challenging imaging conditions. We refer to the new approach as Fusion of Interpolated Frames (FIF SR. The FIF SR method decouples the demosaicing, interpolation, and restoration steps to simplify the algorithm. Frames are first individually demosaiced and interpolated to the desired resolution. Next, FIF uses a novel weighted sum of the interpolated frames to fuse them into an improved resolution estimate. Finally, restoration is applied to deconvolve the modeled system PSF. The proposed FIF approach has a lower computational complexity than most iterative methods, making it a candidate for real-time implementation. We provide a detailed description of the FIF SR method and show experimental results using synthetic and real datasets in both constrained and complex imaging scenarios. The experiments include airborne grayscale imagery and Bayer color array images with affine background motion plus local motion.

  1. Thermodynamic properties of rotating trapped ideal Bose gases

    International Nuclear Information System (INIS)

    Li, Yushan; Gu, Qiang

    2014-01-01

    Ultracold atomic gases can be spined up either by confining them in rotating frame, or by introducing “synthetic” magnetic field. In this paper, thermodynamics of rotating ideal Bose gases are investigated within truncated-summation approach which keeps to take into account the discrete nature of energy levels, rather than to approximate the summation over single-particle energy levels by an integral as it does in semi-classical approximation. Our results show that Bose gases in rotating frame exhibit much stronger dependence on rotation frequency than those in “synthetic” magnetic field. Consequently, BEC can be more easily suppressed in rotating frame than in “synthetic” magnetic field.

  2. Relativistic effects in a rotating coordinate system

    International Nuclear Information System (INIS)

    Chugreev, Y.V.

    1989-01-01

    The general approach to calculating various physical effects in a rotating, noninertial reference frame based on the tetrad formalism for observables is discussed. It is shown that the method based on the search for the ''true'' coordinate transformation from an inertial to the rotating frame is ill-founded. Most special relativistic effects in a rotating frame have been calculated without any nonrelativistic restrictions. It is shown how simple physical experiments can be used to determine whether a circle is at rest in the equatorial plane of a Kerr--Newman gravitational source in the relativistic theory of gravity or is rotating about an axis through its center

  3. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    Directory of Open Access Journals (Sweden)

    Chen Lu

    Full Text Available Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for

  4. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    Science.gov (United States)

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.

  5. Spin imaging in solids using synchronously rotating field gradients and samples

    International Nuclear Information System (INIS)

    Wind, R.A.; Yannoni, C.S.

    1983-01-01

    A method for spin-imaging in solids using nuclear magnetic resonance (NMR) spectroscopy is described. With this method, the spin density distribution of a two- or three-dimensional object such as a solid can be constructed resulting in an image of the sample. This method lends itself to computer control to map out an image of the object. This spin-imaging method involves the steps of placing a solid sample in the rf coil field and the external magnetic field of an NMR spectrometer. A magnetic field gradient is superimposed across the sample to provide a field gradient which results in a varying DC field that has different values over different parts of the sample. As a result, nuclei in different parts of the sample have different resonant NMR frequencies. The sample is rotated about an axis which makes a particular angle of 54.7 degrees with the static external magnetic field. The magnetic field gradient which has a spatial distribution related to the sample spinning axis is then rotated synchronously with the sample. Data is then collected while performing a solid state NMR line narrowing procedure. The next step is to change the phase relation between the sample rotation and the field gradient rotation. The data is again collected as before while the sample and field gradient are synchronously rotated. The phase relation is changed a number of times and data collected each time. The spin image of the solid sample is then reconstructed from the collected data

  6. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Bechsgaard, Thor

    2016-01-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis vie...

  7. Frames and counter-frames giving meaning to dementia: a framing analysis of media content.

    Science.gov (United States)

    Van Gorp, Baldwin; Vercruysse, Tom

    2012-04-01

    Media tend to reinforce the stigmatization of dementia as one of the most dreaded diseases in western society, which may have repercussions on the quality of life of those with the illness. The persons with dementia, but also those around them become imbued with the idea that life comes to an end as soon as the diagnosis is pronounced. The aim of this paper is to understand the dominant images related to dementia by means of an inductive framing analysis. The sample is composed of newspaper articles from six Belgian newspapers (2008-2010) and a convenience sample of popular images of the condition in movies, documentaries, literature and health care communications. The results demonstrate that the most dominant frame postulates that a human being is composed of two distinct parts: a material body and an immaterial mind. If this frame is used, the person with dementia ends up with no identity, which is in opposition to the Western ideals of personal self-fulfilment and individualism. For each dominant frame an alternative counter-frame is defined. It is concluded that the relative absence of counter-frames confirms the negative image of dementia. The inventory might be a help for caregivers and other professionals who want to evaluate their communication strategy. It is discussed that a more resolute use of counter-frames in communication about dementia might mitigate the stigma that surrounds dementia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Should image rotation be addressed during routine cone-beam CT quality assurance?

    International Nuclear Information System (INIS)

    Ayan, Ahmet S; Lin Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C; Anderson, Nathan; Ad, Voichita Bar; Both, Stefan; Lu, Hsiao-Ming

    2013-01-01

    The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose–volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (<0.5%) for the angular range evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery. (paper)

  9. Should image rotation be addressed during routine cone-beam CT quality assurance?

    Science.gov (United States)

    Ayan, Ahmet S.; Lin, Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C.; Anderson, Nathan; Bar Ad, Voichita; Lu, Hsiao-Ming; Both, Stefan

    2013-02-01

    The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose-volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (<0.5%) for the angular range evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery.

  10. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  11. A novel simultaneous streak and framing camera without principle errors

    Science.gov (United States)

    Jingzhen, L.; Fengshan, S.; Ningwen, L.; Xiangdong, G.; Bin, H.; Qingyang, W.; Hongyi, C.; Yi, C.; Xiaowei, L.

    2018-02-01

    A novel simultaneous streak and framing camera with continuous access, the perfect information of which is far more important for the exact interpretation and precise evaluation of many detonation events and shockwave phenomena, has been developed. The camera with the maximum imaging frequency of 2 × 106 fps and the maximum scanning velocity of 16.3 mm/μs has fine imaging properties which are the eigen resolution of over 40 lp/mm in the temporal direction and over 60 lp/mm in the spatial direction and the framing frequency principle error of zero for framing record, and the maximum time resolving power of 8 ns and the scanning velocity nonuniformity of 0.136%~-0.277% for streak record. The test data have verified the performance of the camera quantitatively. This camera, simultaneously gained frames and streak with parallax-free and identical time base, is characterized by the plane optical system at oblique incidence different from space system, the innovative camera obscura without principle errors, and the high velocity motor driven beryllium-like rotating mirror, made of high strength aluminum alloy with cellular lateral structure. Experiments demonstrate that the camera is very useful and reliable to take high quality pictures of the detonation events.

  12. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes

    Science.gov (United States)

    Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio

    2017-12-01

    A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of

  13. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  14. Background suppression of infrared small target image based on inter-frame registration

    Science.gov (United States)

    Ye, Xiubo; Xue, Bindang

    2018-04-01

    We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.

  15. Accuracy of MR imaging in partial tears of rotator cuff

    International Nuclear Information System (INIS)

    Eto, Masao; Ito, Nobuyuki; Tomonaga, Tadashi; Harada, Shin'ichi; Rabbi, M.E.; Iwasaki, Katsuro

    1997-01-01

    MRI is very useful for the diagnosis of the rotator cuff tear However. in case of partial tears it is sometimes controvertible. In this study, we studied the accuracy of MRI in the diagnosis of partial tears. 67 patients who underwent MRI investigation before operation were chosen for this study. There were 61 males and 6 females, ranging from 30 to 80 years (mean: 54.8 years at the time of operation). MRI was performed with 1.5T superconductive system with shoulder surface coil. MPGR T2-weighted images were performed in the coronal oblique and sagittal oblique planes. Complete tears were diagnosed when full thickness high intensity was observed in the rotator cuff, whereas with partial high intensity of the rotator cuff, was considered as partial tears. MRI demonstrated 77.8% sensitivity, 91.4% specificity and 89.6% accuracy in the diagnosis of partial tear. In 8 cases MRI had misinterpretation. In MPGR T2-weighted images, not only the partial tears but the degenerative changes also show high intensity of the rotator cuff. Therefore, it is difficult to differentiate and maybe this is the reason of misinterpretations of partial tears by MRI. MRI provided with useful pre-operative informations of partial tears of the rotator cuff. However, in few cases it is hard to differentiate for the degenerative changes of the rotator cuff. (author)

  16. Fabry-Perot interferometry using an image-intensified rotating-mirror streak camera

    International Nuclear Information System (INIS)

    Seitz, W.L.; Stacy, H.L.

    1983-01-01

    A Fabry-Perot velocity interferometer system is described that uses a modified rotating mirror streak camera to recrod the dynamic fringe positions. A Los Alamos Model 72B rotating-mirror streak camera, equipped with a beryllium mirror, was modified to include a high aperture (f/2.5) relay lens and a 40-mm image-intensifier tube such that the image normally formed at the film plane of the streak camera is projected onto the intensifier tube. Fringe records for thin (0.13 mm) flyers driven by a small bridgewire detonator obtained with a Model C1155-01 Hamamatsu and Model 790 Imacon electronic streak cameras are compared with those obtained with the image-intensified rotating-mirror streak camera (I 2 RMC). Resolution comparisons indicate that the I 2 RMC gives better time resolution than either the Hamamatsu or the Imacon for total writing times of a few microseconds or longer

  17. A Rotational and Axial Motion System Load Frame Insert for In Situ High Energy X-Ray Studies (Postprint)

    Science.gov (United States)

    2015-09-08

    Paul A. Shade, Jay C. Schuren, and Todd J. Turner AFRL/RX Basil Blank PulseRay Peter Kenesei, Kurt Goetze, Ulrich Lienert, and Jonathan Almer...AFRL/RX 2) Basil Blank – PulseRay (continued on page 2) 5d. PROJECT NUMBER 4349 5e. TASK NUMBER 0001 5f...2015) A rotational and axial motion system load frame insert for in situ high energy x-ray studies Paul A. Shade,1,a) Basil Blank,2 Jay C. Schuren,1,b

  18. A rotating modulation imager for locating mid-range point sources

    International Nuclear Information System (INIS)

    Kowash, B.R.; Wehe, D.K.; Fessler, J.A.

    2009-01-01

    Rotating modulation collimators (RMC) are relatively simple indirect imaging devices that have proven useful in gamma ray astronomy (far field) and have more recently been studied for medical imaging (very near field). At the University of Michigan a RMC has been built to study the performance for homeland security applications. This research highlights the imaging performance of this system and focuses on three distinct regions in the RMC field of view that can impact the search for hidden sources. These regions are a blind zone around the axis of rotation, a two mask image zone that extends from the blind zone to the edge of the field of view, and a single mask image zone that occurs when sources fall outside the field of view of both masks. By considering the extent and impact of these zones, the size of the two mask region can be optimized for the best system performance.

  19. Magnetic resonance imaging findings associated with surgically proven rotator interval lesions

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, Emily N.; Major, Nancy M. [Duke University Medical Center, Department of Radiology, P.O. Box 3808, Durham, NC (United States); Higgins, Laurence D. [Brigham and Women' s Hospital, Department of Orthopedic Surgery, Boston, MA (United States)

    2007-05-15

    To identify shoulder magnetic resonance imaging (MRI) findings associated with surgically proven rotator interval abnormalities. The preoperative MRI examinations of five patients with surgically proven rotator interval (RI) lesions requiring closure were retrospectively evaluated by three musculoskeletal-trained radiologists in consensus. We assessed the structures in the RI, including the coracohumeral ligament, superior glenohumeral ligament, fat tissue, biceps tendon, and capsule for variations in size and signal alteration. In addition, we noted associated findings of rotator cuff and labral pathology. Three of three of the MR arthrogram studies demonstrated extension of gadolinium to the cortex of the undersurface of the coracoid process compared with the control images, seen best on the sagittal oblique images. Four of five of the studies demonstrated subjective thickening of the coracohumeral ligament, and three of five of the studies demonstrated subjective thickening of the superior glenohumeral ligament. Five of five of the studies demonstrated a labral tear. The MRI arthrogram finding of gadolinium extending to the cortex of the undersurface of the coracoid process was noted on the studies of those patients with rotator interval lesions at surgery in this series. Noting this finding - especially in the presence of a labral tear and/or thickening of the coracohumeral ligament or superior glenohumeral ligament - may be helpful in the preoperative diagnosis of rotator interval lesions. (orig.)

  20. Stroboscopic image capture: Reducing the dose per frame by a factor of 30 does not prevent beam-induced specimen movement in paraffin

    International Nuclear Information System (INIS)

    Typke, Dieter; Gilpin, Christopher J.; Downing, Kenneth H.; Glaeser, Robert M.

    2007-01-01

    Beam-induced specimen movement may be the major factor that limits the quality of high-resolution images of organic specimens. One of the possible measures to improve the situation that was proposed by Henderson and Glaeser [Ultramicroscopy 16 (1985) 139-150], which we refer to here as 'stroboscopic image capture', is to divide the normal exposure into many successive frames, thus reducing the amount of electron exposure-and possibly the amount of beam-induced movement-per frame. The frames would then be aligned and summed. We have performed preliminary experiments on stroboscopic imaging using a 200-kV electron microscope that was equipped with a high dynamic range Charge-coupled device (CCD) camera for image recording and a liquid N 2 -cooled cryoholder. Single-layer paraffin crystals on carbon film were used as a test specimen. The ratio F(g)/F(0) of paraffin reflections, calculated from the images, serves as our criterion for the image quality. In the series that were evaluated, no significant improvement of the F image (g)/F image (0) ratio was found, even though the electron exposure per frame was reduced by a factor of 30. A frame-to-frame analysis of image distortions showed that considerable beam-induced movement had still occurred during each frame. In addition, the paraffin crystal lattice was observed to move relative to the supporting carbon film, a fact that cannot be explained as being an electron-optical effect caused by specimen charging. We conclude that a significant further reduction of the dose per frame (than was possible with this CCD detector) will be needed in order to test whether the frame-to-frame changes ultimately become small enough for stroboscopic image capture to show its potential

  1. Updating of visual orientation in a gravity-based reference frame.

    Science.gov (United States)

    Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter

    2017-10-01

    The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.

  2. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, P. M., E-mail: pmccowan@cancercare.mb.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); McCurdy, B. M. C. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Radiology, University of Manitoba, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9 (Canada)

    2016-01-15

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose (<20% prescription dose) and high dose regions (>80% prescription dose) was calculated for each frame averaged

  3. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    International Nuclear Information System (INIS)

    McCowan, P. M.; McCurdy, B. M. C.

    2016-01-01

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose ( 80% prescription dose) was calculated for each frame averaged scenario for each plan. The authors defined their

  4. Entropy of non-extreme rotating black holes in string theories

    International Nuclear Information System (INIS)

    Youm, D.

    1998-01-01

    We formulate the Rindler space description of rotating black holes in string theories. We argue that the comoving frame is the natural frame for studying the thermodynamics of rotating black holes and the statistical analysis of rotating black holes gets simplified in this frame. We also calculate statistical entropies of a general class of rotating black holes in heterotic strings on tori by applying the D-brane description and the correspondence principle. We find at least a qualitative agreement between the Bekenstein-Hawking entropies and the statistical entropies of these black hole solutions. (orig.)

  5. Depth estimation of features in video frames with improved feature matching technique using Kinect sensor

    Science.gov (United States)

    Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun

    2012-10-01

    Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.

  6. High-speed three-frame image recording system using colored flash units and low-cost video equipment

    Science.gov (United States)

    Racca, Roberto G.; Scotten, Larry N.

    1995-05-01

    This article describes a method that allows the digital recording of sequences of three black and white images at rates of several thousand frames per second using a system consisting of an ordinary CCD camcorder, three flash units with color filters, a PC-based frame grabber board and some additional electronics. The maximum framing rate is determined by the duration of the flashtube emission, and for common photographic flash units lasting about 20 microsecond(s) it can exceed 10,000 frames per second in actual use. The subject under study is strobe- illuminated using a red, a green and a blue flash unit controlled by a special sequencer, and the three images are captured by a color CCD camera on a single video field. Color is used as the distinguishing parameter that allows the overlaid exposures to be resolved. The video output for that particular field will contain three individual scenes, one for each primary color component, which potentially can be resolved with no crosstalk between them. The output is electronically decoded into the primary color channels, frame grabbed and stored into digital memory, yielding three time-resolved images of the subject. A synchronization pulse provided by the flash sequencer triggers the frame grabbing so that the correct video field is acquired. A scheme involving the use of videotape as intermediate storage allows the frame grabbing to be performed using a monochrome video digitizer. Ideally each flash- illuminated scene would be confined to one color channel, but in practice various factors, both optical and electronic, affect color separation. Correction equations have been derived that counteract these effects in the digitized images and minimize 'ghosting' between frames. Once the appropriate coefficients have been established through a calibration procedure that needs to be performed only once for a given configuration of the equipment, the correction process is carried out transparently in software every time a

  7. Ultrasonography of symptomatic rotator cuff tears compared with MR imaging and surgery

    International Nuclear Information System (INIS)

    Fotiadou, Anastasia N.; Vlychou, Marianna; Papadopoulos, Periklis; Karataglis, Dimitrios S.; Palladas, Panagiotis; Fezoulidis, Ioannis V.

    2008-01-01

    Purpose: To compare the accuracy of ultrasonography and magnetic resonance imaging in the detection of rotator cuff tears. Materials and methods: Ninety-six patients with clinically suspected rotator cuff pathology underwent ultrasonography and magnetic resonance imaging of the shoulder. The findings in 88 patients were compared with arthroscopy or open surgery. Results: Full-thickness tear was confirmed in 57 cases, partial-thickness tear in 30 cases and degenerative changes without tear in 1. In all 57 cases of full-thickness tear and in 28 out of 30 cases of partial-thickness tear the supraspinatus tendon was involved. The accuracy in the detection of full-thickness tears was 98 and 100% for ultrasonography and magnetic resonance imaging, respectively. The accuracy in the detection of bursal or articular partial-thickness tears was 87 and 90% for ultrasonography and magnetic resonance imaging, respectively. Conclusions: In experienced hands ultrasonography should be considered as an accurate modality for the initial investigation of rotator cuff, especially supraspinatus, tears

  8. Ultrasonography of symptomatic rotator cuff tears compared with MR imaging and surgery

    Energy Technology Data Exchange (ETDEWEB)

    Fotiadou, Anastasia N. [Radiology Department, University Hospital of Larissa, Mezourlo 41110, Larissa (Greece); Radiology Department, G. Papanikolaou Hospital, Exochi 32100, Thessaloniki (Greece)], E-mail: natfot@yahoo.gr; Vlychou, Marianna [Radiology Department, University Hospital of Larissa, Mezourlo 41110, Larissa (Greece)], E-mail: mvlychou@med.uth.gr; Papadopoulos, Periklis [University Orthopaedic Clinic, G. Papanikolaou Hospital, Exochi 32100, Thessaloniki (Greece)], E-mail: perpap@otenet.gr; Karataglis, Dimitrios S. [University Orthopaedic Clinic, G. Papanikolaou Hospital, Exochi 32100, Thessaloniki (Greece)], E-mail: dkarataglis@yahoo.gr; Palladas, Panagiotis [Radiology Department, G. Papanikolaou Hospital, Exochi 32100, Thessaloniki (Greece)], E-mail: palladaspan@in.gr; Fezoulidis, Ioannis V. [Radiology Department, University Hospital of Larissa, Mezourlo 41110, Larissa (Greece)], E-mail: oswestanast@yahoo.gr

    2008-10-15

    Purpose: To compare the accuracy of ultrasonography and magnetic resonance imaging in the detection of rotator cuff tears. Materials and methods: Ninety-six patients with clinically suspected rotator cuff pathology underwent ultrasonography and magnetic resonance imaging of the shoulder. The findings in 88 patients were compared with arthroscopy or open surgery. Results: Full-thickness tear was confirmed in 57 cases, partial-thickness tear in 30 cases and degenerative changes without tear in 1. In all 57 cases of full-thickness tear and in 28 out of 30 cases of partial-thickness tear the supraspinatus tendon was involved. The accuracy in the detection of full-thickness tears was 98 and 100% for ultrasonography and magnetic resonance imaging, respectively. The accuracy in the detection of bursal or articular partial-thickness tears was 87 and 90% for ultrasonography and magnetic resonance imaging, respectively. Conclusions: In experienced hands ultrasonography should be considered as an accurate modality for the initial investigation of rotator cuff, especially supraspinatus, tears.

  9. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    International Nuclear Information System (INIS)

    Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Yao Rutao; Deng Xiao

    2013-01-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme. (paper)

  10. Complications of rotator cuff surgery—the role of post-operative imaging in patient care

    Science.gov (United States)

    Thakkar, R S; Thakkar, S C; Srikumaran, U; Fayad, L M

    2014-01-01

    When pain or disability occurs after rotator cuff surgery, post-operative imaging is frequently performed. Post-operative complications and expected post-operative imaging findings in the shoulder are presented, with a focus on MRI, MR arthrography (MRA) and CT arthrography. MR and CT techniques are available to reduce image degradation secondary to surgical distortions of native anatomy and implant-related artefacts and to define complications after rotator cuff surgery. A useful approach to image the shoulder after surgery is the standard radiography, followed by MRI/MRA for patients with low “metal presence” and CT for patients who have a higher metal presence. However, for the assessment of patients who have undergone surgery for rotator cuff injuries, imaging findings should always be correlated with the clinical presentation because post-operative imaging abnormalities do not necessarily correlate with symptoms. PMID:24734935

  11. Recurrent rotator cuff tear: is ultrasound imaging reliable?

    Science.gov (United States)

    Gilat, Ron; Atoun, Ehud; Cohen, Ornit; Tsvieli, Oren; Rath, Ehud; Lakstein, Dror; Levy, Ofer

    2018-02-02

    The diagnostic workup of the painful shoulder after rotator cuff repair (RCR) can be quite challenging. The aim of this study was to assess the reliability of ultrasonography (US) for the detection of recurrent rotator cuff tears in patients with shoulder pain after RCR. We hypothesized that US for the diagnosis of recurrent rotator cuff tear after RCR would not prove to be reliable when compared with surgical arthroscopic confirmation (gold standard). In this cohort study (diagnosis), we retrospectively analyzed the data of 39 patients with shoulder pain after arthroscopic RCR who had subsequently undergone US, followed by revision arthroscopy. The rotator cuff was evaluated first using US for the presence of retears. Thereafter, revision arthroscopy was performed, and the diagnosis was either established or disproved. The sensitivity and specificity of US were assessed in reference to revision arthroscopy (gold standard). A rotator cuff retear was indicated by US in 21 patients (54%) and by revision arthroscopy in 26 patients (67%). US showed a sensitivity of 80.8% and specificity of 100% in the diagnosis of rotator cuff retears. Omission of partial rotator cuff retears resulted in a spike in sensitivity to 94.7%, with 100% specificity remaining. US imaging is a highly sensitive and specific test for the detection of recurrent rotator cuff tears, as confirmed by revision arthroscopy, in patients with a painful shoulder after primary RCR. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Overall properties of the Gaia DR1 reference frame

    Science.gov (United States)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration

  13. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  14. Interfraction Prostate Rotation Determined from In-Room Computerized Tomography Images

    International Nuclear Information System (INIS)

    Owen, Rebecca; Kron, Tomas; Foroudi, Farshad; Milner, Alvin; Cox, Jennifer; Duchesne, Gillian

    2011-01-01

    Fiducial markers (FMs) are commonly used as a correction technique for interfraction translations of the prostate. The aim of this investigation was to determine the magnitude of prostate rotations using 2 methods: FM coordinates and the anatomical border of the prostate and rectum. Daily computed tomography (CT) scans (n = 346) of 10 prostate cancer patients with 3 implanted FMs were acquired using the CT on rails. FM coordinates were used to determine rotation in the sagittal, transverse, and coronal planes, and CT contours of the prostate and rectum were used to determine rotation along the sagittal plane. An adaptive technique based on a subset of images (n = 6; planning and first 5 treatment CTs) to reduce systematic rotation errors in the sagittal plane was tested. The standard deviation (SD) of systematic rotation from FM coordinates was 7.6 o , 7.7 o , and 5.0 o in the sagittal, transverse and coronal planes. The corresponding SD of random error was 10.2 o , 15.8 o , and 6.5 o . Errors in the sagittal plane, determined from prostate and rectal contours, were 10.1 o (systematic) and 7.7 o (random). These results did not correlate with rotation computed from FM coordinates (r = -0.017; p = 0.753, n = 337). The systematic error could be reduced by 43% to 5.6 o when the mean prostate position was estimated from 6 CT scans. Prostate rotation is a significant source of error that appears to be more accurately determined using the anatomical border of the prostate and rectum rather than FMs, thus highlighting the utility of CT image guidance.

  15. Reverse convection in helium and other fluids in the high speed rotating frame: negative and positive buoyancy effects

    International Nuclear Information System (INIS)

    Igra, R.; Scurlock, R.G.; Wu, Y.Y.

    1986-01-01

    Experimental studies of thermo-syphon flows in radial tubes and loops between the axis and the periphery of a rotating helium cryostat have shown that when heat is supplied at an intermediate radius, the heat is carried radially inwards as A flow and radially outwards as B flow. The results with helium suggest that while the steady state patterns of the A and B flows are complex, the heat is divided approximately equally between the conventional A flow and the reverse B flow. A model of convective heating in the rotating frame is presented and two necessary conditions for reverse convection are identified and discussed. The model predicts reverse convection in liquid nitrogen and this is confirmed by experimental measurement. An array of radial ducts is proposed for the cooling of a superconducting AC generator in order to counter the effects of reverse convection in the helium refrigerant

  16. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    Science.gov (United States)

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.

  17. Video frame processor

    International Nuclear Information System (INIS)

    Joshi, V.M.; Agashe, Alok; Bairi, B.R.

    1993-01-01

    This report provides technical description regarding the Video Frame Processor (VFP) developed at Bhabha Atomic Research Centre. The instrument provides capture of video images available in CCIR format. Two memory planes each with a capacity of 512 x 512 x 8 bit data enable storage of two video image frames. The stored image can be processed on-line and on-line image subtraction can also be carried out for image comparisons. The VFP is a PC Add-on board and is I/O mapped within the host IBM PC/AT compatible computer. (author). 9 refs., 4 figs., 19 photographs

  18. Magnetic Resonance Imaging of Rotator Cuff Tears in Shoulder Impingement Syndrome

    International Nuclear Information System (INIS)

    Freygant, Magdalena; Dziurzyńska-Białek, Ewa; Guz, Wiesław; Samojedny, Antoni; Gołofit, Andrzej; Kostkiewicz, Agnieszka; Terpin, Krzysztof

    2014-01-01

    Shoulder joint is a common site of musculoskeletal pain caused, among other things, by rotator cuff tears due to narrowing of subacromial space, acute trauma or chronic shoulder overload. Magnetic resonance imaging (MRI) is an excellent modality for imaging of soft tissues of the shoulder joint considering a possibility of multiplanar image acquisition and non-invasive nature of the study. The aim of this study was to evaluate the prevalence of partial and complete rotator cuff tears in magnetic resonance images of patients with shoulder impingement syndrome and to review the literature on the causes and classification of rotator cuff tears. We retrospectively analyzed the results of 137 shoulder MRI examinations performed in 57 women and 72 men in Magnetic Resonance facility of the Department of Radiology and Diagnostic Imaging at the St. Jadwiga the Queen Regional Hospital No. 2 in Rzeszow between June 2010 and February 2013. Examinations were performed using Philips Achieva 1.5T device, including spin echo and gradient echo sequences with T1-, T2- and PD-weighted as well as fat saturation sequences in transverse, frontal and sagittal oblique planes. Patients were referred from hospital wards as well as from outpatient clinics of the subcarpathian province. The most frequently reported injuries included partial supraspinatus tendon tear and complete tearing most commonly involved the supraspinatus muscle tendon. The smallest group comprised patients with complete tear of subscapularis muscle tendon. Among 137 patients in the study population, 129 patients suffered from shoulder pain, including 57 patients who reported a history of trauma. There was 44% women and 56% men in a group of patients with shoulder pain. Posttraumatic shoulder pain was predominantly reported by men, while women comprised a larger group of patients with shoulder pain not preceded by injury. Rotator cuff injury is a very common pathology in patients with shoulder impingement syndrome

  19. Filtering SVM frame-by-frame binary classification in a detection framework

    NARCIS (Netherlands)

    Betancourt Arango, A.; Morerio, P.; Marcenaro, L.; Rauterberg, G.W.M.; Regazzoni, C.S.

    2015-01-01

    Classifying frames, or parts of them, is a common way of carrying out detection tasks in computer vision. However, frame by frame classification suffers from sudden significant variations in image texture, colour and luminosity, resulting in noise in the extracted features and consequently in the

  20. Frame by Frame II: A Filmography of the African American Image, 1978-1994.

    Science.gov (United States)

    Klotman, Phyllis R.; Gibson, Gloria J.

    A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…

  1. Functional and magnetic resonance imaging evaluation after single-tendon rotator cuff reconstruction

    DEFF Research Database (Denmark)

    Knudsen, H B; Gelineck, J; Søjbjerg, Jens Ole

    1999-01-01

    The aim of this study was to investigate tendon integrity after surgical repair of single-tendon rotator cuff lesions. In 31 patients, 31 single-tendon repairs were evaluated. Thirty-one patients were available for clinical assessment and magnetic resonance imaging (MRI) at follow-up. A standard...... series of MR images was obtained for each. The results of functional assessment were scored according to the system of Constant. According to MRI evaluation, 21 (68%) patients had an intact or thinned rotator cuff and 10 (32%) had recurrence of a full-thickness cuff defect at follow-up. Patients...... with an intact or thinned rotator cuff had a median Constant score of 75.5 points; patients with a full-thickness cuff defect had a median score of 62 points. There was no correlation between tendon integrity on postoperative MR images and functional outcome. Patients with intact or thinned cuffs did not have...

  2. Time-of-flight mass spectrometer using an imaging detector and a rotating electric field

    International Nuclear Information System (INIS)

    Katayama, Atsushi; Kameo, Yutaka; Nakashima, Mikio

    2008-01-01

    A new technique for minor isotope analysis that uses a rotating electric field and an imaging detector is described. The rotating electric field is generated by six cylindrically arranged plane electrodes with multi-phase sinusoidal wave voltage. When ion packets that are discriminated by time-of-flight enter the rotating electric field, they are circularly deflected, rendering a spiral image on the fluorescent screen of the detector. This spiral image represents m/z values of ions as the position and abundance of ions as brightness. For minor isotopes analyses, the micro channel plate detector under gate control operation is used to eliminate the influence of high intensity of major isotopes. (author)

  3. Spin transport in non-inertial frame

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2014-09-01

    The influence of acceleration and rotation on spintronic applications is theoretically investigated. In our formulation, considering a Dirac particle in a non-inertial frame, different spin related aspects are studied. The spin current appearing due to the inertial spin–orbit coupling (SOC) is enhanced by the interband mixing of the conduction and valence band states. Importantly, one can achieve a large spin current through the k{sup →}.p{sup →} method in this non-inertial frame. Furthermore, apart from the inertial SOC term due to acceleration, for a particular choice of the rotation frequency, a new kind of SOC term can be obtained from the spin rotation coupling (SRC). This new kind of SOC is of Dresselhaus type and controllable through the rotation frequency. In the field of spintronic applications, utilizing the inertial SOC and SRC induced SOC term, theoretical proposals for the inertial spin filter, inertial spin galvanic effect are demonstrated. Finally, one can tune the spin relaxation time in semiconductors by tuning the non-inertial parameters.

  4. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates

    International Nuclear Information System (INIS)

    Tisa, Simone; Guerrieri, Fabrizio; Zappa, Franco

    2009-01-01

    We present a single-chip monolithic array of 32 Single-Photon Avalanche Diodes (SPAD) and associated electronics for imaging at high frame rates and high sensitivity. Photodetectors, front-end circuitry and control electronics used to manage the array are monolithically integrated on the same chip in a standard 0.35 μm CMOS high-voltage technology. The array is composed of 32 'smart' pixels working in photon counting mode and functioning in a parallel fashion. Every cell comprises of an integrated SPAD photodetector, a novel quenching circuit named as Variable Load Quenching Circuit (VLQC), counting electronics and a buffer memory. Proper ancillary electronics that perform the arbitration of photon counts between two consecutive frames is integrated as well. Thanks to the presence of in-pixel memory registers, the inter-frame dead time between subsequent frames is limited to few nanoseconds. Since integration and download are performed simultaneously and the array can be addressed like a standard digital memory, the achievable maximum frame rate is very high in the order of hundreds of thousands of frame/s.

  5. Current control of PMSM based on maximum torque control reference frame

    Science.gov (United States)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  6. Eulerian derivation of non-inertial Navier-Stokes equations for compressible flow in constant, pure rotation

    CSIR Research Space (South Africa)

    Combrinck, ML

    2015-07-01

    Full Text Available be either inertial or non-inertial depending on the cases analyzed. This frame shares an origin with the rotational frame Ô. Frame Ô is the non-inertial, rotational frame and is therefore not orientation preserving. Now consider a point P which can... Descriptions This point is described in frame O from where a modified Galilean transformation, GM, will be used to describe it in frame O’. The rotational transform, RΩt, will then be used to transform the resulting equations (as described in frame O...

  7. High image quality sub 100 picosecond gated framing camera development

    International Nuclear Information System (INIS)

    Price, R.H.; Wiedwald, J.D.

    1983-01-01

    A major challenge for laser fusion is the study of the symmetry and hydrodynamic stability of imploding fuel capsules. Framed x-radiographs of 10-100 ps duration, excellent image quality, minimum geometrical distortion (< 1%), dynamic range greater than 1000, and more than 200 x 200 pixels are required for this application. Recent progress on a gated proximity focused intensifier which meets these requirements is presented

  8. Image registration under translation and rotation in two-dimensional planes using Fourier slice theorem.

    Science.gov (United States)

    Pohit, M; Sharma, J

    2015-05-10

    Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation.

