WorldWideScience

Sample records for rotating charged black

  1. Interior structure of rotating black holes. III. Charged black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.

    2011-01-01

    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.

  2. A rotating charged black hole solution in f (R) gravity

    Indian Academy of Sciences (India)

    Abstract. In the context of f (R) theories of gravity, we address the problem of finding a rotating charged black hole solution in the case of constant curvature. A new metric is obtained by solving the field equations and we show that its behaviour is typical of a rotating charged source. In addition, we analyse the ...

  3. Charged rotating black holes on a 3-brane

    International Nuclear Information System (INIS)

    Aliev, A.N.; Guemruekcueoglu, A.E.

    2005-01-01

    We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superseded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the 'squared' energy-momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of nonuniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles

  4. Faraday rotation near charged black holes and other electrovacuum geometries

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1975-01-01

    In space permeated by a steady background electromagnetic field a gravitational wave and an electromagnetic wave not only undergo beat frequency oscillations, but the linear polarizations of these waves undergo Faraday rotations as well. The beating and the Faraday rotations are inextricably related. The classification of these phenomena requires three parameters, the three Euler parameters of SU(2). They specify in a more general sense the ''polarization'' of an electrograviton mode. The evolution of the beat frequency oscillations and the Faraday rotations along a propagating wave front is described as a moving point in SU(2). Consequently, a charged black hole serves not only as a catalyst for converting suitably directed electromagnetic radiation into gravitational radiation, but also as an agent that randomized the linear polarizations of radiation emerging from it. An assessment of these phenomena in relation to the origin of Weber's signals is given

  5. Charged Fermions Tunneling from a Rotating Charged Black Hole in 5-Dimensional Gauged Supergravity

    International Nuclear Information System (INIS)

    Li Huiling; Lin Rong; Wang Chuanyin

    2010-01-01

    Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.

  6. CHAOTIC MOTION OF CHARGED PARTICLES IN AN ELECTROMAGNETIC FIELD SURROUNDING A ROTATING BLACK HOLE

    International Nuclear Information System (INIS)

    Takahashi, Masaaki; Koyama, Hiroko

    2009-01-01

    The observational data from some black hole candidates suggest the importance of electromagnetic fields in the vicinity of a black hole. Highly magnetized disk accretion may play an importance rule, and large-scale magnetic field may be formed above the disk surface. Then, we expect that the nature of the black hole spacetime would be revealed by magnetic phenomena near the black hole. We will start investigating the motion of a charged test particle which depends on the initial parameter setting in the black hole dipole magnetic field, which is a test field on the Kerr spacetime. Particularly, we study the spin effects of a rotating black hole on the motion of the charged test particle trapped in magnetic field lines. We make detailed analysis for the particle's trajectories by using the Poincare map method, and show the chaotic properties that depend on the black hole spin. We find that the dragging effects of the spacetime by a rotating black hole weaken the chaotic properties and generate regular trajectories for some sets of initial parameters, while the chaotic properties dominate on the trajectories for slowly rotating black hole cases. The dragging effects can generate the fourth adiabatic invariant on the particle motion approximately.

  7. Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes

    International Nuclear Information System (INIS)

    Wu Shuangqing; Peng Junjin

    2011-01-01

    We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planck distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.

  8. On Thermodynamical Relation Between Rotating Charged BTZ Black Holes and Effective String Theory

    Institute of Scientific and Technical Information of China (English)

    Alexis Larra(~n)aga

    2008-01-01

    In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.

  9. On the absence of scalar hair for charged rotating black holes in non ...

    Indian Academy of Sciences (India)

    black holes with exterior non-abelian gauge field or Skyrmion field [8–10] have put ... solutions for charged rotating space-time with a minimally coupled scalar field from the ...... 125, 2163 (1962). [26] G Magnano and L M Sokolowski, Phys.

  10. Electrically charged matter in rigid rotation around magnetized black hole

    Czech Academy of Sciences Publication Activity Database

    Kovář, J.; Slaný, P.; Cremaschini, C.; Stuchlík, Z.; Karas, Vladimír; Trova, Audrey

    2014-01-01

    Roč. 90, č. 4 (2014), 044029/1-044029/14 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Grant - others:GA ČR(CZ) GP14-07753P Institutional support: RVO:67985815 Keywords : black holes * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.643, year: 2014

  11. Charged rotating black holes in four-dimensional gauged and ungauged supergravities

    International Nuclear Information System (INIS)

    Chong, Z.-W.; Cvetic, M.; Lue, H.; Pope, C.N.

    2005-01-01

    We study four-dimensional non-extremal charged rotating black holes in ungauged and gauged supergravity. In the ungauged case, we obtain rotating black holes with four independent charges, as solutions of N=2 supergravity coupled to three Abelian vector multiplets. This is done by reducing the theory along the time direction to three dimensions, where it has an O(4,4) global symmetry. Applied to the reduction of the uncharged Kerr metric, O(1,1) 4 is a subject of O(4,4) transformations generate new solutions that correspond, after lifting back to four dimensions, to the introduction of four independent electromagnetic charges. In the case where these charges are set pairwise equal, we then generalise the four-dimensional rotating black holes to solutions of gauged N=4 supergravity, with mass, angular momentum and two independent electromagnetic charges. The dilaton and axion fields are non-constant. We also find generalisations of the gauged and ungauged solutions to include the NUT parameter, and for the ungauged solutions, the acceleration parameter too. The solutions in gauged supergravity provide new gravitational backgrounds for a further study of the AdS 4 /CFT 3 correspondence at non-zero temperature

  12. Entropy of a rotating and charged black string to all orders in the Planck length

    International Nuclear Information System (INIS)

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2009-01-01

    By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein–Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein–Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates

  13. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  14. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    International Nuclear Information System (INIS)

    Debnath, Ujjal

    2016-01-01

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  15. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Ujjal, E-mail: ujjaldebnath@yahoo.com

    2016-09-15

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  16. Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field

    International Nuclear Information System (INIS)

    Zangeneh, M.K.; Sheykhi, A.; Dehghani, M.H.

    2015-01-01

    In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α > 1, the solutions can encounter an unstable phase depending on the metric parameters. (orig.)

  17. Thermodynamics of Charged Rotating Dilaton Black Branes Coupled to Logarithmic Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    A. Sheykhi

    2016-01-01

    Full Text Available We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-de Sitter [(AdS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for α1 the solutions may encounter an unstable phase, where α is dilaton-electromagnetic coupling constant.

  18. Charged vector particle tunneling from a pair of accelerating and rotating and 5D gauged super-gravity black holes

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Wajiha; Ali, Riasat [University of Education, Division of Science and Technology, Lahore (Pakistan); Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-05-15

    The aim of this paper is to study the quantum tunneling process for charged vector particles through the horizons of more generalized black holes by using the Proca equation. For this purpose, we consider a pair of charged accelerating and rotating black holes with Newman-Unti-Tamburino parameter and a black hole in 5D gauged super-gravity theory, respectively. Further, we study the tunneling probability and corresponding Hawking temperature for both black holes by using the WKB approximation. We find that our analysis is independent of the particles species whether or not the background black hole geometries are more generalized. (orig.)

  19. Hidden conformal symmetry of a rotating black hole with four charges

    International Nuclear Information System (INIS)

    Shao Kainan; Zhang Zhibai

    2011-01-01

    Kerr/CFT correspondence exhibits many remarkable connections between the near-horizon Kerr black hole and a conformal field theory (CFT). Recently, Castro, Maloney, and Strominger showed that a hidden conformal symmetry exists in the solution space of a Kerr black hole. In this paper we investigate a rotating black hole with four independent U(1) charges derived from string theory which is known as the four-dimensional Cvetic-Youm solution, and we prove that the same hidden conformal symmetry also holds. We obtain the exact black hole entropy using the temperatures derived. The entropy and absorption cross section agree with the previous results [M. Cvetic and F. Larsen, Nucl. Phys. B506, 107 (1997).] and [M. Cvetic and F. Larsen, J. High Energy Phys. 09 (2009) 088.]. In addition, we clarify a previous explanation on the temperatures of the Cvetic-Youm solution's dual CFT. This work provides more robust derivation of the hidden conformal symmetry of Kerr-like black holes and as well as Kerr/CFT correspondence.

  20. Covariant anomalies and Hawking radiation from charged rotating black strings in anti-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Peng Junjin; Wu Shuangqing

    2008-01-01

    Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3+1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1+1)-dimensional effective metric from these black strings need not be equal to one (√(-g)≠1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1+1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant

  1. Stress-energy tensor near a charged, rotating, evaporating black hole

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The recently developed two-dimensional stress-energy regularization techniques are applied to the two-dimensional analog of the Reissner-Nordstroem family of black-hole metrics. The calculated stress-energy tensor in all cases contains the thermal radiation discovered by Hawking. Implications for the evolution of the interior of a charged black hole are considered. The calculated stress-energy tensor is found to diverge on the inner, Cauchy, horizon. Thus the effect of quantum mechanics is to cause the Cauchy horizon to become singular. The stress-energy tensor is also calculated for the ''most reasonable'' two-dimensional analog of the Kerr-Newman family of black-hole metrics. Although the analysis is not as rigorous as in the Reissner-Nordstroem case, it appears that the correct value for the Hawking radiation also appears in this model

  2. On the near horizon rotating black hole geometries with NUT charges

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton; Orekhov, Kirill [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation)

    2016-09-15

    The near horizon geometries are usually constructed by implementing a specific limit to a given extreme black hole configuration. Their salient feature is that the isometry group includes the conformal subgroup SO(2, 1). In this work, we turn the logic around and use the conformal invariants for constructing Ricci-flat metrics in d = 4 and d = 5 where the vacuum Einstein equations reduce to a coupled set of ordinary differential equations. In four dimensions the analysis can be carried out in full generality and the resulting metric describes the d = 4 near horizon Kerr-NUT black hole. In five dimensions we choose a specific ansatz whose structure is similar to the d = 5 near horizon Myers-Perry black hole. A Ricci-flat metric involving five arbitrary parameters is constructed. A particular member of this family, which is characterized by three parameters, seems to be a natural candidate to describe the d = 5 near horizon Myers- Perry black hole with a NUT charge. (orig.)

  3. On the near horizon rotating black hole geometries with NUT charges

    International Nuclear Information System (INIS)

    Galajinsky, Anton; Orekhov, Kirill

    2016-01-01

    The near horizon geometries are usually constructed by implementing a specific limit to a given extreme black hole configuration. Their salient feature is that the isometry group includes the conformal subgroup SO(2, 1). In this work, we turn the logic around and use the conformal invariants for constructing Ricci-flat metrics in d = 4 and d = 5 where the vacuum Einstein equations reduce to a coupled set of ordinary differential equations. In four dimensions the analysis can be carried out in full generality and the resulting metric describes the d = 4 near horizon Kerr-NUT black hole. In five dimensions we choose a specific ansatz whose structure is similar to the d = 5 near horizon Myers-Perry black hole. A Ricci-flat metric involving five arbitrary parameters is constructed. A particular member of this family, which is characterized by three parameters, seems to be a natural candidate to describe the d = 5 near horizon Myers- Perry black hole with a NUT charge. (orig.)

  4. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  5. Electrically charged dilatonic black rings

    International Nuclear Information System (INIS)

    Kunduri, Hari K.; Lucietti, James

    2005-01-01

    In this Letter we present (electrically) charged dilatonic black ring solutions of the Einstein-Maxwell-dilaton theory in five dimensions and we consider their physical properties. These solutions are static and as in the neutral case possess a conical singularity. We show how one may remove the conical singularity by application of a Harrison transformation, which physically corresponds to supporting the charged ring with an electric field. Finally, we discuss the slowly rotating case for arbitrary dilaton coupling

  6. Janis–Newman Algorithm: Generating Rotating and NUT Charged Black Holes

    Directory of Open Access Journals (Sweden)

    Harold Erbin

    2017-03-01

    Full Text Available In this review we present the most general form of the Janis–Newman algorithm. This extension allows generating configurations which contain all bosonic fields with spin less than or equal to two (real and complex scalar fields, gauge fields, metric field and with five of the six parameters of the Plebański–Demiański metric (mass, electric charge, magnetic charge, NUT charge and angular momentum. Several examples are included to illustrate the algorithm. We also discuss the extension of the algorithm to other dimensions.

  7. Rotating dilaton black holes with hair

    International Nuclear Information System (INIS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lerida, Francisco

    2004-01-01

    We consider stationary rotating black holes in SU(2) Einstein-Yang-Mills theory, coupled to a dilaton. The black holes possess nontrivial non-Abelian electric and magnetic fields outside their regular event horizon. While generic solutions carry no non-Abelian magnetic charge, but non-Abelian electric charge, the presence of the dilaton field allows also for rotating solutions with no non-Abelian charge at all. As a consequence, these special solutions do not exhibit the generic asymptotic noninteger power falloff of the non-Abelian gauge field functions. The rotating black hole solutions form sequences, characterized by the winding number n and the node number k of their gauge field functions, tending to embedded Abelian black holes. The stationary non-Abelian black hole solutions satisfy a mass formula, similar to the Smarr formula, where the dilaton charge enters instead of the magnetic charge. Introducing a topological charge, we conjecture that black hole solutions in SU(2) Einstein-Yang-Mills-dilaton theory are uniquely characterized by their mass, their angular momentum, their dilaton charge, their non-Abelian electric charge, and their topological charge

  8. Charged black rings at large D

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Li, Peng-Cheng; Wang, Zi-zhi [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China)

    2017-04-28

    We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions (D). By using the 1/D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.

  9. Tokamak rotation and charge exchange

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.

    1991-01-01

    In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref

  10. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  11. Coalescence of rotating black holes on Eguchi-Hanson space

    International Nuclear Information System (INIS)

    Matsuno, Ken; Ishihara, Hideki; Kimura, Masashi; Tomizawa, Shinya

    2007-01-01

    We obtain new charged rotating multi-black hole solutions on the Eguchi-Hanson space in the five-dimensional Einstein-Maxwell system with a Chern-Simons term and a positive cosmological constant. In the two-black holes case, these solutions describe the coalescence of two rotating black holes with the horizon topologies of S 3 into a single rotating black hole with the horizon topology of the lens space L(2;1)=S 3 /Z 2 . We discuss the differences in the horizon areas between our solutions and the two-centered Klemm-Sabra solutions which describe the coalescence of two rotating black holes with the horizon topologies of S 3 into a single rotating black hole with the horizon topology of S 3

  12. Black hole vacua and rotation

    International Nuclear Information System (INIS)

    Krishnan, Chethan

    2011-01-01

    Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.

  13. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  14. Bulk-boundary thermodynamic equivalence, and the Bekenstein and cosmic-censorship bounds for rotating charged AdS black holes

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Perry, M.J.; Pope, C.N.

    2005-01-01

    We show that one may pass from bulk to boundary thermodynamic quantities for rotating anti-de Sitter (AdS) black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary conformal field theory (CFT) quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black-hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic-censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a nonrotating black hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole spacetimes with a positive cosmological constant

  15. Rotating black string with nonlinear source

    International Nuclear Information System (INIS)

    Hendi, S. H.

    2010-01-01

    In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.

  16. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou

    2016-10-01

    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  17. Rotating black holes and Coriolis effect

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)

    2016-10-10

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  18. Criticality for charged black branes

    Science.gov (United States)

    Hennigar, Robie A.

    2017-09-01

    We show that the inclusion of higher curvature terms in the gravitational action can lead to phase transitions and critical behaviour for charged black branes. The higher curvature terms considered here belong to the recently constructed generalized quasi-topological class [arXiv:1703.01631], which possess a number of interesting properties, such as being ghost-free on constant curvature backgrounds and non-trivial in four dimensions. We show that critical behaviour is a generic feature of the black branes in all dimensions d ≥ 4, and contextualize the results with a review of the properties of black branes in Lovelock and quasi-topological gravity, where critical behaviour is not possible. These results may have interesting implications for the CFTs dual to this class of theories.

  19. Horizon structure of rotating Bardeen black hole and particle acceleration

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Amir, Muhammed

    2015-01-01

    We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E it describes a non-extremal black hole with two horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter g, and so is the ergosphere. While the value of a E remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (E CM ) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the E CM could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)

  20. Charge Fluctuations of an Uncharged Black Hole

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...

  1. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  2. Collision of two rotating Hayward black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of)

    2017-07-15

    We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226. (orig.)

  3. Ultraspinning instability of rotating black holes

    International Nuclear Information System (INIS)

    Dias, Oscar J. C.; Figueras, Pau; Monteiro, Ricardo; Santos, Jorge E.

    2010-01-01

    Rapidly rotating Myers-Perry black holes in d≥6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.

  4. Rotating hairy black holes in arbitrary dimensions

    Science.gov (United States)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  5. Magnetic charge, black holes, and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.H.

    1981-01-01

    The possibility of converting a Reissner-Nordstroem black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordstroem metric describes a black hole only when M 2 >Q 2 +P 2 . The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed

  6. Hydrodynamics and Elasticity of Charged Black Branes

    DEFF Research Database (Denmark)

    Gath, Jakob

    We consider long-wavelength perturbations of charged black branes to first order in a uidelastic derivative expansion. At first order the perturbations decouple and we treat the hydrodynamic and elastic perturbations separately. To put the results in a broader perspective, we present the rst...... as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton theory. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D...

  7. Plasma horizons of a charged black hole

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1977-01-01

    The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)

  8. Charged black holes with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying; Lü, H. [Center for Advanced Quantum Studies, Department of Physics,Beijing Normal University, Beijing 100875 (China)

    2015-09-10

    We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstrøm (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS{sub 2}×Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black p-branes with scalar hair.

  9. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  10. Depilating Global Charge From Thermal Black Holes

    CERN Document Server

    March-Russell, John David; March-Russell, John; Wilczek, Frank

    2001-01-01

    At a formal level, there appears to be no difficulty involved in introducing a chemical potential for a globally conserved quantum number into the partition function for space-time including a black hole. Were this possible, however, it would provide a form of black hole hair, and contradict the idea that global quantum numbers are violated in black hole evaporation. We demonstrate dynamical mechanisms that negate the formal procedure, both for topological charge (Skyrmions) and complex scalar-field charge. Skyrmions collapse to the horizon; scalar-field charge fluctuates uncontrollably.

  11. Charged spinning black holes as particle accelerators

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune

    2010-01-01

    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/√(3))≤(a/M)≤1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

  12. Horizon quantum mechanics of rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Giugno, Andrea [Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Giusti, Andrea [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Micu, Octavian [Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele (Romania)

    2017-05-15

    The horizon quantum mechanics is an approach that was previously introduced in order to analyze the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. In this work, we first extend the formalism to general space-times with asymptotic (ADM) mass and angular momentum. We then apply the extended horizon quantum mechanics to a harmonic model of rotating corpuscular black holes. We find that simple configurations of this model naturally suppress the appearance of the inner horizon and seem to disfavor extremal (macroscopic) geometries. (orig.)

  13. Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheykhi

    2014-01-01

    Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.

  14. The rotating dyonic black holes of Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Rasheed, D.

    1995-01-01

    The most general electrically and magnetically charged rotating black hole solutions of 5 dimensional Kaluza-Klein theory are given in an explicit form. Various classical quantities associated with the black holes are derived. In particular, one finds the very surprising result that the gyromagnetic and gyroelectric ratios can become arbitrarily large. The thermodynamic quantities of the black holes are calculated and a Smarr-type formula is obtained leading to a generalized first law of black hole thermodynamics. The properties of the extreme solutions are investigated and it is shown how they naturally separate into two classes. The extreme solutions in one class are found to have two unusual properties: (i) Their event horizons have zero angular velocity and yet they have non-zero ADM angular momentum. (ii) In certain circumstances it is possible to add angular momentum to these extreme solutions without changing the mass or charges and yet still maintain an extreme solution. Regarding the extreme black holes as elementary particles, their stability is discussed and it is found that they are stable provided they have sufficient angular momentum. (orig.)

  15. Charged black holes in quadratic gravity

    International Nuclear Information System (INIS)

    Matyjasek, Jerzy; Tryniecki, Dariusz

    2004-01-01

    Iterative solutions to fourth-order gravity describing static and electrically charged black holes are constructed. The obtained solutions are parametrized by two integration constants which are related to the electric charge and the exact location of the event horizon. Special emphasis is put on the extremal black holes. It is explicitly demonstrated that in the extremal limit the exact location of the (degenerate) event horizon is given by r + =|e|. Similarly to the classical Reissner-Nordstroem solution, the near-horizon geometry of the charged black holes in quadratic gravity, when expanded into the whole manifold, is simply that of Bertotti and Robinson. Similar considerations have been carried out for boundary conditions of the second type which employ the electric charge and the mass of the system as seen by a distant observer. The relations between results obtained within the framework of each method are briefly discussed

  16. Planck absolute entropy of a rotating BTZ black hole

    Science.gov (United States)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  17. Charged topological black hole pair creation

    International Nuclear Information System (INIS)

    Mann, R.B.

    1998-01-01

    I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)

  18. Noncommutative geometry-inspired rotating black hole in three ...

    Indian Academy of Sciences (India)

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact ...

  19. Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, A.N.; Frolov, Valeri P.

    2004-01-01

    In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3

  20. Shadow cast by rotating braneworld black holes with a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2018-02-15

    In this article, we study the shadow produced by rotating black holes having a tidal charge in a Randall-Sundrum braneworld model, with a cosmological constant. We obtain the apparent shape and the corresponding observables for different values of the tidal charge and the rotation parameter, and we analyze the influence of the presence of the cosmological constant. We also discuss the observational prospects for this optical effect. (orig.)

  1. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  2. Near horizon geometry of rotating black holes in five dimensions

    International Nuclear Information System (INIS)

    Cvetic, M.; Larsen, F.

    1998-01-01

    We interpret the general rotating black holes in five dimensions as rotating black strings in six dimensions. In the near-horizon limit the geometry is locally AdS 3 x S 3 , as in the non-rotating case. However, the global structure couples the AdS 3 and the S 3 , giving angular velocity to the S 3 . The asymptotic geometry is exploited to count the microstates and recover the precise value of the Bekenstein-Hawking entropy, with rotation taken properly into account. We discuss the perturbation spectrum of the rotating black hole, and its relation to the underlying conformal field theory. (orig.)

  3. A Cardy-like formula for rotating black holes with planar horizon

    Energy Technology Data Exchange (ETDEWEB)

    Gaete, Moisés Bravo [Facultad de Ciencias Básicas, Universidad Católica del Maule,Casilla 617, Talca (Chile); Guajardo, Luis; Hassaïne, Mokhtar [Instituto de Matemática y Fisica, Universidad de Talca,Casilla 747, Talca (Chile)

    2017-04-18

    We show that the semiclassical entropy of D−dimensional rotating (an)isotropic black holes with planar horizon can be successfully computed according to a Cardy-like formula. This formula does not refer to any central charges but instead involves the vacuum energy which is identified with a gravitational bulk soliton. The soliton is obtained from the non-rotating black hole solution by means of a double analytic continuation. The robustness of the Cardy-like formula is tested with numerous and varied examples, including AdS, Lifshitz and hyperscaling violation planar black holes.

  4. Near-horizon of 5D rotating black holes from 2D perspective

    International Nuclear Information System (INIS)

    Soltanpanahi, Hesam

    2014-01-01

    We study the CFT dual to five-dimensional extremal rotating black holes, by investigating the two-dimensional perspective of their near-horizon geometry. From the two-dimensional point of view, we show that both gauge fields, related to the two rotations, appear in the same manner in the asymptotic symmetry and in the associated central charge. We find that our results are in perfect agreement with the generalization of the Kerr/CFT approach to five-dimensional extremal rotating black holes. (orig.)

  5. No-bomb theorem for charged Reissner–Nordström black holes

    International Nuclear Information System (INIS)

    Hod, Shahar

    2013-01-01

    The fundamental role played by black holes in many areas of physics makes it highly important to explore the nature of their stability. The stability of charged Reissner–Nordström black holes to neutral (gravitational and electromagnetic) perturbations was established almost four decades ago. However, the stability of these charged black holes under charged perturbations has remained an open question due to the complexity introduced by the well-known phenomena of superradiant scattering: A charged scalar field impinging on a charged Reissner–Nordström black hole can be amplified as it scatters off the hole. If the incident field has a non-zero rest mass, then the mass term effectively works as a mirror, preventing the energy extracted from the hole from escaping to infinity. One may suspect that the superradiant amplification of charged fields by the charged black hole may lead to an instability of the Reissner–Nordström spacetime (in as much the same way that rotating Kerr black holes are unstable under rotating scalar perturbations). However, in this Letter we show that, for charged Reissner–Nordström black holes in the regime (Q/M) 2 ⩽8/9, the two conditions which are required in order to trigger a possible superradiant instability [namely: (1) the existence of a trapping potential well outside the black hole, and (2) superradiant amplification of the trapped modes] cannot be satisfied simultaneously. Our results thus support the stability of charged Reissner–Nordström black holes under charged scalar perturbations in the regime (Q/M) 2 ⩽8/9.

  6. Rotating black holes which saturate a Bogomol close-quote nyi bound

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Sen, A.

    1996-01-01

    We construct and study the electrically charged, rotating black hole solution in heterotic string theory compactified on a (10-D)-dimensional torus. This black hole is characterized by its mass, angular momentum, and a (36-2D)-dimensional electric charge vector. One of the features of this solution is that for D>5 its extremal limit saturates the Bogomol close-quote nyi bound. This is in contrast with the D=4 case where the rotating black hole solution develops a naked singularity before the Bogomol close-quote nyi bound is reached. The extremal black holes can be superposed, and by taking a periodic array in D>5, one obtains effectively four-dimensional solutions without naked singularities. copyright 1996 The American Physical Society

  7. Instability of charged anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Gwak, Bogeun; Lee, Bum-Hoon; Ro, Daeho

    2016-01-01

    We have studied the instability of charged anti-de Sitter black holes in four- or higher-dimensions under fragmentation. The unstable black holes under fragmentation can be broken into two black holes. Instability depends not only on the mass and charge of the black hole but also on the ratio between the fragmented black hole and its predecessor. We have found that the near extremal black holes are unstable, and Schwarzschild-AdS black holes are stable. These are qualitatively similar to black holes in four dimensions and higher. The detailed instabilities are numerically investigated.

  8. Canonical Entropy and Phase Transition of Rotating Black Hole

    International Nuclear Information System (INIS)

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2008-01-01

    Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein–Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole. (general)

  9. Gyromagnetic ratio of charged Kerr-anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Aliev, Alikram N

    2007-01-01

    We examine the gyromagnetic ratios of rotating and charged AdS black holes in four and higher spacetime dimensions. We compute the gyromagnetic ratio for Kerr-AdS black holes with an arbitrary electric charge in four dimensions and show that it corresponds to g = 2 irrespective of the AdS nature of the spacetime. We also compute the gyromagnetic ratio for Kerr-AdS black holes with a single angular momentum and with a test electric charge in all higher dimensions. The gyromagnetic ratio crucially depends on the dimensionless ratio of the rotation parameter to the curvature radius of the AdS background. At the critical limit, when the boundary Einstein universe is rotating at the speed of light, it exhibits a striking feature leading to g 2 regardless of the spacetime dimension. Next, we extend our consideration to include the exact metric for five-dimensional rotating charged black holes in minimal gauged supergravity. We show that the value of the gyromagnetic ratio found in the 'test-charge' approach remains unchanged for these black holes

  10. On the variably-charged black holes in general relativity: Hawking's radiation and naked singularities

    International Nuclear Information System (INIS)

    Ibohal, Ng

    2002-01-01

    In this paper variably-charged non-rotating Reissner-Nordstrom and rotating Kerr-Newman black holes are discussed. Such a variable charge e with respect to the polar coordinate r in the field equations is referred to as an electrical radiation of the black hole. It is shown that every electrical radiation e(r) of the non-rotating black hole leads to a reduction in its mass M by some quantity. If one considers such electrical radiation taking place continuously for a long time, then a continuous reduction of the mass may take place in the black-hole body and the original mass of the black hole may be evaporated completely. At that stage, the gravity of the object may depend only on the electromagnetic field, not on the mass. Immediately after the complete evaporation of the mass, if the next radiation continues, there may be creation of a new mass leading to the formation of a negative mass naked singularity. It appears that this new mass of the naked singularity would never decrease, but might increase gradually as the radiation continues forever. A similar investigation is also discussed in the case of a variably-charged rotating Kerr-Newman black hole. Thus, it has been shown by incorporating Hawking's evaporation of radiating black holes in the form of spacetime metrics, every electrical radiation of variably-charged rotating and non-rotating black holes may produce a change in the mass of the body without affecting the Maxwell scalar

  11. Geodesic flows in a charged black hole spacetime with quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Hemwati [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Uniyal, Rashmi [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Government Degree College, Department of Physics, Tehri Garhwal, Uttarakhand (India)

    2017-08-15

    We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)

  12. Geodesic flows in a charged black hole spacetime with quintessence

    International Nuclear Information System (INIS)

    Nandan, Hemwati; Uniyal, Rashmi

    2017-01-01

    We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)

  13. Noether charge, black hole volume, and complexity

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Josiah; Fischler, Willy; Nguyen, Phuc H. [Theory Group, Department of Physics and Texas Cosmology Center,University of Texas at Austin, 2515 Speedway, C1600, Austin, TX 78712-1192 (United States)

    2017-03-23

    In this paper, we study the physical significance of the thermodynamic volumes of AdS black holes using the Noether charge formalism of Iyer and Wald. After applying this formalism to study the extended thermodynamics of a few examples, we discuss how the extended thermodynamics interacts with the recent complexity = action proposal of Brown et al. (CA-duality). We, in particular, discover that their proposal for the late time rate of change of complexity has a nice decomposition in terms of thermodynamic quantities reminiscent of the Smarr relation. This decomposition strongly suggests a geometric, and via CA-duality holographic, interpretation for the thermodynamic volume of an AdS black hole. We go on to discuss the role of thermodynamics in complexity = action for a number of black hole solutions, and then point out the possibility of an alternate proposal, which we dub “complexity = volume 2.0'. In this alternate proposal the complexity would be thought of as the spacetime volume of the Wheeler-DeWitt patch. Finally, we provide evidence that, in certain cases, our proposal for complexity is consistent with the Lloyd bound whereas CA-duality is not.

  14. Cosmic censorship of rotating Anti-de Sitter black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun; Lee, Bum-Hoon, E-mail: rasenis@sogang.ac.kr, E-mail: bhl@sogang.ac.kr [Center for Quantum Spacetime, Sogang University, Seoul 04107 (Korea, Republic of)

    2016-02-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.

  15. Cosmic censorship of rotating Anti-de Sitter black hole

    International Nuclear Information System (INIS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-01-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid

  16. Scale-Invariant Rotating Black Holes in Quadratic Gravity

    Directory of Open Access Journals (Sweden)

    Guido Cognola

    2015-07-01

    Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.