  9. Ship detection based on rotation-invariant HOG descriptors for airborne infrared images

    Science.gov (United States)

    Xu, Guojing; Wang, Jinyan; Qi, Shengxiang

    2018-03-01

    Infrared thermal imagery is widely used in various kinds of aircraft because of its all-time application. Meanwhile, detecting ships from infrared images attract lots of research interests in recent years. In the case of downward-looking infrared imagery, in order to overcome the uncertainty of target imaging attitude due to the unknown position relationship between the aircraft and the target, we propose a new infrared ship detection method which integrates rotation invariant gradient direction histogram (Circle Histogram of Oriented Gradient, C-HOG) descriptors and the support vector machine (SVM) classifier. In details, the proposed method uses HOG descriptors to express the local feature of infrared images to adapt to changes in illumination and to overcome sea clutter effects. Different from traditional computation of HOG descriptor, we subdivide the image into annular spatial bins instead of rectangle sub-regions, and then Radial Gradient Transform (RGT) on the gradient is applied to achieve rotation invariant histogram information. Considering the engineering application of airborne and real-time requirements, we use SVM for training ship target and non-target background infrared sample images to discriminate real ships from false targets. Experimental results show that the proposed method has good performance in both the robustness and run-time for infrared ship target detection with different rotation angles.

  10. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe

    2013-01-01

    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  11. ``Frames of Reference'' revisited

    Science.gov (United States)

    Steyn-Ross, Alistair; Ivey, Donald G.

    1992-12-01

    The PSSC teaching film, ``Frames of Reference,'' was made in 1960, and was one of the first audio-visual attempts at showing how your physical ``point of view,'' or frame of reference, necessarily alters both your perceptions and your observations of motion. The gentle humor and original demonstrations made a lasting impact on many audiences, and with its recent re-release as part of the AAPT Cinema Classics videodisc it is timely that we should review both the message and the methods of the film. An annotated script and photographs from the film are presented, followed by extension material on rotating frames which teachers may find appropriate for use in their classrooms: constructions, demonstrations, an example, and theory.

  12. A three-frame digital image correlation (DIC) method for the measurement of small displacements and strains

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2012-01-01

    Digital image correlation (DIC) has become a well-established approach for the calculation of full-field displacement and strains within the field of experimental mechanics. Since their introduction, DIC methods have been relying on only two images to measure the displacements and strains that materials undergo under load. It can be foreseen that the use of additional image information for the calculus of displacements and strains, although computationally more expensive, can positively impact DIC method accuracy under both ideal and challenging experimental conditions. Such accuracy improvements are especially important when measuring very small deformations, which still constitutes a great challenge: small displacements and strains translate into equally small digital image intensity changes on the material’s surface, which are affected by the digitization processes of the imaging hardware and by other image acquisition effects such as image noise. This paper proposes a new three-frame Newton–Raphson DIC method and evaluates it from the standpoints of accuracy and speed. The method models the deformations that are to be measured under the assumption that the deformation occurs at approximately the same rate between each two consecutive images in the three image sequences that are employed. The aim is to investigate how the use of image data from more than two images impacts accuracy and what is the effect on the computational speed. The proposed method is compared with the classic two-frame Newton–Raphson method in three experiments. Two experiments rely on numerically deformed images that simulate heterogeneous deformations. The third experiment uses images from a real deformation experiment. Results indicate that although it is computationally more demanding, the three-frame method significantly improves displacement and strain accuracy and is less sensitive to image noise. (paper)

  13. Seismic Load Rating Procedure for Welded Steel Frames Oligo-cyclic Fatigue

    International Nuclear Information System (INIS)

    Ratiu, Mircea D.; Moisidis, Nicolae T.

    2004-01-01

    A dynamic load rating approach for seismic qualification of cold-formed steel welded frames is presented. Allowable seismic loads are developed from cyclic and monotonic tests of standard cold-formed steel components commonly used for piping and electrical raceway supports. The method permits simplified qualification of all connections of frame components through a single load comparison. Test input consists of rotation/cycles-to-failure data and monotonic moment/rotation data. Cyclic data are statistically evaluated to determine an acceptable maximum seismic rotation for the connection. The allowable seismic load is determined from the corresponding static rotation. Application to seismic qualification procedures is discussed. (authors)

  14. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.

    Science.gov (United States)

    Blicharska, Barbara; Peemoeller, Hartwig; Witek, Magdalena

    2010-12-01

    Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10(-5)s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R(1)(ρ)=1/T(1)(ρ) appears over a range of easily accessible B(1) values. Measurements of T(1)(ρ) at constant temperature and different B(1) values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R(1)=1/T(1). The T(1)(ρ) dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme). Copyright © 2010 Elsevier Inc. All rights reserved.

  15. An Improved Image Encryption Algorithm Based on Cyclic Rotations and Multiple Chaotic Sequences: Application to Satellite Images

    Directory of Open Access Journals (Sweden)

    MADANI Mohammed

    2017-10-01

    Full Text Available In this paper, a new satellite image encryption algorithm based on the combination of multiple chaotic systems and a random cyclic rotation technique is proposed. Our contribution consists in implementing three different chaotic maps (logistic, sine, and standard combined to improve the security of satellite images. Besides enhancing the encryption, the proposed algorithm also focuses on advanced efficiency of the ciphered images. Compared with classical encryption schemes based on multiple chaotic maps and the Rubik's cube rotation, our approach has not only the same merits of chaos systems like high sensitivity to initial values, unpredictability, and pseudo-randomness, but also other advantages like a higher number of permutations, better performances in Peak Signal to Noise Ratio (PSNR and a Maximum Deviation (MD.

  16. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    Science.gov (United States)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  17. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    Science.gov (United States)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    Science.gov (United States)

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  19. Tissue discrimination in magnetic resonance imaging of the rotator cuff

    International Nuclear Information System (INIS)

    Meschino, G J; Comas, D S; González, M A; Ballarin, V L; Capiel, C

    2016-01-01

    Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health. (paper)

  20. Tissue discrimination in magnetic resonance imaging of the rotator cuff

    Science.gov (United States)

    Meschino, G. J.; Comas, D. S.; González, M. A.; Capiel, C.; Ballarin, V. L.

    2016-04-01

    Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health.

  1. Orbit effects on impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-01-01

    In 1985, very high ion temperature plasmas were first produced in TFTR with co-injecting neutral beams in low current, low density plasmas. This mode of operation is called the energetic ion mode in which the plasma rotates at very high speed. It was found that heavy impurities injected into these plasmas diffused out very quickly. In this paper, the authors calculate the impurity ion orbits in a rotating tokamak plasma based on the equation of motion in the frame that rotates with the plasma. It is shown that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster. Particle orbits near the surface of a rotating tokamak are also analyzed. During impurity injection experiments, freshly ionized impurities near the plasma surface are essentially stationary in the laboratory frame and they are counter-rotating in the plasma frame with co-beam injection. The results are substantiated by numeral particle simulation. The computer code follows the impurity guiding center positions by integrating the equation of motion with the second order predictor-corrector method

  2. Imaging a non-singular rotating black hole at the center of the Galaxy

    Science.gov (United States)

    Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.

    2018-06-01

    We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.

  3. Framing-camera tube developed for sub-100-ps range

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    A new framing-camera tube, developed by Electronics Engineering, is capable of recording two-dimensional image frames with high spatial resolution in the sub-100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits; the resulting electron-line images from the slits are restored into a framed image by a restorer deflector operating synchronously with the dissector deflector. We have demonstrated its performance in a prototype tube by recording 125-ps-duration framed images of 2.5-mm patterns. The limitation in the framing speed is in the external electronic drivers for the deflectors and not in the tube design characteristics. Shorter frame durations (below 100 ps) can be obtained by use of faster deflection drivers

  4. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    International Nuclear Information System (INIS)

    Tuite, M.J.; Asinger, D.; Orwin, J.F.

    2001-01-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  5. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J; Asinger, D; Orwin, J F [Dept. of Radiology, Univ. of Wisconsin Hospital and Clinics, Madison, WI (United States)

    2001-05-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  6. Rotational inhomogeneities from pre-big bang?

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2005-01-01

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric

  7. Rotational inhomogeneities from pre-big bang?

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland)

    2005-01-21

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric.

  8. Preliminary Theoretical Interpretation of the Tajmar Frame Dragging Effect Through the GEM Theory

    International Nuclear Information System (INIS)

    Brandenburg, John

    2009-01-01

    A preliminary theoretical explanation for the large amplitude frame dragging effect seen by Tajmar et al.(2007) is proposed. A simple theory of quantum photon fields mediating electrodynamics is derived based on concepts from QED. These are then expressed as quantum wave functions for rotating EM systems. Based on the GEM theory, it is proposed that gravitational frame dragging relies on similar photon wave functions. The constructive interference of the frame dragging fields with co-rotating EM photon fields coupled to Bose-Einstein components in matter at low temperatures results in a large frame dragging term due to a mixed gravity-EM term that is larger by a factor of approximately 10 20 than ordinary frame dragging.

  9. Hierarchical Factoring Based On Image Analysis And Orthoblique Rotations.

    Science.gov (United States)

    Stankov, L

    1979-07-01

    The procedure for hierarchical factoring suggested by Schmid and Leiman (1957) is applied within the framework of image analysis and orthoblique rotational procedures. It is shown that this approach necessarily leads to correlated higher order factors. Also, one can obtain a smaller number of factors than produced by typical hierarchical procedures.

  10. Rotation capacity of imperfect gable frames commonly used in nuclear reactors

    International Nuclear Information System (INIS)

    Ahmed, K.M.F.

    1998-01-01

    As for real structures, initial geometric imperfections are inevitable and may have a destabilizing effect on the structures. The present research deals with the study of the imperfections and their direct influence on the load carrying capacity of various types of tapered steel frames. as such an efficient and realistic analytical model capable of dealing with non-linear behavior of steel frames with imperfections is introduced. The model is formulated within the framework of the finite element displacement approach. The frame elements are modeled through use of the conventional beam - column

  11. SU-F-J-96: Comparison of Frame-Based and Mutual Information Registration Techniques for CT and MR Image Sets

    Energy Technology Data Exchange (ETDEWEB)

    Popple, R; Bredel, M; Brezovich, I; Dobelbower, M; Fisher, W; Fiveash, J; Guthrie, B; Riley, K; Wu, X [The University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-06-15

    Purpose: To compare the accuracy of CT-MR registration using a mutual information method with registration using a frame-based localizer box. Methods: Ten patients having the Leksell head frame and scanned with a modality specific localizer box were imported into the treatment planning system. The fiducial rods of the localizer box were contoured on both the MR and CT scans. The skull was contoured on the CT images. The MR and CT images were registered by two methods. The frame-based method used the transformation that minimized the mean square distance of the centroids of the contours of the fiducial rods from a mathematical model of the localizer. The mutual information method used automated image registration tools in the TPS and was restricted to a volume-of-interest defined by the skull contours with a 5 mm margin. For each case, the two registrations were adjusted by two evaluation teams, each comprised of an experienced radiation oncologist and neurosurgeon, to optimize alignment in the region of the brainstem. The teams were blinded to the registration method. Results: The mean adjustment was 0.4 mm (range 0 to 2 mm) and 0.2 mm (range 0 to 1 mm) for the frame and mutual information methods, respectively. The median difference between the frame and mutual information registrations was 0.3 mm, but was not statistically significant using the Wilcoxon signed rank test (p=0.37). Conclusion: The difference between frame and mutual information registration techniques was neither statistically significant nor, for most applications, clinically important. These results suggest that mutual information is equivalent to frame-based image registration for radiosurgery. Work is ongoing to add additional evaluators and to assess the differences between evaluators.

  12. Effects on a Landau-type system for a neutral particle with no permanent electric dipole moment subject to the Kratzer potential in a rotating frame.

    Science.gov (United States)

    Oliveira, Abinael B; Bakke, Knut

    2016-06-01

    The behaviour of a neutral particle (atom, molecule) with an induced electric dipole moment in a region with a uniform effective magnetic field under the influence of the Kratzer potential (Kratzer 1920 Z. Phys. 3 , 289-307. (doi:10.1007/BF01327754)), and rotating effects is analysed. It is shown that the degeneracy of the Landau-type levels is broken and the angular frequency of the system acquires a new contribution that stems from the rotation effects. Moreover, in the search for bound state solutions, it is shown that the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum, the angular velocity of the rotating frame and by the parameters associated with the Kratzer potential.

  13. Ceres Photometry and Albedo from Dawn Framing Camera Images

    Science.gov (United States)

    Schröder, S. E.; Mottola, S.; Keller, H. U.; Li, J.-Y.; Matz, K.-D.; Otto, K.; Roatsch, T.; Stephan, K.; Raymond, C. A.; Russell, C. T.

    2015-10-01

    The Dawn spacecraft is in orbit around dwarf planet Ceres. The onboard Framing Camera (FC) [1] is mapping the surface through a clear filter and 7 narrow-band filters at various observational geometries. Generally, Ceres' appearance in these images is affected by shadows and shading, effects which become stronger for larger solar phase angles, obscuring the intrinsic reflective properties of the surface. By means of photometric modeling we attempt to remove these effects and reconstruct the surface albedo over the full visible wavelength range. Knowledge of the albedo distribution will contribute to our understanding of the physical nature and composition of the surface.

  14. Imaging Algorithms for Evaluating Suspected Rotator Cuff Disease: Society of Radiologists in Ultrasound Consensus Conference Statement

    Science.gov (United States)

    Jacobson, Jon A.; Benson, Carol B.; Bancroft, Laura W.; Bedi, Asheesh; McShane, John M.; Miller, Theodore T.; Parker, Laurence; Smith, Jay; Steinbach, Lynne S.; Teefey, Sharlene A.; Thiele, Ralf G.; Tuite, Michael J.; Wise, James N.; Yamaguchi, Ken

    2013-01-01

    The Society of Radiologists in Ultrasound convened a panel of specialists from a variety of medical disciplines to reach a consensus about the recommended imaging evaluation of painful shoulders with clinically suspected rotator cuff disease. The panel met in Chicago, Ill, on October 18 and 19, 2011, and created this consensus statement regarding the roles of radiography, ultrasonography (US), computed tomography (CT), CT arthrography, magnetic resonance (MR) imaging, and MR arthrography. The consensus panel consisted of two co-moderators, a facilitator, a statistician and health care economist, and 10 physicians who have specialty expertise in shoulder pain evaluation and/or treatment. Of the 13 physicians on the panel, nine were radiologists who were chosen to represent a broad range of skill sets in diagnostic imaging, different practice types (private and academic), and different geographical regions of the United States. Five of the radiologists routinely performed musculoskeletal US as part of their practice and four did not. There was also one representative from each of the following clinical specialties: rheumatology, physical medicine and rehabilitation, orthopedic surgery, and nonoperative sports medicine. The goal of this conference was to construct several algorithms with which to guide the imaging evaluation of suspected rotator cuff disease in patients with a native rotator cuff, patients with a repaired rotator cuff, and patients who have undergone shoulder replacement. The panel hopes that these recommendations will lead to greater uniformity in rotator cuff imaging and more cost-effective care for patients suspected of having rotator cuff abnormality. © RSNA, 2013 PMID:23401583

  15. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Teo, P; Guo, K; Alayoubi, N; Kehler, K; Pistorius, S [CancerCare Manitoba, Winnipeg, MB (Canada)

    2015-06-15

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions of a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for

  16. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    International Nuclear Information System (INIS)

    Teo, P; Guo, K; Alayoubi, N; Kehler, K; Pistorius, S

    2015-01-01

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions of a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for

  17. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  18. A Big Data Analytics Pipeline for the Analysis of TESS Full Frame Images

    Science.gov (United States)

    Wampler-Doty, Matthew; Pierce Doty, John

    2015-12-01

    We present a novel method for producing a catalogue of extra-solar planets and transients using the full frame image data from TESS. Our method involves (1) creating a fast Monte Carlo simulation of the TESS science instruments, (2) using the simulation to create a labeled dataset consisting of exoplanets with various orbital durations as well as transients (such as tidal disruption events), (3) using supervised machine learning to find optimal matched filters, Support Vector Machines (SVMs) and statistical classifiers (i.e. naïve Bayes and Markov Random Fields) to detect astronomical objects of interest and (4) “Big Data” analysis to produce a catalogue based on the TESS data. We will apply the resulting methods to all stars in the full frame images. We hope that by providing libraries that conform to industry standards of Free Open Source Software we may invite researchers from the astronomical community as well as the wider data-analytics community to contribute to our effort.

  19. Radial magnetic resonance imaging (MRI) using a rotating radiofrequency (RF) coil at 9.4 T.

    Science.gov (United States)

    Li, Mingyan; Weber, Ewald; Jin, Jin; Hugger, Thimo; Tesiram, Yasvir; Ullmann, Peter; Stark, Simon; Fuentes, Miguel; Junge, Sven; Liu, Feng; Crozier, Stuart

    2018-02-01

    The rotating radiofrequency coil (RRFC) has been developed recently as an alternative approach to multi-channel phased-array coils. The single-element RRFC avoids inter-channel coupling and allows a larger coil element with better B 1 field penetration when compared with an array counterpart. However, dedicated image reconstruction algorithms require accurate estimation of temporally varying coil sensitivities to remove artefacts caused by coil rotation. Various methods have been developed to estimate unknown sensitivity profiles from a few experimentally measured sensitivity maps, but these methods become problematic when the RRFC is used as a transceiver coil. In this work, a novel and practical radial encoding method is introduced for the RRFC to facilitate image reconstruction without the measurement or estimation of rotation-dependent sensitivity profiles. Theoretical analyses suggest that the rotation-dependent sensitivities of the RRFC can be used to create a uniform profile with careful choice of sampling positions and imaging parameters. To test this new imaging method, dedicated electronics were designed and built to control the RRFC speed and hence positions in synchrony with imaging parameters. High-quality phantom and animal images acquired on a 9.4 T pre-clinical scanner demonstrate the feasibility and potential of this new RRFC method. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    Science.gov (United States)

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  1. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu; Marahrens, Daniel; Tang, Qinglin; Zhang, Yanzhi

    2013-01-01

    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three

  2. Bio-inspired optical rotation sensor

    Science.gov (United States)

    O'Carroll, David C.; Shoemaker, Patrick A.; Brinkworth, Russell S. A.

    2007-01-01

    Traditional approaches to calculating self-motion from visual information in artificial devices have generally relied on object identification and/or correlation of image sections between successive frames. Such calculations are computationally expensive and real-time digital implementation requires powerful processors. In contrast flies arrive at essentially the same outcome, the estimation of self-motion, in a much smaller package using vastly less power. Despite the potential advantages and a few notable successes, few neuromorphic analog VLSI devices based on biological vision have been employed in practical applications to date. This paper describes a hardware implementation in aVLSI of our recently developed adaptive model for motion detection. The chip integrates motion over a linear array of local motion processors to give a single voltage output. Although the device lacks on-chip photodetectors, it includes bias circuits to use currents from external photodiodes, and we have integrated it with a ring-array of 40 photodiodes to form a visual rotation sensor. The ring configuration reduces pattern noise and combined with the pixel-wise adaptive characteristic of the underlying circuitry, permits a robust output that is proportional to image rotational velocity over a large range of speeds, and is largely independent of either mean luminance or the spatial structure of the image viewed. In principle, such devices could be used as an element of a velocity-based servo to replace or augment inertial guidance systems in applications such as mUAVs.

  3. Comparison of muscle sizes and moment arms of two rotator cuff muscles measured by ultrasonography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Juul-Kristensen, B.; Bojsen-Møller, Finn; Holst, E.

    2000-01-01

    Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound......Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound...

  4. Rovibrational spectroscopy using a kinetic energy operator in Eckart frame and the multi-configuration time-dependent Hartree (MCTDH) approach

    International Nuclear Information System (INIS)

    Sadri, Keyvan; Meyer, Hans-Dieter; Lauvergnat, David; Gatti, Fabien

    2014-01-01

    For computational rovibrational spectroscopy the choice of the frame is critical for an approximate separation of overall rotation from internal motions. To minimize the coupling between internal coordinates and rotation, Eckart proposed a condition [“Some studies concerning rotating axes and polyatomic molecules,” Phys. Rev. 47, 552–558 (1935)] and a frame that fulfills this condition is hence called an Eckart frame. A method is developed to introduce in a systematic way the Eckart frame for the expression of the kinetic energy operator (KEO) in the polyspherical approach. The computed energy levels of a water molecule are compared with those obtained using a KEO in the standard definition of the Body-fixed frame of the polyspherical approach. The KEO in the Eckart frame leads to a faster convergence especially for large J states and vibrationally excited states. To provide an example with more degrees of freedom, rotational states of the vibrational ground state of the trans nitrous acid (HONO) are also investigated

  5. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    Science.gov (United States)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  6. Inter frame motion estimation and its application to image sequence compression: an introduction

    International Nuclear Information System (INIS)

    Cremy, C.

    1996-01-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs

  7. Limited diagnostic accuracy of magnetic resonance imaging and clinical tests for detecting partial-thickness tears of the rotator cuff.

    Science.gov (United States)

    Brockmeyer, Matthias; Schmitt, Cornelia; Haupert, Alexander; Kohn, Dieter; Lorbach, Olaf

    2017-12-01

    The reliable diagnosis of partial-thickness tears of the rotator cuff is still elusive in clinical practise. Therefore, the purpose of the study was to determine the diagnostic accuracy of MR imaging and clinical tests for detecting partial-thickness tears of the rotator cuff as well as the combination of these parameters. 334 consecutive shoulder arthroscopies for rotator cuff pathologies performed during the time period between 2010 and 2012 were analyzed retrospectively for the findings of common clinical signs for rotator cuff lesions and preoperative MR imaging. These were compared with the intraoperative arthroscopic findings as "gold standard". The reports of the MR imaging were evaluated with regard to the integrity of the rotator cuff. The Ellman Classification was used to define partial-thickness tears of the rotator cuff in accordance with the arthroscopic findings. Descriptive statistics, sensitivity, specificity, positive and negative predictive value were calculated. MR imaging showed 80 partial-thickness and 70 full-thickness tears of the rotator cuff. The arthroscopic examination confirmed 64 partial-thickness tears of which 52 needed debridement or refixation of the rotator cuff. Sensitivity for MR imaging to identify partial-thickness tears was 51.6%, specificity 77.2%, positive predictive value 41.3% and negative predictive value 83.7%. For the Jobe-test, sensitivity was 64.1%, specificity 43.2%, positive predictive value 25.9% and negative predictive value 79.5%. Sensitivity for the Impingement-sign was 76.7%, specificity 46.6%, positive predictive value 30.8% and negative predictive value 86.5%. For the combination of MR imaging, Jobe-test and Impingement-sign sensitivity was 46.9%, specificity 85.4%, positive predictive value 50% and negative predictive value 83.8%. The diagnostic accuracy of MR imaging and clinical tests (Jobe-test and Impingement-sign) alone is limited for detecting partial-thickness tears of the rotator cuff. Additionally

  8. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  9. Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern

    Science.gov (United States)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike

    2018-03-01

    Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.

  10. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  11. Highly accelerated acquisition and homogeneous image reconstruction with rotating RF coil array at 7T-A phantom based study.

    Science.gov (United States)

    Li, Mingyan; Zuo, Zhentao; Jin, Jin; Xue, Rong; Trakic, Adnan; Weber, Ewald; Liu, Feng; Crozier, Stuart

    2014-03-01

    Parallel imaging (PI) is widely used for imaging acceleration by means of coil spatial sensitivities associated with phased array coils (PACs). By employing a time-division multiplexing technique, a single-channel rotating radiofrequency coil (RRFC) provides an alternative method to reduce scan time. Strategically combining these two concepts could provide enhanced acceleration and efficiency. In this work, the imaging acceleration ability and homogeneous image reconstruction strategy of 4-element rotating radiofrequency coil array (RRFCA) was numerically investigated and experimental validated at 7T with a homogeneous phantom. Each coil of RRFCA was capable of acquiring a large number of sensitivity profiles, leading to a better acceleration performance illustrated by the improved geometry-maps that have lower maximum values and more uniform distributions compared to 4- and 8-element stationary arrays. A reconstruction algorithm, rotating SENSitivity Encoding (rotating SENSE), was proposed to provide image reconstruction. Additionally, by optimally choosing the angular sampling positions and transmit profiles under the rotating scheme, phantom images could be faithfully reconstructed. The results indicate that, the proposed technique is able to provide homogeneous reconstructions with overall higher and more uniform signal-to-noise ratio (SNR) distributions at high reduction factors. It is hoped that, by employing the high imaging acceleration and homogeneous imaging reconstruction ability of RRFCA, the proposed method will facilitate human imaging for ultra high field MRI. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Rotation invariants from Gaussian-Hermite moments of color images

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Suk, Tomáš; Flusser, Jan; Shi, Z.; Chen, X.

    2018-01-01

    Roč. 143, č. 1 (2018), s. 282-291 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Color images * Object recognition * Rotation invariants * Gaussian–Hermite moments * Joint invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/suk-0479748.pdf

  13. High-frame-rate imaging of biological samples with optoacoustic micro-tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; López-Schier, Hernán.; Razansky, Daniel

    2018-02-01

    Optical microscopy remains a major workhorse in biological discovery despite the fact that light scattering limits its applicability to depths of ˜ 1 mm in scattering tissues. Optoacoustic imaging has been shown to overcome this barrier by resolving optical absorption with microscopic resolution in significantly deeper regions. Yet, the time domain is paramount for the observation of biological dynamics in living systems that exhibit fast motion. Commonly, acquisition of microscopy data involves raster scanning across the imaged volume, which significantly limits temporal resolution in 3D. To overcome these limitations, we have devised a fast optoacoustic micro-tomography (OMT) approach based on simultaneous acquisition of 3D image data with a high-density hemispherical ultrasound array having effective detection bandwidth around 25 MHz. We performed experiments by imaging tissue-mimicking phantoms and zebrafish larvae, demonstrating that OMT can provide nearly cellular resolution and imaging speed of 100 volumetric frames per second. As opposed to other optical microscopy techniques, OMT is a hybrid method that resolves optical absorption contrast acoustically using unfocused light excitation. Thus, no penetration barriers are imposed by light scattering in deep tissues, suggesting it as a powerful approach for multi-scale functional and molecular imaging applications.

  14. Relativistic rotation and the anholonomic object

    International Nuclear Information System (INIS)

    Corum, J.F.

    1977-01-01

    The purpose of this communication is to call attention to the conceptual economy provided by the object of anholonomity for the theory of relativity. This geometric object expresses certain consequences of relativity theory and provides a single, simple framework for discussing a variety of phenomena. It particularly clarifies the description of relativistic rotation. The relativistic rotational transformation of the four coordinate differentials of flat space--time generates a set of anholonomic, or inexact differentials, whose duals are an orthogonal set of basis vectors. How should a rotating observer interpret physical events referred to such orthogonal, but anholonomic frames The answer to this question rests upon the origin and physical significance of the object of anholonomity. It is demonstrated that not only is the rotational Lorentz transformation an anholonomic transformation, but that the intrinsic anholonomic effects are essential to interpreting rotational phenomena. In particular, the Sagnac effect may be interpreted as the physical manifestation of temporal anholonomity under rotation. The Thomas precession of a reference axis may be interpreted as a consequence of the spatial anholonomity of the rotating frame. Further, the full four-dimensional covariance of Maxwellian electrodynamics, under a relativistic Lorentz rotation, is possible only with the inclusion of anholonomic effects. The anholonomic approach clarifies the distinction between the physically different operations of source rotation and observer rotation in a flat space--time. It is finally concluded that a consistant theory of relativistic rotation, satisfying the principle of general covariance, inherently requires the presence of the object of anholonomity

  15. A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures

    Science.gov (United States)

    Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han

    2012-01-01

    In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348

  16. Quantum communication, reference frames, and gauge theory

    International Nuclear Information System (INIS)

    Enk, S. J. van

    2006-01-01

    We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model

  17. Beyond RPA in nuclear rotation and wobbling motion at high spin

    International Nuclear Information System (INIS)

    Kaneko, Kazunari

    1991-01-01

    A quantum mechanical method of the nuclear rotation and the wobbling motion at high spin beyond the small-oscillation approximation is represented within the framework of time-dependent mean-field theory with some constraints. The constraints which determine the choice of the rotating reference frame are considered in the spin-orientation frame and the principal-axis frame. The quantization under such constraints is performed by making use of the Dirac bracket. Then the commutation relations of the angular momentum are derived. (orig.)

  18. Multimodal news framing effects

    NARCIS (Netherlands)

    Powell, T.E.

    2017-01-01

    Visuals in news media play a vital role in framing citizens’ political preferences. Yet, compared to the written word, visual images are undervalued in political communication research. Using framing theory, this thesis redresses the balance by studying the combined, or multimodal, effects of visual

  19. Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators

    International Nuclear Information System (INIS)

    Smith, Arlee V.; Bowers, Mark S.

    2001-01-01

    We show by computer simulation that high beam quality can be achieved in high-energy, nanosecond optical parametric oscillators by use of image-rotating resonators. Lateral walk-off between the signal and the idler beams in a nonlinear crystal creates correlations across the beams in the walk off direction, or equivalently, creates a restricted acceptance angle. These correlations can improve the beam quality in the walk-off plane. We show that image rotation or reflection can be used to improve beam quality in both planes. The lateral walk-off can be due to birefringent walk-off in type II mixing or to noncollinear mixing in type I or type II mixing

  20. Transformation of Image Positions, Rotations, and Sizes into Shift Parameters

    DEFF Research Database (Denmark)

    Skov Jensen, A.; Lindvold, L.; Rasmussen, E.

    1987-01-01

    An optical image processing system is described that converts orientation and size to shift properties and simultaneously preserves the positional information as a shift. The system is described analytically and experimentally. The transformed image can be processed further with a classical...... correlator working with a rotational and size-invariant. multiplexed match filter. An optical robot vision system designed on this concept would be able to look at several objects simultaneously and determine their shape, size, orientation, and position with two measurements on the input scene at different...

  1. Astigmatic single photon emission computed tomography imaging with a displaced center of rotation

    International Nuclear Information System (INIS)

    Wang, H.; Smith, M.F.; Stone, C.D.; Jaszczak, R.J.

    1998-01-01

    A filtered backprojection algorithm is developed for single photon emission computed tomography (SPECT) imaging with an astigmatic collimator having a displaced center of rotation. The astigmatic collimator has two perpendicular focal lines, one that is parallel to the axis of rotation of the gamma camera and one that is perpendicular to this axis. Using SPECT simulations of projection data from a hot rod phantom and point source arrays, it is found that a lack of incorporation of the mechanical shift in the reconstruction algorithm causes errors and artifacts in reconstructed SPECT images. The collimator and acquisition parameters in the astigmatic reconstruction formula, which include focal lengths, radius of rotation, and mechanical shifts, are often partly unknown and can be determined using the projections of a point source at various projection angles. The accurate determination of these parameters by a least squares fitting technique using projection data from numerically simulated SPECT acquisitions is studied. These studies show that the accuracy of parameter determination is improved as the distance between the point source and the axis of rotation of the gamma camera is increased. The focal length to the focal line perpendicular to the axis of rotation is determined more accurately than the focal length to the focal line parallel to this axis. copyright 1998 American Association of Physicists in Medicine

  2. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    Science.gov (United States)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  3. A Microscopic Quantal Model for Nuclear Collective Rotation

    International Nuclear Information System (INIS)

    Gulshani, P.

    2007-01-01

    A microscopic, quantal model to describe nuclear collective rotation in two dimensions is derived from the many-nucleon Schrodinger equation. The Schrodinger equation is transformed to a body-fixed frame to decompose the Hamiltonian into a sum of intrinsic and rotational components plus a Coriolis-centrifugal coupling term. This Hamiltonian (H) is expressed in terms of space-fixed-frame particle coordinates and momenta by using commutator of H with a rotation angle. A unified-rotational-model type wavefunction is used to obtain an intrinsic Schrodinger equation in terms of angular momentum quantum number and two-body operators. A Hartree-Fock mean-field representation of this equation is then obtained and, by means of a unitary transformation, is reduced to a form resembling that of the conventional semi-classical cranking model when exchange terms and intrinsic spurious collective excitation are ignored

  4. Rotator cuff tears: should abduction and external rotation (ABER) positioning be performed before image acquisition? A CT arthrography study

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, Hubert [Hopital Cardiologique du Haut-Leveque, CHU Bordeaux, Unite d' Imagerie Thoracique et Cardiovasculaire, Pessac (France); Couderc, Stephane; Pele, Eric; Moreau-Durieux, Marie-Helene; Hauger, Olivier [Hopital Pellegrin, CHU Bordeaux, Unite d' Imagerie Osteo-articulaire, Bordeaux (France); Amoretti, Nicolas [CHU Archet, Unite d' Imagerie Osteo-articulaire, Nice (France)

    2010-05-15

    To evaluate the impact of abduction and external rotation (ABER) positioning performed before image acquisition on the assessment of rotator cuff tears. Twenty-seven consecutive patients with clinically suspected rotator cuff tears underwent an initial CT arthrogram of the shoulder in neutral position, immediately followed by temporary ABER positioning, before a second CT acquisition in neutral position. Two observers blinded to potential pre-procedure ABER positioning independently analysed the randomly distributed images. Lesions were classified into partial-thickness (PT) and full-thickness (FT) tear subtypes. Lesion detection and measurements of pre- and post-ABER studies were compared. We found no influence of pre-test ABER positioning on FT detection or measurements. Every PT detected on pre-ABER study was also detected on post-ABER study (28/28 for reader 1, and 32/32 for reader 2). Seven and eight additional PT were found by readers 1 and 2, respectively, on post-ABER study. Lesion size increased after ABER in terms of area (P < 0.001 for both readers) and Ellman's grade (P = 0.02 and 0.002 for reader 1 and 2, respectively). ABER positioning before CT is associated with improved delineation of partial tears, a higher number of detected tears and modification of treatment planning. (orig.)