  17. Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions

    International Nuclear Information System (INIS)

    Dolan, Brian P

    2014-01-01

    Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)

  18. Global geometry of two-dimensional charged black holes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus

    2006-01-01

    The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation

  19. Scattering of particles by deformed non-rotating black holes

    International Nuclear Information System (INIS)

    Pei, Guancheng; Bambi, Cosimo

    2015-01-01

    We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution. (orig.)

  20. Interior structure of rotating black holes. I. Concise derivation

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.; Polhemus, Gavin

    2011-01-01

    This paper presents a concise derivation of a new set of solutions for the interior structure of accreting, rotating black holes. The solutions are conformally stationary, axisymmetric, and conformally separable. Hyper-relativistic counter-streaming between freely-falling collisionless ingoing and outgoing streams leads to mass inflation at the inner horizon, followed by collapse. The solutions fail at an exponentially tiny radius, where the rotational motion of the streams becomes comparable to their radial motion. The papers provide a fully nonlinear, dynamical solution for the interior structure of a rotating black hole from just above the inner horizon inward, down to a tiny scale.

  1. Charged scalar perturbations around Garfinkle–Horowitz–Strominger black holes

    Directory of Open Access Journals (Sweden)

    Cheng-Yong Zhang

    2015-10-01

    Full Text Available We examine the stability of the Garfinkle–Horowitz–Strominger (GHS black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.

  2. A charged black hole in a uniform magnetic field

    International Nuclear Information System (INIS)

    Krori, K.D.; Chaudhury, S.; Dowerah, S.

    1983-01-01

    We present here an investigation of the event horizon of a charged black hole embedded in a uniform magnetic field studying the Gaussian curvature. It is shown that the Gauss-Bonnet theorem holds for this magnetized black hole and for a magnetized Kerr black hole

  3. Thermodynamical and dynamical properties of charged BTZ black holes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zi-Yu; Wang, Bin [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center for Astronomy and Astrophysics, Shanghai (China); Zhang, Cheng-Yong [Peking University, Center for High-Energy Physics, Beijing (China); Kord Zangeneh, Mahdi [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center for Astronomy and Astrophysics, Shanghai (China); Shahid Chamran University of Ahvaz, Physics Department, Faculty of Science, Ahvaz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)-Maragha, P. O. Box: 55134-441, Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)

    2017-06-15

    We investigate the spacetime properties of BTZ black holes in the presence of the Maxwell field and Born-Infeld field and find rich properties in the spacetime structures when the model parameters are varied. Employing Landau-Lifshitz theory, we examine the thermodynamical phase transition in the charged BTZ black holes. We further study the dynamical perturbation in the background of the charged BTZ black holes and find different properties in the dynamics when the thermodynamical phase transition occurs. (orig.)

  4. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-04-01

    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole's temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking's black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is "no cosmic temperature" if there is "no cosmic rotation". Starting from the Planck scale it is assumed that universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation "rate of decrease" in temperature or "rate of increase" in cosmic red shift is a measure of "rate of cosmic expansion". Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to $2.726^circ$ K, smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is $2.726^circ$ K, present value of obtained angular velocity is $2.17 imes 10^{-18}$ rad/sec $cong$ 67 Km/sec$imes$Mpc. Present cosmic mass density and cosmic time are fitted with a $ln (volume ratio$ parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  5. Rotating Hayward’s regular black hole as particle accelerator

    International Nuclear Information System (INIS)

    Amir, Muhammed; Ghosh, Sushant G.

    2015-01-01

    Recently, Bañados, Silk and West (BSW) demonstrated that the extremal Kerr black hole can act as a particle accelerator with arbitrarily high center-of-mass energy (E CM ) when the collision takes place near the horizon. The rotating Hayward’s regular black hole, apart from Mass (M) and angular momentum (a), has a new parameter g (g>0 is a constant) that provides a deviation from the Kerr black hole. We demonstrate that for each g, with M=1, there exist critical a E and r H E , which corresponds to a regular extremal black hole with degenerate horizons, and a E decreases whereas r H E increases with increase in g. While ablack hole with outer and inner horizons. We apply the BSW process to the rotating Hayward’s regular black hole, for different g, and demonstrate numerically that the E CM diverges in the vicinity of the horizon for the extremal cases thereby suggesting that a rotating regular black hole can also act as a particle accelerator and thus in turn provide a suitable framework for Plank-scale physics. For a non-extremal case, there always exist a finite upper bound for the E CM , which increases with the deviation parameter g.

  6. Strong gravity effects of rotating black holes: quasi-periodic oscillations

    International Nuclear Information System (INIS)

    Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir

    2013-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)

  7. Entropy of charged dilaton-axion black hole

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2008-01-01

    Using the brick wall method, the entropy of the charged dilaton-axion black hole is determined for both asymptotically flat and nonflat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Bekenstein-Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.

  8. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-04-01

    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole’s temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking’s black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation “rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to 2 : 726 K ; smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is 2 : 726 K, present value of obtained angular velocity is 2 : 17 10 Present cosmic mass density and cosmic time are fitted with a ln ( volume ratio parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  9. Spherical null geodesics of rotating Kerr black holes

    International Nuclear Information System (INIS)

    Hod, Shahar

    2013-01-01

    The non-equatorial spherical null geodesics of rotating Kerr black holes are studied analytically. Unlike the extensively studied equatorial circular orbits whose radii are known analytically, no closed-form formula exists in the literature for the radii of generic (non-equatorial) spherical geodesics. We provide here an approximate formula for the radii r ph (a/M;cosi) of these spherical null geodesics, where a/M is the dimensionless angular momentum of the black hole and cos i is an effective inclination angle (with respect to the black-hole equatorial plane) of the orbit. It is well-known that the equatorial circular geodesics of the Kerr spacetime (the prograde and the retrograde orbits with cosi=±1) are characterized by a monotonic dependence of their radii r ph (a/M;cosi=±1) on the dimensionless spin-parameter a/M of the black hole. We use here our novel analytical formula to reveal that this well-known property of the equatorial circular geodesics is actually not a generic property of the Kerr spacetime. In particular, we find that counter-rotating spherical null orbits in the range (3√(3)−√(59))/4≲cosi ph (a/M;cosi=const) on the dimensionless rotation-parameter a/M of the black hole. Furthermore, it is shown that spherical photon orbits of rapidly-rotating black holes are characterized by a critical inclination angle, cosi=√(4/7), above which the coordinate radii of the orbits approach the black-hole radius in the extremal limit. We prove that this critical inclination angle signals a transition in the physical properties of the spherical null geodesics: in particular, it separates orbits which are characterized by finite proper distances to the black-hole horizon from orbits which are characterized by infinite proper distances to the horizon.

  10. Strong Gravity Effects of Rotating Black Holes: Quasiperiodic Oscillations

    OpenAIRE

    Aliev, Alikram N.; Esmer, Göksel Daylan; Talazan, Pamir

    2012-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: The orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which ...

  11. Stationary strings near a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Stevens, Kory A.

    2004-01-01

    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string

  12. New aspect of critical nonlinearly charged black hole

    Science.gov (United States)

    Hendi, S. H.; Taghadomi, Z. S.; Corda, C.

    2018-04-01

    The motion of a point charged particle moving in the background of the critical power Maxwell charged AdS black holes in a probe approximation is studied. The extended phase space, where the cosmological constant appears as a pressure, is regarded and the effective potential is investigated. At last, the mass-to-charge ratio and the large q limit are studied.

  13. Hawking radiation of a high-dimensional rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ren; Zhang, Lichun; Li, Huaifan; Wu, Yueqin [Shanxi Datong University, Institute of Theoretical Physics, Department of Physics, Datong (China)

    2010-01-15

    We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy {omega} is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation. (orig.)

  14. State-space Manifold and Rotating Black Holes

    CERN Document Server

    Bellucci, Stefano

    2010-01-01

    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...

  15. Late-time dynamics of rapidly rotating black holes

    International Nuclear Information System (INIS)

    Glampedakis, K.; Andersson, N.

    2001-01-01

    We study the late-time behaviour of a dynamically perturbed rapidly rotating black hole. Considering an extreme Kerr black hole, we show that the large number of virtually undamped quasinormal modes (that exist for nonzero values of the azimuthal eigenvalue m) combine in such a way that the field (as observed at infinity) oscillates with an amplitude that decays as 1/t at late times. For a near extreme black hole, these modes, collectively, give rise to an exponentially decaying field which, however, is considerably 'long-lived'. Our analytic results are verified using numerical time-evolutions of the Teukolsky equation. Moreover, we argue that the physical mechanism behind the observed behaviour is the presence of a 'superradiance resonance cavity' immediately outside the black hole. We present this new feature in detail, and discuss whether it may be relevant for astrophysical black holes. (author)

  16. Rotating circular strings, and infinite non-uniqueness of black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto

    2004-01-01

    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings. (author)

  17. Microscopic entropy of the charged BTZ black hole

    International Nuclear Information System (INIS)

    Cadoni, Mariano; Melis, Maurizio; Setare, Mohammad R

    2008-01-01

    The charged BTZ black hole is characterized by a power-law curvature singularity generated by the electric charge of the hole. The curvature singularity produces ln r terms in the asymptotic expansion of the gravitational field and divergent contributions to the boundary terms. We show that these boundary deformations can be generated by the action of the conformal group in two dimensions and that an appropriate renormalization procedure allows for the definition of finite boundary charges. In the semiclassical regime the central charge of the dual CFT turns out to be that calculated by Brown and Henneaux, whereas the charge associated with time translation is given by the renormalized black hole mass. We then show that the Cardy formula reproduces exactly the Bekenstein-Hawking entropy of the charged BTZ black hole

  18. Three-charge black holes on a circle

    International Nuclear Information System (INIS)

    Harmark, Troels; Obers, Niels A.; Roenne, Peter B.; Kristjansson, Kristjan R.

    2007-01-01

    We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the finite entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes

  19. On the generalized second law for rotating black holes

    International Nuclear Information System (INIS)

    Curir, A.

    1986-01-01

    The generalized second law of thermodynamics for rotating black holes is reexamined in the superradiant range in order to take account of the contribution to the production of entropy coming from the semiclassical non-thermal emission. After including this new contribution, the validity of the law is proved by using statistical thermodynamics arguments. (orig.)

  20. The magnetic field generated by a rotating charged polygon

    International Nuclear Information System (INIS)

    Wan, Songlin; Chen, Xiangyu; Teng, Baohua; Fu, Hao; Li, Yefeng; Wu, Minghe; Wu, Shaoyi; Balfour, E A

    2014-01-01

    The magnetic field along the symmetry axis of a regular polygon carrying a uniform electric charge on its edges is calculated systematically when the polygon is rotated about this axis of symmetry. A group of circular current-carrying coils arranged concentrically about the axis of the polygon has been designed to simulate the magnetic field characteristics of the rotating charged polygon. The magnetic field of the simulated coils is measured using the PASCO magnetic field sensor. The results show that the theoretical calculation agrees well with the experimental results. (paper)

  1. Beyond the singularity of the 2-D charged black hole

    International Nuclear Information System (INIS)

    Giveon, Amit; Rabinovici, Eliezer; Sever, Amit

    2003-01-01

    Two dimensional charged black holes in string theory can be obtained as exact SL(2,R) x U(1)/U(1) quotient CFTs. The geometry of the quotient is induced from that of the group, and in particular includes regions beyond the black hole singularities. Moreover, wavefunctions in such black holes are obtained from gauge invariant vertex operators in the SL(2,R) CFT, hence their behavior beyond the singularity is determined. When the black hole is charged we find that the wavefunctions are smooth at the singularities. Unlike the uncharged case, scattering waves prepared beyond the singularity are not fully reflected; part of the wave is transmitted through the singularity. Hence, the physics outside the horizon of a charged black hole is sensitive to conditions set behind the past singularity. (author)

  2. Analytic continuation of the rotating black hole state counting

    Energy Technology Data Exchange (ETDEWEB)

    Achour, Jibril Ben [Departement of Physics, Center for Field Theory and Particles Physics, Fudan University,20433 Shanghai (China); Noui, Karim [Fédération Denis Poisson, Laboratoire de Mathématiques et Physique Théorique (UMR 7350),Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Laboratoire APC - Astroparticule et Cosmologie, Université Paris Diderot Paris 7,75013 Paris (France); Perez, Alejandro [Centre de Physique Théorique (UMR 7332), Aix Marseille Université and Université de Toulon,13288 Marseille (France)

    2016-08-24

    In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ=±i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.

  3. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    Energy Technology Data Exchange (ETDEWEB)

    Atamurotov, Farruh [Institute of Nuclear Physics, Tashkent (Uzbekistan); Inha University in Tashkent, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Ahmedov, Bobomurat [Institute of Nuclear Physics, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan)

    2016-05-15

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β, mass M, and charge Q, there exist a critical spinning parameter a{sub E} and r{sub H}{sup E}, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and a{sub E} decreases and r{sub H}{sup E} increases with increase of the Born-Infeld parameter β, while a < a{sub E} describes a non-extremal Einstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β, whose radius decreases with increase of the value of the parameter β. Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole. (orig.)

  4. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    International Nuclear Information System (INIS)

    Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat

    2016-01-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β, mass M, and charge Q, there exist a critical spinning parameter a E and r H E , which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and a E decreases and r H E increases with increase of the Born-Infeld parameter β, while a < a E describes a non-extremal Einstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β, whose radius decreases with increase of the value of the parameter β. Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole. (orig.)

  5. Phase transitions and critical behaviour for charged black holes

    International Nuclear Information System (INIS)

    Carlip, S; Vaidya, S

    2003-01-01

    We investigate the thermodynamics of a four-dimensional charged black hole in a finite cavity in asymptotically flat and asymptotically de Sitter spaces. In each case, we find a Hawking-Page-like phase transition between a black hole and a thermal gas very much like the known transition in asymptotically anti-de Sitter space. For a 'supercooled' black hole - a thermodynamically unstable black hole below the critical temperature for the Hawking-Page phase transition - the phase diagram has a line of first-order phase transitions that terminates in a second-order point. For the asymptotically flat case, we calculate the critical exponents at the second-order phase transition and find that they exactly match the known results for a charged black hole in anti-de Sitter space. We find strong evidence for similar phase transitions for the de Sitter black hole as well. Thus many of the thermodynamic features of charged anti-de Sitter black holes do not really depend on asymptotically anti-de Sitter boundary conditions; the thermodynamics of charged black holes is surprisingly universal

  6. Strong field gravitational lensing by a charged Galileon black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  7. The Mixed Phase of Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Piyabut Burikham

    2016-01-01

    Full Text Available We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma (QGP and hadron gas in the fixed chemical potential and density ensemble, respectively. In the nuclei and heavy-ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condense and evaporate into the hadron gas as the fireball expands.

  8. Direct imaging rapidly-rotating non-Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: Cosimo.Bambi@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitaet Muenchen, 80333 Munich (Germany); Caravelli, Francesco, E-mail: fcaravelli@perimeterinstitute.ca [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, 14476 Golm (Germany); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Modesto, Leonardo, E-mail: lmodesto@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada)

    2012-05-01

    Recently, two of us have argued that non-Kerr black holes in gravity theories different from General Relativity may have a topologically non-trivial event horizon. More precisely, the spatial topology of the horizon of non-rotating and slow-rotating objects would be a 2-sphere, like in Kerr space-time, while it would change above a critical value of the spin parameter. When the topology of the horizon changes, the black hole central singularity shows up. The accretion process from a thin disk can potentially overspin these black holes and induce the topology transition, violating the Weak Cosmic Censorship Conjecture. If the astrophysical black hole candidates are not the black holes predicted by General Relativity, we might have the quite unique opportunity to see their central region, where classical physics breaks down and quantum gravity effects should appear. Even if the quantum gravity region turned out to be extremely small, at the level of the Planck scale, the size of its apparent image would be finite and potentially observable with future facilities.

  9. Rotating black holes at future colliders. III. Determination of black hole evolution

    International Nuclear Information System (INIS)

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-01-01

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes

  10. Geometro-thermodynamics of tidal charged black holes

    International Nuclear Information System (INIS)

    Gergely, Laszlo Arpad; Pidokrajt, Narit; Winitzki, Sergei

    2011-01-01

    Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)

  11. Quantum loop corrections of a charged de Sitter black hole

    Science.gov (United States)

    Naji, J.

    2018-03-01

    A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.

  12. Thermodynamics and stability of hyperbolic charged black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Wang Anzhong

    2004-01-01

    In AdS space the black hole horizon can be a hypersurface with a positive, zero, or negative constant curvature, resulting in different horizon topology. Thermodynamics and stability of black holes in AdS spaces are quite different for different horizon curvatures. In this paper we study thermodynamics and stability of hyperbolic charged black holes with negative constant curvature horizon in the grand canonical ensemble and canonical ensemble, respectively. They include hyperbolic Reissner-Nordstroem black holes in arbitrary dimensions and hyperbolic black holes in the D=5,4,7 gauged supergravities. It is found that associated Gibbs free energies are always negative, which implies that these black hole solutions are globally stable and the black hole phase is dominant in the grand canonical ensemble, but there is a region in the phase space where the black hole is not locally thermodynamically stable with a negative heat capacity for a given gauge potential. In the canonical ensemble, the Helmholtz free energies are not always negative and heat capacities with fixed electric charge are not always positive, which indicates that the Hawking-Page phase transition may happen and black holes are not always locally thermodynamically stable

  13. Thermodynamics of novel charged dilatonic BTZ black holes

    Science.gov (United States)

    Dehghani, M.

    2017-10-01

    In this paper, the three-dimensional Einstein-Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott-Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.

  14. Oscillating supertubes and neutral rotating black hole microstates

    International Nuclear Information System (INIS)

    Mathur, Samir D.; Turton, David

    2014-01-01

    The construction of neutral black hole microstates is an important problem, with implications for the information paradox. In this paper we conjecture a construction of non-supersymmetric supergravity solutions describing D-brane configurations which carry mass and angular momentum, but no other conserved charges. We first study a classical string solution which locally carries dipole winding and momentum charges in two compact directions, but globally carries no net winding or momentum charge. We investigate its backreaction in the D1-D5 duality frame, where this object becomes a supertube which locally carries oscillating dipole D1-D5 and NS1-NS5 charges, and again carries no net charge. In the limit of an infinite straight supertube, we find an exact supergravity solution describing this object. We conjecture that a similar construction may be carried out based on a class of two-charge non-supersymmetric D1-D5 solutions. These results are a step towards demonstrating how neutral black hole microstates may be constructed in string theory

  15. Thermodynamics of charged Lovelock: AdS black holes

    International Nuclear Information System (INIS)

    Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C.

    2016-01-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)

  16. Thermodynamics of charged Lovelock: AdS black holes

    Science.gov (United States)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  17. Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity

    Science.gov (United States)

    Dehghani, M.

    2018-02-01

    In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.

  18. Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity

    Directory of Open Access Journals (Sweden)

    M. Dehghani

    2018-02-01

    Full Text Available In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.

  19. Criteria for retrograde rotation of accreting black holes

    Science.gov (United States)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  20. Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bardoux, Yannis [Laboratoire de Physique Théorique (LPT), Université Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Caldarelli, Marco M. [Mathematical Sciences and STAG research centre, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Charmousis, Christos [Laboratoire de Physique Théorique (LPT), Université Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Laboratoire de Mathématiques et Physique Théorique (LMPT), Université Tours, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2014-05-09

    We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole. The solution is easily extended to include a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities whatsoever in the conformal frame, and the NUT charge is shown here to regularize the central curvature singularity of the corresponding static black hole. Given our findings we discuss the anti-de Sitter hyperbolic version of Taub-NUT in four dimensions, and show that the curvature singularity of the NUT-less solution is now replaced by a neighbouring chronological singularity screened by horizons. We argue that the properties of this rotating black hole are very similar to those of the rotating BTZ black hole in three dimensions.

  1. Charged dilatonic black holes in gravity's rainbow

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Faizal, Mir [University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Panah, B.E. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Panahiyan, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of)

    2016-05-15

    In this paper, we present charged dilatonic black holes in gravity's rainbow. We study the geometric and thermodynamic properties of black hole solutions. We also investigate the effects of rainbow functions on different thermodynamic quantities for these charged black holes in dilatonic gravity's rainbow. Then we demonstrate that the first law of thermodynamics is valid for these solutions. After that, we investigate thermal stability of the solutions using the canonical ensemble and analyze the effects of different rainbow functions on the thermal stability. In addition, we present some arguments regarding the bound and phase transition points in context of geometrical thermodynamics. We also study the phase transition in extended phase space in which the cosmological constant is treated as the thermodynamic pressure. Finally, we use another approach to calculate and demonstrate that the obtained critical points in extended phase space represent a second order phase transition for these black holes. (orig.)

  2. Superrotation charge and supertranslation hair on black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hawking, Stephen W.; Perry, Malcolm J. [DAMTP, Centre for Mathematical Sciences, University of Cambridge,Wilberforce Road, Cambridge (United Kingdom); Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,17 Oxford Street, Cambridge, MA (United States)

    2017-05-31

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentum P-vector , angular momentum J-vector and boost charge K-vector , an infinite head of supertranslation hair. The distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with supertranslation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. A leading-order Bondi-gauge expression is derived for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.

  3. Superrotation charge and supertranslation hair on black holes

    International Nuclear Information System (INIS)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2017-01-01

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentum P-vector , angular momentum J-vector and boost charge K-vector , an infinite head of supertranslation hair. The distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with supertranslation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. A leading-order Bondi-gauge expression is derived for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.

  4. Superrotation charge and supertranslation hair on black holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2017-05-01

    It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentum \\overrightarrow{P} , angular momentum \\overrightarrow{J} and boost charge \\overrightarrow{K} , an infinite head of supertranslation hair. The distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with super-translation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. A leading-order Bondi-gauge expression is derived for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.

  5. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  6. Adiabatic motion of charged dust grains in rotating magnetospheres

    International Nuclear Information System (INIS)

    Northrop, T.G.; Hill, J.R.

    1983-01-01

    Dust grains in the ring systems and rapidly rotating magnetospheres of the outer planets such as Jupiter and Saturn may be sufficiently charged that the magnetic and electric forces on them are comparable with the gravitational force. The adiabatic theory of charged particle motion has previously been applied to electrons and atomic size particles. But it is also applicable to these charged dust grains in the micrometer and smaller size range. We derive here the guiding center equation of motion, drift velocity, and parallel equation of motion for these grains in a rotating magnetosphere. The effects of periodic grain charge-discharge have not been treated previously and have been included in this analysis. Grain charge is affected by the surrounding plasma properties and by the grain plasma velocity (among other factors), both of which may vary over the gyrocircle. The resulting charge-discharge process at the gyrofrequency destroys the invariance of the magnetic moment and causes a grain to move radially. The magnetic moment may increase or decrease, depending on the gyrophase of the charge variation. If it decreases, the motion is always toward synchronous radius for an equatorial grain. But the orbit becomes circular before the grain reaches synchronous radius, a conclusion that follows from an exact constant of the motion. This circularization can be viewed as a consequence of the gradual reduction in the magnetic moment. This circularization also suggests that dust grains leaving Io could not reach the region of the Jovian ring, but several effects could change that conclusion. Excellent qualitative and quantitative agreement is obtained between adiabatic theory and detailed numerical orbit integrations

  7. Featured Image: Making a Rapidly Rotating Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  8. Quasinormal modes of semiclassical electrically charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Piedra, Owen Pavel [Departamento de Fisica y Quimica, Facultad de Mecanica, Universidad de Cienfuegos, Carretera a Rodas, km 4, Cuatro Caminos, Cienfuegos (Cuba); De Oliveira, Jeferson, E-mail: opavel@ucf.edu.cu, E-mail: jeferson@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970, Sao Paulo (Brazil)

    2011-04-21

    We report the results concerning the influence of vacuum polarization due to quantum massive vector, scalar and spinor fields on the scalar sector of quasinormal modes in spherically symmetric charged black holes. The vacuum polarization from quantized fields produces a shift in the values of the quasinormal frequencies, and correspondingly the semiclassical system becomes a better oscillator with respect to the classical Reissner-Nordstroem black hole.

  9. Entropy Corrections for a Charged Black Hole of String Theory*

    Institute of Scientific and Technical Information of China (English)

    Alexis Larra(n)aga

    2011-01-01

    We study the entropy of the Gibbons-Macda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics ve derive the quantum corrections to the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.

  10. Quasilocal energy, Komar charge and horizon for regular black holes

    International Nuclear Information System (INIS)

    Balart, Leonardo

    2010-01-01

    We study the Brown-York quasilocal energy for regular black holes. We also express the identity that relates the difference of the Brown-York quasilocal energy and the Komar charge at the horizon to the total energy of the spacetime for static and spherically symmetric black hole solutions in a convenient way which permits us to understand why this identity is not satisfied when we consider nonlinear electrodynamics. However, we give a relation between quantities evaluated at the horizon and at infinity when nonlinear electrodynamics is considered. Similar relations are obtained for more general static and spherically symmetric black hole solutions which include solutions of dilaton gravity theories.

  11. The Phase Transition of Higher Dimensional Charged Black Holes

    International Nuclear Information System (INIS)

    Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying

    2016-01-01

    We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.

  12. Timelike geodesics around a charged spherically symmetric dilaton black hole

    Directory of Open Access Journals (Sweden)

    Blaga C.

    2015-01-01

    Full Text Available In this paper we study the timelike geodesics around a spherically symmetric charged dilaton black hole. The trajectories around the black hole are classified using the effective potential of a free test particle. This qualitative approach enables us to determine the type of orbit described by test particle without solving the equations of motion, if the parameters of the black hole and the particle are known. The connections between these parameters and the type of orbit described by the particle are obtained. To visualize the orbits we solve numerically the equation of motion for different values of parameters envolved in our analysis. The effective potential of a free test particle looks different for a non-extremal and an extremal black hole, therefore we have examined separately these two types of black holes.

  13. Chaotic cold accretion on to black holes in rotating atmospheres

    Science.gov (United States)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.

  14. Entropy of non-extreme rotating black holes in string theories

    International Nuclear Information System (INIS)

    Youm, D.

    1998-01-01

    We formulate the Rindler space description of rotating black holes in string theories. We argue that the comoving frame is the natural frame for studying the thermodynamics of rotating black holes and the statistical analysis of rotating black holes gets simplified in this frame. We also calculate statistical entropies of a general class of rotating black holes in heterotic strings on tori by applying the D-brane description and the correspondence principle. We find at least a qualitative agreement between the Bekenstein-Hawking entropies and the statistical entropies of these black hole solutions. (orig.)

  15. Angular momentum of an electric charge and magnetically charged black hole

    Energy Technology Data Exchange (ETDEWEB)

    Garfinkle, D. (California Univ., Santa Barbara (USA). Dept. of Physics); Rey, S.J. (California Univ., Santa Barbara (USA). Dept. of Physics Florida Univ., Gainesville, FL (USA). Inst. for Fundamental Theory)

    1991-03-21

    We find the angular momentum L of a point particle with electric charge e held at a fixed position in the presence of a black hole with magnetic charge g. (For a point charge in the presence of an ordinary magnetic monopole, it is known that L=eg.) The angular momentum does depend on the separation distance between the particle and the black hole; however, L->eg for a large separation. Implications for the cosmic censorship hypothesis, the quantum hairs and other physical situations are discussed. (orig.).

  16. Angular momentum of an electric charge and magnetically charged black hole

    International Nuclear Information System (INIS)

    Garfinkle, D.; Rey, Soo-Jong

    1990-01-01

    We find the angular momentum L of a point particle with electric charge e held at a fixed position in the presence of a black hole with magnetic charge g. (For a point charge in the presence of an of ordinary magnetic monopole, it is known that L = eg). The angular momentum does depend on the separation distance between the particle and the black hole; however, L → eg for a large separation. Implications for the cosmic censorship hypothesis, the quantum hairs and other physical situations are discussed

  17. Unified approach to the entropy of an extremal rotating BTZ black hole: Thin shells and horizon limits

    Science.gov (United States)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-10-01

    Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.

  18. Absorption of massive scalar field by a charged black hole

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T [Kyoto Univ. (Japan). Dept. of Physics; Sato, H [Kyoto Univ. (Japan). Research Inst. for Fundamental Physics

    1976-04-12

    Absorption and reflection of charged, massive scalar field by the Reisner-Nordstrom black hole are investigated through a numerical computation. The absorption is suppressed when (Schwarzschild radius)<(Compton wave length) and the amplification of the wave occurs when the level crossing condition is satisfied.

  19. General rotating black holes in string theory: Greybody factors and event horizons

    International Nuclear Information System (INIS)

    Cvetic, M.; Larsen, F.

    1997-01-01

    We derive the wave equation for a minimally coupled scalar field in the background of a general rotating five-dimensional black hole. It is written in a form that involves two types of thermodynamic variables, defined at the inner and outer event horizon, respectively. We model the microscopic structure as an effective string theory, with the thermodynamic properties of the left- and right-moving excitations related to those of the horizons. Previously known solutions to the wave equation are generalized to the rotating case, and their regime of validity is sharpened. We calculate the greybody factors and interpret the resulting Hawking emission spectrum microscopically in several limits. We find a U-duality-invariant expression for the effective string length that does not assume a hierarchy between the charges. It accounts for the universal low-energy absorption cross section in the general nonextremal case. copyright 1997 The American Physical Society

  20. 3-D collapse of rotating stars to Kerr black holes

    International Nuclear Information System (INIS)

    Baiotti, L; Hawke, I; Montero, P J; Loeffler, F L; Rezzolla, L; Stergioulas, N; Font, J A; Seidel, E

    2005-01-01

    We study gravitational collapse of uniformly rotating neutron stars to Kerr black holes, using a new three-dimensional, fully general relativistic hydrodynamics code, which uses high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for sufficiently long times relies on excising a region of the computational domain which includes the singularity and is within the apparent horizon. The dynamics of the collapsing matter is strongly influenced by the initial amount of angular momentum in the progenitor star and, for initial models with sufficiently high angular velocities, the collapse can lead to the formation of an unstable disc in differential rotation

  1. Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-02-01

    We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)

  2. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rasskazov, Alexander; Merritt, David [School of Physics and Astronomy and Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2017-03-10

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  3. Thermodynamics of charged black holes with a nonlinear electrodynamics source

    International Nuclear Information System (INIS)

    Gonzalez, Hernan A.; Hassaiene, Mokhtar; Martinez, Cristian

    2009-01-01

    We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shown that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In contrast to the standard Reissner-Nordstroem solution, there is a first-order phase transition between a class of these nonlinear charged black holes and the Minkowski spacetime.

  4. The causal structure of dynamical charged black holes

    International Nuclear Information System (INIS)

    Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han

    2010-01-01

    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.

  5. The causal structure of dynamical charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han, E-mail: eostm@muon.kaist.ac.k, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-02-21

    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.

  6. Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes

    Science.gov (United States)

    Tsukamoto, Naoki

    2018-03-01

    The shadow of a black hole can be one of the strong observational evidences for stationary black holes. If we see shadows at the center of galaxies, we would say whether the observed compact objects are black holes. In this paper, we consider a formula for the contour of a shadow in an asymptotically-flat, stationary, and axisymmetric black hole spacetime. We show that the formula is useful for obtaining the contour of the shadow of several black holes such as the Kerr-Newman black hole and rotating regular black holes. Using the formula, we can obtain new examples of the contour of the shadow of rotating black holes if assumptions are satisfied.

  7. Entanglement Entropy for the charged BTZ black hole

    International Nuclear Information System (INIS)

    Larrañaga, A.

    2011-01-01

    Using the AdS/CFT correspondence we calculate the explicit form of the entanglement entropy for the charged BTZ (Banados-Teitelboim-Zanelli) black hole. The leading term in the large temperature expansion of the entropy function for this black hole reproduces its Bekenstein-Hawking entropy and the subleading term, representing the first corrections due to quantum entanglement, behaves as a logarithm of the BH entropy. It has also been obtained an inverse of area term in subleading order similar to the reported when considering Hawking radiation as quantum tunneling of particles through the event horizon

  8. Configurational entropy of charged AdS black holes

    Directory of Open Access Journals (Sweden)

    Chong Oh Lee

    2017-09-01

    Full Text Available When we consider charged AdS black holes in higher dimensional spacetime and a molecule number density along coexistence curves is numerically extended to higher dimensional cases. It is found that a number density difference of a small and large black holes decrease as a total dimension grows up. In particular, we find that a configurational entropy is a concave function of a reduced temperature and reaches a maximum value at a critical (second-order phase transition point. Furthermore, the bigger a total dimension becomes, the more concave function in a configurational entropy while the more convex function in a reduced pressure.

  9. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  10. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  11. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    International Nuclear Information System (INIS)

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-01-01

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account

  12. Strong gravitational lensing by a charged Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Engineering Faculty, Ankara (Turkey); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan)

    2017-06-15

    We study the gravitational lensing scenario where the lens is a spherically symmetric charged black hole (BH) surrounded by quintessence matter. The null geodesic equations in the curved background of the black hole are derived. The resulting trajectory equation is solved analytically via perturbation and series methods for a special choice of parameters, and the distance of the closest approach to black hole is calculated. We also derive the lens equation giving the bending angle of light in the curved background. In the strong field approximation, the solution of the lens equation is also obtained for all values of the quintessence parameter w{sub q}. For all w{sub q}, we show that there are no stable closed null orbits and that corrections to the deflection angle for the Reissner-Nordstroem black hole when the observer and the source are at large, but finite, distances from the lens do not depend on the charge up to the inverse of the distances squared. A part of the present work, analyzed, however, with a different approach, is the extension of Younas et al. (Phys Rev D 92:084042, 2015) where the uncharged case has been treated. (orig.)

  13. Standing shocks in adiabatic black hole accretion of rotating matter

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Chakrabarti, S.K.

    1988-08-01

    We present all the solutions for stationary, axially symmetric, transonic, adiabatic flows with polytropic, rotating fluid configurations of small transverse thickness, in an arbitrarily chosen potential. Special attention is paid to the formation of the standing shocks in the case of black hole accretion and winds. We point out the possibility of three types of shocks depending upon three extreme physical conditions at the shocks. These are: Rankine-Hugoniot shocks, isentropic compression waves, and isothermal shocks. We write down the shock conditions for these three cases and discuss briefly the physical situations under which these shocks may form. A complete discussion on the properties of these shocks will be presented elsewhere. (author). 21 refs, 4 figs

  14. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    Science.gov (United States)

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  15. Rotating black string and the effective Teukolsky equation in the braneworld

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2004-01-01

    In the Randall-Sundrum two-brane (RS1) model, a large Kerr black hole on the brane can be naturally identified with a section of a rotating black string. To estimate Kaluza-Klein (KK) corrections on gravitational waves emitted by perturbed rotating black strings, we give the effective Teukolsky equation on the brane, which is a separable equation and hence numerically manageable. In this process, we derive the master equation for the electric part of the Weyl tensor, E μν , which is also useful in discussing the transition from black strings to localized black holes triggered by Gregory-Laflamme instability

  16. Extremal rotating black holes in the near-horizon limit: Phase space and symmetry algebra

    Directory of Open Access Journals (Sweden)

    G. Compère

    2015-10-01

    Full Text Available We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to d dimensional Einstein gravity. Each element in the phase space is a geometry with SL(2,R×U(1d−3 isometries which has vanishing SL(2,R and constant U(1 charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d>4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. The conserved charges are given by the Fourier decomposition of a Liouville-type stress-tensor which depends upon a single periodic function of d−3 angular variables associated with the U(1 isometries. This phase space and in particular its symmetries can serve as a basis for a semiclassical description of extremal rotating black hole microstates.

  17. Meissner effect for axially symmetric charged black holes

    Science.gov (United States)

    Gürlebeck, Norman; Scholtz, Martin

    2018-04-01

    In our previous work [N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010 (2017), 10.1103/PhysRevD.95.064010], we have shown that electric and magnetic fields are expelled from the horizons of extremal, stationary and axially symmetric uncharged black holes; this is called the Meissner effect for black holes. Here, we generalize this result in several directions. First, we allow that the black hole carries charge, which requires a generalization of the definition of the Meissner effect. Next, we introduce the notion of almost isolated horizons, which is weaker than the usual notion of isolated horizons, since the geometry of the former is not necessarily completely time independent. Moreover, we allow the horizon to be pierced by strings, thereby violating the usual assumption on the spherical topology made in the definition of the weakly isolated horizon. Finally, we spell out in detail all assumptions entering the proof and show that the Meissner effect is an inherent property of black holes even in full nonlinear theory.

  18. Superradiance of charged black holes in Einstein–Gauss–Bonnet gravity

    Science.gov (United States)

    Fierro, Octavio; Grandi, Nicolás; Oliva, Julio

    2018-05-01

    In this paper we show that electrically charged black holes in Einstein–Gauss–Bonnet gravity suffer from a superradiant instability. It is triggered by a charged scalar field that fulfils Dirichlet boundary conditions at a mirror located outside the horizon. As in general relativity, the unstable modes exist provided that the mirror is located beyond a critical radius, making the instability a long wavelength one. We explore the effects of the Gauss–Bonnet corrections on the critical radius and find evidence that the critical radius decreases as the Gauss–Bonnet coupling α increases. Due to the, up to date, lack of an analytic rotating solution for Einstein–Gauss–Bonnet theory, this is the first example of a superradiant instability in the presence of higher curvature terms in the action.

  19. Non-commutative geometry inspired charged black holes

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Nicolini, Piero; Smailagic, Anais; Spallucci, Euro

    2007-01-01

    We find a new, non-commutative geometry inspired, solution of the coupled Einstein-Maxwell field equations describing a variety of charged, self-gravitating objects, including extremal and non-extremal black holes. The metric smoothly interpolates between de Sitter geometry, at short distance, and Reissner-Nordstrom geometry far away from the origin. Contrary to the ordinary Reissner-Nordstrom spacetime there is no curvature singularity in the origin neither 'naked' nor shielded by horizons. We investigate both Hawking process and pair creation in this new scenario

  20. Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.

    Science.gov (United States)

    Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen

    2011-04-15

    We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.

  1. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-10-01

    We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes less cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.

  2. Growth of black holes in the interior of rotating neutron stars

    DEFF Research Database (Denmark)

    Kouvaris, C.; Tinyakov, P.

    2014-01-01

    Mini-black holes made of dark matter that can potentially form in the interior of neutron stars always have been thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angular velocities that can...... in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum...... evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion...

  3. Surface geometry of a rotating black hole in a magnetic field

    International Nuclear Information System (INIS)

    Kulkarni, R.; Dadhich, N.

    1986-01-01

    We study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material rotating bodies according to Smarr since black holes also tend to become more oblate on being spun up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole surface also gives rise to an interesting embedding problem. Smarr shows that a Kerr black hole cannot be globally isometrically embedded in R 3 if its specific angular momentum a exceeds (√3 /2)mapprox.0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying 2- √3 2 m 2 3 for all values of the angular momentum

  4. Magnetically-charged black branes and viscosity/entropy ratios

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Shan [Institute for Advanced Physics & Mathematics,Zhejiang University of Technology, Hangzhou 310023 (China); George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Lü, H. [Department of Physics, Beijing Normal University,Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences,Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2016-12-19

    We consider asymptotically-AdS n-dimensional black brane solutions in a theory of gravity coupled to a set of Np-form field strengths, in which the field strengths carry magnetic charges. For appropriately chosen charges, the metrics are isotropic in the (n−2) transverse directions. However, in general the field strength configurations break the full Euclidean symmetry of the (n−2)-dimensional transverse space, and the shear viscosity tensor in the dual theory is no longer isotropic. We study the linearised equations for transverse traceless metric perturbations in these backgrounds, and by employing the Kubo formula we obtain expressions for the ratios η/S of the shear viscosity components divided by the entropy density. We find that the KSS bound on the ratios η/S is generally violated in these solutions. We also extend the discussion by including a dilatonic scalar field in the theory, leading to solutions that are asymptotically Lifshitz with hyperscaling violation.

  5. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2016-08-01

    Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  6. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    International Nuclear Information System (INIS)

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-01-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  7. Field of a dipole in charged black-hole electrostatics

    International Nuclear Information System (INIS)

    Souza, J.A.

    1979-01-01

    By using the solution of Adler and Das for Maxwell's equations in a Reissner-Nordstroem optimally charged background metric, the field of a static electric dipole is found and then, by a duality rotation, the field of a static magnetic dipole is obtained. A generalization of the concept of electric-dipole moment is proposed for static dipoles in curved manifolds, and the behaviour of the fields both for the dipole very near and very far from the singular surface of the Reissner-Nordstroem geometry is studied. (author)

  8. Planckian charged black holes in ultraviolet self-complete quantum gravity

    Directory of Open Access Journals (Sweden)

    Piero Nicolini

    2018-03-01

    Full Text Available We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.

  9. Planckian charged black holes in ultraviolet self-complete quantum gravity

    Science.gov (United States)

    Nicolini, Piero

    2018-03-01

    We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.

  10. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emek Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-07-15

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ{sub gap}/τ{sub emission} = O(1), where τ{sub gap} is the average time gap between the emissions of successive Hawking quanta and τ{sub emission} is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  11. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ gap /τ emission = O(1), where τ gap is the average time gap between the emissions of successive Hawking quanta and τ emission is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  12. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Science.gov (United States)

    Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  13. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-01-01

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free ω parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity (ω→±∞), a dimensionally reduced cylindrical four-dimensional general relativity theory (ω=0), and a theory representing a class of theories (ω=-3), all with a Maxwell term. The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P M ;Q,P Q ), where M is the mass parameter, which for ω M is the conjugate momenta of M, Q is the charge parameter, and P Q is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field φ. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.

  14. Floating and sinking: the imprint of massive scalars around rotating black holes.

    Science.gov (United States)

    Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2011-12-09

    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.

  15. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr [Eastern Mediterranean University Famagusta, North Cyprus, Department of Physics (Turkey)

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  16. Inside charged black holes. II. Baryons plus dark matter

    International Nuclear Information System (INIS)

    Hamilton, Andrew J.S.; Pollack, Scott E.

    2005-01-01

    This is the second of two companion papers on the interior structure of self-similar accreting charged black holes. In the first paper, the black hole was allowed to accrete only a single fluid of charged baryons. In this second paper, the black hole is allowed to accrete in addition a neutral fluid of almost noninteracting dark matter. Relativistic streaming between outgoing baryons and ingoing dark matter leads to mass inflation near the inner horizon. When enough dark matter has been accreted that the center-of-mass frame near the inner horizon is ingoing, then mass inflation ceases and the fluid collapses to a central singularity. A null singularity does not form on the Cauchy horizon. Although the simultaneous presence of ingoing and outgoing fluids near the inner horizon is essential to mass inflation, reducing one or the other of the ingoing dark matter or outgoing baryonic streams to a trace relative to the other stream makes mass inflation more extreme, not the other way around as one might naively have expected. Consequently, if the dark matter has a finite cross section for being absorbed into the baryonic fluid, then the reduction of the amount of ingoing dark matter merely makes inflation more extreme, the interior mass exponentiating more rapidly and to a larger value before mass inflation ceases. However, if the dark matter absorption cross section is effectively infinite at high collision energy, so that the ingoing dark matter stream disappears completely, then the outgoing baryonic fluid can drop through the Cauchy horizon. In all cases, as the baryons and the dark matter voyage to their diverse fates inside the black hole, they only ever see a finite amount of time pass by in the outside universe. Thus the solutions do not depend on what happens in the infinite past or future. We discuss in some detail the physical mechanism that drives mass inflation. Although the gravitational force is inward, inward means opposite direction for ingoing and

  17. Hawking radiation from a rotating acoustic black hole

    International Nuclear Information System (INIS)

    Zhang Lichun; Li Huaifan; Zhao Ren

    2011-01-01

    Using the new global embedding approach and analytical continuation method of wave function we discuss Hawking radiation of acoustic black holes. Unruh-Hawking temperature of the acoustic black hole is derived. The corresponding relation between these methods calculating Hawking radiation of acoustic black hole is established. The calculation result shows that the contributions of chemical potential to the ingoing wave and the outgoing wave are the same.

  18. Microscopic entropy of the three-dimensional rotating black hole of Bergshoeff-Hohm-Townsend massive gravity

    International Nuclear Information System (INIS)

    Giribet, Gaston; Oliva, Julio; Tempo, David; Troncoso, Ricardo

    2009-01-01

    Asymptotically anti-de Sitter rotating black holes for the Bergshoeff-Hohm-Townsend massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent 'gravitational hair' parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case, and since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects itself through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires a central extension. Then it is shown that Strominger's holographic computation for general relativity can also be extended to the Bergshoeff-Hohm-Townsend theory; i.e., assuming that the quantum theory could be consistently described by a dual conformal field theory at the boundary, the black hole entropy can be microscopically computed from the asymptotic growth of the number of states according to Cardy's formula, in exact agreement with the semiclassical result.

  19. New charged black holes with conformal scalar hair

    International Nuclear Information System (INIS)

    Anabalon, Andres; Maeda, Hideki

    2010-01-01

    A new class of four-dimensional, hairy, stationary solutions of the Einstein-Maxwell-Λ system with a conformally coupled scalar field is obtained. The metric belongs to the Plebanski-Demianski family and hence its static limit has the form of the charged (A)dS C metric. It is shown that, in the static case, a new family of hairy black holes arises. They turn out to be cohomogeneity-two, with horizons that are neither Einstein nor homogenous manifolds. The conical singularities in the C metric can be removed due to the backreaction of the scalar field providing a new kind of regular, radiative spacetime. The scalar field carries a continuous parameter proportional to the usual acceleration present in the C metric. In the zero-acceleration limit, the static solution reduces to the dyonic Bocharova-Bronnikov-Melnikov-Bekenstein solution or the dyonic extension of the Martinez-Troncoso-Zanelli black holes, depending on the value of the cosmological constant.

  20. On non-linear magnetic-charged black hole surrounded by quintessence

    Science.gov (United States)

    Nam, Cao H.

    2018-06-01

    We derive a non-linear magnetic-charged black hole surrounded by quintessence, which behaves asymptotically like the Schwarzschild black hole surrounded by quintessence but at the short distances like the dS geometry. The horizon properties of this black hole are investigated in detail. The thermodynamics of the black hole is studied in the local and global views. Finally, by calculating the heat capacity and the free energy, we point to that the black hole may undergo a thermal phase transition, between a larger unstable black hole and a smaller stable black hole, at a critical temperature.

  1. Joule-Thomson expansion of the charged AdS black holes

    International Nuclear Information System (INIS)

    Oekcue, Oezguer; Aydiner, Ekrem

    2017-01-01

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T-P plane and determine the cooling-heating regions. (orig.)

  2. Joule-Thomson expansion of the charged AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Oekcue, Oezguer; Aydiner, Ekrem [Istanbul University, Department of Physics, Faculty of Science, Vezneciler, Istanbul (Turkey)

    2017-01-15

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T-P plane and determine the cooling-heating regions. (orig.)

  3. Quantum gravity effects on scalar particle tunneling from rotating BTZ black hole

    Science.gov (United States)

    Meitei, I. Ablu; Singh, T. Ibungochouba; Devi, S. Gayatri; Devi, N. Premeshwari; Singh, K. Yugindro

    2018-04-01

    Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein-Hawking entropy (SBH), the inverse term of SBH and terms with inverse powers of SBH, in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space-time.

  4. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    International Nuclear Information System (INIS)

    Koide, Shinji; Baba, Tamon

    2014-01-01

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  5. A comparative study of Dirac quasinormal modes of charged black holes in higher dimensions

    International Nuclear Information System (INIS)

    Chakrabarti, Sayan K.

    2009-01-01

    In this work we study the Dirac quasinormal modes of higher dimensional charged black holes. Higher dimensional Reissner-Nordstroem type black holes as well as charged black holes in Einstein-Gauss-Bonnet theories are studied for fermionic perturbations using WKB method. A comparative study of the quasinormal modes in the two different theories of gravity has been performed. The behavior of the frequencies with the variation of black hole parameters as well as with the variation of space-time dimensions is studied. We also study the large multipole number limit of the black hole potential in order to look for an analytic expression for the frequencies. (orig.)

  6. Thin accretion disk signatures of slowly rotating black holes in Horava gravity

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S N

    2011-01-01

    In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  7. Thin accretion disk signatures of slowly rotating black holes in Horava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Harko, Tiberiu; Kovacs, Zoltan [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Lobo, Francisco S N, E-mail: harko@hkucc.hku.hk, E-mail: zkovacs@hku.hk, E-mail: flobo@cii.fc.ul.pt [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal)

    2011-08-21

    In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  8. Scalar hair around charged black holes in Einstein-Gauss-Bonnet gravity

    Science.gov (United States)

    Grandi, Nicolás; Landea, Ignacio Salazar

    2018-02-01

    We explore charged black hole solutions in Einstein-Gauss-Bonnet gravity in five dimensions, with a charged scalar hair. We interpret such hairy black holes as the final state of the superradiant instability previously reported for this system. We explore the relation of the hairy black hole solutions with the nonbackreacting quasibound states and scalar clouds, as well as with the boson star solutions.

  9. Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Abdujabbarov, Ahmadjon; Ahmedov, Bobomurat; Atamurotov, Farruh; Dadhich, Naresh; Stuchlik, Zdenek

    2015-01-01

    We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, the gravitational potential has a slower fall-off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of a pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by the Penroseprocess is increased to 25.8 % and the particle acceleration is increased to 55.28 %; the optical shadow of the black hole is decreased. These are in principle distinguishing observable features of a pure GB black hole. (orig.)

  10. Hawking radiation from rotating black holes in anti-de Sitter spaces via gauge and gravitational anomalies

    International Nuclear Information System (INIS)

    Jiang Qingquan; Wu Shuangqing

    2007-01-01

    Robinson-Wilczek's recent work, which treats Hawking radiation as a compensating flux to cancel gravitational anomaly at the horizon of a Schwarzschild-type black hole, is extended to study Hawking radiation of rotating black holes in anti-de Sitter spaces, especially that in dragging coordinate system, via gauge and gravitational anomalies. The results show that in order to restore gauge invariance and general coordinate covariance at the quantum level in the effective field theory, the charge and energy flux by requiring to cancel gauge and gravitational anomalies at the horizon, must have a form equivalent to that of a (1+1)-dimensional blackbody radiation at Hawking temperature with an appropriate chemical potential

  11. Electrostatics in the Surroundings of a Topologically Charged Black Hole in the Brane

    Directory of Open Access Journals (Sweden)

    Alexis Larrañaga

    2014-01-01

    Full Text Available We determine the expression for the electrostatic potential generated by a point charge held stationary in the topologically charged black hole spacetime arising from the Randall-Sundrum II braneworld model. We treat the static electric point charge as a linear perturbation on the black hole background and an expression for the electrostatic multipole solution is given: PACS: 04.70.-s, 04.50.Gh, 11.25.-w, 41.20.-q, 41.90.+e.

  12. Charge loss (or the lack thereof) for AdS black holes

    International Nuclear Information System (INIS)

    Ong, Yen Chin; Chen, Pisin

    2014-01-01

    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordström black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordström black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.

  13. Massless charged particles: Cosmic censorship, and the third law of black hole mechanics

    Science.gov (United States)

    Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta

    2017-10-01

    The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.

  14. Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.

    Science.gov (United States)

    Rudenko, A N; Brener, S; Katsnelson, M I

    2016-06-17

    We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13}  cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300  K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700)  cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.

  15. The force-free magnetosphere of a rotating black hole

    Directory of Open Access Journals (Sweden)

    Contopoulos Ioannis

    2013-12-01

    Full Text Available We explore the analogy with pulsars and investigate the structure of the force-free magnetosphere around a Kerr black hole. We propose that the source of the black hole magnetic field is the Poynting-Robertson effect on the plasma electrons at the inner edge of the surrounding accretion disk, the so called Cosmic Battery. The magnetospheric solution is characterized by the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem, the inner ‘light surface’ located inside the ergosphere, and the outer ‘light surface’ which is the generalization of the pulsar light cylinder. The black hole forms a relativistic jet only if it is surrounded by a thick disk and/or extended disk outflows.

  16. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    Science.gov (United States)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH-BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  17. Chaos in charged AdS black hole extended phase space

    Science.gov (United States)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S.

    2018-06-01

    We present an analytical study of chaos in a charged black hole in the extended phase space in the context of the Poincare-Melnikov theory. Along with some background on dynamical systems, we compute the relevant Melnikov function and find its zeros. Then we analyse these zeros either to identify the temporal chaos in the spinodal region, or to observe spatial chaos in the small/large black hole equilibrium configuration. As a byproduct, we derive a constraint on the Black hole' charge required to produce chaotic behaviour. To the best of our knowledge, this is the first endeavour to understand the correlation between chaos and phase picture in black holes.

  18. Magnetic layers and neutral points near a rotating black hole

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Kopáček, Ondřej

    2009-01-01

    Roč. 26, č. 2 (2009), s. 1-9 ISSN 0264-9381 R&D Projects: GA ČR GA205/07/0052 Institutional research plan: CEZ:AV0Z10030501 Keywords : black holes * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.029, year: 2009

  19. Thermodynamic interpretation of the field equation of BTZ charged black hole near the horizon

    International Nuclear Information System (INIS)

    Larranaga, A.

    2008-01-01

    As is already known, a spacetime horizon acts like a boundary of a thermal system and we can associate with it notions such as temperature and entropy. Following the work of M. Akbar, in this paper we will show how it is possible to interpret the field equation of a charged BTZ black hole near the horizon as a thermodynamic identity dE=TdS+P r dA+ΦdQ$, where Φ is the electric potential and $Q$ is the electric charge of a BTZ black hole. These results indicate that the field equations for the charged BTZ black hole possess intrinsic thermodynamic properties near the horizon.

  20. Energy extraction from a Konoplya–Zhidenko rotating non-Kerr black hole

    Directory of Open Access Journals (Sweden)

    Fen Long

    2018-01-01

    Full Text Available We have investigated the properties of the ergosphere and the energy extraction by Penrose process in a Konoplya–Zhidenko rotating non-Kerr black hole spacetime. We find that the ergosphere becomes thin and the maximum efficiency of energy extraction decreases as the deformation parameter increases. For the case with aM, we find that the maximum efficiency can reach so high that it is almost unlimited as the positive deformation parameter is close to zero, which is a new feature of energy extraction in such kind of rotating non-Kerr black hole spacetime.

  1. Regular black holes: electrically charged solutions, Reissner-Nordstroem outside a De Sitter core

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Jose P.S. [Universidade Tecnica de Lisboa (CENTRA/IST/UTL) (Portugal). Instituto Superior Tecnico. Centro Multidisciplinar de Astrofisica; Zanchin, Vilson T. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas

    2011-07-01

    Full text: The understanding of the inside of a black hole is of crucial importance in order to have the correct picture of a black hole as a whole. The singularities that lurk inside of the usual black hole solutions are things to avoid. Their substitution by a regular part is of great interest, the process generating regular black holes. In the present work regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several solutions: the regular nonextremal black holes with a null matter boundary, the regular nonextremal black holes with a timelike matter boundary, the regular extremal black holes with a timelike matter boundary, and the regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed. (author)

  2. Thermodynamic properties of charged three-dimensional black holes in the scalar-tensor gravity theory

    Science.gov (United States)

    Dehghani, M.

    2018-02-01

    Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.

  3. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    Science.gov (United States)

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-08

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  4. Hawking radiation of five-dimensional charged black holes with scalar fields

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2017-09-01

    Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  5. Imaging a non-singular rotating black hole at the center of the Galaxy

    Science.gov (United States)

    Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.

    2018-06-01

    We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.

  6. Matter-antimatter separation in the early universe by rotating black holes

    Science.gov (United States)

    Leahy, D. A.

    1981-01-01

    Consideration of the effect of rotating black holes evaporating early in the universe shows that they would have produced oppositely directed neutrino and antineutrino currents, which push matter and antimatter apart. This separation mechanism is, however, too feeble to account for a present baryon-to-photon ratio of 10 to the -9th, and has no significant observational consequences.

  7. Cosmic censorship principle in two-dimensional charged extreme black hole

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bin; Ru Keng Su [Fudan Univ., Shanghai (China). Dept. of Physics; Cheung, T. [Hong Kong City Univ., Hong Kong (China). Dept. of Physics

    1999-10-01

    By constructing a gedanken experiment, the authors prove that the event horizon of a two-dimensional charged extreme black hole cannot be removed. Singularities are found to be formed on the horizon through analyzing the fate of Hawking partner and application of Helliwell-Konkowski conjecture. The cosmic censorship principle is well protected in this black hole.

  8. Properties of a thin accretion disk around a rotating non-Kerr black hole

    International Nuclear Information System (INIS)

    Chen Songbai; Jing Jiliang

    2012-01-01

    We study the accretion process in the thin disk around a rotating non-Kerr black hole with a deformed parameter and an unbound rotation parameter. Our results show that the presence of the deformed parameter ε modifies the standard properties of the disk. For the case in which the black hole is more oblate than a Kerr black hole, the larger deviation leads to the smaller energy flux, the lower radiation temperature and the fainter spectra luminosity in the disk. For the black hole with positive deformed parameter, we find that the effect of the deformed parameter on the disk becomes more complicated. It depends not only on the rotation direction of the black hole and the orbit particles, but also on the sign of the difference between the deformed parameter ε and a certain critical value ε c . These significant features in the mass accretion process may provide a possibility to test the no-hair theorem in the strong-field regime in future astronomical observations.

  9. Sequences of extremal radially excited rotating black holes.

    Science.gov (United States)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2014-01-10

    In the Einstein-Maxwell-Chern-Simons theory the extremal Reissner-Nordström solution is no longer the single extremal solution with vanishing angular momentum, when the Chern-Simons coupling constant reaches a critical value. Instead a whole sequence of rotating extremal J=0 solutions arises, labeled by the node number of the magnetic U(1) potential. Associated with the same near horizon solution, the mass of these radially excited extremal solutions converges to the mass of the extremal Reissner-Nordström solution. On the other hand, not all near horizon solutions are also realized as global solutions.

  10. Hairy black holes and the endpoint of AdS{sub 4} charged superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Óscar J.C.; Masachs, Ramon [STAG research centre and Mathematical Sciences, University of Southampton,Southampton (United Kingdom)

    2017-02-24

    We construct hairy black hole solutions that merge with the anti-de Sitter (AdS{sub 4}) Reissner-Nordström black hole at the onset of superradiance. These hairy black holes have, for a given mass and charge, higher entropy than the corresponding AdS{sub 4}-Reissner-Nordström black hole. Therefore, they are natural candidates for the endpoint of the charged superradiant instability. On the other hand, hairy black holes never dominate the canonical and grand-canonical ensembles. The zero-horizon radius of the hairy black holes is a soliton (i.e. a boson star under a gauge transformation). We construct our solutions perturbatively, for small mass and charge, so that the properties of hairy black holes can be used to testify and compare with the endpoint of initial value simulations. We further discuss the near-horizon scalar condensation instability which is also present in global AdS{sub 4}-Reissner-Nordström black holes. We highlight the different nature of the near-horizon and superradiant instabilities and that hairy black holes ultimately exist because of the non-linear instability of AdS.

  11. Generalized uncertainty principle and entropy of three-dimensional rotating acoustic black hole

    International Nuclear Information System (INIS)

    Zhao, HuiHua; Li, GuangLiang; Zhang, LiChun

    2012-01-01

    Using the new equation of state density from the generalized uncertainty principle, we investigate statistics entropy of a 3-dimensional rotating acoustic black hole. When λ introduced in the generalized uncertainty principle takes a specific value, we obtain an area entropy and a correction term associated with the acoustic black hole. In this method, there does not exist any divergence and one needs not the small mass approximation in the original brick-wall model. -- Highlights: ► Statistics entropy of a 3-dimensional rotating acoustic black hole is studied. ► We obtain an area entropy and a correction term associated with it. ► We make λ introduced in the generalized uncertainty principle take a specific value. ► There does not exist any divergence in this method.

  12. Stringy stability of charged dilaton black holes with flat event horizon

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yen Chin [National Taiwan Univ., Taipei (Taiwan); Chen, Pisin [National Taiwan Univ., Taipei (Taiwan); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-01-15

    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.

  13. Formation and evaporation of an electrically charged black hole in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); Modesto, Leonardo [Southern University of Science and Technology, Department of Physics, Shenzhen (China); Porey, Shiladitya [Novosibirsk State University, Novosibirsk (Russian Federation); Rachwal, Leslaw [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2018-02-15

    Extending previous work on the formation and the evaporation of black holes in conformal gravity, in the present paper we study the gravitational collapse of a spherically symmetric and electrically charged thin shell of radiation. The process creates a singularity-free black hole. Assuming that in the evaporation process the charge Q is constant, the final product of the evaporation is an extremal remnant with M = Q, which is reached in an infinite amount of time. We also discuss the issue of singularity and thermodynamics of black holes in Weyl's conformal gravity. (orig.)