  5. Electromagnetic fields of rotating magnetized NUT stars

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  6. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    Science.gov (United States)

    Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian

    2018-03-01

    Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.

  7. 4D rotational x-ray imaging of wrist joint dynamic motion

    International Nuclear Information System (INIS)

    Carelsen, Bart; Bakker, Niels H.; Strackee, Simon D.; Boon, Sjirk N.; Maas, Mario; Sabczynski, Joerg; Grimbergen, Cornelis A.; Streekstra, Geert J.

    2005-01-01

    Current methods for imaging joint motion are limited to either two-dimensional (2D) video fluoroscopy, or to animated motions from a series of static three-dimensional (3D) images. 3D movement patterns can be detected from biplane fluoroscopy images matched with computed tomography images. This involves several x-ray modalities and sophisticated 2D to 3D matching for the complex wrist joint. We present a method for the acquisition of dynamic 3D images of a moving joint. In our method a 3D-rotational x-ray (3D-RX) system is used to image a cyclically moving joint. The cyclic motion is synchronized to the x-ray acquisition to yield multiple sets of projection images, which are reconstructed to a series of time resolved 3D images, i.e., four-dimensional rotational x ray (4D-RX). To investigate the obtained image quality parameters the full width at half maximum (FWHM) of the point spread function (PSF) via the edge spread function and the contrast to noise ratio between air and phantom were determined on reconstructions of a bullet and rod phantom, using 4D-RX as well as stationary 3D-RX images. The CNR in volume reconstructions based on 251 projection images in the static situation and on 41 and 34 projection images of a moving phantom were 6.9, 3.0, and 2.9, respectively. The average FWHM of the PSF of these same images was, respectively, 1.1, 1.7, and 2.2 mm orthogonal to the motion and parallel to direction of motion 0.6, 0.7, and 1.0 mm. The main deterioration of 4D-RX images compared to 3D-RX images is due to the low number of projection images used and not to the motion of the object. Using 41 projection images seems the best setting for the current system. Experiments on a postmortem wrist show the feasibility of the method for imaging 3D dynamic joint motion. We expect that 4D-RX will pave the way to improved assessment of joint disorders by detection of 3D dynamic motion patterns in joints

  8. Improved Imaging of Magnetically Labeled Cells Using Rotational Magnetomotive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Peter Cimalla

    2017-04-01

    Full Text Available In this paper, we present a reliable and robust method for magnetomotive optical coherence tomography (MM-OCT imaging of single cells labeled with iron oxide particles. This method employs modulated longitudinal and transverse magnetic fields to evoke alignment and rotation of anisotropic magnetic structures in the sample volume. Experimental evidence suggests that magnetic particles assemble themselves in elongated chains when exposed to a permanent magnetic field. Magnetomotion in the intracellular space was detected and visualized by means of 3D OCT as well as laser speckle reflectometry as a 2D reference imaging method. Our experiments on mesenchymal stem cells embedded in agar scaffolds show that the magnetomotive signal in rotational MM-OCT is significantly increased by a factor of ~3 compared to previous pulsed MM-OCT, although the solenoid’s power consumption was 16 times lower. Finally, we use our novel method to image ARPE-19 cells, a human retinal pigment epithelium cell line. Our results permit magnetomotive imaging with higher sensitivity and the use of low power magnetic fields or larger working distances for future three-dimensional cell tracking in target tissues and organs.

  9. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  10. What's in a Frame?

    DEFF Research Database (Denmark)

    Holmgreen, Lise-Lotte

    Maintaining a good image and reputation in the eyes of stakeholders is vital to the organisation. Thus, in its corporate communication and discourse the organisation will seek to present or frame itself as favourably as possible while observing regulations stipulating accuracy and precision...... an organisation, and hence in shaping the image projected to the public. Framing is here understood as the selection of ‘some aspects of perceived reality … [making] them more salient in the communication text, in such a way as to promote a particular problem definition, causal interpretation, moral evaluation...

  11. 2D turbulence structure observed by a fast framing camera system in linear magnetized device PANTA

    International Nuclear Information System (INIS)

    Ohdachi, Satoshi; Inagaki, S.; Kobayashi, T.; Goto, M.

    2015-01-01

    Mesoscale structure, such as the zonal flow and the streamer plays important role in the drift-wave turbulence. The interaction of the mesoscale structure and the turbulence is not only interesting phenomena but also a key to understand the turbulence driven transport in the magnetically confined plasmas. In the cylindrical magnetized device, PANTA, the interaction of the streamer and the drift wave has been found by the bi-spectrum analysis of the turbulence. In order to study the mesoscale physics directly, the 2D turbulence is studied by a fast-framing visible camera system view from a window located at the end plate of the device. The parameters of the plasma is the following; Te∼3eV, n ∼ 1x10 19 m -3 , Ti∼0.3eV, B=900G, Neutral pressure P n =0.8 mTorr, a∼ 6cm, L=4m, Helicon source (7MHz, 3kW). Fluctuating component of the visible image is decomposed by the Fourier-Bessel expansion method. Several rotating mode is observed simultaneously. From the images, m = 1 (f∼0.7 kHz) and m = 2, 3 (f∼-3.4 kHz) components which rotate in the opposite direction can be easily distinguished. Though the modes rotate constantly in most time, there appear periods where the radially complicated node structure is formed (for example, m=3 component, t = 142.5∼6 in the figure) and coherent mode structures are disturbed. Then, a new rotating period is started again with different phase of the initial rotation until the next event happens. The typical time interval of the event is 0.5 to 1.0 times of the one rotation of the slow m = 1 mode. The wave-wave interaction might be interrupted occasionally. Detailed analysis of the turbulence using imaging technique will be discussed. (author)

  12. Medial Entorhinal Grid Cells and Head Direction Cells Rotate with a T-Maze More Often During Less Recently Experienced Rotations

    Science.gov (United States)

    Gupta, Kishan; Beer, Nathan J.; Keller, Lauren A.; Hasselmo, Michael E.

    2014-01-01

    Prior studies of head direction (HD) cells indicate strong landmark control over the preferred firing direction of these cells, with few studies exhibiting shifts away from local reference frames over time. We recorded spiking activity of grid and HD cells in the medial entorhinal cortex of rats, testing correlations of local environmental cues with the spatial tuning curves of these cells' firing fields as animals performed continuous spatial alternation on a T-maze that shared the boundaries of an open-field arena. The environment was rotated into configurations the animal had either seen or not seen in the past recording week. Tuning curves of both cell types demonstrated commensurate shifts of tuning with T-maze rotations during less recent rotations, more so than recent rotations. This strongly suggests that animals are shifting their reference frame away from the local environmental cues over time, learning to use a different reference frame more likely reliant on distal or idiothetic cues. In addition, grid fields demonstrated varying levels of “fragmentation” on the T-maze. The propensity for fragmentation does not depend on grid spacing and grid score, nor animal trajectory, indicating the cognitive treatment of environmental subcompartments is likely driven by task demands. PMID:23382518

  13. Metal artefacts severely hamper magnetic resonance imaging of the rotator cuff tendons after rotator cuff repair with titanium suture anchors.

    Science.gov (United States)

    Schröder, Femke F; Huis In't Veld, Rianne; den Otter, Lydia A; van Raak, Sjoerd M; Ten Haken, Bennie; Vochteloo, Anne J H

    2018-04-01

    The rate of retear after rotator cuff surgery is 17%. Magnetic resonance imaging (MRI) scans are used for confirmative diagnosis of retear. However, because of the presence of titanium suture anchors, metal artefacts on the MRI are common. The present study evaluated the diagnostic value of MRI after rotator cuff tendon surgery with respect to assessing the integrity as well as the degeneration and atrophy of the rotator cuff tendons when titanium anchors are in place. Twenty patients who underwent revision surgery of the rotator cuff as a result of a clinically suspected retear between 2013 and 2015 were included. The MRI scans of these patients were retrospectively analyzed by four specialized shoulder surgeons and compared with intra-operative findings (gold standard). Sensitivity and interobserver agreement among the surgeons in assessing retears as well as the Goutallier and Warner classification were examined. In 36% (range 15% to 50%) of the pre-operative MRI scans, the observers could not review the rotator cuff tendons. When the rotator cuff tendons were assessable, a diagnostic accuracy with a mean sensitivity of 0.84 (0.70 to 1.0) across the surgeons was found, with poor interobserver agreement (kappa = 0.12). Metal artefacts prevented accurate diagnosis from MRI scans of rotator cuff retear in 36% of the patients studied.

  14. High-frame-rate Imaging of a Carotid Bifurcation using a Low-complexity Velocity Estimation Approach

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Villagómez Hoyos, Carlos Armando; Ewertsen, Caroline

    2017-01-01

    In this paper, a 2-D vector flow imaging (VFI) method developed by combining synthetic aperture sequential beamforming and directional transverse oscillation is used to image a carotid bifurcation. Ninety-six beamformed lines are sent from the probe to the host system for each VFI frame, enabling...... the possibility of wireless transmission. The velocity is estimated using a relatively inexpensive 2-D phase-shift approach, and real-time performance can be achieved in mobile devices. However, high-frame-rate velocities can be obtained by sending the data to a cluster of computers. The objective of this study...... is to demonstrate the scalability of the method’s performance according to the needs of the user and the processing capabilities of the host system. In vivo measurements of a carotid bifurcation of a 54-year-old volunteer were conducted using a linear array transducer connected to the SARUS scanner. The velocities...

  15. Generalization of the test theory of relativity to noninertial frames

    International Nuclear Information System (INIS)

    Abolghasem, G.H.; Khajehpour, M.R.H.; Mansouri, R.

    1988-08-01

    We present a generalized test theory of special relativity, using a noninertial frame. Within the framework of the special theory of relativity the transport- and Einstein-synchronizations are equivalent on a rigidly rotating disk. But in any theory with a preferred frame such an equivalence does not hold. The time difference resulting from the two synchronization procedures is a measurable quantity within the reach of existing clock systems on the earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of the special relativity. (author). 13 refs

  16. An Algorithm-Independent Analysis of the Quality of Images Produced Using Multi-Frame Blind Deconvolution Algorithms--Conference Proceedings (Postprint)

    National Research Council Canada - National Science Library

    Matson, Charles; Haji, Alim

    2007-01-01

    Multi-frame blind deconvolution (MFBD) algorithms can be used to generate a deblurred image of an object from a sequence of short-exposure and atmospherically-blurred images of the object by jointly estimating the common object...

  17. Percutaneous vertebroplasty with the rotational fluoroscopy imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Cannavale, Alessandro; Salvatori, Filippo Maria; Wlderk, Andrea; Cirelli, Carlo; D' Adamo, Alessandro; Fanelli, Fabrizio [University of Rome, Vascular and Interventional Unit, Department of Radiological Sciences, Rome (Italy)

    2014-11-15

    To evaluate the feasibility of the rotational angiography unit (RAU) as a single technique to guide percutaneous vertebroplasty (PVP). Twenty-five consecutive patients (35 vertebral bodies, 20 lumbar and 15 thoracic) were treated using RA fluoroscopy. Using a state-of-the-art flat-panel angiographer (Artis zee, Siemens, Erlangen, Germany), rotational acquisitions were obtained in all patients for immediate post-procedure 2D/3D reconstructions. Pre- and postoperative back pain was assessed with the visual analog scale (VAS). Fluoroscopy time, patient radiation dose exposure, technical success, mean procedure time, mean number of rotational acquisitions and procedural complications were recorded. All features were compared with a historical cohort of patients (N = 25) who underwent PVP under CT and mobile C-arm fluoroscopy guidance. In all cases, safe and accurate control of the needle insertion and bone-cement injection was successfully obtained with high-quality fluoroscopy images. One cement leakage was detected in the RAU group, and two leakages were detected in the CT and C-arm fluoroscopy group. Technical features were significantly different between the two groups (RAU vs. CT): mean procedure time: 38.2 min vs. 60.2 min (p = 0.02); median fluoroscopy time: 14.58 and 4.58 min (p = 0.02); median number of rotational acquisitions: 5 vs. 10 (p = 0.02); mean patient dose: 6 ± 1.3 mSv vs. 23 ± 1.3 mSv (p = 0.02). There were minor complications (pain, small hematoma) in two patients (8%) in the study group and three cases (12%) in the control group. RAU guidance is an effective and safe technique for performing PVP because it reduces the procedural time and radiation exposure. (orig.)

  18. [Calcifying tendinitis of the rotator cuff with focal umeral osteolysis. Imaging features].

    Science.gov (United States)

    Mascarenhas, V V; Morais, F; Marques, H; Guerra, A; Carpinteiro, E; Gaspar, A

    2015-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. The authors report two cases of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed.

  19. Age differences in treatment decision making for breast cancer in a sample of healthy women: the effects of body image and risk framing.

    Science.gov (United States)

    Romanek, Kathleen M; McCaul, Kevin D; Sandgren, Ann K

    2005-07-01

    To examine the effects of age, body image, and risk framing on treatment decision making for breast cancer using a healthy population. An experimental 2 (younger women, older women) X 2 (survival, mortality frame) between-groups design. Midwestern university. Two groups of healthy women: 56 women ages 18-24 from undergraduate psychology courses and 60 women ages 35-60 from the university community. Healthy women imagined that they had been diagnosed with breast cancer and received information regarding lumpectomy versus mastectomy and recurrence rates. Participants indicated whether they would choose lumpectomy or mastectomy and why. Age, framing condition, treatment choice, body image, and reasons for treatment decision. The difference in treatment selection between younger and older women was mediated by concern for appearance. No main effect for risk framing was found; however, older women were somewhat less likely to select lumpectomy when given a mortality frame. Age, mediated by body image, influences treatment selection of lumpectomy versus mastectomy. Framing has no direct effect on treatment decisions, but younger and older women may be affected by risk information differently. Nurses should provide women who recently have been diagnosed with breast cancer with age-appropriate information regarding treatment alternatives to ensure women's active participation in the decision-making process. Women who have different levels of investment in body image also may have different concerns about treatment, and healthcare professionals should be alert to and empathetic of such concerns.

  20. Hall effect in the presence of rotation

    Science.gov (United States)

    Zubkov, M. A.

    2018-02-01

    A rotating relativistic fermion system is considered. The consideration is based on the Dirac equation written in the laboratory (non-rotating) reference frame. Rotation in this approach gives rise to the effective magnetic and electric fields that act in the same way both on positive and negative electric charges. In the presence of external electric field in the given system the electric current appears orthogonal to both the electric field and the axis of rotation. The possible applications to the physics of quark-gluon plasma are discussed.

  1. Optical loop framing

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system

  2. Plasma physics in noninertial frames

    International Nuclear Information System (INIS)

    Thyagaraja, A.; McClements, K. G.

    2009-01-01

    Equations describing the nonrelativistic motion of a charged particle in an arbitrary noninertial reference frame are derived from the relativistically invariant form of the particle action. It is shown that the equations of motion can be written in the same form in inertial and noninertial frames, with the effective electric and magnetic fields in the latter modified by inertial effects associated with centrifugal and Coriolis accelerations. These modifications depend on the particle charge-to-mass ratio, and also the vorticity, specific kinetic energy, and compressibility of the frame flow. The Newton-Lorentz, Vlasov, and Fokker-Planck equations in such a frame are derived. Reduced models such as gyrokinetic, drift-kinetic, and fluid equations are then derivable from these equations in the appropriate limits, using standard averaging procedures. The results are applied to tokamak plasmas rotating about the machine symmetry axis with a nonrelativistic but otherwise arbitrary toroidal flow velocity. Astrophysical applications of the analysis are also possible since the power of the action principle is such that it can be used to describe relativistic flows in curved spacetime.

  3. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah

    2017-08-11

    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  4. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    Science.gov (United States)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  5. Calcifying tendinitis of the rotator cuff with focal umeral osteolysis. Imaging features

    Directory of Open Access Journals (Sweden)

    V. V. Mascarenhas

    2015-10-01

    Full Text Available Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. The authors report two cases of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed.

  6. Predicting the Strength of Online News Frames

    Directory of Open Access Journals (Sweden)

    Hrvoje Jakopović

    2017-10-01

    Full Text Available Framing theory is one of the most significant approaches to understanding media and their potential impact on publics. Leaving aside that fact, the author finds that publicity effects seem to be dispersed and difficult to catch for public relations. This article employs a specific research design, which could be applied to public relations practice, namely with a view to observing correlations between specific media frames and individual frames. The approach is based on the typology of news frames. The author attributes negative, positive and neutral determinants to the types of frames in his empirical research. Online news regarding three transport organizations and the accompanying user comments (identified as negative, positive and neutral are analysed by means of the method of content and sentiment analysis. The author recognizes user comments and reviews as individual frames that take part in the creation of online image. Furthermore, he identifies the types of media frames as well as individual frames manifested as image, and undertakes correlation research in order to establish their prediction potential. The results expose the most frequently used types of media frames concerning the transport domain. The media are keen to report through the attribution of responsibility frame, and after that, through the economic frame and the conflict frame, but, on the other hand, they tend to neglect the human interest frame and the morality frame. The results show that specific types of news frames enable better prediction of user reactions. The economic frame and the human interest frame therefore represent the most predictable types of frame.

  7. Insect brains use image interpolation mechanisms to recognise rotated objects.

    Directory of Open Access Journals (Sweden)

    Adrian G Dyer

    Full Text Available Recognising complex three-dimensional objects presents significant challenges to visual systems when these objects are rotated in depth. The image processing requirements for reliable individual recognition under these circumstances are computationally intensive since local features and their spatial relationships may significantly change as an object is rotated in the horizontal plane. Visual experience is known to be important in primate brains learning to recognise rotated objects, but currently it is unknown how animals with comparatively simple brains deal with the problem of reliably recognising objects when seen from different viewpoints. We show that the miniature brain of honeybees initially demonstrate a low tolerance for novel views of complex shapes (e.g. human faces, but can learn to recognise novel views of stimuli by interpolating between or 'averaging' views they have experienced. The finding that visual experience is also important for bees has important implications for understanding how three dimensional biologically relevant objects like flowers are recognised in complex environments, and for how machine vision might be taught to solve related visual problems.

  8. A compact rotating dilution refrigerator

    Science.gov (United States)

    Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.

    2013-10-01

    We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

  9. Direct imaging rapidly-rotating non-Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: Cosimo.Bambi@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitaet Muenchen, 80333 Munich (Germany); Caravelli, Francesco, E-mail: fcaravelli@perimeterinstitute.ca [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, 14476 Golm (Germany); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Modesto, Leonardo, E-mail: lmodesto@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada)

    2012-05-01

    Recently, two of us have argued that non-Kerr black holes in gravity theories different from General Relativity may have a topologically non-trivial event horizon. More precisely, the spatial topology of the horizon of non-rotating and slow-rotating objects would be a 2-sphere, like in Kerr space-time, while it would change above a critical value of the spin parameter. When the topology of the horizon changes, the black hole central singularity shows up. The accretion process from a thin disk can potentially overspin these black holes and induce the topology transition, violating the Weak Cosmic Censorship Conjecture. If the astrophysical black hole candidates are not the black holes predicted by General Relativity, we might have the quite unique opportunity to see their central region, where classical physics breaks down and quantum gravity effects should appear. Even if the quantum gravity region turned out to be extremely small, at the level of the Planck scale, the size of its apparent image would be finite and potentially observable with future facilities.

  10. A graphical simulator for teaching basic and advanced MR imaging techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G

    2007-01-01

    Teaching of magnetic resonance (MR) imaging techniques typically involves considerable handwaving, literally, to explain concepts such as resonance, rotating frames, dephasing, refocusing, sequences, and imaging. A proper understanding of MR contrast and imaging techniques is crucial for radiolog...... be visualized in an intuitive way. The cross-platform software is primarily designed for use in lectures, but is also useful for self studies and student assignments. Movies available at http://radiographics.rsnajnls.org/cgi/content/full/e27/DC1 ....

  11. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  12. Post-Newtonian reference frames for advanced theory of the lunar motion and for a new generation of Lunar laser ranging

    International Nuclear Information System (INIS)

    Xie, Yi.; Kopeikin, S.

    2010-01-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging. We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter and spatial axes stretching up to infinity. The solar-system barycenter frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame. The secondary reference frame has its origin at the Earth-Moon barycenter. The Earth-Moon barycenter frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the Earth-Moon barycenter frame, does not contain the Coriolis and centripetal forces. Two other local frames-geocentric and seleno centric-have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the International Celestial Reference Frame because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of International Celestial Reference Frame after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion

  13. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou

    2016-10-01

    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  14. Rotating saddle trap as Foucault's pendulum

    Science.gov (United States)

    Kirillov, Oleg N.; Levi, Mark

    2016-01-01

    One of the many surprising results found in the mechanics of rotating systems is the stabilization of a particle in a rapidly rotating planar saddle potential. Besides the counterintuitive stabilization, an unexpected precessional motion is observed. In this note, we show that this precession is due to a Coriolis-like force caused by the rotation of the potential. To our knowledge, this is the first example where such a force arises in an inertial reference frame. We also propose a simple mechanical demonstration of this effect.

  15. Rotating black holes and Coriolis effect

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)

    2016-10-10

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  16. Pilot-wave hydrodynamics in a rotating frame: Exotic orbits

    DEFF Research Database (Denmark)

    Oza, Anand U.; Wind-Willassen, Øistein; Harris, Daniel M.

    2014-01-01

    We present the results of a numerical investigation of droplets walking on a rotating vibrating fluid bath. The drop’s trajectory is described by an integro-differential equation, which is simulated numerically in various parameter regimes. As the forcing acceleration is progressively increased, ...

  17. Can older adults resist the positivity effect in neural responding? The impact of verbal framing on event-related brain potentials elicited by emotional images.

    Science.gov (United States)

    Rehmert, Andrea E; Kisley, Michael A

    2013-10-01

    Older adults have demonstrated an avoidance of negative information, presumably with a goal of greater emotional satisfaction. Understanding whether avoidance of negative information is a voluntary, motivated choice or an involuntary, automatic response will be important to differentiate, as decision making often involves emotional factors. With the use of an emotional framing event-related potential (ERP) paradigm, the present study investigated whether older adults could alter neural responses to negative stimuli through verbal reframing of evaluative response options. The late positive potential (LPP) response of 50 older adults and 50 younger adults was recorded while participants categorized emotional images in one of two framing conditions: positive ("more or less positive") or negative ("more or less negative"). It was hypothesized that older adults would be able to overcome a presumed tendency to down-regulate neural responding to negative stimuli in the negative framing condition, thus leading to larger LPP wave amplitudes to negative images. A similar effect was predicted for younger adults, but for positively valenced images, such that LPP responses would be increased in the positive framing condition compared with the negative framing condition. Overall, younger adults' LPP wave amplitudes were modulated by framing condition, including a reduction in the negativity bias in the positive frame. Older adults' neural responses were not significantly modulated, even though task-related behavior supported the notion that older adults were able to successfully adopt the negative framing condition.

  18. Can Older Adults Resist the Positivity Effect in Neural Responding: The Impact of Verbal Framing on Event-Related Brain Potentials Elicited by Emotional Images

    Science.gov (United States)

    Rehmert, Andrea E.; Kisley, Michael A.

    2014-01-01

    Older adults have demonstrated an avoidance of negative information presumably with a goal of greater emotional satisfaction. Understanding whether avoidance of negative information is a voluntary, motivated choice, or an involuntary, automatic response will be important to differentiate, as decision-making often involves emotional factors. With the use of an emotional framing event-related potential (ERP) paradigm, the present study investigated whether older adults could alter neural responses to negative stimuli through verbal reframing of evaluative response options. The late-positive potential (LPP) response of 50 older adults and 50 younger adults was recorded while participants categorized emotional images in one of two framing conditions: positive (“more or less positive”) or negative (“more or less negative”). It was hypothesized that older adults would be able to overcome a presumed tendency to down-regulate neural responding to negative stimuli in the negative framing condition thus leading to larger LPP wave amplitudes to negative images. A similar effect was predicted for younger adults but for positively valenced images such that LPP responses would be increased in the positive framing condition compared to the negative framing condition. Overall, younger adults' LPP wave amplitudes were modulated by framing condition, including a reduction in the negativity bias in the positive frame. Older adults' neural responses were not significantly modulated even though task-related behavior supported the notion that older adults were able to successfully adopt the negative framing condition. PMID:23731435

  19. Exotic rotational correlations in quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig

    2017-05-01

    It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.

  20. Connections rigidity effect on probability of fracture in steel moment frames

    Directory of Open Access Journals (Sweden)

    Gholamreza Abdollahzadeh

    2017-08-01

    Full Text Available Connections in steel moment frames are idealized in full pinned and full rigid conditions. Because with this assumption, in spite of real behavior of connection, real story drifts are less anticipated and maybe frame is designed without performance of bracing. There are several methods for modeling actual behavior of semi rigid connections. In this method a connection with certain rigidity is modeled by a rotational spring with corresponding stiffness. This stiffness is achieved by certain formula. In other words, each percent of rigidity corresponds to one rotational spring stiffness. In this research in order to evaluate the real behavior of connection in analysis and designing process and fracture probability one frame including four stories and one bay with three types of connection has been modeled and designed in ETABS. Each model has an individual rigidity which is equal to 10, 75 and 90 percent. With respect to maximum drift and different PGA in roof, probabilities of low, medium, high and complete fracture were calculated. For this purpose, with applying different PGA to modeled frames, amounts of drift in the roof are achieved. Then these values are compared with given values in American code. Finally, investigation showed that when rigidity in frame connections increases, the probability of frame fracture decreases. In other words, fully rigid assumption of connection in analysis process leads to decreasing in real probability of fracture in frames which is a noticeable risk in building designing processes.

  1. Post-Newtonian Reference Frames For Advanced Theory Of The Lunar Motion And For A New Generation Of Lunar Laser Ranging

    International Nuclear Information System (INIS)

    Xie, Y.; Kopeikon, S.

    2010-01-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable

  2. Frame-less image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system

    International Nuclear Information System (INIS)

    Gibbs, I.C.

    2006-01-01

    The Cyberknife TM is an image-guided robotic radiosurgery system. The image guidance system includes a kilo-voltage X-ray imaging source and amorphous silica detectors. The radiation delivery device is a mobile X-band linear accelerator mounted onto a robotic arm. Through a highly complex interplay between the image guidance system, an automated couch, and the high-speed linear accelerator, near real-time tracking of the target is achieved. The Cyberknife TM gained Federal Drug Administration clearance in the United States in 2001 for treatment of tumors 'anywhere in the body where radiation treatment is indicated'. Because the Cyberknife TM system does not rely on rigid fixation of a stereotactic frame, tumors outside of the intracranial compartment, even those tumors that move with respiration can be treated with a similar degree of ease as intracranial targets. A description of the Cyberknife TM technology and a review of some of the current intracranial and extracranial applications are detailed herein. (author)

  3. Asteroid (16) Psyche: Triaxial Ellipsoid Dimensions and Rotational Pole from Keck II NIRC2 AO Images and Keck I OSIRIS Images

    Science.gov (United States)

    Drummond, Jack D.; Conrad, Al; Reddy, Vishnu; de Kleer, Katherine R.; Adamkovics, Mate; de Pater, Imke; Merline, William J.; Tamblyn, Peter

    2016-10-01

    Adaptive optics (AO) images of asteroid (16) Psyche obtained at 4 epochs with the NIRC2 camera at the 10m W. M. Keck Observatory (Keck II) on UT 2015 December 25 lead to triaxial ellipsoid diameters of 279±4 x 230±2 x 195±14 km, and a rotational pole at RA=29° and Dec=-2°. Adding 6 more epochs obtained nearly simultaneously with the OSIRIS system at Keck I, as well as two more epochs from Keck II in 2009, yields diameters of 273±2 x 232±2 x 165±3 km, and a pole at RA=37° and Dec=+1°. (Errors are formal fit parameter uncertainties; an additional 4% uncertainty is possible from systematic biases.) The differing perspectives between 2015 (sub-Earth latitude Θ=-50°) and 2009 (Θ=-6°) improves primarily the c dimension and the location of the rotational pole, but illustrates how well images from even a single night can determine the size, shape, and pole of an asteroid. The 2015 observations were obtained as part of a campaign to study Psyche with many techniques over a few months, including radar from Arecibo and images from Magellan.These handful of images show the same rugged outline as the radius vector model available on the DAMIT website, constructed from many lightcurves and scaled by previous Keck AO images. In fact Psyche has rotated some 125,350 times between the first lightcurve in 1955 and our 2015 AO images, exactly 60 years apart to the day. Since the asteroid has such a high obliquity, these lightcurves have scanned well into both northern and southern hemispheres. The difference between the pole derived from our images and the radius vector model pole is only 7°, and the mean diameters of Psyche are 219 and 211 km, respectively.

  4. Head Rotation Detection in Marmoset Monkeys

    Science.gov (United States)

    Simhadri, Sravanthi

    Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection. The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per

  5. Study on Utilization of LVL Sengon (Paraserianthes falcataria for Three-Hinged Gable Frame Structures

    Directory of Open Access Journals (Sweden)

    Ali Awaludin

    2016-07-01

    Full Text Available This study focuses on the utilization of non-prismatic LVL members of wood species Sengon (Paraserianthes falcataria for three-hinged gable frame structures. This wood species matures in 6 to 8 years, and the innovative application as LVL product for these structures is evaluated. A full-scale model of a beam-column connection is produced and tested to validate the moment-rotation response predicted by the numerical study using ABAQUS. The FEM results showed a linear-elastic moment-rotation curve response up to a joint rotation of 0.015 radians which is in very good agreement with the experiment. This validated FE model for the beam-column joint was further utilized to generate predictions for the moment-rotation relation using different bolt diameters and configurations. The last part of this study presents an evaluation of the maximum load bearing capacity of three-hinged gable frame timber structures considering a rigid and semi-rigid beam-column joint model. If the load carrying capacity is governed by the yielding of the bolt, the gable frame structure with the rigid beam-column joint overestimates the load bearing capacity by 17% to 25%.

  6. The comparison of aneurysmal necks measured on three dimensional reconstruction images of rotational DSA and those of traditional DSA

    International Nuclear Information System (INIS)

    Wu Chunhong; Chen Zuoquan; Gu Binxian; Zhang Guiyun

    2006-01-01

    Objective: To evaluate the value of three dimensional reconstruction images of rotational DSA on measuring aneurysmal necks and make a comparison with traditional DSA so as to provide more abundant and accurate information for the embolization of aneurysm. Methods: A comparison was made between the measurement of aneurismal necks from 14 cases with traditional DSA examination and a measurement made on three dimensional reconstruction images of the same patients. Results: There was a difference shown in the measurement of the aneurysmal necks between three dimensional reconstruction images of rotational DSA and those of traditional DSA, outcoming with more angles and data on three dimensional reconstruction images. Conclusions: There are more angles of aneurysmal neck can be shown on rotational 3D DSA especially for the demonstration of the largest aneurysmal neck with a directional value for the intervention. (authors)

  7. MR Imaging of Rotator Cuff Tears: Correlation with Arthroscopy

    Science.gov (United States)

    Bhandary, Sudarshan; Khandige, Ganesh; Kabra, Utkarsh

    2017-01-01

    Introduction Rotator cuff tears are quite common and can cause significant disability. Magnetic Resonance Imaging (MRI) has now emerged as the modality of choice in the preoperative evaluation of patients with rotator cuff injuries, in view of its improved inherent soft tissue contrast and resolution. Aim To evaluate the diagnostic accuracy of routine MRI in the detection and characterisation of rotator cuff tears, by correlating the findings with arthroscopy. Materials and Methods This prospective study was carried out between July 2014 and August 2016 at the AJ Institute of Medical Sciences, Mangalore, Karnataka, India. A total of 82 patients were diagnosed with rotator cuff injury on MRI during this period, out of which 45 patients who underwent further evaluation with arthroscopy were included in this study. The data collected was analysed for significant correlation between MRI diagnosis and arthroscopic findings using kappa statistics. The sensitivity, specificity, predictive value and accuracy of MRI for the diagnosis of full and partial thickness tears were calculated using arthroscopic findings as the reference standard. Results There were 27 males and 18 females in this study. The youngest patient was 22 years and the oldest was 74 years. Majority of rotator cuff tears (78%) were seen in patients above the age of 40 years. MRI showed a sensitivity of 89.6%, specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3% for the diagnosis of full thickness rotator cuff tears. For partial thickness tears, MRI showed a sensitivity of 100%, specificity of 86.6%, positive predictive value of 78.9% and negative predictive value of 100%. The accuracy was 93.1% for full thickness tears and 91.1% for partial thickness tears. The p-value was less than 0.01 for both full and partial thickness tears. There was good agreement between the MRI and arthroscopic findings, with kappa value of 0.85 for full thickness tears and 0.81 for partial

  8. Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.

    Science.gov (United States)

    Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A Yu; Corkum, P B; Stolow, Albert; Villeneuve, D M; Hockett, Paul

    2017-08-25

    Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.

  9. Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni

    2015-05-01

    Full Text Available The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR reference frame, and low (1°/Ma net rotation (shallow hotspots source, all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.

  10. Analysis of the image of pion-emitting sources in the source center-of-mass frame

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yanyu; Feng, Qichun; Huo, Lei; Zhang, Jingbo; Liu, Jianli; Tang, Guixin [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Zhang, Weining [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Dalian University of Technology, School of Physics and Optoelectronic Technology, Dalian, Liaoning (China)

    2017-08-15

    In this paper, we try a method to extract the image of pion-emitting source function in the center-of-mass frame of the source (CMFS). We choose identical pion pairs according to the difference of their energy and use these pion pairs to build the correlation function. The purpose is to reduce the effect of ΔEΔt, thus the corresponding imaging result can tend to the real source function. We examine the effect of this method by comparing its results with real source functions extracted from models directly. (orig.)

  11. Generalisation of the test theory of special relativity to non-inertial frames

    International Nuclear Information System (INIS)

    Abolghasem, G.H.; Khajehpour, M.R.H.; Mansouri, R.

    1989-01-01

    We present a generalised test theory of special relativity, using a non-inertial frame. Within the framework of the special theory of relativity the transport and Einstein synchronisations are equivalent on a rigidly rotating disc. But in any theory with a preferred frame, such an equivalence does not hold. The time difference resulting from the two synchronisation procedures is a measurable quantity within the reach of existing clock systems on the Earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of special relativity. (Author)

  12. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  13. A 20 Mfps high frame-depth CMOS burst-mode imager with low power in-pixel NMOS-only passive amplifier

    Science.gov (United States)

    Wu, L.; San Segundo Bello, D.; Coppejans, P.; Craninckx, J.; Wambacq, P.; Borremans, J.

    2017-02-01

    This paper presents a 20 Mfps 32 × 84 pixels CMOS burst-mode imager featuring high frame depth with a passive in-pixel amplifier. Compared to the CCD alternatives, CMOS burst-mode imagers are attractive for their low power consumption and integration of circuitry such as ADCs. Due to storage capacitor size and its noise limitations, CMOS burst-mode imagers usually suffer from a lower frame depth than CCD implementations. In order to capture fast transitions over a longer time span, an in-pixel CDS technique has been adopted to reduce the required memory cells for each frame by half. Moreover, integrated with in-pixel CDS, an in-pixel NMOS-only passive amplifier alleviates the kTC noise requirements of the memory bank allowing the usage of smaller capacitors. Specifically, a dense 108-cell MOS memory bank (10fF/cell) has been implemented inside a 30μm pitch pixel, with an area of 25 × 30μm2 occupied by the memory bank. There is an improvement of about 4x in terms of frame depth per pixel area by applying in-pixel CDS and amplification. With the amplifier's gain of 3.3, an FD input-referred RMS noise of 1mV is achieved at 20 Mfps operation. While the amplification is done without burning DC current, including the pixel source follower biasing, the full pixel consumes 10μA at 3.3V supply voltage at full speed. The chip has been fabricated in imec's 130nm CMOS CIS technology.

  14. Optical derotator alignment using image-processing algorithm for tracking laser vibrometer measurements of rotating objects.

    Science.gov (United States)

    Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan

    2017-06-01

    An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.

  15. Frames and semi-frames

    International Nuclear Information System (INIS)

    Antoine, Jean-Pierre; Balazs, Peter

    2011-01-01

    Loosely speaking, a semi-frame is a generalized frame for which one of the frame bounds is absent. More precisely, given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with a bounded inverse. We study mostly upper semi-frames, both in the continuous and discrete case, and give some remarks for the dual situation. In particular, we show that reconstruction is still possible in certain cases.

  16. Frames and operator theory in analysis and signal processing

    CERN Document Server

    Larson, David R; Nashed, Zuhair; Nguyen, Minh Chuong; Papadakis, Manos

    2008-01-01

    This volume contains articles based on talks presented at the Special Session Frames and Operator Theory in Analysis and Signal Processing, held in San Antonio, Texas, in January of 2006. Recently, the field of frames has undergone tremendous advancement. Most of the work in this field is focused on the design and construction of more versatile frames and frames tailored towards specific applications, e.g., finite dimensional uniform frames for cellular communication. In addition, frames are now becoming a hot topic in mathematical research as a part of many engineering applications, e.g., matching pursuits and greedy algorithms for image and signal processing. Topics covered in this book include: Application of several branches of analysis (e.g., PDEs; Fourier, wavelet, and harmonic analysis; transform techniques; data representations) to industrial and engineering problems, specifically image and signal processing. Theoretical and applied aspects of frames and wavelets. Pure aspects of operator theory empha...

  17. Framing a Bank

    DEFF Research Database (Denmark)

    Holmgreen, Lise-Lotte

    2012-01-01

    Danish bank, Danske Bank, during the 2008 financial crisis and hence in shaping its image projected to the public. Through the study of a number of semantic frames adopted by the Danish print press and those adopted by the Bank, this article will argue for the constructions of the press putting...... considerable strain on the Bank and its image, leading it to reconsider its previous strategy of denial of responsibility...

  18. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  19. The effect of rotations on Michelson interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Maraner, Paolo, E-mail: pmaraner@unibz.it

    2014-11-15

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.

  20. The effect of rotations on Michelson interferometers

    International Nuclear Information System (INIS)

    Maraner, Paolo

    2014-01-01

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations

  1. Linear analysis of rotationally invariant, radially variant tomographic imaging systems

    International Nuclear Information System (INIS)

    Huesmann, R.H.

    1990-01-01

    This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared

  2. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    Science.gov (United States)

    Morishima, Shigeo; Nakamura, Satoshi

    2004-12-01

    We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  3. Native Frames: Disentangling Sequential from Concerted Three-Body Fragmentation

    Science.gov (United States)

    Rajput, Jyoti; Severt, T.; Berry, Ben; Jochim, Bethany; Feizollah, Peyman; Kaderiya, Balram; Zohrabi, M.; Ablikim, U.; Ziaee, Farzaneh; Raju P., Kanaka; Rolles, D.; Rudenko, A.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2018-03-01

    A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O++C++S+ and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO2 + or CS2 + , before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS3 + breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

  4. Rotation and scale invariant shape context registration for remote sensing images with background variations

    Science.gov (United States)

    Jiang, Jie; Zhang, Shumei; Cao, Shixiang

    2015-01-01

    Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.

  5. Magnetic resonance imaging in acute and chronic rotator cuff tears

    International Nuclear Information System (INIS)

    Buirski, G.

    1990-01-01

    Magnetic resonance imaging has been assessed in patients with acute rotator cuff tears and normal radiographs (9 cases) and those with chronic tears and changes of cuff arthropathy (9 cases). All images were obtained using a low field strength system (FONAR 0.3 T). Particular attention was placed on the appearances of the tendon and the cuff muscles themselves. Six complete acute tears were clearly identified, but MRI failed to demonstrate two partial tears. Muscle bulk was preserved in all patients in this group. In contrast, all patients with cuff arthropathy had complete tears of the supraspinatus tendon with marked tendon retraction and associated muscle atrophy: These changes precluded primary surgical repair. MRI should be used to assess muscle atrophy preoperatively in those patients with acute tears. When plain radiographs demonstrate cuff arthropathy, the MRI appearances are predictable and primary repair is unlikely to be successful. Further imaging is therefore not indicated. (orig.)

  6. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  7. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.

    Science.gov (United States)

    Niu, Lili; Wang, Jing; Qian, Ming; Zheng, Hairong

    2009-01-01

    Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. An ultrasound-based particle image velocimetry technique(Echo PIV) was recently developed to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. To improve the measurement accuracy, sub-pixel calculation method was adopted in this paper to maximize the ultrasound RF signal and B mode image correlation accuracy and increase the image spatial resolution. This algorithm is employed in processing both computer-generated particle image patterns and the B-mode images of microbubbles in rotating flows obtained by a high frame rate (up to 1000 frames per second) ultrasound imaging system. The results show the correlation of particle patterns and individual flow vector quality are improved and the overall flow mappings are also improved significantly. This would help the Echo PIV system to provide better multi-component velocity accuracy.

  8. Development of a hemispherical rotational modulation collimator system for imaging spatial distribution of radiation sources

    Science.gov (United States)

    Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.

    2017-12-01

    Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.

  9. Rotational image deblurring with sparse matrices

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Nagy, James G.; Tigkos, Konstantinos

    2014-01-01

    We describe iterative deblurring algorithms that can handle blur caused by a rotation along an arbitrary axis (including the common case of pure rotation). Our algorithms use a sparse-matrix representation of the blurring operation, which allows us to easily handle several different boundary...

  10. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad

    2014-02-01

    Full Text Available Visual sensor networks (VSNs usually generate a low-resolution (LR frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP. This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  11. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  12. Imaging of the Coronary Venous System: Validation of Three-Dimensional Rotational Venous Angiography Against Dual-Source Computed Tomography

    International Nuclear Information System (INIS)

    Knackstedt, Christian; Muehlenbruch, Georg; Mischke, Karl; Bruners, Philipp; Schimpf, Thomas; Frechen, Dirk; Schummers, Georg; Mahnken, Andreas H.; Guenther, Rolf W.; Kelm, Malte; Schauerte, Patrick

    2008-01-01

    Information on the anatomy of the cardiac venous system (CVS) is increasingly important for cardiac resynchronization therapy or percutaneous transvenous mitral valve annuloplasty. Three-dimensional (3D) imaging can further improve the understanding of the relationship of cardiac structures. This study was performed to validate the accuracy of rotational coronary sinus angiography (CSA) displaying the 3D anatomy of the CVS compared to ECG-gated, contrast-enhanced, cardiac dual-source computed tomography (DSCT). Five domestic pigs (60 kg) underwent DSCT using a standardized examination protocol. Using a standard C-arm for fluoroscopy, a rotational CSA was obtained and 3D-image reconstructions performed. Side branches were identified using both methods and enumerated. Vessel visibility was estimated for each side branch and great cardiac vein/anterior interventricular vein. Also, vessel diameters were measured at distinct landmarks, i.e., side branching. The amount of contrast medium was determined and the effective radiation exposure of both methods was calculated. There was no significant difference regarding the vessel diameter of the great cardiac vein/anterior interventricular vein or its side branches. Also, estimation of vessel visibility was not different between the two imaging modalities. Estimated radiation exposure and amount of contrast medium were lower for rotational CSA. In conclusion, a 3D reconstruction of rotational CSA images is possible. All parts of the CVS are well depicted, allowing a 3D overview of the CVS anatomy. On-site 3D visualization might improve decision making during cardiac interventions. In contrast to DSCT, rotational CSA does not demonstrate the anatomy of the mitral annulus or the course of the left circumflex artery.

  13. Does successful rotator cuff repair improve muscle atrophy and fatty infiltration of the rotator cuff? A retrospective magnetic resonance imaging study performed shortly after surgery as a reference.

    Science.gov (United States)

    Hamano, Noritaka; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Sasaki, Tsuyoshi; Kobayashi, Tsutomu; Kakuta, Yohei; Osawa, Toshihisa; Takagishi, Kenji

    2017-06-01

    Muscle atrophy and fatty infiltration in the rotator cuff muscles are often observed in patients with chronic rotator cuff tears. The recovery from these conditions has not been clarified. Ninety-four patients were included in this study. The improvement in muscle atrophy and fatty infiltration in successfully repaired rotator cuff tears was evaluated by magnetic resonance imaging at 1 year and 2 years after surgery and was compared with muscle atrophy and fatty infiltration observed on magnetic resonance imaging at 2 weeks after surgery to discount any changes due to the medial retraction of the torn tendon. The patients' muscle strength was evaluated in abduction and external rotation. Muscle atrophy and fatty infiltration of the supraspinatus were significantly improved at 2 years after surgery in comparison to 2 weeks after surgery. The subjects' abduction and external rotation strength was also significantly improved at 2 years after surgery in comparison to the preoperative values. Patients whose occupation ratio was improved had a better abduction range of motion, stronger abduction strength, and higher Constant score. Patients whose fatty infiltration was improved had a better range of motion in flexion and abduction, whereas the improvements of muscle strength and the Constant score were similar in the group that showed an improvement of fatty infiltration and the group that did not. Muscle atrophy and fatty infiltration can improve after rotator cuff repair. The strengths of abduction and external rotation were also improved at 2 years after surgery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. An additional reference axis improves femoral rotation alignment in image-free computer navigation assisted total knee arthroplasty.

    Science.gov (United States)

    Inui, Hiroshi; Taketomi, Shuji; Nakamura, Kensuke; Sanada, Takaki; Tanaka, Sakae; Nakagawa, Takumi

    2013-05-01

    Few studies have demonstrated improvement in accuracy of rotational alignment using image-free navigation systems mainly due to the inconsistent registration of anatomical landmarks. We have used an image-free navigation for total knee arthroplasty, which adopts the average algorithm between two reference axes (transepicondylar axis and axis perpendicular to the Whiteside axis) for femoral component rotation control. We hypothesized that addition of another axis (condylar twisting axis measured on a preoperative radiograph) would improve the accuracy. One group using the average algorithm (double-axis group) was compared with the other group using another axis to confirm the accuracy of the average algorithm (triple-axis group). Femoral components were more accurately implanted for rotational alignment in the triple-axis group (ideal: triple-axis group 100%, double-axis group 82%, P<0.05). Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Spin-rotation interaction of alkali-metal endash He-atom pairs

    International Nuclear Information System (INIS)

    Walker, T.G.; Thywissen, J.H.; Happer, W.

    1997-01-01

    A treatment of the spin-rotation coupling between alkali-metal atoms and He atoms is presented. Rotational distortions are accounted for in the wave function using a Coriolis interaction in the rotating frame. The expectation value of the spin-orbit interaction gives values of the spin-rotation coupling that explain previous experimental results. For spin-exchange optical pumping, the results suggest that lighter alkali-metal atoms would be preferred spin-exchange partners, other factors being equal. copyright 1997 The American Physical Society

  16. Turbulent structures in cylindrical density currents in a rotating frame of reference

    Science.gov (United States)

    Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas

    2018-06-01

    Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.

  17. Light escape cones in local reference frames of Kerr-de Sitter black hole spacetimes and related black hole shadows

    Science.gov (United States)

    Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan

    2018-03-01

    We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.

  18. MR imaging of delamination tears of the rotator cuff tendons

    International Nuclear Information System (INIS)

    Walz, Daniel M.; Chen, Steven; Miller, Theodore T.; Hofman, Josh

    2007-01-01

    The objective was to describe the imaging appearances and location of delamination tears of the rotator cuff tendons on non-contrast conventional MR imaging. This study was reviewed and approved by our Institutional Review Board. The reports of 548 consecutive MR examinations of the shoulder were reviewed, looking for mention or description of delamination tears of the rotator cuff. The images of the identified cases were then reviewed by two radiologists to confirm the findings. Correlation with surgical and arthroscopic information was then performed. Delamination tears were defined as horizontal retraction of either the bursal or articular surface of the tendon, manifest as thickening of the torn retracted edge, and/or interstitial splitting of the tendon, manifest as fluid-like high signal intensity on fat-suppressed T2-weighted oblique coronal images. Fourteen cases of delamination tears were identified in 13 patients. Ten of the cases involved the supraspinatus tendon, all with articular surface involvement. Nine of these supraspinatus cases were isolated tears and one occurred as part of a full thickness tear. All 10 of these supraspinatus cases showed medial retraction of the articular surface of the tendon, with thickening of the retracted edge, and 5 of the 10 had a demonstrable horizontal cleft in the interstitium. Four cases involved the subscapularis tendon, with articular surface disruption in three and pure interstitial delamination in one. Medial subluxation of the tendon of the long head of the biceps was present in all four cases. No delamination tears occurred on the bursal surface. Only three of the 14 shoulders underwent surgical repair with one confirmation of supraspinatus delamination, one confirmation of a subscapularis tear that had become a full thickness tear 10 months after initial imaging and another interstitial subscapularis delamination that was not identified arthroscopically. Delamination tears occur most often in the

  19. MR imaging of delamination tears of the rotator cuff tendons

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Daniel M.; Chen, Steven [North Shore University Hospital, Department of Radiology, Manhasset, NY (United States); Miller, Theodore T. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States); Hofman, Josh [Long Island Jewish Medical Center, New Hyde Park, NY (United States)

    2007-05-15

    The objective was to describe the imaging appearances and location of delamination tears of the rotator cuff tendons on non-contrast conventional MR imaging. This study was reviewed and approved by our Institutional Review Board. The reports of 548 consecutive MR examinations of the shoulder were reviewed, looking for mention or description of delamination tears of the rotator cuff. The images of the identified cases were then reviewed by two radiologists to confirm the findings. Correlation with surgical and arthroscopic information was then performed. Delamination tears were defined as horizontal retraction of either the bursal or articular surface of the tendon, manifest as thickening of the torn retracted edge, and/or interstitial splitting of the tendon, manifest as fluid-like high signal intensity on fat-suppressed T2-weighted oblique coronal images. Fourteen cases of delamination tears were identified in 13 patients. Ten of the cases involved the supraspinatus tendon, all with articular surface involvement. Nine of these supraspinatus cases were isolated tears and one occurred as part of a full thickness tear. All 10 of these supraspinatus cases showed medial retraction of the articular surface of the tendon, with thickening of the retracted edge, and 5 of the 10 had a demonstrable horizontal cleft in the interstitium. Four cases involved the subscapularis tendon, with articular surface disruption in three and pure interstitial delamination in one. Medial subluxation of the tendon of the long head of the biceps was present in all four cases. No delamination tears occurred on the bursal surface. Only three of the 14 shoulders underwent surgical repair with one confirmation of supraspinatus delamination, one confirmation of a subscapularis tear that had become a full thickness tear 10 months after initial imaging and another interstitial subscapularis delamination that was not identified arthroscopically. Delamination tears occur most often in the

  20. Analisis Framing dalam Riset Public Relations

    Directory of Open Access Journals (Sweden)

    NARAYANA MAHENDRA PRASTYA

    2016-12-01

    Full Text Available This paper aims to give description about how to use frame analysis in Public Relations (PR research. The author use two framing models: Entman and Pan & Kosicki. The object is organization official statement about particular issue. Frame analysis method rarely used in Public Relations research. This methods commonly use in journalism study, to analyse the news in media. Meanwhile, the key word of framing is the social construction of reality. Organization can make social construction of realty in their official statement. In acacemic term, frame analysis in PR research is useful to know how organization positioned themselves in particular situation. Other benefit is use to evaluat whether the organization frame is conformable with the public opinion or agenda setting media or not. In practical term, frame analysis give benefit for PR practitioner to create the message that can be undserstood by public, also give positive image for organization.

  1. Rotator cuff injury: fat suppression MR image

    International Nuclear Information System (INIS)

    Won, Jong Yoon; Suh, Jin Suck; Park, Chang Yun; Lee, Yeon Hee; Kim, Yong Soo

    1994-01-01

    We performed the study prospectively to evaluate the advantage of fat suppression MR in the diagnosis of rotator cuff injury. Ten symptomatic patients were studied with both conventional T2WI and FST2WI using chemical shift technique. Each image was analyzed for the assessment of injuries, conspicuity of the lesion, the presence of effusion in subacromical bursae and joint space, and presence of humeral head injury. Arthroscopy was done in 4 patients following MRI. We could made presumptive diagnoses on FSMR as identical as on conventional MR in six cases(1 normal, 2 tendinitis, 2 partial thickness tear, 1 full thickness tear), two of them were confirmed by arthroscopic procedures. Two cases of partial thickness tear proved by arthroscopy were detected on FST2WI, whereas they were considered tendinitis on conventional T2WI. There were another 2 cases who showed tendinitis on FSMR, but normal on conventional T2WI. They, however, were not confirmed by either arthroscopy or surgical procedure. We found the FSMR were superior to conventional T2WI in the conspicuity of lesions and detection of joint effusion and abnormalities on the humeral head. We think FSMR of the shoulder could have significant diagnostic advantages over the conventional spin-echo MR imaging

  2. Rotator cuff injury: fat suppression MR image

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Yoon; Suh, Jin Suck; Park, Chang Yun; Lee, Yeon Hee [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Yong Soo [Inje University College of Medicine, Busan (Korea, Republic of)

    1994-04-15

    We performed the study prospectively to evaluate the advantage of fat suppression MR in the diagnosis of rotator cuff injury. Ten symptomatic patients were studied with both conventional T2WI and FST2WI using chemical shift technique. Each image was analyzed for the assessment of injuries, conspicuity of the lesion, the presence of effusion in subacromical bursae and joint space, and presence of humeral head injury. Arthroscopy was done in 4 patients following MRI. We could made presumptive diagnoses on FSMR as identical as on conventional MR in six cases(1 normal, 2 tendinitis, 2 partial thickness tear, 1 full thickness tear), two of them were confirmed by arthroscopic procedures. Two cases of partial thickness tear proved by arthroscopy were detected on FST2WI, whereas they were considered tendinitis on conventional T2WI. There were another 2 cases who showed tendinitis on FSMR, but normal on conventional T2WI. They, however, were not confirmed by either arthroscopy or surgical procedure. We found the FSMR were superior to conventional T2WI in the conspicuity of lesions and detection of joint effusion and abnormalities on the humeral head. We think FSMR of the shoulder could have significant diagnostic advantages over the conventional spin-echo MR imaging.

  3. TH-E-17A-02: High-Pitch and Sparse-View Helical 4D CT Via Iterative Image Reconstruction Method Based On Tensor Framelet

    International Nuclear Information System (INIS)

    Guo, M; Nam, H; Li, R; Xing, L; Gao, H

    2014-01-01

    Purpose: 4D CT is routinely performed during radiation therapy treatment planning of thoracic and abdominal cancers. Compared with the cine mode, the helical mode is advantageous in temporal resolution. However, a low pitch (∼0.1) for 4D CT imaging is often required instead of the standard pitch (∼1) for static imaging, since standard image reconstruction based on analytic method requires the low-pitch scanning in order to satisfy the data sufficient condition when reconstructing each temporal frame individually. In comparison, the flexible iterative method enables the reconstruction of all temporal frames simultaneously, so that the image similarity among frames can be utilized to possibly perform high-pitch and sparse-view helical 4D CT imaging. The purpose of this work is to investigate such an exciting possibility for faster imaging with lower dose. Methods: A key for highpitch and sparse-view helical 4D CT imaging is the simultaneous reconstruction of all temporal frames using the prior that temporal frames are continuous along the temporal direction. In this work, such a prior is regularized through the sparsity transform based on spatiotemporal tensor framelet (TF) as a multilevel and high-order extension of total variation transform. Moreover, GPU-based fast parallel computing of X-ray transform and its adjoint together with split Bregman method is utilized for solving the 4D image reconstruction problem efficiently and accurately. Results: The simulation studies based on 4D NCAT phantoms were performed with various pitches (i.e., 0.1, 0.2, 0.5, and 1) and sparse views (i.e., 400 views per rotation instead of standard >2000 views per rotation), using 3D iterative individual reconstruction method based on 3D TF and 4D iterative simultaneous reconstruction method based on 4D TF respectively. Conclusion: The proposed TF-based simultaneous 4D image reconstruction method enables high-pitch and sparse-view helical 4D CT with lower dose and faster speed

  4. An Engineer's Physics Lab -- using a Large Force Frame

    Science.gov (United States)

    Heid, Christy; Rampolla, Donald

    2009-03-01

    We have constructed very economical, easy to assemble force frames that are used by students in our general physics laboratory at Chatham University. The force frame is used at the beginning of the semester to study vector properties of forces. The force frame can be used as a horizontal or vertical force table. Angles of forces are measured using a large movable (rotation and translation) Cartesian coordinate board attached to the frame with large binder clips. The force frame is a versatile device which is used for a number of other experiments, including beam bending and torsion, mechanical resonance, projectile trajectories, torque, mechanical equilibrium, an isolated non-magnetic support for magnetic field experiments, easily adjustable support for inclined plane experiments, support for traveling wave experiments with heavy rope, and support for large scale fluid flow experiments. One advantage to a wood frame is that things can be easily stapled, nailed, screwed or glued just about anywhere on the frame, and damaged frame members can be replaced easily. As one of the few remaining women's undergraduate institutions, we have found the use of these frames to provide an additional advantage in helping women overcome their fear of simple power tools and assembly of mechanical parts as they become comfortable with these through working with the force frames throughout the semester. We intend to describe and model these applications during the session.

  5. Impact of analyzing fewer image frames per segment during offline volumetric radiofrequency based intravascular ultrasound measurements of target lesions prior to percutaneous coronary interventions

    NARCIS (Netherlands)

    Huisman, J.; Hartmann, M.; Hartmann, M.; Mintz, G.S.; van Houwelingen, G.K.; Stoel, M.G.; de Man, F.H.; Louwerenburg, H.; von Birgelen, Clemens

    2012-01-01

    In the present study, we evaluated the impact of a 50% reduction in number of image frames (every second frame) on the analysis time and variability of offline volumetric radiofrequency-based intravascular ultrasound (RF-IVUS) measurements in target lesions prior to percutaneous coronary

  6. Rotation and direction judgment from visual images head-slaved in two and three degrees-of-freedom.

    Science.gov (United States)

    Adelstein, B D; Ellis, S R

    2000-03-01

    The contribution to spatial awareness of adding a roll degree-of-freedom (DOF) to telepresence camera platform yaw and pitch was examined in an experiment where subjects judged direction and rotation of stationary target markers in a remote scene. Subjects viewed the scene via head-slaved camera images in a head-mounted display. Elimination of the roll DOF affected rotation judgment, but only at extreme yaw and pitch combinations, and did not affect azimuth and elevation judgement. Systematic azimuth overshoot occurred regardless of roll condition. Observed rotation misjudgments are explained by kinematic models for eye-head direction of gaze.

  7. Rotation-robust math symbol recognition and retrieval using outer contours and image subsampling

    Science.gov (United States)

    Zhu, Siyu; Hu, Lei; Zanibbi, Richard

    2013-01-01

    This paper presents an unified recognition and retrieval system for isolated offline printed mathematical symbols for the first time. The system is based on nearest neighbor scheme and uses modified Turning Function and Grid Features to calculate the distance between two symbols based on Sum of Squared Difference. An unwrap process and an alignment process are applied to modify Turning Function to deal with the horizontal and vertical shift caused by the changing of staring point and rotation. This modified Turning Function make our system robust against rotation of the symbol image. The system obtains top-1 recognition rate of 96.90% and 47.27% Area Under Curve (AUC) of precision/recall plot on the InftyCDB-3 dataset. Experiment result shows that the system with modified Turning Function performs significantly better than the system with original Turning Function on the rotated InftyCDB-3 dataset.

  8. Frame by frame stop motion non-traditional approaches to stop motion animation

    CERN Document Server

    Gasek, Tom

    2011-01-01

    In a world that is dominated by computer images, alternative stop motion techniques like pixilation, time-lapse photography and down-shooting techniques combined with new technologies offer a new, tangible and exciting approach to animation. With over 25 years professional experience, industry veteran, Tom Gasek presents a comprehensive guide to stop motion animation without the focus on puppetry or model animation. With tips, tricks and hands-on exercises, Frame by Frame will help both experienced and novice filmmakers get the most effective results from this underutilized branch of animation

  9. Universal cell frame for high-pressure water electrolyzer and electrolyzer including the same

    Science.gov (United States)

    Schmitt, Edwin W.; Norman, Timothy J.

    2013-01-08

    Universal cell frame generic for use as an anode frame and as a cathode frame in a water electrolyzer. According to one embodiment, the universal cell frame includes a unitary annular member having a central opening. Four trios of transverse openings are provided in the annular member, each trio being spaced apart by about 90 degrees. A plurality of internal radial passageways fluidly interconnect the central opening and each of the transverse openings of two diametrically-opposed trios of openings, the other two trios of openings lacking corresponding radial passageways. Sealing ribs are provided on the top and bottom surfaces of the annular member. The present invention is also directed at a water electrolyzer that includes two such cell frames, one being used as the anode frame and the other being used as the cathode frame, the cathode frame being rotated 90 degrees relative to the anode frame.

  10. Effectiveness of MRI in rotator cuff injury

    International Nuclear Information System (INIS)

    Ohazama, Yuka

    1992-01-01

    To investigate the potential role of MR imaging in rotator cuf disorders, normal volunteers and patients with suspected rotator cuff injury were evaluated with a low field permanent magnet unit which had a wide gantry. MR findings of the patients were also compared with arthrography, subcromial bursography and operative findings. To establish optimal imaging technique and normal MR anatomy, 100 normal volunteers were examined. On proton density images, signal intensity of the rotator cuff tendon was low and homogenous, and that of rotator cuff muscles was intermediate. On T2 weighted images, signal intensity of muscles and tendon was decreased and that of joint effusion became brighter. In 38 patients with suspected rotator cuff injury, the signal intensity of the rotator cuff was increased to various degrees. In 21 of them, surgical correction was performed and 17 patients were followed with conservative treatment. MR imaging showed abnormalities in all 38 patients. Arthrography and bursography showed abnormalities in 28 out of 38 patients and 3 of 13 patients respectively. In 21 patients who underwent surgery, tear of the rotator cuff was confirmed, and discrepancies in MR and operative findings existed in 8 patients. In 2 patients, no tear was found in the other examinations, and it was suspected to be horizontal tear or degeneration in the substance of the muscle. MR imaging contributes to diagnosis and treatment planning in patients with suspected rotator cuff injury. (author)

  11. High stability space frame for a large fusion laser

    International Nuclear Information System (INIS)

    Hurley, C.A.; Myall, J.O.

    1975-01-01

    The Shiva laser system is a large neodymium glass laser target irradiation facility being constructed at LLL to perform laser fusion experiments. A frame is being constructed to support the large number of laser components that make up the Shiva system. Twenty laser chains composed of amplifiers, spatial filters, polarizers, rotators, and mirrors will be arranged in an optimum geometry so that each beam arrives at the target simultaneously and within alignment tolerances. This frame is capable of supporting approximately 600 individual component assemblies and maintaining a tolerance of +-4-μrad rotation between any two points over a period of 100 s. Consideration has been given to the positional stability and support of the components, the geometrical array of stacked beams with respect to the oscillator and target, the flow of utilities (e.g., power cables and cooling gas pipes), good accessibility for operation and maintenance, and adaptability for change and growth

  12. Development and Performance of Bechtel Nevada's Nine-Frame Camera System

    International Nuclear Information System (INIS)

    S. A. Baker; M. J. Griffith; J. L. Tybo

    2002-01-01

    Bechtel Nevada, Los Alamos Operations, has developed a high-speed, nine-frame camera system that records a sequence from a changing or dynamic scene. The system incorporates an electrostatic image tube with custom gating and deflection electrodes. The framing tube is shuttered with high-speed gating electronics, yielding frame rates of up to 5MHz. Dynamic scenes are lens-coupled to the camera, which contains a single photocathode gated on and off to control each exposure time. Deflection plates and drive electronics move the frames to different locations on the framing tube output. A single charge-coupled device (CCD) camera then records the phosphor image of all nine frames. This paper discusses setup techniques to optimize system performance. It examines two alternate philosophies for system configuration and respective performance results. We also present performance metrics for system evaluation, experimental results, and applications to four-frame cameras

  13. The rotational elements of Mars and its satellites

    Science.gov (United States)

    Jacobson, R. A.; Konopliv, A. S.; Park, R. S.; Folkner, W. M.

    2018-03-01

    The International Astronomical Union (IAU) defines planet and satellite coordinate systems relative to their axis of rotation and the angle about that axis. The rotational elements of the bodies are the right ascension and declination of the rotation axis in the International Celestial Reference Frame and the rotation angle, W, measured easterly along the body's equator. The IAU specifies the location of the body's prime meridian by providing a value for W at epoch J2000. We provide new trigonometric series representations of the rotational elements of Mars and its satellites, Phobos and Deimos. The series for Mars are from a least squares fit to the rotation model used to orient the Martian gravity field. The series for the satellites are from a least squares fit to rotation models developed in accordance with IAU conventions from recent ephemerides.

  14. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    International Nuclear Information System (INIS)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-01-01

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery

  15. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  16. Linear perspective and framing in the vista paradox

    DEFF Research Database (Denmark)

    Costa, Marco; Bonetti, Leonardo

    2017-01-01

    The vista paradox is the illusion in which an object seen through a frame appears to shrink in apparent size as the observer approaches the frame. In four studies, we tested the effect of framing and fixating on the target object. The first two studies assessed the vista paradox in a large scale...... inserted within five frames differing in size. In the fourth study linear perspective was added to the images. The results showed that both frame size and linear perspective cues were critical factors for the vista paradox illusion....

  17. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    Science.gov (United States)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  18. COMPARISON OF BACKGROUND SUBTRACTION, SOBEL, ADAPTIVE MOTION DETECTION, FRAME DIFFERENCES, AND ACCUMULATIVE DIFFERENCES IMAGES ON MOTION DETECTION

    Directory of Open Access Journals (Sweden)

    Dara Incam Ramadhan

    2018-02-01

    Full Text Available Nowadays, digital image processing is not only used to recognize motionless objects, but also used to recognize motions objects on video. One use of moving object recognition on video is to detect motion, which implementation can be used on security cameras. Various methods used to detect motion have been developed so that in this research compared some motion detection methods, namely Background Substraction, Adaptive Motion Detection, Sobel, Frame Differences and Accumulative Differences Images (ADI. Each method has a different level of accuracy. In the background substraction method, the result obtained 86.1% accuracy in the room and 88.3% outdoors. In the sobel method the result of motion detection depends on the lighting conditions of the room being supervised. When the room is in bright condition, the accuracy of the system decreases and when the room is dark, the accuracy of the system increases with an accuracy of 80%. In the adaptive motion detection method, motion can be detected with a condition in camera visibility there is no object that is easy to move. In the frame difference method, testing on RBG image using average computation with threshold of 35 gives the best value. In the ADI method, the result of accuracy in motion detection reached 95.12%.

  19. Dynamic response and stability of semi-rigid frames

    Science.gov (United States)

    Abu-Yasein, Omar Ali

    This dissertation presents a method to determine the load capacity as well as end member forces and deformations of frames with partial rigid joint connections by using the direct stiffness method. The connections are modeled as rotational springs attached at the ends of framed members. The lumped mass method, which is an approximate method, and the distributed mass method, which is an exact method, are also presented to compute the natural frequency of frames. The effects of the axial forces and the flexibility of joint connections are both included. Furthermore, the time-dependent response of semi-rigid frames subjected to periodic axial forces is formulated. The harmonic function is approximated by dividing the periodic function into n intervals and the periodic axial forces are evaluated at each time interval as constant forces using 'piecewise approximation'. The regions of instability of frames with different joint stiffness were determined using the characteristic equation method. The time-dependent part of the differential equation for free vibration of a framed member subjected to a harmonic force can be written in the form of the Mathieu-Hill equation where all characteristics of the Mathieu-Hill equation solutions can be used to determine the boundaries of instability regions.