  14. Euler numbers of four-dimensional rotating black holes with the Euclidean signature

    International Nuclear Information System (INIS)

    Ma Zhengze

    2003-01-01

    For a black hole's spacetime manifold in the Euclidean signature, its metric is positive definite and therefore a Riemannian manifold. It can be regarded as a gravitational instanton and a topological characteristic which is the Euler number to which it is associated. In this paper we derive a formula for the Euler numbers of four-dimensional rotating black holes by the integral of the Euler density on the spacetime manifolds of black holes. Using this formula, we obtain that the Euler numbers of Kerr and Kerr-Newman black holes are 2. We also obtain that the Euler number of the Kerr-Sen metric in the heterotic string theory with one boost angle nonzero is 2, which is in accordance with its topology

  15. Destroying charged black holes in higher dimensions with test particles

    Science.gov (United States)

    Wu, Bin; Liu, Weiyang; Tang, Hao; Yue, Rui-Hong

    2017-07-01

    A possible way to destroy the Tangherlini Reissner-Nordström black hole is discussed in the spirit of Wald’s gedanken experiment. By neglecting radiation and self force effects, the absorbing condition and destruction condition of the test point particle which is capable of destroying the black hole are obtained. We find that it is impossible to challenge the weak cosmic censorship for an initially extremal black hole in all dimensions. Instead, it is shown that the near extremal black hole will turn into a naked singularity in this particular process, in which case the allowed range of the particle’s energy is very narrow. The result indicates that the self-force effects may well change the outcome of the calculation.

  16. The Force-Free Magnetosphere of a Rotating Black Hole

    Science.gov (United States)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.

    2013-01-01

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."

  17. Phases of planar AdS black holes with axionic charge

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Christodoulou, Ariana; Papadimitriou, Ioannis; Skenderis, Kostas

    2017-01-01

    Planar AdS black holes with axionic charge have finite DC conductivity due to momentum relaxation. We obtain a new family of exact asymptotically AdS 4 black branes with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics and dynamic stability of these, as well as of a number of previously known electric and dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy mixed boundary conditions, which lead to modified holographic Ward identities, conserved charges and free energy, relative to those following from the more standard Dirichlet boundary conditions. We show that properly accounting for the scalar boundary conditions leads to well defined first law and other thermodynamic relations. Finally, we compute the holographic quantum effective potential for the dual scalar operator and show that dynamical stability of the hairy black branes is equivalent to positivity of the energy density.

  18. Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    International Nuclear Information System (INIS)

    Gibbons, G.; Kallosh, R.; Kol, B.

    1996-01-01

    We show that under variation of moduli fields φ the first law of black hole thermodynamics becomes dM=κdA/8π +ΩdJ+ψdq+χdp-Σdφ, where Σ are the scalar charges. Also the ADM mass is extremized at fixed A, J, (p,q) when the moduli fields take the fixed value φ fix (p,q) which depend only on electric and magnetic charges. Thus the double-extreme black hole minimizes the mass for fixed conserved charges. We can now explain the fact that extreme black holes fix the moduli fields at the horizon φ=φ fix (p,q): φ fix is such that the scalar charges vanish: Σ(φ fix ,(p,q))=0. copyright 1996 The American Physical Society

  19. Phases of planar AdS black holes with axionic charge

    Energy Technology Data Exchange (ETDEWEB)

    Caldarelli, Marco M.; Christodoulou, Ariana [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste,Via Bonomea 265, I 34136 Trieste (Italy); Skenderis, Kostas [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom)

    2017-04-03

    Planar AdS black holes with axionic charge have finite DC conductivity due to momentum relaxation. We obtain a new family of exact asymptotically AdS{sub 4} black branes with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics and dynamic stability of these, as well as of a number of previously known electric and dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy mixed boundary conditions, which lead to modified holographic Ward identities, conserved charges and free energy, relative to those following from the more standard Dirichlet boundary conditions. We show that properly accounting for the scalar boundary conditions leads to well defined first law and other thermodynamic relations. Finally, we compute the holographic quantum effective potential for the dual scalar operator and show that dynamical stability of the hairy black branes is equivalent to positivity of the energy density.

  20. Dualities in D=5, N=2 supergravity, black hole entropy, and AdS central charges

    International Nuclear Information System (INIS)

    Klemm, D.

    2001-01-01

    The issue of microstate counting for general black holes in D=5, N=2 supergravity coupled to vector multiplets is discussed from various viewpoints. The statistical entropy is computed for the near-extremal case by using the central charge appearing in the asymptotic symmetry algebra of AdS 2 . Furthermore, we show that the considered supergravity theory enjoys a duality invariance which connects electrically charged black holes and magnetically charged black strings. The near-horizon geometry of the latter turns out to be AdS 3 x S 2 , which allows a microscopic calculation of their entropy using the Brown-Hennaux central charges in Cardy's formula. In both approaches we find perfect agreement between statistical and thermodynamical entropy. (orig.)

  1. Nernst Theorem and Statistical Entropy of 5-Dimensional Rotating Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun

    2003-01-01

    In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon's area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.

  2. Charged massive particle at rest in the field of a Reissner-Nordstroem black hole

    International Nuclear Information System (INIS)

    Bini, D.; Geralico, A.; Ruffini, R.

    2007-01-01

    The interaction of a Reissner-Nordstroem black hole and a charged massive particle is studied in the framework of perturbation theory. The particle backreaction is taken into account, studying the effect of general static perturbations of the hole following the approach of Zerilli. The solutions of the combined Einstein-Maxwell equations for both perturbed gravitational and electromagnetic fields to first order of the perturbation are exactly reconstructed by summing all multipoles, and are given explicit closed form expressions. The existence of a singularity-free solution of the Einstein-Maxwell system requires that the charge-to-mass ratios of the black hole and of the particle satisfy an equilibrium condition which is in general dependent on the separation between the two bodies. If the black hole is undercritically charged (i.e. its charge-to-mass ratio is less than one), the particle must be overcritically charged, in the sense that the particle must have a charge-to-mass ratio greater than one. If the charge-to-mass ratios of the black hole and of the particle are both equal to one (so that they are both critically charged, or 'extreme'), the equilibrium can exist for any separation distance, and the solution we find coincides with the linearization in the present context of the well-known Majumdar-Papapetrou solution for two extreme Reissner-Nordstroem black holes. In addition to these singularity-free solutions, we also analyze the corresponding solution for the problem of a massive particle at rest near a Schwarzschild black hole, exhibiting a strut singularity on the axis between the two bodies. The relations between our perturbative solutions and the corresponding exact two-body solutions belonging to the Weyl class are also discussed

  3. Spinning charged test particles and Cosmic Censorship

    Energy Technology Data Exchange (ETDEWEB)

    Caderni, N [Cambridge Univ. Inst. of Astronomy (UK); Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1979-04-16

    The authors consider spinning charged test particles in the gravitational field of a rotating charged black hole, and it is shown that the hole cannot be destroyed, according to the Cosmic Censorship hypothesis.

  4. Spinning charged test particles and Cosmic Censorship

    International Nuclear Information System (INIS)

    Caderni, N.; Calvani, M.

    1979-01-01

    The authors consider spinning charged test particles in the gravitational field of a rotating charged black hole, and it is shown that the hole cannot be destroyed, according to the Cosmic Censorship hypothesis. (Auth.)

  5. Charged BTZ-like black hole solutions and the diffusivity-butterfly velocity relation

    Science.gov (United States)

    Ge, Xian-Hui; Sin, Sang-Jin; Tian, Yu; Wu, Shao-Feng; Wu, Shang-Yu

    2018-01-01

    We show that there exists a class of charged BTZ-like black hole solutions in Lifshitz spacetime with a hyperscaling violating factor. The charged BTZ black hole is characterized by a charge-dependent logarithmic term in the metric function. As concrete examples, we give five such charged BTZ-like black hole solutions and the standard charged BTZ metric can be regarded as a special instance of them. In order to check the recent proposed universal relations between diffusivity and the butterfly velocity, we first compute the diffusion constants of the standard charged BTZ black holes and then extend our calculation to arbitrary dimension d, exponents z and θ. Remarkably, the case d = θ and z = 2 is a very special in that the charge diffusion D c is a constant and the energy diffusion D e might be ill-defined, but v B 2 τ diverges. We also compute the diffusion constants for the case that the DC conductivity is finite but in the absence of momentum relaxation.

  6. Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    International Nuclear Information System (INIS)

    Dai, De-Chang; Stojkovic, Dejan; Freese, Katherine

    2009-01-01

    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10 11 GeV–10 16 GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes

  7. Analytical study of a Kerr-Sen black hole and a charged massive scalar field

    Science.gov (United States)

    Bernard, Canisius

    2017-11-01

    It is reported that Kerr-Newman and Kerr-Sen black holes are unstable to perturbations of charged massive scalar field. In this paper, we study analytically the complex frequencies which characterize charged massive scalar fields in a near-extremal Kerr-Sen black hole. For near-extremal Kerr-Sen black holes and for charged massive scalar fields in the eikonal large-mass M ≫μ regime, where M is the mass of the black hole, and μ is the mass of the charged scalar field, we have obtained a simple expression for the dimensionless ratio ωI/(ωR-ωc) , where ωI and ωR are, respectively, the imaginary and real parts of the frequency of the modes, and ωc is the critical frequency for the onset of super-radiance. We have also found our expression is consistent with the result of Hod [Phys. Rev. D 94, 044036 (2016), 10.1103/PhysRevD.94.044036] for the case of a near-extremal Kerr-Newman black hole and the result of Zouros and Eardly [Ann. Phys. (N.Y.) 118, 139 (1979), 10.1016/0003-4916(79)90237-9] for the case of neutral scalar fields in the background of a near-extremal Kerr black hole.

  8. On the Penrose inequality for charged black holes

    International Nuclear Information System (INIS)

    Disconzi, Marcelo M; Khuri, Marcus A

    2012-01-01

    Bray and Khuri (2011 Asian J. Math. 15 557–610; 2010 Discrete Continuous Dyn. Syst. A 27 741766) outlined an approach to prove the Penrose inequality for general initial data sets of the Einstein equations. In this paper we extend this approach so that it may be applied to a charged version of the Penrose inequality. Moreover, assuming that the initial data are time-symmetric, we prove the rigidity statement in the case of equality for the charged Penrose inequality, a result which seems to be absent from the literature. A new quasi-local mass, tailored to charged initial data sets is also introduced, and used in the proof. (paper)

  9. Thermodynamics of rotating black branes in gravity with first order string corrections

    Directory of Open Access Journals (Sweden)

    M. H. Dehghani

    2005-09-01

    Full Text Available   In this paper, the rotating black brane solutions with zero curvature horizon of classical gravity with first order string corrections are introduced. Although these solutions are not asymptotically anti de Sitter, one can use the counterterm method in order to compute the conserved quantities of these solutions. Here, by reviewing the counterterm method for asymptotically anti de Sitter spacetimes, the conserved quantities of these rotating solutions are computed. Also a Smarr-type formula for the mass as a function of the entropy and the angular momenta is obtained, and it is shown that the conserved and thermodynamic quantities satisfy the first law of thermodynamics. Finally, a stability analysis in the canonical ensemble is performed, and it is shown that the system is thermally stable. This is in commensurable with the fact that there is no Hawking-Page phase transition for black object with zero curvature horizon.

  10. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Kolos, Martin

    2016-01-01

    To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)

  11. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlik, Zdenek; Kolos, Martin [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2016-01-15

    To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)

  12. Charged black holes in Hořava gravity

    International Nuclear Information System (INIS)

    Janiszewski, Stefan; Karch, Andreas; Robinson, Brandon; Sommer, David

    2014-01-01

    We explore static spherically symmetric black hole solutions allowing a bulk U(1) vector field in the khronometric formulation of Hořava gravity by way of Einstein-Æther. We examine analytic solutions and study numerical results in the limit that the khronon does not backreact on the metric

  13. QPOs from Random X-ray Bursts around Rotating Black Holes

    Science.gov (United States)

    Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon

    2009-01-01

    We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.

  14. A rotating hairy AdS3 black hole with the metric having only one Killing vector field

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2015-01-01

    We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against scalar field perturbations under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude ϵ of the scalar field, up to O(ϵ 4 ). Our hairy black hole is stationary and exhibits no dissipation, but the lumps of the non-linearly perturbed geometry break axial symmetry, thus providing the first example of a rotating black hole whose metric admits only one Killing vector field. Furthermore, we numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. We briefly discuss if our rotating hairy black hole in lumpy geometry could be the endpoint of the instability.

  15. Critical Phenomena in Higher Curvature Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Arindam Lala

    2013-01-01

    Full Text Available In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-Born-Infeld-AdS black hole as an example. The thermodynamics of the black hole have been studied which reveals the onset of a higher-order phase transition in the black hole in the canonical ensemble (fixed charge ensemble framework. We have analytically derived the critical exponents associated with these thermodynamic quantities. We find that our results fit well with the thermodynamic scaling laws and consistent with the mean field theory approximation. The suggestive values of the other two critical exponents associated with the correlation function and correlation length on the critical surface have been derived.

  16. Thermodynamic geometry and phase transitions of dyonic charged AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Pankaj; Sengupta, Gautam [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Das, Anirban [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India)

    2017-02-15

    We investigate phase transitions and critical phenomena of four dimensional dyonic charged AdS black holes in the framework of thermodynamic geometry. In a mixed canonical-grand canonical ensemble with a fixed electric charge and varying magnetic charge these black holes exhibit a liquid-gas like first order phase transition culminating in a second order critical point similar to the van der Waals gas. We show that the thermodynamic scalar curvature R for these black holes follow our proposed geometrical characterization of the R-crossing Method for the first order liquid-gas like phase transition and exhibits a divergence at the second order critical point. The pattern of R crossing and divergence exactly corresponds to those of a van der Waals gas described by us in an earlier work. (orig.)

  17. Bulk Decay of (4 + n)-Dimensional Simply Rotating Black Holes: Tensor-Type Gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Nikolaos, E-mail: npappas@cc.uoi.gr [Division of Theoretical Physics, Department of Physics, University of Ioannina, Ioannina GR-45110 (Greece)

    2011-02-01

    We study the emission in the bulk of tensor-type gravitons by a simply rotating (4 + n)-dimensional black hole. The decoupling of the radial and angular part of the graviton field equation makes it possible to solve them analytically (in the limit of low-energy emitted particles and low-angular momentum of the black hole) and find the corresponding absorption probability. We also move to solve these equations numerically. The comparison between analytic and numerical results shows a very good agreement in low and intermediate energy regimes. Finally, the energy and angular momentum emission rates were calculated in order to explore their dependence on the number of additional spacelike dimensions of the spacetime background and the angular momentum of the black hole. Interesting conclusions about the significance of tensor-type gravitons as energy carriers in the context of Hawking radiation were reached.

  18. Bulk Decay of (4 + n)-Dimensional Simply Rotating Black Holes: Tensor-Type Gravitons

    International Nuclear Information System (INIS)

    Pappas, Nikolaos

    2011-01-01

    We study the emission in the bulk of tensor-type gravitons by a simply rotating (4 + n)-dimensional black hole. The decoupling of the radial and angular part of the graviton field equation makes it possible to solve them analytically (in the limit of low-energy emitted particles and low-angular momentum of the black hole) and find the corresponding absorption probability. We also move to solve these equations numerically. The comparison between analytic and numerical results shows a very good agreement in low and intermediate energy regimes. Finally, the energy and angular momentum emission rates were calculated in order to explore their dependence on the number of additional spacelike dimensions of the spacetime background and the angular momentum of the black hole. Interesting conclusions about the significance of tensor-type gravitons as energy carriers in the context of Hawking radiation were reached.

  19. Hawking fluxes and anomalies in rotating regular black holes with a time-delay

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2016-01-01

    Based on the anomaly cancellation method we compute the Hawking fluxes (the Hawking thermal flux and the total flux of energy-momentum tensor) from a four-dimensional rotating regular black hole with a time-delay. To this purpose, in the three metrics proposed in [1], we try to perform the dimensional reduction in which the anomaly cancellation method is feasible at the near-horizon region in a general scalar field theory. As a result we can demonstrate that the dimensional reduction is possible in two of those metrics. Hence we perform the anomaly cancellation method and compute the Hawking fluxes in those two metrics. Our Hawking fluxes involve three effects: (1) quantum gravity effect regularizing the core of the black holes, (2) rotation of the black hole, (3) time-delay. Further in this paper toward the metric in which the dimensional could not be performed, we argue that it would be some problematic metric, and mention its cause. The Hawking fluxes we compute in this study could be considered to correspond to more realistic Hawking fluxes. Further what Hawking fluxes can be obtained from the anomaly cancellation method would be interesting in terms of the relation between a consistency of quantum field theories and black hole thermodynamics. (paper)

  20. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  1. Strong deflection lensing by charged black holes in scalar-tensor gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2014-11-15

    We examine a class of charged black holes in scalar-tensor gravity as gravitational lenses. We find the deflection angle in the strong deflection limit, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to the Reissner-Norstroem spacetime and we analyze the observational aspects in the case of the Galactic supermassive black hole. (orig.)

  2. Topological black holes dressed with a conformally coupled scalar field and electric charge

    International Nuclear Information System (INIS)

    Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo

    2006-01-01

    Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame

  3. Thin charged shells and the violation of the third law of black hole mechanics

    International Nuclear Information System (INIS)

    Proszynski, M.

    1983-01-01

    The collapse of an infinitely thin spherical shell of charged matter, which surrounds a spherically symmetric black hole or has a flat interior, is analyzed in connection with the laws of black hole mechanics and the cosmic censorship hypothesis. An effective potential is introduced to describe the motion of the shell. The process, proposed by Farrugia and Hajicek as a counterexample to the third law, is discussed and generalized to the case of nondust shells. (author)

  4. Logarithmic corrections to entropy of magnetically charged AdS4 black holes

    Directory of Open Access Journals (Sweden)

    Imtak Jeon

    2017-11-01

    Full Text Available Logarithmic terms are quantum corrections to black hole entropy determined completely from classical data, thus providing a strong check for candidate theories of quantum gravity purely from physics in the infrared. We compute these terms in the entropy associated to the horizon of a magnetically charged extremal black hole in AdS×4S7 using the quantum entropy function and discuss the possibility of matching against recently derived microscopic expressions.

  5. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Feng, Zhong-Wen [China West Normal University, College of Physics and Space Science, Nanchong (China); Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)

    2018-01-15

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  6. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    International Nuclear Information System (INIS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  7. The Nernst theorem and statistical entropy in a (1+1)-dimensional charged black hole

    International Nuclear Information System (INIS)

    Ren, Z.; Junfang, Z.; Lichun, Z.

    2001-01-01

    It was derived that the bosonic and fermionic entropies in (1+1)-dimensional charged black hole directly by using the quantum statistical method. The result is the same as the integral expression obtained by solving the wave equation approximately. Then it is obtained the statistical entropy of the black hole by integration via the improved brick-wall method, membrane model. The derived entropy satisfies the thermodynamic relation. When the radiation temperature of the black hole tends to zero, so does the entropy. It obeys Nernst theorem. So it can be taken as Planck absolute entropy

  8. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  9. Image formation in weak gravitational lensing by tidal charged black holes

    International Nuclear Information System (INIS)

    Horvath, Zsolt; Gergely, Laszlo Arpad; Hobill, David

    2010-01-01

    We derive a generic weak lensing equation and apply it for the study of images produced by tidal charged brane black holes. We discuss the similarities and point out the differences with respect to the Schwarzschild black hole weak lensing, to both first- and second-order accuracy, when either the mass or the tidal charge dominates. In the case of mass-dominated weak lensing, we analyze the position of the images, the magnification factors and the flux ratio, as compared to the Schwarzschild lensing. The most striking modification appears in the flux ratio. When the tidal charge represents the dominating lensing effect, the number and orientation of the images with respect to the optical axis resembles the lensing properties of a Schwarzschild geometry, where the sign associated with the mass is opposite to that for the tidal charge. Finally it is found that the ratio of the brightness of the images as a function of image separation in the case of tidal charged black holes obeys a power-law relation significantly different from that of Schwarzschild black holes. This might provide a means for determining the underlying spacetime structure.

  10. Redundant and physical black hole parameters: Is there an independent physical dilaton charge?

    Directory of Open Access Journals (Sweden)

    K. Hajian

    2017-05-01

    Full Text Available Black holes as solutions to gravity theories, are generically identified by a set of parameters. Some of these parameters are associated with black hole physical conserved charges, like ADM charges. There can also be some “redundant parameters.” We propose necessary conditions for a parameter to be physical. The conditions are essentially integrability and non-triviality of the charge variations arising from “parametric variations,” variation of the solution with respect to the chosen parameters. In addition, we prove that variation of the redundant parameters which do not meet our criteria do not appear in the first law of thermodynamics. As an interesting application, we show that dilaton moduli are redundant parameters for black hole solutions to Einstein–Maxwell–(Axion–Dilaton theories, because variations in dilaton moduli would render entropy, mass, electric charges or angular momenta non-integrable. Our results are in contrast with modification of the first law due to scalar charges suggested in Gibbons–Kallosh–Kol paper [1] and its follow-ups. We also briefly discuss implications of our results for the attractor behavior of extremal black holes.

  11. Redundant and physical black hole parameters: Is there an independent physical dilaton charge?

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, K., E-mail: kamalhajian@ipm.ir; Sheikh-Jabbari, M.M., E-mail: jabbari@theory.ipm.ac.ir

    2017-05-10

    Black holes as solutions to gravity theories, are generically identified by a set of parameters. Some of these parameters are associated with black hole physical conserved charges, like ADM charges. There can also be some “redundant parameters.” We propose necessary conditions for a parameter to be physical. The conditions are essentially integrability and non-triviality of the charge variations arising from “parametric variations,” variation of the solution with respect to the chosen parameters. In addition, we prove that variation of the redundant parameters which do not meet our criteria do not appear in the first law of thermodynamics. As an interesting application, we show that dilaton moduli are redundant parameters for black hole solutions to Einstein–Maxwell–(Axion)–Dilaton theories, because variations in dilaton moduli would render entropy, mass, electric charges or angular momenta non-integrable. Our results are in contrast with modification of the first law due to scalar charges suggested in Gibbons–Kallosh–Kol paper and its follow-ups. We also briefly discuss implications of our results for the attractor behavior of extremal black holes.

  12. The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field

    Science.gov (United States)

    Hod, Shahar

    2016-04-01

    The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ>√{rm /r- - 1/ rm /r+ - 1 } provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.

  13. The motion of a charged black hole in an electromagnetic field

    International Nuclear Information System (INIS)

    Bicak, J.; Cambridge Univ.

    1980-01-01

    The motion of a charged black hole in a weak, asymptotically uniform electric field is analysed by using the Hamiltonian formalism for coupled electromagnetic and gravitational perturbations of the Reissner-Nordstrom space-time. The hole is shown to accelerate with respect to a distant inertial observer according to Newton's law. The relation of the approximate solution obtained to the exact solution of Ernst, representing the charged C-metric without nodal singularity, is then clarified. (author)

  14. Comparing D-branes and black holes with 0- and 6-brane charges

    International Nuclear Information System (INIS)

    Pierre, J.M.

    1997-01-01

    We consider configurations of D6-branes with a D0-brane charge given by recent work of Taylor and compute interaction potentials with various D-brane probes using a 1-loop open string calculation. These results are compared to a supergravity calculation using the solution given by Sheinblatt of an extremal black hole carrying 0-brane and 6-brane charges. copyright 1997 The American Physical Society

  15. Sound modes in holographic hydrodynamics for charged AdS black hole

    International Nuclear Information System (INIS)

    Matsuo, Yoshinori; Sin, Sang-Jin; Takeuchi, Shingo; Tsukioka, Takuya; Yoo, Chul-Moon

    2009-01-01

    In the previous paper we studied the transport coefficients of quark-gluon plasma in finite temperature and finite density in vector and tensor modes. In this paper, we extend it to the scalar modes. We work out the decoupling problem and hydrodynamic analysis for the sound mode in charged AdS black hole and calculate the sound velocity, the charge susceptibility and the electrical conductivity. We find that Einstein relation among the conductivity, the diffusion constant and the susceptibility holds exactly.

  16. Schwarzschild black hole encircled by a rotating thin disc: Properties of perturbative solution

    Science.gov (United States)

    Kotlařík, P.; Semerák, O.; Čížek, P.

    2018-04-01

    Will [Astrophys. J. 191, 521 (1974), 10.1086/152992] solved the perturbation of a Schwarzschild black hole due to a slowly rotating light concentric thin ring, using Green's functions expressed as infinite-sum expansions in multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák, Astrophys. J. Suppl. Ser. 232, 14 (2017), 10.3847/1538-4365/aa876b], we expressed the Green functions in closed form containing elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for numerical evaluation, but mainly for generalizing the problem to extended sources where the Green functions have to be integrated over the source. We exemplified the method by computing explicitly the first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic parameters of the system—mass and angular momentum of the black hole and of the disc—we now add further properties, namely those which reveal how the disc gravity influences geometry of the black-hole horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central singularity remains pointlike, and check the implications of natural physical requirements (energy conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating double-stream interpretations of the disc.

  17. Calibration of the charge exchange recombination spectroscopy diagnostic for core poloidal rotation velocity measurements on JET

    International Nuclear Information System (INIS)

    Crombe, K.; Andrew, Y.; Giroud, C.; Hawkes, N.C.; Murari, A.; Valisa, M.; Oost, G. van; Zastrow, K.-D.

    2004-01-01

    This article describes recent improvements in the measurement of C 6+ impurity ion poloidal rotation velocities in the core plasma of JET using charge exchange recombination spectroscopy. Two independent techniques are used to provide an accurate line calibration. The first method uses a Perkin-Elmer type 303-306 samarium hollow cathode discharge lamp, with a Sm I line at 528.291 nm close to the C VI line at 529.1 nm. The second method uses the Be II at 527.06 nm and C III at 530.47 nm in the plasma spectrum as two marker lines on either side of the C VI line. Since the viewing chords have both a toroidal and poloidal component, it is important to determine the contribution of the toroidal rotation velocity component separately. The toroidal rotation velocity in the plasma core is measured with an independent charge exchange recombination spectroscopy diagnostic, looking tangentially at the plasma core. The contribution of this velocity along the lines of sight of the poloidal rotation diagnostic has been determined experimentally in L-mode plasmas keeping the poloidal component constant (K. Crombe et al., Proc. 30th EPS Conference, St. Petersburg, Russia, 7-11 July 2003, p. 1.55). The results from these experiments are compared with calculations of the toroidal contribution that take into account the original design parameters of the diagnostic and magnetic geometry of individual shots

  18. Applications of gauge/gravity dualities with charged Anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Grass, Viviane Theresa

    2010-01-01

    In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of

  19. Applications of gauge/gravity dualities with charged Anti-de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Viviane Theresa

    2010-05-17

    In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of

  20. Magnetohydrodynamics near a black hole

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    A numerical computer study of hydromagnetic flow near a black hole is presented. First, the equations of motion are developed to a form suitable for numerical computations. Second, the results of calculations describing the magnetic torques exerted by a rotating black hole on a surrounding magnetic plasma and the electric charge that is induced on the surface of the black hole are presented. (auth)

  1. Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

    2017-09-01

    Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.

  2. Probing the universality of synchronised hair around rotating black holes with Q-clouds

    Science.gov (United States)

    Herdeiro, Carlos; Kunz, Jutta; Radu, Eugen; Subagyo, Bintoro

    2018-04-01

    Recently, various families of black holes (BHs) with synchronised hair have been constructed. These are rotating BHs surrounded, as fully non-linear solutions of the appropriate Einstein-matter model, by a non-trivial bosonic field in synchronised rotation with the BH horizon. Some families bifurcate globally from a bald BH (e.g. the Kerr BH), whereas others bifurcate only locally from a bald BH (e.g. the D = 5 Myers-Perry BH). It would be desirable to understand how generically synchronisation allows hairy BHs to bifurcate from bald ones. However, the construction and scanning of the domain of existence of the former families of BHs can be a difficult and time consuming (numerical) task. Here, we first provide a simple perturbative argument to understand the generality of the synchronisation condition. Then, we observe that the study of Q-clouds is a generic tool to establish the existence of BHs with synchronised hair bifurcating (globally or locally) from a given bald BH without having to solve the fully non-linear coupled system of Einstein-matter equations. As examples, we apply this tool to establish the existence of synchronised hair around D = 6 Myers-Perry BHs, D = 5 black rings and D = 4 Kerr-AdS BHs, where D is the spacetime dimension. The black rings case provides an example of BHs with synchronised hair beyond spherical horizon topology, further establishing the generality of the mechanism.

  3. On the universality of thermodynamics and η/s ratio for the charged Lovelock black branes

    Science.gov (United States)

    Cadoni, Mariano; Frassino, Antonia M.; Tuveri, Matteo

    2016-05-01

    We investigate general features of charged Lovelock black branes by giving a detailed description of geometrical, thermodynamic and holographic properties of charged Gauss-Bonnet (GB) black branes in five dimensions. We show that when expressed in terms of effective physical parameters, the thermodynamic behaviour of charged GB black branes is completely indistinguishable from that of charged Einstein black branes. Moreover, the extremal, near-horizon limit of the two classes of branes is exactly the same as they allow for the same AdS2 × R 3, near-horizon, exact solution. This implies that, although in the UV the associated dual QFTs are different, they flow in the IR to the same fixed point. The calculation of the shear viscosity to entropy ratio η/s confirms these results. Despite the GB dual plasma has in general a non-universal temperature-dependent η/s, it flows monotonically to the universal value 1 /4 π in the IR. For negative (positive) GB coupling constant, η/s is an increasing (decreasing) function of the temperature and the flow respects (violates) the KSS bound.

  4. Universal charge-mass relation: From black holes to atomic nuclei

    International Nuclear Information System (INIS)

    Hod, Shahar

    2010-01-01

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q≤μ 2/3 E c -1/3 , where q and μ are the charge and mass of the physical system respectively, and E c is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z≤Z * =α -1/3 A 2/3 , where α=e 2 /h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  5. Universal charge-mass relation: From black holes to atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.co [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)

    2010-10-04

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q{<=}{mu}{sup 2/3}E{sub c}{sup -1/3}, where q and {mu} are the charge and mass of the physical system respectively, and E{sub c} is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z{<=}Z{sup *}={alpha}{sup -1/3}A{sup 2/3}, where {alpha}=e{sup 2}/h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  6. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jun-Jin [Guizhou Normal University, Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guiyang (China)

    2017-10-15

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)

  7. Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Amarilla, Leonardo; Eiroa, Ernesto F.; Giribet, Gaston

    2010-01-01

    The Chern-Simons modification to general relativity in four dimensions consists of adding to the Einstein-Hilbert term a scalar field that couples to the first-class Pontryagin density. In this theory, which has attracted considerable attention recently, the Schwarzschild metric persists as an exact solution, and this is why this model resists several observational constraints. In contrast, the spinning black hole solution of the theory is not given by the Kerr metric but by a modification of it, so far only known for slow rotation and small coupling constant. In the present paper, we show that, in this approximation, the null geodesic equation can be integrated, and this allows us to investigate the shadow cast by a black hole. We discuss how, in addition to the angular momentum of the solution, the coupling to the Chern-Simons term deforms the shape of the shadow.

  8. Vacuum polarization of the electromagnetic field near a rotating black hole

    International Nuclear Information System (INIS)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-01-01

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor gives a result which coincides at the event horizon with the exact value of /sup ren/. .AE

  9. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    International Nuclear Information System (INIS)

    Peng, Jun-Jin

    2017-01-01

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)

  10. Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons

    Science.gov (United States)

    Peng, Jun-Jin

    2017-10-01

    We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well.

  11. Two-Phase Equilibrium Properties in Charged Topological Dilaton AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Hui-Hua Zhao

    2016-01-01

    Full Text Available We discuss phase transition of the charged topological dilaton AdS black holes by Maxwell equal area law. The two phases involved in the phase transition could coexist and we depict the coexistence region in P-v diagrams. The two-phase equilibrium curves in P-T diagrams are plotted, the Clapeyron equation for the black hole is derived, and the latent heat of isothermal phase transition is investigated. We also analyze the parameters of the black hole that could have an effect on the two-phase coexistence. The results show that the black holes may go through a small-large phase transition similar to that of a usual nongravity thermodynamic system.

  12. Abbott-Deser-Tekin Charge of Dilaton Black Holes with Squashed Horizons

    Institute of Scientific and Technical Information of China (English)

    Jun-Jin Peng; Wen-Chang Xiang; Shao-Hong Cai

    2016-01-01

    We consider the conserved charge of static black holes with squashed horizons in the Einstein-Maxwell-dilaton theory via both the Abbott-Deser-Tekin (ADT) method and its off-shell generalization.We first make use of the original ADT method to compute the mass of the dilaton squashed black holes in terms of three different reference spacetimes,which are the asymptotic geometry,the fiat background and the spacetime of the KaluzaKlein monopole with boundary matched to the original metric,respectively.Each mass satisfies the first law of black hole thermodynamics,although the mass computed on the basis of the boundary matching the KaluzaKlein monopole is different from that of the other two reference spacetimes.Then the mass of the black holes is evaluated through the off-shell generalized ADT method.

  13. Angular momentum in general relativity. II. Perturbations of a rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1977-06-30

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state.

  14. Quantum tunneling from rotating black holes with scalar hair in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I.; Gursel, H. [Eastern Mediterranean University, Department of Physics, Mersin-10 (Turkey)

    2016-06-15

    We study the Hawking radiation of scalar and Dirac particles (fermions) emitted from a rotating scalar hair black hole (RSHBH) within the context of three dimensional (3D) Einstein gravity using non-minimally coupled scalar field theory. Amalgamating the quantum tunneling approach with the Wentzel-Kramers-Brillouin approximation, we obtain the tunneling rates of the outgoing particles across the event horizon. Inserting the resultant tunneling rates into the Boltzmann formula, we then obtain the Hawking temperature (T{sub H}) of the 3D RSHBH. (orig.)

  15. Van der Waals-like behaviour of charged black holes and hysteresis in the dual QFTs

    Directory of Open Access Journals (Sweden)

    Mariano Cadoni

    2017-05-01

    Full Text Available Using the rules of the AdS/CFT correspondence, we compute the spherical analogue of the shear viscosity, defined in terms of the retarded Green function for the stress-energy tensor for QFTs dual to five-dimensional charged black holes of general relativity with a negative cosmological constant. We show that the ratio between this quantity and the entropy density, η˜/s, exhibits a temperature-dependent hysteresis. We argue that this hysteretic behaviour can be explained by the Van der Waals-like character of charged black holes, considered as thermodynamical systems. Under the critical charge, hysteresis emerges owing to the presence of two stable states (small and large black holes connected by a meta-stable region (intermediate black holes. A potential barrier prevents the equilibrium path between the two stable states; the system evolution must occur through the meta-stable region, and a path-dependence of η˜/s is generated.

  16. Critical phenomena and chemical potential of a charged AdS black hole

    Science.gov (United States)

    Wei, Shao-Wen; Liang, Bin; Liu, Yu-Xiao

    2017-12-01

    Inspired by the interpretation of the cosmological constant from the boundary gauge theory, we here treat it as the number of colors N and its conjugate quantity as the associated chemical potential μ in the black hole side. Then the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole are studied. It is found that there exists a small-large black hole phase transition of van der Waals type. The critical phenomena are investigated in the N2-μ chart. The result implies that the phase transition can occur for large number of colors N , while is forbidden for small number. This to some extent implies that the interaction of the system increases with the number. In particular, in the reduced parameter space, all the thermodynamic quantities can be rescaled with the black hole charge such that these reduced quantities are charge-independent. Then we obtain the coexistence curve and the phase diagram. The latent heat is also numerically calculated. Moreover, the heat capacity and the thermodynamic scalar are studied. The result indicates that the information of the first-order black hole phase transition is encoded in the heat capacity and scalar. However, the phase transition point cannot be directly calculated with them. Nevertheless, the critical point linked to a second-order phase transition can be determined by either the heat capacity or the scalar. In addition, we calculate the critical exponents of the heat capacity and the scalar for the saturated small and large black holes near the critical point.

  17. Charged black holes in a generalized scalar–tensor gravity model

    Directory of Open Access Journals (Sweden)

    Yves Brihaye

    2017-09-01

    Full Text Available We study 4-dimensional charged and static black holes in a generalized scalar–tensor gravity model, in which a shift symmetry for the scalar field exists. For vanishing scalar field the solution corresponds to the Reissner–Nordström (RN solution, while solutions of the full scalar-gravity model have to be constructed numerically. We demonstrate that these black holes support Galilean scalar hair up to a maximal value of the scalar–tensor coupling that depends on the value of the charge and can be up to roughly twice as large as that for uncharged solutions. The Hawking temperature TH of the hairy black holes at maximal scalar–tensor coupling decreases continuously with the increase of the charge and reaches TH=0 for the highest possible charge that these solutions can carry. However, in this limit, the scalar–tensor coupling needs to vanish. The limiting solution hence corresponds to the extremal RN solution, which does not support regular Galilean scalar hair due to its AdS2×S2 near-horizon geometry.

  18. Cosmic censorship in overcharging a Reissner-Nordstroem black hole via charged particle absorption

    International Nuclear Information System (INIS)

    Isoyama, Soichiro; Sago, Norichika; Tanaka, Takahiro

    2011-01-01

    There is a claim that a static-charged black hole (Reissner-Nordstroem black hole) can be overcharged by absorbing a charged test particle. If it is true, it might give a counter example to the weak cosmic censorship conjecture, which states that spacetime singularities are never observed by a distant observer. However, so far the proposed process has only been analyzed within a test particle approximation. Here, we claim that the backreaction effects of a charged particle cannot be neglected when judging whether the suggested process is really a counter example to the cosmic censorship conjecture. Furthermore, we argue that all the backreaction effects can be properly taken into account when we consider the trajectory of a particle on the border between the plunge and bounce orbits. In such marginal cases, we find that the Reissner-Nordstroem black hole can never be overcharged via the absorption of a charged particle. Since all the plunge orbits are expected to have a higher energy than the marginal orbit, we conclude that there is no supporting evidence that indicates the violation of the cosmic censorship in the proposed overcharging process.

  19. Quasinormal modes of four-dimensional topological nonlinear charged Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Cato lica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2016-02-15

    We study scalar perturbations of four- dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum, and the mass of the scalar field in the modes. It is found that the modes are overdamped, depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In contrast, for plane transverse sections the modes are always overdamped. (orig.)

  20. Critical phenomena of static charged AdS black holes in conformal gravity

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2014-09-01

    Full Text Available The extended thermodynamics of static charged AdS black holes in conformal gravity is analyzed. The P–V criticality of these black holes has some unusual features. There exists a single critical point with critical temperature Tc and critical pressure Pc. At fixed T>Tc (or at fixed P>Pc, there are two zeroth order phase transition points but no first order phase transition points. The systems favors large pressure states at constant T, or high temperature states at constant P.

  1. On conserved charges and thermodynamics of the AdS{sub 4} dyonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas, Marcela [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Fuentealba, Oscar; Matulich, Javier [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-05-02

    We consider four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field. This theory corresponds to the bosonic sector of a Kaluza-Klein reduction of eleven-dimensional supergravity which induces a specific self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution that was proposed recently. The charges coming from symmetries of the action are computed using the Regge-Teitelboim Hamiltonian approach. They correspond to the mass, which acquires contributions from the scalar field, and the electric charge. We introduce integrability conditions because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that relate the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical ensemble, is obtained by demanding the action to have an extremum. Its value is given by a radial boundary term plus an additional polar angle boundary term due to the presence of a magnetic monopole. Remarkably, the magnetic charge can be identified from the variation of the additional polar angle boundary term, confirming that the first law of black hole thermodynamics is a consequence of having a well-defined and finite Hamiltonian action principle, even if the charge does not come from a symmetry of the action. The temperature and electrostatic potential are determined by demanding regularity of the black hole solution, whereas the value of the magnetic potential is determined by the variation of the additional polar angle boundary term. Consequently, the first law of black hole thermodynamics is identically satisfied by construction.

  2. Quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter black hole

    International Nuclear Information System (INIS)

    Uchikata, Nami; Yoshida, Shijun

    2011-01-01

    We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r + + /L→0, where r + and L stand for the black hole event horizon radius and the AdS scale, respectively. We then show that the small RN-AdS black hole is unstable if its quasinormal modes satisfy the superradiance condition and that the instability condition of the RN-AdS black hole in the limit of r + /L→0 is given by Q>(3/eL)Q c , where Q, Q c , and e are the charge of the black hole, the critical (maximum) charge of the black hole, and the charge of the scalar field, respectively. In the numerical approach, we calculate the quasinormal modes for the small RN-AdS black holes with r + + =0.2L, 0.1L, and 0.01L become unstable against scalar perturbations with eL=4 when the charge of the black hole satisfies Q > or approx. 0.8Q c , 0.78Q c , and 0.76Q c , respectively.

  3. Circular orbits and acceleration of particles by near-extremal dirty rotating black holes: general approach

    International Nuclear Information System (INIS)

    Zaslavskii, Oleg B

    2012-01-01

    We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, E c.m. ∼ κ −n where for the ISCO, n= 1/3 in case (i) or n= 1/2 in case (ii). For the MBO and PhCO, n= 1/2 in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon. (paper)

  4. Circular orbits and acceleration of particles by near-extremal dirty rotating black holes: general approach

    Science.gov (United States)

    Zaslavskii, Oleg B.

    2012-10-01

    We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, Ec.m. ˜ κ-n where for the ISCO, n=\\frac{1}{3} in case (i) or n=\\frac{1}{2} in case (ii). For the MBO and PhCO, n=\\frac{1}{2} in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon.

  5. Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole

    Science.gov (United States)

    Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric

    2017-07-01

    We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.

  6. Hiding of the conserved (anti)baryonic charge into black holes

    International Nuclear Information System (INIS)

    Dolgov, A.D.

    1980-01-01

    The problem of the baryon asymmetry of the Universe is considered. It is suggested that the baryon asymmetry of the Universe is generated by black hole evaporation in a specific mechanism proposed by Zeldovich. Net amount of baryons evaporated by a black hole is shown can be unequal to that of antibaryons, even if the baryon charge is microscopically conserved. It is concluded that the discussed mechanism can provide the observed baryon assymetry of the Universe if primary black holes with the mass M=10sup(4+-2)Msub(P), where Msub(P)=10sup(19) GeV is the Planck mass, give noticeable contribution into the total energy density of the Universe

  7. Slowly rotating charged fluid balls and their matching to an exterior domain

    International Nuclear Information System (INIS)

    Fodor, Gyula; Perjes, Zoltan; Bradley, Michael

    2002-01-01

    The slow-rotation approximation of Hartle is developed to a setting where a charged rotating fluid is present. The linearized Einstein-Maxwell equations are solved on the background of the Reissner-Nordstroem space-time in the exterior electrovacuum region. The theory is put to action for the charged generalization of the Wahlquist solution found by Garcia. The Garcia solution is transformed to coordinates suitable for the matching and expanded in powers of the angular velocity. The two domains are then matched along the zero pressure surface using the Darmois-Israel procedure. We prove a theorem to the effect that the exterior region is asymptotically flat if and only if the parameter C 2 , characterizing the magnitude of an external magnetic field, vanishes. We obtain the form of the constant C 2 for the Garcia solution. We conjecture that the Garcia metric cannot be matched to an asymptotically flat exterior electrovacuum region even to first order in the angular velocity. This conjecture is supported by a high precision numerical analysis

  8. A Study of Charge-Exchange Neutrals from a Rotating Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1980-01-01

    Measurements of charge-exchange neutrals leaving a rotating plasma (a puffatron device) are reported. Neutrals are observed only during the breakdown phase (2-3 mu s) indicating that the created plasma is fully ionized. Several energy spectra of the neutrals for different plasma parameters are ob....... Neutral particle measurements at different distances from the puffatron midplane show ionization velocities parallel with the magnetic field of about 2*104 ms-1 and plasma expansion velocities of about 5-6*104 ms-1 corresponding to an electron temperature of about 25 eV.......Measurements of charge-exchange neutrals leaving a rotating plasma (a puffatron device) are reported. Neutrals are observed only during the breakdown phase (2-3 mu s) indicating that the created plasma is fully ionized. Several energy spectra of the neutrals for different plasma parameters...... are obtained. These spectra are grossly explained using a single-particle orbit model of the plasma ions. Assuming a Maxwellian distribution for the spread in the ion Larmor energy for the central part of the measured energy spectra, it is possible to determine the ion energy during the breakdown phase...

  9. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    Science.gov (United States)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  10. Stability analysis of thin-shell wormholes from charged black string

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)

    2013-04-01

    In this paper, we construct thin-shell wormholes from charged black string through cut and paste procedure and investigate its stability. We assume modified generalized Chaplygin gas as a dark energy fluid (exotic matter) present in the thin layer of matter-shell. The stability of these constructed thin-shell wormholes is investigated in the scenario of linear perturbations. We conclude that static stable as well as unstable configurations are possible for cylindrical thin-shell wormholes.

  11. Scale-dependent three-dimensional charged black holes in linear and non-linear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Angel; Koch, Benjamin [Pontificia Universidad Catolica de Chile, Instituto de Fisica, Santiago (Chile); Contreras, Ernesto; Bargueno, Pedro; Hernandez-Arboleda, Alejandro [Universidad de los Andes, Departamento de Fisica, Bogota, Distrito Capital (Colombia); Panotopoulos, Grigorios [Universidade de Lisboa, CENTRA, Instituto Superior Tecnico, Lisboa (Portugal)

    2017-07-15

    In the present work we study the scale dependence at the level of the effective action of charged black holes in Einstein-Maxwell as well as in Einstein-power-Maxwell theories in (2 + 1)-dimensional spacetimes without a cosmological constant. We allow for scale dependence of the gravitational and electromagnetic couplings, and we solve the corresponding generalized field equations imposing the null energy condition. Certain properties, such as horizon structure and thermodynamics, are discussed in detail. (orig.)

  12. Back reaction, the Hawking emission spectrum from the charged black hole

    International Nuclear Information System (INIS)

    Xu Pingchuan; Wang Zhihong; Han Yan

    2011-01-01

    The Hawking emission spectrum of the Schwarzschild-like black hole has been successfully described in the tunneling picture. In this paper, we develop the idea for the case of the charged black hole with back reaction. First, the most general, static spherically symmetric charged black hole, in the presence of back reaction, has been provided by solving the Einstein equations with a non-zero vacuum expectation value of the energy-momentum tensor (T μν (φ, g μν )). At the one-loop corrections, we also produce the modified expressions for the Hawking temperature and Bekenstein-Hawking entropy. It is found that the leading correction to the semiclassical entropy is logarithmic and next to the leading order is inverse of the horizon area, just as the expected well-known results. In particular, as our main focus in this paper, we show that the modified black hole still radiates with a perfect blackbody spectrum, only the temperature undergoing quantum corrections. Also, the Hawking fluxes of the electric current and energy-momentum tensor to include the effect of back reaction are obtained. The results are interestingly found sharing the same form as that from the point of anomaly.

  13. Effect Of Superfluidity And Differential Rotation Of Quark Matter On Magetic Field Evolution in Neutron Star And Black Hole

    Science.gov (United States)

    Aurongzeb, Deeder

    2010-11-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin

  14. Conserved charges and black holes in the Einstein-Maxwell theory on AdS{sub 3} reconsidered

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Riquelme, Miguel [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Tempo, David [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Université Libre de Bruxelles and International Solvay Institutes,ULB Campus Plaine C.P.231, B-1050 Bruxelles (Belgium); Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2015-10-26

    Stationary circularly symmetric solutions of General Relativity with negative cosmological constant coupled to the Maxwell field are analyzed in three spacetime dimensions. Taking into account that the fall-off of the fields is slower than the standard one for a localized distribution of matter, it is shown that, by virtue of a suitable choice of the electromagnetic Lagrange multiplier, the action attains a bona fide extremum provided the asymptotic form of the electromagnetic field fulfills a nontrivial integrability condition. As a consequence, the mass and the angular momentum become automatically finite, without the need of any regularization procedure, and they generically acquire contributions from the electromagnetic field. Therefore, unlike the higher-dimensional case, it is found that the precise value of the mass and the angular momentum explicitly depends on the choice of boundary conditions. It can also be seen that requiring compatibility of the boundary conditions with the Lorentz and scaling symmetries of the class of stationary solutions, singles out a very special set of “holographic boundary conditions” that is described by a single parameter. Remarkably, in stark contrast with the somewhat pathological behaviour found in the standard case, for the holographic boundary conditions (i) the energy spectrum of an electrically charged (rotating) black hole is nonnegative, and (ii) for a fixed value of the mass, the electric charge is bounded from above.

  15. Spherical domain wall formed by field dynamics of Hawking radiation and spontaneous charging-up of black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2004-01-01

    We investigate the Hawking radiation in the gauge Higgs-Yukawa theory. The ballistic model is proposed as an effective description of the system. We find that a spherical domain wall around the black hole is formed by field dynamics rather than thermal phase transition. The formation is a general property of the black hole whose Hawking temperature is equal to or greater than the energy scale of the theory. The formation of the electroweak wall and that of the GUT wall are shown. We also find a phenomenon of the spontaneous charging-up of the black hole by the wall. The Hawking radiation drives a mechanism of the charge transportation into the black hole when C- and CP-violation are assumed. The mechanism can strongly transport the hyper-charge into a black hole of the electroweak scale

  16. Quasinormal modes and thermodynamics of linearly charged BTZ black holes in massive gravity in (anti) de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Prasia, P.; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2017-01-15

    In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole. (orig.)

  17. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer; Renaud, Nicolas; Stoumpos, Constantinos C.; Schatz, George C.; Hupp, Joseph T.; Farha, Omar K.; Savenije, Tom J.; Kanatzidis, Mercouri G.; Grozema, Ferdinand C.

    2016-08-04

    Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH3NH3PbI3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition. For CH3NH3PbI3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH3NH3+) inside the perovskite crystal structure.

  18. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  19. Yield Responses of Black Spruce to Forest Vegetation Management Treatments: Initial Responses and Rotational Projections

    Directory of Open Access Journals (Sweden)

    Peter F. Newton

    2012-01-01

    Full Text Available The objectives of this study were to (1 quantitatively summarize the early yield responses of black spruce (Picea mariana (Mill. B.S.P. to forest vegetation management (FVM treatments through a meta-analytical review of the scientific literature, and (2 given (1, estimate the rotational consequences of these responses through model simulation. Based on a fixed-effects meta-analytic approach using 44 treated-control yield pairs derived from 12 experiments situated throughout the Great Lakes—St. Lawrence and Canadian Boreal Forest Regions, the resultant mean effect size (response ratio and associated 95% confidence interval for basal diameter, total height, stem volume, and survival responses, were respectively: 54.7% (95% confidence limits (lower/upper: 34.8/77.6, 27.3% (15.7/40.0, 198.7% (70.3/423.5, and 2.9% (−5.5/11.8. The results also indicated that early and repeated treatments will yield the largest gains in terms of mean tree size and survival. Rotational simulations indicated that FVM treatments resulted in gains in stand-level operability (e.g., reductions of 9 and 5 yr for plantations established on poor-medium and good-excellent site qualities, resp.. The challenge of maintaining coniferous forest cover on recently disturbed sites, attaining statutory-defined free-to-grow status, and ensuring long-term productivity, suggest that FVM will continue to be an essential silvicultural treatment option when managing black spruce plantations.

  20. Emission of massive scalar fields by a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Kanti, P.; Pappas, N.

    2010-01-01

    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.

  1. Uniqueness of exterior axisymmetric solution for a rotating charged body in the relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Karabut, P.V.; Chugreev, Yu.V.

    1989-01-01

    The relativistic theory of gravitation (RTG), which is constructed on the basis of Minkowski spacetime, the geometrization principle, and the notion of the gravitational field var-phi mn as a physical field in the spirit of Faraday and Maxwell, explains all known gravitational experiments and gives a new prediction for the evolution of the universe, collapse, etc. The RTG determines the structure of the gravitational field as a field possessing spins 2 and 0 and all conservation laws for energy, momentum, and angular momentum. An exact solution of the complete simultaneous system of equations of the relativistic theory of gravitation and Maxwell's equations is found in the axisymmetric case for an electrically charged rotating body. The uniqueness of this solution is proved

  2. Rotating elastic string loops in flat and black hole spacetimes: stability, cosmic censorship and the Penrose process

    Science.gov (United States)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2018-04-01

    We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).

  3. Stationary axially symmetric perturbations of a rotating black hole. [Space-time perturbation, Newman-Penrose formalism

    Energy Technology Data Exchange (ETDEWEB)

    Demianski, M [California Inst. of Tech., Pasadena (USA)

    1976-07-01

    A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation it is shown that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. It is concluded that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a tends to M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.

  4. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    International Nuclear Information System (INIS)

    Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L

    2016-01-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)

  5. Equations of motion in general relativity of a small charged black hole

    International Nuclear Information System (INIS)

    Futamase, T.; Hogan, P. A.; Itoh, Y.

    2008-01-01

    We present the details of a model in general relativity of a small charged black hole moving in an external gravitational and electromagnetic field. The importance of our model lies in the fact that we can derive the equations of motion of the black hole from the Einstein-Maxwell vacuum field equations without encountering infinities. The key assumptions which we base our results upon are that (a) the black hole is isolated and (b) near the black hole the wave fronts of the radiation generated by its motion are smoothly deformed spheres. The equations of motion which emerge fit the pattern of the original DeWitt and Brehme equations of motion (after they 'renormalize'). Our calculations are carried out in a coordinate system in which the null hypersurface histories of the wave fronts can be specified in a simple way, with the result that we obtain a new explicit form, particular to our model, for the well-known ''tail term'' in the equations of motion.

  6. Vacuum polarization in the spacetime of a charged nonlinear black hole

    International Nuclear Information System (INIS)

    Berej, Waldemar; Matyjasek, Jerzy

    2002-01-01

    Building on general formulas obtained from the approximate renormalized effective action, the approximate stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling in the spacetime of a charged black hole that is the solution of the coupled equations of nonlinear electrodynamics and general relativity is constructed and analyzed. It is shown that, in a few limiting cases, the analytical expressions relating the obtained tensor to the general renormalized stress-energy tensor evaluated in the geometry of the Reissner-Nordstroem black hole can be derived. A detailed numerical analysis with special emphasis put on minimal coupling is presented, and the results are compared with those obtained earlier for a conformally coupled field. Some novel features of the renormalized stress-energy tensor are discussed

  7. Thermodynamic instability of charged dilaton black holes in AdS spaces

    International Nuclear Information System (INIS)

    Sheykhi, A.; Dehghani, M. H.; Hendi, S. H.

    2010-01-01

    We study thermodynamic instability of a class of (n+1)-dimensional charged dilatonic spherically symmetric black holes in the background of the anti-de Sitter universe. We calculate the quasilocal mass of the anti-de Sitter dilaton black hole through the use of the subtraction method of Brown and York. We find a Smarr-type formula and perform a stability analysis in the canonical ensemble and disclose the effect of the dilaton field on the thermal stability of the solutions. Our study shows that the solutions are thermally stable for small α, while for large α the system has an unstable phase, where α is a coupling constant between the dilaton and matter field.

  8. Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Panah, B.E.; Momennia, M. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2016-03-15

    Motivated by the violation of Lorentz invariance in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain the related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered by an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally, we investigate the thermal stability conditions for these black hole solutions in the context of canonical ensemble. We show that the thermodynamical structure of the solutions depends on the choices of nonlinearity parameters, charge, and energy functions. (orig.)

  9. Instability of dust ion-acoustic waves in a dusty plasma containing elongated and rotating charged dust grains

    International Nuclear Information System (INIS)

    Shukla, P.K.; Tskhakaya, D.D.

    2001-01-01

    The dispersion properties of the dust ion-acoustic waves (DIAWs) in an unmagnetized dusty plasma is examined when the plasma constituents are electrons, ions, and charged dust grains which are elongated and rotating. Since the dipole moment of elongated and rotating dust grains is nonzero, significant modifications of the DIAW spectrum emerge. It is found that the DIAWs are subjected to an instability when the DIAW frequency approximately equals the angular rotation frequency of the elongated dust grains. The relevance of our investigation to enhanced fluctuations in space and laboratory dusty plasmas is pointed out

  10. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    Science.gov (United States)

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  11. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    Science.gov (United States)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it

  12. Charged de Sitter-like black holes: quintessence-dependent enthalpy and new extreme solutions

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Faculty of Engineering, Ankara (Turkey)

    2015-01-01

    We consider Reissner-Nordstroem black holes surrounded by quintessence where both a non-extremal event horizon and a cosmological horizon exist besides an inner horizon (-1 ≤ ω < -1/3). We determine new extreme black hole solutions that generalize the Nariai horizon to asymptotically de Sitter-like solutions for any order relation between the squares of the charge q{sup 2} and the mass parameter M{sup 2} provided q{sup 2} remains smaller than some limit, which is larger than M{sup 2}. In the limit case q{sup 2} = 9ω{sup 2}M{sup 2}/(9ω{sup 2}-1), we derive the general expression of the extreme cosmo-blackhole, where the three horizons merge, and we discuss some of its properties.We also show that the endpoint of the evaporation process is independent of any order relation between q{sup 2} and M{sup 2}. The Teitelboim energy and the Padmanabhan energy are related by a nonlinear expression and are shown to correspond to different ensembles. We also determine the enthalpy H of the event horizon, as well as the effective thermodynamic volume which is the conjugate variable of the negative quintessential pressure, and show that in general the mass parameter and the Teitelboim energy are different from the enthalpy and internal energy; only in the cosmological case, that is, for Reissner-Nordstroem-de Sitter black hole we have H = M. Generalized Smarr formulas are also derived. It is concluded that the internal energy has a universal expression for all static charged black holes, with possibly a variable mass parameter, but it is not a suitable thermodynamic potential for static-black-hole thermodynamics if M is constant. It is also shown that the reverse isoperimetric inequality holds. We generalize the results to the case of the Reissner-Nordstroem-de Sitter black hole surrounded by quintessence with two physical constants yielding two thermodynamic volumes. (orig.)

  13. The electrically charged BTZ black hole with self (anti-self) dual Maxwell field

    International Nuclear Information System (INIS)

    Kamata, M.; Koikawa, T.

    1995-04-01

    The Einstein-Maxwell equations with a negative cosmological constant Λ in 2 + 1 spacetime dimensions discussed by Banados, Teitelboim and Zanelli are solved by assuming a self (anti-self) dual equation E r-circumflex = ± B -circumflex , which is imposed on the orthonormal basis components of the electric field E r-circumflex and the magnetic field B -circumflex . This solution describes an electrically charged extra black hole with mass M=8πGQ 2 e , angular momentum J = ±8πGQ 2 e / modul Λ 1/2 and electric charge Q e . Although the coordinate components of the electric field E r and the magnetic field B have singularities on the horizon at r (4πGQ 2 e / modul Λ) 1/2 , the spacetime has the same value of constant negative curvature R = 6Λ as that of Banados et al. (author). 5 refs

  14. Off-Shell ADT charges of five-dimensional Myers-Perry black holes%五维Myers-Perry黑洞的离壳ADT荷

    Institute of Scientific and Technical Information of China (English)

    安旭强; 景艺德; 彭俊金

    2018-01-01

    In this work,we have calculated the conserved charges,such as mass and angular momentum,of five-dimensional rotating Myers-Perry black holes via the off-shell generalized Abbott-DeserTekin (ADT) method.These conserved charges strictly satisfy the differential and integral forms of the first law for black holes.Moreover,we compare the off-shell ADT conserved charges with those via both the formalisms of the well-known ADM and Komar integral,finding that all the results are correspondingly identified with each other.%基于离壳推广的Abbott-Deser-Tekin (ADT)定义,给出了五维时空中双转动的Myers-Perry黑洞的离壳ADT质量与角动量等守恒荷.在此基础上,验证了这些守恒荷严格满足黑洞热力学第一定律的微分与积分形式.此外,通过离壳推广的ADT方法与ADM定义以及Komar公式的比较,我们发现,对于五维Myers-Perry黑洞来说,此3种方法给出的守恒荷完全一致.

  15. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

    Science.gov (United States)

    Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

    2018-05-01

    We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(

  16. Spectrum of relativistic radiation from electric charges and dipoles as they fall freely into a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Novikov, I. D.; Lipatova, L. N. [Russian Academy of Sciences, Astrospace Center, Lebedev Physical Institute (Russian Federation)

    2013-06-15

    The motion of electric charges and dipoles falling radially and freely into a Schwarzschild black hole is considered. The inverse effect of the electromagnetic fields on the black hole is neglected. Since the dipole is assumed to be a point particle, the deformation due to the action of tidal forces on it is neglected. According to the theorem stating that 'black holes have no hair', the multipole electromagnetic fields should be completely radiated as a multipole falls into a black hole. The electromagnetic radiation power spectrum for these multipoles (a monopole and a dipole) has been found. Differences have been found in the spectra for different orientations of the falling dipole. A general method has been developed to find the radiated multipole electromagnetic fields for multipoles (including higher-order multipoles-quadrupoles, etc.) falling freely into a black hole. The calculated electromagnetic spectra can be compared with observational data from stellar-mass and smaller black holes.

  17. Analytic treatment of the excited instability spectra of the magnetically charged SU(2) Reissner-Nordström black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)

    2017-03-14

    The magnetically charged SU(2) Reissner-Nordström black-hole solutions of the coupled nonlinear Einstein-Yang-Mills field equations are known to be characterized by infinite spectra of unstable (imaginary) resonances {ω_n(r_+,r_−)}{sub n=0}{sup n=∞} (here r{sub ±} are the black-hole horizon radii). Based on direct numerical computations of the black-hole instability spectra, it has recently been observed that the excited instability eigenvalues of the magnetically charged black holes exhibit a simple universal behavior. In particular, it was shown that the numerically computed instability eigenvalues of the magnetically charged black holes are characterized by the small frequency universal relation ω{sub n}(r{sub +}−r{sub −})=λ{sub n}, where {λ_n} are dimensionless constants which are independent of the black-hole parameters. In the present paper we study analytically the instability spectra of the magnetically charged SU(2) Reissner-Nordström black holes. In particular, we provide a rigorous analytical proof for the numerically-suggested universal behavior ω{sub n}(r{sub +}−r{sub −})=λ{sub n} in the small frequency ω{sub n}r{sub +}≪(r{sub +}−r{sub −})/r{sub +} regime. Interestingly, it is shown that the excited black-hole resonances are characterized by the simple universal relation ω{sub n+1}/ω{sub n}=e{sup −2π/√3}. Finally, we confirm our analytical results for the black-hole instability spectra with numerical computations.

  18. Static BPS black holes in AdS{sub 4} with general dyonic charges

    Energy Technology Data Exchange (ETDEWEB)

    Halmagyi, Nick [Sorbonne Universités, UPMC Paris 06, UMR 7589, LPTHE,75005, Paris (France); CNRS, UMR 7589, LPTHE,75005, Paris (France)

    2015-03-06

    We complete the study of static BPS, asymptotically AdS{sub 4} black holes within N=2 FI-gauged supergravity and where the scalar manifold is a symmetric very special Kähler manifold. We find the analytic form for the general solution to the BPS equations, the horizon appears as a double root of a particular quartic polynomial whereas in previous work this quartic polynomial further factored into a pair of double roots. A new and distinguishing feature of our solutions is that the phase of the supersymmetry parameter varies throughout the black hole. The general solution has 2n{sub v} independent parameters; there are two algebraic constraints on 2n{sub v}+2 charges, matching our previous analysis on BPS solutions of the form AdS{sub 2}×Σ{sub g}. As a consequence we have proved that every BPS geometry of this form can arise as the horizon geometry of a BPS AdS{sub 4} black hole. When specialized to the STU-model our solutions uplift to M-theory and describe a stack of M2-branes wrapped on a Riemman surface in a Calabi-Yau fivefold with internal angular momentum.

  19. Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity

    Science.gov (United States)

    Deng, Gao-Ming; Huang, Yong-Chang

    2017-12-01

    The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.

  20. Charged anti-de Sitter BTZ black holes in Maxwell-f(T) gravity

    Science.gov (United States)

    Nashed, G. G. L.; Capozziello, S.

    2018-05-01

    Inspired by the Bañados, Teitelboim and Zanelli (BTZ) formalism, we discuss the Maxwell-f(T) gravity in (2 + 1) dimensions. The main task is to derive exact solutions for a special form of f(T) = T + 𝜖T2, with T being the torsion scalar of Weitzenböck geometry. To this end, a triad field is applied to the equations of motion of charged f(T) and sets of circularly symmetric noncharged and charged solutions have been derived. We show that, in the charged case, the monopole-like and the ln terms are linked by a correlative constant despite the known results in teleparallel geometry and its extensions.39 Furthermore, it is possible to show that the event horizon is not identical with the Cauchy horizon due to such a constant. The singularities and the horizons of these black holes are examined: they are new and have no analogue in the literature due to the fact that their curvature singularities are soft. We calculate the energy content of these solutions by using the general vector form of the energy-momentum within the framework of f(T) gravity. Finally, some thermodynamical quantities, like entropy and Hawking temperature, are derived.

  1. Observational test for the existence of a rotating black hole in Cyg X-1. [Gravitatinal effects, polarization properties

    Energy Technology Data Exchange (ETDEWEB)

    Stark, R F; Connors, P A [Oxford Univ. (UK). Dept. of Astrophysics

    1977-03-31

    It is stated that the degree and plane of linear polarisation of the radiation from Cyg X-1 are being investigated by X-ray satellite experiments. This radiation can be explained as coming from an accretion disk around a black hole, the polarisation of the X-rays being due to electron scattering in the hotter inner regions of the disk. Existing predictions of the polarisation properties, as a function of energy, have been based on a Newtonian approximation, thus neglecting gravitational effects on the rays as they propagate from the surface of the disk to an observer at infinity. Preliminary results are here given of a full general relativistic calculation that shows that gravitational effects completely alter the polarisation properties, and provide a sensitive test of the existence of a black hole. It is found that for a rapidly rotating black hole the general relativistic effects on the polarisation properties are an order of magnitude greater than for a slowly rotating black hole, or for a neutron star. The degree of linear polarisation of the rays as they leave the disk will also differ from the Newtonian value, and gravitational bending of the light will alter the angle at which a ray leaves the surface of the disk. The large general relativistic variation of the polarisation plane with energy is illustrated graphically. The very large general relativistic rotations in the plane of polarisation provide an opportunity for testing the black hole hypothesis for Cyg X-1. In order to observe these effects X-ray satellite experiments will be required with more sensitive polarimetry across a wider energy range than is available at present.

  2. Black-hole creation in quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)

    1997-11-01

    It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.

  3. Numerical evidence for universality in the excited instability spectrum of magnetically charged Reissner-Nordstroem black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-05-15

    It is well known that the SU(2) Reissner-Nordstroem black-hole solutions of the Einstein-Yang-Mills theory are characterized by an infinite set of unstable (imaginary) eigenvalues {ω_n(T_B_H)}{sub n=0}{sup n=∞} (here T{sub BH} is the black-hole temperature). In this paper we analyze the excited instability spectrum of these magnetically charged black holes. The numerical results suggest the existence of a universal behavior for these black-hole excited eigenvalues. In particular, we show that unstable eigenvalues in the regime ω{sub n} << T{sub BH} are characterized, to a very good degree of accuracy, by the simple universal relation ω{sub n}(r{sub +} - r{sub -}) = constant, where r{sub ±} are the horizon radii of the black hole. (orig.)

  4. Sodium dodecyl benzene sulphonate mediated tautomerism of Eriochrome Black-T: Effect of charge transfer interaction

    Science.gov (United States)

    Ghosh, Sumit

    2010-11-01

    Interaction between anionic surfactant, sodium dodecyl benzene sulphonate, (SDBS) and an anionic dye Eriochrome Black-T, (EBT) has been investigated by visible spectroscopy, conductometry, dynamic light scattering and zeta potential measurements. Spectral changes of EBT observed on addition of SDBS indicate formation of quinone-hydrazone tautomer at pH 7.0, whereas in absence of SDBS this change appears at pH ˜ 9.45. However, at pH 7.0 this change in tautomerism is not observed in presence of sodium dodecyl sulphate (SDS). Experimental results indicate presence of charge transfer interaction between less stable quinone-hydrazone tautomer of EBT and SDBS molecules, which is confirmed using Benesi-Hildebrand and Scott equations.

  5. Charged Lifshitz black hole and probed Lorentz-violation fermions from holography

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cheng-Jian, E-mail: rocengeng@hotmail.com [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Kuang, Xiao-Mei, E-mail: xmeikuang@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)

    2017-06-10

    We analytically obtain a new charged Lifshitz solution by adding a non-relativistic Maxwell field in Hořava–Lifshitz gravity. The black hole exhibits an anisotropic scaling between space and time (Lifshitz scaling) in the UV limit, while in the IR limit, the Lorentz invariance is approximately recovered. We introduce the probed Lorentz-violation fermions into the background and holographically investigate the spectral properties of the dual fermionic operator. The Lorentz-violation of the fermions will enhance the peak and correspond larger fermi momentum, which compensates the non-relativistic bulk effect of the dynamical exponent (z). For a fixed z, when the Lorentz-violation of fermions increases to a critical value, the behavior of the low energy excitation goes from a non-Fermi liquid type to a Fermi liquid type, which implies a kind of phase transition.

  6. Higher Dimensional Charged Black Hole Solutions in f(R Gravitational Theories

    Directory of Open Access Journals (Sweden)

    G. G. L. Nashed

    2018-01-01

    Full Text Available We present, without any assumption, a class of electric and magnetic flat horizon D-dimension solutions for a specific class of f(R=R+αR2, all of which behave asymptotically as Anti-de-Sitter spacetime. The most interesting property of these solutions is that the higher dimensions black holes, D>4, always have constant electric and magnetic charges in contrast to what is known in the literature. For D=4, we show that the magnetic field participates in the metric on equal foot as the electric field participates. Another interesting result is the fact that the Cauchy horizon is not identical with the event horizon. We use Komar formula to calculate the conserved quantities. We study the singularities and calculate the Hawking temperature and entropy and show that the first law of thermodynamics is always satisfied.

  7. Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space

    Directory of Open Access Journals (Sweden)

    Amin Dehyadegari

    2017-05-01

    Full Text Available It has been argued that charged Anti-de Sitter (AdS black holes have similar thermodynamic behavior as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic variable (pressure in an extended phase space. In this paper, we disclose the deep connection between charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider the mass of an AdS black hole as a function of square of the charge Q2 instead of the standard Q, i.e. M=M(S,Q2,P. We first justify such a change of view mathematically and then ask if a phase transition can occur as a function of Q2 for fixed P. Therefore, we write the equation of state as Q2=Q2(T,Ψ where Ψ (conjugate of Q2 is the inverse of the specific volume, Ψ=1/v. This allows us to complete the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition as well as critical exponents of the system. We identify a thermodynamic instability in this new picture with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore study the critical behavior of isotherms in Q2–Ψ diagram and deduce all the critical exponents of the system and determine that the system exhibits a small–large black hole phase transition at the critical point (Tc,Qc2,Ψc. This alternative view is important as one can imagine such a change for a given single black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large as one moves away from the critical point along the transition line. Therefore, we are able to attribute the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at the phase transition.

  8. Dyonic black hole in heterotic string theory

    International Nuclear Information System (INIS)

    Jatkar, D.P.; Mukherji, S.

    1997-01-01

    We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)

  9. The self-force on a non-minimally coupled static scalar charge outside a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cho, Demian H J; Tsokaros, Antonios A; Wiseman, Alan G

    2007-01-01

    The finite part of the self-force on a static, non-minimally coupled scalar test charge outside a Schwarzschild black hole is zero. This result is determined from the work required to slowly raise or lower the charge through an infinitesimal distance. Unlike similar force calculations for minimally-coupled scalar charges or electric charges, we find that we must account for a flux of field energy that passes through the horizon and changes the mass and area of the black hole when the charge is displaced. This occurs even for an arbitrarily slow displacement of the non-minimally coupled scalar charge. For a positive coupling constant, the area of the hole increases when the charge is lowered and decreases when the charge is raised. The fact that the self-force vanishes for a static, non-minimally coupled scalar charge in Schwarzschild spacetime agrees with a simple prediction of the Quinn-Wald axioms. However, Zel'nikov and Frolov computed a non-vanishing self-force for a non-minimally coupled charge. Our method of calculation closely parallels the derivation of Zel'nikov and Frolov, and we show that their omission of this unusual flux is responsible for their (incorrect) result. When the flux is accounted for, the self-force vanishes. This correction eliminates a potential counter example to the Quinn-Wald axioms. The fact that the area of the black hole changes when the charge is displaced brings up two interesting questions that did not arise in similar calculations for static electric charges and minimally coupled scalar charges. (1) How can we reconcile a decrease in the area of the black hole horizon with the area theorem which concludes that δArea horizon ≥ 0? The key hypothesis of the area theorem is that the stress-energy tensor must satisfy a null-energy condition T αβ l α l β ≥ 0 for any null vector l α . We explicitly show that the stress-energy associated with a non-minimally coupled field does not satisfy this condition, and this violation of

  10. Supersymmetry of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar

    1999-01-01

    We examine supersymmetry of four-dimensional asymptotically anti-de Sitter (AdS) dyonic black holes in the context of gauged N = 2 supergravity. Our calculations concentrate on black holes with unusual topology and their rotating generalizations, but we also reconsider the spherical rotating dyonic Ker-Newman-AdS black hole, whose supersymmetry properties have previously been investigated by Kostelecky and Perry within another approach. We find that in the case of spherical, toroidal or cylindrical event horizon topology, the black holes must rotate in order to preserve some supersymmetry; the non-rotating supersymmetric configurations representing naked singularities. However, we show that this is no more true for black holes whose event horizons are Riemann surfaces of genus g > 1, where we find a non-rotating extremal solitonic black hole carrying magnetic charge and permitting one Killing spinor. For the non-rotating supersymmetric configurations of various topologies, all Killing spinors are explicitly constructed

  11. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, R.F.; Hinckley, T.M. [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources; Heilman, P.E. [Washington State Univ., Puyallup, WA (United States). Research and Extension Center; Bradshaw, H.D. Jr. [Washington Univ., Seattle, WA (United States). Dept. of Biochemistry

    1993-04-30

    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  12. Quantum tunneling from three-dimensional black holes

    International Nuclear Information System (INIS)

    Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung

    2013-01-01

    We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry

  13. Extreme black hole with an electric dipole moment

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tada, T.

    1996-01-01

    We construct a new extreme black hole solution in a toroidally compactified heterotic string theory. The black hole saturates the Bogomol close-quote nyi bound, has zero angular momentum, but a nonzero electric dipole moment. It is obtained by starting with a higher-dimensional rotating charged black hole, and compactifying one direction in the plane of rotation. copyright 1996 The American Physical Society

  14. Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes

    Science.gov (United States)

    Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong

    2018-04-01

    In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.

  15. Characterization of cross-section correction to charge exchange recombination spectroscopy rotation measurements using co- and counter-neutral-beam views.

    Science.gov (United States)

    Solomon, W M; Burrell, K H; Feder, R; Nagy, A; Gohil, P; Groebner, R J

    2008-10-01

    Measurements of rotation using charge exchange recombination spectroscopy can be affected by the energy dependence of the charge exchange cross section. On DIII-D, the associated correction to the rotation can exceed 100 kms at high temperatures. In reactor-relevant low rotation conditions, the correction can be several times larger than the actual plasma rotation and therefore must be carefully validated. New chords have been added to the DIII-D CER diagnostic to view the counter-neutral-beam line. The addition of these views allows determination of the toroidal rotation without depending on detailed atomic physics calculations, while also allowing experimental characterization of the atomic physics. A database of rotation comparisons from the two views shows that the calculated cross-section correction can adequately describe the measurements, although there is a tendency for "overcorrection." In cases where accuracy better than about 15% is desired, relying on calculation of the cross-section correction may be insufficient.

  16. Universality in the relaxation dynamics of the composed black-hole-charged-massive-scalar-field system: The role of quantum Schwinger discharge

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2015-07-01

    Full Text Available The quasinormal resonance spectrum {ωn(μ,q,M,Q}n=0n=∞ of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime is studied analytically in the large-coupling regime qQ≫Mμ (here {μ,q} are respectively the mass and charge coupling constant of the field, and {M,Q} are respectively the mass and electric charge of the black hole. This physical system provides a striking illustration for the validity of the universal relaxation bound τ×T≥ħ/π in black-hole physics (here τ≡1/ℑω0 is the characteristic relaxation time of the composed black-hole-scalar-field system, and T is the Bekenstein–Hawking temperature of the black hole. In particular, it is shown that the relaxation dynamics of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime may saturate this quantum time-times-temperature inequality. Interestingly, we prove that potential violations of the bound by light scalar fields are excluded by the Schwinger-type pair-production mechanism (a vacuum polarization effect, a quantum phenomenon which restricts the physical parameters of the composed black-hole-charged-field system to the regime qQ≪M2μ2/ħ.

  17. Thermospheric neutral temperatures derived from charge-exchange produced N{sub 2}{sup +} Meinel (1,0) rotational distributions

    Energy Technology Data Exchange (ETDEWEB)

    Mutiso, C.K.; Zettergren, M.D.; Hughes, J.M.; Sivjee, G.G. [Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States). Space Physics Research Lab.

    2013-06-01

    Thermalized rotational distributions of neutral and ionized N{sub 2} and O{sub 2} have long been used to determine neutral temperatures (T{sub n}) during auroral conditions. In both bright E-region (charge-exchange reactions between high-altitude (>or similar 130 km) species provide an exception to this situation. In particular, the charge-exchange reaction O{sup +}({sup 2}D)+N{sub 2}(X) {yields}N{sub 2}{sup +} (A{sup 2}{Pi}{sub u}, {nu}' = 1) + O({sup 3}P) yields thermalized N{sub 2}{sup +} Meinel (1,0) emissions, which, albeit weak, can be used to derive neutral temperatures at altitudes of {proportional_to} 130 km and higher. In this work, we present N{sub 2}{sup +} Meinel (1,0) rotational temperatures and brightnesses obtained at Svalbard, Norway, during various auroral conditions. We calculate T{sub n} at thermospheric altitudes of 130-180 km from thermalized rotational populations of N{sub 2}{sup +} Meinel (1,0); these emissions are excited by soft electron (charge-exchange reactions. We model the contributions of the respective excitation mechanisms, and compare derived brightnesses to observations. The agreement between the two is good. Emission heights obtained from optical data, modeling, and ISR data are consistent. Obtaining thermospheric T{sub n} from chargeexchange excited N{sub 2}{sup +} Meinel (1,0) emissions provides an additional means of remotely sensing the neutral atmosphere, although certain limiting conditions are necessary. These include precipitation of low-energy electrons, and a non-sunlit emitting layer. (orig.)

  18. Prospects of real-time ion temperature and rotation profiles based on neural-network charge exchange analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, R W.T.; Von Hellermann, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Svensson, J [Royal Inst. of Tech., Stockholm (Sweden)

    1994-07-01

    A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V{sub rot}). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs.

  19. Prospects of real-time ion temperature and rotation profiles based on neural-network charge exchange analysis

    International Nuclear Information System (INIS)

    Koenig, R.W.T.; Von Hellermann, M.

    1994-01-01

    A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V rot ). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs

  20. Hawking radiation and propagation of massive charged scalar field on a three-dimensional Gödel black hole

    Science.gov (United States)

    González, P. A.; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko

    2018-06-01

    In this paper we consider the three-dimensional Gödel black hole as a background and we study the vector particle tunneling from this background in order to obtain the Hawking temperature. Then, we study the propagation of a massive charged scalar field and we find the quasinormal modes analytically, which turns out be unstable as a consequence of the existence of closed time-like curves. Also, we consider the flux at the horizon and at infinity, and we compute the reflection and transmission coefficients as well as the absorption cross section. Mainly, we show that massive charged scalar waves can be superradiantly amplified by the three-dimensional Gödel black hole and that the coefficients have an oscillatory behavior. Moreover, the absorption cross section is null at the high frequency limit and for certain values of the frequency.

  1. Gravitational wave production by Hawking radiation from rotating primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)

    2016-10-01

    In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.

  2. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  3. AdS charged black holes in Einstein–Yang–Mills gravity's rainbow: Thermal stability and P−V criticality

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hendi

    2018-02-01

    Full Text Available Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang–Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang–Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang–Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.

  4. AdS charged black holes in Einstein-Yang-Mills gravity's rainbow: Thermal stability and P - V criticality

    Science.gov (United States)

    Hendi, Seyed Hossein; Momennia, Mehrab

    2018-02-01

    Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang-Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang-Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang-Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.

  5. Reversed sense of the ''outward'' direction for dynamical effects of rotation close to a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Prasanna, A.R.

    1988-10-01

    Anderson and Lemos (1988) noticed that the direction in which viscous torque transports angular momentum changes, close to a black hole, from outwards to inwards. We find here that close to a black hole the centrifugal force attracts particles towards the hole. We argue that these are particular examples of a general reversal in sense of the inward and outward directions for all dynamical effects of rotation close to the hole. Using results from the recent paper by Abramowicz, Carter and Lasota (1988) we explain that the reversal is not connected with dragging of inertial frames or with the difference between the angular velocities of the hole and of the surrounding matter but rather, it is an effect of curvature. For a Schwarzschild black hole the reversal takes place at the circular photon orbit (r=3M-tilde) because the geodesic curvature, R-tilde=r(1-3M-tilde/r), of the circles r = const. changes its sign there. (author). 13 refs, 7 figs, 1 tab

  6. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  7. On thermodynamics of charged AdS black holes in extended phases space via M2-branes background

    International Nuclear Information System (INIS)

    Chabab, M.; Masmar, K.; El Moumni, H.

    2016-01-01

    Motivated by a recent work on asymptotically AdS 4 black holes in M-theory, we investigate both thermodynamics and the thermodynamical geometry of Reissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in AdS 4 x S 7 , with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner, and Quevedo metrics for M2-branes geometry to study the stability of such a black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results to those obtained by the phase transition diagram via the heat capacities in different ensembles either when the number of the M2 branes or the charge is held fixed. Also, we note that all results derived in Belhaj et al. (Eur Phys J C 76(2):73, 2016) are recovered in the limit of the vanishing charge. (orig.)

  8. A Rigorous Treatment of Energy Extraction from a Rotating Black Hole

    Science.gov (United States)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2009-05-01

    The Cauchy problem is considered for the scalar wave equation in the Kerr geometry. We prove that by choosing a suitable wave packet as initial data, one can extract energy from the black hole, thereby putting supperradiance, the wave analogue of the Penrose process, into a rigorous mathematical framework. We quantify the maximal energy gain. We also compute the infinitesimal change of mass and angular momentum of the black hole, in agreement with Christodoulou’s result for the Penrose process. The main mathematical tool is our previously derived integral representation of the wave propagator.

  9. Magnetic Neutral Points and Electric Lines of Force in Strong Gravity of a Rotating Black Hole

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Kopáček, Ondřej; Kunneriath, Devaky

    2013-01-01

    Roč. 3, 3A (2013), s. 18-24 ISSN 2161-4717 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : galaxies * nuclei * black hole physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  10. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    NARCIS (Netherlands)

    Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.

    2014-01-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in

  11. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    DEFF Research Database (Denmark)

    Van Borm, C.; Bovino, S.; Latif, M. A.

    2014-01-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims. We explore the formation of a protostar resulting from the collapse of primordial gas...

  12. Oblique magnetic fields and the role of frame dragging near a rotating black hole

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Kopáček, Ondřej; Kunneriath, Devaky; Hamerský, Jaroslav

    2014-01-01

    Roč. 54, č. 6 (2014), s. 398-413 ISSN 1210-2709 R&D Projects: GA ČR GB14-37086G; GA MŠk(CZ) LH14049 Institutional support: RVO:67985815 Keywords : black holes * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  13. Quasi-bound state resonances of charged massive scalar fields in the near-extremal Reissner-Nordstroem black-hole spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-05-15

    The quasi-bound states of charged massive scalar fields in the near-extremal charged Reissner-Nordstroem black-hole spacetime are studied analytically. These discrete resonant modes of the composed black-hole-field system are characterized by the physically motivated boundary condition of ingoing waves at the black-hole horizon and exponentially decaying (bounded) radial eigenfunctions at spatial infinity. Solving the Klein-Gordon wave equation for the linearized scalar fields in the black-hole spacetime, we derive a remarkably compact analytical formula for the complex frequency spectrum which characterizes the quasi-bound state resonances of the composed Reissner-Nordstroem-black-hole-charged-massive-scalar-field system. (orig.)

  14. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.

    Science.gov (United States)

    Zhu, Yunzeng; Chen, Yiqi; Meng, Xiangrui; Wang, Jing; Lu, Ying; Xu, Youchun; Cheng, Jing

    2017-09-05

    Centrifugal microfluidics has been widely applied in the sample-in-answer-out systems for the analyses of nucleic acids, proteins, and small molecules. However, the inherent characteristic of unidirectional fluid propulsion limits the flexibility of these fluidic chips. Providing an extra degree of freedom to allow the unconstrained and reversible pumping of liquid is an effective strategy to address this limitation. In this study, a wirelessly charged centrifugal microfluidic platform with two rotation axes has been constructed and the flow control strategy in such platform with two degrees of freedom was comprehensively studied for the first time. Inductively coupled coils are installed on the platform to achieve wireless power transfer to the spinning stage. A micro servo motor is mounted on both sides of the stage to alter the orientation of the device around a secondary rotation axis on demand during stage rotation. The basic liquid operations on this platform, including directional transport of liquid, valving, metering, and mixing, are comprehensively studied and realized. Finally, a chip for the simultaneous determination of hexavalent chromium [Cr(VI)] and methanal in water samples is designed and tested based on the strategy presented in this paper, demonstrating the potential use of this platform for on-site environmental monitoring, food safety testing, and other life science applications.

  15. Near-horizon limit of the charged BTZ black hole and AdS2 quantum gravity

    International Nuclear Information System (INIS)

    Cadoni, Mariano; Setare, Mohammad R.

    2008-01-01

    We show that the 3D charged Banados-Teitelboim-Zanelli (BTZ) black hole solution interpolates between two different 2D AdS spacetimes: a near-extremal, near-horizon AdS 2 geometry with constant dilaton and U(1) field and an asymptotic AdS 2 geometry with a linear dilaton. Thus, the charged BTZ black hole can be considered as interpolating between the two different formulations proposed until now for AdS 2 quantum gravity. In both cases the theory is the chiral half of a 2D CFT and describes, respectively, Brown-Hennaux-like boundary deformations and near-horizon excitations. The central charge c as of the asymptotic CFT is determined by 3D Newton constant G and the AdS length l, c as = 3l/G, whereas that of the near-horizon CFT also depends on the U(1) charge Q, c nh ∝lQ/√G.

  16. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  17. Effects of dark energy on the efficiency of charged AdS black holes as heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hang [Nankai University, School of Physics, Tianjin (China); Meng, Xin-He [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Science, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-08-15

    In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the P-V plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density ρ{sub q} grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(V{sub 1}) and the bigger black holes(V{sub 2}) will lead to a lower efficiency, while the bigger pressure difference P{sub 1} - P{sub 4} will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity. (orig.)

  18. Resonant frequencies of massless scalar field in rotating black-brane spacetime

    Institute of Scientific and Technical Information of China (English)

    Jing Ji-Liang; Pan Qi-Yuan

    2008-01-01

    This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.

  19. Extremal energy shifts of radiation from a ring near a rotating black hole

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Sochora, Vjačeslav

    2010-01-01

    Roč. 725, č. 2 (2010), s. 1507-1515 ISSN 0004-637X R&D Projects: GA ČR GA205/07/0052; GA MŠk(CZ) LC06014 Grant - others:ESA(XE) ESA- PECS project No. 98040 Institutional research plan: CEZ:AV0Z10030501 Keywords : black holes * accretion Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 7.436, year: 2010

  20. Influence of frame-dragging on magnetic null points near rotating black holes

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Kopáček, Ondřej; Kunneriath, Devaky

    2012-01-01

    Roč. 29, č. 3 (2012), 035010/1-035010/12 ISSN 0264-9381 R&D Projects: GA MŠk ME09036 Grant - others:GA ČR(CZ) GA205/09/H033 Institutional research plan: CEZ:AV0Z10030501 Keywords : Magnetic fields * Reconnection * Black holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.562, year: 2012

  1. Charge-exchange recombination spectroscopy measurements of ion temperature and plasma rotation in PBX

    International Nuclear Information System (INIS)

    Jaehnig, K.P.; Fonck, R.J.; Ida, K.; Powell, E.T.

    1984-11-01

    The primary diagnostic on PBX for ion temperature measurements is charge-exchange recombination spectroscopy of low Z ions, wherein fast neutrals from the heating neutral beams excite spectral lines from highly excited states (n greater than or equal to 4) of hydrogenic 0, C, and He via charge-exchange collisions with the respective fully stripped ions. Since the neutral beams on PBX provide relatively low velocity neutrals (i.e., D 0 beams at 44 keV), the best signals are obtained using the near-uv lines of 0 7+ (e.g., n = 8-7, 2976 A). Off-line analysis of the Doppler broadened and shifted line profiles includes non-linear least squares fitting to a model line profile, while a simplified on-line fast analysis code permits between-shot data analysis

  2. Black hole spin from wobbling and rotation of the M87 jet and a sign of a magnetically arrested disc

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2018-06-01

    New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8-10 yr quasi-periodicity. Such jet wobbling can be indicative of a relativistic Lense-Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is J/Mc = (2.7 ± 1.5) × 1014 cm, implying moderate dimensionless spin parameters a = 0.5 ± 0.3 and 0.31 ± 0.17 for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, 0.15 ± 0.05. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87.

  3. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes.

    Science.gov (United States)

    Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David; Santos, Jorge E

    2018-06-08

    We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

  4. The quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge

    International Nuclear Information System (INIS)

    Xie Zhi-Kun; Pan Wei-Zhen; Yang Xue-Jun

    2013-01-01

    Using a new tortoise coordinate transformation, we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time, and obtain the event horizon surface gravity and the Hawking temperature on that event horizon. The results show that there is a crossing of particle energy near the event horizon. We derive the maximum overlap of the positive and negative energy levels. It is also found that the Hawking temperature of a black hole depends not only on the time, but also on the angle. There is a problem of dimension in the usual tortoise coordinate, so the present results obtained by using a correct-dimension new tortoise coordinate transformation may be more reasonable

  5. Extremal static AdS black hole/CFT correspondence in gauged supergravities

    International Nuclear Information System (INIS)

    Lue, H.; Mei Jianwei; Pope, C.N.; Vazquez-Poritz, Justin F.

    2009-01-01

    A recently proposed holographic duality allows the Bekenstein-Hawking entropy of extremal rotating black holes to be calculated microscopically, by applying the Cardy formula to the two-dimensional chiral CFTs associated with certain reparameterisations of azimuthal angular coordinates in the solutions. The central charges are proportional to the angular momenta of the black hole, and so the method degenerates in the case of static (non-rotating) black holes. We show that the method can be extended to encompass such charged static extremal AdS black holes by using consistent Kaluza-Klein sphere reduction ansatze to lift them to exact solutions in the low-energy limits of string theory or M-theory, where the electric charges become reinterpreted as angular momenta associated with internal rotations in the reduction sphere. We illustrate the procedure for the examples of extremal charged static AdS black holes in four, five, six and seven dimensions

  6. Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation

    International Nuclear Information System (INIS)

    Pan Wei-Zhen; Yang Xue-Jun; Xie Zhi-Kun

    2011-01-01

    Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour—Ruffini method. After the tortoise coordinate transformation, the Klein—Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton—Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable. (geophysics, astronomy, and astrophysics)

  7. Distribution and determinants of QRS rotation of black and white persons in the general population.

    Science.gov (United States)

    Prineas, Ronald J; Zhang, Zhu-Ming; Stevens, Cladd E; Soliman, Elsayed Z

    The prevalence and determinants of QRS transition zones are not well established. We examined the distributions of Normal, clockwise (CW) and counterclockwise (CCW)) QRS transition zones and their relations to disease, body size and demographics in 4624 black and white men and women free of cardiovascular disease and major ECG abnormalities enrolled in the NHANES-III survey. CW transition zones were least observed (6.2%) and CCW were most prevalent (60.1%) with Normal in an intermediate position (33.7%). In multivariable logistic regression analysis, the adjusted, significant predictors for CCW compared to Normal were a greater proportion of blacks and women, fewer thin people (BMI<20, thin), a greater ratio of chest depth to chest width, and an LVMass index <80g. By contrast, CW persons were older, had larger QRS/T angles, smaller ratio of chest depth to chest width, had a greater proportion of subjects with low voltage QRS, more pulmonary disease, a greater proportion with high heart rates, shorter QRS duration and were more obese (BMI≥30). Normal rather than being the most prevalent transition zone was intermediate in frequency between the most frequently encountered CCW and the least frequently encountered transition zone CW. Differences in the predictors of CW and CCW exist. This requires further investigation to examine how far these differences explain the differences in the published prognostic differences between CW and CCW. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Qiao [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2014-09-07

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factor is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.

  9. Three-charge black holes and quarter BPS states in Little String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Harvey, Jeffrey; Kutasov, David; Lee, Sungjay [Enrico Fermi Institute and Department of Physics, The University of Chicago,5620 S. Ellis Av., Chicago, Illinois 60637 (United States)

    2015-12-22

    We show that the system of k NS5-branes wrapping T{sup 4}×S{sup 1} has non-trivial vacuum structure. Different vacua have different spectra of 1/4 BPS states that carry momentum and winding around the S{sup 1}. In one vacuum, such states are described by black holes; in another, they can be thought of as perturbative BPS states in Double Scaled Little String Theory. In general, both kinds of states are present. We compute the degeneracy of perturbative BPS states exactly, and show that it differs from that of the corresponding black holes. We comment on the implication of our results to the black hole microstate program, UV/IR mixing in Little String Theory, string thermodynamics, the string/black hole transition, and other issues.

  10. Innermost stable circular orbit of spinning particle in charged spinning black hole background

    Science.gov (United States)

    Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao

    2018-04-01

    In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.

  11. The Bisognano-Wichmann theorem for charged states and the conformal boundary of a black hole

    Directory of Open Access Journals (Sweden)

    Roberto Longo

    2000-07-01

    Full Text Available This note concerns the study of the incremental entropy of a quantum black hole, based on Operator Algebra methods. Our results are based on the results presented in the references [6,11,12,13].

  12. Thermodynamical aspect of black hole solutions in heteric string theory

    CERN Document Server

    Fujisaki, H

    2003-01-01

    Thermodynamical properties of charged rotating dilatonic black holes are discussed on the basis of the general solution of Sen in the heterotic string theory compactified on a six dimensional torus. The most probable microcanonical configuration of black holes is then described in the single-massive-mode dominance scenario.

  13. Black holes and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1979-01-01

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M 2 greater than or equal to Q 2 + P 2 , where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M 2 = a 2 + Q 2 + P 2 ) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  14. Analytic rotating black-hole solutions in N-dimensional f(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Nashed, G.G.L. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Ain Shams University, Faculty of Science, Mathematics Department, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt); El Hanafy, W. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt)

    2017-02-15

    A non-diagonal vielbein ansatz is applied to the N-dimension field equations of f(T) gravity. An analytical vacuum solution is derived for the quadratic polynomial f(T)=T+εT{sup 2} and an inverse relation between the coupling constant ε and the cosmological constant Λ. Since the induced metric has off-diagonal components, it cannot be removed by a mere coordinate transformation, the solution has a rotating parameter. The curvature and torsion scalars invariants are calculated to study the singularities and horizons of the solution. In contrast to general relativity, the Cauchy horizon differs from the horizon which shows the effect of the higher order torsion. The general expression of the energy-momentum vector of f(T) gravity is used to calculate the energy of the system. Finally, we have shown that this kind of solution satisfies the first law of thermodynamics in the framework of f(T) gravitational theories. (orig.)

  15. Experiments in the accelerator beam: change in the charge radius of 2+ rotational levels

    International Nuclear Information System (INIS)

    Hanna, S.S.

    1977-01-01

    The method of in-beam implantation is discussed and illustrated by implantation of 57 Fe into single crystals of semiconductors. The application to isotopes which cannot be produced by radioactive sources is illustrated by a study of the isomer shifts in isotopic series of rotational nuclei. Spectra obtained for implantation of 57 Fe into single crystals of germanium as a function of temperature are shown. Two well defined sites are observed. The right hand resonance can be identified with a substitutional site, while the left hand resonance is produced by either an interstitial or a ''damage'' site. A series of experiments are considered which illustrate the use of in-beam implantation to produce high-quality, single-line sources of nuclei which cannot be produced by radioactive parents. In particular, these experiments measure the isomer shifts in a complete series of isotopes. Usually only the proton-rich isotopes can be measured with radioactive sources; in-beam implantation can then be used to complete the series. The Gd and Yb series are completed in this way. 10 references

  16. Perturbation of a slowly rotating black hole by a stationary axisymmetric ring of matter. II. Penrose processes, circular orbits, and differential mass formulae

    International Nuclear Information System (INIS)

    Will, C.M.

    1975-01-01

    We present a detailed description of the phenomenon of energy extraction (''Penrose'') from a slowly rotating black hole perturbed by a stationary axisymmetric ring of matter, and show that the gravitational interaction between the ring and the particles used in the Penrose process must be taken into account. For the case of a black-hole-ring configuration of ''minimum enregy'' we show that a Penrose process can extract further energy, but that by measns of their gravitational forces, the particles used in the process cause the radius of the ring to change, releasing precisely sufficient gravitational potential energy to make up for that extracted. By analyzing the properties of circular test-particle orbits in black-hole-ring spacetimes, we show quantitatively how this change in radius is produced. A ''differential mass formula'' relating the total masses of neighboring black-hole-ring configurations is also derived

  17. Geometrical Method for Thermal Instability of Nonlinearly Charged BTZ Black Holes

    International Nuclear Information System (INIS)

    Panahiyan, Shahram; Hendi, Seyed Hossein; Eslam Panah, Behzad

    2015-01-01

    We consider three-dimensional BTZ black holes with three models of nonlinear electrodynamics as source. Calculating heat capacity, we study the stability and phase transitions of these black holes. We show that Maxwell, logarithmic, and exponential theories yield only type one phase transition which is related to the root(s) of heat capacity, whereas, for correction form of nonlinear electrodynamics, heat capacity contains two roots and one divergence point. Next, we use geometrical approach for studying classical thermodynamical behavior of the system. We show that Weinhold and Ruppeiner metrics fail to provide fruitful results and the consequences of the Quevedo approach are not completely matched to the heat capacity results. Then, we employ a new metric for solving this problem. We show that this approach is successful and all divergencies of its Ricci scalar and phase transition points coincide. We also show that there is no phase transition for uncharged BTZ black holes.

  18. Electromagnetic radiation from collisions at almost the speed of light: An extremely relativistic charged particle falling into a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.; Yoshida, Shijun

    2003-01-01

    We investigate the electromagnetic radiation released during the high energy collision of a charged point particle with a four-dimensional Schwarzschild black hole. We show that the spectra is flat, and well described by a classical calculation. We also compare the total electromagnetic and gravitational energies emitted, and find that the former is suppressed in relation to the latter for very high energies. These results could apply to the astrophysical world in the case that charged stars and small charged black holes are out there colliding into large black holes, and to a very high energy collision experiment in a four-dimensional world. In this latter scenario the calculation is to be used for the moments just after black hole formation, when the collision of charged debris with the newly formed black hole is certainly expected. Since the calculation is four dimensional, it does not directly apply to TeV-scale gravity black holes, as these inhabit a world of six to eleven dimensions, although our results should qualitatively hold when extrapolated with some care to higher dimensions

  19. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias,Universidad Adolfo Ibáñez, Viña del Mar (Chile); Deruelle, Nathalie; Julié, Félix-Louis [APC, Université Paris Diderot, CNRS, CEA, Observatoire de Paris,Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet,F-75205 Paris CEDEX 13 (France)

    2016-08-08

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the “Gamma-Gamma − Gamma-Gamma' part of the Hilbert action supplemented by the divergence of a generalized “Katz vector'. We consider static solutions of Einstein’s equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar “hair' is present, only sub-families of the solutions can obey that criterion. The Katz-Bicak-Lynden-Bell (“KBL') superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of “counterterms'. Finally, we show on the specific example of dyonic black holes that the sub-class selected by our variational principle satisfies the first law of thermodynamics when their mass is defined by the KBL superpotential.

  20. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, Alikram N.

    2008-01-01

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4

  1. Charge and/or spin limits for black holes at a non-commutative scale

    Indian Academy of Sciences (India)

    Biplab Paik

    2017-07-12

    Jul 12, 2017 ... momentum (J) of a generalized black hole of mass M to be bounded by the condition Q2 + (J/M)2 ≤ M2, whereas ... in the classical commutative space–time background is ... scale of the Standard Model of particle physics and.

  2. Møller's energy in the dyadosphere of a charged black hole

    Indian Academy of Sciences (India)

    black hole. OKTAY AYDOGDU and MUSTAFA SALTI. (Pramana – J. Phys. 67, 239–247 (2006)). We have added references which had been missed in our article and have refreshed the reference list. We list below the new references and point out the place where these have been added. • S S Xulu, gr-qc/0304081 (ref.

  3. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  4. Dirac particle tunneling from black rings

    International Nuclear Information System (INIS)

    Jiang Qingquan

    2008-01-01

    Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral, dipole, and charged black rings.

  5. Quantum corrections to thermodynamics of quasitopological black holes

    Directory of Open Access Journals (Sweden)

    Sudhaker Upadhyay

    2017-12-01

    Full Text Available Based on the modification to area-law due to thermal fluctuation at small horizon radius, we investigate the thermodynamics of charged quasitopological and charged rotating quasitopological black holes. In particular, we derive the leading-order corrections to the Gibbs free energy, charge and total mass densities. In order to analyze the behavior of the thermal fluctuations on the thermodynamics of small black holes, we draw a comparative analysis between the first-order corrected and original thermodynamical quantities. We also examine the stability and bound points of such black holes under effect of leading-order corrections.

  6. A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

    International Nuclear Information System (INIS)

    Davis, Paul

    2006-01-01

    In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable

  7. Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes

    CERN Document Server

    Daudé, Thierry

    2017-01-01

    In this paper, the authors study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, they establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. The authors also use the miraculous property (quoting Chandrasekhar)-that the Dirac equation can be separated into radial and angular ordinary differential equations-to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, the authors use this expression of ...

  8. Topological charged black holes in massive gravity's rainbow and their thermodynamical analysis through various approaches

    International Nuclear Information System (INIS)

    Hendi, S.H.; Eslam Panah, B.; Panahiyan, S.

    2017-01-01

    Violation of Lorentz invariancy in the high energy quantum gravity motivates one to consider an energy dependent spacetime with massive deformation of standard general relativity. In this paper, we take into account an energy dependent metric in the context of a massive gravity model to obtain exact solutions. We investigate the geometry of black hole solutions and also calculate the conserved and thermodynamic quantities, which are fully reproduced by the analysis performed with the standard techniques. After examining the validity of the first law of thermodynamics, we conduct a study regarding the effects of different parameters on thermal stability of the solutions. In addition, we employ the relation between cosmological constant and thermodynamical pressure to study the possibility of phase transition. Interestingly, we will show that for the specific configuration considered in this paper, van der Waals like behavior is observed for different topology. In other words, for flat and hyperbolic horizons, similar to spherical horizon, a second order phase transition and van der Waals like behavior are observed. Furthermore, we use geometrical method to construct phase space and study phase transition and bound points for these black holes. Finally, we obtain critical values in extended phase space through the use of a new method.

  9. Topological charged black holes in massive gravity's rainbow and their thermodynamical analysis through various approaches

    Directory of Open Access Journals (Sweden)

    S.H. Hendi

    2017-06-01

    Full Text Available Violation of Lorentz invariancy in the high energy quantum gravity motivates one to consider an energy dependent spacetime with massive deformation of standard general relativity. In this paper, we take into account an energy dependent metric in the context of a massive gravity model to obtain exact solutions. We investigate the geometry of black hole solutions and also calculate the conserved and thermodynamic quantities, which are fully reproduced by the analysis performed with the standard techniques. After examining the validity of the first law of thermodynamics, we conduct a study regarding the effects of different parameters on thermal stability of the solutions. In addition, we employ the relation between cosmological constant and thermodynamical pressure to study the possibility of phase transition. Interestingly, we will show that for the specific configuration considered in this paper, van der Waals like behavior is observed for different topology. In other words, for flat and hyperbolic horizons, similar to spherical horizon, a second order phase transition and van der Waals like behavior are observed. Furthermore, we use geometrical method to construct phase space and study phase transition and bound points for these black holes. Finally, we obtain critical values in extended phase space through the use of a new method.

  10. Trace determination of heavy metal concentrations in fauna, flora and salt samples from Black Sea waters by charged particles - induced X-rays

    International Nuclear Information System (INIS)

    Badica, T.; Ciortea, C.; Dima, S.; Petrovici, A.; Popescu, I.; Serbanescu, O.

    1977-01-01

    Studies were performed on Black Sea pollution by charged particles induced X-rays spectra analysis, using alpha and 16 O beams. Fauna, flora and salt samples were analysed. We found some of the concentrations of pollutant elements to be below the accepted levels. (author)

  11. Dynamically generated gap from holography in the charged black brane with hyperscaling violation

    CERN Document Server

    Kuang, Xiao-Mei; Wang, Bin; Wu, Jian-Pin

    2015-01-01

    We holographically investigate the effects of a dipole coupling between a fermion field and a $U(1)$ gauge field on the dual fermionic sector in the charged gravity bulk with hyperscaling violation. We analytically study the features of the ultraviolet and infrared Green's functions of the dual fermionic system and we show that as the dipole coupling and the hyperscaling violation exponent are varied, the fluid possess Fermi, marginal Fermi, non-Fermi liquid phases and also an additional Mott insulating phase. We find that the increase of the hyperscaling violation exponent which effectively reduces the dimensionality of the system makes it harder for the Mott gap to be formed. We also show that the observed duality between zeros and poles in the presence of a dipole moment coupling still persists in theories with hyperscaling violation.

  12. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  13. Is there life inside black holes?

    International Nuclear Information System (INIS)

    Dokuchaev, V I

    2011-01-01

    Bound inside rotating or charged black holes, there are stable periodic planetary orbits, which neither come out nor terminate at the central singularity. Stable periodic orbits inside black holes exist even for photons. These bound orbits may be defined as orbits of the third kind, following the Chandrasekhar classification of particle orbits in the black hole gravitational field. The existence domain for the third-kind orbits is rather spacious, and thus there is place for life inside supermassive black holes in the galactic nuclei. Interiors of the supermassive black holes may be inhabited by civilizations, being invisible from the outside. In principle, one can get information from the interiors of black holes by observing their white hole counterparts. (paper)

  14. Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Liu, Yunqi [Huazhong University of Science and Technology, School of Physics, Wuhan (China)

    2017-06-15

    In this work, we utilize the quasinormal modes (QNMs) of a massless scalar perturbation to probe the Van der Waals-like small and large black holes (SBH/LBH) phase transition of charged topological Anti-de Sitter (AdS) black holes in four-dimensional massive gravity. We find that the signature of this SBH/LBH phase transition is detected in the isobaric as well as in the isothermal process. This further supports the idea that the QNMs can be an efficient tool to investigate the thermodynamical phase transition. (orig.)

  15. Extremal black hole/CFT correspondence in (gauged) supergravities

    International Nuclear Information System (INIS)

    Chow, David D. K.; Cvetic, M.; Lue, H.; Pope, C. N.

    2009-01-01

    We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence, proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in dimension D there are [(D-1)/2] commuting Virasoro algebras. We consider a general canonical class of near-horizon geometries in arbitrary dimension D, and show that in any such metric the [(D-1)/2] central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein-Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity solutions with four charges in D=4 and three charges in D=5, that their extremal near-horizon geometries indeed lie within the canonical form. This establishes that, in all these examples, the microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

  16. Charged black holes in string-inspired gravity II. Mass inflation and dependence on parameters and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jakob [KISTI,Daejeon 305-806 (Korea, Republic of); Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)

    2015-09-07

    We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no mass inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.

  17. Black hole dynamics in Einstein-Maxwell-dilaton theory

    Science.gov (United States)

    Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2018-03-01

    We consider the properties and dynamics of black holes within a family of alternative theories of gravity, namely Einstein-Maxwell-dilaton theory. We analyze the dynamical evolution of individual black holes as well as the merger of binary black hole systems. We do this for a wide range of parameter values for the family of Einstein-Maxwell-dilaton theories, investigating, in the process, the stability of these black holes. We examine radiative degrees of freedom, explore the impact of the scalar field on the dynamics of merger, and compare with other scalar-tensor theories. We argue that the dilaton can largely be discounted in understanding merging binary systems and that the end states essentially interpolate between charged and uncharged, rotating black holes. For the relatively small charge values considered here, we conclude that these black hole systems will be difficult to distinguish from their analogs within General Relativity.

  18. Electrically Charged Matter in Permanent Rotation around Magnetized Black Holes: A Toy Model for Self-gravitating Fluid Tori

    Czech Academy of Sciences Publication Activity Database

    Trova, Audrey; Karas, Vladimír; Slaný, P.; Kovář, J.

    2016-01-01

    Roč. 226, č. 1 (2016), 12/1-12/16 ISSN 0067-0049 R&D Projects: GA ČR GB14-37086G Grant - others:COST(XE) LD15061; COST(XE) MP1304 Program:LD Institutional support: RVO:67985815 Keywords : gravitation * magnetic fields * numerical methods Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 8.955, year: 2016

  19. arXiv Hawking radiation and propagation of massive charged scalar field on a three-dimensional G\\"odel black hole

    CERN Document Server

    González, P.A.; Saavedra, Joel; Vásquez, Yerko

    2018-05-18

    In this paper we consider the three-dimensional G\\"{o}del black hole as a background and we study the vector particle tunneling from this background in order to obtain the Hawking temperature. Then, we study the propagation of a massive charged scalar field and we find the quasinormal modes analytically, which turns out be unstable as a consequence of the existence of closed time-like curves. Also, we consider the flux at the horizon and at infinity, and we compute the reflection and transmission coefficients as well as the absorption cross section. Mainly, we show that massive charged scalar waves can be superradiantly amplified by the three-dimensional G\\"{o}del black hole and that the coefficients have an oscillatory behavior. Moreover, the absorption cross section is null at the high frequency limit and for certain values of the frequency.

  20. Black holes, magnetic fields and particle creation. [Quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, G W [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1976-10-01

    Wald has given a classical argument suggesting that a rotating black hole immersed in a uniform magnetic field B will acquire a charge Q = 2JB where J is the angular momentum of the hole. The note contains a quantum field theoretic treatment of this process. For fields B greater than B/sub 0/ = 4 x 10/sup 13/ G the black hole will rapidly emit charged particles to achieve the equilibrium value. If B is less than the critical value the charge will remain zero.

  1. Low-scale gravity black holes at LHC

    CERN Document Server

    Regos, E; Gamsizkan, H; Trocsanyi, Z

    2009-01-01

    We search for extra dimensions by looking for black holes at LHC. Theoretical investigations provide the basis for the collider experiments. We use black hole generators to simulate the experimental signatures (colour, charge, spectrum of emitted particles, missing transverse energy) of black holes at LHC in models with TeV scale quantum gravity, rotation, fermion splitting, brane tension and Hawking radiation. We implement the extra-dimensional simulations at the CMS data analysis and test further beyond standard models of black holes too.

  2. Drift motion of a charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave

    International Nuclear Information System (INIS)

    Eliseev, Yu.N.; Stepanov, K.N.

    1983-01-01

    In the drift motion approximation solution of the problem is obtained on the motion of a nonrelativistic charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave under cherenkov and modified cyclotron resonances. The static radial electric field potential is supposed to be close to the parabolic one. The drift motion equations and their integrals are preseOted. The experimentally obtained effect of plasma ionic component division in the crossed fields under the excitation of ion cyclotron oscillations is explained with the help of the theory developed in the paper

  3. Electromagnetic field in higher-dimensional black-hole spacetimes

    International Nuclear Information System (INIS)

    Krtous, Pavel

    2007-01-01

    A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved

  4. Four-dimensional anti-de Sitter toroidal black holes from a three-dimensional perspective: Full complexity

    International Nuclear Information System (INIS)

    Zanchin, Vilson T.; Kleber, Antares; Lemos, Jose P.S.

    2002-01-01

    The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed

  5. Allometric Models to Predict Aboveground Woody Biomass of Black Locust (Robinia pseudoacacia L. in Short Rotation Coppice in Previous Mining and Agricultural Areas in Germany

    Directory of Open Access Journals (Sweden)

    Christin Carl

    2017-09-01

    Full Text Available Black locust is a drought-resistant tree species with high biomass productivity during juvenility; it is able to thrive on wastelands, such as former brown coal fields and dry agricultural areas. However, research conducted on this species in such areas is limited. This paper aims to provide a basis for predicting tree woody biomass for black locust based on tree, competition, and site variables at 14 sites in northeast Germany that were previously utilized for mining or agriculture. The study areas, which are located in an area covering 320 km × 280 km, are characterized by a variety of climatic and soil conditions. Influential variables, including tree parameters, competition, and climatic parameters were considered. Allometric biomass models were employed. The findings show that the most important parameters are tree and competition variables. Different former land utilizations, such as mining or agriculture, as well as growth by cores or stumps, significantly influenced aboveground woody biomass production. The new biomass models developed as part of this study can be applied to calculate woody biomass production and carbon sequestration of Robinia pseudoacacia L. in short rotation coppices in previous mining and agricultural areas.

  6. Symmetries of supergravity black holes

    International Nuclear Information System (INIS)

    Chow, David D K

    2010-01-01

    We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Staeckel tensors. These are induced by rank-2 Killing-Staeckel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the 'physical' metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity but also consider some other solutions.

  7. Reversible evolution of charged ergoregions

    Energy Technology Data Exchange (ETDEWEB)

    Kokkotas, K.; Spyrou, N.

    1987-07-01

    The reversible evolution of a charged rotating ergoregion, due to the injection into it of particles with mass-energy and angular momentum, is studied systematically. As in the uncharged case, a bulge always forms on the outer boundary of the ergoregion due to the latter's angular momentum. The behavior of the bulge's position, relative to the black hole's rotation axis and equatorial plane, is studied, on the basis of the cosmic censorship hypothesis, during the ergoregion's reversible evolution. The range of the permitted values of the ergoregion's linear dimensions along the rotation axis and perpendicular to it is specified. Finally the differences with the evolution of an uncharged ergoregion are pointed out and discussed.

  8. The Charge-Mass-Spin Relation of Clifford Polyparticles, Kerr-Newman Black Holes and the Fine Structure Constant

    CERN Document Server

    Castro, C

    2003-01-01

    A Clifford-algebraic interpretation is proposed of the charge, mass, spin relationship found recently by Cooperstock and Faraoini which was based on the Kerr-Newman metric solutions of the Einstein-Maxwell equations. The components of the polymomentum associated with a Clifford polyparticle in four dimensions provide for such a charge, mass, spin relationship without the problems encountered in Kaluza-Klein compactifications which furnish an unphysically large value for the electron charge. A physical reasoning behind such charge, mass, spin relationship is provided, followed by a discussion on the geometrical derivation of the fine structure constant by Wyler, Smith, Gonzalez-Martin and Smilga. To finalize, the renormalization of electric charge is discussed and some remarks are made pertaining the modifications of the charge-scale relationship, when the spin of the polyparticle changes with scale, that may cast some light into the alleged Astrophysical variations of the fine structure constant.

  9. Numerical analysis of continuous charge of lithium niobate in a double-crucible Czochralski system using the accelerated crucible rotation technique

    Science.gov (United States)

    Kitashima, Tomonori; Liu, Lijun; Kitamura, Kenji; Kakimoto, Koichi

    2004-05-01

    The transport mechanism of supplied raw material in a double-crucible Czochralski system using the accelerated crucible rotation technique (ACRT) was investigated by three-dimensional and time-dependent numerical simulation. The calculation clarified that use of the ACRT resulted in enhancement of the mixing effect of the supplied raw material. It is, therefore, possible to maintain the composition of the melt in an inner crucible during crystal growth by using the ACRT. The effect of the continuous charge of the raw material on melt temperature was also investigated. Our results showed that the effect of feeding lithium niobate granules on melt temperature was small, since the feeding rate of the granules is small. Therefore, solidification of the melt surface due to the heat of fusion in this system is not likely.

  10. Single-charge craters excavated during subsurface high-explosive experiments at Big Black Test Site, Mississippi

    International Nuclear Information System (INIS)

    Woodruff, W.R.; Bryan, J.B.

    1978-01-01

    Single-charge and row-charge subsurface cratering experiments were performed to learn how close-spacing enhances single-crater dimensions. Our first experimental phase established cratering curves for 60-lb charges of the chemical explosive. For the second phase, to be described in a subsequent report, the Row-cratering experiments were designed and executed. This data report contains excavated dimensions and auxiliary data for the single-charge cratering experiments. The dimensions for the row-charge experiments will be in the other report. Significant changes in the soil's water content appeared to cause a variability in the excavated dimensions. This variability clouded the interpretation and application of the cratering curves obtained

  11. Black branes as piezoelectrics.

    Science.gov (United States)

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  12. Thermodynamic geometry and phase transitions of AdS braneworld black holes

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Pankaj, E-mail: cpankaj@iitk.ac.in; Sengupta, Gautam, E-mail: sengupta@iitk.ac.in

    2017-02-10

    The thermodynamics and phase transitions of charged RN–AdS and rotating Kerr–AdS black holes in a generalized Randall–Sundrum braneworld are investigated in the framework of thermodynamic geometry. A detailed analysis of the thermodynamics, stability and phase structures in the canonical and the grand canonical ensembles for these AdS braneworld black holes are described. The thermodynamic curvatures for both these AdS braneworld black holes are computed and studied as a function of the thermodynamic variables. Through this analysis we illustrate an interesting dependence of the phase structures on the braneworld parameter for these black holes.

  13. Thermodynamic geometry of black holes in f(R) gravity

    International Nuclear Information System (INIS)

    Soroushfar, Saheb; Saffari, Reza; Kamvar, Negin

    2016-01-01

    In this paper, we consider three types (static, static charged, and rotating charged) of black holes in f(R) gravity. We study the thermodynamical behavior, stability conditions, and phase transition of these black holes. It is shown that the number and type of phase transition points are related to different parameters, which shows the dependency of the stability conditions to these parameters. Also, we extend our study to different thermodynamic geometry methods (Ruppeiner, Weinhold, and GTD). Next, we investigate the compatibility of curvature scalar of geothermodynamic methods with phase transition points of the above black holes. In addition, we point out the effect of different values of the spacetime parameters on the stability conditions of mentioned black holes. (orig.)

  14. Surface geometry of 5D black holes and black rings

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Goswami, Rituparno

    2007-01-01

    We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein reduction of the black ring solution (along the direction of its rotation) which, though it is nakedly singular, relates this solution to the 4D metric of a static black hole distorted by the presence of external scalar (dilaton) and vector ('electromagnetic') fields. The properties of the reduced black hole horizon and its embedding in E 3 are briefly discussed

  15. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

    Science.gov (United States)

    Timokhin, A. N.; Arons, J.

    2013-02-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be

  16. Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.

    Science.gov (United States)

    Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P

    2016-11-11

    We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.

  17. Topological charged black holes in massive gravity's rainbow and their thermodynamical analysis through various approaches

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H., E-mail: hendi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Eslam Panah, B. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Panahiyan, S. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran 19839 (Iran, Islamic Republic of)

    2017-06-10

    Violation of Lorentz invariancy in the high energy quantum gravity motivates one to consider an energy dependent spacetime with massive deformation of standard general relativity. In this paper, we take into account an energy dependent metric in the context of a massive gravity model to obtain exact solutions. We investigate the geometry of black hole solutions and also calculate the conserved and thermodynamic quantities, which are fully reproduced by the analysis performed with the standard techniques. After examining the validity of the first law of thermodynamics, we conduct a study regarding the effects of different parameters on thermal stability of the solutions. In addition, we employ the relation between cosmological constant and thermodynamical pressure to study the possibility of phase transition. Interestingly, we will show that for the specific configuration considered in this paper, van der Waals like behavior is observed for different topology. In other words, for flat and hyperbolic horizons, similar to spherical horizon, a second order phase transition and van der Waals like behavior are observed. Furthermore, we use geometrical method to construct phase space and study phase transition and bound points for these black holes. Finally, we obtain critical values in extended phase space through the use of a new method.

  18. Wormhole solutions sourced by fluids, II: three-fluid two-charged sources

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Faculty of Engineering, Ankara (Turkey)

    2016-01-15

    Lack of a consistent metric for generating rotating wormholes motivates us to present a new one endowed with interesting physical and geometrical properties. When combined with the generalized method of superposition of fields, which consists in attaching a form of matter to each moving frame, it generates massive and charged (charge without charge) two-fluid-sourced, massive and two-charged three-fluid-sourced, rotating as well as new static wormholes which, otherwise, can hardly be derived by integration. If the lapse function of the static wormhole is bounded from above, no closed timelike curves occur in the rotating counterpart. For positive energy densities dying out faster than 1/r, the angular velocity includes in its expansion a correction term, to the leading one that corresponds to ordinary stars, proportional to ln r/r{sup 4}. Such a term is not present in the corresponding expansion for the Kerr-Newman black hole. Based on this observation and our previous work, the dragging effects of falling neutral objects may constitute a substitute for other known techniques used for testing the nature of the rotating black hole candidates that are harbored in the center of galaxies. We discuss the possibility of generating (n + 1)-fluid-sourced, n-charged, rotating as well as static wormholes. (orig.)

  19. Wormhole solutions sourced by fluids, II: three-fluid two-charged sources

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Aïnou, Mustapha, E-mail: azreg@baskent.edu.tr [Faculty of Engineering, Başkent University, Bağlıca Campus, 06810, Ankara (Turkey)

    2016-01-05

    Lack of a consistent metric for generating rotating wormholes motivates us to present a new one endowed with interesting physical and geometrical properties. When combined with the generalized method of superposition of fields, which consists in attaching a form of matter to each moving frame, it generates massive and charged (charge without charge) two-fluid-sourced, massive and two-charged three-fluid-sourced, rotating as well as new static wormholes which, otherwise, can hardly be derived by integration. If the lapse function of the static wormhole is bounded from above, no closed timelike curves occur in the rotating counterpart. For positive energy densities dying out faster than 1 / r, the angular velocity includes in its expansion a correction term, to the leading one that corresponds to ordinary stars, proportional to lnr/r{sup 4}. Such a term is not present in the corresponding expansion for the Kerr–Newman black hole. Based on this observation and our previous work, the dragging effects of falling neutral objects may constitute a substitute for other known techniques used for testing the nature of the rotating black hole candidates that are harbored in the center of galaxies. We discuss the possibility of generating (n+1)-fluid-sourced, n-charged, rotating as well as static wormholes.

  20. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, Ian G; Shiiki, N; Winstanley, E

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  1. LEPTON ACCELERATION IN THE VICINITY OF THE EVENT HORIZON: HIGH-ENERGY AND VERY-HIGH-ENERGY EMISSIONS FROM ROTATING BLACK HOLES WITH VARIOUS MASSES

    Energy Technology Data Exchange (ETDEWEB)

    Hirotani, Kouichi; Pu, Hung-Yi; Lin, Lupin Chun-Che; Inoue, Makoto; Matsushita, Satoki [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei, Taiwan 10617, R.O.C. (China); Chang, Hsiang-Kuang; Kong, Albert K. H. [Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C. (China); Tam, Pak-Hin T., E-mail: hirotani@tiara.sinica.edu.tw [School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082 (China)

    2016-12-20

    We investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, applying the pulsar outer-gap model to black hole (BH) magnetospheres. During a low accretion phase, the radiatively inefficient accretion flow (RIAF) cannot emit enough MeV photons that are needed to sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma rays via curvature and inverse-Compton (IC) processes. Some of such gamma rays collide with the submillimeter-IR photons emitted from the RIAF to materialize as pairs, which polarize to partially screen the original acceleration electric field. It is found that the gap gamma-ray luminosity increases with decreasing accretion rate. However, if the accretion rate decreases too much, the diminished RIAF soft photon field can no longer sustain a stationary pair production within the gap. As long as a stationary gap is formed, the magnetosphere becomes force-free outside the gap by the cascaded pairs, irrespective of the BH mass. If a nearby stellar-mass BH is in quiescence, or if a galactic intermediate-mass BH is in a very low accretion state, its curvature and IC emissions are found to be detectable with Fermi /LAT and imaging atmospheric Cherenkov telescopes (IACT). If a low-luminosity active galactic nucleus is located within about 30 Mpc, the IC emission from its supermassive BH is marginally detectable with IACT.

  2. Microcanonical algorithm of carged roteting dilatonic black holes from the viewpoint of the Kaluza-Klein theory

    CERN Document Server

    Fujisaki, H

    2003-01-01

    Microcanonical ensemble paradigm is described in proper reference to the thermal aspect of the extremal state for a dilute gas of charged rotating black holes coupled to a dilaton field on the basis of the boosted Kerr solution of the Kaluza-Klein theory.

  3. Entropy Spectrum of Black Holes of Heterotic String Theory via Adiabatic Invariance

    Institute of Scientific and Technical Information of China (English)

    Alexis Larra? aga; Luis Cabarique; Manuel Londo? o

    2012-01-01

    Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.

  4. Universality of the quasinormal spectrum of near-extremal Kerr-Newman black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-06-15

    Our current knowledge about the quasinormal resonance spectrum of charged and rotating Kerr-Newman black holes is quite poor. This unsatisfactory situation is a direct consequence of the fact that all attempts to decouple the gravitational and electromagnetic perturbations of generic Kerr-Newman black holes have failed thus far. Recently, Zilhao et al. (Phys Rev D 90:12, 124088, 2014. arXiv:1410.0694) have studied the nonlinear stability of Kerr-Newman black holes. We show here that their numerical results for the time evolutions of the spacetime deformations of near-extremal Kerr-Newman black holes are described extremely well by a simple and universal analytical formula for the quasinormal resonances of the black holes. This formula is expressed in terms of the black-hole physical parameters: the horizon angular velocity Ω{sub H} and the Bekenstein-Hawking temperature T{sub BH}. (orig.)

  5. Remarks on Remnants by Fermions’ Tunnelling from Black Strings

    Directory of Open Access Journals (Sweden)

    Deyou Chen

    2014-01-01

    Full Text Available Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.

  6. A new form of the rotating C-metric

    International Nuclear Information System (INIS)

    Hong, Kenneth; Teo, Edward

    2005-01-01

    In a previous paper, we showed that the traditional form of the charged C-metric can be transformed, by a change of coordinates, into one with an explicitly factorizable structure function. This new form of the C-metric has the advantage that its properties become much simpler to analyse. In this paper, we propose an analogous new form for the rotating charged C-metric, with structure function G(ξ) = (1 - ξ 2 )(1 + r + Aξ)(1 + r - Aξ), where r ± are the usual locations of the horizons in the Kerr-Newman black hole. Unlike the non-rotating case, this new form is not related to the traditional one by a coordinate transformation. We show that the physical distinction between these two forms of the rotating C-metric lies in the nature of the conical singularities causing the black holes to accelerate apart: the new form is free of torsion singularities and therefore does not contain any closed timelike curves. We claim that this new form should be considered the natural generalization of the C-metric with rotation

  7. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  8. Pressure and volume in the first law of black hole thermodynamics

    Science.gov (United States)

    Dolan, Brian P.

    2011-12-01

    The mass of a black hole is interpreted, in terms of thermodynamic potentials, as being the enthalpy, with the pressure given by the cosmological constant. The volume is then defined as being the Legendre transform of the pressure, and the resulting relation between volume and pressure is explored in the case of positive pressure. A virial expansion is developed and a van der Waals like critical point determined. The first law of black hole thermodynamics includes a PdV term which modifies the maximal efficiency of a Penrose process. It is shown that, in four-dimensional spacetime with a negative cosmological constant, an extremal charged rotating black hole can have an efficiency of up to 75%, while for an electrically neutral rotating black hole this figure is reduced to 52%, compared to the corresponding values of 50% and 29% respectively when the cosmological constant is zero.

  9. Pressure and volume in the first law of black hole thermodynamics

    International Nuclear Information System (INIS)

    Dolan, Brian P

    2011-01-01

    The mass of a black hole is interpreted, in terms of thermodynamic potentials, as being the enthalpy, with the pressure given by the cosmological constant. The volume is then defined as being the Legendre transform of the pressure, and the resulting relation between volume and pressure is explored in the case of positive pressure. A virial expansion is developed and a van der Waals like critical point determined. The first law of black hole thermodynamics includes a PdV term which modifies the maximal efficiency of a Penrose process. It is shown that, in four-dimensional spacetime with a negative cosmological constant, an extremal charged rotating black hole can have an efficiency of up to 75%, while for an electrically neutral rotating black hole this figure is reduced to 52%, compared to the corresponding values of 50% and 29% respectively when the cosmological constant is zero. (paper)

  10. Black holes in brane worlds

    Indian Academy of Sciences (India)

    Abstract. A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.

  11. Synthesis, spectroscopic properties, and photoconductivity of black absorbers consisting of pt(bipyridine)(dithiolate) charge transfer complexes in the presence and absence of nitrofluorenone acceptors.

    Science.gov (United States)

    Browning, Charles; Hudson, Joshua M; Reinheimer, Eric W; Kuo, Fang-Ling; McDougald, Roy N; Rabaâ, Hassan; Pan, Hongjun; Bacsa, John; Wang, Xiaoping; Dunbar, Kim R; Shepherd, Nigel D; Omary, Mohammad A

    2014-11-19

    The diimine-dithiolato ambipolar complexes Pt(dbbpy)(tdt) and Pt(dmecb)(bdt) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; tdt(2-) = 3,4-toluenedithiolate; dmecb = 4,4'-dimethoxyester-2,2'-bipyridine; bdt(2-) = benzene-1,2-dithiolate) are prepared herein. Pt(dmecb)(bdt) exhibits photoconductivity that remains constant (photocurrent density of 1.6 mA/cm(2) from a 20 nm thin film) across the entire visible region of the solar spectrum in a Schottky diode device structure. Pt(dbbpy)(tdt) acts as donor when combined with the strong nitrofluorenone acceptors 2,7-dinitro-9-fluorenone (DNF), 2,4,7-trinitro-9-fluorenone (TRNF), or 2,4,5,7-tetranitro-9-fluorenone (TENF). Supramolecular charge transfer stacks form and exhibit various donor-acceptor stacking patterns. The crystalline solids are "black absorbers" that exhibit continuous absorptions spanning the entire visible region and significant ultraviolet and near-infrared wavelengths, the latter including long wavelengths that the donor or acceptor molecules alone do not absorb. Absorption spectra reveal the persistence of donor-acceptor interactions in solution, as characterized by low-energy donor/acceptor charge transfer (DACT) bands. Crystal structures show closely packed stacks with distances that underscore intermolecular DACT. (1)H NMR provides further evidence of DACT, as manifested by upfield shifts of aromatic protons in the binary adducts versus their free components, whereas 2D nuclear Overhauser effect spectroscopy (NOESY) spectra suggest coupling between dithiolate donor protons with nitrofluorenone acceptor protons, in correlation with the solid-state stacking. The NMR spectra also show significant peak broadening, indicating some paramagnetism verified by magnetic susceptibility data. Solid-state absorption spectra reveal further red shifts and increased relative intensities of DACT bands for the solid adducts vs solution, suggesting cooperativity of the DACT phenomenon in the solid state, as further

  12. New regular black hole solutions

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-01-01

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  13. Accretion of new variable modified Chaplygin gas and generalized cosmic Chaplygin gas onto Schwarzschild and Kerr-Newman black holes

    International Nuclear Information System (INIS)

    Bhadra, Jhumpa; Debnath, Ujjal

    2012-01-01

    In this work, we have studied accretion of the dark energies in new variable modified Chaplygin gas (NVMCG) and generalized cosmic Chaplygin gas (GCCG) models onto Schwarzschild and Kerr-Newman black holes. We find the expression of the critical four velocity component which gradually decreases for the fluid flow towards the Schwarzschild as well as the Kerr-Newman black hole. We also find the expression for the change of mass of the black hole in both cases. For the Kerr-Newman black hole, which is rotating and charged, we calculate the specific angular momentum and total angular momentum. We showed that in both cases, due to accretion of dark energy, the mass of the black hole increases and angular momentum increases in the case of a Kerr-Newman black hole. (orig.)

  14. Surface charges for gravity and electromagnetism in the first order formalism

    Science.gov (United States)

    Frodden, Ernesto; Hidalgo, Diego

    2018-02-01

    A new derivation of surface charges for 3  +  1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.

  15. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  16. Stationary black holes with stringy hair

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  17. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  18. Black to Black

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2012-01-01

    Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as is hi...

  19. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  20. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  1. Iron Kα line of Kerr black holes with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, Carrera 9 Bis No. 62-43, 110231 Bogotá (Colombia); Herdeiro, Carlos A R; Radu, Eugen, E-mail: yyni13@fudan.edu.cn, E-mail: mlzhou13@fudan.edu.cn, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: bambi@fudan.edu.cn, E-mail: herdeiro@ua.pt, E-mail: eugen.radu@ua.pt [Departamento de Física da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro (Portugal)

    2016-07-01

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. In the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.

  2. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    International Nuclear Information System (INIS)

    Pani, Paolo; Cardoso, Vitor

    2009-01-01

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  3. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  4. Numerical evidence for universality in the relaxation dynamics of near-extremal Kerr-Newman black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-12-15

    The coupled gravitational-electromagnetic quasinormal resonances of charged rotating Kerr-Newman black holes are explored. In particular, using the recently published numerical data of Dias et al. (Phys Rev Lett 114:151101, 2015), we show that the characteristic relaxation times τ ≡ 1/Iω{sub 0} of near-extremal Kerr-Newman black holes in the regime Q/r{sub +} ≤ 0.9 are described, to a very good degree of accuracy, by the simple universal relation τ x T{sub BH} = π{sup -1} (here Q/r{sub +}, and T{sub BH} are respectively the electric charge, horizon radius, and temperature of the Kerr-Newman black hole, and ω{sub 0} is the fundamental quasinormal resonance of the perturbed black-hole spacetime). (orig.)

  5. Numerical evidence for universality in the relaxation dynamics of near-extremal Kerr–Newman black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.com [The Ruppin Academic Center, 40250, Emeq Hefer (Israel); The Hadassah Institute, 91010, Jerusalem (Israel)

    2015-12-22

    The coupled gravitational-electromagnetic quasinormal resonances of charged rotating Kerr–Newman black holes are explored. In particular, using the recently published numerical data of Dias et al. (Phys Rev Lett 114:151101, 2015), we show that the characteristic relaxation times τ≡1/Iω{sub 0} of near-extremal Kerr–Newman black holes in the regime Q/r{sub +}≤0.9 are described, to a very good degree of accuracy, by the simple universal relation τ×T{sub BH}=π{sup -1} (here Q,r{sub +}, and T{sub BH} are respectively the electric charge, horizon radius, and temperature of the Kerr–Newman black hole, and ω{sub 0} is the fundamental quasinormal resonance of the perturbed black-hole spacetime)

  6. Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Adami, H.; Setare, M.R. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)

    2016-04-15

    In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory. (orig.)

  7. Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity

    Science.gov (United States)

    Adami, H.; Setare, M. R.

    2016-04-01

    In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.

  8. Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation.

    Science.gov (United States)

    Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard

    2016-01-21

    The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.

  9. Acceleration of particles by black holes: Kinematic explanation

    International Nuclear Information System (INIS)

    Zaslavskii, O. B.

    2011-01-01

    A new simple and general explanation of the effect of acceleration of particles by black holes to infinite energies in the center of mass frame is suggested. It is based on kinematics of particles moving near the horizon. This effect arises when particles of two kinds collide near the horizon. For massive particles, the first kind represents a particle with the generic energy and angular momentum (I call them ''usual''). Near the horizon, such a particle has a velocity almost equal to that of light in the frame that corotates with a black hole (the frame is static if a black hole is static). The second kind (called ''critical'') consists of particles with the velocity v< c near the horizon due to special relationship between the energy and angular momentum (or charge). As a result, the relative velocity approaches the speed of light c, and the Lorentz factor grows unbound. This explanation applies both to generic rotating black holes and charged ones (even for radial motion of particles). If one of the colliding particles is massless (photon), the critical particle is distinguished by the fact that its frequency is finite near the horizon. The existence (or absence) of the effect is determined depending on competition of two factors--gravitational blue shift for a photon propagating towards a black hole and the Doppler effect due to transformation from the locally nonrotating frame to a comoving one. Classification of all possible types of collisions is suggested depending on whether massive or massless particle is critical or usual.

  10. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  11. Charges in nonlinear higher-spin theory

    Energy Technology Data Exchange (ETDEWEB)

    Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)

    2017-03-30

    Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS{sub 4} Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.

  12. Charges in nonlinear higher-spin theory

    International Nuclear Information System (INIS)

    Didenko, V.E.; Misuna, N.G.; Vasiliev, M.A.

    2017-01-01

    Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS 4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.

  13. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  14. Hawking radiation via anomaly cancellation for the black holes of five-dimensional minimal gauged supergravity

    International Nuclear Information System (INIS)

    Porfyriadis, Achilleas P.

    2009-01-01

    The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes, and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.

  15. Bumpy black holes

    OpenAIRE

    Emparan, Roberto; Figueras, Pau; Martinez, Marina

    2014-01-01

    We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary non-monotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black ring...

  16. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  17. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  18. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  19. Observing the contour profile of a Kerr-Sen black hole

    Science.gov (United States)

    Lan, X. G.; Pu, J.

    2018-06-01

    In this paper, the shadow and the corresponding naked singularity cast by a Kerr-Sen black hole are studied. It is found that the shadow of a rotating black hole would be a dark zone surrounded by a deformed circle, and the shadow is distorted more away from a circle when the black hole approaches the extremal case. Besides, it is shown that the mean radius of the shadow decreases and distortion parameter increases with the increasing of charge, respectively. However, the mean radius and the distortion parameter vary complicatedly with the change of spin parameter. In the beginning, both observables decrease rapidly with the increasing of specific angular momentum, nevertheless, they increase slightly in the latter part. These results show that there would be a significant effect of the spin on the shadows, which would be of great importance for probing the nature of the black hole.

  20. Production of spinning black holes at colliders

    International Nuclear Information System (INIS)

    Park, S. C.; Song, H. S.

    2003-01-01

    When the Planck scale is as low as TeV, there will be chances to produce Black holes at future colliders. Generally, black holes produced via particle collisions can have non-zero angular momenta. We estimate the production cross-section of rotating Black holes in the context of low energy gravitation theories by taking the effects of rotation into account. The production cross section is shown to be enhanced by a factor of 2 - 3 over the naive estimate σ = π ∼ R S 2 , where R S denotes the Schwarzschild radius of black hole for a given energy. We also point out that the decay spectrum may have a distinguishable angular dependence through the grey-body factor of a rotating black hole. The angular dependence of decaying particles may give a clear signature for the effect of rotating black holes.

  1. Pseudo-Jahn-Teller Distortion in Two-Dimensional Phosphorus: Origin of Black and Blue Phases of Phosphorene and Band Gap Modulation by Molecular Charge Transfer.

    Science.gov (United States)

    Chowdhury, Chandra; Jahiruddin, Sheik; Datta, Ayan

    2016-04-07

    Phosphorene (Pn) is stabilized as a layered material like graphite, yet it possess a natural direct band gap (Eg = 2.0 eV). Interestingly, unlike graphene, Pn exhibits a much richer phase diagram which includes distorted forms like the stapler-clip (black Pn, α form) and chairlike (blue Pn, β form) structures. The existence of these phases is attributed to pseudo-Jahn-Teller (PJT) instability of planar hexagonal P6(6-) rings. In both cases, the condition for vibronic instability of the planar P6(6-) rings is satisfied. Doping with electron donors like tetrathiafulvalene and tetraamino-tetrathiafulvalene and electron acceptors like tetracyanoquinodimethane and tetracyanoethylene convert blue Pn into N-type and black Pn into efficient P-type semiconductors, respectively. Interestingly, pristine blue Pn, an indirect gap semiconductor, gets converted into a direct gap semiconductor on electron or hole doping. Because of comparatively smaller undulation in blue Pn (with respect to black Pn), the van der Waals interactions between the dopants and blue Pn is stronger. PJT distortions for two-dimensional phosphorus provides a unified understanding of structural features and chemical reactivity in its different phases.

  2. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  3. Conformal symmetry for rotating D-branes

    International Nuclear Information System (INIS)

    Cao Liming; Matsuo, Yoshinori; Tsukioka, Takuya; Yoo, Chul-Moon

    2009-01-01

    We apply the Kerr/CFT correspondence to the rotating black p-brane solutions. These solutions give the simplest examples from string theory point of view. Their near horizon geometries have structures of AdS, even though black p-brane solutions do not have AdS-like structures in the non-rotating case. The microscopic entropy which can be calculated via the Cardy formula exactly agrees with Bekenstein-Hawking entropy.

  4. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  5. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  6. Topological black holes in Lovelock-Born-Infeld gravity

    International Nuclear Information System (INIS)

    Dehghani, M. H.; Alinejadi, N.; Hendi, S. H.

    2008-01-01

    In this paper, we present topological black holes of third order Lovelock gravity in the presence of cosmological constant and nonlinear electromagnetic Born-Infeld field. Depending on the metric parameters, these solutions may be interpreted as black hole solutions with inner and outer event horizons, an extreme black hole or naked singularity. We investigate the thermodynamics of asymptotically flat solutions and show that the thermodynamic and conserved quantities of these black holes satisfy the first law of thermodynamic. We also endow the Ricci flat solutions with a global rotation and calculate the finite action and conserved quantities of these class of solutions by using the counterterm method. We compute the entropy through the use of the Gibbs-Duhem relation and find that the entropy obeys the area law. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta, and the charge, and compute temperature, angular velocities, and electric potential and show that these thermodynamic quantities coincide with their values which are computed through the use of geometry. Finally, we perform a stability analysis for this class of solutions in both the canonical and the grand-canonical ensemble and show that the presence of a nonlinear electromagnetic field and higher curvature terms has no effect on the stability of the black branes, and they are stable in the whole phase space

  7. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  8. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  9. Kerr black holes with scalar hair.

    Science.gov (United States)

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-06

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  10. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  11. Black Holes at the LHC: Progress since 2002

    International Nuclear Information System (INIS)

    Park, Seong Chan

    2008-01-01

    We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.

  12. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  13. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  14. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  15. The phase structure of higher-dimensional black rings and black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.; RodrIguez, Maria J.

    2007-01-01

    We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S 1 x S D-3 and incorporates the balancing condition of the ring as a zero-tension condition. For D = 5 our method reproduces the thin ring limit of the exact black ring solution. For D ≥ 6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of 'pinched' black holes. More generally, the analogy suggests an infinite number of pinched black holes of spherical topology leading to a complicated pattern of connections and mergers between phases

  16. Empty black holes, firewalls, and the origin of Bekenstein-Hawking entropy

    Science.gov (United States)

    Saravani, Mehdi; Afshordi, Niayesh; Mann, Robert B.

    2014-01-01

    We propose a novel solution for the endpoint of gravitational collapse, in which spacetime ends (and is orbifolded) at a microscopic distance from black hole event horizons. This model is motivated by the emergence of singular event horizons in the gravitational aether theory, a semiclassical solution to the cosmological constant problem(s) and thus suggests a catastrophic breakdown of general relativity close to black hole event horizons. A similar picture emerges in fuzzball models of black holes in string theory, as well as the recent firewall proposal to resolve the information paradox. We then demonstrate that positing a surface fluid in thermal equilibrium with Hawking radiation, with vanishing energy density (but nonvanishing pressure) at the new boundary of spacetime, which is required by Israel junction conditions, yields a thermodynamic entropy that is identical to the Bekenstein-Hawking area law, SBH, for charged rotating black holes. To our knowledge, this is the first derivation of black hole entropy that only employs local thermodynamics. Furthermore, a model for the microscopic degrees of freedom of the surface fluid (which constitute the microstates of the black hole) is suggested, which has a finite, but Lorentz-violating, quantum field theory. Finally, we comment on the effects of physical boundary on Hawking radiation and show that relaxing the assumption of equilibrium with Hawking radiation sets SBH as an upper limit for Black Hole entropy.

  17. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  18. The optimal entropy bound and the self-energy of test objects in the vicinity of a black hole

    OpenAIRE

    Mayo, Avraham E.

    1999-01-01

    Recently Bekenstein and Mayo conjectured an entropy bound for charged rotating objects. On the basis of the No-Hair principle for black holes, they speculate that this bound cannot be improved generically based on knowledge of other ``quantum numbers'', e.g. baryon number, which may be borne by the object. Here we take a first step in the proof of this conjecture. The proof make use of a gedanken experiment in which a massive object endowed with a scalar charge is lowered adiabatically toward...

  19. Hawking radiation of black rings from anomalies

    International Nuclear Information System (INIS)

    Chen Bin; He Wei

    2008-01-01

    We derive Hawking radiation of five-dimensional black rings from gauge and gravitational anomalies using the method proposed by Robinson and Wilczek. We find, as in the black hole case, that the problem could reduce to a (1+1)-dimensional field theory and the anomalies result in correct Hawking temperature for neutral, dipole and charged black rings

  20. Hawking temperatures of Myers-Perry black holes from tunneling

    International Nuclear Information System (INIS)

    Ma Zhengze

    2009-01-01

    Using the tunneling method of Parikh and Wilczek, we derive the Hawking temperature of a general higher-dimensional rotating black hole which is equal to its surface gravity on the horizon divided by 2π. In order to eliminate the motion on the rotating degrees of freedom of a tunneling particle from a higher-dimensional rotating black hole, we choose a reference system that is co-rotating with the black hole horizon. Then, we apply the obtained result to the Myers-Perry higher-dimensional asymptotically flat black holes and reproduce their Hawking temperatures using the tunneling approach.

  1. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  2. Holographic superconductor in the analytic hairy black hole

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Park, Chanyong

    2011-01-01

    We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstroem-AdS (HRNAdS) black holes. However, this transition unlikely occurs. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.

  3. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  4. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  5. Schwarzschild black holes as unipolar inductors: Expected electromagnetic power of a merger

    International Nuclear Information System (INIS)

    Lyutikov, Maxim

    2011-01-01

    The motion of a Schwarzschild black hole with velocity v 0 =β 0 c through a constant magnetic field B 0 in vacuum induces a component of the electric field along the magnetic field, generating a nonzero second Poincare electromagnetic invariant * F·F≠0. This will produce (e.g., via radiative effects and vacuum breakdown) an electric charge density of the order of ρ ind =B 0 β 0 /(2πeR G ), where R G =2GM/c 2 is the Schwarzschild radius and M is the mass of the black hole; the charge density ρ ind is similar to the Goldreich-Julian density. The magnetospheres of moving black holes resemble in many respects the magnetospheres of rotationally-powered pulsars, with pair formation fronts and outer gaps, where the sign of the induced charge changes. As a result, the black hole will generate bipolar electromagnetic jets each consisting of two counter-aligned current flows (four current flows total), each carrying an electric current of the order I≅eB 0 R G β 0 . The electromagnetic power of the jets is L≅(GM) 2 B 0 2 β 0 2 /c 3 ; for a particular case of merging black holes the resulting Poynting power is L≅(GM) 3 B 0 2 /(c 5 R), where R is the radius of the orbit. In addition, in limited regions near the horizon the first electromagnetic invariant changes sign, so that the induced electric field becomes larger than the magnetic field, E>B. As a result, there will be local dissipation of the magnetic field close to the horizon, within a region with the radial extent ΔR≅R G β 0 . The total energy loss from a system of merging black holes is a sum of two components with similar powers, one due to the rotation of space-time within the orbit, driven by the nonzero angular momentum in the system, and the other due to the linear motion of the black holes through the magnetic field. Since the resulting electrodynamics is in many respects similar to pulsars, merging black holes may generate coherent radio and high energy emission beamed approximately along the

  6. Extremal vacuum black holes in higher dimensions

    International Nuclear Information System (INIS)

    Figueras, Pau; Lucietti, James; Rangamani, Mukund; Kunduri, Hari K.

    2008-01-01

    We consider extremal black hole solutions to the vacuum Einstein equations in dimensions greater than five. We prove that the near-horizon geometry of any such black hole must possess an SO(2,1) symmetry in a special case where one has an enhanced rotational symmetry group. We construct examples of vacuum near-horizon geometries using the extremal Myers-Perry black holes and boosted Myers-Perry strings. The latter lead to near-horizon geometries of black ring topology, which in odd spacetime dimensions have the correct number of rotational symmetries to describe an asymptotically flat black object. We argue that a subset of these correspond to the near-horizon limit of asymptotically flat extremal black rings. Using this identification we provide a conjecture for the exact 'phase diagram' of extremal vacuum black rings with a connected horizon in odd spacetime dimensions greater than five.

  7. Black Alcoholism.

    Science.gov (United States)

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  8. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  9. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  10. Some astrophysical processes around magnetized black hole

    Science.gov (United States)

    Kološ, M.; Tursunov, A.; Stuchlík, Z.

    2018-01-01

    We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.

  11. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  12. Fuel charging machine

    International Nuclear Information System (INIS)

    Uchikawa, Sadao.

    1978-01-01

    Purpose: To enable continuous fuel discharging and charging steps in a bwr type reactor by effecting positioning only for once by providing a plurality of fuel assembly grippers and their drives co-axially on a rotatable surface. Constitution: A plurality of fuel assembly grippers and their drives are provided co-axially on a rotatable surface. For example, a gripper A, a drive B, a gripper C and a drive D are arranged co-axially in symmetric positions on a disk rotated on rails by wheels and rotational drives. A new fuel in a fuel pool is gripped by the gripper A and transported above the reactor core. Then, the disk is positioned so that the gripper C can grip the spent fuel in the core, and the fuel to be discharged is gripped and raised by the gripper C. Then the disk is rotated by 180 0 and the new fuel in the gripper A is charged into the position from which the old fuel has been discharged and, finally, the discharged fuel is sent to the fuel pool for storage. (Seki, T.)

  13. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  14. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  15. Moulting Black Holes

    OpenAIRE

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2011-01-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that ...

  16. Rotational anomalies without anyons

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1985-01-01

    A specific field theory is proposed in two spatial dimensions which has anomalous rotational properties. Although this might be expected to lead to a concrete realization of what Wilczek refers to as the anyon, it is shown by utilizing the transformation properties of the system and the statistics of the underlying charge fields that anyonic interpolations between bosons and fermions do not occur. This leads to the suggestion that anyons inferred from semiclassical considerations will not survive the transition to a fully relativistic field theory

  17. Paraxial charge compensator for electron cryomicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berriman, John A. [Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA (United Kingdom); Rosenthal, Peter B., E-mail: peter.rosenthal@nimr.mrc.ac.uk [Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA (United Kingdom)

    2012-05-15

    We describe a multi-hole condenser aperture for the production of several electron beams in the transmission electron microscope (TEM) making it possible to simultaneously image and irradiate spatially separated regions of a specimen. When the specimen is a thin film of vitreous ice suspended over a holey carbon film, simultaneous irradiation of the adjacent carbon support with the off-axis beam compensates for some of the effects of charging in the image formed by a beam irradiating only the ice. Because the intervening region is not irradiated, charge-neutralization of frozen-hydrated specimens can occur by a through-space mechanism such as the emission of secondary electrons from a grounded carbon support film. We use paraxial charge compensation (PCC) to control the amount of charge build-up on the specimen and observe the effects of charge on images. The multi-hole aperture thus provides a tool for investigating the mechanism of charging and charge mitigation during the imaging of radiation sensitive biological specimens by cryomicroscopy. -- Highlights: Black-Right-Pointing-Pointer A multi-hole condenser aperture produces multiple (paraxial) beams in TEM. Black-Right-Pointing-Pointer Paraxial charge compensation is used to study electron-optical effects of charging. Black-Right-Pointing-Pointer Emission of secondary electrons controls charging by a through space mechanism. Black-Right-Pointing-Pointer Paraxial beams compensate for charging effects in frozen-hydrated specimens.

  18. Black Tea

    Science.gov (United States)

    ... mental alertness as well as learning, memory, and information processing skills. It is also used for treating headache; ... of carbamazepine. Since black tea contains caffeine, in theory taking black tea with carbamazepine might decrease the ...

  19. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  20. Black holes with Yang-Mills hair

    International Nuclear Information System (INIS)

    Kleihaus, B.; Kunz, J.; Sood, A.; Wirschins, M.

    1998-01-01

    In Einstein-Maxwell theory black holes are uniquely determined by their mass, their charge and their angular momentum. This is no longer true in Einstein-Yang-Mills theory. We discuss sequences of neutral and charged SU(N) Einstein-Yang-Mills black holes, which are static spherically symmetric and asymptotically flat, and which carry Yang-Mills hair. Furthermore, in Einstein-Maxwell theory static black holes are spherically symmetric. We demonstrate that, in contrast, SU(2) Einstein-Yang-Mills theory possesses a sequence of black holes, which are static and only axially symmetric