  20. Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component.

    Science.gov (United States)

    Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki

    2018-02-01

    Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P image-free navigation systems decreased the number of rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.

  1. Real-time estimation of prostate tumor rotation and translation with a kV imaging system based on an iterative closest point algorithm

    International Nuclear Information System (INIS)

    Tehrani, Joubin Nasehi; O’Brien, Ricky T; Keall, Paul; Poulsen, Per Rugaard

    2013-01-01

    Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right–left (RL), anterior–posterior (AP) and superior–inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of −0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring

  2. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  3. Refined finite element modelling for the vibration analysis of large rotating machines: Application to the gas turbine modular helium reactor power conversion unit

    International Nuclear Information System (INIS)

    Combescure, D.; Lazarus, A.; Lazarus, A.

    2008-01-01

    This paper is aimed at presenting refined finite element modelling used for dynamic analysis of large rotating machines. The first part shows an equivalence between several levels of modelling: firstly, models made of beam elements and rigid disc with gyroscopic coupling representing the position of the rotating shaft in an inertial frame; secondly full three-dimensional (3D) or 3D shell models of the rotor and the blades represented in the rotating frame and finally two-dimensional (2D) Fourier model for both rotor and stator. Simple cases are studied to better understand the results given by analysis performed using a rotating frame and the equivalence with the standard calculations with beam elements. Complete analysis of rotating machines can be performed with models in the frames best adapted for each part of the structure. The effects of several defects are analysed and compared with this approach. In the last part of the paper, the modelling approach is applied to the analysis of the large rotating shaft part of the power conversion unit of the GT-MHR nuclear reactor. (authors)

  4. Refined finite element modelling for the vibration analysis of large rotating machines: Application to the gas turbine modular helium reactor power conversion unit

    Energy Technology Data Exchange (ETDEWEB)

    Combescure, D.; Lazarus, A. [CEA Saclay, DEN/DM2S/SEMT/DYN, Dynam Anal Lab, Saclay, (France); Lazarus, A. [Ecole Polytech, Mecan Solides Lab, F-91128 Palaiseau, (France)

    2008-07-01

    This paper is aimed at presenting refined finite element modelling used for dynamic analysis of large rotating machines. The first part shows an equivalence between several levels of modelling: firstly, models made of beam elements and rigid disc with gyroscopic coupling representing the position of the rotating shaft in an inertial frame; secondly full three-dimensional (3D) or 3D shell models of the rotor and the blades represented in the rotating frame and finally two-dimensional (2D) Fourier model for both rotor and stator. Simple cases are studied to better understand the results given by analysis performed using a rotating frame and the equivalence with the standard calculations with beam elements. Complete analysis of rotating machines can be performed with models in the frames best adapted for each part of the structure. The effects of several defects are analysed and compared with this approach. In the last part of the paper, the modelling approach is applied to the analysis of the large rotating shaft part of the power conversion unit of the GT-MHR nuclear reactor. (authors)

  5. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov

    2008-01-01

    ) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13-bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program......, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common...... carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow...

  6. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    Directory of Open Access Journals (Sweden)

    Nakamura Satoshi

    2004-01-01

    Full Text Available We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  7. Static inelastic analysis of steel frames with flexible connections

    Directory of Open Access Journals (Sweden)

    Nefovska-Danilović M.

    2004-01-01

    Full Text Available The effects of connection flexibility and material yielding on the behavior of plane steel frames subjected to static (monotonic loads are presented in this paper. Two types of material nonlinearities are considered: flexible nodal connections and material yielding, as well as geometric nonlinearity of the structure. To account for material yielding, a plastic hinge concept is adopted. A flexible connection is idealized by nonlinear rotational spring. Plastic hinge is also idealized by nonlinear rotational spring attached in series with the rotational spring that accounts for connection flexibility. The stiffness matrix for the beam with flexible connections and plastic hinges at its ends is obtained. To illustrate the validity and accuracy of the proposed numerical model, several examples have been conducted.

  8. NMR of the rotator cuff. An update

    International Nuclear Information System (INIS)

    Kreitner, Karl-Friedrich; Maehringer-Kunz, Aline

    2016-01-01

    The rotator cuff consists of the tendons of the supscapularis, supraspinatus, infraspinatus and teres minor muscles. This group of muscles performs multiple functions and is often stressed during various activities. This explains, why rotator cuff disease is common and the most often cause of shoulder pain and dysfunction in adults. MR imaging still is the most important imaging modality in assessment of rotator cuff disease. It enables the radiologist to make an accurate diagnosis, the basis for an appropriate management. In this article, current concepts with regard to anatomy and imaging diagnosis will be reviewed. The discussion of the complex anatomy is followed by normal and pathologic MR imaging appearances of the rotator cuff including tendinopathy and tearing, and concluding with a review of the postoperative cuff.

  9. Real time imaging and infrared background scene analysis using the Naval Postgraduate School infrared search and target designation (NPS-IRSTD) system

    Science.gov (United States)

    Bernier, Jean D.

    1991-09-01

    The imaging in real time of infrared background scenes with the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System was achieved through extensive software developments in protected mode assembly language on an Intel 80386 33 MHz computer. The new software processes the 512 by 480 pixel images directly in the extended memory area of the computer where the DT-2861 frame grabber memory buffers are mapped. Direct interfacing, through a JDR-PR10 prototype card, between the frame grabber and the host computer AT bus enables each load of the frame grabber memory buffers to be effected under software control. The protected mode assembly language program can refresh the display of a six degree pseudo-color sector in the scanner rotation within the two second period of the scanner. A study of the imaging properties of the NPS-IRSTD is presented with preliminary work on image analysis and contrast enhancement of infrared background scenes.

  10. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  11. Towards a poetics of the cinematographic frame

    Directory of Open Access Journals (Sweden)

    Des O'Rawe

    2011-05-01

    Full Text Available In delineating a poetics of the cinematographic frame, this essay presents a typology of framing styles, and demonstrates ways in which filmmakers use the frame as an expressive resource—and ways in which the frame uses them. The examples discussed are modernist in orientation, and each has a particular association with a city—its history, architecture, and cultural character. Although it is common practice to refer to various—especially, modernist—framing situations as instances of deframing, the essay also enquires into the problematic nature of this term, suggesting alternative visual and cinematographic contexts more amenable to the deconstructive implications of this term. As the boundaries between cinema and the other arts continue to converge and relations between frame, image, and screen become more complex, this essay offers a reassessment of some first principles of film language, especially the aesthetic integrity of the cinematographic frame.

  12. Dual filtered backprojection for micro-rotation confocal microscopy

    International Nuclear Information System (INIS)

    Laksameethanasan, Danai; Brandt, Sami S; Renaud, Olivier; Shorte, Spencer L

    2009-01-01

    Micro-rotation confocal microscopy is a novel optical imaging technique which employs dielectric fields to trap and rotate individual cells to facilitate 3D fluorescence imaging using a confocal microscope. In contrast to computed tomography (CT) where an image can be modelled as parallel projection of an object, the ideal confocal image is recorded as a central slice of the object corresponding to the focal plane. In CT, the projection images and the 3D object are related by the Fourier slice theorem which states that the Fourier transform of a CT image is equal to the central slice of the Fourier transform of the 3D object. In the micro-rotation application, we have a dual form of this setting, i.e. the Fourier transform of the confocal image equals the parallel projection of the Fourier transform of the 3D object. Based on the observed duality, we present here the dual of the classical filtered back projection (FBP) algorithm and apply it in micro-rotation confocal imaging. Our experiments on real data demonstrate that the proposed method is a fast and reliable algorithm for the micro-rotation application, as FBP is for CT application

  13. Heterotaxy syndromes and abnormal bowel rotation

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Beverley [Stanford University, Lucile Packard Children' s Hospital, Department of Radiology, Stanford, CA (United States); Koppolu, Raji; Sylvester, Karl [Lucile Packard Children' s Hospital at Stanford, Department of Surgery, Stanford, CA (United States); Murphy, Daniel [Lucile Packard Children' s Hospital at Stanford, Department of Cardiology, Stanford, CA (United States)

    2014-05-15

    Bowel rotation abnormalities in heterotaxy are common. As more children survive cardiac surgery, the management of gastrointestinal abnormalities has become controversial. To evaluate imaging of malrotation in heterotaxy with surgical correlation and provide an algorithm for management. Imaging reports of heterotaxic children with upper gastrointestinal (UGI) and/or small bowel follow-through (SBFT) were reviewed. Subsequently, fluoroscopic images were re-reviewed in conjunction with CT/MR studies. The original reports and re-reviewed images were compared and correlated with surgical findings. Nineteen of 34 children with heterotaxy underwent UGI, 13/19 also had SBFT. In 15/19 reports, bowel rotation was called abnormal: 11 malrotation, 4 non-rotation, no cases of volvulus. Re-review, including CT (10/19) and MR (2/19), designated 17/19 (90%) as abnormal, 10 malrotation (abnormal bowel arrangement, narrow or uncertain length of mesentery) and 7 non-rotation (small bowel and colon on opposite sides plus low cecum with probable broad mesentery). The most useful CT/MR findings were absence of retroperitoneal duodenum in most abnormal cases and location of bowel, especially cecum. Abnormal orientation of mesenteric vessels suggested malrotation but was not universal. Nine children had elective bowel surgery; non-rotation was found in 4/9 and malrotation was found in 5/9, with discrepancies (non-rotation at surgery, malrotation on imaging) with 4 original interpretations and 1 re-review. We recommend routine, early UGI and SBFT studies once other, urgent clinical concerns have been stabilized, with elective laparoscopic surgery in abnormal or equivocal cases. Cross-sectional imaging, usually obtained for other reasons, can contribute diagnostically. Attempting to assess mesenteric width is important in differentiating non-rotation from malrotation and more accurately identifies appropriate surgical candidates. (orig.)

  14. Heterotaxy syndromes and abnormal bowel rotation

    International Nuclear Information System (INIS)

    Newman, Beverley; Koppolu, Raji; Sylvester, Karl; Murphy, Daniel

    2014-01-01

    Bowel rotation abnormalities in heterotaxy are common. As more children survive cardiac surgery, the management of gastrointestinal abnormalities has become controversial. To evaluate imaging of malrotation in heterotaxy with surgical correlation and provide an algorithm for management. Imaging reports of heterotaxic children with upper gastrointestinal (UGI) and/or small bowel follow-through (SBFT) were reviewed. Subsequently, fluoroscopic images were re-reviewed in conjunction with CT/MR studies. The original reports and re-reviewed images were compared and correlated with surgical findings. Nineteen of 34 children with heterotaxy underwent UGI, 13/19 also had SBFT. In 15/19 reports, bowel rotation was called abnormal: 11 malrotation, 4 non-rotation, no cases of volvulus. Re-review, including CT (10/19) and MR (2/19), designated 17/19 (90%) as abnormal, 10 malrotation (abnormal bowel arrangement, narrow or uncertain length of mesentery) and 7 non-rotation (small bowel and colon on opposite sides plus low cecum with probable broad mesentery). The most useful CT/MR findings were absence of retroperitoneal duodenum in most abnormal cases and location of bowel, especially cecum. Abnormal orientation of mesenteric vessels suggested malrotation but was not universal. Nine children had elective bowel surgery; non-rotation was found in 4/9 and malrotation was found in 5/9, with discrepancies (non-rotation at surgery, malrotation on imaging) with 4 original interpretations and 1 re-review. We recommend routine, early UGI and SBFT studies once other, urgent clinical concerns have been stabilized, with elective laparoscopic surgery in abnormal or equivocal cases. Cross-sectional imaging, usually obtained for other reasons, can contribute diagnostically. Attempting to assess mesenteric width is important in differentiating non-rotation from malrotation and more accurately identifies appropriate surgical candidates. (orig.)

  15. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    Science.gov (United States)

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (Pdynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  16. Full-frame, programmable hyperspectral imager

    Science.gov (United States)

    Love, Steven P.; Graff, David L.

    2017-07-25

    A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays, that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.

  17. B0 insensitive multiple-quantum resolved sodium imaging using a phase-rotation scheme

    Science.gov (United States)

    Fiege, Daniel P.; Romanzetti, Sandro; Tse, Desmond H. Y.; Brenner, Daniel; Celik, Avdo; Felder, Jörg; Jon Shah, N.

    2013-03-01

    Triple-quantum filtering has been suggested as a mechanism to differentiate signals from different physiological compartments. However, the filtering method is sensitive to static field inhomogeneities because different coherence pathways may interfere destructively. Previously suggested methods employed additional phase-cycles to separately acquire pathways. Whilst this removes the signal dropouts, it reduces the signal-to-noise per unit time. In this work we suggest the use of a phase-rotation scheme to simultaneously acquire all coherence pathways and then separate them via Fourier transform. Hence the method yields single-, double- and triple-quantum filtered images. The phase-rotation requires a minimum of 36 instead of six cycling steps. However, destructive interference is circumvented whilst maintaining full signal-to-noise efficiency for all coherences.

  18. Semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1983-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)

  19. Motion compensated frame interpolation with a symmetric optical flow constraint

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Bruhn, Andrés

    2012-01-01

    We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function such that ......We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function...... methods. The proposed reparametrization is generic and can be applied to almost every existing algorithm. In this paper we illustrate its advantages by considering the classic TV-L1 optical flow algorithm as a prototype. We demonstrate that this widely used method can produce results that are competitive...... with current state-of-the-art methods. Finally we show that the scheme can be implemented on graphics hardware such that it be- comes possible to double the frame rate of 640 × 480 video footage at 30 fps, i.e. to perform frame doubling in realtime....

  20. Do Magnetic Resonance Imaging Characteristics of Full-Thickness Rotator Cuff Tears Correlate With Sleep Disturbance?

    Science.gov (United States)

    Reyes, Bryan A; Hull, Brandon R; Kurth, Alexander B; Kukowski, Nathan R; Mulligan, Edward P; Khazzam, Michael S

    2017-11-01

    Many patients with rotator cuff tears suffer from nocturnal shoulder pain, resulting in sleep disturbance. To determine whether rotator cuff tear size correlated with sleep disturbance in patients with full-thickness rotator cuff tears. Cross-sectional study; Level of evidence, 3. Patients with a diagnosis of unilateral full-thickness rotator cuff tears (diagnosed via magnetic resonance imaging [MRI]) completed the Pittsburgh Sleep Quality Index (PSQI), a visual analog scale (VAS) quantifying their shoulder pain, and the American Shoulder and Elbow Surgeons (ASES) questionnaire. Shoulder MRI scans were analyzed for anterior-posterior tear size (mm), tendon retraction (mm), Goutallier grade (0-4), number of tendons involved (1-4), muscle atrophy (none, mild, moderate, or severe), and humeral head rise (present or absent). Bivariate correlations were calculated between the MRI characteristics and baseline survey results. A total of 209 patients with unilateral full-thickness rotator cuff tears were included in this study: 112 (54%) female and 97 (46%) male (mean age, 64.1 years). On average, shoulder pain had been present for 24 months. The mean PSQI score was 9.8, and the mean VAS score was 5.0. No significant correlations were found between any of the rotator cuff tear characteristics and sleep quality. Only tendon retraction had a significant correlation with pain. Although rotator cuff tears are frequently associated with nocturnal pain and sleep disruption, this study demonstrated that morphological characteristics of full-thickness rotator cuff tears, such as size and tendon retraction, do not correlate with sleep disturbance and have little to no correlation with pain levels.

  1. Hypertrophic changes of the teres minor muscle in rotator cuff tears: quantitative evaluation by magnetic resonance imaging.

    Science.gov (United States)

    Kikukawa, Kenshi; Ide, Junji; Kikuchi, Ken; Morita, Makoto; Mizuta, Hiroshi; Ogata, Hiroomi

    2014-12-01

    Few reports have assessed the teres minor (TM) muscle in rotator cuff tears. This study aimed to quantitatively analyze the morphologic changes of the TM muscle in patients with or without rotator cuff tears by magnetic resonance imaging (MRI). This retrospective study consisted of 279 subjects classified on the basis of interpretations of conventional MRI observations into 6 groups: no cuff tear; partial-thickness supraspinatus (SSP) tear; full-thickness SSP tear; SSP and subscapularis tears; SSP and infraspinatus (ISP) tears; and SSP, ISP, and subscapularis tears. With use of ImageJ software (National Institutes of Health, Bethesda, MD, USA) for oblique sagittal MRI, we measured the areas of ISP, TM, and anatomic external rotation (ISP + TM) muscles on the most lateral side in which the scapular spine was in contact with the scapular body. The occupational ratios of the TM muscle area to the anatomic external rotation muscle area were calculated. Ratios above the maximum of the 95% confidence intervals of the occupational ratio in the no-tear group were defined as hypertrophy of the TM muscle. Occupational ratios of the TM muscle in the no-tear group followed a normal distribution, and ratios >0.288 were defined as hypertrophic. Hypertrophic changes of the TM muscle were confirmed in rotator cuff tears involving the ISP tendon. A negative correlation was found between the occupational ratios of TM and ISP (P muscle appeared hypertrophic in rotator cuff tears involving the ISP, and the progression of ISP muscle atrophy seemed to induce the development of this compensatory hypertrophy. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. MR imaging after rotator cuff repair: full-thickness defects and bursitis-like subacromial abnormalities in asymptomatic subjects

    International Nuclear Information System (INIS)

    Zanetti, M.; Hodler, J.; Jost, B.; Gerber, C.

    2000-01-01

    Objective. To determine the prevalence and extent of residual defects or retears and bursitis-like subacromial abnormalities on MR images after rotator cuff repair in asymptomatic subjects, and to define the clinical relevance of these findings.Design and patients. Fourteen completely asymptomatic patients and 32 patients with residual symptoms were investigated 27-53 months (mean 39 months) after open transosseous reinsertion of the rotator cuff. Coronal T2-weighted turbo spin-echo and turbo STIR or T2-weighted fat-suppressed MR images were obtained. The prevalence and extent of residual defects or retears of the rotator cuff and bursitis-like subacromial abnormalities were determined.Results. Residual defects or retears were detected in three (21%) and bursitis-like abnormalities in 14 (100%) of the 14 asymptomatic patients. Fifteen (47%) residual defects or retears and 31 (97%) bursitis-like abnormalities were diagnosed in the 32 patients with residual symptoms. The size of the residual defects/retears was significantly smaller in the asymptomatic group (mean 8 mm, range 6-11 mm) than in the symptomatic group (mean 32 mm, range 7-50 mm) (t-test, P=0.001). The extent of the bursitis-like subacromial abnormalities did not significantly differ (t-test, P>0.05) between asymptomatic (mean 28 x 3 mm) and symptomatic patients (mean 32 x 3 mm).Conclusion. Small residual defects or retears (<1 cm) of the rotator cuff are not necessarily associated with clinical symptoms. Subacromial bursitis-like MR abnormalities are almost always seen after rotator cuff repair even in patients without residual complaints. They may persist for several years after rotator cuff repair and appear to be clinically irrelevant. (orig.)

  3. MR imaging after rotator cuff repair: full-thickness defects and bursitis-like subacromial abnormalities in asymptomatic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Zanetti, M.; Hodler, J. [Dept. of Radiology, University Hospital Balgrist, Zurich (Switzerland); Jost, B.; Gerber, C. [Dept. of Orthopedic Surgery, University Hospital Balgrist, Zurich (Switzerland)

    2000-06-01

    Objective. To determine the prevalence and extent of residual defects or retears and bursitis-like subacromial abnormalities on MR images after rotator cuff repair in asymptomatic subjects, and to define the clinical relevance of these findings.Design and patients. Fourteen completely asymptomatic patients and 32 patients with residual symptoms were investigated 27-53 months (mean 39 months) after open transosseous reinsertion of the rotator cuff. Coronal T2-weighted turbo spin-echo and turbo STIR or T2-weighted fat-suppressed MR images were obtained. The prevalence and extent of residual defects or retears of the rotator cuff and bursitis-like subacromial abnormalities were determined.Results. Residual defects or retears were detected in three (21%) and bursitis-like abnormalities in 14 (100%) of the 14 asymptomatic patients. Fifteen (47%) residual defects or retears and 31 (97%) bursitis-like abnormalities were diagnosed in the 32 patients with residual symptoms. The size of the residual defects/retears was significantly smaller in the asymptomatic group (mean 8 mm, range 6-11 mm) than in the symptomatic group (mean 32 mm, range 7-50 mm) (t-test, P=0.001). The extent of the bursitis-like subacromial abnormalities did not significantly differ (t-test, P>0.05) between asymptomatic (mean 28 x 3 mm) and symptomatic patients (mean 32 x 3 mm).Conclusion. Small residual defects or retears (<1 cm) of the rotator cuff are not necessarily associated with clinical symptoms. Subacromial bursitis-like MR abnormalities are almost always seen after rotator cuff repair even in patients without residual complaints. They may persist for several years after rotator cuff repair and appear to be clinically irrelevant. (orig.)

  4. Polarimetric Imaging using Two Photoelastic Modulators

    Science.gov (United States)

    Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat

    2009-01-01

    A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.

  5. A robust frame element with cyclic plasticity and local joint effects

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2018-01-01

    A robust elasto-plastic element is developed for analysis of frame structures. The element consists of a beam member with end joints with properties permitting representation of the effect of section forces in adjoining members, like axial forces. By use of the equilibrium formulation...... is developed, using a mid-step state to obtain representative information about the return path. The element is implemented in a co-rotational large-deformation computer program for frame structures. The formulation is illustrated by application to a couple of typical offshore frame structures, and comparison...... of different representations of the plastic effects illustrates the importance of a robust element with realistic representation of the cyclic plastic mechanisms....

  6. Application of high-frame-rate neutron radiography to fluid measurement

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi

    1997-01-01

    To apply Neutron radiography (NR) technique to multiphase flow research, high frame-rate NR was developed by assembling up-to-date technologies for neutron source, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and no need for triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at the recording speeds of 250, 500 and 1000 frames/s. The qualities of those consecutive images were good enough to observe the flow pattern and behavior. It was demonstrated also that some characteristics of two-phase flow could be measured from those images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, rising velocity of bubbles, and wave height and interfacial area in annular flow could be obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction could be performed. For this purpose, a quantification method, i.e. Σ-scaling method, was proposed based upon the consideration on the effect of scattered neutrons. This method was tested against known void profiles and compared with existing measurement methods and a correlation for void fraction. It was confirmed that this new technique has significant advantages both in visualizing and measuring high-speed fluid phenomena. (J.P.N.)

  7. MR-guided data framing for PET motion correction in simultaneous MR–PET: A preliminary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, M.G., E-mail: m.ullisch@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Scheins, J.; Weirich, C.; Rota Kops, E.; Celik, A.; Tellmann, L.; Stöcker, T.; Herzog, H.; Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany)

    2013-02-21

    Head motion can significantly degrade image quality of static and dynamic Positron Emission Tomography (PET) of the human brain. One method to regain acceptable image quality in the presence of motion is to include the correction for motion in the reconstruction process. When applying motion correction, the PET data can be segmented into discrete parts of similar head position, referred to as frames. This framing of the data can reduce the computational overhead necessary for motion correction during the reconstruction process by reducing the number of discrete head positions which have to be accounted for. Here a framing algorithm is presented which minimises residual motion in the framed data, while taking full advantage of the additional information provided by Magnetic Resonance Imaging (MRI) in a simultaneous MR–PET acquisition. In the work presented here information on motion is derived from EPI sequences acquired simultaneously with the PET data. A comparison to images reconstructed with regular framing show a more clearly delineated cortex due to increased contrast between grey matter and white matter. This improvement in image quality is achieved as well as a reduction in the number of frames, thereby reducing the reconstruction time. Preliminary data indicates an efficient reduction of residual intra-frame motion compared to regular framing.

  8. Geometric accuracy of 3D coordinates of the Leksell stereotactic skull frame in 1.5 Tesla- and 3.0 Tesla-magnetic resonance imaging: a comparison of three different fixation screw materials

    Science.gov (United States)

    Nakazawa, Hisato; Mori, Yoshimasa; Yamamuro, Osamu; Komori, Masataka; Shibamoto, Yuta; Uchiyama, Yukio; Tsugawa, Takahiko; Hagiwara, Masahiro

    2014-01-01

    We assessed the geometric distortion of 1.5-Tesla (T) and 3.0-T magnetic resonance (MR) images with the Leksell skull frame system using three types of cranial quick fixation screws (QFSs) of different materials—aluminum, aluminum with tungsten tip, and titanium—for skull frame fixation. Two kinds of acrylic phantoms were placed on a Leksell skull frame using the three types of screws, and were scanned with computed tomography (CT), 1.5-T MR imaging and 3.0-T MR imaging. The 3D coordinates for both strengths of MR imaging were compared with those for CT. The deviations of the measured coordinates at selected points (x = 50, 100 and 150; y = 50, 100 and 150) were indicated on different axial planes (z = 50, 75, 100, 125 and 150). The errors of coordinates with QFSs of aluminum, tungsten-tipped aluminum, and titanium were 2.0 mm in most positions. The geometric accuracy of the Leksell skull frame system with 1.5-T MR imaging was high and valid for clinical use. However, the geometric errors with 3.0-T MR imaging were larger than those of 1.5-T MR imaging and were acceptable only with aluminum QFSs, and then only around the central region. PMID:25034732

  9. Orbit effects on impurity transport in a rotating tokamak plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-05-01

    Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster with a higher bounce frequency, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle orbits near the surface of a rotating tokamak are also analyzed. Orbit effects indicate that more impurities can penetrate into a plasma rotating with counter-beam injection. Particle simulation is carried out with realistic experimental parameters and the results are in qualitative agreement with some experimental observations in the Tokamak Fusion Test Reactor (TFTR). 19 refs., 15 figs

  10. Multipole expansion of vertex functions in an arbitrary frame

    International Nuclear Information System (INIS)

    Daumens, Michel

    1977-01-01

    Vertex functions are expanded on the bases of tensor spherical harmonics and tensor multipoles. The coefficients of the expansions are rotational invariant form factors. The relations with those defined in particular frames by Durand, De Celles and Marr, and by De Rafael are exhibited. Finally multipolar form factors are built which are irreducible under pure Lorentz transformations [fr

  11. Seismic response of reinforced concrete frames at different damage levels

    Science.gov (United States)

    Morales-González, Merangeli; Vidot-Vega, Aidcer L.

    2017-03-01

    Performance-based seismic engineering is focused on the definition of limit states to represent different levels of damage, which can be described by material strains, drifts, displacements or even changes in dissipating properties and stiffness of the structure. This study presents a research plan to evaluate the behavior of reinforced concrete (RC) moment resistant frames at different performance levels established by the ASCE 41-06 seismic rehabilitation code. Sixteen RC plane moment frames with different span-to-depth ratios and three 3D RC frames were analyzed to evaluate their seismic behavior at different damage levels established by the ASCE 41-06. For each span-to-depth ratio, four different beam longitudinal reinforcement steel ratios were used that varied from 0.85 to 2.5% for the 2D frames. Nonlinear time history analyses of the frames were performed using scaled ground motions. The impact of different span-to-depth and reinforcement ratios on the damage levels was evaluated. Material strains, rotations and seismic hysteretic energy changes at different damage levels were studied.

  12. The Repaired Rotator Cuff: MRI and Ultrasound Evaluation.

    Science.gov (United States)

    Lee, Susan C; Williams, Danielle; Endo, Yoshimi

    2018-03-01

    The purposes of this review were to provide an overview of the current practice of evaluating the postoperative rotator cuff on imaging and to review the salient imaging findings of the normal and abnormal postoperative rotator cuff, as well as of postoperative complications. The repaired rotator cuff frequently appears abnormal on magnetic resonance imaging (MRI) and ultrasound (US). Recent studies have shown that while the tendons typically normalize, they can demonstrate clinically insignificant abnormal imaging appearances for longer than 6 months. Features of capsular thickening or subacromial-subdeltoid bursal thickening and fluid distension were found to decrease substantially in the first 6-month postoperative period. MRI and US were found to be highly comparable in the postoperative assessment of the rotator cuff, although they had a lower sensitivity for partial thickness tears. Imaging evaluation of newer techniques such as patch augmentation and superior capsular reconstruction needs to be further investigated. MRI and US are useful in the postoperative assessment of the rotator cuff, not only for evaluation of the integrity of the rotator cuff, but also for detecting hardware complications and other etiologies of shoulder pain.

  13. Adaptive panoramic tomography with a circular rotational movement for the formation of multifocal image layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. S.; Cho, H. S.; Park, Y. O.; Je, U. K.; Hong, D. K.; Choi, S. I.; Koo, Y. S. [Yonsei University, Wonju (Korea, Republic of)

    2012-02-15

    Panoramic radiography with which only structures within a certain image layer are in focus and others out of focus on the panoramic image has become a popular imaging technique especially in dentistry. However, the major drawback to the technique is a mismatch between the structures to be focused and the predefined image layer mainly due to the various shapes and sizes of dental arches and/or to malpositioning of the patient. These result in image quality typically inferior to that obtained using intraoral radiographic techniques. In this paper, to overcome these difficulties, we suggest a new panoramic reconstruction algorithm, the so-called adaptive panoramic tomography (APT), capable of reconstructing multifocal image layers with no additional exposure. In order to verify the effectiveness of the proposed algorithm, we performed systematic simulation studies with a circular rotational movement and investigated the image performance.

  14. Mixed quantum/classical theory of rotationally and vibrationally inelastic scattering in space-fixed and body-fixed reference frames.

    Science.gov (United States)

    Semenov, Alexander; Babikov, Dmitri

    2013-11-07

    We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scattering process in the diatomic molecule + atom system. Two versions of theory are presented, first in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-valued and dense. Such calculations may be computationally demanding for heavier molecules and/or higher temperatures, when the number of accessible channels becomes large. In contrast, the second version of theory requires some tedious derivations and the final equations of motion are rather complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from the computational point of view, while the space-fixed formulation can serve as a test of the body-fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model system to ensure that all equations, matrixes, and computer codes in both formulations are correct.

  15. Mixed quantum/classical theory of rotationally and vibrationally inelastic scattering in space-fixed and body-fixed reference frames

    International Nuclear Information System (INIS)

    Semenov, Alexander; Babikov, Dmitri

    2013-01-01

    We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scattering process in the diatomic molecule + atom system. Two versions of theory are presented, first in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-valued and dense. Such calculations may be computationally demanding for heavier molecules and/or higher temperatures, when the number of accessible channels becomes large. In contrast, the second version of theory requires some tedious derivations and the final equations of motion are rather complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from the computational point of view, while the space-fixed formulation can serve as a test of the body-fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model system to ensure that all equations, matrixes, and computer codes in both formulations are correct

  16. Global auroral imaging instrumentation for the dynamics explorer mission

    International Nuclear Information System (INIS)

    Frank, L.A.; Craven, J.D.; Ackerson, K.L.; English, M.R.; Eather, R.H.; Carovillano, R.L.

    1981-01-01

    The instrumentation for gaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. Three spin-scan auroral imaging (SAI) photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design which includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels comprising an image frame. (orig.)

  17. Rotator cuff disease

    International Nuclear Information System (INIS)

    Ziatkin, M.B.; Iannotti, J.P.; Roberts, M.; Dalinka, M.K.; Esterhai, J.L.; Kressel, H.Y.; Lenkinski, R.E.

    1988-01-01

    A dual-surface-coil array in a Helmholtz configuration was used to evaluate th rotator cuff in ten normal volunteers and 44 patients. Studies were performed with a General Electric 1.5-T MR imager. Thirty-two patients underwent surgery, 25 of whom also underwent arthrography. In comparison with surgery, MR imaging was more sensitive than arthrography for rotator cuff tears (91% vs 71%). The specificity and accuracy of MR imaging were 88% and 91%. The accuracy increased with use of an MR grading system. MR findings correlated with surgical findings with regard to the size and site of tears. MR findings of cuff tears were studied with multivariate analysis. Correlation was also found between a clinical score, the MR grade, and the clinical outcome

  18. Semiclassical description of quantum rotator in terms of SU(2) coherent states

    International Nuclear Information System (INIS)

    Gitman, D M; Petrusevich, D A; Shelepin, A L

    2013-01-01

    We introduce coordinates of the rigid body (rotator) using mutual positions between body-fixed and space-fixed reference frames. Wave functions that depend on such coordinates can be treated as scalar functions of the group SU(2). Irreducible representations of the group SU(2) × SU(2) in the space of such functions describe their possible transformations under independent rotations of the both reference frames. We construct sets of the corresponding group SU(2) × SU(2) Perelomov coherent states (CS) with a fixed angular momentum j of the rotator as special orbits of the latter group. Minimization of different uncertainty relations is discussed. The classical limit corresponds to the limit j → ∞. Considering Hamiltonians of rotators with different characteristics, we study the time evolution of the constructed CS. In some cases, the CS time evolution is completely or partially reduced to their parameter time evolution. If these parameters are chosen as Euler angles, then they obey the Euler equations in the classical limit. Quantum corrections to the motion of the quantum rotator can be found from exact equations on the CS parameters. (paper)

  19. Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation

    Directory of Open Access Journals (Sweden)

    Hezerul Abdul Karim

    2004-09-01

    Full Text Available Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996 and applying it to low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an elegant solution to the specific challenges of low-frame-rate video interpolation.

  20. Connecting VLBI and Gaia celestial reference frames

    Directory of Open Access Journals (Sweden)

    Zinovy Malkin

    2016-09-01

    Full Text Available The current state of the link problem between radio and optical celestial reference frames is considered.The main objectives of the investigations in this direction during the next few years are the preparation of a comparisonand the mutual orientation and rotation between the optical it Gaia Celestial Reference Frame (GCRFand the 3rd generation radio International Celestial Reference Frame (ICRF3, obtained from VLBI observations.Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System at micro-arcsecond level accuracy.Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial taskdue to relatively large systematic and random errors in source positions at different frequency bands.In this paper, a brief overview of recent work on the GCRF--ICRF link is presented.Additional possibilities to improve the GCRF--ICRF link accuracy are discussed.The suggestion is made to use astrometric radio sources with optical magnitude to 20$^m$ rather than to 18$^m$ as currently plannedfor the GCRF--ICRF link.In addition, the use of radio stars is also a prospective method to obtain independent and accurate orientation between the Gaia frame and the ICRF.

  1. Connecting VLBI and Gaia Celestial Reference Frames

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, Zinovy, E-mail: malkin@gao.spb.ru [Department of Radio Astronomy Research, The Pulkovo Astronomical Observatory, St. Petersburg (Russian Federation); Institute of Earth Sciences, St. Petersburg State University, St. Petersburg (Russian Federation); Astronomy and Cosmic Geodesy Department, Kazan Federal University, Kazan (Russian Federation)

    2016-09-12

    The current state of the link problem between radio and optical celestial reference frames is considered. The main objectives of the investigations in this direction during the next few years are the preparation of a comparison and the mutual orientation and rotation between the optical Gaia Celestial Reference Frame (GCRF) and the 3rd generation radio International Celestial Reference Frame (ICRF3), obtained from VLBI observations. Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System) at micro-arcsecond level accuracy. Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial task due to relatively large systematic and random errors in source positions at different frequency bands. In this paper, a brief overview of recent work on the GCRF–ICRF link is presented. Additional possibilities to improve the GCRF–ICRF link accuracy are discussed. The suggestion is made to use astrometric radio sources with optical magnitude to 20{sup m} rather than to 18{sup m} as currently planned for the GCRF–ICRF link. In addition, the use of radio stars is also a prospective method to obtain independent and accurate orientation between the Gaia frame and the ICRF.

  2. Boundary effects and gapped dispersion in rotating fermionic matter

    Directory of Open Access Journals (Sweden)

    Shu Ebihara

    2017-01-01

    Full Text Available We discuss the importance of boundary effects on fermionic matter in a rotating frame. By explicit calculations at zero temperature we show that the scalar condensate of fermion and anti-fermion cannot be modified by the rotation once the boundary condition is properly implemented. The situation is qualitatively changed at finite temperature and/or in the presence of a sufficiently strong magnetic field that supersedes the boundary effects. Therefore, to establish an interpretation of the rotation as an effective chemical potential, it is crucial to consider further environmental effects such as the finite temperature and magnetic field.

  3. CT image reconstruction of steel pipe section from few projections using the method of rotating polar-coordinate

    International Nuclear Information System (INIS)

    Peng Shuaijun; Wu Zhifang

    2008-01-01

    Fast online inspection in steel pipe production is a big challenge. Radiographic CT imaging technology, a high performance non-destructive testing method, is quite appropriate for inspection and quality control of steel pipes. The method of rotating polar-coordinate is used to reconstruct the steel pipe section from few projections with the purpose of inspecting it online. It reduces the projection number needed and the data collection time, and accelerates the reconstruction algorithm and saves the inspection time evidently. The results of simulation experiment and actual experiment indicate that the image quality and reconstruction time of rotating polar-coordinate method meet the requirements of inspecting the steel tube section online basically. The study is of some theoretical significance and the method is expected to be widely used in practice. (authors)

  4. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  5. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  6. Framing the frame

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2007-08-01

    Full Text Available We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the typical findings was observed whereas when the goal was to maintain, no framing effect was found. When we examined the decisions of the entire population, we did not observe a framing effect. In Study 2, we provided participants with a similar decision task except in this situation the goal was ambiguous, allowing us to observe participants' self-imposed goals and how they influenced choice preferences. The findings from Study 2 demonstrated individual variability in imposed goal and provided a conceptual replication of Study 1. %need keywords

  7. Framing Service, Benefit, and Credibility Through Images and Texts: A Content Analysis of Online Promotional Messages of Korean Medical Tourism Industry.

    Science.gov (United States)

    Jun, Jungmi

    2016-07-01

    This study examines how the Korean medical tourism industry frames its service, benefit, and credibility issues through texts and images of online brochures. The results of content analysis suggest that the Korean medical tourism industry attempts to frame their medical/health services as "excellence in surgeries and cancer care" and "advanced health technology and facilities." However, the use of cost-saving appeals was limited, which can be seen as a strategy to avoid consumers' association of lower cost with lower quality services, and to stress safety and credibility.

  8. Framing the frame

    OpenAIRE

    Todd McElroy; John J. Seta

    2007-01-01

    We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the ty...

  9. Cone beam computed tomography image guidance system for a dedicated intracranial radiosurgery treatment unit.

    Science.gov (United States)

    Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David

    2013-01-01

    Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  11. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    International Nuclear Information System (INIS)

    Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan; Kachelrieß, Marc

    2016-01-01

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation

  12. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    Energy Technology Data Exchange (ETDEWEB)

    Ritschl, Ludwig; Fleischmann, Christof [Ziehm Imaging GmbH, Donaustraße 31, Nürnberg 90451 (Germany); Kuntz, Jan, E-mail: j.kuntz@dkfz.de; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany)

    2016-05-15

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation

  13. Rotational Fourier tracking of diffusing polygons.

    Science.gov (United States)

    Mayoral, Kenny; Kennair, Terry P; Zhu, Xiaoming; Milazzo, James; Ngo, Kathy; Fryd, Michael M; Mason, Thomas G

    2011-11-01

    We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we determine an isolated particle's rotational trajectory, independent of its position. The measured in-plane rotational diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close proximity of the particles to the wall arising from the depletion attraction.

  14. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    Science.gov (United States)

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  15. High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.

    Science.gov (United States)

    Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2014-08-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Synthesis of optical holograms of rotating objects

    International Nuclear Information System (INIS)

    Bogdanova, T.V.; Titar', V.P.; Tomchuk, E.Ya.

    1998-01-01

    A method of synthesis of rotating objects is analyzed and its advantages over the previously known methods and restrictions caused by the nonlinear character of motion of objects being studied are determined. Numerical simulation is used to study properties of synthesized holograms and the images reconstructed with their help. The resolving power of synthesized holograms is determined. The pulsed response of the system used for the synthesis of rotating objects is studied and its isoplanar sections are determined. It is shown that in the optical range, in contrast to the radio-frequency range, one can synthesize holograms and reconstruct visual images not only of rotating objects, but of vibrating objects as well. For small angles of object rotation (0.0025 rad), an image with a high resolution power (0.0004 m) can be obtained

  17. Preventing skin injury during MR imaging for gamma knife surgery. Necessity and verification of insulated posts for fixation of leksell G-frame

    International Nuclear Information System (INIS)

    Kenai, Hiroyuki; Yamashita, Masanori; Yamada, Akira; Asano, Tomoshige; Wakabayashi, Yukihiro; Nagatomi, Hirofumi

    2011-01-01

    At our institution, several patients developed swelling or, in some cases, severe skin injury (exempli gratia (e.g.) ulcer) at the sites of contact with frame fixation pins, during an early period after introduction of Gamma Knife surgery (GKS). We confirmed that the skin injury was caused by heating of the skin tissue around a quick fixation screw (QFS) during MR imaging sequences with high specific absorption ratios (SARs), and noted for the first time that insulation of QFSs from the posts could prevent heat generation and skin injury. Therefore, we developed a novel insulated fixation post (IFP). The use of the IFP is the only practical means for ensuring safety. Here, we review our cases of skin injury, along with experimental results. We also describe the results of our verification study regarding the reliability of the IFP. To determine the degree of heating of the skin tissue around QFSs, which were suspected to be the causes of skin injury, MR imaging sequences used for patients who developed skin injury were reviewed and reproduced using a pumpkin and a melon as dummies with the 1.5-tesla apparatus. The strength of the IFP was also evaluated by fixing an aluminum pipe with IFPs and QFSs and applying impact. In addition, with patients, we compared the degree of displacement of coordinates using IFP versus conventional post made of aluminum alloy for frame fixation. In almost all cases of skin injury, 3D-time-of-flight (TOF) MR angiograpy with magnetization transfer contrast (MTC) pulse had been performed. In our experiments using the same MR imaging sequence, SARs were always high, with a whole body SAR (one-eighth of head SAR) exceeding 0.3 W/kg, and the temperature of the skin tissue around QFSs increased to about 55 deg C on average. Frame fixation with the IFPs did not induce heat generation during MR imaging for GKS in any sequences and did not cause skin injury. The strength and fixation accuracy of the IFP was comparable to those of the

  18. High frame rate imaging based photometry

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West; Jørgensen, U. G.; Andersen, M. I.

    2012-01-01

    in extremely crowded fields significantly by alleviating crowding. Alleviating crowding is a prerequisite for observing gravitational microlensing in main sequence stars towards the galactic bulge. However, the photometric stability of this device has not been assessed. The EMCCD has sources of noise not found...... in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from...

  19. Microwave Imaging Using CMOS Integrated Circuits with Rotating 4 × 4 Antenna Array on a Breast Phantom

    Directory of Open Access Journals (Sweden)

    Hang Song

    2017-01-01

    Full Text Available A digital breast cancer detection system using 65 nm technology complementary metal oxide semiconductor (CMOS integrated circuits with rotating 4 × 4 antenna array is presented. Gaussian monocycle pulses are generated by CMOS logic circuits and transmitted by a 4 × 4 matrix antenna array via two CMOS single-pole-eight-throw (SP8T switching matrices. Radar signals are received and converted to digital signals by CMOS equivalent time sampling circuits. By rotating the 4 × 4 antenna array, the reference signal is obtained by averaging the waveforms from various positions to extract the breast phantom target response. A signal alignment algorithm is proposed to compensate the phase shift of the signals caused by the system jitter. After extracting the scattered signal from the target, a bandpass filter is applied to reduce the noise caused by imperfect subtraction between original and the reference signals. The confocal imaging algorithm for rotating antennas is utilized to reconstruct the breast image. A 1 cm3 bacon block as a cancer phantom target in a rubber substrate as a breast fat phantom can be detected with reduced artifacts.

  20. From classical to modern ether-drift experiments: the narrow window for a preferred frame

    International Nuclear Information System (INIS)

    Consoli, M.; Costanzo, E.

    2004-01-01

    Modern ether-drift experiments look for a preferred frame by measuring the difference Δν in the relative frequencies of two cavity-stabilized lasers, upon local rotations of the apparatus or under the Earth's rotation. If the small deviations observed in the classical ether-drift experiments were not mere instrumental artifacts, by replacing the high vacuum in the resonating cavities with a dielectric gaseous medium (e.g., air), the typical measured Δν∼1 Hz should increase by orders of magnitude. This prediction is consistent with the characteristic modulation of a few kHz observed in the original experiment with He-Ne masers. However, if such enhancement would not be confirmed by new and more precise data, the existence of a preferred frame can be definitely ruled out

  1. Rotation-invariant observables in parity-violating decays of vector particles to fermion pairs

    CERN Document Server

    Faccioli, Pietro; Seixas, Joao; Wohri, Hermine K

    2010-01-01

    The di-fermion angular distribution observed in decays of inclusively produced vector particles is characterized by two frame-independent observables, reflecting the average spin-alignment of the produced particle and the magnitude of parity violation in the decay. The existence of these observables derives from the rotational properties of angular momentum eigenstates and is a completely general result, valid for any J=1 state and independent of the production process. Rotation-invariant formulations of polarization and of the decay parity-asymmetry can provide more significant measurements than the commonly used frame-dependent definitions, also improving the quality of the comparisons between the measurements and the theoretical calculations.

  2. Rotation-invariant observables in parity-violating decays of vector particles to fermion pairs

    International Nuclear Information System (INIS)

    Faccioli, Pietro; Woehri, Hermine K.; Lourenco, Carlos; Seixas, Joao

    2010-01-01

    The di-fermion angular distribution observed in decays of inclusively produced vector particles is characterized by two frame-independent observables, reflecting the average spin alignment of the produced particle and the magnitude of parity violation in the decay. The existence of these observables derives from the rotational properties of angular momentum eigenstates and is a completely general result, valid for any J=1 state and independent of the production process. Rotation-invariant formulations of polarization and of the decay parity asymmetry can provide more significant measurements than the commonly used frame-dependent definitions, also improving the quality of the comparisons between the measurements and the theoretical calculations.

  3. Beam’s-eye-view imaging during non-coplanar lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen S. F., E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross I. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: Beam’s-eye-view (BEV) imaging with an electronic portal imaging device (EPID) can be performed during lung stereotactic body radiation therapy (SBRT) to monitor the tumor location in real-time. Image quality for each patient and treatment field depends on several factors including the patient anatomy and the gantry and couch angles. The authors investigated the angular dependence of automatic tumor localization during non-coplanar lung SBRT delivery. Methods: All images were acquired at a frame rate of 12 Hz with an amorphous silicon EPID. A previously validated markerless lung tumor localization algorithm was employed with manual localization as the reference. From ten SBRT patients, 12 987 image frames of 123 image sequences acquired at 48 different gantry–couch rotations were analyzed. δ was defined by the position difference of the automatic and manual localization. Results: Regardless of the couch angle, the best tracking performance was found in image sequences with a gantry angle within 20° of 250° (δ = 1.40 mm). Image sequences acquired with gantry angles of 150°, 210°, and 350° also led to good tracking performances with δ = 1.77–2.00 mm. Overall, the couch angle was not correlated with the tracking results. Among all the gantry–couch combinations, image sequences acquired at (θ = 30°, ϕ = 330°), (θ = 210°, ϕ = 10°), and (θ = 250°, ϕ = 30°) led to the best tracking results with δ = 1.19–1.82 mm. The worst performing combinations were (θ = 90° and 230°, ϕ = 10°) and (θ = 270°, ϕ = 30°) with δ > 3.5 mm. However, 35% (17/48) of the gantry–couch rotations demonstrated substantial variability in tracking performances between patients. For example, the field angle (θ = 70°, ϕ = 10°) was acquired for five patients. While the tracking errors were ≤1.98 mm for three patients, poor performance was found for the other two patients with δ ≥ 2.18 mm, leading to average tracking error of 2.70 mm. Only one

  4. The neural bases of framing effects in social dilemmas

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Ramsøy, Thomas; Skov, Martin

    intraparietal cortex, and temporopolar cortex. Our findings provide the first insight into the mechanisms underlying framing of behavior in social dilemmas, indicating increased engagement of the hippocampus and neocortical areas involved in memory, social reasoning and mentalizing when subjects make decisions......Human behavior in social dilemmas is strongly framed by the social context, but the mechanisms underlying this framing effect remains poorly understood. To identify the behavioral and neural responses mediating framing of social interactions, subjects underwent functional Magnetic Resonance Imaging...... while playing a Prisoners Dilemma game. In separate neuroimaging sessions, the game was either framed as a cooperation game or a competition game. Social decisions where subjects were affected by the frame engaged the hippocampal formation, precuneus, dorsomedial prefrontal cortex and lateral temporal...

  5. The Neural Bases of Framing Effects in Social Dilemmas

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Ramsøy, Thomas; Skov, Martin

    2015-01-01

    intraparietal cortex, and temporopolar cortex. Our findings provide the first insight into the mechanisms underlying framing of behavior in social dilemmas, indicating increased engagement of the hippocampus and neocortical areas involved in memory, social reasoning and mentalizing when subjects make decisions......Human behavior in social dilemmas is strongly framed by the social context, but the mechanisms underlying this framing effect remains poorly understood. To identify the behavioral and neural responses mediating framing of social interactions, subjects underwent functional Magnetic Resonance Imaging...... while playing a Prisoners Dilemma game. In separate neuroimaging sessions, the game was either framed as a cooperation game or a competition game. Social decisions where subjects were affected by the frame engaged the hippocampal formation, precuneus, dorsomedial prefrontal cortex and lateral temporal...

  6. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology.

    Science.gov (United States)

    Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J S; Kraus, Martin F; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E; Fujimoto, James G

    2013-07-01

    We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.

  7. Berry's phase factors in moving frames of reference and their observable effects

    International Nuclear Information System (INIS)

    Sun Changpu; Zhang Linzhi

    1990-01-01

    Under non-relativistic conditions, the properties of adiabatic solutions of the Schroedinger equation in moving frame of reference and the behaviours of the corresponding Berry's Phase are analysed. Two cases of translation and rotation are discussed in detail, which show that the existence of Berry's phase depends on the choice of frame of reference. While Bitter and Dubbers's experiment is explained by the first-order approximation in the discussion. The non-adiabatic effects in this experiment are predicted by the second-order approximation when the adiabatic condition is broken

  8. Pushover Analysis of Steel Seismic Resistant Frames with Reduced Web Section and Reduced Beam Section Connections

    Directory of Open Access Journals (Sweden)

    Daniel Tomas Naughton

    2017-10-01

    Full Text Available The widespread brittle failure of welded beam-to-column connections caused by the 1994 Northridge and 1995 Kobe earthquakes highlighted the need for retrofitting measures effective in reducing the strength demand imposed on connections under cyclic loading. Researchers presented the reduced beam section (RBS as a viable option to create a weak zone away from the connection, aiding the prevention of brittle failure at the connection weld. More recently, an alternative connection known as a reduced web section (RWS has been developed as a potential replacement, and initial studies show ideal performance in terms of rotational capacity and ductility. This study performs a series of non-linear static pushover analyses using a modal load case on three steel moment-resisting frames of 4-, 8-, and 16-storeys. The frames are studied with three different connection arrangements; fully fixed moment connections, RBSs and RWSs, in order to compare the differences in capacity curves, inter-storey drifts, and plastic hinge formation. The seismic-resistant connections have been modeled as non-linear hinges in ETABS, and their behavior has been defined by moment-rotation curves presented in previous recent research studies. The frames are displacement controlled to the maximum displacement anticipated in an earthquake with ground motions having a 2% probability of being exceeded in 50 years. The study concludes that RWSs perform satisfactorily when compared with frames with fully fixed moment connections in terms of providing consistent inter-storey drifts without drastic changes in drift between adjacent storeys in low- to mid-rise frames, without significantly compromising the overall strength capacity of the frames. The use of RWSs in taller frames causes an increase in inter-storey drifts in the lower storeys, as well as causing a large reduction in strength capacity (33%. Frames with RWSs behave comparably to frames with RBSs and are deemed a suitable

  9. IMAGE ACQUISITION CONSTRAINTS FOR PANORAMIC FRAME CAMERA IMAGING

    Directory of Open Access Journals (Sweden)

    H. Kauhanen

    2012-07-01

    Full Text Available The paper describes an approach to quantify the amount of projective error produced by an offset of projection centres in a panoramic imaging workflow. We have limited this research to such panoramic workflows in which several sub-images using planar image sensor are taken and then stitched together as a large panoramic image mosaic. The aim is to simulate how large the offset can be before it introduces significant error to the dataset. The method uses geometrical analysis to calculate the error in various cases. Constraints for shooting distance, focal length and the depth of the area of interest are taken into account. Considering these constraints, it is possible to safely use even poorly calibrated panoramic camera rig with noticeable offset in projection centre locations. The aim is to create datasets suited for photogrammetric reconstruction. Similar constraints can be used also for finding recommended areas from the image planes for automatic feature matching and thus improve stitching of sub-images into full panoramic mosaics. The results are mainly designed to be used with long focal length cameras where the offset of projection centre of sub-images can seem to be significant but on the other hand the shooting distance is also long. We show that in such situations the error introduced by the offset of the projection centres results only in negligible error when stitching a metric panorama. Even if the main use of the results is with cameras of long focal length, they are feasible for all focal lengths.

  10. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    Science.gov (United States)

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased

  11. Rotationally resolved photodetachment spectrum of OH{sup -}, exposed with velocity-map imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S T; Cavanagh, S J; Lewis, B R, E-mail: Stephen.Gibson@anu.edu.a, E-mail: Steven.Cavanagh@anu.edu.a [Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2009-11-01

    The photodetachment spectrum of OH{sup -} has been measured using velocity-map imaging for the detection of photoelectrons. The relative electron kinetic-energy resolution, determined to be ({Delta}E/E) = 0.5%, resolves individual rotational transitions, including R3(0) that defines the electron affinity. Previously unobserved, N-, O-, S-, T-branch transitions are also revealed. The angular anisotropy parameters in general exhibit values consistent with electron detachment from O{sup -}, {beta} {approx} -0.8, except for the S, T branches which are significantly more isotropic, with {beta} {approx} -0.4.

  12. Rotations in a Vertebrate Setting

    Science.gov (United States)

    McCollum, Gin

    2003-05-01

    Rotational movements of the head are often considered to be measured in a single three dimensional coordinate system implemented by the semicircular canals of the vestibular system of the inner ear. However, the vertebrate body -- including the nervous system -- obeys rectangular symmetries alien to rotation groups. At best, nervous systems mimic the physical rotation group in a fragmented way, only partially reintegrating physical movements in whole organism responses. The vestibular canal reference frame is widely used in nervous systems, for example by eye movements. It is used to some extent even in the cerebrum, as evidenced by the remission of hemineglect -- in which half of space is ignored -- when the vestibular system is stimulated. However, reintegration of space by the organism remains incomplete. For example, compensatory eye movements (which in most cases aid visual fixation) may disagree with conscious self-motion perception. In addition, movement-induced nausea, illusions, and cue-free perceptions demonstrate symmetry breaking or incomplete spatial symmetries. As part of a long-term project to investigate rotation groups in nervous systems, we have analyzed the symmetry group of a primary vestibulo-spinal projection.

  13. Establishing Maximal Medical Improvement After Arthroscopic Rotator Cuff Repair.

    Science.gov (United States)

    Zuke, William A; Leroux, Timothy S; Gregory, Bonnie P; Black, Austin; Forsythe, Brian; Romeo, Anthony A; Verma, Nikhil N

    2018-03-01

    As health care transitions from a pay-for-service to a pay-for-performance infrastructure, the value of orthopaedic care must be defined accurately. Significant efforts have been made in defining quality and cost in arthroplasty; however, there remains a lag in ambulatory orthopaedic care. Two-year follow-up has been a general requirement for reporting outcomes after rotator cuff repair. However, this time requirement has not been established scientifically and is of increasing importance in the era of value-based health care. Given that arthroscopic rotator cuff repair is a common ambulatory orthopaedic procedure, the purpose of this study was to establish a time frame for maximal medical improvement (the state when improvement has stabilized) after arthroscopic rotator cuff repair. Systematic review. A systematic review of the literature was conducted, identifying studies reporting sequential patient-reported outcomes up to a minimum of 2 years after arthroscopic rotator cuff repair. The primary clinical outcome was patient-reported outcomes at 3-month, 6-month, 1-year, and 2-year follow-up. Secondary clinical outcomes included range of motion, strength, retears, and complications. Clinically significant improvement was determined between various time intervals by use of the minimal clinically important difference. The review included 19 studies including 1370 patients who underwent rotator cuff repair. Clinically significant improvement in patient-reported outcomes was seen up to 1 year after rotator cuff repair, but no clinical significance was noted from 1 year to 2 years. The majority of improvement in strength and range of motion was seen up to 6 months, but no clinically meaningful improvement was seen thereafter. All reported complications and the majority of retears occurred within 6 months after rotator cuff repair. After rotator cuff repair, a clinically significant improvement in patient-reported outcomes, range of motion, and strength was seen up to 1

  14. A neuroimaging investigation of attribute framing and individual differences

    Science.gov (United States)

    Murch, Kevin B.

    2014-01-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. PMID:23988759

  15. Inter frame motion estimation and its application to image sequence compression: an introduction; Estimacion del movimiento Interframe y su aplicacion a la compresion de secuencias de imagenes: una introduccion

    Energy Technology Data Exchange (ETDEWEB)

    Cremy, C

    1996-12-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of inter frame estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author)

  16. Generalized frame of reference with null congruence

    International Nuclear Information System (INIS)

    Ferrarese, G.; Antonelli, R.

    2000-01-01

    The paper derives the main properties of a generalized frame of reference with a null congruence (light flux), by means of adapted non-holonomic techniques; then it studies the geometry of the space-time in terms of non-orthogonal projection: longitudinal and transverse covariant derivatives and corresponding commutation formulae, decomposition of the Riemann and gravitational tensors, lie derivatives of the Ricci rotation coefficients, transverse Bianchi identity. Application to the (absolute and relative) light flux: kinematical characteristics and screen, Sachs theorems etc. are also given

  17. Frames for exact inversion of the rank order coder.

    Science.gov (United States)

    Masmoudi, Khaled; Antonini, Marc; Kornprobst, Pierre

    2012-02-01

    Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe et al. who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in [1] a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to [1]. Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.

  18. Occult Interpositional Rotator Cuff - an Extremely Rare Case of Traumatic Rotator Cuff Tear

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei Ren; Jou, I Ming [National Cheng Kung University Hospital, Tainan (China); Lin, Cheng Li [Show-Chwan Memorial Hospital, Changhua (China); Chih, Wei Hsing [Chia-Yi Christian Hospital, Chiayi (China)

    2012-01-15

    Traumatic interposition of a rotator cuff tendon in the glenohumeral joint without recognizable glenohumeral dislocation is an unusual complication after shoulder trauma. Here we report the clinical and imaging presentations of a 17-year-old man with trapped rotator cuff tendons in the glenohumeral joint after a bicycle accident. The possible trauma mechanism is also discussed.

  19. Hemispheric dominance during the mental rotation task in patients with schizophrenia.

    Science.gov (United States)

    Chen, Jiu; Yang, Laiqi; Zhao, Jin; Li, Lanlan; Liu, Guangxiong; Ma, Wentao; Zhang, Yan; Wu, Xingqu; Deng, Zihe; Tuo, Ran

    2012-04-01

    Mental rotation is a spatial representation conversion capability using an imagined object and either object or self-rotation. This capability is impaired in schizophrenia. To provide a more detailed assessment of impaired cognitive functioning in schizophrenia by comparing the electrophysiological profiles of patients with schizophrenia and controls while completing a mental rotation task using both normally-oriented images and mirror images. This electroencephalographic study compared error rates, reaction times and the topographic map of event-related potentials in 32 participants with schizophrenia and 29 healthy controls during mental rotation tasks involving both normal images and mirror images. Among controls the mean error rate and the mean reaction time for normal images and mirror images were not significantly different but in the patient group the mean (sd) error rate was higher for mirror images than for normal images (42% [6%] vs. 32% [9%], t=2.64, p=0.031) and the mean reaction time was longer for mirror images than for normal images (587 [11] ms vs. 571 [18] ms, t=2.83, p=0.028). The amplitude of the P500 component at Pz (parietal area), Cz (central area), P3 (left parietal area) and P4 (right parietal area) were significantly lower in the patient group than in the control group for both normal images and mirror images. In both groups the P500 for both the normal and mirror images was significantly higher in the right parietal area (P4) compared with left parietal area (P3). The mental rotation abilities of patients with schizophrenia for both normally-oriented images and mirror images are impaired. Patients with schizophrenia show a diminished left cerebral contribution to the mental rotation task, a more rapid response time, and a differential response to normal images versus mirror images not seen in healthy controls. Specific topographic characteristics of the EEG during mental rotation tasks are potential biomarkers for schizophrenia.

  20. The Gaia inertial reference frame and the tilting of the Milky Way disk

    International Nuclear Information System (INIS)

    Perryman, Michael; Spergel, David N.; Lindegren, Lennart

    2014-01-01

    While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H 0 −1 (∼30 μas yr –1 ). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will result in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr –1 . Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.

  1. Some relationship between G-frames and frames

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2015-06-01

    Full Text Available In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K$-module $B(H,K$. This is an extension of [A. Askarizadeh,M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual frame, dual g-frame and exact frame and exact g-frame are presented too.

  2. Real-time multiple image manipulations

    International Nuclear Information System (INIS)

    Arenson, J.S.; Shalev, S.; Legris, J.; Goertzen, Y.

    1984-01-01

    There are many situations in which it is desired to manipulate two or more images under real-time operator control. The authors have investigated a number of such cases in order to determine their value and applicability in clinical medicine and laboratory research. Several examples are presented in detail. The DICOM-8 video image computer system was used due to its capability of storing two 512 x 512 x 8 bit images and operating on them, and/or an incoming video frame, with any of a number of real time operations including addition, subtraction, inversion, averaging, logical AND, NAND, OR, NOR, NOT, XOR and XNOR, as well as combinations of these. Some applications involve manipulations of or among the stored images. In others, a stored image is used as a mask or template for positioning or adjusting a second image to be grabbed via a video camera. The accuracy of radiotherapy treatment is verified by comparing port films with the original radiographic planning film, which is previously digitized and stored. Moving the port film on the light box while viewing the real-time subtraction image allows for adjustments of zoom, translation and rotation, together with contrast and edge enhancement

  3. Some aspects of transformation of the nonlinear plasma equations to the space-independent frame

    International Nuclear Information System (INIS)

    Paul, S.N.; Chakraborty, B.

    1982-01-01

    Relativistically correct transformation of nonlinear plasma equations are derived in a space-independent frame. This transformation is useful in many ways because in place of partial differential equations one obtains a set of ordinary differential equations in a single independent variable. Equations of Akhiezer and Polovin (1956) for nonlinear plasma oscillations have been generalized and the results of Arons and Max (1974), and others for wave number shift and precessional rotation of electromagnetic wave are recovered in a space-independent frame. (author)

  4. Exchange-Mediated Contrast in CEST and Spin-Lock Imaging

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F.; Gore, John C.

    2014-01-01

    PURPOSE Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. METHODS Simulations and experimental measurements at 9.4T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. RESULTS The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. > 2ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate to fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CONCLUSION CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ dependent acquisitions can be employed to selectively portray protons of specific exchange rates. PMID:24239335

  5. Exchange-mediated contrast in CEST and spin-lock imaging.

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F; Gore, John C

    2014-01-01

    Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. Simulations and experimental measurements at 9.4 T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. >2 ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate-to-fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ-dependent acquisitions can be employed to selectively portray protons of specific exchange rates. © 2013.

  6. Single-Frame Cinema. Three Dimensional Computer-Generated Imaging.

    Science.gov (United States)

    Cheetham, Edward Joseph, II

    This master's thesis provides a description of the proposed art form called single-frame cinema, which is a category of computer imagery that takes the temporal polarities of photography and cinema and unites them into a single visual vignette of time. Following introductory comments, individual chapters discuss (1) the essential physical…

  7. Message framing and defensive processing: a cultural examination.

    Science.gov (United States)

    Ko, Deborah M; Kim, Heejung S

    2010-01-01

    Past research has shown that health messages on safer sexual practices that focus on relational consequences are more persuasive than messages that focus on personal consequences. However, we theorize that it is defensiveness against personal risk framing that threatens the self among people from more individualistic cultures. Two studies tested this idea. Study 1 showed that European Americans were less persuaded by personal framing than by relational framing but that this pattern was not found for Asian Americans, who are more collectivistic. Study 2 showed that these defensive patterns were eliminated among European American participants when a person's self-image was affirmed. These results suggest defensive processes as the mechanism behind the differences in message framing effectiveness and motivate a closer look at cultural patterns.

  8. A neuroimaging investigation of attribute framing and individual differences.

    Science.gov (United States)

    Murch, Kevin B; Krawczyk, Daniel C

    2014-10-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    International Nuclear Information System (INIS)

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  10. Angular distribution and rotations of frame in vector meson decays into lepton pairs

    International Nuclear Information System (INIS)

    Palestini, Sandro

    2011-01-01

    We discuss how the angular distribution of lepton pairs from decays of vector mesons depends on the choice of reference frame, and provide a geometrical description of the transformations of the coefficients of the angular distribution. Invariant expressions involving all coefficients are discussed, together with bounds and consistency relations.

  11. Technical requirements for Na¹⁸F PET bone imaging of patients being treated using a Taylor spatial frame.

    Science.gov (United States)

    Hatherly, Robert; Brolin, Fredrik; Oldner, Åsa; Sundin, Anders; Lundblad, Henrik; Maguire, Gerald Q; Jonsson, Cathrine; Jacobsson, Hans; Noz, Marilyn E

    2014-03-01

    Diagnosis of new bone growth in patients with compound tibia fractures or deformities treated using a Taylor spatial frame is difficult with conventional radiography because the frame obstructs the images and creates artifacts. The use of Na(18)F PET studies may help to eliminate this difficulty. Patients were positioned on the pallet of a clinical PET/CT scanner and made as comfortable as possible with their legs immobilized. One bed position covering the site of the fracture, including the Taylor spatial frame, was chosen for the study. A topogram was performed, as well as diagnostic and attenuation correction CT. The patients were given 2 MBq of Na(18)F per kilogram of body weight. A 45-min list-mode acquisition was performed starting at the time of injection, followed by a 5-min static acquisition 60 min after injection. The patients were examined 6 wk after the Taylor spatial frame had been applied and again at 3 mo to assess new bone growth. A list-mode reconstruction sequence of 1 × 1,800 and 1 × 2,700 s, as well as the 5-min static scan, allowed visualization of regional bone turnover. With Na(18)F PET/CT, it was possible to confirm regional bone turnover as a means of visualizing bone remodeling without the interference of artifacts from the Taylor spatial frame. Furthermore, dynamic list-mode acquisition allowed different sequences to be performed, enabling, for example, visualization of tracer transport from blood to the fracture site.

  12. Imaging Asteroid 4 Vesta Using the Framing Camera

    Science.gov (United States)

    Keller, H. Uwe; Nathues, Andreas; Coradini, Angioletta; Jaumann, Ralf; Jorda, Laurent; Li, Jian-Yang; Mittlefehldt, David W.; Mottola, Stefano; Raymond, C. A.; Schroeder, Stefan E.

    2011-01-01

    The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters. Vesta will be observed from 3 orbit stages with image scales of 227, 63, and 17 m/px, respectively. The mapping of Vesta s surface with medium resolution will be only completed during the exit phase when the north pole will be illuminated. A detailed pointing strategy will cover the surface at least twice at similar phase angles to provide stereo views for reconstruction of the topography. During approach the phase function of Vesta was determined over a range of angles not accessible from earth. This is the first step in deriving the photometric function of the surface. Combining the topography based on stereo tie points with the photometry in an iterative procedure will disclose details of the surface morphology at considerably smaller scales than the pixel scale. The 7 color filters are well positioned to provide information on the spectral slope in the visible, the depth of the strong pyroxene absorption band, and their variability over the surface. Cross calibration with the VIR spectrometer that extends into the near IR will provide detailed maps of Vesta s surface mineralogy and physical properties. Georeferencing all these observation will result in a coherent and unique data set. During Dawn s approach and capture FC has already demonstrated its performance. The strong variation observed by the Hubble Space Telescope can now be correlated with surface units and features. We will report on results obtained from images taken during survey mode covering the whole illuminated surface. Vesta is a planet-like differentiated body, but its surface

  13. Two-View Gravity Stress Imaging Protocol for Nondisplaced Type II Supination External Rotation Ankle Fractures: Introducing the Gravity Stress Cross-Table Lateral View.

    Science.gov (United States)

    Boffeli, Troy J; Collier, Rachel C; Gervais, Samuel J

    Assessing ankle stability in nondisplaced Lauge-Hansen supination external rotation type II injuries requires stress imaging. Gravity stress mortise imaging is routinely used as an alternative to manual stress imaging to assess deltoid integrity with the goal of differentiating type II from type IV injuries in cases without a posterior or medial fracture. A type II injury with a nondisplaced fibula fracture is typically treated with cast immobilization, and a type IV injury is considered unstable and often requires operative repair. The present case series (two patients) highlights a standardized 2-view gravity stress imaging protocol and introduces the gravity stress cross-table lateral view. The gravity stress cross-table lateral view provides a more thorough evaluation of the posterior malleolus owing to the slight external rotation and posteriorly directed stress. External rotation also creates less bony overlap between the tibia and fibula, allowing for better visualization of the fibula fracture. Gravity stress imaging confirmed medial-sided injury in both cases, confirming the presence of supination external rotation type IV or bimalleolar equivalent fractures. Open reduction and internal fixation was performed, and both patients achieved radiographic union. No further treatment was required at 21 and 33 months postoperatively. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Handedness differences in information framing.

    Science.gov (United States)

    Jasper, John D; Fournier, Candice; Christman, Stephen D

    2014-02-01

    Previous research has shown that strength of handedness predicts differences in sensory illusions, Stroop interference, episodic memory, and beliefs about body image. Recent evidence also suggests handedness differences in the susceptibility to common decision biases such as anchoring and sunk cost. The present paper extends this line of work to attribute framing effects. Sixty-three undergraduates were asked to advise a friend concerning the use of a safe allergy medication during pregnancy. A third of the participants received negatively-framed information concerning the fetal risk of the drug (1-3% chance of having a malformed child); another third received positively-framed information (97-99% chance of having a normal child); and the final third received no counseling information and served as the control. Results indicated that, as predicted, inconsistent (mixed)-handers were more responsive than consistent (strong)-handers to information changes and readily update their beliefs. Although not significant, the data also suggested that only inconsistent handers were affected by information framing. Theoretical implications as well as ongoing work in holistic versus analytic processing, contextual sensitivity, and brain asymmetry will be discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Stationary Magnetohydrodynamic Models of Three-Dimensional Rigidly Rotating Magnetized Coronae

    International Nuclear Information System (INIS)

    Al-Salti, Nasser; Neukirch, Thomas

    2009-01-01

    Example solutions of a theory for stationary 3D non-potential solutions of the MHD equations (in the co-rotating frame of reference) are presented. As a first step we present solutions for the mathematically simpler case of a massive central cylinder, but the theory can also be applied to spherical bodies. The fundamental equation of the theory is linear and in the cylindrical case it can be solved using standard methods. Possible application is the structure of coronae of (fast) rotating stars.

  16. Investigating the effect of a targets time-varying doppler generating axis of rotation on isar image distortion

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2007-10-01

    Full Text Available , contributes to ISAR image blurring. Quaternion algebra is used to aid the characterisation of a time-varying Doppler generating axis of rotation on the migration through cross-range cells. Real motion data of a sailing yacht is used to examine the effects of 3...

  17. Visual perception of axes of head rotation

    Science.gov (United States)

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is

  18. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  19. Comment on ''Vacuum stress-energy tensor of the electromagnetic field in rotating frames''

    International Nuclear Information System (INIS)

    Mane, S.R.

    1991-01-01

    Hacyan and Sarmiento have found that an observer accelerating in a circle will detect a nonzero energy flux (Poynting vector) caused by the vacuum electromagnetic fluctuations in that frame. I wish to suggest that the above flux is related to synchrotron radiation. I treat only the leading order of perturbation theory

  20. Automatic segmentation of rotational x-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures.

    Science.gov (United States)

    Manzke, Robert; Meyer, Carsten; Ecabert, Olivier; Peters, Jochen; Noordhoek, Niels J; Thiagalingam, Aravinda; Reddy, Vivek Y; Chan, Raymond C; Weese, Jürgen

    2010-02-01

    Since the introduction of 3-D rotational X-ray imaging, protocols for 3-D rotational coronary artery imaging have become widely available in routine clinical practice. Intra-procedural cardiac imaging in a computed tomography (CT)-like fashion has been particularly compelling due to the reduction of clinical overhead and ability to characterize anatomy at the time of intervention. We previously introduced a clinically feasible approach for imaging the left atrium and pulmonary veins (LAPVs) with short contrast bolus injections and scan times of approximately 4 -10 s. The resulting data have sufficient image quality for intra-procedural use during electro-anatomic mapping (EAM) and interventional guidance in atrial fibrillation (AF) ablation procedures. In this paper, we present a novel technique to intra-procedural surface generation which integrates fully-automated segmentation of the LAPVs for guidance in AF ablation interventions. Contrast-enhanced rotational X-ray angiography (3-D RA) acquisitions in combination with filtered-back-projection-based reconstruction allows for volumetric interrogation of LAPV anatomy in near-real-time. An automatic model-based segmentation algorithm allows for fast and accurate LAPV mesh generation despite the challenges posed by image quality; relative to pre-procedural cardiac CT/MR, 3-D RA images suffer from more artifacts and reduced signal-to-noise. We validate our integrated method by comparing 1) automatic and manual segmentations of intra-procedural 3-D RA data, 2) automatic segmentations of intra-procedural 3-D RA and pre-procedural CT/MR data, and 3) intra-procedural EAM point cloud data with automatic segmentations of 3-D RA and CT/MR data. Our validation results for automatically segmented intra-procedural 3-D RA data show average segmentation errors of 1) approximately 1.3 mm compared with manual 3-D RA segmentations 2) approximately 2.3 mm compared with automatic segmentation of pre-procedural CT/MR data and 3

  1. Frame Rate and Human Vision

    Science.gov (United States)

    Watson, Andrew B.

    2012-01-01

    To enhance the quality of the theatre experience, the film industry is interested in achieving higher frame rates for capture and display. In this talk I will describe the basic spatio-temporal sensitivities of human vision, and how they respond to the time sequence of static images that is fundamental to cinematic presentation.

  2. Images of climate change in the news: Visual framing of a global environmental issue

    Science.gov (United States)

    Rebich Hespanha, S.; Rice, R. E.; Montello, D. R.; Retzloff, S.; Tien, S.

    2012-12-01

    News media play a powerful role in disseminating and framing information and shaping public opinion on environmental issues. Choices of text and images that are made by the creators and distributors of news media not only influence public perception about which issues are important, but also surreptitiously lead consumers of these media to perceive certain aspects or perspectives on an issue while neglecting to consider others. Our research was motivated by a desire to obtain comprehensive quantitative and qualitative understanding of the types of information - both textual and visual -- that have been provided to the U.S. public over the past several decades through news reports about climate change. As part of this project, we documented and examined 118 themes in 19 categories presented in 350 randomly-selected visual images from U.S. news coverage of global climate change between 1969 and late 2009. This study examines how the use of imagery in print news positions climate change within public and private arenas and how it emphasizes particular geographic, political, scientific, technological, sociological, and ideological aspects of the issue.

  3. On transforms between Gabor frames and wavelet frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2013-01-01

    We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....

  4. The use of the empirical mode decomposition for the identification of mean field aligned reference frames

    Directory of Open Access Journals (Sweden)

    Mauro Regi

    2017-01-01

    Full Text Available The magnetic field satellite data are usually referred to geocentric coordinate reference frame. Conversely, the magnetohydrodynamic waves modes in magnetized plasma depend on the ambient magnetic field, and is then useful to rotate the magnetic field measurements into the mean field aligned (MFA coordinate system. This reference frame is useful to study the ultra low frequency magnetic field variations along the direction of the mean field and perpendicularly to it. In order to identify the mean magnetic field the classical moving average (MAVG approach is usually adopted but, under particular conditions, this procedure induces undesired features, such as spectral alteration in the rotated components. We discuss these aspects promoting an alternative and more efficient method for mean field aligned projection, based on the empirical mode decomposition (EMD.

  5. Complementary frame reconstruction: a low-biased dynamic PET technique for low count density data in projection space

    International Nuclear Information System (INIS)

    Hong, Inki; Cho, Sanghee; Michel, Christian J; Casey, Michael E; Schaefferkoetter, Joshua D

    2014-01-01

    A new data handling method is presented for improving the image noise distribution and reducing bias when reconstructing very short frames from low count dynamic PET acquisition. The new method termed ‘Complementary Frame Reconstruction’ (CFR) involves the indirect formation of a count-limited emission image in a short frame through subtraction of two frames with longer acquisition time, where the short time frame data is excluded from the second long frame data before the reconstruction. This approach can be regarded as an alternative to the AML algorithm recently proposed by Nuyts et al, as a method to reduce the bias for the maximum likelihood expectation maximization (MLEM) reconstruction of count limited data. CFR uses long scan emission data to stabilize the reconstruction and avoids modification of algorithms such as MLEM. The subtraction between two long frame images, naturally allows negative voxel values and significantly reduces bias introduced in the final image. Simulations based on phantom and clinical data were used to evaluate the accuracy of the reconstructed images to represent the true activity distribution. Applicability to determine the arterial input function in human and small animal studies is also explored. In situations with limited count rate, e.g. pediatric applications, gated abdominal, cardiac studies, etc., or when using limited doses of short-lived isotopes such as 15 O-water, the proposed method will likely be preferred over independent frame reconstruction to address bias and noise issues. (paper)

  6. The effect of the reference frame on the thermophysical properties of an ideal gas

    International Nuclear Information System (INIS)

    Speziale, Cg.

    1986-01-01

    The effect that the frame of reference has on the thermophysical properties of an ideal gas is examined from a fundamental theoretical standpoint based on the Boltzmann equation. In continuum mechanics, the principle of material frame in deference forbids the thermophysical properties of a fluid or solid to depend in any way on the motion of the reference frame. It is demonstrated that the Boltzmann equation is only consistent with material frame-indeffrence in a strong approximate sense provided that the gas is not highly rarefield and, thus, well within the limits of classical continuum mechanics. Estimates of the mean free times for which material frame-indifference can be invoked in the modeling of gas flows are provided from an analysis of the problem of heat conduction in a rigidly rotating gas. Applications of these results in obtaining asymptotic solutions of the Boltzmann equation for the continuum description of an ideal gas are discussed briefly

  7. A 1,000 Frames/s Programmable Vision Chip with Variable Resolution and Row-Pixel-Mixed Parallel Image Processors

    Directory of Open Access Journals (Sweden)

    Nanjian Wu

    2009-07-01

    Full Text Available A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps. A prototype chip with 64 × 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mm Standard CMOS process. The area size of chip is 1.5 mm × 3.5 mm. Each pixel size is 9.5 μm × 9.5 μm and each processing element size is 23 μm × 29 μm. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.

  8. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    Science.gov (United States)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-05-01

    We perform polarimetry analysis of 20 active galactic nuclei jets using the very long baseline array at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16 900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2. Significant transverse RM gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magneto-ionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  9. Dynamical sampling and frame representations with bounded operators

    DEFF Research Database (Denmark)

    Christensen, Ole; Hasannasab, Marzieh; Rashidi, Ehsan

    2017-01-01

    The purpose of this paper is to study frames for a Hilbert space H, having the form {Tnφ}n=0∞ for some φ∈H and an operator T:H→H. We characterize the frames that have such a representation for a bounded operator T, and discuss the properties of this operator. In particular, we prove that the image...... chain of T has finite length N in the overcomplete case; furthermore {Tnφ}n=0∞ has the very particular property that {Tnφ}n=0N−1∪{Tnφ}n=N+ℓ∞ is a frame for H for all ℓ∈N0. We also prove that frames of the form {Tnφ}n=0∞ are sensitive to the ordering of the elements and to norm...

  10. A novel rotational matrix and translation vector algorithm: geometric accuracy for augmented reality in oral and maxillofacial surgeries.

    Science.gov (United States)

    Murugesan, Yahini Prabha; Alsadoon, Abeer; Manoranjan, Paul; Prasad, P W C

    2018-06-01

    Augmented reality-based surgeries have not been successfully implemented in oral and maxillofacial areas due to limitations in geometric accuracy and image registration. This paper aims to improve the accuracy and depth perception of the augmented video. The proposed system consists of a rotational matrix and translation vector algorithm to reduce the geometric error and improve the depth perception by including 2 stereo cameras and a translucent mirror in the operating room. The results on the mandible/maxilla area show that the new algorithm improves the video accuracy by 0.30-0.40 mm (in terms of overlay error) and the processing rate to 10-13 frames/s compared to 7-10 frames/s in existing systems. The depth perception increased by 90-100 mm. The proposed system concentrates on reducing the geometric error. Thus, this study provides an acceptable range of accuracy with a shorter operating time, which provides surgeons with a smooth surgical flow. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Critical object recognition in millimeter-wave images with robustness to rotation and scale.

    Science.gov (United States)

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi

    2017-06-01

    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  12. Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Bjoern Anders

    1997-12-31

    This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.

  13. Low-energy electron scattering from CO. 2: Ab-initio study using the frame-transformation theory

    Science.gov (United States)

    Chandra, N.

    1976-01-01

    The Wigner-Eisenbud R matrix method has been combined with the frame transformation theory to study electron scattering from molecular systems. The R matrix, calculated at the boundary point of the molecular core radius, has been transformed to the space frame in order to continue the solution of the scattering equations in the outer region where rotational motion of the nuclei is taken into account. This procedure has been applied to a model calculation of thermal energy electron scattering from CO.

  14. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu

    2013-01-01

    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.

  15. Cross-sectional imaging with rotational panoramic X-ray machine for preoperative assessment of dental implant site. Comparisons of imaging properties with conventional film tomography and computed tomography

    International Nuclear Information System (INIS)

    Makihara, Masahiro; Nishikawa, Keiichi; Kuroyanagi, Kinya

    2001-01-01

    To clarify the validity of cross-sectional imaging with rotational panoramic x-ray machine for preoperative assessment of the dental implant site, the imaging properties were compared with those of spiral tomography and multi-planer reconstruction (MPR) manipulation of x-ray computed tomography. Cross-sectional imaging of the maxilla and mandible of an edentulous dry skull was performed by each technique at an image layer thickness of 1 mm. Steel spheres were used to identify cross-sectional planes and measure distance. Six oral radiologists scored the image clarity of structures with 5-grade rating scales and measured the distance between images of 2 steel spheres. Each measured distance was divided by the magnification factor. The actual distance was also measured on the skull. The score and the distance were statistically compared. The Spearman's rank correlation coefficients for the score and the absolute values of the difference in distances measured by different observers were calculated as test units to compare inter-observer agreements statistically. The same observation and measurement were repeated to compare intra-observer agreement. Image clarity of the linear tomography available with a panoramic machine was comparable to spiral tomography and superior to MPR, except for the cortical bone on the lingual side. The inter- and intra-observer agreements were comparable. The accuracy for measurement of distance, the inter- and intra-observer agreements were also comparable to the spiral tomography and superior to those of MPR. Therefore, it is concluded that cross-sectional imaging with a rotational panoramic x-ray machine is useful for preoperative assessment of the dental implant site. (author)

  16. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  17. Performing Frame Transformations to Correctly Stream Position Data

    Science.gov (United States)

    Franco, Tom

    Unmanned Aerial Vehicles (UAV) are starting to become a more common occurrence today. What started off as highly classified military weapons with little known information, have become part of everyday life for the common individual. UAV's still carry a great deal of importance in paving the way for unmanned flight. UAV's hold major potential for many amazing technological advances within the near future. Drones have become such a common backyard toy for individuals all over the world as well as the way of the future. Major corporations, such as Amazon, are starting to test drones for delivering small packages. Uber has stated that they want to get to the point where cars will be self-driving, already implementing their testing facility for self-driving cars. It is crazy to think that if an order from amazon is processed, it could arrive at the desired destination the same day within minutes of being processed. To get to that point, there is a lot to consider. First, and most importantly, the drone must be largely autonomous with no minimal human control. The drone also must be able to communicate effectively and relay its position to some sort of tracking device, whether it be a GPS signal or software. How would it go about this? What sort of factors make this possible fantasy of the future a tangible reality? The drone must communicate with numerous devices, be in the proper orientation and have the data being streamed be associated with the proper direction. Since there are a variety of potential directions for the drone to move, odds are there will be some sort of data conversion involved. When testing turbomachinery, sensors used to be placed on the rotating piece of machinery and frame transformations were done to relay the data from the rotating frame to that of the inertial frame. Using this concept, exploring the use of frame transformations to relay position data is conducted. Once explore, testing can be conducted to collect data and once the data is

  18. An experimental study of rotational pressure loss in rotor-stator gap

    Directory of Open Access Journals (Sweden)

    Yew Chuan Chong

    2017-06-01

    Full Text Available The annular gap between rotor and stator is an inevitable flow path of a throughflow ventilated electrical machine, but the flow entering the rotor-stator gap is subjected to the effects of rotation. The pressure loss and volumetric flow rate across the rotor-stator gap were measured and compared between rotating and stationary conditions. The experimental measurements found that the flow entering the rotor-stator gap is affected by an additional pressure loss. In the present study, the rotational pressure loss at the entrance of rotor-stator gap is characterised. Based upon dimensional analysis, the coefficient of entrance loss can be correlated with a dimensionless parameter, i.e. rotation ratio. The investigation leads to an original correlation for the entrance loss coefficient of rotor-stator gap arisen from the Coriolis and centrifugal effects in rotating reference frame.

  19. Recursive Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Jensen, Jørgen Arendt

    1999-01-01

    This paper presents a new imaging method, applicable for both 2D and 3D imaging. It is based on Synthetic Transmit Aperture Focusing, but unlike previous approaches a new frame is created after every pulse emission. The elements from a linear transducer array emit pulses one after another. The same...... transducer element is used after N-xmt emissions. For each emission the signals from the individual elements are beam-formed in parallel for all directions in the image. A new frame is created by adding the new RF lines to the RF lines from the previous frame. The RF data recorded at the previous emission...... with the same element are subtracted. This yields a new image after each pulse emission and can give a frame rate of e.g. 5000 images/sec. The paper gives a derivation of the recursive imaging technique and compares simulations for fast B-mode imaging with measurements. A low value of N-xmt is necessary...

  20. Complex structure of Kerr geometry and rotating 'photon rocket' solutions

    International Nuclear Information System (INIS)

    Burinskii, Alexander

    2003-01-01

    In the frame of the Kerr-Schild approach, we obtain a generalization of the Kerr solution to a nonstationary case corresponding to a rotating source moving with arbitrary acceleration. Similar to the Kerr solution, the solutions obtained have geodesic and shearfree principal null congruence. The current parameters of the solutions are determined by a complex retarded-time construction via a given complex worldline of source. The real part of the complex worldline defines the values of the boost and acceleration while the imaginary part controls the rotation. The acceleration of the source is accompanied by lightlike radiation along the principal null congruence. The solutions obtained generalize to the rotating case the known Kinnersley class of the 'photon rocket' solutions

  1. Using a Graphics Turing Test to Evaluate the Effect of Frame Rate and Motion Blur on Telepresence of Animated Objects

    DEFF Research Database (Denmark)

    Borg, Mathias; Johansen, Stine Schmieg; Krog, Kim Srirat

    2013-01-01

    A limited Graphics Turing Test is used to determine the frame rate that is required to achieve telepresence of an animated object. For low object velocities of 2.25 and 4.5 degrees of visual angle per second at 60 frames per second a rotating object with no added motion blur is able to pass the t...

  2. Reframing national image: A methodological framework

    Directory of Open Access Journals (Sweden)

    Xiufang Li (Leah

    2009-10-01

    Full Text Available The article addresses the role of national images in international relations and develops a methodological framework for its study. It concludes that national image study should comprise private frames associated with perceived images of other nations, and public frames referring to projected media images of other nations by drawing on framing theory. It suggests that in-depth interview with intermediate elites can be employed to explore private frames, and the inductive or the deductive approaches to public frames. There is recognition that inquiry is conducted in the shadow of a dynamic world politics and within a historical context, and public diplomacy can be used to build national reputation. To examine the associations between public and private frames of a given country will prepare the ways for the identification of alternative frames and framing devices that may result in variation in public opinion, contributing to national image building in the state under study, and promote understanding and relationships between countries.

  3. Anandan quantum phase for a neutral particle with Fermi-Walker reference frame in the cosmic string background

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, C.

    2010-01-01

    We study geometric quantum phases in the relativistic and non-relativistic quantum dynamics of a neutral particle with a permanent magnetic dipole moment interacting with two distinct field configurations in a cosmic string spacetime. We consider the local reference frames of the observers are transported via Fermi-Walker transport and study the influence of the non-inertial effects on the phase shift of the wave function of the neutral particle due to the choice of this local frame. We show that the wave function of the neutral particle acquires non-dispersive relativistic and non-relativistic quantum geometric phases due to the topology of the spacetime, the interaction between the magnetic dipole moment with external fields and the spin-rotation coupling. However, due to the Fermi-Walker reference frame, no phase shift associated to the Sagnac effect appears in the quantum dynamics of a neutral particle. We show that in the absence of topological defect, the contribution to the quantum phase due to the spin-rotation coupling is equivalent to the Mashhoon effect in non-relativistic dynamics. (orig.)

  4. Framing Pemberitaan Citra Politik Capres 2014 di Harian Solopos

    Directory of Open Access Journals (Sweden)

    Puji Widi Astutik

    2016-03-01

    Full Text Available The article tries to find out the construction of the image formation in the daily Solopos 2014 candidates. Basic theoretically in this paper uses descriptive analysis method with a form of text analysis models Zhongdang Pan and Gerald M. Kosicki through four units of analysis, syntax, script, thematic, and Rhetorical. Framing analysis is used to see how the image formation through the political news in the Daily Solopos 2014 candidates. Through this analysis can be found that the construction of a shadow image (mirror image performed on the outlook for both candidates figure formed by the track record of each kandindat. Joko Widodo figure in the frame with the figure of the fight for the people and work for the people, while the figure Prabowo has a bad track record as it is considered to participate in the abduction tragedy in which 98 activists at that time as a military Prabowo.

  5. Synthetic Aperture Focusing Applied to Imaging Using a Rotating Single Element Transducer

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2007-01-01

    This paper applies the concept of virtual sources and mono-static synthetic aperture focusing (SAF) to 2-dimensional imaging with a single rotating mechanically focused concave element with the objective of improving lateral resolution and signal-to-noise ratio (SNR). The geometrical focal point...... function of a single emission. The effect of SAF with focal depth at 20 mm is negligible, caused by the small number of LRL applied. The great profit of the SAF is the increase in SNR. For the setup with focal depth at 20 rum the SAF SNR gain is 11 dB. The SNR gain of a setup with a VS at radius 10 mm...

  6. Noise and sensitivity of x-ray framing cameras at Nike (abstract)

    Science.gov (United States)

    Pawley, C. J.; Deniz, A. V.; Lehecka, T.

    1999-01-01

    X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.

  7. Greenberger-Horne-Zeilinger correlation and Bell-type inequality seen from a moving frame

    International Nuclear Information System (INIS)

    You Hao; Wang Anmin; Yang Xiaodong; Niu Wanqing; Ma Xiaosan; Xu Feng

    2004-01-01

    The relativistic version of the Greenberger-Horne-Zeilinger experiment with massive particles is proposed. We point out that, in the moving frame, GHZ correlations of spins in original directions transfer to different directions due to the Wigner rotation. Its effect on the degree of violation of Bell-type inequality is also discussed

  8. Attribute Framing and Goal Framing Effects in Health Decisions.

    Science.gov (United States)

    Krishnamurthy, Parthasarathy; Carter, Patrick; Blair, Edward

    2001-07-01

    Levin, Schneider, and Gaeth (LSG, 1998) have distinguished among three types of framing-risky choice, attribute, and goal framing-to reconcile conflicting findings in the literature. In the research reported here, we focus on attribute and goal framing. LSG propose that positive frames should be more effective than negative frames in the context of attribute framing, and negative frames should be more effective than positive frames in the context of goal framing. We test this framework by manipulating frame valence (positive vs negative) and frame type (attribute vs goal) in a unified context with common procedures. We also argue that the nature of effects in a goal-framing context may depend on the extent to which the research topic has "intrinsic self-relevance" to the population. In the context of medical decision making, we operationalize low intrinsic self-relevance by using student subjects and high intrinsic self-relevance by using patients. As expected, we find complete support for the LSG framework under low intrinsic self-relevance and modified support for the LSG framework under high intrinsic self-relevance. Overall, our research appears to confirm and extend the LSG framework. Copyright 2001 Academic Press.

  9. Magnetic Resonance Imaging of the Rotator Cuff in Destroyed Rheumatoid Shoulder: Comparison with Findings during Shoulder Replacement

    International Nuclear Information System (INIS)

    Soini, I.; Belt, E.A.; Niemitukia, L.; Maeenpaeae, H.M.; Kautiainen, H.J.

    2004-01-01

    Purpose: To evaluate the predictive value of preoperative magnetic resonance imaging (MRI) with respect to rotator cuff ruptures. Material and Methods: Thirty-one patients with rheumatic disease underwent preoperative MRI before shoulder arthroplasty. The scans were reviewed independently by two experienced radiologists. Three surgeons performed all the replacements (hemiarthroplasties), and the condition of the rotator cuff was assessed. Complete and massive tears of the rotator cuff were recorded and compared at surgery and on MRI. Results: With MRI, 21 shoulders (68%) were classified as having complete or massive tears of the rotator cuff and at surgery 14 shoulders (45%). Cohen's kappa coefficient was 0.44 (95% CI: 0.16 to 0.72) and accuracy 0.71 (95% CI: 0.52 to 0.86). Conclusion: In severely destroyed rheumatoid shoulder, the findings of soft tissues were incoherent both with MRI and at surgery. The integrity of tendons could not readily be elucidated with MRI because of an inflammatory process and scarred tissues; in surgery, too, changes were frequently difficult to categorize. Preoperative MRI of severely destroyed rheumatoid shoulder before arthroplasty turned out to be of only minor importance

  10. Modelling of Rotational Capacity in Reinforced Linear Elements

    DEFF Research Database (Denmark)

    Hestbech, Lars; Hagsten, Lars German; Fisker, Jakob

    2011-01-01

    on the rotational capacity of the plastic hinges. The documentation of ductility can be a difficult task as modelling of rotational capacity in plastic hinges of frames is not fully developed. On the basis of the Theory of Plasticity a model is developed to determine rotational capacity in plastic hinges in linear......The Capacity Design Method forms the basis of several seismic design codes. This design philosophy allows plastic deformations in order to decrease seismic demands in structures. However, these plastic deformations must be localized in certain zones where ductility requirements can be documented...... reinforced concrete elements. The model is taking several important parameters into account. Empirical values is avoided which is considered an advantage compared to previous models. Furthermore, the model includes force variations in the reinforcement due to moment distributions and shear as well...

  11. Remotely detected vehicle mass from engine torque-induced frame twisting

    Science.gov (United States)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  12. Cognitive framing in action.

    Science.gov (United States)

    Huhn, John M; Potts, Cory Adam; Rosenbaum, David A

    2016-06-01

    Cognitive framing effects have been widely reported in higher-level decision-making and have been ascribed to rules of thumb for quick thinking. No such demonstrations have been reported for physical action, as far as we know, but they would be expected if cognition for physical action is fundamentally similar to cognition for higher-level decision-making. To test for such effects, we asked participants to reach for a horizontally-oriented pipe to move it from one height to another while turning the pipe 180° to bring one end (the "business end") to a target on the left or right. From a physical perspective, participants could have always rotated the pipe in the same angular direction no matter which end was the business end; a given participant could have always turned the pipe clockwise or counter-clockwise. Instead, our participants turned the business end counter-clockwise for left targets and clockwise for right targets. Thus, the way the identical physical task was framed altered the way it was performed. This finding is consistent with the hypothesis that cognition for physical action is fundamentally similar to cognition for higher-level decision-making. A tantalizing possibility is that higher-level decision heuristics have roots in the control of physical action, a hypothesis that accords with embodied views of cognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Rotating model for the equivalence principle paradox

    International Nuclear Information System (INIS)

    Wilkins, D.C.

    1975-01-01

    An idealized system is described in which two inertial frames rotate relative to one another. When a (scalar) dipole is locally at rest in one frame, a paradox arises as to whether or not it will radiate. Fluxes of energy and angular momentum and the time development of the system are discussed. Resolution of the paradox involves several unusual features, including (i) radiation by an unmoving charge, an effect discussed by Chitre, Price, and Sandberg, (ii) different power seen by relatively accelerated inertial observers, and (iii) radiation reaction due to gravitational backscattering of radiation, in agreement with the work of C. and B. DeWitt. These results are obtained, for the most part, without the complications of curved space--time

  14. Giant resonances in hot rotating nuclei

    International Nuclear Information System (INIS)

    Ring, P.

    1992-01-01

    Present theoretical descriptions of the giant resonances in hot rotating nuclei are reviewed. Mean field theory is used as a basis for the description of the hot compound states. Starting from the static solution at finite temperature and with fixed angular momentum small amplitude collective vibrations are calculated in the frame work of finite temperature random phase approximation for quasi-particles. The effect of pairing at low temperatures as well as the effect of rotations on the position of the resonance maxima are investigated. Microscopic and phenomenological descriptions of the damping mechanisms are reviewed. In particular it turns out that fluctuations play an important role in understanding of the behaviour of the width as a function of the temperature. Motional narrowing is critically discussed. (author). 99 refs., 5 figs

  15. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  16. Numerical Investigation of Monodisperse Granular Flow Through an Inclined Rotating Chute

    NARCIS (Netherlands)

    Shirsath, Sushil S.; Padding, J.T.; Kuipers, J.A.M.; Peeters, Tim W.J.; Clercx, H.J.H.

    2014-01-01

    A discrete element model of spherical glass particles flowing down a rotating chute is validated against high quality experimental data. The simulations are performed in a corotating frame of reference, taking into account Coriolis and centrifugal forces. In view of future extensions aimed at

  17. Diagnosis of subscapularis lesion in rotator cuff tears

    International Nuclear Information System (INIS)

    Terrier, F.; Wegmueller, H.; Vock, P.; Gerber, C.

    1989-01-01

    In rotator cuff tears, the subscapularis tendon is more often involved than previously suspected, and this lesion is often missed at arthrography. Because preoperative diagnosis is important for planning surgical repair, the authors have evaluated MR imaging and US in the detection of subscapularis tears. Fifteen patients with clinically suspected rotator cuff tears underwent MR imaging and US. Ten of 15 patients were treated surgically, and the other five were treated conservatively. MR imaging was performed with a 1.5-T Signa MR system. T1-weighted spin-echo (SE) and T2-weighted gradient-echo (GE) images were obtained

  18. A blind video watermarking scheme resistant to rotation and collusion attacks

    Directory of Open Access Journals (Sweden)

    Amlan Karmakar

    2016-04-01

    Full Text Available In this paper, Discrete Cosine Transform (DCT based blind video watermarking algorithm is proposed, which is perceptually invisible and robust against rotation and collusion attacks. To make the scheme resistant against rotation, watermark is embedded within the square blocks, placed on the middle position of every luminance channel. Then Zernike moments of those square blocks are calculated. The rotation invariance property of the Complex Zernike moments is exploited to predict the rotation angle of the video at the time of extraction of watermark bits. To make the scheme robust against collusion, design of the scheme is done in such a way that the embedding blocks will vary for the successive frames of the video. A Pseudo Random Number (PRN generator and a permutation vector are used to achieve the goal. The experimental results show that the scheme is robust against conventional video attacks, rotation attack and collusion attacks.

  19. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium

    Science.gov (United States)

    Lee, Wei-Ning; Larrat, Benoît; Pernot, Mathieu; Tanter, Mickaël

    2012-08-01

    We have previously proven the feasibility of ultrasound-based shear wave imaging (SWI) to non-invasively characterize myocardial fiber orientation in both in vitro porcine and in vivo ovine hearts. The SWI-estimated results were in good correlation with histology. In this study, we proposed a new and robust fiber angle estimation method through a tensor-based approach for SWI, coined together as elastic tensor imaging (ETI), and compared it with magnetic resonance diffusion tensor imaging (DTI), a current gold standard and extensively reported non-invasive imaging technique for mapping fiber architecture. Fresh porcine (n = 5) and ovine (n = 5) myocardial samples (20 × 20 × 30 mm3) were studied. ETI was firstly performed to generate shear waves and to acquire the wave events at ultrafast frame rate (8000 fps). A 2.8 MHz phased array probe (pitch = 0.28 mm), connected to a prototype ultrasound scanner, was mounted on a customized MRI-compatible rotation device, which allowed both the rotation of the probe from -90° to 90° at 5° increments and co-registration between two imaging modalities. Transmural shear wave speed at all propagation directions realized was firstly estimated. The fiber angles were determined from the shear wave speed map using the least-squares method and eigen decomposition. The test myocardial sample together with the rotation device was then placed inside a 7T MRI scanner. Diffusion was encoded in six directions. A total of 270 diffusion-weighted images (b = 1000 s mm-2, FOV = 30 mm, matrix size = 60 × 64, TR = 6 s, TE = 19 ms, 24 averages) and 45 B0 images were acquired in 14 h 30 min. The fiber structure was analyzed by the fiber-tracking module in software, MedINRIA. The fiber orientation in the overlapped myocardial region which both ETI and DTI accessed was therefore compared, thanks to the co-registered imaging system. Results from all ten samples showed good correlation (r2 = 0.81, p 0.05, unpaired, one-tailed t-test, N = 10). In

  20. On selection rules in vibrational and rotational molecular spectroscopy

    International Nuclear Information System (INIS)

    Guichardet, A.

    1986-01-01

    The aim of this work is a rigorous proof of the Selection Rules in Molecular Spectroscopy (Vibration and Rotation). To get this we give mathematically rigorous definitions of the (tensor) transition operators, in this case the electric dipole moment; this is done, firstly by considering the molecule as a set of point atomic kernels performing arbitrary motions, secondly by limiting ourselves either to infinitesimal vibration motions, or to arbitrary rotation motions. Then the selection rules follow from an abstract formulation of the Wigner-Eckart theorem. In a last paragraph we discuss the problem of separating vibration and rotation motions; very simple ideas from Differential Geometry, linked with the ''slice theorem'', allow us to define the relative speeds, the solid motions speeds, the Coriolis energies and the moving Eckart frames [fr

  1. Nonmonotonic belief state frames and reasoning frames

    NARCIS (Netherlands)

    Engelfriet, J.; Herre, H.; Treur, J.

    1995-01-01

    In this paper five levels of specification of nonmonotonic reasoning are distinguished. The notions of semantical frame, belief state frame and reasoning frame are introduced and used as a semantical basis for the first three levels. Moreover, the semantical connections between the levels are

  2. Adaptive wavelet tight frame construction for accelerating MRI reconstruction

    Directory of Open Access Journals (Sweden)

    Genjiao Zhou

    2017-09-01

    Full Text Available The sparsity regularization approach, which assumes that the image of interest is likely to have sparse representation in some transform domain, has been an active research area in image processing and medical image reconstruction. Although various sparsifying transforms have been used in medical image reconstruction such as wavelet, contourlet, and total variation (TV etc., the efficiency of these transforms typically rely on the special structure of the underlying image. A better way to address this issue is to develop an overcomplete dictionary from the input data in order to get a better sparsifying transform for the underlying image. However, the general overcomplete dictionaries do not satisfy the so-called perfect reconstruction property which ensures that the given signal can be perfectly represented by its canonical coefficients in a manner similar to orthonormal bases, resulting in time consuming in the iterative image reconstruction. This work is to develop an adaptive wavelet tight frame method for magnetic resonance image reconstruction. The proposed scheme incorporates the adaptive wavelet tight frame approach into the magnetic resonance image reconstruction by solving a l0-regularized minimization problem. Numerical results show that the proposed approach provides significant time savings as compared to the over-complete dictionary based methods with comparable performance in terms of both peak signal-to-noise ratio and subjective visual quality.

  3. Three-dimensional image reconstruction using rotational digital subtraction technique: the initial experience of the clinical application

    International Nuclear Information System (INIS)

    Ouyang Zhongnan; Tang Jun; He Jianjun; Lu Xiaohe; Xun Yanping

    2002-01-01

    Objective: To evaluate the benefit of three-dimensional (3D) reconstruction images with rotational digital subtraction technique for the clinical applications. Methods: Conventional two-dimensional digital substraction angiography (2D DSA) was obtained on A-P and lateral view. Three-dimensional digital subtraction angiography (3D DSA) images were obtained by reconstruction of a rotational acquisition on a C-arm (LCV +, GE Medical Systems) spinning at 40 degrees per second. 53 cases of cerebral angiographies were performed (32 men and 21 women; the age ranged from 19 to 72 years, mean 46.3 years). Results: In this series of 53 cases of cerebral angiographies, 5 cases of arteriovenous malformation were all correctly diagnosed by 3D DSA and 2D DSA. Seven cases were misdiagnosed as intracranial aneurysms at conventional 2D DSA but confirmed to be kinking of the vessel by 3D DSA. 41 cases were confirmed to be intracranial aneurysms. Of the 41 cases, 5 cases were diagnosed as normal at 2D DSA but confirmed to be intracranial aneurysms at 3D DSA. The total consistency rate of 3D DSA and 2D DSA for the diagnosis of intracranial aneurysm is 77.4% (41/53). The consistent test shows that there was consistency between the two modalities (chi-square test, χ 2 = 5.267, P < 0.05). 29 cases were treated with endovascular coil embolization. Among them only 3 cases of the aneurysm's neck could be best visualized by 2D DSA but 29 cases by 3D DSA. Conclusion: 3D reconstruction images with rotational digital subtraction technique is a useful tool to study the vascular diseases using less contrast agent and a lower radiation dose and shortening the examination process. It is replenishment for conventional 2D DSA. This technique enables better diagnosis for intracranial vascular lesion and visualization of complex vascular relationships and structures. It is valuable for surgical planning and interventional procedure

  4. POINT CLOUD DERIVED FROMVIDEO FRAMES: ACCURACY ASSESSMENT IN RELATION TO TERRESTRIAL LASER SCANNINGAND DIGITAL CAMERA DATA

    Directory of Open Access Journals (Sweden)

    P. Delis

    2017-02-01

    Full Text Available The use of image sequences in the form of video frames recorded on data storage is very useful in especially when working with large and complex structures. Two cameras were used in this study: Sony NEX-5N (for the test object and Sony NEX-VG10 E (for the historic building. In both cases, a Sony α f = 16 mm fixed focus wide-angle lens was used. Single frames with sufficient overlap were selected from the video sequence using an equation for automatic frame selection. In order to improve the quality of the generated point clouds, each video frame underwent histogram equalization and image sharpening. Point clouds were generated from the video frames using the SGM-like image matching algorithm. The accuracy assessment was based on two reference point clouds: the first from terrestrial laser scanning and the second generated based on images acquired using a high resolution camera, the NIKON D800. The performed research has shown, that highest accuracies are obtained for point clouds generated from video frames, for which a high pass filtration and histogram equalization had been performed. Studies have shown that to obtain a point cloud density comparable to TLS, an overlap between subsequent video frames must be 85 % or more. Based on the point cloud generated from video data, a parametric 3D model can be generated. This type of the 3D model can be used in HBIM construction.

  5. Digital tomosynthesis using a 35 mm X-ray cinematogram during an isocentric rotational motion

    International Nuclear Information System (INIS)

    Maeda, Hirofumi; Aikawa, Hisayuki; Maeda, Tohru; Miyake, Hidetoshi; Sugahara, Tetsuo.

    1988-01-01

    Digital tomosynthesis is performed using a 35 mm X-ray cinematogram obtained during an isocentric rotational motion of the cineangiographic apparatus. Formula of image shift for digital tomosynthesis using an isocentric rotational motion is induced by perspective projection and affine transformation. Images of desired layer are aligned at the same point in the image processor and summed. Resultant final image is displayed in sharp focus. We can set tomosynthetic factors on any desired projection, sweep angle and depth as concerns digital tomosynthesis using an isocentric rotational motion. Especially we emphasize that tomosynthesis tilted for central axis of isocentric rotational motion can be obtained, using shear transformation of image in the image processor. (author)

  6. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions

    International Nuclear Information System (INIS)

    Armellini, A.; Casarsa, L.; Mucignat, C.

    2011-01-01

    The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.

  7. Keeping It in Three Dimensions: Measuring the Development of Mental Rotation in Children with the Rotated Colour Cube Test (RCCT)

    Science.gov (United States)

    Lutke, Nikolay; Lange-Kuttner, Christiane

    2015-01-01

    This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters…

  8. Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images

    Science.gov (United States)

    Schröder, S. E.; Mottola, S.; Carsenty, U.; Ciarniello, M.; Jaumann, R.; Li, J.-Y.; Longobardo, A.; Palmer, E.; Pieters, C.; Preusker, F.; Raymond, C. A.; Russell, C. T.

    2017-05-01

    We present a global spectrophotometric characterization of the Ceres surface using Dawn Framing Camera (FC) images. We identify the photometric model that yields the best results for photometrically correcting images. Corrected FC images acquired on approach to Ceres were assembled into global maps of albedo and color. Generally, albedo and color variations on Ceres are muted. The albedo map is dominated by a large, circular feature in Vendimia Planitia, known from HST images (Li et al., 2006), and dotted by smaller bright features mostly associated with fresh-looking craters. The dominant color variation over the surface is represented by the presence of "blue" material in and around such craters, which has a negative spectral slope over the visible wavelength range when compared to average terrain. We also mapped variations of the phase curve by employing an exponential photometric model, a technique previously applied to asteroid Vesta (Schröder et al., 2013b). The surface of Ceres scatters light differently from Vesta in the sense that the ejecta of several fresh-looking craters may be physically smooth rather than rough. High albedo, blue color, and physical smoothness all appear to be indicators of youth. The blue color may result from the desiccation of ejected material that is similar to the phyllosilicates/water ice mixtures in the experiments of Poch et al. (2016). The physical smoothness of some blue terrains would be consistent with an initially liquid condition, perhaps as a consequence of impact melting of subsurface water ice. We find red terrain (positive spectral slope) near Ernutet crater, where De Sanctis et al. (2017) detected organic material. The spectrophotometric properties of the large Vendimia Planitia feature suggest it is a palimpsest, consistent with the Marchi et al. (2016) impact basin hypothesis. The central bright area in Occator crater, Cerealia Facula, is the brightest on Ceres with an average visual normal albedo of about 0.6 at

  9. Glenohumeral interposition of rotator cuff stumps: a rare complication of traumatic rotator cuff tear

    Directory of Open Access Journals (Sweden)

    Paulo Moraes Agnollitto

    2016-02-01

    Full Text Available Abstract The present report describes a case where typical findings of traumatic glenohumeral interposition of rotator cuff stumps were surgically confirmed. This condition is a rare complication of shoulder trauma. Generally, it occurs in high-energy trauma, frequently in association with glenohumeral joint dislocation. Radiography demonstrated increased joint space, internal rotation of the humerus and coracoid process fracture. In addition to the mentioned findings, magnetic resonance imaging showed massive rotator cuff tear with interposition of the supraspinatus, infraspinatus and subscapularis stumps within the glenohumeral joint. Surgical treatment was performed confirming the injury and the rotator cuff stumps interposition. It is important that radiologists and orthopedic surgeons become familiar with this entity which, because of its rarity, might be neglected in cases of shoulder trauma.

  10. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    Science.gov (United States)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  11. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2015-07-01

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.

  12. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  13. Reliability of magnetic resonance imaging assessment of rotator cuff: the ROW study.

    Science.gov (United States)

    Jain, Nitin B; Collins, Jamie; Newman, Joel S; Katz, Jeffrey N; Losina, Elena; Higgins, Laurence D

    2015-03-01

    Physiatrists encounter patients with rotator cuff disorders, and imaging is frequently an important component of their diagnostic assessment. However, there is a paucity of literature on the reliability of magnetic resonance imaging (MRI) assessment between shoulder specialists and musculoskeletal radiologists. We assessed inter- and intrarater reliability of MRI characteristics of the rotator cuff. Cross-sectional secondary analyses in a prospective cohort study. Academic tertiary care centers. Subjects with shoulder pain were recruited from orthopedic and physiatry clinics. Two shoulder-fellowship-trained physicians (a physiatrist and a shoulder surgeon) jointly performed a blinded composite MRI review by consensus of 31 subjects with shoulder pain. Subsequently, MRI was reviewed by one fellowship-trained musculoskeletal radiologist. We calculated the Cohen kappa coefficients and percentage agreement among the 2 reviews (composite review of 2 shoulder specialists versus that of the musculoskeletal radiologist). Intrarater reliability was assessed among the shoulder specialists by performing a repeated blinded composite MRI review. In addition to this repeated composite review, only one of the physiatry shoulder specialists performed an additional review. Interrater reliability (shoulder specialists versus musculoskeletal radiologist) was substantial for the presence or absence of tear (kappa 0.90 [95% confidence interval {CI}, 0.72-1.00]), tear thickness (kappa 0.84 [95% CI, 0.70-0.99]), longitudinal size of tear (kappa 0.75 [95% CI, 0.44-1.00]), fatty infiltration (kappa 0.62 [95% CI, 0.45-0.79]), and muscle atrophy (kappa 0.68 [95% CI, 0.50-0.86]). There was only fair interrater reliability of the transverse size of tear (kappa 0.20 [95% CI, 0.00-0.51]). The kappa for intrarater reliability was high for tear thickness (0.88 [95% CI, 0.72-1.00]), longitudinal tear size (0.61 [95% CI, 0.22-0.99]), fatty infiltration (0.89 [95% CI, 0.80,-0.98]), and muscle atrophy

  14. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.L.; Broennimann, Ch.; Eikenberry, E.F.; Ince-Cushman, A.; Lee, S.G.; Rice, J.E.; Scott, S.; Barnsley, R.

    2008-01-01

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of T i and ν φ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER

  15. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Jang, S.; Bouyssy, A.

    1987-06-01

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  16. Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Arminjon, Mayeul

    2008-01-01

    The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself

  17. NMR of the rotator cuff. An update; MRT der Rotatorenmanschette. Ein Update

    Energy Technology Data Exchange (ETDEWEB)

    Kreitner, Karl-Friedrich; Maehringer-Kunz, Aline [Universitaetsmedizin Mainz (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2016-03-15

    The rotator cuff consists of the tendons of the supscapularis, supraspinatus, infraspinatus and teres minor muscles. This group of muscles performs multiple functions and is often stressed during various activities. This explains, why rotator cuff disease is common and the most often cause of shoulder pain and dysfunction in adults. MR imaging still is the most important imaging modality in assessment of rotator cuff disease. It enables the radiologist to make an accurate diagnosis, the basis for an appropriate management. In this article, current concepts with regard to anatomy and imaging diagnosis will be reviewed. The discussion of the complex anatomy is followed by normal and pathologic MR imaging appearances of the rotator cuff including tendinopathy and tearing, and concluding with a review of the postoperative cuff.

  18. Improved apparatus for predictive diagnosis of rotator cuff disease

    Science.gov (United States)

    Pillai, Anup; Hall, Brittany N.; Thigpen, Charles A.; Kwartowitz, David M.

    2014-03-01

    Rotator cuff disease impacts over 50% of the population over 60, with reports of incidence being as high as 90% within this population, causing pain and possible loss of function. The rotator cuff is composed of muscles and tendons that work in tandem to support the shoulder. Heavy use of these muscles can lead to rotator cuff tear, with the most common causes is age-related degeneration or sport injuries, both being a function of overuse. Tears ranges in severity from partial thickness tear to total rupture. Diagnostic techniques are based on physical assessment, detailed patient history, and medical imaging; primarily X-ray, MRI and ultrasonography are the chosen modalities for assessment. The final treatment technique and imaging modality; however, is chosen by the clinician is at their discretion. Ultrasound has been shown to have good accuracy for identification and measurement of full-thickness and partial-thickness rotator cuff tears. In this study, we report on the progress and improvement of our method of transduction and analysis of in situ measurement of rotator cuff biomechanics. We have improved the ability of the clinician to apply a uniform force to the underlying musculotendentious tissues while simultaneously obtaining the ultrasound image. This measurement protocol combined with region of interest (ROI) based image processing will help in developing a predictive diagnostic model for treatment of rotator cuff disease and help the clinicians choose the best treatment technique.

  19. Quantum-mechanical theory for electronic-vibrational-rotational energy transfer in atom--diatom collisions: Analysis of the Hamiltonian

    International Nuclear Information System (INIS)

    Bellum, J.C.; McGuire, P.

    1983-01-01

    We investigate forms of the molecular system Hamiltonian valid for rigorous quantum-mechanical treatments of inelastic atom--diatom collisions characterized by exchange of energy between electronic, vibrational, and rotational degrees of freedom. We analyze this Hamiltonian in terms of various choices of independent coordinates which unambiguously specify the electronic and nuclear positions in the context of space-fixed and body-fixed reference frames. In particular we derive forms of the Hamiltonian in the context of the following four sets of independent coordinates: (1) a so-called space-fixed set, in which both electronic and nuclear positions are relative to the space-fixed frame; (2) a so-called mixed set, in which nuclear positions are relative to the body-fixed frame while electronic positions are relative to the space-fixed frame; (3) a so-called body-fixed set, in which both electronic and nuclear positions are relative to the body-fixed frame; and (4) another mixed set, in which nuclear positions are relative to the space-fixed frame while electronic positions are relative to the body-fixed frame. Based on practical considerations in accounting for electronic structure and nonadiabatic coupling of electronic states of the collision complex we find the forms of the Hamiltonian in the context of coordinate sets (3) and (4) above to be most appropriate, respectively, for body-fixed and space-fixed treatments of nuclear dynamics in collisional transfer of electronic, vibrational, and rotational energies

  20. Theoretical Investigation of Creeping Viscoelastic Flow Transition Around a Rotating Curved Pipe

    OpenAIRE

    Hamza, S. E. E.; El-Bakry, Mostafa Y.

    2015-01-01

    The study of creeping motion of viscoelastic fluid around a rotating rigid torus is investigated. The analysis of the problem is performed using a second-order viscoelastic model. The study is carried out in terms of the bipolar toroidal system of coordinates where the toroid is rotating about its axis of symmetry (z-axis). The problem is solved within the frame of slow flow approximation. Therefore, all variables in the governing equations are expanded in a power series of angular velocity. ...

  1. Evaluation of accuracy in target positions of multmodality imaging using brain phantom

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2002-07-01

    Determination of target positions in radiation therapy or radiosurgery is critical to the successful treatment. It is often difficult to recognize the target position only from single image modality since each image modality has unique image pattern and image distortion problem. The purpose of this study is to evaluate the accuracy of target positions with multimodality brain phantom. We obtained CT, MR, and SPECT scan images with the specially designed brain phantom. Brain phantom consists of brain for images and frame for localization. The phantom was a water fillable cylinder containing 58 axial layers of 2.0 mm thickness. Each layer allows water to permeate various regions to match gray matter to white matter of 1:1 ratio. Localization frame with 5mm inner diameter and 150/160 mm length were attached to the outside of the brain slice and inside of the phantom cylinder. The phantom was filled with 0.16 M CuSO{sub 4} solution for MRI scan, and distilled water for CT and 15mCi (555 MBq) Tc-99m for SPECT. Axial slice images and volume images including the targets and localizer were obtained for each modality. To evaluate the errors in target positions, the position of localization and target balls measured in SPECT were compared with MR and CT. Transformation parameters for translation, rotation and scaling were determined by surface matching each SPECT with MR and CT images. Multimodality phantom was very useful to evaluate the accuracy of target positions among the different types of image modality such as CT, MR and SPECT.

  2. North–South Asymmetry of the Rotation of the Solar Magnetic Field

    Science.gov (United States)

    Xie, Jinglan; Shi, Xiangjun; Qu, Zhining

    2018-03-01

    Using the rotation rates of the solar magnetic field during solar cycles 21 to 23 obtained by Chu et al. by analyzing the synoptic magnetic maps produced by the NSO/Kitt Peak and SOHO/MDI during the years 1975 to 2008, the temporal variation of the equatorial rotation rate (A) and the latitude gradient of rotation (B) in the northern and southern hemispheres are studied separately. The results indicate that the rotation is more differential (about 4.3%) in the southern hemisphere in the considered time frame. It is found that the north–south asymmetry of A and the asymmetry of B show increasing trends in the considered time frame, while the north–south asymmetry of the solar activity shows a decreasing trend. There exists a significant negative correlation (at 95% confidence level) between the asymmetry of B and the asymmetry of the solar activity, and this may be due to stronger magnetic activity in a certain hemisphere that may suppress the differential rotation to some extent. The periodicities in the variation of A and B are also studied, and periods of about 5.0 and 10.5 yr (5.5 and 10.4 yr) can be found for the variation of the northern (southern) hemisphere B. Moreover, the north–south asymmetry of A and the asymmetry of B have similar periods of about 2.6–2.7 and 5.2–5.3 yr. Further, cross-correlation analysis indicates that there exists a phase difference (about eight months) between the northern and southern hemisphere B, and this means that the northern hemisphere B generally leads by about eight months.

  3. MR arthrography including abduction and external rotation images in the assessment of atraumatic multidirectional instability of the shoulder

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffeler, Christoph [Technische Universitaet Muenchen, Department of Radiology, Munich (Germany); Kantonsspital Graubuenden, Musculoskeletal Imaging, Chur (Switzerland); Waldt, Simone; Bauer, Jan S.; Rummeny, Ernst J.; Woertler, Klaus [Technische Universitaet Muenchen, Department of Radiology, Munich (Germany); Kirchhoff, Chlodwig [Technische Universitaet Muenchen, Department of Traumatology, Munich (Germany); Haller, Bernhard [Technische Universitaet Muenchen, Institute for Medical Statistics and Epidemiology, Munich (Germany); Schroeder, Michael [Center for Sports Orthopedics and Medicine, Orthosportiv, Munich (Germany); Imhoff, Andreas B. [Technische Universitaet Muenchen, Department of Orthopedic Sports Medicine, Munich (Germany)

    2014-06-15

    To evaluate diagnostic signs and measurements in the assessment of capsular redundancy in atraumatic multidirectional instability (MDI) of the shoulder on MR arthrography (MR-A) including abduction/external rotation (ABER) images. Twenty-one MR-A including ABER position of 20 patients with clinically diagnosed MDI and 17 patients without instability were assessed by three radiologists. On ABER images, presence of a layer of contrast between the humeral head (HH) and the anteroinferior glenohumeral ligament (AIGHL) (crescent sign) and a triangular-shaped space between the HH, AIGHL and glenoid (triangle sign) were evaluated; centring of the HH was measured. Anterosuperior herniation of the rotator interval (RI) capsule and glenoid version were determined on standard imaging planes. The crescent sign had a sensitivity of 57 %/62 %/48 % (observers 1/2/3) and specificity of 100 %/100 %/94 % in the diagnosis of MDI. The triangle sign had a sensitivity of 48 %/57 %/48 % and specificity of 94 %/94 %/100 %. The combination of both signs had a sensitivity of 86 %/90 %/81 % and specificity of 94 %/94 %/94 %. A positive triangle sign was significantly associated with decentring of the HH. Measurements of RI herniation, RI width and glenoid were not significantly different between both groups. Combined assessment of redundancy signs on ABER position MR-A allows for accurate differentiation between patients with atraumatic MDI and patients with clinically stable shoulders; measurements on standard imaging planes appear inappropriate. (orig.)

  4. Telemetry Standards, RCC Standard 106-17. Chapter 9. Telemetry Attributes Transfer Standard

    Science.gov (United States)

    2017-07-01

    DIAM-n) IMAGE FRAME RATE (R-x\\ IFR -n) PRE-TRIGGER FRAMES (R-x\\PTG-n) TOTAL FRAMES (R-x\\TOTF-n) EXPOSURE TIME (R-x\\EXP-n) SENSOR ROTATION...Multi-frame). “2” (Continuous). Allowed when: R\\CDT is “IMGIN” IMAGE FRAME RATE R-x\\ IFR -n R/R Ch 10 Status: RO Frame rate in frames per second... impact : A partial IHAL <configuration> element containing only the new settings for everything that has changed: • The new values for the settings

  5. Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous-heterogeneous reactions

    Science.gov (United States)

    Maqsood, Najwa; Mustafa, M.; Khan, Junaid Ahmad

    This study provides a numerical treatment for rotating flow of viscoelastic (Maxwell) fluid bounded by a linearly deforming elastic surface. Mass transfer analysis is carried out in the existence of homogeneous-heterogeneous reactions. By means of usual transformation, the governing equations are changed into global similarity equations which have been tackled by an expedient shooting approach. A contemporary numerical routine bvp4c of software MATLAB is also opted to develop numerical approximations. Both methods of solution are found in complete agreement in all the cases. Velocity and concentration profiles are computed and elucidated for certain range of viscoelastic fluid parameter. The solutions contain a rotation-strength parameter λ that has a considerable impact on the flow fields. For sufficiently large value of λ , the velocity fields are oscillatory decaying function of the non-dimensional vertical distance. Concentration distribution at the surface is found to decrease upon increasing the strengths of chemical reactions. A comparison of present computations is made with those of already published ones and such comparison appears convincing.

  6. Dynamic Torsional and Cyclic Fracture Behavior of ProFile Rotary Instruments at Continuous or Reciprocating Rotation as Visualized with High-speed Digital Video Imaging.

    Science.gov (United States)

    Tokita, Daisuke; Ebihara, Arata; Miyara, Kana; Okiji, Takashi

    2017-08-01

    This study examined the dynamic fracture behavior of nickel-titanium rotary instruments in torsional or cyclic loading at continuous or reciprocating rotation by means of high-speed digital video imaging. The ProFile instruments (size 30, 0.06 taper; Dentsply Maillefer, Ballaigues, Switzerland) were categorized into 4 groups (n = 7 in each group) as follows: torsional/continuous (TC), torsional/reciprocating (TR), cyclic/continuous (CC), and cyclic/reciprocating (CR). Torsional loading was performed by rotating the instruments by holding the tip with a vise. For cyclic loading, a custom-made device with a 38° curvature was used. Dynamic fracture behavior was observed with a high-speed camera. The time to fracture was recorded, and the fractured surface was examined with scanning electron microscopy. The TC group initially exhibited necking of the file followed by the development of an initial crack line. The TR group demonstrated opening and closing of a crack according to its rotation in the cutting and noncutting directions, respectively. The CC group separated without any detectable signs of deformation. In the CR group, initial crack formation was recognized in 5 of 7 samples. The reciprocating rotation exhibited a longer time to fracture in both torsional and cyclic fatigue testing (P rotary instruments, as visualized with high-speed digital video imaging, varied between the different modes of rotation and different fatigue testing. Reciprocating rotation induced a slower crack propagation and conferred higher fatigue resistance than continuous rotation in both torsional and cyclic loads. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Frame sequences analysis technique of linear objects movement

    Science.gov (United States)

    Oshchepkova, V. Y.; Berg, I. A.; Shchepkin, D. V.; Kopylova, G. V.

    2017-12-01

    Obtaining data by noninvasive methods are often needed in many fields of science and engineering. This is achieved through video recording in various frame rate and light spectra. In doing so quantitative analysis of movement of the objects being studied becomes an important component of the research. This work discusses analysis of motion of linear objects on the two-dimensional plane. The complexity of this problem increases when the frame contains numerous objects whose images may overlap. This study uses a sequence containing 30 frames at the resolution of 62 × 62 pixels and frame rate of 2 Hz. It was required to determine the average velocity of objects motion. This velocity was found as an average velocity for 8-12 objects with the error of 15%. After processing dependencies of the average velocity vs. control parameters were found. The processing was performed in the software environment GMimPro with the subsequent approximation of the data obtained using the Hill equation.

  8. Transtendon rotator-cuff repair of partial-thickness articular surface tears can lead to medial rotator-cuff failure

    Directory of Open Access Journals (Sweden)

    Woods TC

    2014-06-01

    Full Text Available Tom C Woods,4 Michael J Carroll,1 Atiba A Nelson,2 Kristie D More,2 Randa Berdusco,1 Stephen Sohmer,3 Richard S Boorman,1,2 Ian KY Lo1,21Department of Surgery, 2Sport Medicine Centre, University of Calgary, Calgary, AB, Canada; 3Department of Orthopaedics, University of British Columbia, Vancouver, 4St Joseph's Hospital, Comox, BC, CanadaPurpose: The purpose of this study was to evaluate clinical and anatomic outcomes of patients following transtendon rotator-cuff repair of partial articular supraspinatus tendon avulsion (PASTA lesions.Patients and methods: Patients in the senior author's practice who had isolated PASTA lesions treated by transtendon rotator-cuff repair were included (n=8 and retrospectively reviewed. All patients were evaluated preoperatively and at a mean of 21.2 months (±9.7 months postoperatively using standardized clinical evaluation (physical exam, American Shoulder and Elbow Surgeons, and Simple Shoulder Test. All patients underwent postoperative imaging with a magnetic resonance imaging arthrogram.Results: There was a significant improvement in American Shoulder and Elbow Surgeons (42.7±17.5 to 86.9±25.2 and Simple Shoulder Test (4.6±3.2 to 10.1±3.8 scores from pre- to postoperative, respectively. Postoperative imaging demonstrated full-thickness medial cuff tearing in seven patients, and one patient with a persistent partial articular surface defect.Conclusion: Transtendon repair of PASTA lesions may lead to improvements in clinical outcome. However, postoperative imaging demonstrated a high incidence of full-thickness rotator-cuff defects following repair.Keywords: rotator cuff, PASTA lesion, transtendon repair

  9. Media Framing

    DEFF Research Database (Denmark)

    Pedersen, Rasmus T.

    2017-01-01

    The concept of media framing refers to the way in which the news media organize and provide meaning to a news story by emphasizing some parts of reality and disregarding other parts. These patterns of emphasis and exclusion in news coverage create frames that can have considerable effects on news...... consumers’ perceptions and attitudes regarding the given issue or event. This entry briefly elaborates on the concept of media framing, presents key types of media frames, and introduces the research on media framing effects....

  10. 100ps UV/x-ray framing camera

    International Nuclear Information System (INIS)

    Eagles, R.T.; Freeman, N.J.; Allison, J.M.; Sibbett, W.; Sleat, W.E.; Walker, D.R.

    1988-01-01

    The requirement for a sensitive two-dimensional imaging diagnostic with picosecond time resolution, particularly in the study of laser-produced plasmas, has previously been discussed. A temporal sequence of framed images would provide useful supplementary information to that provided by time resolved streak images across a spectral region of interest from visible to x-ray. To fulfill this requirement the Picoframe camera system has been developed. Results pertaining to the operation of a camera having S20 photocathode sensitivity are reviewed and the characteristics of an UV/x-ray sensitive version of the Picoframe system are presented

  11. Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium

    Directory of Open Access Journals (Sweden)

    Jianhong Kang

    2015-01-01

    Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.

  12. Framing effects over time: comparing affective and cognitive news frames

    NARCIS (Netherlands)

    Lecheler, S.; Matthes, J.

    2012-01-01

    A growing number of scholars examine the duration of framing effects. However, duration is likely to differ from frame to frame, depending on how strong a frame is. This strength is likely to be enhanced by adding emotional components to a frame. By means of an experimental survey design (n = 111),

  13. Think Spatial: The Representation in Mental Rotation Is Nonvisual

    Science.gov (United States)

    Liesefeld, Heinrich R.; Zimmer, Hubert D.

    2013-01-01

    For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information…

  14. Framing futures: visualizing on social-ecological systems change

    NARCIS (Netherlands)

    Vervoort, J.M.

    2011-01-01

    An appreciation of the complexity and uncertainty that characterizes linked human and natural systems - or social-ecological systems - has proliferated throughout the sciences in recent decades. However, dominant societal images, mental models and discourses frame the complexity of

  15. Frame-dragging effect in the field of non rotating body due to unit gravimagnetic moment

    Science.gov (United States)

    Deriglazov, Alexei A.; Ramírez, Walberto Guzmán

    2018-04-01

    Nonminimal spin-gravity interaction through unit gravimagnetic moment leads to modified Mathisson-Papapetrou-Tulczyjew-Dixon equations with improved behavior in the ultrarelativistic limit. We present exact Hamiltonian of the resulting theory and compute an effective 1/c2-Hamiltonian and leading post-Newtonian corrections to the trajectory and spin. Gravimagnetic moment causes the same precession of spin S as a fictitious rotation of the central body with angular momentum J = M/m S. So the modified equations imply a number of qualitatively new effects, that could be used to test experimentally, whether a rotating body in general relativity has null or unit gravimagnetic moment.

  16. Interference-free ultrasound imaging during HIFU therapy, using software tools

    Science.gov (United States)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  17. Development of high-frame rate neutron radiography and quantitative measurement method for multiphase flow research

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.

    1998-01-01

    Neutron radiography (NR) is one of the radiographic techniques which makes use of the difference in attenuation characteristics of neutrons in materials. Fluid measurement using the NR technique is a non-intrusive method which enables visualization of dynamic images of multiphase flow of opaque fluids and/or in a metallic duct. To apply the NR technique to multiphase flow research, high frame-rate NR was developed by combining up-to-date technologies for neutron sources, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and there is no need for a triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at recording speeds of 250, 500 and 1000 frames/s. The qualities of the consequent images were sufficient to observe the flow pattern and behavior. It was also demonstrated that some characteristics of two-phase flow could be measured from these images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, bubble rise velocity, and wave height and interfacial area in annular flow were obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction were performed. It was confirmed that this new technique may have significant advantages both in visualizing and measuring high-speed fluid phenomena when other methods, such as an optical method and X-ray radiography, cannot be applied. (author)

  18. Rotating positron tomographs revisited

    International Nuclear Information System (INIS)

    Townsend, D.; Defrise, M.; Geissbuhler, A.

    1994-01-01

    We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

  19. The role of rotational hand movements and general motor ability in children’s mental rotation performance

    Directory of Open Access Journals (Sweden)

    Petra eJansen

    2015-07-01

    Full Text Available Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular seem to have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N= 83; Age range: 7.0-8.3 and 9.0-10.11 years. In addition, we assessed the role of motor ability in this relationship. Boys in the 7-8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.

  20. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    International Nuclear Information System (INIS)

    Medley, S.S.; Dimock, D.L.; Hayes, S.; Long, D.; Lowrence, J.L.; Mastrocola, V.; Renda, G.; Ulrickson, M.; Young, K.M.

    1985-05-01

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect vacuum vessel internal structures in both visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diameter fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (5 0 , 20 0 , and 60 0 field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35 mm Nikon F3 still camera, or (5) a 16 mm Locam II movie camera with variable framing up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented