WorldWideScience

Sample records for rostral fastigial nucleus

  1. Responses of Rostral Fastigial Nucleus Neurons of Conscious Cats to Rotations in Vertical Planes

    Science.gov (United States)

    Miller, D. M.; Cotter, L.A.; Gandhi, N. J.; Schor, R. H.; Huff, N. O.; Raj, S. G.; Shulman, J. A.; Yates, B. J.

    2008-01-01

    The rostral fastigial nucleus (RFN) of the cerebellum is thought to play an important role in postural control, and recent studies in conscious nonhuman primates suggest that this region also participates in the sensory processing required to compute body motion in space. The goal of the present study was to examine the dynamic and spatial responses to sinusoidal rotations in vertical planes of RFN neurons in conscious cats, and determine if they are similar to responses reported for monkeys. Approximately half of the RFN neurons examined were classified as graviceptive, since their firing was synchronized with stimulus position and the gain of their responses was relatively unaffected by the frequency of the tilts. The large majority (80%) of graviceptive RFN neurons were activated by pitch rotations. Most of the remaining RFN units exhibited responses to vertical oscillations that encoded stimulus velocity, and approximately 50% of these velocity units had a response vector orientation aligned near the plane of a single vertical semicircular canal. Unlike in primates, few feline RFN neurons had responses to vertical rotations that suggested integration of graviceptive (otolith) and velocity (vertical semicircular canal) signals. These data indicate that the physiological role of the RFN may differ between primates and lower mammals. The RFN in rats and cats in known to be involved in adjusting blood pressure and breathing during postural alterations in the transverse (pitch) plane. The relatively simple responses of many RFN neurons in cats are appropriate for triggering such compensatory autonomic responses. PMID:18571332

  2. Critical role of cerebellar fastigial nucleus in programming sequences of saccades

    Science.gov (United States)

    King, Susan A.; Schneider, Rosalyn M.; Serra, Alessandro; Leigh, R. John

    2011-01-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria due either to genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. PMID:21950988

  3. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Eugene V. Golanov

    2017-09-01

    Full Text Available Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1 hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS-injected animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as “diving response”.

  4. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  5. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    Science.gov (United States)

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  6. Intramedullary projections of the rostral nucleus of the solitary tract in the rat : Gustatory influences on autonomic output

    NARCIS (Netherlands)

    Streefland, C; Jansen, K

    1999-01-01

    The efferent connections of the rostral nucleus of the solitary tract (NTS) in the rat were studied by anterograde transport of Phaseolus vulgaris leucoagglutinin. Rostral to the injection site, fibers travel through the rostral parvocellular reticular formation and deflect medially or laterally

  7. Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I

    1981-01-01

    The high affinity uptake of L-glutamate has been used to investigate the origin and distribution of putative glutamate fibers in restricted parts of the rostral caudatoputamen and the nucleus accumbens of the rat brain. Ablation of the frontal cortex reduced the glutamate uptake heavily (-77%) in the dorsal part of the ipsilateral caudatoputamen, but also led to significant decreases in the ventral parts of the ipsilateral caudatoputamen (-62% and -53%) in the ipsilateral nucleus accumbens (-25% and -18%) and in the contralateral dorsal part of the caudatoputamen (-21%). Lesion of the caudal neocortex reduced the glutamate uptake in the dorsal part of the ipsilateral caudatoputamen only (-23%). Lesions of the fimbria/fornix reduced the glutamate uptake in both parts of the ipsilateral nucleus accumbens (-46% and -34%) and by approximately 20% in the whole dorsoventral extent of the anterior caudatoputamen. The results indicate that the frontal neocortex distributes fibers which may use glutamate as neurotransmitter both to the whole ipsilateral caudatoputamen and to the nucleus accumbens, and also to the dorsal parts of the contralateral caudatoputamen. The caudal neocortex probably sends such fibers to the dorsal ipsilateral caudatoputamen and the caudal allocortex sends such fibers through the fimbria/fornix to the nucleus accumbens and the ventral part of the ipsilateral caudatoputamen. The results thus corroborate previous suggestions of close similarities between the nucleus accumbens and the ventral caudatoputamen.

  8. Different expressions of high voltage-activated Ca2+ channel types in the rostral reticular thalamic nucleus of the absence epileptic WAG/Rij rat.

    NARCIS (Netherlands)

    Bovenkamp-Janssen, M.C. van de; Scheenen, W.J.J.M.; Kuijpers-Kwant, F.J.; Kozicz, L.T.; Veening, J.G.; Luijtelaar, E.L.J.M. van; McEnery, M.W.; Roubos, E.W.

    2004-01-01

    In the WAG/Rij rat, a model for human absence epilepsy, spike-wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca(2+) channels play a central role in the initiation and maintenance of

  9. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bao [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Ma, Le [Department of Public Health, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Miao, Yu-Wang [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Lu, Yan [Department of Clinical Laboratory, Sanaitang Hospital, Lanzhou 730030 (China); Song, Xin-Ai [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-09-01

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91{sup phox}) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension.

  10. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    International Nuclear Information System (INIS)

    Li, Hong-Bao; Qin, Da-Nian; Ma, Le; Miao, Yu-Wang; Zhang, Dong-Mei; Lu, Yan; Song, Xin-Ai; Zhu, Guo-Qing; Kang, Yu-Ming

    2014-01-01

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91 phox ) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension

  11. Effects of unilatral- and bilateral inhibition of rostral ventral tegmental area and central nucleus of amygdala on morphine-induced place conditioning in male Wistar rat.

    Science.gov (United States)

    Mohammadian, Zahra; Sahraei, Hedayat; Meftahi, Gholam Hossein; Ali-Beik, Hengameh

    2017-03-01

    The rostral ventral tegmental area (VTAR) and central nucleus of amygdala (CeA) are considered the main regions for induction of psychological dependence on abused drugs, such as morphine. The main aim of this study was to investigate the transient inhibition of each right and left side as well as both sides of the VTAR and the CeA by lidocaine (2%) on morphine reward properties using the conditioned place preference (CPP) method. Male Wistar rats (250±20 g) 7 days after recovery from surgery and cannulation were conditioned to morphine (7.5 mg/kg) in CPP apparatus. Five minutes before morphine injection in conditioning phase, lidocaine was administered either uni- or bilaterally into the VTAR (0.25 μL/site) or CeA (0.5 μL/site). The results revealed that lidocaine administration into the left side, but not the right side of the VTAR and the CeA reduced morphine CPP significantly. The reduction was potentiated when lidocaine was injected into both sides of the VTAR and the CeA. The number of compartment crossings was reduced when lidocaine was injected into both sides of the VTAR and the CeA as well as the left side. Rearing was reduced when lidocaine was injected into the right, but not the left side of the VTAR. Sniffing and rearing increased when animals received lidocaine in the right side and reduced in the group that received lidocaine in the left side of the CeA. It was concluded that the right and the left side of VTAR and the CeA play different roles in morphine-induced activity and reward. © 2016 John Wiley & Sons Australia, Ltd.

  12. Excitatory amino acid receptor blockade within the caudal pressor area and rostral ventrolateral medulla alters cardiovascular responses to nucleus raphe obscurus stimulation in rats

    Directory of Open Access Journals (Sweden)

    Silva N.F.

    2002-01-01

    Full Text Available Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO depend on the integrity of the rostral ventrolateral medulla (RVLM. Therefore, to test the participation of excitatory amino acid (EAA receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s, the EAA antagonist kynurenic acid (Kyn was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl of male Wistar rats (270-320 g, N = 39 and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01, bradycardia (deltaHR = -30 ± 7 bpm, P<0.01 and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7. Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6. Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7. These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.

  13. Role of the cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in the cat

    Science.gov (United States)

    Doba, N.; Reis, D. J.

    1974-01-01

    The contribution of the fastigial nucleus and the vestibular nerves (eighth cranial nerves) to the orthostatic reflexes in anesthetized, paralyzed cats was studied. Bilateral lesions of the rostral fastigial nucleus resulted in impairment of the reflex changes in blood pressure, femoral arterial flow, and resistance evoked by head-up tilting to 30 deg or 60 deg. The rostral fastigial nucleus, which might be triggered by the vestibular apparatus, appears to participate in concert with the baroreceptors in the initiation and possibly the maintenance of the orthostatic reflexes.

  14. The rostral medulla of bullfrog tadpoles contains critical lung rhythmogenic and chemosensitive regions across metamorphosis.

    Science.gov (United States)

    Reed, Mitchell D; Iceman, Kimberly E; Harris, Michael B; Taylor, Barbara E

    2018-06-08

    The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO 2 sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO 2 responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO 2 responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO 2 throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis. Copyright © 2018. Published by Elsevier Inc.

  15. Neuroanatomical circuitry between kidney and rostral elements of brain: a virally mediated transsynaptic tracing study in mice.

    Science.gov (United States)

    Zhou, Ye-Ting; He, Zhi-Gang; Liu, Tao-Tao; Feng, Mao-Hui; Zhang, Ding-Yu; Xiang, Hong-Bing

    2017-02-01

    The identity of higher-order neurons and circuits playing an associative role to control renal function is not well understood. We identified specific neural populations of rostral elements of brain regions that project multisynaptically to the kidneys in 3-6 days after injecting a retrograde tracer pseudorabies virus (PRV)-614 into kidney of 13 adult male C57BL/6J strain mice. PRV-614 infected neurons were detected in a number of mesencephalic (e.g. central amygdala nucleus), telencephalic regions and motor cortex. These divisions included the preoptic area (POA), dorsomedial hypothalamus (DMH), lateral hypothalamus, arcuate nucleus (Arc), suprachiasmatic nucleus (SCN), periventricular hypothalamus (PeH), and rostral and caudal subdivision of the paraventricular nucleus of the hypothalamus (PVN). PRV-614/Tyrosine hydroxylase (TH) double-labeled cells were found within DMH, Arc, SCN, PeH, PVN, the anterodorsal and medial POA. A subset of neurons in PVN that participated in regulating sympathetic outflow to kidney was catecholaminergic or serotonergic. PRV-614 infected neurons within the PVN also contained arginine vasopressin or oxytocin. These data demonstrate the rostral elements of brain innervate the kidney by the neuroanatomical circuitry.

  16. Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders

    Science.gov (United States)

    Dumontheil, Iroise; Burgess, Paul W.; Blakemore, Sarah-Jayne

    2008-01-01

    Information on the development and functions of rostral prefrontal cortex (PFC), or Brodmann area 10, has been gathered from different fields, from anatomical development to functional neuroimaging in adults, and put forward in relation to three particular cognitive and behavioural disorders. Rostral PFC is larger and has a lower cell density in…

  17. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization......-stimulus orthodromic activation, using an electrode placed in the dorsomedial slice near the nucleus tractus solitarius, evoked single excitatory postsynaptic potentials (EPSPs) or short trains of EPSPs (500 ms to 1 s). However, tetanic stimulation (5 pulses, 10 Hz) induced voltage-dependent afterdepolarizations...

  18. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.

    Science.gov (United States)

    Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-11-01

    In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.

  19. Nucleus--nucleus potential

    International Nuclear Information System (INIS)

    Jaqaman, H.R.

    1977-01-01

    The nucleus--nucleus interaction is studied within the framework of the generator coordinate method that permits an easy incorporation of the full effects of antisymmetrization. It is found that the interaction, as far as the elastic scattering problem is concerned, can be described by a simple effective potential that is equivalent to the original many-body (and hence non-local) problem. The potential is obtained by dividing the wavefunction into a long-range part and a short-range part and requiring the former to satisfy a Schroedinger equation. This enables avoiding dealing with the troublesome short-range part of the wavefunction and provides a direct link with the optical model so that the potential obtained here is equivalent to the real part of the optical potential (the imaginary part is not investigated). The effective potential is found to consist of three parts: an interaction term between the nucleons belonging to different nuclei, a kinetic energy term due to the change in the intrinsic kinetic energy of the system as a result of the antisymmetrization, and finally an l-dependent part. The kinetic energy term is found to be very repulsive and effectively gives a hard core, and is calculated for the α--α and 16 O-- 16 O cases. The full potential is calculated for the α--α case for the S, D, and G partial waves and then used to calculate the corresponding phase shifts that are then compared with experimental results and other microscopic calculations. Finally, some recent results and analyses of fusion and deep inelastic reactions are reviewed that seem to indicate the presence of a hard core in the nucleus--nucleus potential. Such a hard core is present in the potential obtained in the sudden approximation

  20. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease)

    NARCIS (Netherlands)

    Rub, U; Brunt, ER; Gierga, K; Schultz, C; Paulson, H; de Vos, RAI; Braak, H

    The nucleus raphe interpositus (RIP) plays an important role in the premotor network for saccades. Its omnipause neurons gate the activity of the burst neurons for vertical saccades lying within the rostral interstitial nucleus of the medial longitudinal fascicle and that for horizontal saccades

  1. Specialization of the Rostral Prefrontal Cortex for Distinct Analogy Processes

    Science.gov (United States)

    Gilbert, Sam J.; Benoit, Roland G.; Burgess, Paul W.

    2010-01-01

    Analogical reasoning is central to learning and abstract thinking. It involves using a more familiar situation (source) to make inferences about a less familiar situation (target). According to the predominant cognitive models, analogical reasoning includes 1) generation of structured mental representations and 2) mapping based on structural similarities between them. This study used functional magnetic resonance imaging to specify the role of rostral prefrontal cortex (PFC) in these distinct processes. An experimental paradigm was designed that enabled differentiation between these processes, by temporal separation of the presentation of the source and the target. Within rostral PFC, a lateral subregion was activated by analogy task both during study of the source (before the source could be compared with a target) and when the target appeared. This may suggest that this subregion supports fundamental analogy processes such as generating structured representations of stimuli but is not specific to one particular processing stage. By contrast, a dorsomedial subregion of rostral PFC showed an interaction between task (analogy vs. control) and period (more activated when the target appeared). We propose that this region is involved in comparison or mapping processes. These results add to the growing evidence for functional differentiation between rostral PFC subregions. PMID:20156841

  2. The accessory magnocellular neurosecretory system of the rostral human hypothalamus

    DEFF Research Database (Denmark)

    Møller, Morten; Busch, Johannes R.; Jacobsen, Christina

    2018-01-01

    magnocellular neurons were often located along the blood vessels and projections of some of these neurons penetrated the vascular endothelium. The accessory magnocellular cell bodies expressed either neurophysin I or neurophysin II immunoreactivity. Summarizing, the accessory magnocellular system in the human......The morphology and neurophysin expression of the magnocellular accessory neuroendocrine system located in the rostral human hypothalamus is investigated in a series of brains obtained at autopsy. The hypothalami were fixed in formalin and embedded in paraffin, or after cryoprotection, frozen...

  3. Burst discharges of fastigial neurons in macaque monkeys are driven by vision- and memory-guided saccades but not by spontaneous saccades.

    Science.gov (United States)

    Ohtsuka, K; Noda, H

    1992-11-01

    Discharges from 61 saccadic burst neurons in the fastigial oculomotor region were recorded for two trained macaque monkeys during vision-guided or memory-guided saccades or spontaneous saccades in the dark. Although these neurons exhibited vigorous, burst discharges during both vision-guided and memory-guided saccades, only weak bursts were observed during spontaneous saccades in the dark. Especially in 10 of the 61 neurons, saccadic burst discharge was almost completely absent during spontaneous saccades in the dark. These findings suggest that the cerebellum plays an important role in the control of vision-guided saccades as well as memory-guided saccades, but not of spontaneous saccades in the dark.

  4. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  5. N-acetylgalactosamine positive perineuronal nets in the saccade-related-part of the cerebellar fastigial nucleus do not maintain saccade gain.

    Directory of Open Access Journals (Sweden)

    Adrienne Mueller

    Full Text Available Perineuronal nets (PNNs accumulate around neurons near the end of developmental critical periods. PNNs are structures of the extracellular matrix which surround synaptic contacts and contain chondroitin sulfate proteoglycans. Previous studies suggest that the chondroitin sulfate chains of PNNs inhibit synaptic plasticity and thereby help end critical periods. PNNs surround a high proportion of neurons in the cerebellar nuclei. These PNNs form during approximately the same time that movements achieve normal accuracy. It is possible that PNNs in the cerebellar nuclei inhibit plasticity to maintain the synaptic organization that produces those accurate movements. We tested whether or not PNNs in a saccade-related part of the cerebellar nuclei maintain accurate saccade size by digesting a part of them in an adult monkey performing a task that changes saccade size (long term saccade adaptation. We use the enzyme Chondroitinase ABC to digest the glycosaminoglycan side chains of proteoglycans present in the majority of PNNs. We show that this manipulation does not result in faster, larger, or more persistent adaptation. Our result indicates that intact perineuronal nets around saccade-related neurons in the cerebellar nuclei are not important for maintaining long-term saccade gain.

  6. Anomalous rostral lumbosacral root emergence from the thecal sac

    International Nuclear Information System (INIS)

    Peyster, R.G.; Parghi, A.; Siegal, T.; Hershey, B.L.; Yablon, J.; Jaffe, S.

    1989-01-01

    Anomalous rostral lumbosacral root emergence (AARE) has important clinical implications and has received little attention. The authors have studied the occurrence of this anomaly and presentation of cases in which it was paramount in causing radiculopathy. AARE was noted with the following occurrence rates in 500 cases: L3, 0%; L4, 1%; L5, 9%, and S1, 16%. In ARRE, the roots lie laterally between the superior facet and the annulus and are subject to compression by minimal disk bulging or facet hypertrophy. One must track the individual nerve roots on lumbar CT and MR imaging to detect this subtle condition

  7. Accommodation and convergence palsy caused by lesions in the bilateral rostral superior colliculus.

    Science.gov (United States)

    Ohtsuka, Kenji; Maeda, Sachie; Oguri, Naomi

    2002-03-01

    To report a patient who developed accommodation and convergence palsy caused by lesions in the bilateral rostral superior colliculus. Observational case report. A 30-year-old right-handed man experienced sudden onset of diplopia and blurred vision at near vision. The patient showed accommodation and convergence palsy. Magnetic resonance imaging revealed lesions located in the bilateral rostral superior colliculus. These findings suggest that the rostral superior colliculus is involved in the control of accommodation and vergence eye movements.

  8. Identification of the rostral migratory stream in the canine and feline brain.

    Directory of Open Access Journals (Sweden)

    Saafan Z Malik

    Full Text Available In the adult rodent brain, neural progenitor cells migrate from the subventricular zone of the lateral ventricle towards the olfactory bulb in a track known as the rostral migratory stream (RMS. To facilitate the study of neural progenitor cells and stem cell therapy in large animal models of CNS disease, we now report the location and characteristics of the normal canine and feline RMS. The RMS was found in Nissl-stained sagittal sections of adult canine and feline brains as a prominent, dense, continuous cellular track beginning at the base of the anterior horn of the lateral ventricle, curving around the head of the caudate nucleus and continuing laterally and ventrally to the olfactory peduncle before entering the olfactory tract and bulb. To determine if cells in the RMS were proliferating, the thymidine analog 5-bromo-2-deoxyuridine (BrdU was administered and detected by immunostaining. BrdU-immunoreactive cells were present throughout this track. The RMS was also immunoreactive for markers of proliferating cells, progenitor cells and immature neurons (Ki-67 and doublecortin, but not for NeuN, a marker of mature neurons. Luxol fast blue and CNPase staining indicated that myelin is closely apposed to the RMS along much of its length and may provide guidance cues for the migrating cells. Identification and characterization of the RMS in canine and feline brain will facilitate studies of neural progenitor cell biology and migration in large animal models of neurologic disease.

  9. The nucleus

    International Nuclear Information System (INIS)

    Marano, S.

    1998-01-01

    In 1911 E.Rutherford discovered the nucleus. Since then the nucleus has been investigated with more and more powerful tools but it remains the main field of study of nuclear physics. As it is impossible to take into account the interaction of all the nucleons, a theory based on the hypothesis that each nucleon undergoes an average interaction force has been set up. 2 representations have emerged: the Skyrme force and the Gogny force. Both representations match experimental results but are unable to describe fission yields or the multi-fragmentation of very hot nuclei. The mean-field theory can predict the shape of the nuclei according to its energy level. An experimental program involving the Vivitron accelerator and the Euroball detector is due to begin to validate it. By bombarding targets with exotic nuclei nuclear physicists detect new structures and test their collision models. About ten years ago nuclear halos were observed with lithium 11 nuclei. In this nucleus 2 neutrons move in a space larger than the nucleus itself. This discovery has triggered the elaboration of new theories based on nuclear clusters. At very high temperatures the mean-field theory predicts that nuclear matter acts as a fluid. Following the nuclei temperature different ways of decay appear: first evaporation then multi-fragmentation and vaporization. This ultimate stage occurs around 100 milliard celsius degree temperature when the nuclei decays in a multitude of light particles. Isomeric states are studied and could be seen as a way of storing energy. In a very pedagogical way this article gives information to understand the challenges that face nuclear physics today and highlights the contributions of Cea in this field. (A.C.)

  10. Trigeminal-Rostral Ventromedial Medulla circuitry is involved in orofacial hyperalgesia contralateral to tissue injury

    Directory of Open Access Journals (Sweden)

    Chai Bryan

    2012-10-01

    Full Text Available Abstract Background Our previous studies have shown that complete Freund’s adjuvant (CFA-induced masseter inflammation and microinjection of the pro-inflammatory cytokine interleukin-1β (IL-1β into the subnucleus interpolaris/subnucleus caudalis transition zone of the spinal trigeminal nucleus (Vi/Vc can induce contralateral orofacial hyperalgesia in rat models. We have also shown that contralateral hyperalgesia is attenuated with a lesion of the rostral ventromedial medulla (RVM, a critical site of descending pain modulation. Here we investigated the involvement of the RVM-Vi/Vc circuitry in mediating contralateral orofacial hyperalgesia after an injection of CFA into the masseter muscle. Results Microinjection of the IL-1 receptor antagonist (5 nmol, n=6 into the ipsilateral Vi/Vc attenuated the CFA-induced contralateral hyperalgesia but not the ipsilateral hyperalgesia. Intra-RVM post-treatment injection of the NK1 receptor antagonists, RP67580 (0.5-11.4 nmol and L-733,060 (0.5-11.4 nmol, attenuated CFA-induced bilateral hyperalgesia and IL-1β induced bilateral hyperalgesia. Serotonin depletion in RVM neurons prior to intra-masseter CFA injection prevented the development of contralateral hyperalgesia 1–3 days after CFA injection. Inhibition of 5-HT3 receptors in the contralateral Vi/Vc with direct microinjection of the select 5-HT3 receptor antagonist, Y-25130 (2.6-12.9 nmol, attenuated CFA-induced contralateral hyperalgesia. Lesions to the ipsilateral Vc prevented the development of ipsilateral hyperalgesia but did not prevent the development of contralateral hyperalgesia. Conclusions These results suggest that the development of CFA-induced contralateral orofacial hyperalgesia is mediated through descending facilitatory mechanisms of the RVM-Vi/Vc circuitry.

  11. Surgical treatment and a unique management of rostral mandibular fracture with cerclage wire in a horse.

    Science.gov (United States)

    Naddaf, Hadi; Sabiza, Soroush; Kavosi, Narges

    2015-01-01

    A 3-year-old Arabian colt was presented for a major gingiva wound at the right rostral part of mandible. After clinical assessments, rostral mandibular fracture was determined. Stabilization of fractured region was achieved via cerclage wire application under general anesthesia. Fixation wires were left in place for 6 weeks. A 3 -month follow up revealed complete fracture healing. The purpose of this case report was to give clinical information about rostral mandibular fractures and treatment of these fractures and nutrition protocol in a horse, as this fracture is of the most common type of jaw fracture sustained by young horses.

  12. Nucleus-nucleus total reaction cross sections

    International Nuclear Information System (INIS)

    DeVries, R.M.; Peng, J.C.

    1980-01-01

    We compare sigma/sub R/(E) for nucleus-nucleus systems (obtained from existing direct measurements and derived from elastic scattering data) with nucleon-nucleon and nucleon-nucleus data. The energy dependence of sigma/sub R/(E) for nucleus-nucleus systems is found to be quite rapid; there appears to be no evidence for an energy independent, geometric sigma/sub R/. Simple parameter free microscopic calculations are able to quantitatively reproduce the data and thus, emphasize the dominance of nucleon-nucleon interactions in medium energy nucleus-nucleus collisions

  13. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  14. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin

    DEFF Research Database (Denmark)

    Zheng, Y; Riche, D; Rekling, J C

    1998-01-01

    retrogradely brainstem neurons reciprocally connected to a population of inspiratory neurons in the rat rVRG. The procedure excited rVRG neurons in multi-unit recordings and led to a Golgi-like labelling of distant cells presumably excited by efferents from the rVRG. Injection of biocytin without NMDA did......Groups of neurons in the medulla and pons are essential for the rhythm generation, pattern formation and modulation of respiration. The rostral Ventral Respiratory Group (rVRG) is thought to be a crucial area for rhythm generation. Here we co-applied biocytin and NMDA in the rVRG to label...... not label neurons in distant structures. Several brainstem ipsi- and contralateral structures were found to project to the rVRG, but three major respiratory-related structures, the nucleus of the solitary tract (NTS), the parabrachialis medialis and Kölliker-Fuse nuclei (PB/KF) and the caudal VRG, which...

  15. Comparison of dysphagia outcomes between rostral and caudal lateral medullary infarct patients.

    Science.gov (United States)

    Chun, Min Ho; Kim, Daeha; Chang, Min Cheol

    2017-11-01

    A detailed knowledge of dysphagia outcomes in lateral medullary infarct (LMI) patients would enable proper establishment of swallowing therapy goals and strategies. However, little is known about the impact of infarct location on dysphagia outcomes in patients with LMI. Twenty patients with rostral LMI (rostral group) and 20 patients with caudal LMI (caudal group) participated in the study. All patients underwent swallowing therapy, which included compensatory treatments and strengthening exercises, for >3 months. Dysphagia evaluation was performed twice (during the subacute stage and six months after stroke onset) using videofluoroscopic swallowing studies. Dysphagia degree was assessed using the functional dysphagia scale (FDS), the penetration-aspiration scale (PAS) and the American Speech-Language-Hearing Association (ASHA) National Outcome Measurement System (NOMS) swallowing scale. In the subacute stage, the rostral group had significantly higher FDS and PAS scores and a significantly lower ASHA NOMS score than the caudal group. Patients from both groups showed significant improvement from the initial evaluation to the six-month evaluation. There were no significant differences in these scale scores between the two groups at the six-month evaluation. In the subacute stage, patients in the rostral group had more severe dysphagia than those in the caudal group. Dysphagia improved in both groups after 3-6 months of swallowing therapy. At six months after onset, there were no significant differences in dysphagia severity between the two groups. Recovery from dysphagia after LMI was observed regardless of the infarct location.

  16. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey.

    Science.gov (United States)

    Scott, Brian H; Leccese, Paul A; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Mullarkey, Matthew P; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-01-01

    In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Social and Nonsocial Functions of Rostral Prefrontal Cortex: Implications for Education

    Science.gov (United States)

    Gilbert, Sam J.; Burgess, Paul W.

    2008-01-01

    In this article, we discuss the role of rostral prefrontal cortex (approximating Brodmann Area 10) in two domains relevant to education: executive function (particularly prospective memory, our ability to realize delayed intentions) and social cognition (particularly our ability to reflect on our own mental states and the mental states of others).…

  18. External rostral characters for differentiation of sexes in the biological control agent Mecinus janthinus (Coleoptera: Curculionidae)

    Science.gov (United States)

    Marjolein Schat; Sharlene E. Sing; Robert K. D. Peterson

    2007-01-01

    The stem-boring weevil, Mecinus janthinus (Germar), is a promising, well established classical biological control agent for the exotic invasive weed Dalmatian toadflax (Linaria dalmatica (L.) Mill.) (Scrophulariaceae). In this paper we present readily apparent rostral characters that can be used for sex differentiation of live stem-boring weevils at low magnification....

  19. Perspective of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Specht, H.J.

    1985-01-01

    The paper concerns the lectures given at the International School of nuclear physics, Erice, 1985, which survey the expectations for the field of ultrarelativistic nucleus-nucleus collisions. The primary motivation for the field, the organization of the lectures, and a description of the NA 34 experiment, are all briefly given. (U.K.)

  20. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections.

    Science.gov (United States)

    Ganchrow, Donald; Ganchrow, Judith R; Cicchini, Vanessa; Bartel, Dianna L; Kaufman, Daniel; Girard, David; Whitehead, Mark C

    2014-05-01

    The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2 -IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. Copyright © 2013 Wiley Periodicals, Inc.

  1. Regenerative approach to bilateral rostral mandibular reconstruction in a case series of dogs

    Directory of Open Access Journals (Sweden)

    Boaz eArzi

    2015-03-01

    Full Text Available Extensive rostral mandibulectomy in dogs typically results in instability of the mandibles that may lead to malocclusion, difficulty in eating and drinking, food prehension, and pain of the temporomandibular joint. Large rostral mandibular defects are challenging to reconstruct due to the complex geometry of this region. In order to restore mandibular continuity and stability following extensive rostral mandibulectomy, we developed a surgical technique using a combination of intraoral and extraoral approaches, a locking titanium plate and a compression resistant matrix (CRM infused with rhBMP-2. Furthermore, surgical planning that consisted of computed tomographic (CT scanning and 3D model printing were utilized. We describe a regenerative surgical technique for immediate or delayed reconstruction of critical-size rostral mandibular defects in 5 dogs. Three dogs had healed with intact gingival covering over the mandibular defect and had immediate return to normal function and occlusion. Two dogs had the complication of focal plate exposure and dehiscence, which was corrected with mucosal flaps and suturing; these dogs have since healed with intact gingival covering over the mandibular defect. Mineralized tissue formation was palpated clinically within 2 weeks and solid bone formation within 3 months. Computed tomography findings at 6 months postoperatively demonstrated that the newly regenerated mandibular bone had increased in mineral volume with evidence of integration between the native bone, new bone and CRM compared to the immediate postoperative CT. We conclude that rostral mandibular reconstruction using a regenerative approach provides an excellent solution for restoring mandibular continuity and preventing mandibular instability in dogs.

  2. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  3. Distinct effect of orphanin FQ in nucleus raphe magnus and nucleus reticularis gigantocellularis on the rat tail flick reflex.

    Science.gov (United States)

    Yang, Z; Zhang, Y; Wu, G

    2001-06-22

    The aim of the present study is to investigate the effects of orphanin FQ (OFQ) microinjected into the nucleus raphe magnus (NRM) and the nucleus reticularis gigantocellularis (NGC) on pain modulation. The tail-flick latency (TFL) was used as a behavioral index of nociceptive responsiveness. The result showed microinjection of OFQ into the NRM significantly increased the TFL, whereas microinjection of OFQ into the NGC decreased the TFL, suggesting the analgesic effect of OFQ in the NRM and the hyperalgesic effect of OFQ in the NGC. As there are three classes of putative pain modulating neurons in the rostral ventromedial medulla (RVM), the hyperalgesic or analgesic effect of OFQ in the RVM might depend upon the different class of the neurons being acted.

  4. Projections of the optic tectum and the mesencephalic nucleus of the trigeminal nerve in the tegu lizard (Tupinambis nigropunctatus).

    Science.gov (United States)

    Ebbesson, S O

    1981-01-01

    Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord. The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract. Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.

  5. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well...

  6. Pion production in nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1975-06-01

    Current work on pion production in high-energy nucleus-nucleus collisions is reviewed. The majority of existing data are of the inclusive variety in which a single final state pion is detected. Experimental data are compared and their possible contributions to obtaining new information on nuclear structure is discussed. Various models which attempt to explain the observed single-inclusive-pion spectra either on the basis of a nucleon-nucleus interaction in which Fermi motion is included or on some type of cooperative model are examined. Other areas of interest involving pion production include tests of charge symmetry and pion multiplicities. (9 figures, 1 table) (U.S.)

  7. Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents.

    Science.gov (United States)

    Celio, Marco R; Babalian, Alexandre; Ha, Quan Hue; Eichenberger, Simone; Clément, Laurence; Marti, Christiane; Saper, Clifford B

    2013-10-01

    A solitary cluster of parvalbumin-positive neurons--the PV1 nucleus--has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the PV1 nucleus using nonspecific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1 nucleus was found to project mainly to the periaqueductal grey matter (PAG), predominantly ipsilaterally. Indirectly in rats and directly in mice, a discrete, longitudinally oriented cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF is particularly dense in the rostral portion, which is located in the supraoculomotor nucleus (Su3). It is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbumin-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings, which stem from neurons scattered throughout the PV1 nucleus. Topographically, the longitudinal orientation of the PV1-CTF accords with that of the likewise longitudinally oriented functional modules of the PAG, but overlaps none of them. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal, the lateral habenular, and the laterodorsal tegmental nuclei. So far, no obvious functions have been attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1 nucleus. © 2013 Wiley Periodicals, Inc.

  8. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  9. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential

    International Nuclear Information System (INIS)

    Davidovs'ka, O.Yi.; Denisov, V.Yu.; Nesterov, V.O.

    2010-01-01

    Various approaches for nucleus-nucleus interaction potential evaluation are discussed in details. It is shown that the antisymmetrization of nucleons belonging to different nuclei and the Pauli principle give the essential contribution into the nucleus-nucleus potential at distances, when nuclei are strongly overlapping, and lead to appearance of the repulsive core of nucleus nucleus interaction at small distances between nuclei.

  10. Interfragmental fixation of rostral mandibular fracture with cerclage wire in a thoroughbred English horse

    OpenAIRE

    ÇETİNKAYA, Mehmet Alper; DEMİRUTKU, Alper

    2014-01-01

    The patient in this study was a 20-year-old thoroughbred gelding. After clinical and radiographical assessments, a bilateral rostral mandibular body fracture was determined. Fracture stabilization was achieved via a bilateral interfragmentary cerclage wire application. The horse started to use its jaw within 24 h of surgery. Postoperative radiographs were taken until month 6, at different periods, and fracture healing was evaluated. Fixation materials were left in place. Fracture healing occu...

  11. Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia.

    Science.gov (United States)

    Kikinis, Z; Fallon, J H; Niznikiewicz, M; Nestor, P; Davidson, C; Bobrow, L; Pelavin, P E; Fischl, B; Yendiki, A; McCarley, R W; Kikinis, R; Kubicki, M; Shenton, M E

    2010-11-01

    The dorsolateral prefrontal cortex (DLPFC) is a brain region that has figured prominently in studies of schizophrenia and working memory, yet the exact neuroanatomical localization of this brain region remains to be defined. DLPFC primarily involves the superior frontal gyrus and middle frontal gyrus (MFG). The latter, however is not a single neuroanatomical entity but instead is comprised of rostral (anterior, middle, and posterior) and caudal regions. In this study we used structural MRI to develop a method for parcellating MFG into its component parts. We focused on this region of DLPFC because it includes BA46, a region involved in working memory. We evaluated volume differences in MFG in 20 patients with chronic schizophrenia and 20 healthy controls. Mid-rostral MFG (MR-MFG) was delineated within the rostral MFG using anterior and posterior neuroanatomical landmarks derived from cytoarchitectonic definitions of BA46. Gray matter volumes of MR-MFG were then compared between groups, and a significant reduction in gray matter volume was observed (p<0.008), but not in other areas of MFG (i.e., anterior or posterior rostral MFG, or caudal regions of MFG). Our results demonstrate that volumetric alterations in MFG gray matter are localized exclusively to MR-MFG. 3D reconstructions of the cortical surface made it possible to follow MFG into its anterior part, where other approaches have failed. This method of parcellation offers a more precise way of measuring MR-MFG that will likely be important in further documentation of DLPFC anomalies in schizophrenia. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Antiproton production in nucleon-nucleus and nucleus-nucleus collisions at the CERN-SPS

    International Nuclear Information System (INIS)

    Kadija, K.; Schmitz, N.; Seyboth, P.

    1996-01-01

    A model for antiproton production in nucleon-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon, based on the wounded nucleon model is developed. The predictions are compared to published nucleon-nucleus and sulphur-nucleus data. The results suggest the presence of similar antiproton production processes in nucleon-nucleus and nucleus-nucleus collisions near midrapidity. (orig.)

  13. Use of a hard palate mucoperiosteal flap for rostral muzzle reconstruction in a dog after a traumatic premaxillary degloving injury.

    Science.gov (United States)

    Kurach, Lindsey; Plesman, Rhea; Grier-Lowe, Candace; Linn, Kathleen; Anthony, James

    2013-02-01

    To describe a technique for reconstruction of the rostral aspect of the muzzle of a dog after traumatic amputation. Clinical report. Adult female dog. A 6-year-old, intact, female, mixed-breed dog was admitted for facial reconstructive surgery after traumatic amputation of the rostral aspect of the muzzle. The nasal planum and the rostral portion of the upper lips were missing. A hard palate mucoperiosteal flap and lateral labial advancement flaps were used to reconstruct the nasal philtrum and borders of the nares. This reconstructive technique resulted in adequate nostril function and an acceptable cosmetic outcome. One naris developed partial obstruction with granulation tissue that may have occurred because of a lack of circumferential nasal mucosa to appose the skin on that side. The mucoperiosteum of the hard palate can be used to reconstruct the rostral aspect of the muzzle after traumatic amputation, resulting in an acceptable cosmetic outcome. © Copyright 2012 by The American College of Veterinary Surgeons.

  14. The role of rostral prefrontal cortex in prospective memory: a voxel-based lesion study.

    Science.gov (United States)

    Volle, Emmanuelle; Gonen-Yaacovi, Gil; Costello, Angela de Lacy; Gilbert, Sam J; Burgess, Paul W

    2011-07-01

    Patients with lesions in rostral prefrontal cortex (PFC) often experience problems in everyday-life situations requiring multitasking. A key cognitive component that is critical in multitasking situations is prospective memory, defined as the ability to carry out an intended action after a delay period filled with unrelated activity. The few functional imaging studies investigating prospective memory have shown consistent activation in both medial and lateral rostral PFC but also in more posterior prefrontal regions and non-frontal regions. The aim of this study was to determine regions that are necessary for prospective memory performance, using the human lesion approach. We designed an experimental paradigm allowing us to assess time-based (remembering to do something at a particular time) and event-based (remembering to do something in a particular situation) prospective memory, using two types of material, words and pictures. Time estimation tasks and tasks controlling for basic attention, inhibition and multiple instructions processing were also administered. We examined brain-behaviour relationships with a voxelwise lesion method in 45 patients with focal brain lesions and 107 control subjects using this paradigm. The results showed that lesions in the right polar prefrontal region (in Brodmann area 10) were specifically associated with a deficit in time-based prospective memory tasks for both words and pictures. This deficit could not be explained by impairments in basic attention, detection, inhibition or multiple instruction processing, and there was also no deficit in event-based prospective memory conditions. In addition to their prospective memory difficulties, these polar prefrontal patients were significantly impaired in time estimation ability compared to other patients. The same region was found to be involved using both words and pictures, suggesting that right rostral PFC plays a material nonspecific role in prospective memory. This is the first

  15. K+-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    The K + -nucleus system is reviewed and comparison with data is made. The principal conclusions are that the theoretical uncertainties in relating the K + -nucleus interaction to the K + -nucleon interaction are very small and hence the positive kaon makes an excellent probe of the nucleus. It is suggested that this particle may be more sensitive to non-nucleonic degrees of freedom (especially quarks) than classical probes

  16. Microscopic model of nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Harvey, B.G.

    1986-04-01

    The collision of two nuclei is treated as a collection of collisions between the nucleons of the projectile and those of the target nucleus. The primary projectile fragments contain only those nucleons that did not undergo a collision. The inclusive and coincidence cross sections result from the decay of the excited primary fragments. 15 refs., 5 figs

  17. Molecular characterization of the mouse superior lateral parabrachial nucleus through expression of the transcription factor Runx1.

    Directory of Open Access Journals (Sweden)

    Chrissandra J Zagami

    2010-11-01

    Full Text Available The ability to precisely identify separate neuronal populations is essential to the understanding of the development and function of different brain structures. This necessity is particularly evident in regions such as the brainstem, where the anatomy is quite complex and little is known about the identity, origin, and function of a number of distinct nuclei due to the lack of specific cellular markers. In this regard, the gene encoding the transcription factor Runx1 has emerged as a specific marker of restricted neuronal populations in the murine central and peripheral nervous systems. The aim of this study was to precisely characterize the expression of Runx1 in the developing and postnatal mouse brainstem.Anatomical and immunohistochemical studies were used to characterize mouse Runx1 expression in the brainstem. It is shown here that Runx1 is expressed in a restricted population of neurons located in the dorsolateral rostral hindbrain. These neurons define a structure that is ventromedial to the dorsal nucleus of the lateral lemniscus, dorsocaudal to the medial paralemniscal nucleus and rostral to the cerebellum. Runx1 expression in these cells is first observed at approximately gestational day 12.5, persists into the adult brain, and is lost in knockout mice lacking the transcription factor Atoh1, an important regulator of the development of neuronal lineages of the rhombic lip. Runx1-expressing neurons in the rostral hindbrain produce cholecystokinin and also co-express members of the Groucho/Transducin-like Enhancer of split protein family.Based on the anatomical and molecular characteristics of the Runx1-expressing cells in the rostral hindbrain, we propose that Runx1 expression in this region of the mouse brain defines the superior lateral parabrachial nucleus.

  18. Treatment of fibrosarcoma in a maned wolf (Chrysocyon brachyurus) by rostral maxillectomy.

    Science.gov (United States)

    McNulty, E E; Gilson, S D; Houser, B S; Ouse, A

    2000-09-01

    A 12-yr-old captive intact male maned wolf (Chrysocyon brachyurus) was diagnosed with a fibrosarcoma of the incisive bones. The mass was excised by rostral maxillectomy, and the wolf remained normal and on display with good function and cosmetics for 7 mo. Subsequently, it became weak, ataxic, and dyspneic and was euthanatized. At necropsy, there was a small regrowth of the maxillary tumor, a metastatic mediastinal mass, and multiple metastatic lung masses, suggesting that oral fibrosarcoma in maned wolves behaves similarly to oral fibrosarcoma in domestic canines. Aggressive surgical treatment of oral fibrosarcoma in this species can achieve good functional and cosmetic results.

  19. Nucleus Ruber of Actinopterygians.

    Science.gov (United States)

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  20. The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive.

    Science.gov (United States)

    Fu, Yu Hong; Watson, Charles

    2012-01-01

    The arcuate nucleus is a prominent cell group in the human hindbrain, characterized by its position on the pial surface of the pyramid. It is considered to be a precerebellar nucleus and has been implicated in the pathology of several disorders of respiration. An arcuate nucleus has not been convincingly demonstrated in other mammals, but we have found a similarly positioned nucleus in the C57BL/6J mouse. The mouse arcuate nucleus consists of a variable group of neurons lying on the pial surface of the pyramid. The nucleus is continuous with the ventrolateral part of the principal nucleus of the inferior olive and both groups are calbindin positive. At first we thought that this mouse nucleus was homologous with the human arcuate nucleus, but we have discovered that the neurons of the human nucleus are calbindin negative, and are therefore not olivary in nature. We have compared the mouse arcuate neurons with those of the inferior olive in terms of molecular markers and cerebellar projection. The neurons of the arcuate nucleus and of the inferior olive share three major characteristics: they both contain neurons utilizing glutamate, serotonin or acetylcholine as neurotransmitters; they both project to the contralateral cerebellum, and they both express a number of genes not present in the major mossy fiber issuing precerebellar nuclei. Most importantly, both cell groups express calbindin in an area of the ventral hindbrain almost completely devoid of calbindin-positive cells. We conclude that the neurons of the hindbrain mouse arcuate nucleus are a displaced part of the inferior olive, possibly separated by the caudal growth of the pyramidal tract during development. The arcuate nucleus reported in the C57BL/6J mouse can therefore be regarded as a subgroup of the rostral inferior olive, closely allied with the ventral tier of the principal nucleus. Copyright © 2012 S. Karger AG, Basel.

  1. Contribution of oxygen-sensitive neurons of the rostral ventrolateral medulla to hypoxic cerebral vasodilatation in the rat

    Science.gov (United States)

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    1. We sought to determine whether hypoxic stimulation of neurons of the rostral ventrolateral reticular nucleus (RVL) would elevate regional cerebral blood flow (rCBF) in anaesthetized paralysed rats. 2. Microinjection of sodium cyanide (NaCN; 150-450 pmol) into the RVL rapidly (within 1-2 s), transiently, dose-dependently and site-specifically elevated rCBF1 measured by laser Doppler flowmetry, by 61.3 +/- 22.1% (P < 0.01), increased arterial pressure (AP; +30 +/- 8 mmHg; P < 0.01)1 and triggered a synchronized 6 Hz rhythm of EEG activity. 3. Following cervical spinal cord transection, NaCN and also dinitrophenol (DNP) significantly (P < 0.05) elevated rCBF and synchronized the EEG but did not elevate AP; the response to NaCN was attenuated by hyperoxia and deepening of anaesthesia. 4. Electrical stimulation of NaCN-sensitive sites in the RVL in spinalized rats increased rCBF measured autoradiographically with 14C iodoantipyrine (Kety method) in the mid-line thalamus (by 182.3 +/- 17.2%; P < 0.05) and cerebral cortex (by 172.6 +/- 15.6%; P < 0.05) regions, respectively, directly or indirectly innervated by RVL neurons, and in the remainder of the brain. In contrast regional cerebral glucose utilization (rCGU), measured autoradiographically with 14C-2-deoxyglucose (Sokoloff method), was increased in proportion to rCBF in the mid-line thalamus (165.6 +/- 17.8%, P < 0.05) but was unchanged in the cortex. 5. Bilateral electrolytic lesions of NaCN sensitive sites of RVL, while not altering resting rCBF or the elevation elicited by hypercarbia (arterial CO2 pressure, Pa,CO2, approximately 69 mmHg), reduced the vasodilatation elicited by normocapnic hypoxaemia (arterial O2 pressure, Pa,O2, approximately 27 mmHg) by 67% (P < 0.01) and flattened the slope of the Pa,O2-rCBF response curve. 6. We conclude that the elevation of rCBF produced in the cerebral cortex by hypoxaemia is in large measure neurogenic, mediated trans-synaptically over intrinsic neuronal pathways, and

  2. Deconfinement of quarks and gluons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2011-01-01

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals the anomalies. They were predicted as the signals of the deconfinement phase transition and observed by NA49 collaboration in Pb+Pb collisions at the CERN SPS. This indicates the onset of the deconfinement in central nucleus-nucleus collisions at about 30 AGeV.

  3. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  4. Destruction of the medial forebrain bundle caudal to the site of stimulation reduces rewarding efficacy but destruction rostrally does not.

    Science.gov (United States)

    Gallistel, C R; Leon, M; Lim, B T; Sim, J C; Waraczynski, M

    1996-08-01

    Rats with an electrode in the medial forebrain bundle (MFB) in or near the ventral tegmental area and another at the level of the rostral hypothalamus sustained large electrolytic lesions at either the rostral or the caudal electrode. The rewarding efficacy of stimulation through the other electrode was determined before and after the lesion. Massive damage to the MFB in the rostral lateral hypothalamus (LH) generally had little effect on the rewarding efficacy of more caudal stimulation, whereas large lesions in the caudal MFB generally reduced the rewarding efficacy of LH stimulation by 35-60%. Similar reductions were produced by knife cuts in the caudal MFB. These results appear to be inconsistent with the hypothesis that the reward fibers consist either of descending or ascending fibers coursing in or near the MFB. It is suggested that the reward fibers are collaterals from neurons with both their somata and their behaviorally significant terminals located primarily in the midbrain.

  5. Neural set point for the control of arterial pressure: role of the nucleus tractus solitarius

    Directory of Open Access Journals (Sweden)

    Valentinuzzi Max E

    2010-01-01

    Full Text Available Abstract Background Physiological experiments have shown that the mean arterial blood pressure (MAP can not be regulated after chemo and cardiopulmonary receptor denervation. Neuro-physiological information suggests that the nucleus tractus solitarius (NTS is the only structure that receives information from its rostral neural nuclei and from the cardiovascular receptors and projects to nuclei that regulate the circulatory variables. Methods From a control theory perspective, to answer if the cardiovascular regulation has a set point, we should find out whether in the cardiovascular control there is something equivalent to a comparator evaluating the error signal (between the rostral projections to the NTS and the feedback inputs. The NTS would function as a comparator if: a its lesion suppresses cardiovascular regulation; b the negative feedback loop still responds normally to perturbations (such as mechanical or electrical after cutting the rostral afferent fibers to the NTS; c perturbation of rostral neural structures (RNS to the NTS modifies the set point without changing the dynamics of the elicited response; and d cardiovascular responses to perturbations on neural structures within the negative feedback loop compensate for much faster than perturbations on the NTS rostral structures. Results From the control theory framework, experimental evidence found currently in the literature plus experimental results from our group was put together showing that the above-mentioned conditions (to show that the NTS functions as a comparator are satisfied. Conclusions Physiological experiments suggest that long-term blood pressure is regulated by the nervous system. The NTS functions as a comparator (evaluating the error signal between its RNS and the cardiovascular receptor afferents and projects to nuclei that regulate the circulatory variables. The mean arterial pressure (MAP is regulated by the feedback of chemo and cardiopulmonary receptors and

  6. Dissipation in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Santanu Pal

    1984-01-01

    This paper deals with the mechanism of one- and two-body dissipations in nucleus-nucleus collisions. The average energy transferred to nuclear excitations is calculated using a time-dependent density matrix approach with lowest-order approximations. Considering the nuclei as Fermi gases, and using a gaussian-type NN interaction as the basic perturbation, simplified expressions are obtained for energy dissipations. These expressions are quite instructive to follow a number of interesting aspects of one- and two-body dissipations. It is theoretically observed that the memory time for the two-body dissipation is significantly smaller than that of one-body dissipation. A threshold-type dependence of the transferred energy on the relative velocity between the two nuclei is also observed. This threshold velocity is found to be related with the intrinsic nucleon kinetic energy for two-body dissipation and with the nuclear size for the one-body case. This observation further suggests that the total dissipated energy is shared between the two nuclei approximately in the ratio of their masses. The physical origin of these observations is also explained. Numerical calculations further illustrate some characteristic features of one- and two-body dissipations. (orig.)

  7. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  8. Particle correlations in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nagamiya, Sh.

    1981-01-01

    Particle correlations in proton-nucleus and nucleus-nucleus collisions at energies of 1-2 GeV/nucleon are investigated. The problems of measurement of the mean free path lambda of protons inside the nucleus and the interaction radius of nucleus-nucleus collisions is considered. The value of lambda has been determined in two-proton coincidence experiment in proton-nucleus interaction at 800 MeV. The observed value of lambda is slightly longer than the expected from free nucleon-nucleon collisions. Some preliminary results on proton emission beyond free nucleon-nucleon kinemaics are given

  9. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Rostral horn evolution among agamid lizards of the genus ceratophora endemic to Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Schulte II, James A.; Macey, J. Robert; Pethiyagoda, Rohan; Larson, Allan

    2001-07-10

    The first phylogenetic hypothesis for the Sri Lankan agamid lizard genus Ceratophora is presented based on 1670 aligned base positions (472 parsimony informative) of mitochondrial DNA sequences, representing coding regions for eight tRNAs, ND2, and portions of ND1 and COI. Phylogenetic analysis reveals multiple origins and possibly losses of rostral horns in the evolutionary history of Ceratophora. Our data suggest a middle Miocene origin of Ceratophora with the most recent branching of recognized species occurring at the Pliocene/Pleistocene boundary. Haplotype divergence suggests that an outgroup species, Lyriocephalus scutatus, dates at least to the Pliocene. These phylogenetic results provide a framework for comparative studies of the behavioral ecological importance of horn evolution in this group.

  11. Some experimental results of the investigation of hadron-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Azimov, S.A.; Gulamov, K.G.; Chernov, G.M.

    1978-01-01

    Recent experimental data on the hadron-nucleus and nucleus-nucleus inelastic interactions are analyzed. A particular attention is paid to the description of the leading hadron spectra and of the spectra of nucleon recoils in hadron-nucleus interactions. Some of the results of the experimental studies of correlations between secondary particles are discussed. This discussion demonstrates that an analysis of the multiparticle phenomena is very promising regarding the discrimination between the different models for the hadron-nucleus and nucleus-nucleus interactions. It is pointed out that the actual mechanism of the hadron-nucleus and nucleus-nucleus interactions is a rather complex one and can be described comprehensively by none of the existing models

  12. Cosmetic reconstruction of a nasal plane and rostral nasal skin defect using a modified nasal rotation flap in a dog

    NARCIS (Netherlands)

    ter Haar, G.; Buiks, S.C.; Kirpensteijn, J.

    2013-01-01

    Abstract OBJECTIVE: To report reconstruction of a defect of the nasal plane and the rostral dorsum of the nose in a dog using a nasal rotation flap with Burow's triangles. STUDY DESIGN: Clinical report. ANIMALS: Mixed-breed dog (1.5 years, 8.6 kg). METHODS: A nasal defect caused by chronic

  13. Differential influences of allometry, phylogeny and environment on the rostral shape diversity of extinct South American notoungulates

    Science.gov (United States)

    Gomes Rodrigues, Helder; Cornette, Raphaël; Clavel, Julien; Cassini, Guillermo; Bhullar, Bhart-Anjan S.; Fernández-Monescillo, Marcos; Moreno, Karen; Herrel, Anthony; Billet, Guillaume

    2018-01-01

    Understanding the mechanisms responsible for phenotypic diversification, and the associated underlying constraints and ecological factors represents a central issue in evolutionary biology. Mammals present a wide variety of sizes and shapes, and are characterized by a high number of morphological convergences that are hypothesized to reflect similar environmental pressures. Extinct South American notoungulates evolved in isolation from northern mammalian faunas in highly disparate environments. They present a wide array of skeletal phenotypes and convergences, such as ever-growing dentition. Here, we focused on the origins of the rostral diversity of notoungulates by quantifying the shape of 26 genera using three-dimensional geometric morphometric analysis. We tested the influence of allometry and phylogeny on rostral shape and evaluated rates of evolutionary change in the different clades. We found strong allometric and phylogenetic signals concerning the rostral shape of notoungulates. Despite convergent forms, we observed a diffuse diversification of rostral shape, with no significant evidence of influence by large-scaled environmental variation. This contrasts with the increase in dental crown height that occurred in four late-diverging families in response to similar environmental pressures. These results illustrate the importance of considering both biological components and evolutionary rates to better understand some aspects of phenotypic diversity.

  14. A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream

    DEFF Research Database (Denmark)

    Tanvig, Mette; Blaabjerg, Morten; Andersen, Rikke K

    2009-01-01

    The rostral migratory stream (RMS) is the main pathway by which newly born subventricular zone (SVZ) cells reach the olfactory bulb (OB) in rodents. This migration has been well studied in vivo, but an organotypic in vitro model would facilitate more experimental investigations. Here we introduce...

  15. Multifragmentation in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Trautmann, W.; Adloff, J.C.; Bouissou, P.; Hubele, J.; Imme, G.; Iori, I.; Kreutz, P.; Leray, S.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Moroni, A.; Mueller, W.F.J.; Ngo, C.; Ogilvie, C.A.; Pochodzalla, J.; Raciti, G.; Rudolf, G.; Schuettauf, A.; Stuttge, L.

    1993-10-01

    The complete fragmentation of highly excited nuclear systems into fragments of intermediate mass is observed in heavy-ion reactions at relativistic bombarding energies in the range of several hundreds of MeV per nucleon. Similar features are found for peripheral collisions between heavy nuclei and for more central collisions between a heavy and a light nucleus. The partition space explored in multifragment decays is well described by the statistical multifragmentation models. The expansion before breakup is confirmed by the analysis of the measured fragment energies of ternary events in their own rest frame. Collective radial flow is confined to rather small values in these peripheral-type reactions. Many conceptually different models seem to be capable of reproducing the charge correlations measured for the multifragment decays. (orig.)

  16. Evaluation of the rostral projection of the sacral lamina as a component of degenerative lumbosacral stenosis in German shepherd dogs.

    Science.gov (United States)

    Saunders, Harvey; Worth, Andrew J; Bridges, Janis P; Hartman, Angela

    2018-05-20

    To determine the association between a greater rostral projection of the sacral lamina and clinical signs of cauda equina syndrome (CES) in German shepherd dogs (GSD) with presumptive degenerative lumbosacral disease (DLSS). Retrospective cohort study. One hundred forty-three GSD (125 police dogs and 18 pet dogs) presenting for either CES or prebreeding evaluation. Fifty-five were classified as affected by CES and diagnosed with DLSS, and 88 were classified as unaffected on the basis of clinical and imaging findings. The position of the rostral edge of the sacral lamina was measured from radiographs and/or computed tomography (CT) scans. This position was compared between affected and unaffected dogs. In dogs that underwent both radiography and CT scanning, the agreement between sacral lamina localization using each imaging modality was determined. Owners/handlers were contacted to determine whether dogs subsequently developed clinical signs compatible with CES at a mean of 29 months (unaffected). The sacral lamina did not extend as far rostrally in affected dogs, compared to unaffected dogs (P = .04). Among the 88 dogs unaffected by CES at initial evaluation, 2 developed clinical signs consistent with CES at follow-up. Rostral projection of the sacral lamina, previously proposed as a potential risk factor in dogs with CES due to lumbosacral degeneration, was not associated with a diagnosis of DLSS in this study; the opposite was true. Rostral projection of the sacral lamina may not be a predisposing factor in the development of CES due to DLSS in GSD. © 2018 The American College of Veterinary Surgeons.

  17. Antiproton-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    Several facets of antinucleon-nucleus interactions are explored. The topics treated are: coherent interactions, production of unusual states and particles in the nuclear medium, and the creation of extreme states of matter by antimatter annihilation. It is found that temperatures of the magnitude necessary to achieve the predicted quark-gluon phase transition are obtained. 20 references

  18. Nucleus accumbens and impulsivity

    NARCIS (Netherlands)

    Basar, K.; Sesia, T.; Groenewegen, H.J.; Steinbusch, H.W.; Visser-vandewalle, V.; Temel, Y.

    2010-01-01

    The multifaceted concept of impulsivity implies that different impulsivity aspects, mediated by different neural processes, influence behavior at different levels. The nucleus accumbens (NAc) is a key component of the neural processes regulating impulsivity. In this review, we discuss the findings

  19. Quasi-elastic shadowing in nucleus-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dymarz, R; Malecki, A [Institute of Nuclear Physics, Krakow (Poland); Gluski, K [Institute of Nuclear Research, Warsaw (Poland); Picchi, P [Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1979-01-06

    The complete evaluation of the Glauber multiple-scattering series for nucleus-nucleus collisions is a very difficult task and that is why various approximate formulae were proposed. In this work some of these approximations are discussed.

  20. Mechanisms of High Energy Hadron-Nucleus and Nucleus-Nucleus Collision Processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    Mechanisms of high energy hadron-nucleus and nucleus-nucleus collision processes are depicted qualitatively, as prompted experimentally. In hadron-nucleus collisions the interaction of the incident hadron in intranuclear matter is localized in small cylindrical volume, with the radius as large as the strong interaction range is, centered on the hadron course in the nucleus. The nucleon emission is induced by the hadron in its passing through the nucleus; particles are produced via intermediate objects produced in 2 → 2 endoergic reactions of the hadron and its successors with downstream nucleons. In nucleus-nucleus collisions, the outcome of the reaction appears as the composition of statistically independent hadron-nucleus collision outcomes at various impact parameters. Observable effects supporting such mechanisms are discussed. 51 refs

  1. Blood Pressure Regulation by the Rostral Ventrolateral Medulla in Conscious Rats: Effects of Hypoxia, Hypercapnia, Baroreceptor Denervation, and Anesthesia

    Science.gov (United States)

    Wenker, Ian C.; Abe, Chikara; Viar, Kenneth E.; Stornetta, Daniel S.

    2017-01-01

    Current understanding of the contribution of C1 neurons to blood pressure (BP) regulation derives predominantly from experiments performed in anesthetized animals or reduced ex vivo preparations. Here, we use ArchaerhodopsinT3.0 (ArchT) loss-of-function optogenetics to explore BP regulation by C1 neurons in intact, unanesthetized rats. Using a lentivirus that expresses ArchT under the Phox2b-activated promoter PRSx8 (PRSx8-ArchT), ∼65% of transduced neurons were C1 (balance retrotrapezoid nucleus, RTN). Other rats received CaMKII-ArchT3.0 AAV2 (CaMKII-ArchT), which transduced C1 neurons and larger numbers of unidentified glutamatergic and GABAergic cells. Under anesthesia, ArchT photoactivation reduced sympathetic nerve activity and BP and silenced/strongly inhibited most (7/12) putative C1 neurons. In unanesthetized PRSx8-ArchT-treated rats breathing room air, bilateral ArchT photoactivation caused a very small BP reduction that was only slightly larger under hypercapnia (6% FiCO2), but was greatly enhanced during hypoxia (10 and 12% FiO2), after sino-aortic denervation, or during isoflurane anesthesia. The degree of hypotension correlated with percentage of ArchT-transduced C1 neurons. ArchT photoactivation produced similar BP changes in CaMKII-ArchT-treated rats. Photoactivation in PRSX8-ArchT rats reduced breathing frequency (FR), whereas FR increased in CaMKII-ArchT rats. We conclude that the BP drop elicited by ArchT activation resulted from C1 neuron inhibition and was unrelated to breathing changes. C1 neurons have low activity under normoxia, but their activation is important to BP stability during hypoxia or anesthesia and contributes greatly to the hypertension caused by baroreceptor deafferentation. Finally, C1 neurons are marginally activated by hypercapnia and the large breathing stimulation caused by this stimulus has very little impact on resting BP. SIGNIFICANCE STATEMENT C1 neurons are glutamatergic/peptidergic/catecholaminergic neurons located

  2. Study of Relativistic Nucleus - Nucleus Collisions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to survey the reaction mechanisms involved in the collision of 60~GeV/nucleon and 200~GeV/nucleon light ions ($^{16}$0 and $^{32}$S provided by a new GSI-LBL injector) with different nuclei, to determine the stopping power of nuclear matter and to search for evidence of the formation of quark matter by comparison to hadron-nucleus reactions at the same incident energies. \\\\ The experimental set-up consists of a 2 m Streamer Chamber in the Vertex Magnet used to detect all the charged particles emerging from the interaction as well as the neutral strange particles that decay inside the chamber. The high energy of the forward-going particles are detected by four sets of calorimeters. A highly segmented Photon Position Detector (PPD) backed up by a 240 segment Ring Calorimeter will cover one unit of rapidity around mid-rapidity. An Intermediate Calorimeter will cover the rest of the forward phase space except for the region around beam rapidity, where a Veto Calorimeter will detect be...

  3. Cannabinoid receptor activation in the rostral ventrolateral medulla oblongata evokes cardiorespiratory effects in anaesthetised rats

    Science.gov (United States)

    Padley, James R; Li, Qun; Pilowsky, Paul M; Goodchild, Ann K

    2003-01-01

    The nature of the cardiorespiratory effects mediated by cannabinoids in the hindbrain is poorly understood. In the present study we investigated whether cannabinoid receptor activation in the rostral ventrolateral medulla oblongata (RVLM) affects cardiovascular and/or respiratory function. Initially, we looked for evidence of CB1 receptor gene expression in rostral and caudal sections of the rat ventrolateral medulla (VLM) using reverse transcription–polymerase chain reaction. Second, the potent cannabinoid receptor agonists WIN55,212-2 (0.05, 0.5 or 5 pmol per 50 nl) and HU-210 (0.5 pmol per 50 nl) or the CB1 receptor antagonist/inverse agonist AM281 (1 pmol per 100 nl) were microinjected into the RVLM of urethane-anaesthetised, immobilised and mechanically ventilated male Sprague–Dawley rats (n=22). Changes in splanchnic nerve activity (sSNA), phrenic nerve activity (PNA), mean arterial pressure (MAP) and heart rate (HR) in response to cannabinoid administration were recorded. The CB1 receptor gene was expressed throughout the VLM. Unilateral microinjection of WIN55,212-2 into the RVLM evoked short-latency, dose-dependent increases in sSNA (0.5 pmol; 175±8%, n=5) and MAP (0.5 pmol; 26±3%, n=8) and abolished PNA (0.5 pmol; duration of apnoea: 5.4±0.4 s, n=8), with little change in HR (P<0.005). HU-210, structurally related to Δ9-tetrahydrocannabinol (THC), evoked similar effects when microinjected into the RVLM (n=4). Surprisingly, prior microinjection of AM281 produced agonist-like effects, as well as significantly attenuated the response to subsequent injection of WIN55,212-2 (0.5 pmol, n=4). The present study reveals CB1 receptor gene expression in the rat VLM and demonstrates sympathoexcitation, hypertension and respiratory inhibition in response to RVLM-administered cannabinoids. These findings suggest a novel link between CB1 receptors in this region of the hindbrain and the central cardiorespiratory effects of cannabinoids. The extent to which these

  4. Aberrant rostral teeth of the sawfish Onchopristis numidus from the Kem Kem beds (?early Late Cretaceous) of Morocco and a reappraisal of Onchopristis in New Zealand

    Science.gov (United States)

    Martill, David M.; Ibrahim, Nizar

    2012-02-01

    A single crown of sawfish rostral 'tooth' with at least two barbs along its posterior margin is comparable with Onchopristis dunklei from the Woodbine Formation of Texas and Atlanticopristisequatorialis from the Alcântara Formation of Brazil. However, it is regarded here as an aberrant Onchopristisnumidus, the typical form from North Africa. An aberrant morph of O. numidus is considered pathological. The taxonomic utility of barb number in pristid rostral 'teeth' is discussed. The genus and species Australopristis wiffeni gen. et sp. nov is erected to accommodate some multi-cusped rostral teeth from the Late Cretaceous of New Zealand.

  5. Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters.

    Science.gov (United States)

    Bradley, K C; Meisel, R L

    2001-03-15

    Dopamine transmission in the nucleus accumbens can be activated by drugs, stress, or motivated behaviors, and repeated exposure to these stimuli can sensitize this dopamine response. The objectives of this study were to determine whether female sexual behavior activates nucleus accumbens neurons and whether past sexual experience cross-sensitizes neuronal responses in the nucleus accumbens to amphetamine. Using immunocytochemical labeling, c-Fos expression in different subregions (shell vs core at the rostral, middle, and caudal levels) of the nucleus accumbens was examined in female hamsters that had varying amounts of sexual experience. Female hamsters, given either 6 weeks of sexual experience or remaining sexually naive, were tested for sexual behavior by exposure to adult male hamsters. Previous sexual experience increased c-Fos labeling in the rostral and caudal levels but not in the middle levels of the nucleus accumbens. Testing for sexual behavior increased labeling in the core, but not the shell, of the nucleus accumbens. To validate that female sexual behavior can sensitize neurons in the mesolimbic dopamine pathway, the locomotor responses of sexually experienced and sexually naive females to an amphetamine injection were then compared. Amphetamine increased general locomotor activity in all females. However, sexually experienced animals responded sooner to amphetamine than did sexually naive animals. These data indicate that female sexual behavior can activate neurons in the nucleus accumbens and that sexual experience can cross-sensitize neuronal responses to amphetamine. In addition, these results provide additional evidence for functional differences between the shell and core of the nucleus accumbens and across its anteroposterior axis.

  6. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  7. Superoxide Mediates Depressive Effects Induced by Hydrogen Sulfide in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Haiyun Yu

    2015-01-01

    Full Text Available Hydrogen sulfide (H2S plays a crucial role in the regulation of blood pressure and oxidative stress. In the present study, we tested the hypothesis that H2S exerts its cardiovascular effects by reducing oxidative stress via inhibition of NADPH oxidase activity in the rostral ventrolateral medulla (RVLM. We examined cell distributions of cystathionine-β-synthase (CBS and effects of H2S on reactive oxygen species (ROS and mean arterial blood pressure (MAP in spontaneously hypertensive rats (SHRs. We found that CBS was expressed in neurons of the RVLM, and the expression was lower in SHRs than in Wistar-Kyoto rats. Microinjection of NaHS (H2S donor, S-adenosyl-l-methionine (SAM, a CBS agonist, or Apocynin (NADPH oxidase inhibitor into the RVLM reduced the ROS level, NADPH oxidase activity, and MAP, whereas microinjection of hydroxylamine hydrochloride (HA, a CBS inhibitor increased MAP. Furthermore, intracerebroventricular infusion of NaHS inhibited phosphorylation of p47phox, a key step of NADPH oxidase activation. Since decreasing ROS level in the RVLM reduces MAP and heart rate and increasing H2S reduces ROS production, we conclude that H2S exerts an antihypertensive effect via suppressing ROS production. H2S, as an antioxidant, may be a potential target for cardiovascular diseases.

  8. Depletion of catecholaminergic neurons of the rostral ventrolateral medulla in multiple systems atrophy with autonomic failure

    Science.gov (United States)

    Benarroch, E. E.; Smithson, I. L.; Low, P. A.; Parisi, J. E.

    1998-01-01

    The ventrolateral portion of the intermediate reticular formation of the medulla (ventrolateral medulla, VLM), including the C1/A1 groups of catecholaminergic neurons, is thought to be involved in control of sympathetic cardiovascular outflow, cardiorespiratory interactions, and reflex control of vasopressin release. As all these functions are affected in patients with multiple systems atrophy (MSA) with autonomic failure, we sought to test the hypothesis that catecholaminergic (tyrosine hydroxylase [TH]-positive) neurons of the VLM are depleted in these patients. Medullas were obtained at autopsy from 4 patients with MSA with prominent autonomic failure and 5 patients with no neurological disease. Patients with MSA had laboratory evidence of severe adrenergic sudomotor and cardiovagal failure. Tissue was immersion fixed in 2% paraformaldehyde at 4 degrees C for 24 hours and cut into 1-cm blocks in the coronal plane from throughout the medulla. Serial 50-microm sections were collected and one section every 300 microm was stained for TH. There was a pronounced depletion of TH neurons in the rostral VLM in all cases of MSA. There was also significant reduction of TH neurons in the caudal VLM in 3 MSA patients compared with 3 control subjects. In 2 MSA cases and in 2 control subjects, the thoracic spinal cord was available for study. There was also depletion of TH fibers and sympathetic preganglionic neurons (SPNs) in the 2 MSA cases examined. Thus, depletion of catecholaminergic neurons in the VLM may provide a substrate for some of the autonomic and endocrine manifestations of MSA.

  9. The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Sawamoto, Nobukatsu; Okada, Tomohisa; Yonekura, Yoshiharu; Fukuyama, Hidena; Shibasaki, Hiroshi

    2002-11-01

    Recent evidence indicates that classical 'motor' areas may also have cognitive functions. We performed three neuroimaging experiments to investigate the functional neuroanatomy underlying three types of nonmotor mental-operation tasks: numerical, verbal, and spatial. (i) Positron emission tomography showed that parts of the posterior frontal cortex, which are consistent with the pre-supplementary motor area (pre-SMA) and the rostral part of the dorsolateral premotor cortex (PMdr), were active during all three tasks. We also observed activity in the posterior parietal cortex and cerebellar hemispheres during all three tasks. Electrophysiological monitoring confirmed that there were no skeletomotor, oculomotor or articulatory movements during task performance. (ii) Functional magnetic resonance imaging (fMRI) showed that PMdr activity during the mental-operation tasks was localized in the depths of the superior precentral sulcus, which substantially overlapped the region active during complex finger movements and was located dorsomedial to the presumptive frontal eye fields. (iii) Single-trial fMRI showed a transient increase in activity time-locked to the performance of mental operations in the pre-SMA and PMdr. The results of the present study suggest that the PMdr is important in the rule-based association of symbolic cues and responses in both motor and nonmotor behaviors.

  10. The generation of oligodendroglial cells is preserved in the rostral migratory stream during aging

    Directory of Open Access Journals (Sweden)

    Vivian eCapilla-Gonzalez

    2013-09-01

    Full Text Available The subventricular zone (SVZ is the largest source of newly generated cells in the adult mammalian brain. SVZ-derived neuroblasts migrate via the rostral migratory stream (RMS to the olfactory bulb (OB, where they differentiate into mature neurons. Additionally, a small proportion of SVZ-derived cells contribute to the generation of myelinating oligodendrocytes. The production of new cells in the SVZ decreases during aging, affecting the incorporation of new neurons into the OB. However, the age-related changes that occur across the RMS are not fully understood. In this study we evaluate how aging affects the cellular organization of migrating neuroblast chains, the proliferation, and the fate of the newly generated cells in the SVZ-OB system. By using electron microscopy and immunostaining, we found that the RMS path becomes discontinuous and its cytoarchitecture is disorganized in aged mice (24-month-old mice. Subsequently, OB neurogenesis was impaired in the aged brain while the production of oligodendrocytes was not compromised. These findings provide new insight into oligodendrocyte preservation throughout life. Further exploration of this matter could help the development of new strategies to prevent neurological disorders associated with senescence.

  11. Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla.

    Science.gov (United States)

    Zhang, Zhaoqiang; Shi, Limin; Du, Xixun; Jiao, Qian; Jiang, Hong

    2017-09-01

    The degeneration of the rostral ventrolateral medulla (RVLM) catecholaminergic neurons was responsible for some cardiovascular symptoms in Parkinson's disease (PD). Our previous study had observed the impairment of these neurons in the early stage of PD in the rotenone-induced PD rat model, but the related mechanisms remain unclear. Rotenone is a mitochondrial inhibitor, influencing the neuronal electrophysiological activity through activation of K-ATP channels that potentially participate in cell death processes. In the present study, effects of rotenone on electrophysiological properties of RVLM catecholaminergic neurons and its underlying mechanisms were investigated. In coronal slices of brain containing the RVLM through patch clamp technique, rotenone (0.5μM) induced gradual postsynaptic inhibition on the spontaneous firing and cell membrane hyperpolarization with outward currents of catecholaminergic neurons. The electrophysiological changes were blocked by glibenclamide (30μM), a blocker of K-ATP channels, and were nearly unchanged by diazoxide (100μM), an opener of K-ATP channels. Our results also showed that effects of rotenone on catecholaminergic neurons including reactive oxygen species (ROS) generation were prevented by pretreatment of coenzyme Q10 (CoQ10, 100μM), a scavenger of ROS. These suggest that rotenone-induced electrophysiological changes of RVLM catecholaminergic neurons are caused by the opening of K-ATP channels, which are partly related to ROS generation. The changes of K-ATP channels might account for the vulnerability of RVLM catecholaminergic neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  13. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  14. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  15. Neurogenetic and morphogenetic heterogeneity in the bed nucleus of the stria terminalis

    International Nuclear Information System (INIS)

    Bayer, S.A.

    1987-01-01

    Neurogenesis and morphogenesis in the rat bed nucleus of the stria terminalis (strial bed nucleus) were examined with [ 3 H]thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of [ 3 H]thymidine on 2 consecutive gestational days. Nine groups of embryos were exposed to [ 3 H]thymidine on E13-E14, E14-E15,... E21-E22, respectively. On P60, the percentage of labeled cells and the proportion of cells originating during 24-hour periods were quantified at six anteroposterior levels in the strial bed nucleus. On the basis of neurogenetic gradients, the strial bed nucleus was divided into anterior and posterior parts. The anterior strial bed nucleus shows a caudal (older) to rostral (younger) neurogenetic gradient. Cells in the vicinity of the anterior commissural decussation are generated mainly between E13 and E16, cells just posterior to the nucleus accumbens mainly between E15 and E17. Within each rostrocaudal level, neurons originate in combined dorsal to ventral and medial to lateral neurogenetic gradients so that the oldest cells are located ventromedially and the youngest cells dorsolaterally. The most caudal level has some small neurons adjacent to the internal capsule that originate between E17 and E20. In the posterior strial bed nucleus, neurons extend ventromedially into the posterior preoptic area. Cells are generated simultaneously along the rostrocaudal plane in a modified lateral (older) to medial (younger) neurogenetic gradient. Ventrolateral neurons originate mainly between E13 and E16, dorsolateral neurons mainly between E15 and E16, and medial neurons mainly between E15 and E17. The youngest neurons are clumped into a medial core area just ventral to the fornix

  16. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition.

    Science.gov (United States)

    Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin

    2018-03-23

    During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The imaginary part of the nucleus - nucleus optical potential

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1978-01-01

    The contribution to the imaginary nucleus - nucleus optical potential has been estimated by evaluating the energy - conserving seocond-order term in the perturbation series. The incoming nuclear field is supposed to excite nucleons in a nucleus in this calculation and the nuclear excitations are approximated by particle-hole excitations in a Fermi gas. The resulting imaginary potential compares favourably with phenomenological potentials. (author)

  18. Global features of nucleus-nucleus collisions in ultrarelativistic domain

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    HIJING generator simulation of nucleus-nucleus collisions at ultrarelativistic energies is presented. It is shown that the global characteristics of nucleus-nucleus collisions, such as distribution of a charged multiplicity, total and electromagnetic transverse energy over pseudorapidity are rather sensitive to some predictions of models of high-exited nuclear medium formation, namely parton energy losses in dense nuclear matter. These losses result in appearance of a broad maximum in global variable distributions over pseudorapidity. The most profound of this effect occurs at central heavy ion collisions at LHC energy

  19. Higgs-boson production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider

  20. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  1. Repetitive Electroacupuncture Attenuates Cold-Induced Hypertension through Enkephalin in the Rostral Ventral Lateral Medulla

    Science.gov (United States)

    Li, Min; Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Longhurst, John C.

    2016-01-01

    Acupuncture lowers blood pressure (BP) in hypertension, but mechanisms underlying its action are unclear. To simulate clinical studies, we performed electroacupuncture (EA) in unanesthetized rats with cold-induced hypertension (CIH) induced by six weeks of cold exposure (6 °C). EA (0.1 – 0.4 mA, 2 Hz) was applied at ST36-37 acupoints overlying the deep peroneal nerve for 30 min twice weekly for five weeks while sham-EA was conducted with the same procedures as EA except for no electrical stimulation. Elevated BP was reduced after six sessions of EA treatment and remained low 72 hrs after EA in 18 CIH rats, but not in sham-EA (n = 12) and untreated (n = 6) CIH ones. The mRNA level of preproenkephalin in the rostral ventrolateral medulla (rVLM) 72 hr after EA was increased (n = 9), compared to the sham-EA (n = 6), untreated CIH rats (n = 6) and normotensive control animals (n = 6). Microinjection of ICI 174,864, a δ-opioid receptor antagonist, into the rVLM of EA-treated CIH rats partially reversed EA’s effect on elevated BP (n = 4). Stimulation of rVLM of CIH rats treated with sham-EA using a δ-opioid agonist, DADLE, decreased BP (n = 6). These data suggest that increased enkephalin in the rVLM induced by repetitive EA contributes to BP lowering action of EA. PMID:27775047

  2. Repetitive Electroacupuncture Attenuates Cold-Induced Hypertension through Enkephalin in the Rostral Ventral Lateral Medulla.

    Science.gov (United States)

    Li, Min; Tjen-A-Looi, Stephanie C; Guo, Zhi-Ling; Longhurst, John C

    2016-10-24

    Acupuncture lowers blood pressure (BP) in hypertension, but mechanisms underlying its action are unclear. To simulate clinical studies, we performed electroacupuncture (EA) in unanesthetized rats with cold-induced hypertension (CIH) induced by six weeks of cold exposure (6 °C). EA (0.1 - 0.4 mA, 2 Hz) was applied at ST36-37 acupoints overlying the deep peroneal nerve for 30 min twice weekly for five weeks while sham-EA was conducted with the same procedures as EA except for no electrical stimulation. Elevated BP was reduced after six sessions of EA treatment and remained low 72 hrs after EA in 18 CIH rats, but not in sham-EA (n = 12) and untreated (n = 6) CIH ones. The mRNA level of preproenkephalin in the rostral ventrolateral medulla (rVLM) 72 hr after EA was increased (n = 9), compared to the sham-EA (n = 6), untreated CIH rats (n = 6) and normotensive control animals (n = 6). Microinjection of ICI 174,864, a δ-opioid receptor antagonist, into the rVLM of EA-treated CIH rats partially reversed EA's effect on elevated BP (n = 4). Stimulation of rVLM of CIH rats treated with sham-EA using a δ-opioid agonist, DADLE, decreased BP (n = 6). These data suggest that increased enkephalin in the rVLM induced by repetitive EA contributes to BP lowering action of EA.

  3. Delayed maturation and altered proliferation within the rat rostral migratory stream following maternal deprivation

    Directory of Open Access Journals (Sweden)

    K. Lievajova

    2011-10-01

    Full Text Available The objective of this study was to investigate whether stressful experience during early postnatal period may influence morphological characteristics of the rat neurogenic pathway – the rostral migratory stream (RMS and proliferation of neuronal precursors in three successive areas of the RMS: in the vertical arm, the elbow and the horizontal arm. To induce stress, the pups were subjected to repeated maternal deprivation during the first postnatal week after birth. Brains were analyzed at the seventh postnatal day. The controls matched the age of maternally deprived animals. Observation of hematoxylin-eosin stained sections showed that maternal deprivation did not affect the general morphological appearance of the RMS. The shape of the RMS of maternally deprived rats resembles the RMS of control animals. Maternal deprivation caused slight, not significant increase in the RMS thickness in comparison with control rats. Significant difference between the control and maternally deprived rats concerns the olfactory ventricle. While in seven days old control rats the olfactory ventricle is completely closed, in maternally deprived rats of the same age the olfactory ventricle was regularly visible as a narrow lumen at the axis of the RMS horizontal arm. This finding indicates delayed maturation of the migratory pathway as a consequence of stress. Proliferation activity has been assessed by immunoreactivity of the endogenous cell cycle protein Ki-67. The results of Ki-67 immunohistochemistry showed that seven days’ maternal separation for 3 h daily induces significant quantitative changes in the number of proliferating cells within the RMS. The response of Ki-67-positive cells to stress differed in individual part of the RMS, with a marked decrease in the vertical arm and a significant increase in the elbow, suggesting heterogeneity of neural stem cells along the RMS; while in the RMS vertical arm the number of dividing cells significantly decreased

  4. Control of sympathetic vasomotor tone by catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata

    Science.gov (United States)

    Marina, Nephtali; Abdala, Ana P.L.; Korsak, Alla; Simms, Annabel E.; Allen, Andrew M.; Paton, Julian F.R.; Gourine, Alexander V.

    2011-01-01

    Aims Increased sympathetic tone in obstructive sleep apnoea results from recurrent episodes of systemic hypoxia and hypercapnia and might be an important contributor to the development of cardiovascular disease. In this study, we re-evaluated the role of a specific population of sympathoexcitatory catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata in the control of sympathetic vasomotor tone, arterial blood pressure, and hypercapnia-evoked sympathetic and cardiovascular responses. Methods and results In anaesthetized rats in vivo and perfused rat working heart brainstem preparations in situ, C1 neurones were acutely silenced by application of the insect peptide allatostatin following cell-specific targeting with a lentiviral vector to express the inhibitory Drosophila allatostatin receptor. In anaesthetized rats with denervated peripheral chemoreceptors, acute inhibition of 50% of the C1 neuronal population resulted in ∼50% reduction in renal sympathetic nerve activity and a profound fall in arterial blood pressure (by ∼25 mmHg). However, under these conditions systemic hypercapnia still evoked vigorous sympathetic activation and the slopes of the CO2-evoked sympathoexcitatory and cardiovascular responses were not affected by inhibition of C1 neurones. Inhibition of C1 neurones in situ resulted in a reversible fall in perfusion pressure and the amplitude of respiratory-related bursts of thoracic sympathetic nerve activity. Conclusion These data confirm a fundamental physiological role of medullary catecholaminergic C1 neurones in maintaining resting sympathetic vasomotor tone and arterial blood pressure. However, C1 neurones do not appear to mediate sympathoexcitation evoked by central actions of CO2. PMID:21543384

  5. Hypoxia-induced hypothermia mediated by GABA in the rostral parapyramidal area of the medulla oblongata.

    Science.gov (United States)

    Osaka, T

    2014-05-16

    Hypoxia evokes a regulated decrease in the body core temperature (Tc) in a variety of animals. The neuronal mechanisms of this response include, at least in part, glutamatergic activation in the lateral preoptic area (LPO) of the hypothalamus. As the sympathetic premotor neurons in the medulla oblongata constitute a cardinal relay station in the descending neuronal pathway from the hypothalamus for thermoregulation, their inhibition can also be critically involved in the mechanisms of the hypoxia-induced hypothermia. Here, I examined the hypothesis that hypoxia-induced hypothermia is mediated by glutamate-responsive neurons in the LPO that activate GABAergic transmission in the rostral raphe pallidus (rRPa) and neighboring parapyramidal region (PPy) of the medulla oblongata in urethane-chloralose-anesthetized, neuromuscularly blocked, artificially ventilated rats. Unilateral microinjection of GABA (15nmol) into the rRPa and PPy regions elicited a prompt increase in tail skin temperature (Ts) and decreases in Tc, oxygen consumption rate (VO2), and heart rate. Next, when the GABAA receptor blocker bicuculline methiodide (bicuculline methiodide (BMI), 10pmol) alone was microinjected into the rRPa, it elicited unexpected contradictory responses: simultaneous increases in Ts, VO2 and heart rate and a decrease in Tc. Then, when BMI was microinjected bilaterally into the PPy, no direct effect on Ts was seen; and thermogenic and tachycardic responses were slight. However, pretreatment of the PPy with BMI, but not vehicle saline, greatly attenuated the hypothermic responses evoked by hypoxic (10%O2-90%N2, 5min) ventilation or bilateral microinjections of glutamate (5nmol, each side) into the LPO. The results suggest that hypoxia-induced hypothermia was mediated, at least in part, by the activation of GABAA receptors in the PPy. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Rostral mandibular fracture repair in a pet bearded dragon (Pogona vitticeps).

    Science.gov (United States)

    Nau, Melissa R; Eshar, David

    2018-04-15

    CASE DESCRIPTION A 2-year-old male bearded dragon (Pogona vitticeps) was evaluated because of a traumatic mandibular fracture. CLINICAL FINDINGS An open comminuted fracture of the rostral aspect of the right mandible was evident, with a fragment of bone exposed and dorsally displaced. Whole-body radiography revealed no evidence of additional injury. Other findings were unremarkable, except for moderate anemia (PCV, 19%). TREATMENT AND OUTCOME The fracture fragments were stabilized with 2 crossed 36-gauge interfragmentary wire loops. An external fixator device was fashioned from four 25-gauge needles inserted at alternating angles through the fracture fragments; plastic IV fluid line tubing filled with dental acrylic was used as a connecting bar. One day after surgery, the lizard had regained its typical activity level and appetite. Body weight was measured and the external fixator was inspected 1 week after surgery and monthly thereafter. Three months after initial injury, the fracture was stable, radiography revealed bony callus formation at the fracture site, and the external fixator was removed. Recheck radiography performed 5.5 months after initial injury revealed complete osseous union of the fracture fragments, and the interfragmentary wires were removed. CLINICAL RELEVANCE Surgical management of the traumatic comminuted mandibular fracture in this bearded dragon by means of a combination of internal and external fixation resulted in complete healing of the mandible and restoration of function. Management of this complicated fracture was achieved with the aid of readily available and inexpensive supplies in a clinical setting, which may be useful to other clinicians in the management of similar cases.

  7. EGF-induced expansion of migratory cells in the rostral migratory stream.

    Directory of Open Access Journals (Sweden)

    Olle R Lindberg

    Full Text Available The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF. In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin(+/Olig2(+ cells in the RMS. Negative for NG2 and CNPase, these radixin(+/Olig2(+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2(+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin(+/Olig2(+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. In summary, these results provide insight into the adaptive capacity of the RMS and point to an additional stem cell source for future brain repair strategies.

  8. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Koike, Takahiko; Yoshihara, Kazufumi; Yoshida, Yumiko; Takahashi, Haruka K; Nakagawa, Eri; Sadato, Norihiro

    2016-07-01

    Happiness is one of the most fundamental human goals, which has led researchers to examine the source of individual happiness. Happiness has usually been discussed regarding two aspects (a temporary positive emotion and a trait-like long-term sense of being happy) that are interrelated; for example, individuals with a high level of trait-like subjective happiness tend to rate events as more pleasant. In this study, we hypothesized that the interaction between the two aspects of happiness could be explained by the interaction between structure and function in certain brain regions. Thus, we first assessed the association between gray matter density (GMD) of healthy participants and trait-like subjective happiness using voxel-based morphometry (VBM). Further, to assess the association between the GMD and brain function, we conducted functional magnetic resonance imaging (MRI) using the task of positive emotion induction (imagination of several emotional life events). VBM indicated that the subjective happiness was positively correlated with the GMD of the rostral anterior cingulate cortex (rACC). Functional MRI demonstrated that experimentally induced temporal happy feelings were positively correlated with subjective happiness level and rACC activity. The rACC response to positive events was also positively correlated with its GMD. These results provide convergent structural and functional evidence that the rACC is related to happiness and suggest that the interaction between structure and function in the rACC may explain the trait-state interaction in happiness. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Differential encoding of factors influencing predicted reward value in monkey rostral anterior cingulate cortex.

    Science.gov (United States)

    Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka

    2012-01-01

    The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.

  10. Scaling phenomenon in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures

  11. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  12. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  13. Angiotensin converting enzyme 1 in the median preoptic nucleus contributes to chronic intermittent hypoxia hypertension.

    Science.gov (United States)

    Faulk, Katelynn E; Nedungadi, T Prashant; Cunningham, J Thomas

    2017-05-01

    Obstructive sleep apnea is associated with hypertension and cardiovascular disease. Chronic intermittent hypoxia is used to model the arterial hypoxemia seen in sleep apnea patients and is associated with increased sympathetic nerve activity and a sustained diurnal increase in blood pressure. The renin angiotensin system has been associated with hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1, which cleaves angiotensin I to the active counterpart angiotensin II, is present within the central nervous system and has been shown to be regulated by AP-1 transcription factors, such as ΔFosB. Our previous study suggested that this transcriptional regulation in the median preoptic nucleus contributes to the sustained blood pressure seen following chronic intermittent hypoxia. Viral mediated delivery of a short hairpin RNA against angiotensin converting enzyme 1 in the median preoptic nucleus was used along with radio-telemetry measurements of blood pressure to test this hypothesis. FosB immunohistochemistry was utilized in order to assess the effects of angiotensin converting enzyme 1 knockdown on the activity of nuclei downstream from median preoptic nucleus. Angiotensin converting enzyme 1 knockdown within median preoptic nucleus significantly attenuated the sustained hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1 seems to be partly responsible for regulating downstream regions involved in sympathetic and blood pressure control, such as the paraventricular nucleus and the rostral ventrolateral medulla. The data suggest that angiotensin converting enzyme 1 within median preoptic nucleus plays a critical role in the sustained hypertension seen in chronic intermittent hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. The Relationship between Rostral Retraction of the Pannus and Outcomes at Cesarean Section.

    Science.gov (United States)

    Turan, Ozhan M; Rosenbloom, Joshua; Galey, Jessica L; Kahntroff, Stephanie L; Bharadwaj, Shobana; Turner, Shafonya M; Malinow, Andrew M

    2016-08-01

    Objective Maternal obesity presents several challenges at cesarean section. In an effort to routinely employ a transverse suprapubic skin incision, we often retract the pannus in a rostral direction using adhesive tape placed after induction of anesthesia and before surgical preparation of the skin. We sought to understand the association between taping and neonatal cord blood gases, Apgar scores, and time from skin incision to delivery of the neonate. Study Design This is a retrospective study, performed using prospectively collected anesthesiology records with data supplemented from the patients' medical records. Singleton pregnancies with morbid obesity (body mass index [BMI] > 40 kg/m(2)) between 37 and 42 weeks of gestation who delivered via nonurgent, scheduled cesarean delivery under regional (spinal, combined spinal-epidural, or epidural) anesthesia between March 2007 and March 2013 were identified. Maternal demographics including BMI, comorbidities, type of anesthesia, time intervals during the surgery, cord gas results, and Apgar scores were collected. The relationship between taping and blood acid-base status, Apgar scores, and interval from skin incision to delivery was investigated using appropriate statistical tests. Results There were 2,525 (27.5%) cesarean deliveries out of 9,189 total deliveries. Applying the described inclusion/exclusion criteria, 141 patients were identified (33 taped and 108 nontaped). There was no significant difference in BMI between the taped (51.9 kg/m(2)) and nontaped groups (47.4 kg/m(2)), p > 0.05. There was no difference in type of anesthesia (p > 0.05). The only significant difference between the taped and not-taped groups was the presence of chronic hypertension in the taped group (p = 0.03). There were no significant differences in cord blood gas values, Apgar scores, or skin incision to delivery interval (p > 0.05 for all outcomes). Conclusions Taping of the pannus at cesarean section is a

  15. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    Science.gov (United States)

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e

  16. The intercalatus nucleus of Staderini.

    Science.gov (United States)

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  17. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  18. Formation of light particles in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Penionzhkevich, Yu.

    1993-01-01

    The principal experimental results on the yield of the light charged particles in nucleus-nucleus collisions at the low and intermediate energies are reviewed. Inclusive spectra of light particles and their coincidences with the characteristic KX-rays, γ-rays, neutrons, projectile-like fragments, other light particles, fission fragments, and evaporation residues are analyzed. The main theoretical models used for the description of the light particle formation are briefly outlined together with their merits and shortcomings. The unsolved problems of fast light particle formation, in particular, and of nucleus-nucleus interaction dynamics, on the whole, are discussed with the outlooks of new experiments able to clear up some of these problems. (author) 144 refs., 40 figs., 2 tabs

  19. Comparative study of c-Fos expression in rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress.

    Science.gov (United States)

    Zhang, Yu-Yu; Cao, Guo-Hong; Zhu, Wen-Xing; Cui, Xi-Yun; Ai, Hong-Bin

    2009-06-30

    Restraint water-immersion stress (RWIS) of rats induces vagally-mediated gastric dysfunction. The present work explored the effects of different durations of RWIS on neuronal activities of the dorsal vagal complex (DVC) and the nucleus ambiguous (NA) in rats. Male Wistar rats were exposed to RWIS for 0, 30, 60, 120, or 180 min. Then, a c-Fos immunoperoxidase technique was utilized to assess neuronal activation. Resumptively, c-Fos expression in DVC and NA peaked at 60 min of stress, subsequently decreased gradually with increasing durations of RWIS. Interestingly, the most intense c-Fos expression was observed in the dorsal motor nucleus of the vagus (DMV) during the stress, followed by NA, nucleus of solitary tract (NTS) and area postrema (AP). The peak of c-Fos expression in caudal DMV appeared at 120 min of the stress, slower than that in rostral and intermediate DMV. The c-Fos expression in intermediate and caudal NTS was significantly more intense than that in rostral NTS. These results indicate that the neuronal hyperactivity of DMV, NA, NTS and AP, the primary center that control gastric functions, especially DMV and NA, may play an important role in the disorders of gastric motility and secretion induced by RWIS.

  20. Nucleus-nucleus interactions in the transition energy regime

    International Nuclear Information System (INIS)

    Volant, C.

    1985-02-01

    There are at least two ways for studying large interactions in nucleus-nucleus collisions. One way is to use the method of angular correlations between fission fragments. The aim of the experiments presented here was to make a survey on the role of the various experimental parameters. In that respect three targets have been studied and different projectiles and bombarding energies have been used. Results are presented and discussed

  1. Diabatic interaction potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Lukasiak, A.

    1984-01-01

    Within a refined method for the construction of diabatic states allowing for the treatment of the full spin-orbit coupling, characteristic features of the diabatic potential for nucleus-nucleus collisions are investigated. Approximately 90% of the strong repulsion results from diabatic particle-hole excitations, while only 10% is due to compression. The diabatic interaction potential describes a physical situation intermediate between adiabatic and sudden approximations. (orig.)

  2. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  3. Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats.

    Science.gov (United States)

    Haghparast, Abbas; Ordikhani-Seyedlar, Mehdi; Ziaei, Maryam

    2008-06-27

    Several lines of investigation show that the rostral ventromedial medulla is a critical relay for midbrain regions, including the nucleus cuneiformis (CnF), which control nociception at the spinal cord. There is some evidence that local stimulation or morphine administration into the CnF produces the effective analgesia through the nucleus raphe magnus (NRM). The present study tries to determine the effect of morphine-induced analgesia following microinjection into the CnF in the absence of NRM. Seven days after the cannulae implantation, morphine was microinjected bilaterally into the CnF at the doses of 0.25, 1, 2.5, 5, 7.5 and 10 microg/0.3 microl saline per side. The morphine-induced antinociceptive effect measured by tail-flick test at 30, 60, 90 and 120 min after microinjection. The results showed that bilateral microinjection of morphine into the CnF dose-dependently causes increase in tail-flick latency (TFL). The 50% effective dose of morphine was determined and microinjected into the CnF (2.5 microg/0.3 microl saline per side) in rats after NRM electrolytic lesion (1 mA, 30 s). Lesion of the NRM significantly decreased TFLs, 30 (Peffects through the opioid receptors in the CnF. It is also appeared that morphine-induced antinociception decreases following the NRM lesion but it seems that there are some other descending pain modulatory pathways that activate in the absence of NRM.

  4. Dimuon enhancement in nucleus-nucleus ultrarelativistic interactions

    International Nuclear Information System (INIS)

    Bordalo, Paula; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Bohrani, A.; Boldea, V.; Bussiere, A.; Capelli, L.; Caponi, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constans, N.; Constantinescu, S.; Contardo, D.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Ducroux, L.; Espagnon, B.; Fargeix, J.; Ferreira, R.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Gorodetzky, P.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkanyan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kossakowski, R.; Kurepin, A.B.; Landau, G.; Le Bornec, Y.; Lourenco, C.; Luquin, L.; Macciotta, P.; Mac Cormick, M.; Mandry, R.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Monteno, M.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Ropotar, I.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Sitta, M.; Soave, C.; Sonderegger, P.; Tarrago, X.; Topilskaya, N.S.; Usai, G.L.; Varela, J.; Vercellin, E.; Villatte, L.

    1999-01-01

    The study of muon pairs in the mass region 1.5 μμ 2 in 450 GeV/c p-A, 200 GeV/nucleon S-U and 158 GeV/nucleon Pb-Pb collisions is presented. In p-A interactions, the dimuon signal mass spectra are well described by a superposition of Drell-Yan and charmed meson semi-leptonic decay contributions, in agreement with previous experiments when considering a linear A dependence. In nucleus-nucleus reactions, taking only into account these two physical ingredients, a dimuon enhancement both with increasing A·B and centrality is observed

  5. Control of the cerebral circulation and metabolism by the rostral ventrolateral medulla: Possible role in the cerebrovascular response to hypoxia

    International Nuclear Information System (INIS)

    Underwood, M.D.

    1988-01-01

    Neurons within the rostral ventrolateral medulla (RVL) corresponding to the location of adrenaline neurons of the C1 group (C1 area) maintain resting levels of arterial pressure (AP) and mediate the reflex cardiovascular responses to baro- and chemoreceptor activation and cerebral ischemia. The author therefore sought to determine whether neurons in the C1 area: (a) modulate regional cerebral blood flow (rCBF) and/or cerebral glucose utilization (rCGU), (b) participate in the maintenance of resting levels of CBF and CGU, and (c) mediate the CBF response to hypoxia. Rats were anesthetized, paralyzed and ventilated. The RVL was stimulated electrically or chemically, with kainic acid; lesions were placed electrolytically. rCBF was measured using 14-C-iodoantipyrine and rCGU with 14 C-2-deoxyglucose in 11 dissected brain regions

  6. Anatomical pathways for auditory memory II: Information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Directory of Open Access Journals (Sweden)

    Monica eMunoz-Lopez

    2015-05-01

    Full Text Available Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 minutes. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 seconds. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys’ auditory memory performance. It is possible, therefore, that the anatomical pathways differ. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC. We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG, and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY and anterograde (10% BDA 10,000 MW tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex, and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  7. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  8. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  9. Nucleus management with irrigating vectis

    Directory of Open Access Journals (Sweden)

    Srinivasan Aravind

    2009-01-01

    Full Text Available The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS, incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost.

  10. Formin' actin in the nucleus.

    Science.gov (United States)

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  11. Anti p-nucleus interaction

    International Nuclear Information System (INIS)

    Peng, J.C.

    1986-05-01

    Status and future prospects of antiproton-nucleus scattering experiments are presented. These scattering experiments were conducted at antiproton beam momentums of 300 and 600 MeV/c on target nuclei of 6 Li, 12 C, 16 O, 18 O, 40 Ca, 48 Ca, and 208 Pb. Antiproton-proton reactions investigated antiproton-nucleus bound or resonant states in antiproton reactions with d, 6 Li, 12 C, 63 Cu, and 209 Bi. Inelastic scattering experiments investigated the spin-isospin dependence of the NN interactions. 19 refs., 1 fig., 1 tab

  12. Functionalized active-nucleus complex sensor

    Science.gov (United States)

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  13. Tritiated-nicotine- and 125I-alpha-bungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. II. Effects of habenular destruction

    International Nuclear Information System (INIS)

    Clarke, P.B.; Hamill, G.S.; Nadi, N.S.; Jacobowitz, D.M.; Pert, A.

    1986-01-01

    The cholinergic innervation of the interpeduncular nucleus (IPN) is wholly extrinsic and is greatly attenuated by bilateral habenular destruction. We describe changes in the labeling of putative nicotinic receptors within this nucleus at 3, 5, or 11 days after bilateral habenular lesions. Adjacent tissue sections of the rat IPN were utilized for 3 H-nicotine and 125 I-alpha-bungarotoxin ( 125 I-BTX) receptor autoradiography. Compared to sham-operated controls, habenular destruction significantly reduced autoradiographic 3 H-nicotine labeling in rostral (-25%), intermediate (-13%), and lateral subnuclei (-36%). Labeling in the central subnucleus was unchanged. Loss of labeling was maximal at the shortest survival time (3 days) and did not change thereafter. In order to establish whether this loss was due to a reduction in the number or the affinity of 3 H-nicotine-binding sites, a membrane assay was performed on microdissected IPN tissue from rats that had received surgery 3 days previously. Bilateral habenular lesions produced a 35% reduction of high-affinity 3 H-nicotine-binding sites, with no change in binding affinity. Bilateral habenular lesions reduced 125 I-BTX labeling in the intermediate subnuclei, and a slight increase occurred in the rostral subnucleus. In the lateral subnuclei, 125 I-BTX labeling was significantly reduced (27%) at 3 days but not at later survival times. In view of the known synaptic morphology of the habenulointerpeduncular tract, it is concluded that a subpopulation of 3 H-nicotine binding sites within the IPN is located on afferent axons and/or terminals. This subpopulation, located within rostral, intermediate, and lateral subnuclei, may correspond to presynaptic nicotinic cholinergic receptors. Sites that bind 125 I-BTX may include a presynaptic subpopulation located in the lateral and possibly the intermediate subnuclei

  14. Computational modeling of pedunculopontine nucleus deep brain stimulation

    Science.gov (United States)

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-08-01

    Objective. Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach. Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results. The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V) (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance. We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

  15. The nucleus as a laboratory

    International Nuclear Information System (INIS)

    Blin-Stoyle, R.J.

    1979-01-01

    The nucleus is a complicated many-body structure whose properties when carefully studied can frequently give important information about the underlying elementary particle interactions. This article reviews progress in research of this kind over the last twenty-five years. (author)

  16. The pion-nucleus interaction

    International Nuclear Information System (INIS)

    Afnan, I.R.

    1977-04-01

    The latest developments in the construction of pion-nucleus optical potential are presented and a comparison with the latest data on π+ 12 C is made. The suggested mechanisms for the (p,π) reaction are discussed with a comparison of the theoretical results with experiment. (Author)

  17. Single nucleon emission in relativistic nucleus-nucleus reactions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors

  18. Transverse Energy in nucleus-nucleus collisions: A review

    International Nuclear Information System (INIS)

    Tincknell, M.

    1988-01-01

    The status of Transverse Energy (E/sub T/) in relativistic nucleus-nucleus collisions at the Brookhaven AGS and the CERN SPS is reviewed. The definition of E/sub T/ and its physical significance are discussed. The basic techniques and limitations of the experimental measurements are presented. The acceptances of the major experiments to be discussed are shown, along with remarks about their idiosyncrasies. The data demonstrate that the nuclear geometry of colliding spheres primarily determines the shapes of the observed spectra. Careful account of the acceptances is crucial to comparing and interpreting results. It is concluded that nuclear stopping power is high, and that the amount of energy deposited into the interaction volume is increasing with beam energy even at SPS energies. The energy densities believed to be obtained at the SPS are close to the critical values predicted for the onset of a quark-gluon plasma. 25 refs., 8 figs

  19. Noise exposure alters long-term neural firing rates and synchrony in primary auditory and rostral belt cortices following bimodal stimulation.

    Science.gov (United States)

    Takacs, Joseph D; Forrest, Taylor J; Basura, Gregory J

    2017-12-01

    We previously demonstrated that bimodal stimulation (spinal trigeminal nucleus [Sp5] paired with best frequency tone) altered neural tone-evoked and spontaneous firing rates (SFRs) in primary auditory cortex (A1) 15 min after pairing in guinea pigs with and without noise-induced tinnitus. Neural responses were enhanced (+10 ms) or suppressed (0 ms) based on the bimodal pairing interval. Here we investigated whether bimodal stimulation leads to long-term (up to 2 h) changes in tone-evoked and SFRs and neural synchrony (correlate of tinnitus) and if the long-term bimodal effects are altered following noise exposure. To obviate the effects of permanent hearing loss on the results, firing rates and neural synchrony were measured three weeks following unilateral (left ear) noise exposure and a temporary threshold shift. Simultaneous extra-cellular single-unit recordings were made from contralateral (to noise) A1 and dorsal rostral belt (RB); an associative auditory cortical region thought to influence A1, before and after bimodal stimulation (pairing intervals of 0 ms; simultaneous Sp5-tone and +10 ms; Sp5 precedes tone). Sixty and 120 min after 0 ms pairing tone-evoked and SFRs were suppressed in sham A1; an effect only preserved 120 min following pairing in noise. Stimulation at +10 ms only affected SFRs 120 min after pairing in sham and noise-exposed A1. Within sham RB, pairing at 0 and +10 ms persistently suppressed tone-evoked and SFRs, while 0 ms pairing in noise markedly enhanced tone-evoked and SFRs up to 2 h. Together, these findings suggest that bimodal stimulation has long-lasting effects in A1 that also extend to the associative RB that is altered by noise and may have persistent implications for how noise damaged brains process multi-sensory information. Moreover, prior to bimodal stimulation, noise damage increased neural synchrony in A1, RB and between A1 and RB neurons. Bimodal stimulation led to persistent changes in neural synchrony in

  20. Radiologic evaluation after posterior instrumented surgery for thoracic ossification of the posterior longitudinal ligament: union between rostral and caudal ossifications.

    Science.gov (United States)

    Ando, Kei; Imagama, Shiro; Ito, Zenya; Kobayashi, Kazuyoshi; Ukai, Junichi; Muramoto, Akio; Shinjo, Ryuichi; Matsumoto, Tomohiro; Nakashima, Hiroaki; Ishiguro, Naoki

    2014-05-01

    Retrospective clinical study. To investigate, using multislice CT images, how thoracic ossification of the posterior longitudinal ligament (OPLL) changes with time after thoracic posterior fusion surgery. Few studies have evaluated thoracic OPLL preoperatively and post using computed tomography (CT). The subjects included 19 patients (7 men and 12 women) with an average age at surgery of 52 years (38-66 y) who underwent indirect posterior decompression with corrective fusion and instrumentation at our institute. Minimum follow-up period was 1 year, and averaged 3 years 10 months (12-120 mo). Using CT images, we investigated fusion range, preoperative and postoperative Cobb angles of thoracic fusion levels, intraoperative and postoperative blood loss, operative time, hyperintense areas on preoperative MRI of thoracic spine and thickness of the OPLL on the reconstructed sagittal, multislice CT images taken before the operation and at 3 months, 6 months and 1 year after surgery. The basic fusion area was 3 vertebrae above and below the OPLL lesion. The mean operative time was 7 hours and 48 min (4 h 39 min-10 h 28 min), and blood loss was 1631 mL (160-11,731 mL). Intramedullary signal intensity change on magnetic resonance images was observed at the most severe ossification area in 18 patients. Interestingly, the rostral and caudal ossification regions of the OPLLs, as seen on sagittal CT images, were discontinuous across the disk space in all patients. Postoperatively, the discontinuous segments connected in all patients without progression of OPLL thickness by 5.1 months on average. All patients needing surgery had discontinuity across the disk space between the rostral and caudal ossified lesions as seen on CT. This discontinuity was considered to be the main reason for the myelopathy because a high-intensity area on magnetic resonance imaging was seen in 18 of 19 patients at the same level. Rigid fixation with instrumentation may allow the discontinuous segments

  1. Kaonic nuclei and kaon-nucleus interactions

    CERN Document Server

    Ikuta, K; Masutani, K

    2002-01-01

    Although kaonic atoms provide valuable information concerning the K sup - -nucleus interaction at low energies, they cannot fully determine the K sup - - nucleus optical potential. We demonstrate that K sup - nuclear bound states, if they exist, can be useful in investigating the K sup - -nucleus interaction, especially in the interior of the nucleus. In order to show this possibility, we calculate the double differential cross sections for (K sup - , P) using the Green function method. (author)

  2. Color oscillations of nucleons in a nucleus

    International Nuclear Information System (INIS)

    Petrov, V.A.; Smirnov, A.Yu.

    1987-01-01

    Possibility of nucleus description as an object consisting of quarks and gluons is considered. A model of two-nucleon interaction in a nucleus is presented and analytical expressions for the nucleus nucleon ground state wave functions and also for nuclear nucleon structure functions are obtained. The carried out analysis shows that the suggested model permits to express the nucleus structure functions at quark level only by means of nucleon and Δ-isobaric degrees of freedom

  3. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.

    Science.gov (United States)

    Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank

    2018-05-01

    The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.

  4. Hummingbird Comet Nucleus Analysis Mission

    Science.gov (United States)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  5. Comet Halley: nucleus and jets

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Avanesov, G.A.; Barinov, I.V.

    1986-06-01

    The VEGA-1 and VEGA-2 spacecrafts made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper results of the onboard imaging experiment are discussed. The nucleus of the comet was clearly identifyable as an irregularly shaped object with overall dimensions of (16+-1)x(8+-1)x(8+-1) km. The nucleus rotates around its axis which is nearly perpendicular to the orbital plane, with a period of 53+-2 hours. Its albedo is only 0.04+-002. Most of the jet features observed during the second fly-by were spatially reconstructed. These sources form a quasi-linear structure on the surface. The dust above the surface is shown to be optically thin except certain specific dust jets. Brightness features on the surface are clearly seen. Correlating the data with other measurements it is concluded that the dirty snow-ball model probably has to be revised. (author)

  6. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  7. What is a cometary nucleus

    International Nuclear Information System (INIS)

    Lyttleton, R.A.

    1977-01-01

    Descriptions of actual observed comets associate a range of ill-defined meanings with the term nucleus. In recent years use of the word has been even further extended (or contracted) to mean a postulated solid core constituting the permanent element of a comet and necessarily of size far below resolution and measurability. It is maintained by the postulants that this core, acted upon by solar radiation and the solar wind, is the fount and origin of practically the whole great variety of observed cometary physical phenomena. In order that this micro-nucleus shall 'explain' observed properties, it is endowed with a large number of entirely ad-hoc qualities specially devised to produce the very effects it is wished to explain, but the processes so proffered rely almost entirely on purely verbal asseverations that they will work in the way required. No source or mechanism of origin for the imaginary micro-nucleus, of which there would need to be myriads, is in sight, nor can the assumption explain the dynamical properties of long-period comets and their association with the galactic plane and the solar apex. The postulate is in any event ruled out by Occam's principle as having no basis in fact or theory and is not required to explain the observed properties of comets. The large number of additional special assumptions introduced mean that the structure as a whole does not constitute a proper scientific theory. (author)

  8. Impaired endocannabinoid signalling in the rostral ventromedial medulla underpins genotype-dependent hyper-responsivity to noxious stimuli.

    Science.gov (United States)

    Rea, Kieran; Olango, Weredeselam M; Okine, Bright N; Madasu, Manish K; McGuire, Iseult C; Coyle, Kathleen; Harhen, Brendan; Roche, Michelle; Finn, David P

    2014-01-01

    Pain is both a sensory and an emotional experience, and is subject to modulation by a number of factors including genetic background modulating stress/affect. The Wistar-Kyoto (WKY) rat exhibits a stress-hyper-responsive and depressive-like phenotype and increased sensitivity to noxious stimuli, compared with other rat strains. Here, we show that this genotype-dependent hyperalgesia is associated with impaired pain-related mobilisation of endocannabinoids and transcription of their synthesising enzymes in the rostral ventromedial medulla (RVM). Pharmacological blockade of the Cannabinoid1 (CB1) receptor potentiates the hyperalgesia in WKY rats, whereas inhibition of the endocannabinoid catabolising enzyme, fatty acid amide hydrolase, attenuates the hyperalgesia. The latter effect is mediated by CB1 receptors in the RVM. Together, these behavioural, neurochemical, and molecular data indicate that impaired endocannabinoid signalling in the RVM underpins hyper-responsivity to noxious stimuli in a genetic background prone to heightened stress/affect. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray

    Directory of Open Access Journals (Sweden)

    Jun-Bin eYin

    2014-11-01

    Full Text Available The periaqueductal gray (PAG modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, there still lacks detailed information on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglias. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral PAG (vlPAG than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed auto receptor Tropomyosin-related kinase B (TrkB in addition to serotonin (5-HT, neurotensin (NT, substance P (SP, calcitonin gene related peptide (CGRP, nitric oxide synthase (NOS, and parvalbumin (PV but not tyrosine decarboxylase (TH. It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs in the RVM.

  10. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  11. Composite Resection of Tumors of the Rostral Maxilla and Dorsolateral Muzzle Utilizing an Upper Lip-Sparing, Combined Approach in Dogs.

    Science.gov (United States)

    Thomson, Amy E; Soukup, Jason W

    2018-01-01

    Tumors of the rostral maxilla that involve both the oral mucosa and the dermis or subdermis of the dorsolateral muzzle provide unique challenges for the oromaxillofacial surgeon. Traditionally described approaches to such lesions may involve an intraoral incision that extends and involves the upper lip to envelope the involved dermis of the dorsolateral muzzle. However, such an approach unnecessarily resects upper lip tissue resulting in a large defect that likely requires advanced skin flaps or grafts for reconstruction. Such flaps are technically challenging and introduce potential for significance postoperative complications. In this article, we provide a detailed description a combined intra- and extraoral approach that allows for composite resection of tumors of the rostral maxilla that also involve the dorsolateral muzzle. The described technique allows for excellent intraoperative visualization and provides a superior cosmetic outcome that minimizes postoperative complications. In addition, we describe our experience utilizing the technique in three clinical cases.

  12. Bilateral Superior Labial Mucosal Transposition Flaps to Correct Stenosis of the Nares Following Bilateral Rostral Maxillectomy Combined with Nasal Planum Resection in a Dog.

    Science.gov (United States)

    Séguin, Bernard; Steinke, Julia R

    2016-04-01

    To describe a technique using labial mucosal flaps to correct stenosis of the nares subsequent to bilateral rostral maxillectomy and nasal planum resection. Case report Client-owned dog. A 10-year-old, neutered male Golden Retriever developed repeated stenosis of the nares, at first after bilateral rostral maxillectomy and nasal planum resection, and again after revision surgery. Bilateral, superior labial mucosal transposition flaps were created and interpolated between the nasal mucosa and skin after debridement of scar tissue. The stenosis did not recur after mucosal flap transposition and the dog returned to normal quality of life (last follow-up 25 months postoperative). Single-stage, superior labial mucosal transposition flaps can be used to correct nares stenosis subsequent to previous surgery. © Copyright 2016 by The American College of Veterinary Surgeons.

  13. Composite Resection of Tumors of the Rostral Maxilla and Dorsolateral Muzzle Utilizing an Upper Lip-Sparing, Combined Approach in Dogs

    Directory of Open Access Journals (Sweden)

    Amy E. Thomson

    2018-03-01

    Full Text Available Tumors of the rostral maxilla that involve both the oral mucosa and the dermis or subdermis of the dorsolateral muzzle provide unique challenges for the oromaxillofacial surgeon. Traditionally described approaches to such lesions may involve an intraoral incision that extends and involves the upper lip to envelope the involved dermis of the dorsolateral muzzle. However, such an approach unnecessarily resects upper lip tissue resulting in a large defect that likely requires advanced skin flaps or grafts for reconstruction. Such flaps are technically challenging and introduce potential for significance postoperative complications. In this article, we provide a detailed description a combined intra- and extraoral approach that allows for composite resection of tumors of the rostral maxilla that also involve the dorsolateral muzzle. The described technique allows for excellent intraoperative visualization and provides a superior cosmetic outcome that minimizes postoperative complications. In addition, we describe our experience utilizing the technique in three clinical cases.

  14. May functional imaging be helpful for behavioral assessment in children? Regions of motor and associative cortico-subcortical circuits can be differentiated by laterality and rostrality

    Directory of Open Access Journals (Sweden)

    Julia M. August

    2015-06-01

    Full Text Available Background: Cortico-subcortical circuits are organized into the sensorimotor, associative and limbic loop. These neuronal preconditions play an important role regarding the understanding and treatment of behavioral problems in children. Differencing evidence argues for a lateralized organization of the sensorimotor loop and a bilateral (i.e. non-lateralized organization of the associative loop. However, a firm behavioral-neurobiological distinction of these circuits has been difficult, specifically in children. Objectives: Thus, the aim was a comprehensive functional visualization and differentiation of the sensorimotor and the associative circuit during childhood. As a new approach, laterality and rostrality features were used to distinguish between the two circuits within one single motor task. Methods: 24 healthy boys performed self-paced index finger tapping with each hand separately during functional magnetic resonance imaging at 3 Tesla. Results: A contrast analysis for left against right hand movement revealed lateralized activation in typical sensorimotor regions such as primary sensorimotor cortex, caudal supplementary motor area (SMA, caudal putamen and thalamus. A conjunction analysis confirmed bilateral involvement of known associative regions including pre-SMA, rostral SMA and rostral putamen. Conclusion: A functional visualization of two distinct corticostriatal circuits is provided in childhood. Both, the sensorimotor and associative circuit may be discriminated by their laterality characteristics already in minors. Additionally, the results support the concept of a modified functional subdivision of the SMA in a rostral (associative and caudal (motor part. A further development of this approach might help to nurture behavioral assessment and neurofeedback training in child mental health.

  15. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    Directory of Open Access Journals (Sweden)

    Jorge A Larriva-Sahd

    2012-06-01

    Full Text Available This study describes the microscopic organization of a wedge-shaped area at the intersection of the main and accessory olfactory bulbs, or olfactory limbus , and an additional component of the anterior olfactory nucleus or alpha accessory olfactory bulb that lies underneath of the accessory olfactory bulb. The olfactory limbus consists of a modified bulbar cortex bounded anteriorly by the main olfactory bulb and posteriorly by the accessory olfactory bulb. In Nissl-stained specimens the olfactory limbus differs from the main olfactory bulb by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the olfactory limbus is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area, a second or necklace glomerular area, and a wedge-shaped or interstitial area crowned by the so-called modified glomeruli that appear to belong to the anterior accessory olfactory bulb. The strategic location and interactions with the main and accessory olfactory bulbs, together with the previously noted functional and connectional evidence, suggest that the olfactory limbus may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 x 150 µm paralleling the base of the accessory olfactory bulb, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells organize into a single bundle that ascends avoiding the accessory olfactory bulb to resolve in a trigone bounded by the edge of the olfactory limbus, the accessory olfactory bulb and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67.

  16. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Altsybeev Igor

    2017-01-01

    Full Text Available Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range. In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  17. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  18. Strangeness production in nucleus-nucleus collisions: An experimental review

    International Nuclear Information System (INIS)

    Odyniec, G.

    1990-12-01

    In experiments with oxygen (60 and 200 GeV/N) and sulphur (200 GeV/N) ions at CERNSPS, large energy densities of the order of 2--3 GeV/fm 3 have been observed, which according to QCD calculations, satisfy necessary conditions for the formation of a quark gluon plasma (QGP) phase. Under such conditions, colour would no longer be confined to hadronic dimensions, and quarks and gluons will propagate freely throughout an extended volume. Somehow lower energy densities, of the order of 0.7--1 GeV/fm 3 , were observed in AGS experiments with 15 GeV/N silicon beams and heavy targets. These energy densities might be adequate for investigations of the pre-equilibrium stage, during which the momentum space distribution has been degradated from its initial value but is not yet thermal. First experimental results, available now, show promise of seeing signs of a new phase of matter. In this review the current status of the selective experimental results on strange-particle production, which are relevant to equilibration and QGP formation in nucleus-nucleus collisions, is presented

  19. Applying the elastic model for various nucleus-nucleus fusion

    International Nuclear Information System (INIS)

    HASSAN, G.S.; RAGAB, H.S.; SEDDEEK, M.K.

    2000-01-01

    The Elastic Model of two free parameters m,d given by Scalia has been used for wider energy regions to fit the available experimental data for potential barriers and cross sections. In order to generalize Scalia's formula in both sub- and above-barrier regions, we calculated m, d for pairs rather than those given by Scalia and compared the calculated cross sections with the experimental data. This makes a generalization of the Elastic Model in describing fusion process. On the other hand, Scalia's range of interacting systems was 24 ≤ A ≤194 where A is the compound nucleus mass number. Our extension of that model includes an example of the pairs of A larger than his final limit aiming to make it as a general formula for any type of reactants: light, intermediate or heavy systems. A significant point is the comparison of Elastic Model calculations with the well known methods studying complete fusion and compound nucleus formation, namely with the resultants of using Proximity potential with either Sharp or Smooth cut-off approximations

  20. Quarkonia Photoproduction at Nucleus Colliders

    International Nuclear Information System (INIS)

    D'Enterria, David

    2008-01-01

    Exclusive photoproduction of heavy quarkonia in high-energy ultraperipheral ion-ion interactions (γ A →V A, where V = J/ψ, Y and the nucleus A remains intact) offers a useful means to constrain the small-x nuclear gluon density. We discuss preliminary results on J/ψ photoproduction in Au-Au collisions at RHIC [D. d'Enterria [PHENIX Collaboration], Proceeds. Quark Matter'05, (arXiv:nucl-ex/0601001)], as well as full simulation-reconstruction studies of photo-produced Y in Pb-Pb interactions at the LHC [D. d'Enterria (ed.) et al. [CMS Collaboration], J. Phys. G. 34 2307 (2007)

  1. Overexpression of ß-Arrestin1 in the Rostral Ventrolateral Medulla Downregulates Angiotensin Receptor and Lowers Blood Pressure in Hypertension.

    Science.gov (United States)

    Sun, Jia-Cen; Liu, Bing; Zhang, Ru-Wen; Jiao, Pei-Lei; Tan, Xing; Wang, Yang-Kai; Wang, Wei-Zhong

    2018-01-01

    Background: Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R) in the rostral ventrolateral medulla (RVLM). β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR), and further determine the effect of β-arrestin1 on AT1R expression in the RVLM. Methods: The animal model of β-arrestin1 overexpression was induced by bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1) into the RVLM of WKY and SHR. Results: β-arrestin1 was expressed on the pre-sympathetic neurons in the RVLM, and its expression in the RVLM was significantly ( P Overexpression of β-arrestin1 in SHR significantly decreased baseline levels of blood pressure and renal sympathetic nerve activity, and attenuated cardiovascular effects induced by RVLM injection of angiotensin II (100 pmol). Furthermore, β-arrestin1 overexpression in the RVLM significantly reduced the expression of AT1R by 65% and NF-κB p65 phosphorylation by 66% in SHR. It was confirmed that β-arrestin1 overexpression in the RVLM led to an enhancement of interaction between β-arrestin1 and IκB-α. Conclusion: Overexpression of β-arrestin1 in the RVLM reduces BP and sympathetic outflow in hypertension, which may be associated with NFκB-mediated AT1R downregulation.

  2. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome.

    Science.gov (United States)

    Wu, Kay L H; Chao, Yung-Mei; Tsay, Shiow-Jen; Chen, Chen Hsiu; Chan, Samuel H H; Dovinova, Ima; Chan, Julie Y H

    2014-10-01

    Metabolic syndrome (MetS), which is rapidly becoming prevalent worldwide, is long known to be associated with hypertension and recently with oxidative stress. Of note is that oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, contributes to sympathoexcitation and hypertension. This study sought to identify the source of tissue oxidative stress in RVLM and their roles in neural mechanism of hypertension associated with MetS. Adult normotensive rats subjected to a high-fructose diet for 8 weeks developed metabolic traits of MetS, alongside increases in sympathetic vasomotor activity and blood pressure. In RVLM of these MetS rats, the tissue level of reactive oxygen species was increased, nitric oxide (NO) was decreased, and mitochondrial electron transport capacity was reduced. Whereas the protein expression of neuronal NO synthase (nNOS) or protein inhibitor of nNOS was increased, the ratio of nNOS dimer/monomer was significantly decreased. Oral intake of pioglitazone or intracisternal infusion of tempol or coenzyme Q10 significantly abrogated all those molecular events in high-fructose diet-fed rats and ameliorated sympathoexcitation and hypertension. Gene silencing of protein inhibitor of nNOS mRNA in RVLM using lentivirus carrying small hairpin RNA inhibited protein inhibitor of nNOS expression, increased the ratio of nNOS dimer/monomer, restored NO content, and alleviated oxidative stress in RVLM of high-fructose diet-fed rats, alongside significantly reduced sympathoexcitation and hypertension. These results suggest that redox-sensitive and protein inhibitor of nNOS-mediated nNOS uncoupling is engaged in a vicious cycle that sustains the production of reactive oxygen species in RVLM, resulting in sympathoexcitation and hypertension associated with MetS. © 2014 American Heart Association, Inc.

  3. Functional cardiovascular action of L-cysteine microinjected into pressor sites of the rostral ventrolateral medulla of the rat.

    Science.gov (United States)

    Takemoto, Yumi

    2014-04-01

    The endogenous sulfur-containing amino acid L-cysteine injected into the cerebrospinal fluid space of the cisterna magna increases arterial blood pressure (ABP) and heart rate (HR) in the freely moving rat. The present study examined (1) cardiovascular responses to L-cysteine microinjected into the rostral ventrolateral medulla (RVLM), where a group of neurons regulate activities of cardiovascular sympathetic neurons and (2) involvement of ionotropic excitatory amino acid (iEAA) receptors in response. In the RVLM of urethane-anesthetized rats accessed ventrally and identified with pressor responses to L-glutamate (10 mM, 34 nl), microinjections of L-cysteine increased ABP and HR dose dependently (3-100 mM, 34 nl). The cardiovascular responses to L-cysteine (30 mM) were not attenuated by a prior injection of either antagonist alone, MK801 (20 mM, 68 nl) for the NMDA type of iEAA receptors, or CNQX (2 mM) for the non-NMDA type. However, inhibition of both NMDA and non-NMDA receptors with additional prior injection of either antagonist completely blocked those responses to L-cysteine. The results indicate that L-cysteine has functional cardiovascular action in the RVLM of the anesthetized rat, and the responses to L-cysteine involve both NMDA and non-NMDA receptors albeit in a mutually exclusive parallel fashion. The findings may suggest endogenous roles of L-cysteine indirectly via iEAA receptors in the neuronal network of the RVLM for cardiovascular regulation in physiological and pathological situations.

  4. The effect of microinjection of dimethyl sulfoxide into the rostral ventromedial medulla on swim stress-induced analgesia

    Directory of Open Access Journals (Sweden)

    S. Nazemi

    2018-02-01

    Full Text Available Background: Dimethyl sulfoxide (DMSO is an important solvent for compounds that used in pain research. Rostral ventromedial medulla (RVM plays an important role in modulating nociception and stress-induced analgesia (SIA. Objective: The aim of this study was to investigate the effect of DMSO administration into the RVM on SIA by using formalin test. Methods: This experimental study was conducted on 27 Wistar male rats (200±30 gr were randomly assigned to control, stress and stress+DMSO groups. Animals were placed in a water reservoir (20±1°C for 3 minutes to induce forced swimming stress. Stereotaxic surgery was performed to microinjection of DMSO (0.5μl, 100% into RVM. The pain behavior score was evaluated by subcutaneous injection of formalin 2% in the dorsal plantar region of hid paw. Findings: The pain score of phase 1, interphase and phase 2 of formalin test in swim stress group decreased significantly in comparison to control group (P<0.001, P< 0.05, P<0.001 respectively. In addition, the pain score of three phase of formalin test after DMSO injection in swim stress group decreased significantly in comparison to control and stress group (P<0.001, P<0.05 respectively. Conclusion: Also microinjections of DMSO into the RVM potentiate the swim stress analgesia. According to the analgesic effects of dimethyl sulfoxide, as well as its ability to potentiate stressinduced analgesia, DMSO should be used with caution as a solvent in pain studies. Conclusion: Force swim stress induces analgesia in, and microinjections of DMSO into the RVM potentiate the swim stress analgesia. According to the analgesic effects of DMSO, as well as its ability to potentiate stress-induced analgesia, it should be used with caution as solvent in pain studies.

  5. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.

    Science.gov (United States)

    Filice, Federica; Celio, Marco R; Babalian, Alexandre; Blum, Walter; Szabolcsi, Viktoria

    2017-10-15

    Aging-associated ependymal-cell pathologies can manifest as ventricular gliosis, ventricle enlargement, or ventricle stenosis. Ventricle stenosis and fusion of the lateral ventricle (LV) walls is associated with a massive decline of the proliferative capacities of the stem cell niche in the affected subventricular zone (SVZ) in aging mice. We examined the brains of adult C57BL/6 mice and found that ependymal cells located in the adhesions of the medial and lateral walls of the rostral LVs upregulated parvalbumin (PV) and displayed reactive phenotype, similarly to injury-reactive ependymal cells. However, PV+ ependymal cells in the LV-wall adhesions, unlike injury-reactive ones, did not express glial fibrillary acidic protein. S100B+/PV+ ependymal cells found in younger mice diminished in the LV-wall adhesions throughout aging. We found that periventricular PV-immunofluorescence showed positive correlation to the grade of LV stenosis in nonaged mice (wall adhesions and LV stenosis was significantly lower in mid-aged (>10-month-old) PV-knock out (PV-KO) mice. This suggests an involvement of PV+ ependymal cells in aging-associated ventricle stenosis. Additionally, we observed a time-shift in microglial activation in the LV-wall adhesions between age-grouped PV-KO and wild-type mice, suggesting a delay in microglial activation when PV is absent from ependymal cells. Our findings implicate that compromised ependymal cells of the adhering ependymal layers upregulate PV and display phenotype shift to "reactive" ependymal cells in aging-related ventricle stenosis; moreover, they also contribute to the progression of LV-wall fusion associated with a decline of the affected SVZ-stem cell niche in aged mice. © 2017 Wiley Periodicals, Inc.

  6. Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats.

    Science.gov (United States)

    Zha, Yan-Ping; Wang, Yang-Kai; Deng, Yu; Zhang, Ru-Wen; Tan, Xing; Yuan, Wen-Jun; Deng, Xiao-Ming; Wang, Wei-Zhong

    2013-04-01

    It is well known that low-intensity exercise training (ExT) is beneficial to cardiovascular dysfunction in hypertension. The tonically active glutamatergic input to the rostral ventrolateral medulla (RVLM), a key region for control of blood pressure and sympathetic tone, has been demonstrated to be increased in hypertensive rats. The aim of this study was to determine the effect of ExT on the increased glutamatergic input to the RVLM in spontaneously hypertensive rat (SHR). Normotensive rats Wistar-Kyoto (WKY) and SHR were treadmill trained or remained sedentary (Sed) for 12 weeks and classed into four groups (WKY-Sed, WKY-ExT, SHR-Sed, and SHR-ExT). The release of glutamate in the RVLM and its contribution to cardiovascular activity were determined in WKY and SHR after treatment of ExT. Blood pressure and sympathetic tone were significantly reduced in SHR after treatment with ExT. Bilateral microinjection of the glutamate receptor antagonist kynurenic acid (2.7 nmol in 100 nL) into the RVLM significantly decreased resting blood pressure, heart rate, and renal sympathetic nerve activity in SHR-Sed but not in WKY groups (WKY-Sed and WKY-ExT). However, the degree of reduction in these cardiovascular parameters evoked by KYN was significantly blunted in SHR-ExT compared with SHR-Sed group. The concentration of glutamate and the protein expression of vesicular glutamate transporter 2 in the RVLM were significantly increased in SHR-Sed compared with WKY-Sed, whereas they were reduced after treatment with ExT. Our findings suggest that ExT attenuates the enhancement in the tonically acting glutamatergic input to the RVLM of hypertensive rats, thereby reducing the sympathetic hyperactivity and blood pressure. © 2013 Blackwell Publishing Ltd.

  7. Cardiovascular responses to microinjections of GABA or anesthetics into the rostral ventrolateral medulla of conscious and anesthetized rats

    Directory of Open Access Journals (Sweden)

    Lacerda J.E.C.

    2003-01-01

    Full Text Available The rostral ventrolateral medulla (RVLM contains neurons involved in tonic and reflex control of arterial pressure. We describe the effects of gamma-aminobutyric acid (GABA and anesthetics injected into the RVLM of conscious and urethane (1.2 g/kg, iv anesthetized Wistar rats (300-350 g. In conscious rats, bilateral microinjection of GABA (50 nmol/200 nl induced a small but significant decrease in blood pressure (from 130 ± 3.6 to 110 ± 5.6 mmHg, N = 7. A similar response was observed with sodium pentobarbital microinjection (24 nmol/200 nl. However, in the same animals, the fall in blood pressure induced by GABA (from 121 ± 8.9 to 76 ± 8.8 mmHg, N = 7 or pentobarbital (from 118 ± 4.5 to 57 ± 11.3 mmHg, N = 6 was significantly increased after urethane anesthesia. In contrast, there was no difference between conscious (from 117 ± 4.1 to 92 ± 5.9 mmHg, N = 7 and anesthetized rats (from 123 ± 6.9 to 87 ± 8.7 mmHg, N = 7 when lidocaine (34 nmol/200 nl was microinjected into the RVLM. The heart rate variations were not consistent and only eventually reached significance in conscious or anesthetized rats. The right position of pipettes was confirmed by histology and glutamate microinjection into the RVLM. These findings suggest that in conscious animals the RVLM, in association with the other sympathetic premotor neurons, is responsible for the maintenance of sympathetic vasomotor tone during bilateral RVLM inhibition. Activity of one or more of these premotor neurons outside the RVLM can compensate for the effects of RVLM inhibition. In addition, the effects of lidocaine suggest that fibers passing through the RVLM are involved in the maintenance of blood pressure in conscious animals during RVLM inhibition.

  8. Repeated electroacupuncture attenuating of apelin expression and function in the rostral ventrolateral medulla in stress-induced hypertensive rats.

    Science.gov (United States)

    Zhang, Cheng-Rong; Xia, Chun-Mei; Jiang, Mei-Yan; Zhu, Min-Xia; Zhu, Ji-Min; Du, Dong-Shu; Liu, Min; Wang, Jin; Zhu, Da-Nian

    2013-08-01

    Studies have revealed that apelin is a novel multifunctional peptide implicated both in blood pressure (BP) regulation and cardiac function control. Evidence shows that apelin and its receptor (APJ) in the rostral ventrolateral medulla (RVLM) may play an important role in central BP regulation; however, its role is controversial and very few reports have shown the relationship between acupuncture and apelin. Our study aims to both investigate the apelinergic system role in stress-induced hypertension (SIH) and determine whether acupuncture therapy effects on hypertension involve the apelinergic system in the RVLM. We established the stress-induced hypertensive rat (SIHR) model using electric foot-shock stressors with noise interventions. The expression of both apelin and the APJ receptor in the RVLM neurons was examined by immunohistochemical staining and Western blots. The results showed apelin expression increased remarkably in SIHR while APJ receptor expression showed no significant difference between control and SIHR groups. Microinjection of apelin-13 into the RVLM of control rats or SIHR produced pressor and tachycardic effects. Furthermore, effects induced by apelin-13 in SIHR were significantly greater than those of control rats. In addition, repetitive electroacupuncture (EA) stimulation at the Zusanli (ST-36) acupoint attenuated hypertension and apelin expression in the RVLM in SIHR; it also attenuated the pressor effect elicited by exogenous apelin-13 microinjection in SIHR. The results suggest that augmented apelin in the RVLM was part of the manifestations of SIH; the antihypertensive effects of EA might be associated with the attenuation of apelin expression and function in the RVLM, which might be a novel role for EA in SIH setting. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Overexpression of ß-Arrestin1 in the Rostral Ventrolateral Medulla Downregulates Angiotensin Receptor and Lowers Blood Pressure in Hypertension

    Directory of Open Access Journals (Sweden)

    Jia-Cen Sun

    2018-03-01

    Full Text Available Background: Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R in the rostral ventrolateral medulla (RVLM. β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR, and further determine the effect of β-arrestin1 on AT1R expression in the RVLM.Methods: The animal model of β-arrestin1 overexpression was induced by bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1 into the RVLM of WKY and SHR.Results: β-arrestin1 was expressed on the pre-sympathetic neurons in the RVLM, and its expression in the RVLM was significantly (P < 0.05 downregulated by an average of 64% in SHR than WKY. Overexpression of β-arrestin1 in SHR significantly decreased baseline levels of blood pressure and renal sympathetic nerve activity, and attenuated cardiovascular effects induced by RVLM injection of angiotensin II (100 pmol. Furthermore, β-arrestin1 overexpression in the RVLM significantly reduced the expression of AT1R by 65% and NF-κB p65 phosphorylation by 66% in SHR. It was confirmed that β-arrestin1 overexpression in the RVLM led to an enhancement of interaction between β-arrestin1 and IκB-α.Conclusion: Overexpression of β-arrestin1 in the RVLM reduces BP and sympathetic outflow in hypertension, which may be associated with NFκB-mediated AT1R downregulation.

  10. New results on nuclear multifragmentation in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Iliescu, Bogdan; Felea, Daniel

    2002-01-01

    Some new aspects on the multifragmentation processes in nucleus-nucleus and nucleon-nucleus collisions at high energies are discussed in this work. Experimental data obtained in international collaborations (for example, MULTI Collaboration with KEK Tsukuba (Japan) and SKM 200 Collaboration with JINR Dubna (Russia)) are used to discuss new mechanisms in the target nucleus fragmentation. Correlations with stopping power, participant region size and energy density are included. Comparisons of the experimental results with the predictions of a phenomenological geometric model of intermediate mass fragment multiplicity, caloric curves and angular distributions are also presented. These results are used for global description of the multifragmentation processes in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies. The size of the participant region and the average intermediate mass fragments multiplicity are taken into consideration using the free space probability. A few correlations between the deposited energy in the participant region and stability state of the intermediate mass fragments are presented in this work. The importance of the collision geometry in the multifragmentation processes is stressed. The results suggest different time moments for the incident nucleus fragmentation and for the target nucleus fragmentation. The associated entropies are distinct. (authors)

  11. Biochemical evidence for. gamma. -aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    Glutamate decarboxylase activity, a specific marker for ..gamma..-aminobutyrate-containing neurons, has been analysed in microdissected samples from rat mesencephalon following unilateral electrocoagulations of the nucleus accumbens. This lesion resulted in a consistent decrease of 50% in the enzyme activity in the rostromedial substantia nigra, and a slight, but insignificant decrease (- 15%) in the medial parts of the caudal pars compacta of the substantia nigra. No change was found in the lateral pars compacta or the central pars reticulata. In the ventral tegmental area, the highest activity was found in the rostromedial part, adjacent to the mammillary body. At this level, a significant decrease of 20% was found in the ventral tegmental area on the lesioned side. In contrast, the activities in the medial accessory optic nucleus and the caudal ventral tegmental area adjacent to the interpenduncular nucleus were unchanged. The results indicate that the nucleus accumbens sends ..gamma..-aminobutyrate-containing fibres to the rostromedial substantia nigra and to the rostral ventral tegmental area. The caudal ventral tegmental area, the lateral pars compacta and the central pars reticulata do not receive measurable amounts of such fibres.

  12. Notochord to Nucleus Pulposus Transition.

    Science.gov (United States)

    Lawson, Lisa; Harfe, Brian D

    2015-10-01

    A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.

  13. Molecular orbitals of nucleons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1986-05-01

    A formalism for the dynamical treatment of the molecular orbitals of valence nucleons in nucleus-nucleus collisions at low bombarding energy is developed with the use of the coupled-reaction-channel (CRC) method. The Coriolis coupling effects as well as the finite mass effects of the nucleon are taken into account in this model, of rotating molecular orbitals, RMO. First, the validity of the concept is examined from the view point of the multi-step processes in a standard CRC calculation for systems containing two identical [core] nuclei. The calculations show strong CRC effects particularly in the case where the mixing of different l-parity orbitals - called hybridization in atomic physics - occurs. Then, the RMO representation for active nucleons is applied to the same systems and compared to the CRC results. Its validity is investigated with respect to the radial motion (adiabaticity) and the rotation of the molecular axis (radial and rotational coupling). Characteristic molecular orbitals of covalent molecules appear as rotationally stable states (K = 1/2) with good adiabaticity. Using the RMO's we obtain a new interpretation of various scattering phenomena. Dynamically induced changes in the effective Q-values (or scaling of energies), dynamically induced moments of inertia and an dynamically induced effective (L · S) interaction are obtained as a result of the molecular orbital formation. Various experimental data on transfer and subbarrier fusion reactions are understood in terms of the RMO's and their adiabatic potentials. Landau-Zener transitions, which strongly depend on the total angular momentum of the system, definitely predict the observation of characteristic changes in the cross sections for the inelastic scattering 13 C( 12 C, 12 C) 13 C* (3.086 MeV, 1/2 + ) with the change of the bombarding energy. (author)

  14. Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code

    International Nuclear Information System (INIS)

    Luk'yanov, K.V.

    2008-01-01

    Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented

  15. Study of various models of nuclear interaction potentials: nucleon-nucleus and nucleus-nucleus systems

    International Nuclear Information System (INIS)

    Ngo, H.

    1984-01-01

    Several models, performed within a mean field theory, are developed for the calculation of nucleon-nucleus interaction potentials. The first part of the thesis deals with the nucleon-nucleus average interaction. It is mainly devoted to the calculation of dynamical corrections to the Hartree-Fock approximation. Two approaches are used: a microscopic model performed in the framework of the nuclear structure approach and a semi-phenomenological one, based on the application of the dispersion relations to the empirical imaginary potential. Both models take into account finite size effects like collectivity or threshold effects which are important at low energy. The Green's function properties are used for both models. The second part of this work is devoted to the interaction potential between two heavy ions. This calculation, which is performed in the framework of the sudden approximation, uses the energy density formalism (Thomas-Fermi approximation). It has been extended to finite temperature. At T=0 the experimental fusion barriers of heavy systems are reproduced within 4%. Their temperature dependence is studied. The proximity scaling is checked and a universal function is obtained at T=0 and at finite temperature. It is found that the proximity theorem is well satisfied on the average. The dispersion around the mean behaviour increases with increasing temperature. At last, P+A* and α+A* interaction potentials are calculated within a double folding model using a schematic effective interaction [fr

  16. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  17. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  18. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors.

    Science.gov (United States)

    Huang, Shang-Cheng; Dai, Yu-Wen E; Lee, Yen-Hsien; Chiou, Lih-Chu; Hwang, Ling-Ling

    2010-08-01

    An injection of orexin A or B into the cisterna magna or the rostral ventrolateral medulla (RVLM), where bulbospinal vasomotor neurons are located, elevated arterial pressure (AP) and heart rate (HR). We examined how orexins affected RVLM neurons to regulate cardiovascular functions by using in vitro recordings of neuronal activity of the RVLM and in vivo measurement of cardiovascular functions in rats. Orexin A and B concentration-dependently depolarized RVLM neurons. At 100 nM, both peptides excited 42% of RVLM neurons. Tetrodotoxin failed to block orexin-induced depolarization. In the presence of N-(2-methyl-6-benzoxazolyl)-N'-1, 5-naphthyridin-4-yl urea (SB-334867), an orexin 1 receptor (OX(1)R) antagonist, orexin A depolarized 42% of RVLM neurons with a smaller, but not significantly different, amplitude (4.9 +/- 0.8 versus 7.2 +/- 1.1 mV). In the presence of (2S)-1- (3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3,3-dimethyl-2-[(4-pyridinylmethyl)amino]-1-butanone hydrochloride (TCS OX2 29), an orexin 2 receptor (OX(2)R) antagonist, orexin A depolarized 25% of RVLM neurons with a significantly smaller amplitude (1.7 +/- 0.5 mV). Coapplication of both antagonists completely eliminated orexin A-induced depolarization. An OX(2)R agonist, [Ala(11),D-Leu(15)]-orexin B, concentration-dependently depolarized RVLM neurons. Regarding neuronal phenotypes, orexins depolarized 88% of adrenergic, 43% of nonadrenergic, and 36 to 41% of rhythmically firing RVLM neurons. Intracisternal TCS OX2 29 (3 and 10 nmol) suppressed intracisternal orexin A-induced increases of AP and HR, whereas intracisternal SB-334867 (3 and 10 nmol) had no effect on the orexin A-induced increase of HR but suppressed the orexin A-induced pressor response at 10 nmol. We concluded that orexins directly excite RVLM neurons, which include bulbospinal vasomotor neurons, and regulate cardiovascular function mainly via the OX(2)R, with a smaller contribution from the OX(1)R.

  19. Do migrating cells need a nucleus?

    Science.gov (United States)

    Hawkins, Rhoda J

    2018-03-05

    How the nucleus affects cell polarity and migration is unclear. In this issue, Graham et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706097) show that enucleated cells polarize and migrate in two but not three dimensions and propose that the nucleus is a necessary component of the molecular clutch regulating normal mechanical responses. © 2018 Hawkins.

  20. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  1. Actomyosin contractility rotates the cell nucleus.

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  2. Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption.

    Science.gov (United States)

    Richard, Jocelyn M; Berridge, Kent C

    2013-02-15

    Corticolimbic circuits, including direct projections from prefrontal cortex to nucleus accumbens (NAc), permit top-down control of intense motivations generated by subcortical circuits. In rats, localized disruptions of glutamate signaling within medial shell of NAc generate desire or dread, anatomically organized along a rostrocaudal gradient analogous to a limbic keyboard. At rostral locations in shell, these disruptions generate appetitive eating, but at caudal locations the disruptions generate progressively fearful behaviors (distress vocalizations, escape attempts, and antipredator reactions). Here, we asked whether medial prefrontal cortex can modulate intense motivations generated by subcortical NAc disruptions. We used simultaneous microinjections in medial prefrontal cortex regions and in NAc shell to examine whether the desire or dread generated by NAc shell disruptions is modulated by activation/inhibition of three specific regions of prefrontal cortex: medial orbitofrontal cortex, infralimbic cortex (homologous to area 25 or subgenual anterior cingulate in the human), or prelimbic cortex (midventral anterior cingulate). We found that activation of medial orbitofrontal cortex biased intense bivalent motivation in an appetitive direction by amplifying generation of eating behavior by middle to caudal NAc disruptions, without altering fear. In contrast, activation of infralimbic prefrontal cortex powerfully and generally suppressed both appetitive eating and fearful behaviors generated by NAc shell disruptions. These results suggest that corticolimbic projections from discrete prefrontal regions can either bias motivational valence or generally suppress subcortically generated intense motivations of desire or fear. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  4. Autonomic processing of the cardiovascular reflexes in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Machado B.H.

    1997-01-01

    Full Text Available The nucleus tractus solitarii (NTS receives afferent projections from the arterial baroreceptors, carotid chemoreceptors and cardiopulmonary receptors and as a function of this information produces autonomic adjustments in order to maintain arterial blood pressure within a narrow range of variation. The activation of each of these cardiovascular afferents produces a specific autonomic response by the excitation of neuronal projections from the NTS to the ventrolateral areas of the medulla (nucleus ambiguus, caudal and rostral ventrolateral medulla. The neurotransmitters at the NTS level as well as the excitatory amino acid (EAA receptors involved in the processing of the autonomic responses in the NTS, although extensively studied, remain to be completely elucidated. In the present review we discuss the role of the EAA L-glutamate and its different receptor subtypes in the processing of the cardiovascular reflexes in the NTS. The data presented in this review related to the neurotransmission in the NTS are based on experimental evidence obtained in our laboratory in unanesthetized rats. The two major conclusions of the present review are that a the excitation of the cardiovagal component by cardiovascular reflex activation (chemo- and Bezold-Jarisch reflexes or by L-glutamate microinjection into the NTS is mediated by N-methyl-D-aspartate (NMDA receptors, and b the sympatho-excitatory component of the chemoreflex and the pressor response to L-glutamate microinjected into the NTS are not affected by an NMDA receptor antagonist, suggesting that the sympatho-excitatory component of these responses is mediated by non-NMDA receptors.

  5. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  6. Laser spectroscopy probes the nucleus

    International Nuclear Information System (INIS)

    Griffith, J.; Billowes, J.

    1998-01-01

    Extremely sensitive optical measurements are shedding new light on the shape and size of nuclei, and the properties of nuclear matter far from stability. Of the 7000 or so isotopes known to nuclear physicists, less than 270 are stable. In general isotopes become more and more unstable as we move away from the so-called valley of stability, and therefore become more difficult to study in experiments. The tests of the theory also become more demanding. Laser spectroscopy is one of the techniques that is helping to explore the properties of these isotopes and improve our understanding of the forces inside the nucleus. High-resolution laser spectroscopy of short-lived radioactive atoms now makes it possible to measure the nuclear charge radius of many elements, including many isotopes far from stability. The method can reveal fine details of the sizes, shapes and structures of nuclei. In addition, laser spectroscopy is making significant contributions to our understanding of the nuclear force in unstable nuclei with unusual, or extreme, proton-neutron ratios. In this article the authors discuss the latest advances in studying heavy nuclei. (author)

  7. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  8. Role of the rostral ventrolateral medulla (RVLM) in the patterning of vestibular system influences on sympathetic nervous system outflow to the upper and lower body.

    Science.gov (United States)

    Sugiyama, Yoichiro; Suzuki, Takeshi; Yates, Bill J

    2011-05-01

    Research on animal models as well as human subjects has demonstrated that the vestibular system contributes to regulating the distribution of blood in the body through effects on the sympathetic nervous system. Elimination of vestibular inputs results in increased blood flow to the hindlimbs during vestibular stimulation, because it attenuates the increase in vascular resistance that ordinarily occurs in the lower body during head-up tilts. Additionally, the changes in vascular resistance produced by vestibular stimulation differ between body regions. Electrical stimulation of vestibular afferents produces an inhibition of most hindlimb vasoconstrictor fibers and a decrease in hindlimb vascular resistance, but an initial excitation of most upper body vasoconstrictor fibers accompanied by an increase in upper body vascular resistance. The present study tested the hypothesis that neurons in the principal vasomotor region of the brainstem, the rostral ventrolateral medulla (RVLM), whose projections extended past the T10 segment, to spinal levels containing sympathetic preganglionic neurons regulating lower body blood flow, respond differently to electrical stimulation of the vestibular nerve than RVLM neurons whose axons terminate rostral to T10. Contrary to our hypothesis, the majority of RVLM neurons were excited by vestibular stimulation, despite their level of projection in the spinal cord. These findings indicate that the RVLM is not solely responsible for establishing the patterning of vestibular-sympathetic responses. This patterning apparently requires the integration by spinal circuitry of labyrinthine signals transmitted from the brainstem, likely from regions in addition to the RVLM.

  9. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    Science.gov (United States)

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Partial inelasticity coefficients of negative pions produced in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    OLIMOV, K.; LUTPULLAEV, S.L.; PETROV, V.I.; OLIMOV, A.K.

    2015-01-01

    New experimental data on the partial inelasticity coefficients of negative pions produced in "1"6Op-collisions at 3.25 A GeV/s, pC-interactions at 4.2 and 9.9 GeV/s, and d,α,C(C)-collisions at 4.2 A GeV/s are presented. It is established that the behavior of partial inelasticity coefficients of pions at intermediate energies (<10 GeV) in hadron-nucleus collisions has a transitional character, reaching the limiting value at ultrahigh energies. It is shown that the mean values of partial inelasticity coefficients of pions produced in nucleus-nucleus collisions decrease with an increase in mass number of the projectile nucleus. (authors)

  11. Neutrino-nucleus collision at intermediate energy

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Oset, E.

    1999-01-01

    Neutrino-nucleus reactions at low and intermediate energy up to E ν = 500 MeV are studied for the most interesting nuclei from an experimental point of view. We focus on neutrino-nucleus cross-sections of semi-inclusive processes, for which recent measurements from radiochemical experiments at LAMPF and KARMEN laboratories are available. The method employed uses the modified Lindhard function for the description of the particle-hole excitations of the final nucleus via a local density approximation. (authors)

  12. The application of a phenomenological model to inelastic nucleus-nucleus interactions for laboratory momenta below 5 GeV/c per nucleon of the incident nucleus

    International Nuclear Information System (INIS)

    Grishin, V.G.; Kladnitskaya, E.N.

    1985-01-01

    A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data

  13. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  14. K sup + nucleus total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sawafta, R.

    1990-01-01

    The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.

  15. The nucleus in Finland - The second report

    International Nuclear Information System (INIS)

    Aurela, Jorma; Korteniemi, Virpi; Halme-Tapanainen, Kristina

    1993-01-01

    The Finnish Nuclear Society (FNS) started the distribution of the Nucleus bulletin at the beginning of 1988. The volume of distribution has been extended since, including today nearly 1,000 persons. Both the English and the Finnish version of the bulletin is sent to various opinion leaders of society, i.e. the members of the parliament, ministries, the media, representatives of industry and other decision-makers of the energy field. After the five-year history of the Nucleus in Finland, it is time to look back and sum up the present status of the Nucleus. This report gives a short summary concerning the present distribution and its efficiency, the experiences gained and the influence of the bulletin in Finland. The first questionnaire was sent in November 1988, and the survey was repeated among the Finnish readers of the Nucleus in autumn 1992. The results of the latter survey are given in this report

  16. Microtubules move the nucleus to quiescence.

    Science.gov (United States)

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  17. Transport of glutathione into the nucleus.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine

    2014-10-01

    The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type. Copyright © 2014. Published by Elsevier Inc.

  18. Nuclear physics: Unexpected doubly-magic nucleus

    International Nuclear Information System (INIS)

    Janssens, R.V.F.

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope 24 O has been found to be one such nucleus - yet it lies just at the limit of stability

  19. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  20. Kaon-nucleus reactions and hypernuclei

    International Nuclear Information System (INIS)

    Dover, C.B.

    1987-01-01

    Recent advances in hypernuclear physics and kaon-nucleus scattering are discussed, with emphasis on the spectroscopy of Λ single particle states in heavy systems, as revealed by the (π + ,K + ) reaction. 26 refs., 8 figs

  1. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  2. Polarization and alignment of nucleus fission fragments

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Correlation of fragment orientation with orientation axis of fissile nucleus and with n-vector f vector of fragment divergence is considered. Estimations of polarization and alignment of fission fragments of preliminarily oriented nuclei in correlation (with n-vector f recording) and integral (with n-vector f averaging) experiments were conducted. It is shown that high sensitivity of polarization and fragment alignment to the character of nucleus movement at the stage of descent from barrier to rupture point exists

  3. New aspects of the atomic nucleus

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1987-01-01

    We are at last just beginning to identify convincing evidence for what we have long believed, namely that the nucleus is more than the sum of its neutron-proton parts taken pairwise because, for example, a cluster of three nucleons interacts differently from the sum of the interactions of its three pairs; there is an important collectivism in the life of a nucleus even before we ask what its nucleons are doing. (orig./WL)

  4. Testing string dynamics in lepton nucleus reactions

    International Nuclear Information System (INIS)

    Gyulassy, M.; Pluemer, M.

    1989-10-01

    The sensitivity of nuclear attenuation of 10-100 GeV lepton nucleus (ell A) reactions to space-time aspects of hadronization is investigated within the context of the Lund string model. We consider two mechanisms for attenuation in a nucleus: final state cascading and string flip excitations. Implications for the evolution of the energy density in nuclear collisions are discussed. 16 refs., 10 figs

  5. Numerical Simulation of the Kinetic Critical Nucleus

    OpenAIRE

    Sanada, Masaaki; Nishioka, Kazumi; Okada, Masahumi; Maksimov, Igor, L.

    1997-01-01

    Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clu...

  6. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  7. Improved Cloud Condensation Nucleus Spectrometer

    Science.gov (United States)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  8. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin

    DEFF Research Database (Denmark)

    Zheng, Y; Riche, D; Rekling, J C

    1998-01-01

    retrogradely brainstem neurons reciprocally connected to a population of inspiratory neurons in the rat rVRG. The procedure excited rVRG neurons in multi-unit recordings and led to a Golgi-like labelling of distant cells presumably excited by efferents from the rVRG. Injection of biocytin without NMDA did...... dendrites of labelled neurons, suggesting monosynaptic connections between the rVRG and these nuclei.......Groups of neurons in the medulla and pons are essential for the rhythm generation, pattern formation and modulation of respiration. The rostral Ventral Respiratory Group (rVRG) is thought to be a crucial area for rhythm generation. Here we co-applied biocytin and NMDA in the rVRG to label...

  9. Quark matter formation in high energy nucleus-nucleus collisions - predictions and observations

    International Nuclear Information System (INIS)

    Otterlund, I.

    1983-01-01

    In this talk I give a short summary of the recent discussion around predictions and possible observations of quark-gluon plasma and fireballs in ultrarelativistic nucleus-nucleus collisions. In particular this talk is focused on heavy ion reactions at 200 A GeV. (orig./HSI)

  10. Effective number of inelastically interacting nucleons in rare nucleus-nucleus production processes

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Lokhtin, I.P.

    1992-01-01

    A model of nucleus-nucleus interaction using one inelastic NN-interaction is suggested for the exclusive production processes with small cross-section. A-dependence nuclear coherent and incoherent production cross-section are predicted. 20 refs.; 4 figs

  11. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    International Nuclear Information System (INIS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-01-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely (1-Ω→exp(-Const√(Y))) than the opacity that stems from the Balitsky-Kovchegov equation, which is (1-Ω→exp(-ConstY 2 )). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  12. Production of strange and multistrange hadrons in nucleus-nucleus collisions at the SPS

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr

    1999-01-01

    Roč. 661, - (1999), 130c-139c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : production * nucleus-nucleus collisions * hadrons * strangeness * model predictions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.088, year: 1999

  13. The mechanism of nuclear energy release in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    The mechanism of intranuclear energy release in reactions induced by nucleus-nucleus collisions at energies higher than ∼ 0.5 GeV/nucl. is presented - as prompted experimentally. The intranuclear energy release goes through local damages of the colliding nuclei

  14. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using ...

  15. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  16. The nuclear response and the imaginary potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1983-01-01

    The Fermi-gas model is used in this paper to study the nucleus-nucleus collision. The field produced by one of the nuclei is considered to act on nucleons in the other nucleus, which is treated as a Fermi gas of radius R. The imaginary part of the (non-local) nucleus-nucleus potential is then computed by evaluating the energy-conserving second-order term in which the intermediate states are particle-hole excitations produced in the Fermi gas. The equivalent local potential, obtained by using the Perey-Saxon method, is compared with phenomenological imaginary potentials. Later it is shown that, in the limit of small range of non-locality, the imaginary potential can be related to the nuclear response function. With this, one can write the nuclear friction coefficient that is used in phenomenological analyses of heavy-ion collisions in terms of the imaginary potential. (orig.)

  17. THREE-DIMENSIONAL RECONSTRUCTION OF THE ANTERIOR OLFACTORY NUCLEUS IN THE HUMAN OLFACTORY BULB AND PEDUNCLE. Reconstrucción tridimiensional del núcleo olfatorio anterior en el bulbo y pedúnculo olfatorio humano

    Directory of Open Access Journals (Sweden)

    Steven Berendsen

    2016-03-01

    Full Text Available El bulbo y pedúnculo olfatorio humano contienen muchos grupos celulares más o menos separados que habitualmente son considerados como parte del núcleo olfatorio anterior retro-bulbar (AON. La presunción que estos grupos celulares sean considerados como extensión rostral del AON en el hemisferio rostral retrocede a la descripción de un único caso por Crosby y Humphrey (1941. Para mejorar nuestra comprensión de la anatomía del AON bulbar y peduncular humano investigamos la morfología, forma y tamaño de estas partes en este núcleo en tejido post-mortem de individuos de edades conocidas. Se obtuvieron seis bulbos y pedúnculos olfatorios, incluyendo la sustancia perforada anterior (SPA, de cerebros donados; se realizaron cortes seriales horizontales a 40µm y se tiñó con substancia de Nissl. Las neuronas de tamaño mediano a grande de esta parte del AON se tiñeron intensamente y tenían un diámetro promedio de 16µm. La reconstruc-ción tridimensional demostró que en todos los casos, excepto uno, el AON bulbar y peduncular consistieron en una cadena discontinua de grupos celulares conectados por puentes de neuropilas pobres o libres de células. El número de grupos celulares y de puentes conectores difiere en cada individuo. Concluimos que las porciones bulbar y peduncular del AON humano debería ser considerado como una especialización humana más que como una extensión rostral del área AON retro-bulbar. Esto es acorde con las propiedades neuro-clínicas previamente publicadas y la degeneración temprana selectiva, pre-clínica, de estos nichos celulares en la enfermedad neuro-degenerativa. The human olfactory bulb and peduncle contain several more or less separated cell groups that are usually regarded to be part of the retrobulbar anterior olfactory nucleus (AON. The assumption that these cell groups are to be considered as the rostral extension of the AON in the rostral hemisphere goes back to the description of one single

  18. The dynamic landscape of the cell nucleus.

    Science.gov (United States)

    Austin, Christopher M; Bellini, Michel

    2010-01-01

    While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.

  19. The atomic nucleus as a target

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.

    1981-01-01

    The purpose of this article is to characterize the atomic nucleus used as a target in hadron-nucleus collision experiments. The atomic nucleus can be treated as a lens-shaped ''slab'' of nuclear matter. Such ''slab'' should be characterized by the nuclear matter layer thickness at any impact parameter, by its average thickness, and by its maximal thickness. Parameters characterizing atomic nuclei as targets are given for the elements: 6 12 C, 7 14 N, 8 16 O, 9 19 F, 10 20 Ne, 13 27 Al, 14 28 Si, 16 32 S, 18 40 Ar, 24 52 Cr, 26 54 Fe, 27 59 Co, 29 64 Cu, 30 65 Zn, 32 73 Ge, 35 80 Br, 47 100 Ag, 53 127 I, 54 131 Xe, 73 181 Ta, 74 184 W, 79 197 Au, 82 207 Pb, 92 -- 238 U [ru

  20. Dynamics of hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1981-07-01

    Recent progress in diffraction theory shows that proton-nucleus scattering at nonforward angles is dominated by the interference of waves from two or more bright spots. Analytic formulas based on asymptotic theories of diffraction yield valuable new insights into the scattering and these formulas can be readily extended to illuminate the role of dynamical ingredients, i.e., the nucleon-nucleon amplitudes. The governing parameters of the diffraction and some direct connections between the observed cross sections and the input dynamics are reviewed. New information regarding the nucleon-nucleon parameters based on recent phase shift analyses show some systematic differences from the effective NN amplitudes which produce fits to proton-nucleus diffraction data. Recent progress in understanding the role of Δ-isobars in proton-nucleus dynamics is reviewed. 126 references

  1. An acute injection of corticosterone increases thyrotrophin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats.

    Science.gov (United States)

    Sotelo-Rivera, I; Jaimes-Hoy, L; Cote-Vélez, A; Espinoza-Ayala, C; Charli, J-L; Joseph-Bravo, P

    2014-12-01

    The activity of the hypothalamic-pituitary-thyroid (HPT) axis is rapidly adjusted by energy balance alterations. Glucocorticoids can interfere with this activity, although the timing of this interaction is unknown. In vitro studies indicate that, albeit incubation with either glucocorticoid receptor (GR) agonists or protein kinase A (PKA) activators enhances pro-thyrotrophin-releasing hormone (pro-TRH) transcription, co-incubation with both stimuli reduces this enhancement. In the present study, we used primary cultures of hypothalamic cells to test whether the order of these stimuli alters the cross-talk. We observed that a simultaneous or 1-h prior (but not later) activation of GR is necessary to inhibit the stimulatory effect of PKA activation on pro-TRH expression. We tested these in vitro results in the context of a physiological stimulus on the HPT axis in adult male rats. Cold exposure for 1 h enhanced pro-TRH mRNA expression in neurones of the hypophysiotrophic and rostral subdivisions of the paraventricular nucleus (PVN) of the hypothalamus, thyrotrophin (TSH) serum levels and deiodinase 2 (D2) activity in brown adipose tissue (BAT). An i.p. injection of corticosterone stimulated pro-TRH expression in the PVN of rats kept at ambient temperature, more pronouncedly in hypophysiotrophic neurones that no longer responded to cold exposure. In corticosterone-pretreated rats, the cold-induced increase in pro-TRH expression was detected only in the rostral PVN. Corticosterone blunted the increase in serum TSH levels and D2 activity in BAT produced by cold in vehicle-injected animals. Thus, increased serum corticosterone levels rapidly restrain cold stress-induced activation of TRH hypophysiotrophic neurones, which may contribute to changing energy expenditure. Interestingly, TRH neurones of the rostral PVN responded to both corticosterone and cold exposure with an amplified expression of pro-TRH mRNA, suggesting that these neurones integrate stress and temperature

  2. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  3. Experimental search for compression phenomena in fast nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.; Obst, E.

    1977-01-01

    The occurrence of compression phenomena and shock waves, connected with the increase of the density of the nuclear matter during the interpenetration of two fast nuclei, are discussed. Current experiments dealing with this problem are reviewed. Before considering the mechanism of the interpenetration of two fast nuclei it may be useful to look at more simple situations, i.e., proton-proton interactions, then to envelop them with nuclear matter, considering proton-nucleus interactions. Only very general features are described, which may give suggestions for the understanding of the nucleus-nucleus impact

  4. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  5. Two-photon physics in nucleus-nucleus collisions at RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  6. Future prospects in N-nucleus interactions

    International Nuclear Information System (INIS)

    Moss, J.M.

    1983-01-01

    A detailed examination of two research areas, polarization observables and antiproton-nucleus reactions, which should have near-term future impact on the understanding of the interaction of medium-energy nucleons in nuclei is made. More speculative future experiments employing cooled beams, double spectrometer systems, and large Q-value, low momentum-transfer reactions are also discussed. 25 references, 4 figures

  7. Consequences of hadron-nucleus multiplicity parametrization

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.

    1986-01-01

    Some interesting consequences are analyzed of a new parametrization for the hadron-nucleus multiplicity distributions and they are compared with the experimental data. Further, it is illustrated how the scaling property for the average multiplicity will be modified and it is found that the experimental data support this behaviour. (orig.)

  8. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  9. Large philipsite crystal as ferromanganese nodule nucleus

    Digital Repository Service at National Institute of Oceanography (India)

    Ghosh, A.K.; Mukhopadhyay, R.

    nodule accretion as approximately 2 mm/Ma and that of phillipsite growth as approximately 0.65 mm/Ka, the nucleus material appears to have been growing for approximately 4.5-5 Ma. Originally surfaced as a rock fragment from late Miocene volcanism...

  10. Correlations in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Wosiek, B.

    1976-09-01

    The correlations between the particles produced in interactions of hadrons with emulsion nuclei were investigated. The data are in qualitative agreement with the models which describe the interactions with nuclei as subsequent collisions of the fast part of excited hadronic matter inside the nucleus. (author)

  11. Inside a plant nucleus: discovering the proteins

    Czech Academy of Sciences Publication Activity Database

    Petrovská, Beáta; Šebela, M.; Doležel, Jaroslav

    2015-01-01

    Roč. 66, č. 6 (2015), s. 1627-1640 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cell nucleus * chromatin * genome function Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.677, year: 2015

  12. Iliacus Abscess with Radiculopathy Mimicking Herniated Nucleus ...

    African Journals Online (AJOL)

    2016-05-02

    May 2, 2016 ... radiculopathy mimicking herniated nucleus pulposus: Aadditional diagnostic value of magnetic resonance imaging. Niger J Clin Pract. 2017;20:392-3. This is an open access article distributed under the terms of the Creative Commons. Attribution-Non Commercial-Share Alike 3.0 License, which allows ...

  13. Resonances in η-light nucleus systems

    Indian Academy of Sciences (India)

    We locate resonances in -light nucleus elastic scattering using the time delay method. We solve few-body equations within the finite rank approximation in order to calculate the -matrices and hence the time delay for the - 3He and - 4He systems. We find a resonance very close to the threshold in - 3 He elastic ...

  14. Compound nucleus studies withy reverse kinematics

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1985-06-01

    Reverse kinematics reactions are used to demonstrate the compound nucleus origin of intermediate mass particles at low energies and the extension of the same mechanism at higher energies. No evidence has appeared in our energy range for liquid-vapor equilibrium or cold fragmentation mechanisms. 11 refs., 12 figs

  15. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    Full text: The investigation of production of protons in hadron- and nucleus-nucleus interactions is a key problem allowing one to establish the singularities of dynamics of nuclear interactions. The formation of proton-fragments at high energies of colliding particles proceeds within both the interaction of hadrons with nuclei and in the process of decay of the nucleus or its de-excitation at peripheral interactions. At different stages of interaction of impinging particle with target nucleus, the different mechanisms of formation of proton-fragments: the direct knock-out of intranuclear nucleons in the process of high energy cascade of an initial hadron, intranuclear cascade of produced particles, decay of the excited multi-nucleon fragments and of the thermalized remnant nucleus, and the coalescence of nuclear fragments to the new clusters are realized with the certain probability, connected to the interaction parameters (the interaction energy, the parameter of collision, the intranuclear density, the configuration of Fermi momentum of nucleons and clusters of target nucleus et al.). In its turn, the mechanisms of formation of the final nuclear fragments are closely related to the type of excitation of an initial nucleus. The peripheral interactions proceed at small transfers of the momentum of an impinging particle and represent the wide class of reactions covering the processes from diffractive or coulomb collective excitations of the whole nucleus to the direct quasi-elastic knock-out of the separate nucleons. Non-peripheral interactions are caused by comparatively high local transfers of momentum to the intranuclear clusters allowing the development of intranuclear cascade and the asymmetric redistribution of energy of an impinging particle. The central collisions causing the full decay of nucleus on nucleons or few-nucleon fragments, are the limiting case of the maximal development of the intranuclear cascade. The interaction of the initial particles with

  16. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    NARCIS (Netherlands)

    Buijs, Frederik N.; Guzmán-Ruiz, Mara; León-Mercado, Luis; Basualdo, Mari Carmen; Escobar, Carolina; Kalsbeek, Andries; Buijs, Ruud M.

    2017-01-01

    The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively

  17. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system

    NARCIS (Netherlands)

    Buijs, R. M.; Hermes, M. H.; Kalsbeek, A.

    1998-01-01

    Vasopressin (VP) is one of the principal neurotransmitters of the suprachiasmatic nucleus (SCN). By means of anatomical, physiological and electrophysiological techniques we have demonstrated that VP containing pathways from the SCN serve to affect neuroendocrine and 'autonomic' neurons in the

  18. Effective nucleus-nucleus potentials derived from the generator coordinate method

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-11-07

    The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.

  19. Fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Agakishiev, G.; Man'yakov, P.K.; Drees, A.

    1997-01-01

    The simple and fast detector of charged particle multiplicity for relativistic nucleus-nucleus collision studies is performed. The multiplicity detector has been designed for the first level trigger of the CERES/NA45 experiment to study Pb-Au collisions at CERN SPS energies. The detector has allowed a realization of the 40 ns trigger for selection of events with definite impact parameter. The construction, operation characteristics, method of calibration, and testing results are described in detail

  20. Random matrix theory and analysis of nucleus-nucleus collision at high energies

    International Nuclear Information System (INIS)

    Shahaliev, E.I.; Inst. of Radiation Problems, Baku; ); Kuznetsov, A.A.; Suleymanov, M.K.; ); Teryaev, O.V.; )

    2006-01-01

    A novel method for analysis of experimental data obtained at relativistic nucleus-nucleus collisions is proposed. The method, based on the ideas of Random Matrix Theory, is applied to detect systematic errors that occur at measurements of momentum distributions of emitted particles. The unfolded momentum distribution is well described by the Gaussian orthogonal ensemble of random matrices, when the uncertainty in the momentum distribution is maximal. The method is free from unwanted background contributions [ru

  1. Theory of and effects from elastoplasticity in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1985-02-01

    Elastoplasticity of finite Fermi systems results from a coherent coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a non-markovian transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplastical forms the link between giant vibrations and overdamped motion of nuclear. Obersvable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  2. Strangeness and charm production in nucleus-nucleus collisions at beam energies near the thresholds

    International Nuclear Information System (INIS)

    Senger, P.

    2001-01-01

    The creation of strangeness and charm in nucleus-nucleus collisions at threshold beam energies is discussed as a probe for compressed baryonic matter. Experimental data on strangeness production at SIS energies indicate that the properties of kaons and antikaons are modified in the dense nuclear medium. An experiment is proposed to explore the QCD phase diagram in the region of highest baryon densities. An important observable will be charm production close to threshold. (orig.)

  3. Nucleon molecular orbitals and the transition mechanism between molecular orbitals in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Misono, S.; von Oertzen, W.; Voit, H.

    1988-08-01

    The molecular orbitals of the nucleon(s) in nucleus-nucleus collisions are dynamically defined as a linear combination of nucleon single-particle orbits (LCNO) in a rotating frame by using the coupled-reaction-channel (CRC) theory. Nucleon molecular orbitals and the promotions of nucleon, - especially due to the Landau-Zener radial coupling are discussed with the method above mentioned. (author)

  4. Multi-quark effects in high energy nucleon-nucleon and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Besliu, C.; Caraciuc, I.; Jipa, A.; Olariu, A.; Topor-Pop, R.; Cotorobai, F.; Pantea, D.; Popa, L.; Popa, V.; Topor-Pop, V.

    1988-02-01

    Recent data obtained in two experiments performed in the framework of the Bucharest-Dubna collaboration are presented, i.e.: the observation of narrow dibaryonic resonances is neutron-proton interactions in 1mHBC at different momenta of incident neutrons in the range 1-5 GeV/c, and the cumulative production of negative pions in nucleus-nucleus interactions in SKM-200 streamer chamber at 4.5 GeV/c. (authors)

  5. Morphology, classification, and distribution of the projection neurons in the dorsal lateral geniculate nucleus of the rat.

    Directory of Open Access Journals (Sweden)

    Changying Ling

    Full Text Available The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2. Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4 µm(2. Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.

  6. ψ' and J/ψ suppression in high-energy nucleon-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin.

    1995-01-01

    The observed features of ψ' to J/ψ suppression in pA and nucleus-nucleus collisions can be explained in terms of a two-component absorption model. For the hard component of the absorption due to the interaction of the produced c bar c systems with baryons at high relative energies, the absorption cross sections are insensitive to the radii of the c bar c systems, as described by the Additive Quark Model. For the soft component due to the low energy c bar c interactions with soft particles produced by other baryon-baryon collisions, the absorption cross sections are greater for ψ' than for J/ψ, because the breakup threshold for ψ' is much smaller than for ψ

  7. The Baryon Production and Baryon Number Transfer in Hadron-Hadron, Hadron-Nucleus and Nucleus-Nucleus Collisions

    International Nuclear Information System (INIS)

    Szymanski, P.

    2006-09-01

    This work concerns soft hadronic interactions which in the Standard Model carry most of the observable cross-section but are not amenable to quantitative predictions due to the very nature of the QCD (Theory of Strong Interactions). In the low momentum transfer region the evolving coupling constant caused perturbation theory to break down. In this situation better experimental understanding of the physics phenomena is needed. One aspect of the soft hadronic interactions will be discussed in this work: transfer of the baryon number from the initial to the final state of the interaction. The past experimental knowledge on this process is presented, reasons for its unsatisfactory status are discussed and condition necessary for improvement are outlined: that is experimental apparatus with superior performance over the full range of available interactions: hadron-hadron collision, hadron-nucleus and nucleus-nucleus interactions. A consistent model-independent picture of the baryon number transfer process emerging from the data on the full range of interactions is shown. It offers serious challenge to theory to provide quantitative and detailed explanation of the measurements. (author)

  8. Cell Nucleus-Targeting Zwitterionic Carbon Dots.

    Science.gov (United States)

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-12-22

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.

  9. Nucleus spectroscopy: extreme masses and deformations

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2009-12-01

    The author proposes a synthesis of research activities performed since 1995 in the field of experimental nuclear physics, and more particularly in the investigation of two nucleus extreme states: deformation on the one hand, heavy and very heavy nuclei on the other hand. After a presentation of the context of investigations on deformation, rotation, and heavy nuclei, he gives an overview of developments regarding instruments (gamma spectrometers, detection of fission fragments, and detection at the focal plane of spectrometers or separators) and analysis techniques. Experiments and results are then reported and discussed, concerning super-deformed states with a high angular moment, spectroscopy of neutron-rich nuclei, very heavy nuclei close to nucleus map borders. He finally draws perspectives for middle and long term studies on the heaviest nuclei

  10. η production in proton-nucleus reactions

    International Nuclear Information System (INIS)

    Cassing, W.; Batko, G.; Vetter, T.; Wolf, G.

    1991-01-01

    The production of η-mesons in proton-nucleus reactions is analysed with respect to primary nucleon-nucleon (NN→NN η ) and secondary pion-nucleon (πN→ηN) production processes on the basis of Hartree-Fock groundstate momentum distributions and free on-shell production processes. The folding model adopted compares well for meson production with more involved simulations based on VUU transport equations. Similar to K + production in proton-nucleus reactions the η-mesons are primarily produced by the πN→ηN channel. However, η-mesons are absorbed in nuclei via excitation of the N * (1535) resonance which leads to strong distortions of the primordial spectra. On the other hand, the experimental mass dependence of the differential cross sections might yield information about the in-medium properties of this resonance. (orig.)

  11. Protein quality control in the nucleus

    DEFF Research Database (Denmark)

    Nielsen, Sofie V.; Poulsen, Esben Guldahl; Rebula, Caio A.

    2014-01-01

    to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system...... to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about...... these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation....

  12. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    Science.gov (United States)

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  13. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    Science.gov (United States)

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  14. Resection of the medial temporal lobe disconnects the rostral superior temporal gyrus from some of its projection targets in the frontal lobe and thalamus.

    Science.gov (United States)

    Muñoz, Monica; Mishkin, Mortimer; Saunders, Richard C

    2009-09-01

    Auditory memory in the monkey does not appear to extend beyond the limits of working memory. It is therefore surprising that this ability is impaired by medial temporal lobe (MTL) resections, because such lesions spare working memory in other sensory modalities. To determine whether MTL ablations might have caused the auditory deficit through inadvertent transection of superior temporal gyrus (STG) projections to its downstream targets, and, if so, which targets might have been compromised, we injected anterograde tracer (biotinylated dextran amine) in the STG of both the normal and MTL-lesioned hemispheres of split-brain monkeys. Interhemispheric comparison of label failed to show any effect of the MTL ablation on efferents from caudal STG, which projects to the inferior prefrontal convexity. However, the ablation did consistently interrupt the normally dense projections from rostral STG to both the ventral medial prefrontal cortex and medial thalamic nuclei. The findings support the possibility that the auditory working memory deficit after MTL ablation is due to transection of downstream auditory projections, and indicate that the candidate structures for mediating auditory working memory are the ventral medial prefrontal cortical areas, the medial thalamus, or both.

  15. Is atomic energy different from a nucleus?

    International Nuclear Information System (INIS)

    Lee, Sun Young

    1995-07-01

    This book describes of two faces of nuclear energy : the secret of a nuclear, the history of nuclear energy : the scientists with a nuclear, the nuclear energy generation : the third disapprobation, a nuclear weapon : Choice of fear, the Korean peninsula and a nuclear and nuclear energy and utilization in peace. It consists of 31 questions and the answers of the questions about nuclear energy and nucleus.

  16. Nuclear alignment following compound nucleus reactions

    International Nuclear Information System (INIS)

    Butler, P.A.; Nolan, P.J.

    1981-01-01

    A procedure for calculating the alignment of a nuclear state populated by a compound nucleus reaction is given and used to investigate how alignment varies for different types of population mechanisms. The calculations are compared to both predictions of Gaussian models for the state population distribution and to experimental data, for a variety of types of nuclear reactions. The treatment of alignment in the analysis of γ-ray angular distribution is discussed. (orig.)

  17. Momentum distribution in the nucleus. II

    International Nuclear Information System (INIS)

    Amado, R.D.; Woloshyn, R.M.

    1977-01-01

    We calculate the single particle momentum distribution n(q) for a one-dimensional model with delta forces. There is a domain of q for which n(q) has an exponential falloff; but, after allowance is made for the nonsaturation in the model, that domain does not grow significantly with particle number. The relation of this result to large momentum scattering from the nucleus and to the Hartree approximation is briefly discussed

  18. Development of a Mobile Ice Nucleus Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Gregory [Droplet Measurement Technologies, Boulder, CO (United States); Kulkarni, Gourihar [Droplet Measurement Technologies, Boulder, CO (United States)

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70°C, and a single stage system can operate the warm wall at -45C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  19. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Mitchell, G. E.; Crawford, B. E.; Grossmann, C. A.; Lowie, L. Y.; Bowman, J. D.; Knudson, J.; Penttilae, S.; Seestrom, S. J.; Smith, D. A.; Yen, Yi-Fen; Yuan, V. W.; Delheij, P. P. J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N. R.; Sharapov, E. I.; Stephenson, S. L.

    1999-01-01

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized

  20. Study of fragmentation reactions of light nucleus

    International Nuclear Information System (INIS)

    Toneli, David Arruda; Carlson, Brett Vern

    2011-01-01

    Full text: The decay of the compound nucleus is traditionally calculated using a sequential emission model, such as the Weisskopf-Ewing or Hauser-Feshbach ones, in which the compound nucleus decays through a series of residual nuclei by emitting one particle at a time until there is no longer sufficient energy for further emission. In light compound nucleus, however, the excitation energy necessary to fully disintegrate the system is relatively easy to attain. In such cases, decay by simultaneous emission of two or more particles becomes important. A model which takes into account all these decay is the Fermi fragmentation model. Recently, the equivalence between the Fermi fragmentation model and statistical multifragmentation model used to describe the decay for highly excited fragments for reactions of heavy ions was demonstrated. Due the simplicity of the thermodynamic treatment used in the multifragmentation model, we have adapted it to the calculation of Fermi breakup of light nuclei. The ultimate goal of this study is to calculate the distribution of isotopes produced in proton-induced reactions on light nuclei of biological interest, such as C, O e Ca. Although most of these residual nuclei possess extremely short half-lives and thus represent little long-term danger, they tend to be deficient in neutrons and to decay by positron emission, which allows the monitoring of proton radiotherapy by PET (Positron Emission Tomography). (author)

  1. Antinucleon-nucleus elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Dover, C.B.; Millener, D.J.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT = 0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 40 refs., 13 figs

  2. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.

    Science.gov (United States)

    Yokota, Shigefumi; Oka, Tatsuro; Asano, Hirohiko; Yasui, Yukihiko

    2016-10-01

    The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    Science.gov (United States)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  4. J/$\\psi$ production in proton-nucleus and nucleus-nucleus interactions at the CERN SPS

    CERN Document Server

    Abreu, M C; Alexa, C; Arnaldi, R; Ataian, M R; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2002-01-01

    The NA38 and NA50 experiments at the CERN SPS have measured charmonium production in different colliding systems with the aim of observing a phase transition from ordinary hadronic matter towards a state in which quarks and gluons are deconfined (quark-gluon plasma, QGP). This experimental research is based on the prediction that the J/ psi yield should be suppressed in deconfined matter. The analysis of the data collected by the NA50 experiment with Pb-Pb collisions at 158 GeV/c per nucleon shows that the J/ psi is anomalously suppressed with respect to the pattern observed in proton-nucleus and light ion reactions. (9 refs).

  5. Gross and Fine Structure of Pion Production Excitation Functions in {bold {ital p}}-Nucleus and Nucleus-Nucleus Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsson, B.; Berg, M.; Carlen, L.; Elmer, R.; Fokin, A.; Ghetti, R.; Martensson, J.; Noren, B.; Oskarsson, A.; Whitlow, H.J. [Department of Physics, University of Lund, Lund (Sweden); Ekstroem, C.; Ericsson, G.; Romanski, J.; van Veldhuizen, E.J.; Westerberg, L. [The Svedberg Laboratory and Department of Neutron Physics, University of Uppsala, Uppsala (Sweden); Julien, J. [Centre d`Etudes Nucleaires, Saclay (France); Skeppstedt, O. [Department of Physics, Chalmers Institute of Technology, Gothenburg (Sweden); Nyboe, K.; Thorsteinsen, T.F.; Amirelmi, S. [Department of Physics, University of Bergen, Bergen (Norway); Guttormsen, M.; Lo/vho/iden, G. [Department of Physics, University of Oslo, Oslo (Norway); Bellini, V.; Palazzolo, F.; Sperduto, M.L. [Istituto Nazionale di Fisica Nucleare/Laboratorio Nazionale del Sud, University of Catania, Catania (Italy); Bondorf, J.P.; Mishustin, I. [Niels Bohr Institute, Copenhagen (Denmark); Avdeichikov, V. [Joint Institute for Nuclear Research, Dubna (Russia); Lozhkin, O.V.; Murin, Y. [V.G. Khlopin Radium Institute, St.Petersburg (Russia)

    1997-05-01

    Slow ramping of the CELSIUS storage ring has been utilized to measure the yield of charged pions in proton and heavy ion induced collisions with continuously varying beam energy. Boltzmann-Uehling-Uhlenbeck predictions, including Fermi momenta of nucleons in nuclei, follow the general shape of the p-nucleus excitation functions quite well except for a general overestimation of the backward emission. For heavy ion reactions the calculated yield also falls off faster with decreasing beam energy than the data. No statistically significant narrow resonances are observed. {copyright} {ital 1997} {ital The American Physical Society}

  6. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  7. Aspects of Coulomb dissociation and interference in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nystrand, Joakim; Baltz, Anthony; Klein, Spencer R.

    2001-01-01

    Coherent vector meson production in peripheral nucleus-nucleus collisions is discussed. These interactions may occur for impact parameters much larger than the sum of the nuclear radii. Since the vector meson production is always localized to one of the nuclei, the system acts as a two-source interferometer in the transverse plane. By tagging the outgoing nuclei for Coulomb dissociation it is possible to obtain a measure of the impact parameter and thus the source separation in the interferometer. This is of particular interest since the life-time of the vector mesons are generally much shorter than the impact parameters of the collisions

  8. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  9. High energy nucleus-nucleus collisions at CERN: Signatures, physical observables and experimental results

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-02-01

    Experimental results on high energy nucleus-nucleus collisions have become available with the recent experiments at CERN utilizing 200 GeV/n oxygen and sulfur beams. Physics motivations for these experiments are presented: a description of predicted signatures for possible formation of a quark-gluon plasma and physical observables that are expected to provide important information for understanding the dynamics of these collisions. A presentation will be made of some of the first experimental results to emerge from this new field. 28 refs., 9 figs

  10. Diabatic emission of neutrons: A probe for the energy dissipation mechanism in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Cassing, W.

    1984-05-01

    The precompound emission of neutrons in central nucleus-nucleus collisions is investigated within the framework of dissipative diabatic dynamics. For 92 Mo + 92 Mo at bombarding energies between 7.5 and 20 MeV/u the differential neutron multiplicities dMsub(n)/dEsub(n) are estimated from the decay of highly excited diabatic single-particle states. The energy spectra have an almost exponential high-energy tail with effective temperatures up to 10 MeV for 20 MeV/u bombarding energy. (orig.)

  11. Dynamics of hadronization in ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Friman, B.L.

    1986-01-01

    One of the main problems in the search for quark-gluon plasma in ultra-relativistic nucleus-nucleus collisions is finding a reliable signature for deconfinement. Several signatures have been suggested, e.g., dileptons with a spectrum characteristic of the plasma, an increase in the number of strange particles and effects due to the hadronization of the plasma. In this talk I will describe some recent work on the effects of the hadronization transition in the central rapidity region within the hydrodynamic model of Bjorken, Kajantie and McLerran. (orig.)

  12. Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1985-01-01

    It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei

  13. Percolation Model of Nuclear Multifragmentation in High Energy Nucleus-Nucleus Interactions

    International Nuclear Information System (INIS)

    Abdel-Waged, Kh.

    1994-01-01

    A hybrid model based on Reggeon theory inspired model of nuclear distribution, which was successful in explaining the cascading of particles in high energy nucleus-nucleus interactions, and percolation model is proposed. In the framework of this model the yield of the fragment in p + Ag, Au at 350 GeV and C + Ag, Au at 3.6 GeV/nucleon as well as the charge distribution of fragments in Kr, Xe and U interactions with emulsion at ∼ 1 GeV/nucleon is correctly described. 32 refs., 3 figs

  14. Proton rapidity distribution in nucleus-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2002-01-01

    The proton rapidity distributions in nucleus-nucleus collisions at the Alternating Gradient Synchrotron (AGS) and the Super Proton Synchrotron (SPS) energies are analysed by the revised thermalized cylinder model. The calculated results are compared and found to he in agreement with the experimental data of Si-AI and Si-Pb collisions at 14.6 A GeV/c, Pb-Pb collisions at 158 A GeV/c, and S-S collisions at 200 A GeV/c. (Author)

  15. The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy

    International Nuclear Information System (INIS)

    Rashdan, M.; Farhan, A.M.; Hassib, E.; Kareem, W. Abdel

    2006-01-01

    The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy is investigated within the multiple scattering theory. The multiple integrals are evaluated by Monte Carlo method as well as by the optical limit approximation of the Glauber model. Calculations are performed for 14-23 N, 16-24 O and 18-26 F isotopes colliding with carbon target around 1 GeV. It is found that rms radii and the density distributions show a halo structure of 22 N, 23 O and 24 F

  16. Particle production in high energy nucleus--nucleus experiments at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1976-09-01

    A review of high energy nucleus-nucleus experiments performed at the Berkeley Bevalac is presented. Earlier results on projectile and target fragmentation and pion production are briefly summarized. More recent results on Coulomb effects in projectile fragmentation, heavy ion total cross-sections, γ-ray production, and charged particle multiplicities are presented. Also, recent experiments which may shed light on phenomena arising from the central collision of two energetic nuclei, including recent evidence for and against the observation of nuclear shock waves, are reviewed

  17. Recent results on (anti)nucleus and (anti)hyperon production in nucleus-nucleus collisions at CERN SPS energies

    CERN Document Server

    Melkumov, G L; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Gladysz-Dziadus, E; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lvai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland5, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Seyboth, P; Strabel, C; Ströbele, H; Susa, T; Szentpetery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wlodarczyk, Z; Wojtaszek11, A; Yoo, I K; Zimnyi, J; Wetzler, A

    2007-01-01

    The NA49 experiment has collected comprehensive data on particle production in nucleus-nucleus collisions over the whole SPS beam energies range, the critical energy domain where the expected phase transition to a deconfined phase is expected to occur. The latest results from Pb+Pb collisions between 20$A$ GeV and 158$A$ GeV on baryon stopping and light nuclei production as well as those for strange hyperons are presented. The measured data on $p$, $\\bar{p}$, $\\Lambda$, $\\bar{\\Lambda}$, $\\Xi^-$ and $\\bar{\\Xi}^+$ production were used to evaluate the rapidity distributions of net-baryons at SPS energies and to compare with the results from the AGS and the RHIC for central Pb+Pb (Au+Au) collisions. The dependence of the yield ratios and the inverse slope parameter of the $m_t$ spectra on the collision energy and centrality, and the mass number of the produced nuclei $^3He$, $t$, $d$ and $\\bar{d}$ are discussed within coalescence and statistical approaches. Analysis of the total multiplicity exhibits remarkable a...

  18. Nuclear structure and neutrino-nucleus interaction

    International Nuclear Information System (INIS)

    Krmpotic, Francisco

    2011-01-01

    Recent years have witnessed an intense experimental and theoretical activity oriented towards a better comprehension of neutrino nucleus interaction. While the main motivation for this task is the demand coming from oscillation experiments in their search for a precise determination of neutrino properties, the relevance of neutrino interaction with matter is more wide-ranging. It is imperative for astrophysics, hadronic and nuclear physics, and physics beyond the standard model. The experimental information on neutrino induced reactions is rapidly growing, and the corresponding theoretical description is a challenging proposition, since the energy scales of interest span a vast region, going from few MeV for solar neutrinos, to tens of MeV for the interpretation of experiments with the muon and pion decay at rest and the detection of neutrinos coming from the core collapse of supernova, and to hundreds of MeV or few GeV for the detection of atmospheric neutrinos, and for the neutrino oscillation program of the MiniBooNE experiment. The presence of neutrinos, being chargeless particles, can only be inferred by detecting the secondary particles created in colliding and interacting with the matter. Nuclei are often used as neutrino detectors, and in particular 12 C which is a component of many scintillator detectors. Thus, the interpretation of neutrino data heavily relies on detailed and quantitative knowledge of the features of the neutrino-nucleus interaction. The nuclear structure methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Detailed comparison between the experimental and theoretical results establishes benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, such as the description of the r-process nucleosynthesis. (author)

  19. The role of GαO-mediated signaling in the rostral ventrolateral medulla oblongata in cardiovascular reflexes and control of cardiac ventricular excitability.

    Science.gov (United States)

    Ang, Richard; Abramowitz, Joel; Birnbaumer, Lutz; Gourine, Alexander V; Tinker, Andrew

    2016-08-01

    The heart is controlled by the sympathetic and parasympathetic limbs of the autonomic nervous system with inhibitory signaling mechanisms recruited in both limbs. The aim of this study was to determine the role of inhibitory heterotrimeric G proteins in the central nervous mechanisms underlying autonomic control of the heart and its potential role in arrhythmogenesis. Mice with conditional deletion of the inhibitory heterotrimeric G protein GαO in the presympathetic area of the rostral ventral lateral medulla (RVLM) were generated to determine the role of GαO-mediated signalling in autonomic control and electrophysiological properties of the heart. GαO deletion within the RVLM was not associated with changes in heart rate (HR) or the arterial blood pressure at rest (home cage, normal behavior). However, exposure to stressful conditions (novel environment, hypoxia, or hypercapnia) in these mice was associated with abnormal HR responses and an increased baroreflex gain when assessed under urethane anesthesia. This was associated with shortening of the ventricular effective refractory period. This phenotype was reversed by systemic beta-adrenoceptor blockade, suggesting that GαO depletion in the RVLM increases central sympathetic drive. The data obtained support the hypothesis that GαO-mediated signaling within the presympathetic circuits of the RVLM contributes to the autonomic control of the heart. GαO deficiency in the RVLM has a significant impact on cardiovascular responses to stress, cardiovascular reflexes and electrical properties of the heart. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    Science.gov (United States)

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Perceived stress is associated with increased rostral middle frontal gyrus cortical thickness: a family-based and discordant-sibling investigation.

    Science.gov (United States)

    Michalski, L J; Demers, C H; Baranger, D A A; Barch, D M; Harms, M P; Burgess, G C; Bogdan, R

    2017-11-01

    Elevated stress perception and depression commonly co-occur, suggesting that they share a common neurobiology. Cortical thickness of the rostral middle frontal gyrus (RMFG), a region critical for executive function, has been associated with depression- and stress-related phenotypes. Here, we examined whether RMFG cortical thickness is associated with these phenotypes in a large family-based community sample. RMFG cortical thickness was estimated using FreeSurfer among participants (n = 879) who completed the ongoing Human Connectome Project. Depression-related phenotypes (i.e. sadness, positive affect) and perceived stress were assessed via self-report. After accounting for sex, age, ethnicity, average whole-brain cortical thickness, twin status and familial structure, RMFG thickness was positively associated with perceived stress and sadness and negatively associated with positive affect at small effect sizes (accounting for 0.2-2.4% of variance; p-fdr: 0.0051-0.1900). Perceived stress was uniquely associated with RMFG thickness after accounting for depression-related phenotypes. Further, among siblings discordant for perceived stress, those reporting higher perceived stress had increased RMFG thickness (P = 4 × 10 -7 ). Lastly, RMFG thickness, perceived stress, depressive symptoms, and positive affect were all significantly heritable, with evidence of shared genetic and environmental contributions between self-report measures. Stress perception and depression share common genetic, environmental, and neural correlates. Variability in RMFG cortical thickness may play a role in stress-related depression, although effects may be small in magnitude. Prospective studies are required to examine whether variability in RMFG thickness may function as a risk factor for stress exposure and/or perception, and/or arises as a consequence of these phenotypes. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. BLOCKADE OF ROSTRAL VENTROLATERAL MEDULLA (RVLM BOMBESIN RECEPTOR TYPE 1 DECREASES BLOOD PRESSURE AND SYMPATHETIC ACTIVITY IN ANESTHETIZED SPONTANEOUSLY HYPERTENSIVE RATS

    Directory of Open Access Journals (Sweden)

    Izabella Silva De Jesus Pinto

    2016-06-01

    Full Text Available IIntrathecal injection of bombesin (BBS promoted hypertensive and sympathoexcitatory effects in normotensive (NT rats. However, the involvement of rostral ventrolateral medulla (RVLM in these responses is still unclear. In the present study, we investigated: (1 the effects of BBS injected bilaterally into RVLM on cardiorespiratory and sympathetic activity in NT and spontaneously hypertensive rats (SHR; (2 the contribution of RVLM bombesin type 1 receptors (BB1 to the maintenance of hypertension in SHR. Urethane-anesthetized rats (1.2 g · kg−1, i.v. were instrumented to record mean arterial pressure (MAP, diaphragm (DIA motor and renal sympathetic nerve activity (RSNA. In NT rats and SHR, BBS (0.3 mM nanoinjected into RVLM increased MAP (33.9 ± 6.6 mmHg and 37.1 ± 4.5 mmHg, respectively; p < 0.05 and RSNA (97.8 ± 12.9 % and 84.5 ± 18.1 %, respectively; p < 0.05. In SHR, BBS also increased DIA burst amplitude (115.3 ± 22.7 %; p < 0.05. BB1 receptors antagonist (BIM-23127; 3 mM reduced MAP (-19.9 ± 4.4 mmHg; p < 0.05 and RSNA (-17.7 ± 3.8 %; p < 0.05 in SHR, but not in NT rats (-2.5 ± 2.8 mmHg; -2.7 ± 5.6 %, respectively. These results show that BBS can evoke sympathoexcitatory and pressor responses by activating RVLM BB1 receptors. This pathway might be involved in the maintenance of high levels of arterial blood pressure in SHR.

  3. Nontranscriptional activation of PI3K/Akt signaling mediates hypotensive effect following activation of estrogen receptor β in the rostral ventrolateral medulla of rats

    Directory of Open Access Journals (Sweden)

    Wu Kay LH

    2012-08-01

    Full Text Available Abstract Background Estrogen acts on the rostral ventrolateral medulla (RVLM, where sympathetic premotor neurons are located, to elicit vasodepressor effects via an estrogen receptor (ERβ-dependent mechanism. We investigated in the present study nontranscriptional mechanism on cardiovascular effects following activation of ERβ in the RVLM, and delineated the involvement of phosphatidylinositol 3-kinase (PI3K/serine/threonine kinase (Akt signaling pathway in the effects. Methods In male Sprague–Dawley rats maintained under propofol anesthesia, changes in arterial pressure, heart rate and sympathetic neurogenic vasomotor tone were examined after microinjection bilaterally into RVLM of 17β-estradiol (E2β or a selective ERα or ERβ agonist. Involvement of ER subtypes and PI3K/Akt signaling pathway in the induced cardiovascular effects were studied using pharmacological tools of antagonists or inhibitors, gene manipulation with antisense oligonucleotide (ASON or adenovirus-mediated gene transfection. Results Similar to E2β (1 pmol, microinjection of ERβ agonist, diarylpropionitrile (DPN, 1, 2 or 5 pmol, into bilateral RVLM evoked dose-dependent hypotension and reduction in sympathetic neurogenic vasomotor tone. These vasodepressive effects of DPN (2 pmol were inhibited by ERβ antagonist, R,R-tetrahydrochrysene (50 pmol, ASON against ERβ mRNA (250 pmol, PI3K inhibitor LY294002 (5 pmol, or Akt inhibitor (250 pmol, but not by ERα inhibitor, methyl-piperidino-pyrazole (1 nmol, or transcription inhibitor, actinomycin D (5 or 10 nmol. Gene transfer by microinjection into bilateral RVLM of adenovirus encoding phosphatase and tensin homologues deleted on chromosome 10 (5 × 108 pfu reversed the vasodepressive effects of DPN. Conclusions Our results indicate that vasodepressive effects following activation of ERβ in RVLM are mediated by nongenomic activation of PI3K/Akt signaling pathway. This study provides new insight in the

  4. Sumoylation of IkB attenuates NF-kB-induced nitrosative stress at rostral ventrolateral medulla and cardiovascular depression in experimental brain death.

    Science.gov (United States)

    Tsai, Ching-Yi; Li, Faith C H; Wu, Carol H Y; Chang, Alice Y W; Chan, Samuel H H

    2016-09-22

    Small ubiquitin-related modifier (SUMO) is a group of proteins that participates in post-translational modifications. One known SUMO target is the transcription factor nuclear factor-kB (NF-kB) that plays a pivotal role in many disease processes; sumoylation inactivates NF-kB by conjugation with inhibitors of NF-kB (IkB). Our laboratory demonstrated previously that transcriptional upregulation of nitric oxide synthase II (NOS II) by NF-kB, leading to nitrosative stress by the formation of peroxynitrite in the rostral ventrolateral medulla (RVLM), underpins the defunct brain stem cardiovascular regulation that precedes brain death. Based on an experimental endotoxemia model, this study evaluated the hypothesis that sumoylation plays a pro-life role in brain death by interacting with the NF-kB/NOS II/peroxynitrite signaling pathway in the RVLM. In Sprague-Dawley rats, intravenous administration of Escherichia coli lipopolysaccharide (LPS; 10 mg kg -1 ) elicited an augmentation of SUMO-1 and ubiquitin-conjugase 9 (Ubc9) mRNA or protein levels, alongside SUMO-1-conjugated proteins in the RVLM. Immunoneutralization of SUMO-1 or Ubc9 in the RVLM significantly potentiated the already diminished sumoylation of IkBα and intensified NF-kB activation and NOS II/peroxynitrite expression in this brain stem substrate, together with exacerbated fatality, cardiovascular depression and reduction of an experimental index of a life-and-death signal detected from arterial pressure that disappears in comatose patients signifying failure of brain stem cardiovascular regulation before brain death. We conclude that sumoylation of IkB in the RVLM ameliorates the defunct brain stem cardiovascular regulation that underpins brain death in our experimental endotoxemia modal by reducing nitrosative stress via inhibition of IkB degradation that diminishes the induction of the NF-kB/NOS II/peroxynitrite signaling cascade.

  5. Direct effects of glucose, insulin, GLP-1, and GIP on bulbospinal neurons in the rostral ventrolateral medulla in neonatal wistar rats.

    Science.gov (United States)

    Oshima, Naoki; Onimaru, Hiroshi; Matsubara, Hidehito; Uchida, Takahiro; Watanabe, Atsushi; Imakiire, Toshihiko; Nishida, Yasuhiro; Kumagai, Hiroo

    2017-03-06

    Although patients with diabetes mellitus (DM) often exhibit hypertension, the mechanisms responsible for this correlation are not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are affected by the levels of glucose, insulin, or incretins (glucagon like peptide-1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) in patients with DM. To investigate whether RVLM neurons are activated by glucose, insulin, GLP-1, or GIP, we examined changes in the membrane potentials of bulbospinal RVLM neurons using whole-cell patch-clamp technique during superfusion with various levels of glucose or these hormones in neonatal Wistar rats. A brainstem-spinal cord preparation was used for the experiments. A low level of glucose stimulated bulbospinal RVLM neurons. During insulin superfusion, almost all the RVLM neurons were depolarized, while during GLP-1 or GIP superfusion, almost all the RVLM neurons were hyperpolarized. Next, histological examinations were performed to examine transporters for glucose and receptors for insulin, GLP-1, and GIP on RVLM neurons. Low-level glucose-depolarized RVLM neurons exhibited the presence of glucose transporter 3 (GLUT3). Meanwhile, insulin-depolarized, GLP-1-hyperpolarized, and GIP-hyperpolarized RVLM neurons showed each of the respective specific receptor. These results indicate that a low level of glucose stimulates bulbospinal RVLM neurons via specific transporters on these neurons, inducing hypertension. Furthermore, an increase in insulin or a reduction in incretins may also activate the sympathetic nervous system and induce hypertension by activating RVLM neurons via their own receptors. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. [The perichromatin compartment of the cell nucleus].

    Science.gov (United States)

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.

  7. The basic elementary particles as martensitic nucleus

    International Nuclear Information System (INIS)

    Aguinaco-Bravo, V. J.; Onoro, J.

    1999-01-01

    The martensitic transformation is a diffusional structural change that produces an important modification of the microstructure and properties of materials. In this paper we propose how the martensitic phase is nucleated from a basic elementary particle (bep). The bep is formed in several stages. Vacancies, divacancies, etc. are formed at high temperature, which collapse into prismatic dislocation loops during the cooling process. We define a bep as a dislocation loop reaching a critical radius and fulfilling certain elastic energy conditions. A martensitic nucleus is a bep that coincides crystallographically with the habit plane of the matrix. (Author) 16 refs

  8. Contemporary models of the atomic nucleus

    CERN Document Server

    Nemirovskii, P E

    2013-01-01

    Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o

  9. From the nucleus discovery to DWBA

    International Nuclear Information System (INIS)

    Fernandez, B.

    2007-01-01

    The author presents a brief review of the main events in the field of nuclear reactions that are acknowledged as milestones because of their importance due to either experimental setting or physical interpretation. It is shown that the pace of discoveries has been strongly dependent on the technical progress in detection means at the beginning of nuclear physics and now is linked to the development of simulation means. The discovery of the neutron, the development of the Geiger counter, the theory of the compound nucleus or the first direct reactions are among these milestones

  10. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior

    NARCIS (Netherlands)

    Acosta-Galvan, Guadalupe; Yi, Chun-Xia; van der Vliet, Jan; Jhamandas, Jack H.; Panula, Pertti; Angeles-Castellanos, Manuel; del Carmen Basualdo, María; Escobar, Carolina; Buijs, Ruud M.

    2011-01-01

    Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time

  11. Mechanism of energy release from nucleus-target in hadron-nucleus collision

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    2000-01-01

    The collisions of hadrons (protons, mesons) with 131 Xe nucleus and arising light nuclear fragments as nuclear refraction products have been observed in bubble chamber. Mechanism of energy release during these collisions has been discussed. The quantitative calculations has proved that this phenomena can be treated as potential energy source with use of many different target materials

  12. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Abstract. The question of possible existence of η-mesic nuclei is quite intriguing. An- swer to this question will deeply enrich our understanding of η-nucleus interaction which is not so well-understood. We review the experimental efforts for the search of η-mesic nuclei and describe the physics motivation behind it.

  13. High energy cosmic ray events of ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Burnett, T.H.; Dake, S.; Derricson, J.H.; Fountain, W.; Fuki, M.; Gregory, J.C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W.V.; Jurak, A.; Lord, J.J.; Meegan, C.A.; Miyamura, O.; Oda, H.; Ogata, T.; Parnell, T.A.; Roberts, E.; Saito, T.; Strauss, S.; Tabuki, T.; Takahashi, Y.; Tominaga, T.; Watts, J.W.; Wilczynska, B.; Wilkes, R.J.; Wolter, W.; Bosiek, B.

    1985-01-01

    Japanese American Cooperative Emulsion Experiment (JACEE) has been measuring ultrarelativistic comic ray nucleus and sampling the events in the energy regions both 10 to 100 GeV/A and above TeV/A by balloon emulsion chamber since 1979. In this report main results obtained up to now will be described. (orig./HSI)

  14. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    D'Enterria, D.G.

    2000-05-01

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E γ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar 36 + Au 197 , Ag 107 , Ni 58 , C 12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  15. Hadron-nucleus interactions with a small target-nucleus excitation

    International Nuclear Information System (INIS)

    Anzon, Z.V.; Chasnikov, I.Ya.; Shakhova, Ts.I.

    1981-01-01

    Hadron inelastic interactions in nuclear emulsion with a small target-nucleus excitation in the energy range 7.5-200 GeV have been studied. Possible reasons for the differences in production cross-section for events with even and odd number of S-particles are analysed

  16. Prestress mediates force propagation into the nucleus

    International Nuclear Information System (INIS)

    Hu Shaohua; Chen Jianxin; Butler, James P.; Wang Ning

    2005-01-01

    Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load (∼0.4 μm surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions

  17. The decay of 61Cu nucleus

    International Nuclear Information System (INIS)

    Zheng Wanhui; Gu Jiahui; Zhu Jiabi; Wang Gongqing

    1988-01-01

    The decay of 61 Cu nucleus has been investigated with Ge(Li) and H p Ge detector, semiconductor electron spectrometer and Ge(Li)-NaI γ-γ coincidence spectrometer. 35 γrays from 12 excited levels have been found. The single and coincidence spectra show that 545 keV, 1019keV γ fays and 1019keV energy level are wrong which appear in the 61 Cu decay scheme carried in > (the 7th edition 1978). the halflife time of 61 Cu nucleus and the internal conversion coefficient for 67 keV γ-transition are found to be T 1/2 =207.7±1.6min and α=0.12±0.01 respectively and then a decay scheme is proposed. In this paper more attention ia paid to discussing the energy levels of 1014, 1019, and 1997 keV as well as some weak γ rays

  18. Similarity of multi-fragmentation of residual nucleus created in nucleus-nucleus interactions at high energies

    International Nuclear Information System (INIS)

    Abdel-Hafiez, A.; Chernyavski, M.M.; Orlova, G.I.; Gulamov, K.G.; Navotny, V.SH.; Uzhinskii, V.V.

    2000-01-01

    Experimental data on multi-fragmentation of residual krypton nuclei created in the interactions of the krypton nuclei with photoemulsion nuclei ut energy of 0.9 GeV per nucleon are presented in a comparison with the analogous data on fragmentation of gold residual nuclei at the energy of 10.7 GeV/nucleon. It is shown for the first time that there are two regimes of nuclear multifragmentation: the former is when less than one-half of nucleons of projectile nucleus are knocked out, the later is when more than one-half of nucleons are knocked out. Residual nuclei with closed masses created at different reactions are fragmenting practically simultaneously when more than one-half of nucleons of original nuclei are knocked out. The evidence of existence of a radial flow of the spectator fragment at the decay of residual krypton nuclei is found

  19. Nuclear energy release in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    Energy release process in nuclear reactions induced by fast hadrons in hadron-nucleus collisions is discussed. Some portion of the internal nuclear energy is released when the locally damaged in a collision, and instable therefore, residual target nucleus transits itself into light nuclear fragments (nucleons, D, T) and a stable lighter final nucleus or some number of stable lighter nuclei. It is not excluded that in some of the collisions the induced intranuclear nuclear reactions may be energy overcompensating. Corresponding reconnaissance should be made - in analysing the nuclear reactions induced in hadron-nucleus collisions

  20. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com; Song, Guanbin, E-mail: song@cqu.edu.cn

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  1. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-01-01

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  2. Spectroscopic Studies of the Nucleus GOLD-195

    Science.gov (United States)

    Fischer, Susan Marie

    The nucleus ^{195}Au has been studied via in-beam gamma -ray and electron spectroscopy with the reactions ^{196}Pt(p,2n)^ {195}Au at beam energies of 12 and 16 MeV, and the reaction ^{rm nat }Ir(alpha,2n) ^{195}Au at a beam energy of 26 MeV. All experiments were performed at the University of Notre Dame tandem accelerator facility and utilized elements of the University of Pittsburgh multi-detector gamma-array and ICEBall mini-orange electron spectrometer. Fifty-five new transitions and thirty-six new energy levels have been observed. The U(6/4) supersymmetric algebra has been proposed to provide a simultaneous description for the positive parity states of the pair of nuclei ^{194 }Pt and ^{195}Au. The observed energy spectra for these nuclei show satisfactory agreement with the U(6/4) predicted spectra. The collective properties including relative B(E2) values for the Pt and Au nuclei in this mass region are also consistent with theoretical predictions. However, the measured E2/M1 mixing ratios for transitions in ^{195} Au indicate that the single particle description for the odd-A nucleus is incomplete. The new data for ^{195}Au is further combined with the existing data for ^{194} Pt and ^{195}Pt within the context of the larger U_{ nu}(6/12) otimes U_{pi}(6/4) supersymmetry. A consistent fit to the energy eigenvalue equation is obtained and a modified prediction for the negative parity states in the odd-odd nucleus ^{196} Au is made. Thus, the proposal of an underlying supersymmetry for the quartet of nuclei ^ {194}Pt-^{195} Pt-^{195}Au- ^{196}Au also appears valid. New transitions and levels involved in the negative parity h_{11/2} decoupled band in ^{195}Au have also been observed. The band appears to be much more fragmented at high spins than the analogous structures in the lighter odd-A Au nuclei, but it is unclear what the source of this difference is. It is, however, proposed that a consistent description for both the positive and negative parity

  3. Dirac phenomenology and hyperon-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mares, J; Jennings, B K [TRIUMF, Vancouver, British Columbia (Canada); Cooper, E D [Fraser Valley Univ. College, Chilliwack, British Columbia (Canada). Dept. of Physics

    1993-05-01

    We discuss various aspects of hyperon-nucleus interactions in the relativistic mean field theory. First, characteristics of {Lambda}, {Sigma} and {identical_to} hypernuclei, as well as multi strange baryonic objects, are investigated. The spin-orbit splittings and magnetic moments are shown to be very sensitive to the value of the tensor coupling f{omega}y. Second, optical potentials for {Lambda} and {Sigma} scattering off nuclei are developed based on a global nucleon-nucleon Dirac optical potential and SU(3) symmetry. The tensor coupling has a large effect on the predictions for the analyzing power. Third, the Dirac approach is used in the calculations of the non-mesonic decay of {Lambda} hypernuclei. The large discrepancy between the decay rates and data suggests the need for additional meson exchanges. (authors). 62 refs.,7 figs., 6 tabs.

  4. Delta-nucleus dynamics: proceedings of symposium

    International Nuclear Information System (INIS)

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P.

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta Δ(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe Δ-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented

  5. Muonic atom-light nucleus interaction

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.; Peresypkin, V.V.; Efetov, A.V.

    1991-01-01

    The effective potential of the interaction between light nucleus and two-particle atom at distances greater than its Bohr radius is obtained in the analytic form on the basis of a correct account of three Coulomb particle problem. Features of the interaction between p, t, 4 He, 7 Be nuclei and mesonic atoms μp, μt, μ 4 He and μ 7 Be, that arising from the differences in masses and charges of interacting particles, are studied. The corresponding potentials in the pre-threshold energy range are given. The coefficients of the symptotic formula for the effective are calculated in adiabatic approximation and with regard for the main off-shell corrections. 16 refs.; 4 figs

  6. High energy hadron-nucleus collision

    International Nuclear Information System (INIS)

    Takagi, Fujio

    1983-02-01

    This is a lecture note concerning high energy hadron-nucleus collision. The lecture gives the inelastic total cross section and the Glanber approximate multiple scattering formula at first. The mechanism of nuclear spallation is described in a cylindrical image. The multiplicity, the one particle distribution and the time-space structure of particle production are discussed. Various models are presented. The attenuation of forward particles and the structure of hadrons are discussed for each model. The atomic number (A) dependence of the production of large transverse momentum particles and jet, and the A dependence of charged multiplicity are presented. The backward production of particles and many body correlation are discussed. Lepton pair production and the initial interaction of constituents, collective interaction, multi quark state and phase transition are described. (Kato, T.)

  7. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, J.D.; Frankle, C.M.; Green, A.A.

    1994-01-01

    The status of parity violation in the compound nucleus is reviewed. The results of previous experimental results obtained by scattering polarized epithermal neutrons from heavy nuclei in the 3-p and 4-p p-wave strength function peaks are presented. Experimental techniques are presented. The extraction of the mean squared matrix element of the parity-violating interaction, M 2 , between compound-nuclear levels and the relationship of M 2 to the coupling strengths in the meson exchange weak nucleon-nucleon potential are discussed. The tendency of measured asymmetries to have a common sign and theoretical implications are discussed. New experimental results are presented that show that the common sign phenomenon is not universal, as theoretical models developed up to now would predict

  8. An enlarged superfluid model of atomic nucleus

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Horoi, M.

    1989-01-01

    The well known superfluid model (or quasiparticle phonon nuclear model (QPNM)) of atomic nucleus is enlarged by including an adequate four-nucleon effective interaction in addition to the pairing and long-range effective residual interactions. New experimental data can be explained without affecting those observables already described by the QPNM and in addition new features can be enumerated: 1) superfluidities of the neutron and proton systems may be generated by one another; 2) the phase structure is enriched by a new superfluid phase dominated by alpha-type correlations (ATC) and 3) superfluid isomers and their bands of elementary excitations are predicted. Unusual large two-nucleon and alpha transfer reactions cross sections as well as some unusual large alpha decay widths can be explained. (author). 46 refs, 3 figs, 2 tabs

  9. Delta-nucleus dynamics: proceedings of symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P. (eds.)

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  10. Heavy nucleus resonant absorption calculation benchmarks

    International Nuclear Information System (INIS)

    Tellier, H.; Coste, H.; Raepsaet, C.; Van der Gucht, C.

    1993-01-01

    The calculation of the space and energy dependence of the heavy nucleus resonant absorption in a heterogeneous lattice is one of the hardest tasks in reactor physics. Because of the computer time and memory needed, it is impossible to represent finely the cross-section behavior in the resonance energy range for everyday computations. Consequently, reactor physicists use a simplified formalism, the self-shielding formalism. As no clean and detailed experimental results are available to validate the self-shielding calculations, Monte Carlo computations are used as a reference. These results, which were obtained with the TRIPOLI continuous-energy Monte Carlo code, constitute a set of numerical benchmarks than can be used to evaluate the accuracy of the techniques or formalisms that are included in any reactor physics codes. Examples of such evaluations, for the new assembly code APOLLO2 and the slowing-down code SECOL, are given for cases of 238 U and 232 Th fuel elements

  11. The nucleus accumbens and learning and memory.

    Science.gov (United States)

    Setlow, B

    1997-09-01

    Recent research on the nucleus accumbens (NA) indicates that this brain region is involved in learning and memory processes in a way that is separable from its other well-known roles in behavior, such as motivation, reward, and locomotor activity. These findings have suggested that 1) the NA may be involved in declarative, or hippocampal formation-dependent learning and memory, and not in several other non-declarative forms of learning and memory, and 2) the NA may be selectively involved in certain stages of learning and memory. These characteristics suggest that the NA may be part of a larger striatal system which subserves acquisition and consolidation, but is not a site of long-term storage, of different forms of learning and memory.

  12. Observation of the antimatter helium-4 nucleus.

    Science.gov (United States)

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  13. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  14. Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, B.; Bocage, F.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Assenard, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Auger, G.; Benlliure, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Bacri, C.O.; Borderie, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bisquer, E. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire] [and others

    1997-12-31

    Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4{pi} devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author) 53 refs.

  15. Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    Tamain, B.; Bocage, F.; Bougault, R.; Brou, R.; Bacri, C.O.; Borderie, B.; Bisquer, E.

    1997-01-01

    Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4π devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author)

  16. The calculation of nucleus-nucleus interaction cross sections at high energy in the Glauber approach

    International Nuclear Information System (INIS)

    Gal'perin, A.G.; Uzhinskij, V.V.

    1994-01-01

    Total, inelastic and elastic cross sections of nucleus-nucleus (AA)-interactions at high energy (HE) are calculated on the base of Glauber approach. The calculation scheme is realized as a set of routines. The statistical average method is used in calculations. Program runs in an interactive regime. User is prompted about charge and mass numbers of nuclei and NN-interaction characters at the energy he is interested in: total cross section, the slope parameter of differential cross section of elastic scattering and ratio of real part to imaginary part of elastic scattering amplitude at zero momentum transfer. These data can be extracted from proper compilations. Results of calculations are displayed and are written on user defined output file. The program runs on PC. 21 refs., 1 tab

  17. Nucleus-Nucleus Scattering in the High-Energy Approximation and the Optical Folding Potential

    CERN Document Server

    Lukyanov, V K; Lukyanov, K V

    2004-01-01

    For the nucleus-nucleus scattering, the complex potential is obtained which corresponds to the eikonal phase of an optical limit of the Glauber-Sitenko high-energy approximation. The potential does not include free parameters, its real and imaginary parts depend on energy and are determined by the reported data on the nuclear density distributions and nucleon-nucleon scattering amplitude. Alternatively, for the real part, the folding potential can be utilized which includes the effective NN-forces and the exchange term, as well. As a result, the microscopic optical potential is constructed where contributions of the calculated real and imaginary parts are formed by fitting the two respective factors. An efficient of the approach is confirmed by agreements of calculations with the experimental data on elastic scattering cross-sections.

  18. Transport theory applied to hadron and light fragment production in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Schuermann, B.; Malfliet, R.; Mies, S.; Zwermann, W.

    1984-01-01

    Foundations of the transport theory for studying K + , K - , π - and light fragment production in nucleus-nucleus interactions at high energies are given. Inclusive production of protons, K + and π - in the Ne+NaF reaction at 400 MeV and 21 GeV/nucleon is consdered, their differential cross sections are caculated. Differential cross sections of K - and π - production in Si+Si → K + +X and Ne+NaF → π - +X reactions at the energy of 2.1 GeV/nucleon, their energy dependence are estimated. Comparison of the calculated and experimental data is graphically presented. The model of the transport theory is shown to successfully reproduce inclusive spectra of different particles (p, d, π, K + , K - ) in a wide energy range of incident particles (from 400 MeV to 2 GeV/nucleon). This approach can be generalized for lower energies by generating a mean nuclear potentiasl field

  19. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wilson, J.W.; Bidasaria, H.B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to be assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability for geometric reaction cross sections are determined

  20. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, Anton

    2014-07-15

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  1. Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions

    CERN Multimedia

    Vande vyvre, P; Feofilov, G; Snoeys, W; Hetland, K F; Campbell, M; Klempt, W

    2002-01-01

    % NA57\\\\ \\\\ The goal of the experiment is to study the production of strange and multi-strange particles in nucleus-nucleus collisions. This study was initiated at the OMEGA spectrometer, where three ion experiments have been performed: WA85 (S-W and p-W collisions at 200 A GeV/c), WA94 (S-S and p-S collisions at 200 A GeV/c) and WA97 (Pb-Pb, p-Pb and p-Be collisions at 160 A GeV/c).\\\\ \\\\ The experiment aims at extending the scope of WA97 by:\\\\ \\\\ - investigating the beam energy dependence of the enhancements of multi-strange particle production reported by the previous experiments, and by\\\\ \\\\\\\\ \\\\- measuring the yields of strange and multi-strange particles over an extended centrality range compared with the previous experiments.\\\\ \\\\ The apparatus consists mainly of silicon pixel detector planes.

  2. Dissipation and fluctuation of the relative momentum in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Feldmeier, H.; Spangenberger, H.

    1984-07-01

    The dissipation of the relative momentum in nucleus-nucleus collisions is treated in terms of a Langevin equation with a fluctuating force. Equations of motion for first and second moments of the macroscopic variables are derived directly from the Langevin equation. The properties of the fluctuating force which results from random particle exchange are investigated in detail. Drift and diffusion coefficients are calculated microscopically and analytical expressions are given which can be used in any trajectory calculation. An important feature of the model is that the Einstein relation between dissipation and fluctuation turns out to be only a limiting case of a more general expression which included nonthermal fluctuations. By treating the two nuclei as intrinsically equilibrated but not in thermal equilibrium with respect to each other several important aspects of the dissipative behaviour, seen in heavy ion collisions with final energies above the Coloumb barrier, can be understood. (orig.)

  3. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  4. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Andronic, Anton

    2014-07-01

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  5. Calculations of nucleus-nucleus microscopic optical potentials at intermediate energies

    International Nuclear Information System (INIS)

    Hanna, K.M.; Kuhtina, I.N.; Lukyanov, K.V.; Lukyanov, V.K.; Zemlyanaya, E.V.; Slowinski, B.

    2006-01-01

    Three types of microscopic nucleus-nucleus optical potentials are constructed using three patterns for their real and imaginary parts. Two of these patterns are the real V H and imaginary W H parts of the potential which reproduces the high-energy amplitude of scattering in the microscopic Glauber-Sitenko theory. Another template VDF is calculated within the standard double-folding model with the exchange term included. For either of the three tested potentials, the contribution of real and imaginary patterns is adjusted by introducing two fitted factors. Correspondingly, using numerical code ECIS, the elastic differential cross-sections were fitted to the experimental data on scattering of the 16,17 O heavy-ions at about hundred Mev/nucleon on various target-nuclei. The relativization effect is also included. The tables of the obtained factors which renormalize the strengths of the real and (or) imaginary parts of the calculated microscopic potentials are given

  6. Method of a fast selection of inelastic nucleus-nucleus collisions for the CMS experiment

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Malakhov, A.I.; Savina, M.V.; Shmatov, S.V.; Zarubin, P.I.

    1998-01-01

    On the basis of the HIJING generator simulation of heavy ion collisions at ultrarelativistic energy scale, a method of a fast selection of inelastic nucleus-nucleus interactions is proposed for the CMS experiment at LHC. The basic idea is to use the time coincidence of signals with resolution better than 1 ns from the two very forward calorimeter arms covering the acceptance 3<|η|<5. The method efficiency is investigated by variation of energy thresholds in the calorimeters for different colliding ion species, namely, PbPb, NbNb, CaCa, OO, pPb, pCa, pp. It is shown that a stable efficiency of event selection (∼98%) is provided in an energy threshold range up to 100 GeV for nuclear collisions at 5 TeV/nucleon in the centre of mass system. In the pp collision case the relevant efficiency drops from 93% down to 80%

  7. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    Science.gov (United States)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  8. HIJET: a Monte Carlo event generator for P-nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ludlam, T.; Pfoh, A.; Shor, A.

    1985-01-01

    Comparisons are shown for the HIJET generated data and measured data for average multiplicities, rapidity distributions, and leading proton spectra in proton-nucleus and heavy ion reactions. The algorithm for the generator is one of an incident particle on a target of uniformly distributed nucleons. The dynamics of the interaction limit secondary interactions in that only the leading baryon may re-interact with the nuclear volume. Energy and four momentum are globally conserved in each event. 6 refs., 6 figs

  9. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure.

    Science.gov (United States)

    Pandit, Sudip; Jo, Ji Yoon; Lee, Sang Ung; Lee, Young Jae; Lee, So Yeong; Ryu, Pan Dong; Lee, Jung Un; Kim, Hyun-Woo; Jeon, Byeong Hwa; Park, Jin Bong

    2015-08-01

    γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure. Copyright © 2015 the American Physiological Society.

  10. Connections of the superior paraolivary nucleus of the rat: II. Reciprocal connections with the tectal longitudinal column

    Directory of Open Access Journals (Sweden)

    Antonio eViñuela

    2011-02-01

    Full Text Available The superior paraolivary nucleus (SPON, a prominent GABAergic center of the mammalian auditory brainstem, projects to the ipsilateral inferior colliculus (IC and sends axons through the commissure of the IC (CoIC. Herein we demonstrate that the SPON is reciprocally connected with the recently discovered tectal longitudinal column (TLC. The TLC is a long and narrow structure that spans nearly the entire midbrain tectum longitudinally, immediately above the periaqueductal gray matter (PAG and very close to the midline.Unilateral injections of biotinylated dextran into the SPON of the rat label abundant terminal fibers in the TLC of both sides, with an ipsilateral predominance. The SPON provides a dense innervation of the entire rostrocaudal extent of the ipsilateral TLC, and a relatively sparser innervation of the caudal and rostral portions of the contralateral TLC. SPON fibers reach the TLC by two routes: as collaterals of axons of the CoIC, and as axons that circumvent the ipsilateral IC before traveling in the deep layers of the superior colliculus.The density of these projections identifies SPON as a significant source of input to the TLC. Other targets of the SPON discovered in this study include the deep layers of the superior colliculus and the PAG. The same experiments reveal numerous labeled cell bodies in the TLC, interspersed among the labeled SPON fibers. This observation suggests that the SPON is a significant target of TLC projections.The discovery of novel reciprocal connections between the SPON and the TLC opens unexpected avenues for investigation of sound processing in mammalian brainstem circuits.

  11. The correlation between dysphagia and involvement of the ambiguous nucleus on MRI in acute-phase lateral medullary syndrome

    International Nuclear Information System (INIS)

    Kurono, Hiroko; Uesaka, Yoshikazu; Kunimoto, Masanari; Imafuku, Ichirou

    2006-01-01

    In this study, the clinical features and MRI findings of 21 patients admitted for acute lateral medullary syndrome, including 10 patients with dysphagia, were examined. According to Cytoarchitecture of the Human Brain Stem (Olszewski, J and Baxter, D), MRI-identified lesions were classified into four groups based on their location (upper, middle-upper, middle-lower, and lower parts of the medulla oblongata). We also examined whether each lesion involved the ambiguous nucleus (AN). We then studied the correlation between dysphagia and involvement of the AN. Ten patients had dysphagia, which improved very quickly in all but one. In the horizontal plane, lesions of all patients with dysphagia exhibited AN involvement, suggesting that dysphagia is strongly correlated with AN involvement. Among the 8 patients with lesions in the upper part of the medulla oblongata, the lesions of 7 patients included the AN, and 6 of those 7 patients had dysphagia. Among the 5 patients with lesions in the middle-upper part of the medulla oblongata, the lesions of two contained the AN, and one of those two patients had dysphagia. Among the 6 patients with lesions in the middle-lower part of the medulla oblongata, all lesions contained the AN, but only 3 of the patients exhibited dysphagia. In both patients who had lesions in the lower part of the medulla oblongata, the lesions did not include the AN and neither patient had dysphagia. Patients who had lesions involving the AN in the rostral part of the medulla oblongata were more likely to have dysphagia than the other patients. On the other hand, half of the patients with lesions involving the AN in the middle-lower part of the medulla oblongata did not have dysphagia. This might suggest that the caudal part of the AN has little involvement in the mechanisms of dysphagia. (author)

  12. Ascending control of arousal and motivation: role of nucleus incertus and its peptide neuromodulators in behavioural responses to stress.

    Science.gov (United States)

    Ma, S; Gundlach, A L

    2015-06-01

    Arousal is a process that involves the activation of ascending neural pathways originating in the rostral pons that project to the forebrain through the midbrain reticular formation to promote the activation of key cortical, thalamic, hypothalamic and limbic centres. Established modulators of arousal include the cholinergic, serotonergic, noradrenergic and dopaminergic networks originating in the pons and midbrain. Recent data indicate that a population of largely GABAergic projection neurones located in the nucleus incertus (NI) are also involved in arousal and motivational processes. The NI has prominent efferent connections with distinct hypothalamic, amygdalar and thalamic nuclei, in addition to dense projections to key brain regions associated with the generation and pacing of hippocampal activity. The NI receives strong inputs from the prefrontal cortex, lateral habenula and the interpeduncular and median raphe nuclei, suggesting it is highly integrated in circuits regulating higher cognitive behaviours (hippocampal theta rhythm) and emotion. Anatomical and functional studies have revealed that the NI is a rich source of multiple peptide neuromodulators, including relaxin-3, and may mediate extra-hypothalamic effects of the stress hormone corticotrophin-releasing factor, as well as other key modulators such as orexins and oxytocin. This review provides an overview of earlier studies and highlights more recent research that implicates this neural network in the integration of arousal and motivated behaviours and has begun to identify the associated mechanisms. Future research that should help to better clarify the connectivity and function of the NI in major experimental species and humans is also discussed. © 2015 British Society for Neuroendocrinology.

  13. The Confined Hydrogen Atom with a Moving Nucleus

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  14. On studies of the hadron-nucleus collision processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1992-01-01

    A new way of hadron-nucleus collision process investigations in experiments is described. It is based on the properties of the hadron passage through layers of the intranuclear matter. The picture of the hadron-nucleus collision mechanism, as prompted experimentally, is presented. 37 refs.; 1 tab

  15. Nucleus retroambiguus projections to the periaqueductal gray in the cat

    NARCIS (Netherlands)

    Klop, EM; Mouton, LJ; Holstege, G

    2002-01-01

    The nucleus retroambiguus (NRA) of the caudal medulla is a relay nucleus by which neurons of the mesencephalic periaqueductal gray (PAG) reach motoneurons of pharynx, larynx, soft palate, intercostal and abdominal muscles, and several muscles of the hindlimbs. These PAG-NRA-motoneuronal projections

  16. Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry

    Science.gov (United States)

    Sharma, Abhishek K.; Escobedo, Fernando A.

    2018-05-01

    Classical Nucleation Theory (CNT) has recently been used in conjunction with a seeding approach to simulate nucleation phenomena at small-to-moderate supersaturation conditions when large free-energy barriers ensue. In this study, the conventional seeding approach [J. R. Espinosa et al., J. Chem. Phys. 144, 034501 (2016)] is improved by a novel, more robust method to estimate nucleation barriers. Inspired by the interfacial pinning approach [U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013)] used before to determine conditions where two phases coexist, the seed of the incipient phase is pinned to a preselected size to iteratively drive the system toward the conditions where the seed becomes a critical nucleus. The proposed technique is first validated by estimating the critical nucleation conditions for the disorder-to-order transition in hard spheres and then applied to simulate and characterize the highly non-trivial (prolate) morphology of the critical crystal nucleus in hard gyrobifastigia. A generalization of CNT is used to account for nucleus asphericity and predict nucleation free-energy barriers for gyrobifastigia. These predictions of nuclei shape and barriers are validated by independent umbrella sampling calculations.

  17. Transverse-momentum distribution of produced particles in ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ban-Hao, S.; Wong, C.

    1985-01-01

    In order to discern coherent or collective processes from incoherent processes in nucleus-nucleus reactions at high energies, we study the transverse-momentum distribution of the produced particles with an incoherent-multiple-collision model. In this model, the projectile nucleon makes successive inelastic collisions with nucleons in the target nucleus, the probability of such collisions being given by the thickness function and the nucleon-nucleon inelastic cross section. It is assumed that each baryon-baryon collision produces particles and degrades momenta just as a baryon-baryon collision in free space, and that there are no secondary collisions between the produced particles and the nucleons. We found that the average transverse momentum and the charged-multiplicity data at Fermilab and CERN ISR energies can be well explained by such a model. However, the average transverse momentum for some events observed by the Japanese-American cooperative emulsion experiment (JACEE) associated with large energy density in the central rapidity region differ markedly from the model results. Such a deviation indicates the presence of coherent or collective effects for these collisions and may indicate the possibility of a formation of quark-gluon plasma

  18. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus?

    Science.gov (United States)

    Pollano, Antonella; Trujillo, Verónica; Suárez, Marta M

    2018-01-01

    Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.

  19. On the possible detection of quantum-mechanical interferences between gravitational forces and nucleus-nucleus Coulomb forces

    International Nuclear Information System (INIS)

    Silveira, R. da

    1996-07-01

    Possible effects of quantum-mechanical interferences between gravitational forces and the nucleus-nucleus Coulomb interaction are discussed. It is shown that, although very small, these effects could be measured using low energy scattering between identical heavy nuclei, e.g. for the system 208 Pb + 208 Pb (E L = 5 MeV). (author)

  20. Beta 1- and beta 2-adrenergic 125I-pindolol binding sites in the interpeduncular nucleus of the rat: Normal distribution and the effects of deafferentation

    International Nuclear Information System (INIS)

    Battisti, W.P.; Artymyshyn, R.P.; Murray, M.

    1989-01-01

    The plasticity of the beta 1- and beta 2-adrenergic receptor subtypes was examined in the interpeduncular nucleus (IPN) of the adult rat. The beta-adrenergic receptor antagonist 125I-pindolol (125I-PIN) was used in conjunction with the selective subtype antagonists ICI 118,551 and ICI 89,406 to determine the subnuclear distribution of beta 1- and beta 2-adrenergic receptors in this nucleus and to correlate the receptor distribution with the distribution of both noradrenergic afferents from the locus coeruleus (LC) and non-noradrenergic afferents from the fasiculus retroflexus (FR). The density of these binding sites was examined following lesions that decreased (LC lesions) or increased (FR lesions) the density of the noradrenergic projection in the IPN. Quantitative radioautography indicated that beta 1-labeled binding sites account for the larger percentage of binding sites in the IPN. The beta 1-binding sites are densest in those subnuclei that receive a noradrenergic projection from the LC: the central, rostral, and intermediate subnuclei. beta 1-binding sites are algo homogeneously distributed throughout the lateral subnuclei, where there is no detectable noradrenergic innervation. beta 2-binding sites have a more restricted distribution. They are concentrated in the ventral half of the lateral subnuclei, where they account for 70% of total 125I-PIN binding sites. beta 2-binding sites are also present along the ventral border of the IPN. Some of this labeling extends into the central and intermediate subnuclei. Bilateral lesions of the LC, which selectively remove noradrenergic innervation to the IPN, result in an increase in the beta 1-binding sites. Bilateral lesions of the FR, which remove the major cholinergic and peptidergic input from the IPN, elicit an increase in noradrenergic projections and a decrease in beta 1-binding sites

  1. Evolution of a protein folding nucleus.

    Science.gov (United States)

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  2. Comparing Realistic Subthalamic Nucleus Neuron Models

    Science.gov (United States)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  3. Subthalamic nucleus detects unnatural android movement.

    Science.gov (United States)

    Ikeda, Takashi; Hirata, Masayuki; Kasaki, Masashi; Alimardani, Maryam; Matsushita, Kojiro; Yamamoto, Tomoyuki; Nishio, Shuichi; Ishiguro, Hiroshi

    2017-12-19

    An android, i.e., a realistic humanoid robot with human-like capabilities, may induce an uncanny feeling in human observers. The uncanny feeling about an android has two main causes: its appearance and movement. The uncanny feeling about an android increases when its appearance is almost human-like but its movement is not fully natural or comparable to human movement. Even if an android has human-like flexible joints, its slightly jerky movements cause a human observer to detect subtle unnaturalness in them. However, the neural mechanism underlying the detection of unnatural movements remains unclear. We conducted an fMRI experiment to compare the observation of an android and the observation of a human on which the android is modelled, and we found differences in the activation pattern of the brain regions that are responsible for the production of smooth and natural movement. More specifically, we found that the visual observation of the android, compared with that of the human model, caused greater activation in the subthalamic nucleus (STN). When the android's slightly jerky movements are visually observed, the STN detects their subtle unnaturalness. This finding suggests that the detection of unnatural movements is attributed to an error signal resulting from a mismatch between a visual input and an internal model for smooth movement.

  4. Backward emission in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Stelte, N.; Weiner, R.

    1981-01-01

    Backward emission of hadrons in reactions of the type: P + T → a + anything, where the projectile P is a hadron, T a nuclear target and a a hadron or a light nucleus has been the subject of experimental investigation in the last decade in an energy range E starting in the hundred MeV region and extending up to 400 GeV projectile energy. The main interest in these reactions lies in the fact that they provide information about collective behavior of nucleons in nuclei (cumulative effect, i.e., the presence of secondary particles in a region of momentum space which cannot be populated by nucleon-nucleon interactions) although some authors have recently patronized this effect. In particular the consequences of nuclear limiting fragementation together with the cumulative effect can be used to obtain important information on transport properties and the equation of state of nuclear matter. Limiting fragmentation is a phenomenon discovered in the GeV region and applied to the reaction implies that in the high E limit two separate rapidity regions exist, one for the projectile and another for the target so that in each of the regions the inclusive cross section dsigma/dEd Ω becomes independent of the incoming energy. Here E and Ω refer to the kinetic energy and solid angle of the emitted particle

  5. Heavy nucleus resonance absorption in heterogeneous lattices

    International Nuclear Information System (INIS)

    Coste, M.; Tellier, H.; Brienne-Raepsaet, C.; Van Der Gucht, C.

    1992-01-01

    To compute easily the neutron reaction rates in the resonance energy range, the reactor physicists use the self-shielding formalism and the effective cross-section concept. Usually, for these calculations, and equivalence process is used, in such a way that the absorption rate is correctly computed for the whole fuel pin. This procedure does not allow to preserve the spatial absorption rate distribution inside the pin. It is an important handicap if we want to reproduce the plutonium distribution in a spent fuel. To avoid this inconvenience, new improvements of the self-shielding formalism have been recently introduced in the new assembly calculation code of the French Atomic Energy Commission, APOLLO 2. With this improved formalism, it is now possible to represent the spatial and energetic dependence of the heavy nucleus absorption inside the fuel pin and to use a fine energy dependent equivalence process. As it does not exist clean experimental results for the spatial and energetic dependence of the absorption, the authors used reference calculations to qualify the self-shielding formalism. For the strongly self-shielded nuclei of interest in reactor physics, U238, Pu240 and Th232, the agreement between the self-shielding calculation and the reference ones is fairly good for the spatial and energetic dependence of the absorption rate

  6. Control of nucleus accumbens activity with neurofeedback.

    Science.gov (United States)

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats.

    Science.gov (United States)

    King, Camille Tessitore; Garcea, Mircea; Spector, Alan C

    2014-08-01

    Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. © 2014 Wiley Periodicals, Inc.

  8. Analysis of the thematic content of review Nucleus

    International Nuclear Information System (INIS)

    Guerra Valdes, Ramiro

    2007-01-01

    A computer programme for performing standardized analysis of research areas and key concepts of nuclear science and technology under development at Cubaenergia is presented. Main components of the information processing system, as well as computational methods and modules for thematic content analysis of INIS Database record files are described. Results of thematic content analysis of review Nucleus from 1986 to 2005 are shown. Furthermore, results of demonstrative study Nucleus, Science, Technology and Society are also shown. The results provide new elements to asses the significance of the thematic content of review Nucleus in the context of innovation in interrelated multidisciplinary research areas

  9. Theoretical interpretation of medium energy nucleon nucleus inelastic scattering

    International Nuclear Information System (INIS)

    Lagrange, Christian

    1970-06-01

    A theoretical study is made of the medium energy nucleon-nucleus inelastic scattering (direct interaction), by applying the distorted wave Born approximation such as can be deduced from the paired equation method. It is applied to the interpretation of the inelastic scattering of 12 MeV protons by 63 Cu; this leads us to make use of different sets of wave functions to describe the various states of the target nucleus. We analyze the nature of these states and the shape of the nucleon-nucleus interaction potential, and we compare the results with those obtained from other theoretical and experimental work. (author) [fr

  10. On angular distribution of nucleus fission fragments by fast neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Evaluation of amplitudes of quadrupole and hexadecapole components of angular distribution of nucleus fission fragments by neutrons with the energies E n < or approx. 6 MeV is conducted. Stability of this amplitude to permeability optical coefficient variations for neutrons is revealed. It is shown, that the ratio of these amplitudes as well as the character of their dependence on the target nucleus orientation degree are sensitive to the type of fission probability distribution along K projection if fissile nucleus J spin to the fragment scattering axis. This sensitivity may be used for fragment angular distribution anisotropy formation statistical model verification

  11. Semi classical model of the neutron resonance compound nucleus

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1995-01-01

    A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)

  12. The Mathematical Model High Energy Collisions Process Hadron-Nucleus

    International Nuclear Information System (INIS)

    Wojciechowski, A.; Strugalska-Gola, E.; Strugalski, Z.

    2002-01-01

    During the passage high energy hadron by the heavy nucleus emitted are nucleons and many other particles from which most more group are nucleons and mesons π + π - π 0 . in this work we will present the mathematical model which is a simplified description of basic processes in the interior of the nucleus during passing of the hadron by the nucleus. Result of calculations we will compare with experimental results. Experimental data are based on photographs of 180 litre xenon bubble chambers (180 1 KKP) of Institute of Theoretical and Experimental Physics in Moscow (ITEF, Moscow) irradiated with the beam of mesons π - with momentum 3.5 GeV/c. (author)

  13. On slow particle production in hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Stenlund, E.; Otterlund, I.

    1982-01-01

    A model for slow particle production in hadron-nucleus interactions is presented. The model succesfully predicts correlations between the number of knock-on particles and the number of particles associated with the evaporation process as well as correlations with the number of collisions, ν, between the incident hadron and the nucleons inside the target nucleus. The model provides two independent possibilities to determine the number of primary intranuclear collisions, ν, i.e. by its correlation to the number of knock-on particles or to the number of evaporated particles. The good agreement indicates that the model gives an impact-parameter sensitive description of hardron nucleus reactions. (orig.)

  14. Study on isotopic distribution produced by nucleus-nucleus collisions with modified SAA model

    International Nuclear Information System (INIS)

    Zhong Chen; Fang Deqing; Cai Xiangzhou; Shen Wenqing; Zhang Huyong; Wei Yibin; Ma Yugang

    2003-01-01

    Base on Brohm's Statistic-Ablation-Abrasion (SAA) model, the modified SAA model was developed via introducing the isospin dependence of nucleon distribution in nucleus and parameterized formulas for nucleon-nucleon cross section in nuclear matter. It can simulate well the isotopic distribution at both high and intermediate energies. By the improvement of computational method, the range of calculation of isotopic distribution can be increased from three order magnitude to eight order magnitude (even higher). It can reproduce experimental data and predict the isotopic distribution for very far from stability line which is very important from experimental viewpoint

  15. 2D model of the Nucleus

    Science.gov (United States)

    Lach, Theodore M.

    2003-10-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  16. Semiclassical model for single-particle transitions in nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Milek, B.; Joint Inst. for Nuclear Research, Dubna; Technische Univ., Dresden; Reif, R.; Pham Khan Van; Revai, J.

    1990-04-01

    A previously elaborated semiclassical one-body model for the dynamics of a single particle, moving in two potentials, in heavy-ion reactions or in fissioning systems has been extended with respect to the inclusion of angular momenta and more realistic separable potentials. The collective relative motion is assumed to proceed along a trajectory which is calculated from classical equations of motion including conservative and phenomenological friction forces. The formalism has been derived involving three-dimensional trajectories for symmetric as well as for asymmetric nucleus-nucleus systems. The model allows for the calculation of correct quantum mechanical transition amplitudes to final bound and continuum states. It has been applied for the investigation of the excitation of a neutron during a fission process, covering also non-statistical differential emission probabilities. From the numerical calculations, using parameters adapted to 252 Cf(sf), one can conclude that in the underlying model without 'sudden' processes the energy spectrum consists of two parts. The low lying component is created in the neck region while a high lying part seems to be governed mainly by the dynamics of the underlying collective motion rather than by the specific initial conditions. (orig.)

  17. Collision dynamics and particle production in relativistic nucleus- nucleus collisions at CERN

    International Nuclear Information System (INIS)

    Harris, J.W.

    1990-03-01

    The possibility of forming a quark-gluon plasma is the primary motivation for studying nucleus-nucleus collisions at very high energies. Various ''signatures'' for the existence of a quark-gluon plasma in these collisions have been proposed. These include an enhancement in the production of strange particles, suppression of J/Ψ production, observation of direct photons from the plasma, event-by-event fluctuations in the rapidity distributions of produced particles, and various other observables. However, the system will evolve dynamically from a pure plasma or mixed phase through expansion, cooling, hadronization and freezeout into the final state particles. Therefore, to be able to determine that a new, transient state of matter has been formed it will be necessary to understand the space-time evolution of the collision process and the microscopic structure of hadronic interactions, at the level of quarks and gluons, at high temperatures and densities. In this talk I will review briefly the present state of our understanding of the dynamics of these collisions and, in addition, present a few recent results on particle production from the NA35 experiment at CERN. 21 refs., 5 figs

  18. Estimation of nuclear destruction in high energy nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Uzhinskij, V.V.

    1995-01-01

    It is assumed that: 1) a projectile particle invokes into target nucleus a cascade of quark-gluon exchanges; 2) the nucleons involved in the cascade are ejected from the nucleus which leads to the nuclear destruction. On these bases a simple model to estimate the nuclear destruction at the fast stage of the interaction is proposed. The allowed region of the model parameters is determined at the proton-emulsion high-energy interaction data analysis: an analysis of gold interactions with nuclei at an energy of 600 MeV/nucleon fixes the parameter values. The distributions on the energy in zero degree calorimeter (T ZDC ) in the interactions of Si+Al, Cu, Pb (14 GeV/nucleon) and Au+Au (10 GeV/nucleon) calculated in the framework of the model and in the cascade-evaporation model (CEM) are presented. The proposed model describes the nuclear destruction at intermediate and high energies better than CEM does. The estimation of the average values of impact parameter and the number of intra-nuclear collisions for Au+Au interactions in the events with different T ZDC is given. 34 refs., 11 figs

  19. Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adel, A. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Majmaah University, Physics Department, College of Science, Al-Zulfi (Saudi Arabia); Alharbi, T. [Majmaah University, Physics Department, College of Science, Al-Zulfi (Saudi Arabia)

    2017-01-15

    The fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems are investigated near and above the Coulomb barrier using the one-dimensional barrier penetration model. The microscopic nuclear interaction potential is computed by four methods, namely: the double-folding model based on a realistic density-dependent M3Y NN interaction with a finite-range exchange part, the Skyrme energy density functional in the semiclassical extended Thomas-Fermi approximation, the generalized Proximity potential, and the Akyuez-Winther interaction. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the calculations of the DFM give quite satisfactory agreement with the experimental data, being much better than the other methods. New parameterized forms for the fusion barrier heights and positions are presented. Furthermore, the effects of deformation and orientation degrees of freedom on the distribution of the Coulomb barrier characteristics as well as the fusion cross sections are studied for the reactions {sup 16}O + {sup 70}Ge and {sup 28}Si + {sup 100}Mo. The calculated values of the total fusion cross sections are compared with coupled channel calculations using the code CCFULL and compared with the experimental data. Our results reveal that the inclusion of deformations and orientation degrees of freedom improves the comparison with the experimental data. (orig.)

  20. Multiparticle excitations in the 149 Gd superdeformed nucleus. Signature of new C4 nucleus symmetry

    International Nuclear Information System (INIS)

    Theisen, C.

    1995-01-01

    The use of 8 π and EUROGAM phase I multi-detectors for the study of high spin states of 149 Gd nucleus has revealed unexpected new phenomenons about the superdeformation in this nucleus. The new excited bands confirm the omnipresence of twin bands phenomenon. A new multi-particle excitation (two protons and one neutron) has been discovered. Thanks to the second generation EUROGAM detector, unexpected discoveries such as C 4 symmetry, level interactions, complete backbending were obtained for the second potential well. The knowledge of interacting levels gives informations about the nucleon-nucleon residual interaction and could allow the determination of SD bands excitation energy. The complex processing and analysis of high multiplicity events has led to the development of new computing tools. An automatic band research program has been written for the discovery of new excited bands, and an exact method for the elimination of uncorrected events has been developed. The improvements of multi-detector performances should allow the discovery of more exceptional phenomenons and new anomalies in the SD bands. (J.S.). 222 refs., 86 figs., 38 tabs

  1. Experimental problems of search for quark-gluon plasma in nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Okonov, Eh.O.

    1987-01-01

    Experimental problems for searching for quark-gluon (quagma) plasma in nucleus-nucleus interactions (NbNb,CaCa, ArPb, CnE, ONe) in the energy range E=0.4-1 GeV/A and 3.67 GeV/A and 200 GeV/A energies are discussed. Peculiarities of performing experiments on Dubna synchrophasotron and SPS Bevalac are discussed. The first results prove hadron matter thermalization sufficient for quagma manifestation. It is found that such characteristics of studied interactions as relative λ-hyperon yield, spectral (temperature) characteristics of λ k -hyperons (with higher values of transferred transverse momenta) and associatively produced peons are of greatest interest. The necessity of precise establishment of λ-hyperon group as excessive and differing in its origin from the other particles of the hadron phase is noted. It is shown that experimental approach used in Dubna research proved efficient and requires further development. It includes : selection of rare events (fluctuations) in central interactions of nuclei with high local excitation; search and research of peculiarities in the production of strange particles and in associative pion production; use of streamer spectrometer with a trigger system of rigid selection of central interactions

  2. 3D Protein Dynamics in the Cell Nucleus.

    Science.gov (United States)

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Nucleus geometry and mechanical properties of resistance spot ...

    Indian Academy of Sciences (India)

    Keywords. Automotive steels; resistance spot welding; mechanical properties; nucleus geometry. 1. .... High va- lues of hardness can be explained with martensitic forma- ... interface of DP450–DP600 steels may have stainless steel properties.

  4. Thermalization in high energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Wedemann, R.S.

    1988-03-01

    A relativistic proton-nucleus collision using the intranuclear cascade model is studied. The purpose is to verify the equilibration hypothesis at fragmentation time made by many nuclear fragmentation models. (author)

  5. Optical observations of the nucleus of NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Romano, G; Minello, S [Padua Univ. (Italy). Istituto di Astronomia

    1977-08-01

    Photographic observations of the nucleus of the Seyfert galaxy NGC 4151, carried out during the last seven years, are reported. The object shows irregular variations between photographic magnitudes 11.2 and 13.0.

  6. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    Science.gov (United States)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  7. Radiological study of the calcanean ossification secondary nucleus development

    International Nuclear Information System (INIS)

    Carvalho Filho, Guaracy.

    1994-01-01

    This work describes the normal aspects of the calcanean ossification secondary nucleus radiological development, the appearing time, his form, localization, fragmentation and evolution of area, from a sample of normal individuals. (author). 14 refs., 16 figs., 8 tabs

  8. The picture of the nuclei disintegration mechanism - from hadron-nucleus and nucleus-nucleus collisions experimental investigations at high energies

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.; Chmielowski, W.

    1997-01-01

    The mechanism of the nuclei disintegration process in collisions of high-energy hadrons with nuclei is revealed experimentally. The disintegration appears as a complicated nuclear process developing in time and space in intranuclear matter, consisting at least of three stages which last together about 10 -24 - 10 -17 s after the impact. At the first stage, which lasts about 10 -24 - 10 -22 s, fast nucleons are densely emitted and the target-nucleus is locally damaged. At the second stage, lasting about 10 -22 - 10 -1 7 s, the damaged and unstable residual target nucleus uses to evaporate light fragments - mainly nucleons, deuterons, tritons, α-particles. At the final stage, the residual target-nucleus uses to split sometimes into two or more nuclear fragments

  9. Colour, albedo and nucleus size of Halley's comet

    Science.gov (United States)

    Cruikshank, D. P.; Tholen, D. J.; Hartmann, W. K.

    1985-01-01

    Photometry of Halley's comet in the B, J, V, and K broadband filters during a time when the coma was very weak and presumed to contribute negligibly to the broadband photometry is reported. The V-J and J-K colors suggest that the color of the nucleus of Halley's comet is similar to that of the D-type asteroids, which in turn suggests that the surface of the nucleus has an albedo less than 0.1.

  10. Ion-beam spectroscopic studies of the 69As nucleus

    International Nuclear Information System (INIS)

    Badica, T.; Cojocaru, V.; Olariu, A.; Petre, M.; Popescu, I. V.; Gheboianu, A.

    2009-01-01

    Excited state of the neutron deficient 69 As nucleus were investigated in the 58 Ni( 14 N,2pn) reaction by ion-beam γ spectroscopic methods (excitation functions, γγ-coincidences, angular distributions and linear polarization gated with neutrons). A new more complete level scheme of 69 As has been proposed with spin-parity values. The structure of the nucleus is discussed in the framework of the interaction boson-fermion model (IBFM). (authors)

  11. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    OpenAIRE

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-01-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connecti...

  12. Rapidity distributions of secondary particles in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Alaverdyan, G.B.; Pak, A.S.; Tarasov, A.V.; Tseren, Ch.; Uzhinsky, V.V.

    1979-01-01

    In the framework of the cascade model of a leading particle the rapidity distributions of secondary particles in the hadron-nucleus interactions are considered. The energy loss fluctuations of leading particles in the successive collisions have been taken into account. It is shown that the centre of rapidity distribution is displaced towards small rapidity with target nucleus atomic number A growth. The model well reproduces the energy and A dependences of the rapidity distributions

  13. New computational methods for determining antikaon-nucleus bound states

    International Nuclear Information System (INIS)

    Fink, P.J. Jr.

    1989-01-01

    Optical potential for antikaon-nucleus strong interactions are constructed using elementary antikaon-nucleus potentials determined previously. The optical potentials are used to determine the existence of a kaon hypernucleus. Modern three dimensional visualization techniques are used to study model dependences, new methods for speeding the calculation of the optical potential are developed, and previous approximation to avoid full Fermi averaging are eliminated. 19 refs., 21 figs., 3 tabs

  14. International Halley Watch: Discipline specialists for near-nucleus studies

    Science.gov (United States)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  15. Effect of cochlear nerve electrocautery on the adult cochlear nucleus.

    Science.gov (United States)

    Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A

    2015-04-01

    Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.

  16. Interesting correlations among various parameters of charged secondaries in nucleus - nucleus interactions at 4.5 A GeV

    International Nuclear Information System (INIS)

    Khan, M. Saleem; Shukla, Praveen Prakash; Khushnood, H.

    2015-01-01

    The study of the characteristic of charged secondaries was the aim of most of the experiments on high energy nucleon-nucleon and nucleus-nucleus collisions. Investigation are carried out on the produced secondary charged particles with a common belief that these particles are more informative about the collisional dynamics and thus, could be effective in revealing the underlying physics of high energy relativistic interactions. So for understanding the mechanism of multiparticle production in high energy hadron-nucleus collisions, the correlations amongst the secondary charged particles are studied. Several workers have attempted to study the multiplicity correlations over widely different incident energies with different projectiles. The AALMT collaboration have also studied the multiplicity correlations in 200 GeV proton-nucleus collisions

  17. The picture of the nuclei disintegration mechanism - from nucleus-nucleus collision experimental data at high energies

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    Experimental data on nuclear collisions at high energies, mainly obtained from photographic emulsions, are considered from the point of view of the picture of the nuclear collision processes mechanisms prompted experimentally. In fact, the disintegration products of each nucleus involved in a nuclear collision, in its own rest-frame, are similar to that produced by the impact of a number of nucleons of velocity equal to that of the moving primary nucleus

  18. Study of high energy densities over extended nuclear volumes via nucleus-nucleus collisions at the SPS

    CERN Multimedia

    2002-01-01

    This experiment examines in detail the characteristics of ultra-relativistic nucleus-nucleus interactions using $^{16}$O beams of 200 GeV/A from the SPS. The experiment combines 4$\\pi$ calorimeter coverage with measurements of inclusive particle spectra, two-particle correlations, low and high-mass lepton pairs and photons. A multiwire active target allows maximum interaction rates with a minimum of secondary interactions. Additional data are taken with an emulsion target.

  19. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    International Nuclear Information System (INIS)

    Konchakovski, Volodymyr P.

    2009-01-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the optimal

  20. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    Energy Technology Data Exchange (ETDEWEB)

    Konchakovski, Volodymyr P.

    2009-10-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the

  1. Energy loss, range and fluence distributions, total reaction and projectile fragment production cross sections for proton-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Sihver, L.; Kanai, T.

    1992-07-01

    We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)

  2. Exercício físico promove efeito antioxidante e restaura a expressão das enzimas óxido nítrico sintases no bulbo ventrolateral rostral de ratos com hipertensão renovascular.

    OpenAIRE

    Souza, Luiz Eduardo de

    2015-01-01

    Programa de Pós-Graduação em Ciências Biológicas. Núcleo de Pesquisas em Ciências Biológicas, Pró-Reitoria de Pesquisa de Pós Graduação, Universidade Federal de Ouro Preto. O exercício físico tem importante ação no sistema nervoso e órgãos reguladores da pressão arterial. Objetivos: Verificar o efeito do exercício físico sobre a expressão das óxido nítrico sintases (NOSs) no bulbo ventrolateral rostral (RVLM) e estado redox no encéfalo, coração, rins e aorta de ratos com hipertensão re...

  3. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    Science.gov (United States)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  4. Qualitative analysis neurons in the adult human dentate nucleus

    Directory of Open Access Journals (Sweden)

    Marić Dušica

    2012-01-01

    Full Text Available Although many relevant findings regarding to the morphology and cytoarchitectural development of the dentate nucleus have been presented so far, very little qualitative information has been collected on neuronal morphology in the adult human dentate nucleus. The neurons were labelled by Golgi staining from thirty human cerebella, obtained from medico-legal forensic autopsies of adult human bodies and free of significant brain pathology. The human dentate neurons were qualitatively analyzed and these cells were classified into two main classes: the small and the large multipolar neurons. Considering the shape of the cell body, number of the primary dendrites, shape of the dendritic tree and their position within the dentate nucleus, three subclasses of the large multipolar neurons have been recognized. The classification of neurons from the human dentate nucleus has been qualitatively confirmed in fetuses and premature infants. This study represents the first qualitative analysis and classification of the large multipolar neurons in the dentate nucleus of the adult human.

  5. Alteration of Paramecium candatum germinal nucleus morphology after UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, S.I. (Leningradskij Gosudarstvennyj Univ. (USSR). Biologicheskij Nauchno-Issledovatel' skij Inst.)

    1982-09-01

    A study was made on morphologic changes of micronucleus (Mi) after whole-body ultraviolet (UV) irradiation of paramecia as well as after local irradiation of this nucleus or the area of macronucleus (Ma). The whole-body irradiation of its Ma part leads to generative nucleus growth in sizes and chromatin structure change, which is expressed in occurence of large chromatin bodies. Aftereffects of local action on Mi for viable descendants are expressed in nucleus size transformation (usually in reduction), gaining ''comet-shaped'' form and probably in reduction of dna amount. Irradiation of Ma and total effect on cell cause Mi changes of reversible character. All morphologic changes of Mi after local ultraviolet irradiation are conserved in descendants and are not photoreactivated. Possible reasons for this phenomenon are discussed. The results obtained make it possible to speak about different mechanisms of action on Mi in the case of local and whole-body UV irradiation of cell. The effect of irradiated Ma on generative nucleus, but not direct damage of this nucleus is the reason for Mi morphologic reconstruction after whole-body action on paramecium.

  6. Statistical emission of complex fragments from highly excited compound nucleus

    International Nuclear Information System (INIS)

    Matsuse, T.

    1991-01-01

    A full statistical analysis has been given in terms of the Extended Hauser-Feshbach method. The charge and kinetic energy distributions of 35 Cl+ 12 C reaction at E lab = 180, 200 MeV and 23 Na+ 24 Mg reaction at E lab = 89 MeV which form the 47 V compound nucleus are investigated as a prototype of the light mass system. The measured kinetic energy distributions of the complex fragments are shown to be well reproduced by the Extended Hauser-Feshbach method, so the observed complex fragment production is understood as the statistical binary decay from the compound nucleus induced by heavy-ion reaction. Next, this method is applied to the study of the complex production from the 111 In compound nucleus which is formed by the 84 Kr+ 27 Al reaction at E lab = 890 MeV. (K.A.) 18 refs., 10 figs

  7. Mechano-adaptation of the stem cell nucleus.

    Science.gov (United States)

    Heo, Su-Jin; Cosgrove, Brian D; Dai, Eric N; Mauck, Robert L

    2018-01-01

    Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this "mechano-adaptation" are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.

  8. Analysis of a deep nucleus of Tehuantepec Gulf

    International Nuclear Information System (INIS)

    Ordonez R, E.; Lopez M, J.; Ramirez T, J. J.; Machain C, M. L.

    2009-10-01

    A nucleus of sediments obtained in the deep of Tehuantepec Gulf is analyzed; this nucleus has the particularity of to be a sampling of longitude of 18.3 m that include the total of last period glacial, few times obtained in our country. The physical chemistry composition of 10 selected fractions are analyzed with the purpose of to understand the formation processes of deep ocean along the period of 120 000 years, that includes the extracted fraction. Crystallography analysis, morphology, physical chemistry characterization and activity gamma were made. Finding that the content of organic matter falls as the superficial area increases, also was found the presence of natural uranium in similar concentration and balance with its radiogenic descendants along the nucleus profile what suggests the uranium migration to interior of mineral grains. (Author)

  9. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus. 63 references

  10. Near-nucleus optical observations of P/Halley

    International Nuclear Information System (INIS)

    Larson, S.M.

    1987-01-01

    The Near-Nucleus Studies Net of the International Halley Watch has obtained an extensive series of high resolution optical images of P/Halley during its most active phases in 1985-86 which may be useful in interpreting radio observations of Comet Halley. They often show coma structure resulting from anisotropic emission of dust and gas from the inhomogeneous nucleus. Images were obtained in broadband spectral regions to study dust coma morphology, and in medium to narrow spectral bands to isolate the principal emissions of CN, C 3 , C 2 , CO + and H 2 O + . The goals and methods of near-nucleus studies are discussed and recent studies of 1910 images are briefly reviewed. The role of dust jets and cometary activity in P/Halley is discussed and several examples of anisotropic emission of dust during the current apparition are shown. 12 references

  11. Proton decay in a nucleus: Nonrelativistic treatment of nuclear effects

    International Nuclear Information System (INIS)

    Fernandez, L.A.; Alvarez-Estrada, R.F.; Sanchez-Gomez, J.L.

    1983-01-01

    In this paper, proton decay in a large nucleus is studied in the framework of SU(5) grand unification theory (GUT). By using a method based upon the Green's-function technique of many-body physics, nuclear effects on spectator and pole terms are computed. The decay width in the nucleus is found to be practically the same as in free space. However, nuclear effects are of considerable importance concerning the positron spectrum. A density-correlation expansion is introduced which is useful for carrying out a systematic study of nuclear effects in proton decay in a large nucleus. The method presented here can be easily extended to other GUT's or supersymmetric GUT's

  12. Models of the atomic nucleus. With interactive software

    International Nuclear Information System (INIS)

    Cook, N.D.

    2006-01-01

    This book-and-CD-software package supplies users with an interactive experience for nuclear visualization via a computer-graphical interface, similar in principle to the molecular visualizations already available in chemistry. Models of the Atomic Nucleus, a largely non-technical introduction to nuclear theory, explains the nucleus in a way that makes nuclear physics as comprehensible as chemistry or cell biology. The book/software supplements virtually any of the current textbooks in nuclear physics by providing a means for 3D visual display of the diverse models of nuclear structure. For the first time, an easy-to-master software for scientific visualization of the nucleus makes this notoriously ''non-visual'' field become immediately 'visible.' After a review of the basics, the book explores and compares the competing models, and addresses how the lattice model best resolves remaining controversies. The appendix explains how to obtain the most from the software provided on the accompanying CD. (orig.)

  13. Hot Quarks 2016: Workshop for young scientists on the physics of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    2017-01-01

    The 7th edition of the Workshop for Young Scientists on the Physics of Ultra-relativistic Nucleus-Nucleus Collisions (Hot Quarks 2016) was held on South Padre Island, Texas, United States from September 12-17, 2016. Following the traditions of the conference, the meeting gathered almost 70 participants in the first years of their scientific careers. The present issue contains the proceedings of this workshop.As in the past, the Hot Quarks workshop offered a unique atmosphere for lively discussions and interpretation of the current measurements from high-energy nuclear collisions. Dedicated time at the end of each session for questions, including anonymous questions from the “box”, are crucial for this workshop. Recent results and upgrades at CERN's Large Hadron Collider (LHC) and Brookhaven's Relativistic Heavy Ion Collider (RHIC) were presented. Recent theoretical developments were also extensively discussed as well as the perspectives for future facilities such as the Facility for Antiproton and Ion Research (FAIR) at Darmstadt and the Electron-Ion Collider at Brookhaven. The conference's goal to provide a platform for young researchers to learn and foster their interactions was successfully met.We wish to thank the sponsors of the Hot Quarks 2016 Conference, who supported the authors of this volume: European Laboratory for Particle Physics CERN (Switzerland), Cyclotron Institute at Texas A and M University (USA), ExtreMe Matter Institute EMMI (Germany), Helmholtz Association and GSI under grant VH-NG-822 (Germany), Helmholtz International Center for FAIR (Germany), National Science Foundation (USA), Netherlands Organization for Scientific Research (Netherlands), Nuclear Physics Institute of the CAS (Czech Republic), the Ministry of Education, Youth and Sport (Czech Republic) and 3 sponsors who wish to remain anonymous.Javier López Albacete, Universidad de Granada (Spain)Jana Bielcikova, Nuclear Physics Inst. of the Czech Academy of Sciences

  14. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Chao; Yang, Qiang; Zhu, Meifeng; Du, Lilong; Zhang, Jiamin; Ma, Xinlong; Xu, Baoshan; Wang, Lianyong

    2014-01-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus

  15. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  16. Immobility, inheritance and plasticity of shape of the yeast nucleus

    Directory of Open Access Journals (Sweden)

    Andrulis Erik D

    2007-11-01

    Full Text Available Abstract Background Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR. Results Upon increased Esc1p expression, cell division continues and dramatic elaborations of the nuclear envelope extend into the cytoplasm. These "escapades" include nuclear pores and associate with the nucleolus, but exclude chromatin. Escapades are not inherited by daughter nuclei. This exclusion reflects their relative immobility, which we document in studies of prezygotes. Moreover, excess Esc1p affects the levels of multiple transcripts, not all of which originate at telomere-proximal loci. Unlike Esc1p and the colocalizing protein, Mlp1p, overexpression of selected proteins of the inner nuclear membrane is toxic. Conclusion Esc1p is the first non-membrane protein of the nuclear periphery which – like proteins of the nuclear lamina of higher eukaryotes – can modify the shape of the yeast nucleus. The elaborations of the nuclear envelope ("escapades" which appear upon induction of excess Esc1p are not inherited during mitotic growth. The lack of inheritance of such components could help sustain cell growth when parental nuclei have acquired potentially deleterious characteristics.

  17. Formation and decay of a hot compound nucleus

    Directory of Open Access Journals (Sweden)

    Carlson B.V.

    2014-04-01

    Full Text Available The compound nucleus plays an important role in nuclear reactions over a wide range of projectile-target combinations and energies. The limits that angular momentum places on its formation and existence are, for the most part, well understood. The limits on its excitation energy are not as clear. Here we first analyze general geometrical and thermodynamical features of a hot compound nucleus. We then discuss the manners by which it can decay and close by speculating on the high energy limit to its formation and existence.

  18. Final State Interactions Effects in Neutrino-Nucleus Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Tomasz [Univ. of Wroctaw (Poland); Juszczak, Cezary [Univ. of Wroctaw (Poland); Sobczyk, Jan T. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2012-07-01

    Final State Interactions effects are discussed in the context of Monte Carlo simulations of neutrino-nucleus interactions. A role of Formation Time is explained and several models describing this effect are compared. Various observables which are sensitive to FSI effects are reviewed including pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte Carlo neutrino event generator is described and its ability to understand neutral current $\\pi^0$ production data in $\\sim 1$ GeV neutrino flux experiments is demonstrated.

  19. Some preliminary considerations on antiproton-nucleus experiments

    International Nuclear Information System (INIS)

    Yavin, A.I.

    1981-05-01

    The antiproton as a probe of the atomic nucleus is discussed in the expectation that fairly intense beams of high quality will be available in 1983 at the Low Energy Antiproton Ring (LEAR) facility at CERN and possibly also in some other laboratories at a later date. Several antiproton-nucleus experiments are proposed, and the possibility of observing antiprotonic nuclei as well as antineutronic nuclei is discussed. It is demonstrated that even for the study of the elementary nucleon-antinucleon systems it could be advantageous to use nuclei rather than protons as target. The possibility of investigating several antiprotonic atomic systems is also briefly discussed [fr

  20. Magnetic Resonances in the Electroexcitation of the 26Mg Nucleus

    International Nuclear Information System (INIS)

    Goncharova, N.G.; Pronkina, N.D.

    2005-01-01

    On the basis of spectroscopic information about direct pickup reactions, the multipole magnetic resonances M2, M4, and M6 of the 26 Mg nucleus are calculated within the particle-core coupling version of the multiparticle shell model. The excitation-energy distribution of the form factors for the multipole magnetic 1(ℎ/2π)ω resonances is obtained for momentum transfers to a nucleus up to 2 fm -1 . A comparison of the results of the calculations for the M6 form factors with corresponding experimental data confirms that the adopted model approximations are realistic

  1. Multiquark states in the deep inelastic muon-nucleus scattering

    International Nuclear Information System (INIS)

    Titov, A.I.

    1983-01-01

    The deep-inelastic muon-nucleus scattering in the region forbidden by the kinematics for the scattering on free nucleons, is analysed theoretically. The calculations have been performed under the assumption that the main contribution to the cross section in the considered region of the Bjorken scaling variable, 1 -4 -10 -5 for the nuclear structure function at x approximately equal to 1.4. As it is shown, one has to take into account the six-= ' quark states in extracting the scaling parameter of QCD from the muon-nucleus data at approximately 1

  2. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    Directory of Open Access Journals (Sweden)

    Jorge G. Morfín

    2012-01-01

    Full Text Available Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  3. Weak interaction and nucleus: the relationship keeps on

    International Nuclear Information System (INIS)

    Martino, J.; Frere, J.M.; Naviliat-Cuncic, O.; Volpe, C.; Marteau, J.; Lhuillier, D.; Vignaud, D.; Legac, R.; Marteau, J.; Legac, R.

    2003-01-01

    This document gathers the lectures made at the Joliot-Curie international summer school in 2003 whose theme, that year, was the relationship between weak interaction and nucleus. There were 8 contributions whose titles are: 1) before the standard model: from beta decay to neutral currents; 2) the electro-weak theory and beyond; 3) testing of the standard model at low energies; 4) description of weak processes in nuclei; 5) 20.000 tonnes underground, an approach to the neutrino-nucleus interaction; 6) parity violation from atom to nucleon; 7) how neutrinos got their masses; and 8) CP symmetry

  4. On the hadron formation time in pion-nucleus interaction

    International Nuclear Information System (INIS)

    Bravina, L.V.; Korotkikh, V.L.; Sarycheva, L.I.; Sivoklokov, S.Yu.

    1992-01-01

    Differences in the observable characteristics of pion-nucleus interactions at high energy are investigated for two definitions of the hadron formation time. The Monte Carlo simulation of hadron-nucleus interactions and quark-gluon string model for hadron-hadron collisions are used. It is shown that the momentum spectrum of the protons in the target fragmentation region is most sensitive to the definition of the formation time. The inclusive meson and meson resonance spectra are similar in the both versions. 20 refs.; 4 figs.; 1 tab

  5. Progressive activation of paratrigeminal nucleus during entrance to hibernation

    International Nuclear Information System (INIS)

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C.

    1988-01-01

    The paratrigeminal nucleus (Pa5) undergoes a progressive increase in its uptake of 2-[ 14 C]deoxyglucose (2DG) relative to other brain structures during entrance to hibernation in the ground squirrel. This highly significant increase results in the Pa5 becoming the most highly labeled brain region during hibernation, even though it exhibits one of the lowest levels of 2DG uptake in the brain during the nonhibernating state. The progressive activation of the Pa5 observed during entrance is reversed during arousal from hibernation. These observations and the neuroanatomical projections of the Pa5 implicate this nucleus as playing a role in the entrance and maintenance of the hibernating state

  6. Neutrino-nucleus cross section in the impulse approximation regime

    International Nuclear Information System (INIS)

    Benhar, Omar; Farina, Nicola

    2005-01-01

    In the impulse approximation regime the nuclear response to a weakly interacting probe can be written in terms of the measured nucleon structure functions and the target spectral function, yielding the energy and momentum distribution of the constituent nucleons. We discuss a calculation of charged current neutrino-oxygen interactions in the quasielastic channel, carried out within nuclear many body theory. The proposed approach, extensively and successfully employed in the analysis of electron-nucleus scattering data, allows for a parameter free prediction of the neutrino-nucleus cross section, whose quantitative understanding will be critical to the analysis of the next generation of high precision neutrino oscillation experiments

  7. A comparative analysis of mechanisms of fast light particles production in nucleus-nucleus collisions at low and intermediate energies

    CERN Document Server

    Denikin, A S

    2002-01-01

    The dynamics and the mechanisms of formation of pre-equilibrium light particles in nucleus-nucleus collisions at low and intermediate energies are discussed in terms of a classical four-body model. The energy and angular distributions of light particles have been calculated. It has been found that at energies lower than 50A MeV the formation of the most high-energy part of the nuclear spectrum occurs at the expense of the acceleration of light target particles with the mean field of the projectile. The obtained data are in good agreement with available experimental data

  8. Manifestation of jet quenching in differential distributions of the total transverse energy in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    In the framework of the HIJING model, global characteristics of nucleus-nucleus collisions are studied for a Large Hadron Collider (LHC) energy scale. An interesting model prediction is the presence of a central bump over a pseudorapidity plateau of a total transverse energy distribution. The bump is induced by a jet quenching effect in a dense nuclear matter. It is shown that a wide acceptance calorimeter with a pseudorapidity coverage -5<η<5 allows one to obtain experimental confirmation of such an effect

  9. Targeted deletion of neurokinin-1 receptor expressing nucleus tractus solitarii neurons precludes somatosensory depression of arterial baroreceptor-heart rate reflex.

    Science.gov (United States)

    Potts, J T; Fong, A Y; Anguelov, P I; Lee, S; McGovern, D; Grias, I

    2007-03-30

    Neurokinin-1 receptor (NK1-R) expressing neurons are densely distributed throughout the nucleus tractus solitarii (NTS). However, their fundamental role in arterial baroreflex function remains debated. Previously, our group has shown that activation of contraction-sensitive somatic afferents evoke substance P (SP) release in the NTS and resets the arterial baroreflex via activation of a GABAergic NTS circuit. Based on these findings, we hypothesized that modulation of arterial baroreflex function by somatic afferents is mediated by NK1-R dependent inhibition of barosensitive NTS circuits. In the present study, SP-conjugated saporin toxin (SP-SAP) was used to ablate NK1-R expressing NTS neurons. Contraction-sensitive somatic afferents were activated by electrically-evoked muscle contraction and the arterial baroreceptor-heart rate reflex was assessed by constructing reflex curves using a decerebrate, arterially-perfused preparation. Baseline baroreflex sensitivity was significantly attenuated in SP-SAP-treated rats compared with control rats receiving either unconjugated SAP or vehicle. Muscle contraction significantly attenuated baroslope in SAP and vehicle-treated animals and shifted the baroreflex curves to higher systemic pressure. In contrast, somatic afferent stimulation failed to alter baroslope or shift the baroreflex curves in SP-SAP-treated animals. Moreover, when reflex sensitivity was partially restored in SP-SAP animals, somatic stimulation failed to attenuate baroreflex bradycardia. In contrast, SP-SAP and somatic stimulation failed to blunt the reflex bradycardia evoked by the peripheral chemoreflex. Immunohistochemistry revealed that pretreatment with SP-SAP significantly reduced the number of NK1-R expressing neurons in the caudal NTS, while sparing NK1-R expressing neurons rostral to the injection site. This was accompanied by a significant reduction in the number of glutamic acid decarboxylase (GAD67) expressing neurons at equivalent levels of the

  10. Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered 'wanting' for reward: entire core and medial shell mapped as substrates for PIT enhancement.

    Science.gov (United States)

    Peciña, Susana; Berridge, Kent C

    2013-05-01

    Pavlovian cues [conditioned stimulus (CS+)] often trigger intense motivation to pursue and consume related reward [unconditioned stimulus (UCS)]. But cues do not always trigger the same intensity of motivation. Encountering a reward cue can be more tempting on some occasions than on others. What makes the same cue trigger more intense motivation to pursue reward on a particular encounter? The answer may be the level of incentive salience ('wanting') that is dynamically generated by mesocorticolimbic brain systems, influenced especially by dopamine and opioid neurotransmission in the nucleus accumbens (NAc) at that moment. We tested the ability of dopamine stimulation (by amphetamine microinjection) vs. mu opioid stimulation [by d-Ala, nMe-Phe, Glyol-enkephalin (DAMGO) microinjection] of either the core or shell of the NAc to amplify cue-triggered levels of motivation to pursue sucrose reward, measured with a Pavlovian-Instrumental Transfer (PIT) procedure, a relatively pure assay of incentive salience. Cue-triggered 'wanting' in PIT was enhanced by amphetamine or DAMGO microinjections equally, and also equally at nearly all sites throughout the entire core and medial shell (except for a small far-rostral strip of shell). NAc dopamine/opioid stimulations specifically enhanced CS+ ability to trigger phasic peaks of 'wanting' to obtain UCS, without altering baseline efforts when CS+ was absent. We conclude that dopamine/opioid stimulation throughout nearly the entire NAc can causally amplify the reactivity of mesocorticolimbic circuits, and so magnify incentive salience or phasic UCS 'wanting' peaks triggered by a CS+. Mesolimbic amplification of incentive salience may explain why a particular cue encounter can become irresistibly tempting, even when previous encounters were successfully resisted before. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  12. Towards a computational model for stimulation of the Pedunculopontine nucleus

    NARCIS (Netherlands)

    Lourens, Marcel Antonius Johannes; Meijer, Hil Gaétan Ellart; Heida, Tjitske; van Gils, Stephanus A.

    2009-01-01

    The pedunculopontine nucleus (PPN) has recently been suggested as a new therapeutic target for deep brain stimulation (DBS) in patients suffering from Parkinson's disease, particularly those with severe gait and postural impairment [1]. Stimulation at this site is typically delivered at low

  13. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    International Nuclear Information System (INIS)

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-01-01

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus

  14. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2018-03-01

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Antiproton-nucleus experiments at LEAR and KAON

    International Nuclear Information System (INIS)

    Yavin, A.I.

    1989-12-01

    Antimatter and matter-antimatter systems are briefly discussed. Results of the antiproton-nucleus scattering experiments at LEAR are described, with the emphasis on unfinished experiments and on proposed experiments yet untouched. A few remarks on antiproton and antideuteron experiments at KAON are then presented

  16. On the mechanism of hadron cumulative production on nucleus

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1976-01-01

    A mechanism of cumulative production of hadrons on nucleus is proposed which is similar to that of high perpendicular hadron production. The cross section obtained describes the main qualitative features of such prosesses, e.g., initial energy dependence atomic number behaviour, dependence on the rest mass of the produced particle and its production angle

  17. Sex hormone receptors are present in the human suprachiasmatic nucleus

    NARCIS (Netherlands)

    Kruijver, Frank P. M.; Swaab, Dick F.

    2002-01-01

    The suprachiasmatic nucleus (SCN) is the clock of the brain that orchestrates circadian and circannual biological rhythms, such as the rhythms of hormones, body temperature, sleep and mood. These rhythms are frequently disturbed in menopause and even more so in dementia and can be restored in

  18. Three-dimensional organization of the human interphase nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); W. Waldeck (Waldemar); J. Langowski (Jörg)

    2000-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown, although it is important for gene regulation and replication. For a long time the interphase nucleus has been viewed as a 'spaghetti soup' of DNA without much internal

  19. Culturing bovine nucleus pulposus explants by balancing medium osmolarity

    NARCIS (Netherlands)

    Dijk, van B.G.M.; Potier, E.; Ito, K.

    2011-01-01

    Regenerative therapies are promising treatments for early intervertebral disc degeneration. To test their efficacy, an in vitro tissue-level model would be valuable. Nucleus pulposus (NP) explant culture may constitute such a model, as the earliest signs of degeneration are in the NP. However, in NP

  20. First observation of the doubly magic nucleus 78Ni50

    International Nuclear Information System (INIS)

    Bernas, M.; Armbruster, P.; Engelmann, Ch.; Geissel, H.; Heinz, A.; Czajkowski, S.

    1995-01-01

    The doubly magic nucleus of 78 Ni has been identified for the first time and the associated production yield was measured in the projectile-fission reaction of 238 U on Pb and Be targets at relativistic energies. (K.A.)

  1. Deexcitation of superdeformed bands in the nucleus Tb-151

    NARCIS (Netherlands)

    Finck, C; Appelbe, D; Beck, FA; Byrski, T; Cullen, D; Curien, D; deFrance, G; Duchene, G; Erturk, S; Haas, B; Khadiri, N; Kharraja, B; Prevost, D; Rigollet, C; Stezowski, O; Twin, P; Vivien, JP; Zuber, K

    1997-01-01

    The aim of this work is to get more informations about the decay-out of superdeformed bands. One of the best candidates in the mass A similar or equal to 150 region for that kind of research is the nucleus Tb-151. From previous works, it has been established that the first excited band goes lower in

  2. Nucleus-acoustic shock waves in white dwarfs

    Indian Academy of Sciences (India)

    S Jannat

    2018-03-09

    Mar 9, 2018 ... [17] of gravitational waves emitted by two merging black holes has opened up a new era of theoretical and observational research in astrophysics [17–19] which leads us to expect that in the near future a similar or dif- ferent kind of waves (like nucleus-acoustic (NA) waves. [20,21]) and associated nonlinear ...

  3. Neuronal plasticity in the hedgehog supraoptic nucleus during hibernation.

    Science.gov (United States)

    Sanchez-Toscano, F; Caminero, A A; Machin, C; Abella, G

    1989-01-01

    The purpose of the present study was to identify processes of plasticity in the receptive field of neurosecretory neurons of the supraoptic nucleus during hibernation in the hedgehog, in order to correlate them with the increased neurosecretory activity observed in this nucleus during this annual period. Using the Rapid Golgi method, a quantitative study was conducted in the receptive field of bipolar and multipolar neurons (the main components of the nucleus). Results indicate a generalized increase in the following characteristics: (1) number of dendritic spines per millimeter along the dendritic shafts; (2) degree of branching in the dendritic field; and (3) dendritic density around the neuronal soma. These data demonstrate modification of the dendritic field in the supraoptic nucleus during hibernation, a change undoubtedly related to functional conditions. Since the observed changes affect structures such as dendritic spines which are directly related to the arrival of neural afferences, the discussion is centered on the types of stimuli which may be responsible for the observed processes.

  4. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold

    NARCIS (Netherlands)

    Cavanagh, J.F.; Wiecki, T.V.; Cohen, M.X.; Figueroa, C.M.; Samanta, J.; Sherman, S.J.; Frank, M.J.

    2011-01-01

    It takes effort and time to tame one's impulses. Although medial prefrontal cortex (mPFC) is broadly implicated in effortful control over behavior, the subthalamic nucleus (STN) is specifically thought to contribute by acting as a brake on cortico-striatal function during decision conflict, buying

  5. Compound nucleus effects in spin-spin cross sections

    International Nuclear Information System (INIS)

    Thompson, W.J.

    1976-01-01

    By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)

  6. Inclusive jet production in ultrarelativistic proton-nucleus collisions

    CERN Document Server

    Perepelitsa, Dennis

    High-$p_\\mathrm{T}$ processes in proton- and deuteron-nucleus collisions at TeV energies are the best presently available way to study the partonic structure of the nucleus in a high-density regime. Jet production over a wide range of phase space can significantly constrain the current knowledge of nuclear parton distribution functions (nPDFs), which are substantially less well understood than the corresponding PDFs in protons and which have only recently begun to be treated in a spatially-dependent way. An accurate knowledge of nPDFs is crucial for a definitive control of perturbative processes in a cold nuclear environment, since high-$p_\\mathrm{T}$ probes are used to quantitatively investigate the hot QCD matter created in ultrarelativistic nucleus-nucleus collisions. Furthermore, jets from low Bjorken-$x$ partons can probe the transition from the dilute to saturated nuclear regimes. Jet production is investigated in $d$+Au collisions at $\\sqrt{s} = 200$ GeV with the PHENIX detector at the Relativistic Hea...

  7. Parity non-conserving effects in neutron-nucleus scattering

    International Nuclear Information System (INIS)

    Desplanques, B.

    1990-01-01

    The present lecture reviews the motivations which led to study the contribution of the neutron-nucleus component to parity-non-conserving effects observed in medium-heavy nuclei and considers its present status. It is shown that it cannot account for those experimental data. The order interpretation of these effects, which cannot lead to precise statements, is schematically described

  8. Transportation system of recoil nucleus by helium jet

    International Nuclear Information System (INIS)

    Cabral, S.C.; Borges, A.M.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The transportation system of recoil nucleus by helium jet, is studied. It is used a technique aiming to put in the detection area (region of low background) the recoils, produced by nuclear reactions between target and particle beams, those produced with the help of cyclotron CV-28. (E.G.) [pt

  9. S-wave π-nucleus repulsion and dirac phenomenology

    International Nuclear Information System (INIS)

    Chakravarti, S.; Jennings, B.K.

    1993-12-01

    A relativistic π-nucleon potential is extended to m* ≠ m to investigate the possibility of generating s-wave π-nucleus repulsion. We find that relativity does indeed generate significant repulsion, the exact amount depending on the details of the calculation. In contradistinction the tp approximation gives very little repulsion. (author). 18 refs., 3 tabs., 2 figs

  10. Strangeness production in proton–proton and proton–nucleus ...

    Indian Academy of Sciences (India)

    journal of. April 2006 physics pp. 765–780. Strangeness production in ... computing power necessary for the numerical treatment, lattice QCD has only ... tering reactions, it is necessary to use effective methods for the description of the ..... nucleus, it provides an appropriate tool to learn about the behaviour of the nuclear.

  11. Isospin symmetry violation, meson production and η-nucleus ...

    Indian Academy of Sciences (India)

    The experiment was perfomed at the cooler synchrotron accelerator. COSY, Jülich at several beam energies close to the corresponding production threshold. We also have ongoing programmes on -nucleus final-state interaction studies via + 6Li → 7Be + reactions, high resolution search for dibaryonic resonances ...

  12. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  13. Pion production and fragmentation of nuclei in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Oskarsson, A.

    1983-01-01

    In collisions between nuclei at high energies one can study the behaviour of nuclear matter under extreme conditions, regarding nuclear density and temperature. The Bevalac and the CERN SC beams have been used and nuclear emulsion and scintillation telescopes have measured the reaction products. Collisions at 50A-200A MeV and at 2A GeV have been investigated. Proton spectra from 12 C induced reactions at 85A MeV have been recorded for different targets. Energetic protons at large angles can be assumed to be emitted from a source moving with half the beam velocity and a temperature between 13 and 17 MeV, depending on the target. In collisions between nuclei, pions can be produced below 290A MeV due to the internal Fermi motion of the nucleons. Subthreshold pion production has been studied for 12 C induced reactions at 85A and 75A Mev. The cross-sections are consistent with a quasi-free nucleon-nucleon scattering picture, involving Fermi motion, Pauli blocking and pion reabsorption. 16 C induced reactions in emulsion have been studied at 75A, 175A and 2000A MeV. It is shown that the excitation of the parts of the nuclei which are not overlapping (the spectators) increases with the beam energy. The 16 O projectile frequently breaks up into multiple He fragments. These events are associated with large impact parameters. Central collisions with Ag, Br target at 50A-110A MeV have been analysed separately. It is shown that the momentum transfer to the target nucleus is limited to a value considerably lower than the full momentum transfer in a fusion reactions. Events are observed where there are numerous fragments with 3< Z<8. These multifragmentation events cannot be understood in a thermal approach. (author)

  14. Structures and functions in the crowded nucleus: new biophysical insights

    Directory of Open Access Journals (Sweden)

    Ronald eHancock

    2014-09-01

    Full Text Available Concepts and methods from the physical sciences have catalysed remarkable progress in understanding the cell nucleus in recent years. To share this excitement with physicists and encourage their interest in this field, this review offers an overview of how the physics which underlies structures and functions in the nucleus is becoming more clear thanks to methods which have been developed to simulate and study macromolecules, polymers, and colloids. The environment in the nucleus is very crowded with macromolecules, making entropic (depletion forces major determinants of interactions. Simulation and experiments are consistent with their key role in forming membraneless compartments such as nucleoli, PML and Cajal bodies, and discrete territories for chromosomes. The chromosomes, giant linear polyelectrolyte polymers, exist in vivo in a state like a polymer melt. Looped conformations are predicted in crowded conditions, and have been confirmed experimentally and are central to the regulation of gene expression. Polymer theory has revealed how the chromosomes are so highly compacted in the nucleus, forming a crumpled globule with fractal properties which avoids knots and entanglements in DNA while allowing facile accessibility for its replication and transcription. Entropic repulsion between looped polymers can explain the confinement of each chromosome to a discrete region of the nucleus. Crowding and looping are predicted to facilitate finding the specific targets of factors which modulate activities of DNA. Simulation shows that entropic effects contribute to finding and repairing potentially lethal double-strand breaks in DNA by increasing the mobility of the broken ends, favouring their juxtaposition for repair. Signaling pathways are strongly influenced by crowding, which favours a processive mode of response (consecutive reactions without releasing substrates. This new information contributes to understanding the sometimes counter

  15. Cochlear nucleus neuron analysis in individuals with presbycusis.

    Science.gov (United States)

    Hinojosa, Raul; Nelson, Erik G

    2011-12-01

    The aim of this study was to analyze the cochlear nucleus neuron population in individuals with normal hearing and presbycusis. Retrospective study of archival human temporal bone and brain stem tissues. Using strict inclusion criteria, the temporal bones and cochlear nuclei from six normal hearing individuals and four individuals with presbycusis were selected for analysis. The spiral ganglion cell population, the cochlear nucleus neuron population, and the cell body size of the neurons were quantified in these cases. A relationship was not observed between age and the spiral ganglion cell population in the normal hearing group. Presbycusis subjects exhibited a reduced spiral ganglion cell population. The mean cochlear nucleus neuron population was observed to be significantly higher in the presbycusis group (mean ± standard deviation: 114,170 ± 10,570) compared to the normal hearing group (91,470 ± 9,510) (P = .019). This difference was predominantly the result of greater multipolar and granule cell neuron populations. Only the fusiform neuron type exhibited a significantly different mean cell body cross-sectional area between the normal hearing group (242 ± 27) and the presbycusis group (300 ± 37) (P = .033). This investigation is the first time, to our knowledge, that the populations of the eight neuron types in the cochlear nucleus have been quantified in both normal hearing individuals and individuals with presbycusis. The data support the concept that presbycusis is not an effect of aging alone but instead may be a condition that predisposes one to hearing loss with advancing age and is characterized by a congenitally elevated cochlear nucleus neuron population. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  16. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study

    Czech Academy of Sciences Publication Activity Database

    Rusnáková-Aulická, Š.; Jurák, Pavel; Chládek, Jan; Daniel, P.; Halámek, Josef; Baláž, M.; Bočková, M.; Chrastina, J.; Rektor, I.

    2014-01-01

    Roč. 121, č. 10 (2014), s. 1287-1296 ISSN 0300-9564 R&D Projects: GA ČR GAP103/11/0933 Institutional support: RVO:68081731 Keywords : ERD/S * Anterior cingulate cortex * Subthalamic nucleus * Flanker test * Executive functions Subject RIV: BD - Theory of Information Impact factor: 2.402, year: 2014

  17. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats.

    Science.gov (United States)

    Tsujimura, Takanori; Shinoda, Masamichi; Honda, Kuniya; Hitomi, Suzuro; Kiyomoto, Masaaki; Matsuura, Shingo; Katagiri, Ayano; Tsuji, Kojun; Inoue, Makoto; Shiga, Yoshi; Iwata, Koichi

    2011-10-12

    Many phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells are expressed in the trigeminal spinal subnucleus caudalis (Vc), upper cervical spinal cord (C1-C2), nucleus tractus solitarii (NTS) and paratrigeminal nucleus (Pa5) after capsaicin injection into the whisker pad (WP), masseter muscle (MM), digastric muscle (DM) or sternohyoideus muscle (SM). The pERK-IR cells also showed NeuN immunoreactivity, indicating that ERK phosphorylation occurs in neurons. The pERK-IR cells were significantly reduced after intrathecal injection of MEK 1/2 inhibitor PD98059. The pERK-IR cells expressed bilaterally in the Vc and C1-C2 after capsaicin injection into the unilateral DM or SM, whereas unilaterally in the Vc and C1-C2 after unilateral WP or MM injection. After capsaicin injection into the WP or MM, the pERK-IR cell expression in the Vc was restricted rostrocaudally within a narrow area. However, the distribution of pERK-IR cells was more wide spread without a clear peak in the Vc and C1-C2 after capsaicin injection into the DM or SM. In the NTS, the unimodal pERK-IR cell expression peaked at 0-720μm rostral from the obex following capsaicin injection into WP, MM, DM or SM. In the ipsilateral Pa5, many pERK-IR cells were observed following capsaicin injection into the SM. The number of swallows elicited by distilled water administration was significantly smaller after capsaicin injection into the WP, MM or DM but not SM compared to that of vehicle-injected rats. Various noxious inputs due to the masticatory or swallowing-related muscle inflammation may be differentially involved in muscle pain and swallowing reflex activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders; Vrang, N.; Larsen, P.J.

    2003-01-01

    Hypothalamus, Circadian rhythm, Serotonin, Nucleus, Neuronal connections, Phaseolus vulgaris-leucoagglutinin (PHA-L), Cholera toxin (ChB)......Hypothalamus, Circadian rhythm, Serotonin, Nucleus, Neuronal connections, Phaseolus vulgaris-leucoagglutinin (PHA-L), Cholera toxin (ChB)...

  19. Development of injectable hydrogels for nucleus pulposus replacement

    Science.gov (United States)

    Thomas, Jonathan D.

    Intervertebral disc degeneration has been reported as the underlying cause for 75% of cases of lower back pain and is marked by dehydration of the nucleus pulposus within the intervertebral disc. There have been many implant designs to replace the nucleus pulposus. Some researchers have proposed the replacement of the nucleus pulposus with hydrogel materials. The insertion of devices made from these materials further compromises the annulus of the disc. An ideal nucleus replacement could be injected into the disc space and form a solid in vivo. However, injectable replacements using curing elastomers and thermoplastic materials are not ideal because of the potentially harmful exothermic heat evolved from their reactions and the toxicity of the reactants used. We propose a hydrogel system that can be injected as a liquid at 25°C and solidified to yield a hydrogel within the intervertebral disc at 37°C. In aqueous solutions, these polymers have Lower Critical Solution Temperatures (LCST) between 25-37°C, making them unique candidate materials for this application. Poly(N-isopropylacrylamide) (PNIPAAm) is the most widely studied LCST polymer due to its drastic transition near body temperature. However, by itself, pure PNIPAAm forms a hydrogel that has low water content and can readily undergo plastic deformation. To increase the water content and impart elasticity to PNIPAAm hydrogels, grafted and branched hydrogel systems were created that incorporated the thermogelling PNIPAAm and hydrophilic poly(ethylene glycol) (PEG). In this research, the effects of polymer composition and monomer to initiator ratio, which controls polymer MW, on the in vitro swelling properties (mass, chemical, and compressive mechanical stability) of hydrogels formed from aqueous solutions of these polymers were evaluated. Immersion studies were also conducted in solutions to simulate the osmotic environment of the nucleus pulposus. The effects of repeated compression and unloading cycles

  20. DMPD: TGF-beta signaling from receptors to the nucleus. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10611754 TGF-beta signaling from receptors to the nucleus. Roberts AB. Microbes Inf...ect. 1999 Dec;1(15):1265-73. (.png) (.svg) (.html) (.csml) Show TGF-beta signaling from receptors to the nucleus.... PubmedID 10611754 Title TGF-beta signaling from receptors to the nucleus. Authors Roberts AB. Publicat

  1. A parton description of the nucleus fragmentation region in heavy-ion collisions

    International Nuclear Information System (INIS)

    Hwa, R.C.; Oregon Univ., Eugene

    1984-01-01

    In nucleus-nucleus collisions, the rapidity distribution of partons in the nucleus fragmentation region is highly asymmetrical. Thermalization that randomizes the momenta of partons far apart in rapidity cannot be expected. A local thermalization model is introduced which relates temperature to the range of parton interaction in rapidity. The parton number density and energy density are then calculated. (orig.)

  2. What can an antiproton and a nucleus learn from each other

    International Nuclear Information System (INIS)

    Garreta, D.

    1982-05-01

    Simple features which make a low-energy antiproton an interesting probe of the nucleus, and a nucleus an interesting target for an antiproton are presented. Then antiproton-nucleus inelastic and elastic scattering, proton knock-out reactions on nuclei, annihilation of the antiproton in nuclei are reviewed. The aims of the experiment PS184 at LEAR are given

  3. Spinocerebellar ataxia type 3 (Machado-Joseph disease) : severe destruction of the lateral reticular nucleus

    NARCIS (Netherlands)

    Rub, U; de Vos, RAI; Schultz, C; Brunt, ER; Paulson, H; Braak, H

    The lateral reticular nucleus (LRT) of the medulla oblongata is a precerebellar nucleus involved in proprioception and somatomotor automatisms. We investigated this nucleus in five individuals with clinically diagnosed and genetically confirmed spinocerebellar ataxia type 3 (SCA3, Machado-Joseph

  4. Preservation of the nucleus X-pelvic floor motosystem in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Schrøder, H D; Reske-Nielsen, E

    1984-01-01

    to the neuropathological findings, and the observations are compared with previous neuropathological studies concerning Onuf's nucleus X as well with experimental studies including this nucleus. It is pointed out that structural and biochemical differences must exist between nucleus X neurons and other motoneurons....

  5. Pion, pion-pion, and pion-nucleus interactions

    CERN Document Server

    Mukhin, K N; Tikhonov, V N

    2002-01-01

    This survey is devoted to describing the early studies of 1.1. Gurevich on pion physics that were performed by the photoemulsion method and the studies of the pion-pion interaction that were made by his colleagues on the basis of the hydrogen-bubble-chamber and the magnetic-spectrometer method (as well-as on the basis of the photoemulsion method). Two approaches-an extrapolation of experimental data from the physical region to the pion pole and a theoretical calculation based on the Roy integral equations-are used to deduce information about the pion-pion interaction. The first results obtained for pion-pion and pion-nucleus interactions in the experiments that are being currently performed in Brookhaven and at CERN ( pi pi interaction) and at TRIUMF (Canada) and in Brookhaven (pion-nucleus interaction) are presented, along with the existing theoretical concepts in these realms of physics. (80 refs).

  6. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    Science.gov (United States)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  7. The cellular mastermind(?) – Mechanotransduction and the nucleus

    Science.gov (United States)

    Kaminski, Ashley; Fedorchak, Gregory R.; Lammerding, Jan

    2015-01-01

    Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. In this chapter, we discuss how forces applied to the cell surface and cytoplasm induce changes in nuclear structure and organization, which could directly affect gene expression, while also highlighting the complex interplay between nuclear structural proteins and transcriptional regulators that may further modulate mechanotransduction signaling. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction—both structurally and biochemically—with important implications in physiology and disease. PMID:25081618

  8. Control of cell nucleus shapes via micropillar patterns.

    Science.gov (United States)

    Pan, Zhen; Yan, Ce; Peng, Rong; Zhao, Yingchun; He, Yao; Ding, Jiandong

    2012-02-01

    We herein report a material technique to control the shapes of cell nuclei by the design of the microtopography of substrates to which the cells adhere. Poly(D,L-lactide-co-glycolide) (PLGA) micropillars or micropits of a series of height or depth were fabricated, and some surprising self deformation of the nuclei of bone marrow stromal cells (BMSCs) was found in the case of micropillars with a sufficient height. Despite severe nucleus deformation, BMSCs kept the ability of proliferation and differentiation. We further demonstrated that the shapes of cell nuclei could be regulated by the appropriate micropillar patterns. Besides circular and elliptoid shapes, some unusual nucleus shapes of BMSCs have been achieved, such as square, cross, dumbbell, and asymmetric sphere-protrusion. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  9. Direct observation of nanoparticle-cancer cell nucleus interactions.

    Science.gov (United States)

    Dam, Duncan Hieu M; Lee, Jung Heon; Sisco, Patrick N; Co, Dick T; Zhang, Ming; Wasielewski, Michael R; Odom, Teri W

    2012-04-24

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultrafast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy.

  10. Invariant potential for elastic pion--nucleus scattering

    International Nuclear Information System (INIS)

    Cammarata, J.B.; Banerjee, M.K.

    1976-01-01

    From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus, an invariant potential for crossing symmetric elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is effectively summed. Included in this model is the exclusion principle restriction on the pion-bound nucleon interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the πN center of mass frame, and the Fermi motion and recoil of the target nucleons. From a numerical study of the effects of these processes on the π- 12 C total cross section, the relative importance of each is determined. Other processes contributing to the elastic scattering of pions not included in the present model are also discussed

  11. Triple F - A Comet Nucleus Sample Return Mission

    Science.gov (United States)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  12. From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory

    CERN Document Server

    Suhonen, Jouni

    2007-01-01

    From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasiparticles. A large number of matrix elements of standard operators have been tabulated for reference. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author. Its main scope is thus to serve as a textbook for advanced students. But also researchers will appreciate it as wellbalanced reference to theoretical nuclear physics.

  13. Optical model calculation of neutron-nucleus scattering cross sections

    International Nuclear Information System (INIS)

    Smith, M.E.; Camarda, H.S.

    1980-01-01

    A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs

  14. Target dependence of K+-nucleus total cross sections

    International Nuclear Information System (INIS)

    Jiang, M.F.; Ernst, D.J.; Chen, C.M.

    1995-01-01

    We investigate the total cross section and its target dependence for K + -nucleus scattering using a relativistic momentum-space optical potential model which incorporates relativistically normalized wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi averaging integral. The definition of the total cross section in the presence of a Coulomb interaction is reviewed and the total cross section is calculated in a way that is consistent with what is extracted from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calculated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections on the details of the theory. The model dependence of the first-order optical potential calculations is investigated. The theoretical results are found to be systematically below all existing data

  15. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle

  16. Proton nucleus collisions in the Landau hydrodynamical model

    International Nuclear Information System (INIS)

    Andersson, B.

    1976-01-01

    The dependence upon energy and the atomic number A for the multiplicities and the angular distributions of the relativistic secondaries is computed according to the hydrodynamic model for proton-nucleus collisions. Some different ways of converting the dependence upon tunnellength in nuclear matter into A dependence are discussed and a phenomenological model employed to exhibit the correlations to the fragmentation of the nucleus. The treatment is valid for arbitrary values of the velocity of sound c 0 in nuclear matter inside the range 0.2 0 0 around c 0 approximately 0.5 is preferred in a comparison to the presently available experimental data. This is the same range of values of the parameter for which the best agreement between theory and experiment occurs in the ISR range. (Auth.)

  17. Problems of the π meson-nucleus interaction theory

    International Nuclear Information System (INIS)

    Kopaleishvili, T.I.

    1984-01-01

    The theory of multiple scattering as applied to PI-meson scattering on nuclei is outlined on the base of optical potential method: first in neglecting the real absorption of a pion by a nucleus and then for the case when this effect is taken into account. The pion interaction with a deuteron is considered both neglecting the pion absorption channel (the relativisitic problem of three bodies) and with account of the absorption channels and pion emission (in this case the problem is solved within the frames of the channel coupling theory for the pion-two nucleus system and the system of two nucleons). Approximate or model solutions to the problem of elastic pion-nuclear scattering primarily in the range of (3.3)-resonance are presented. The formulated theory permits to uniquely describe the observed processes caused by the strong pion interaction with a two-nucleon system

  18. Coulomb Excitation of the N = 50 nucleus 80Zn

    International Nuclear Information System (INIS)

    Van de Walle, J.; Cocolios, T. E.; Huyse, M.; Ivanov, O.; Mayet, P.; Raabe, R.; Sawicka, M.; Stefanescu, I.; Duppen, P. van; Aksouh, F.; Ames, F.; Habs, D.; Lutter, R.; Behrens, T.; Gernhauser, R.; Kroell, T.; Kruecken, R.; Bildstein, V.; Blazhev, A.; Eberth, J.

    2008-01-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80 Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2 + states. For the first time, an excited state in 80 Zn was observed and the 2 1 + state in 78 Zn was established. The measured B(E2,2 1 + →0 1 + ) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78 Ni

  19. On the deep inelastic lepton-nucleus scattering

    International Nuclear Information System (INIS)

    Darbaidze, Ya.Z.; Garsevanishvili, V.R.; Menteshashvili, Z.R.

    1979-01-01

    Deep inelastic scattering of charged leptons on nuclei is considered in the lowest order in electromagnetic interaction. Expressions for the corresponding differential cross sections are obtained provided the scattered lepton and the fragment of the initial nucleus are detected in coincidence. Structure functions are analyzed by means of the automodelity principle. These functions are considered in the framework of the ''light front'' formalism for many-body systems. A hypothesis is put forward on the scale invariance of structure functions with respect to the xi-variable, which is some complicated dimensionless combination of kinematic invariants. A simple relation of this variable to the momenta of the nucleons inside the initial nucleus is pointed out

  20. Quasiparticle features and level statistics of odd-odd nucleus

    International Nuclear Information System (INIS)

    Cheng Nanpu; Zheng Renrong; Zhu Shunquan

    2001-01-01

    The energy levels of the odd-odd nucleus 84 Y are calculated by using the axially symmetric rotor plus quasiparticles model. The two standard statistical tests of Random-Matrix Theory such as the distribution function p(s) of the nearest-neighbor level spacings (NNS) and the spectral rigidity Δ 3 are used to explore the statistical properties of the energy levels. By analyzing the properties of p(s) and Δ 3 under various conditions, the authors find that the quasiparticle features mainly affect the statistical properties of the odd-odd nucleus 84 Y through the recoil term and the Coriolis force in this theoretical mode, and that the chaotic degree of the energy levels decreases with the decreasing of the Fermi energy and the energy-gap parameters. The effect of the recoil term is small while the Coriolis force plays a major role in the spectral structure of 84 Y

  1. Hidden Glashow resonance in neutrino–nucleus collisions

    Directory of Open Access Journals (Sweden)

    I. Alikhanov

    2016-05-01

    Full Text Available Today it is widely believed that s-channel excitation of an on-shell W boson, commonly known as the Glashow resonance, can be initiated in matter only by the electron antineutrino in the process ν¯ee−→W− at the laboratory energy around 6.3 PeV. In this Letter we argue that the Glashow resonance within the Standard Model also occurs in neutrino–nucleus collisions. The main conclusions are as follows. 1 The Glashow resonance can be excited by both neutrinos and antineutrinos of all the three flavors scattering in the Coulomb field of a nucleus. 2 The Glashow resonance in a neutrino–nucleus reaction does not manifest itself as a Breit–Wigner-like peak in the cross section but the latter exhibits instead a slow logarithmic-law growth with the neutrino energy. The resonance turns thus out to be hidden. 3 More than 98% of W bosons produced in the sub-PeV region in neutrino-initiated reactions in water/ice will be from the Glashow resonance. 4 The vast majority of the Glashow resonance events in a neutrino detector are expected at energies from a few TeV to a few tens of TeV, being mostly initiated by the conventional atmospheric neutrinos dominant in this energy range. Calculations of the cross sections for Glashow resonance excitation on the oxygen nucleus as well as on the proton are carried out in detail. The results of this Letter can be useful for studies of neutrino interactions at large volume water/ice neutrino detectors. For example, in the IceCube detector one can expect 0.3 Glashow resonance events with shower-like topologies and the deposited energies above 300 TeV per year. It is therefore likely already to have at least one Glashow resonance event in the IceCube data set.

  2. Methods and compositions for targeting macromolecules into the nucleus

    Science.gov (United States)

    Chook, Yuh Min

    2013-06-25

    The present invention includes compositions, methods and kits for directing an agent across the nuclear membrane of a cell. The present invention includes a Karyopherin beta2 translocation motif in a polypeptide having a slightly positively charged region or a slightly hydrophobic region and one or more R/K/H-X.sub.(2-5)-P-Y motifs. The polypeptide targets the agent into the cell nucleus.

  3. Observation for really cold fragmentation of heavy nucleus

    International Nuclear Information System (INIS)

    Goverdovskij, A.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Khryachkov, V.A.

    1998-01-01

    The results of the detailed study on mass-energy charged correlations of the thorium-232 fission fragments, produced by the 5 MeV neutrons are presented. The event of the thorium nucleus really cold fragmentation into tellurium-134 and strontium-99 at the basic quantum states is identified. It is shown that the whole reaction energy is exhausted by the motion kinetic energy of the fragments in the mutual field

  4. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    Science.gov (United States)

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Proton-nucleus dynamics at ultra-relativistic energies

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1988-01-01

    Some of the basic properties of proton-nucleus (pA) collisions at ultrarelativistic energies are reviewed. These include total and 'partonic' cross-sections, and the differential cross-sections as functions of rapidity, transverse energy, and particle p T , with particular emphasis in all cases on the A dependence. The aim is to introduce a nuclear physics audience to the main trends and ideas; experts in the field will find nothing very new here. (orig.)

  6. Adapting Mask-RCNN for Automatic Nucleus Segmentation

    OpenAIRE

    Johnson, Jeremiah W.

    2018-01-01

    Automatic segmentation of microscopy images is an important task in medical image processing and analysis. Nucleus detection is an important example of this task. Mask-RCNN is a recently proposed state-of-the-art algorithm for object detection, object localization, and object instance segmentation of natural images. In this paper we demonstrate that Mask-RCNN can be used to perform highly effective and efficient automatic segmentations of a wide range of microscopy images of cell nuclei, for ...

  7. Structural evolution in the nucleus of NGC1275

    International Nuclear Information System (INIS)

    Romney, J.D.; Alef, W.; Pauliny-Toth, I.I.K.; Preuss, E.; Kellermann, K.I.

    1982-01-01

    The extremely powerful compact radio nucleus of NGC1275 is perhaps the most complex structure seen at milliarcsecond scales. The authors report here recent observations which manifest a new structural development. These measurements, performed at 2.8cm wavelength with VLBI arrays of seven stations (epoch 1979.1) and five stations (1981.1) in North America and Europe, yielded hybrid maps which are presented together with models derived from earlier observations. (Auth.)

  8. Review of high energy hadron-nucleus data

    Science.gov (United States)

    Lissauer, D.

    1987-01-01

    In this review we will summarize new data on hardron-nucleus interactions. The possibility that quark-gluon plasma may be created in heavy ion collisions has led to renewed interest in hadron-nucleus collisions. In particular one hopes that understanding the energy loss of hadrons in h-A collissions will allow us to estimate the optimum energy in AA collisions in order to achieve maximum baryon and/or maximum energy density. This will allow us to choose the optimal experimental environment in the search for quark-gluon plasma. This review will thus omit many interesting results from hadron-nucleus collisions, such as the A dependence of lepton pair production, EMC effect and others. We will focus our attention on the following: (i) Estimating the rate of energy loss of the incident hadron as it propagates through the target. (ii) Determining where the enmergy is deposited in central hadron-nucleus collisions. It is clear that there is no direct or unique method of extrapolating our knowledge of h-A collisions to predict what will happen in AA-collisions. The knowledge and understanding of pp and pA collisions is, however, a useful and necessary guide to what one can expect in AA collisions. In this review we will concentrate on three experimental approaches to the study of h-A collisions. In Section 1 we will discuss the present status of pA → p + X inclusive measurements. In Section 2 measurements from visual detectors, in this case results from the 30″ hybrid spectrometer, which allows investigations of global event properties will be presented. In Section 3 data using 2π calorimeters, where one can trigger and measure transverse energy and energy flow over a given rapidity region, will be discussed. The conclusions will be given in Section 4.

  9. Theories of the eta-meson-nucleus interaction

    International Nuclear Information System (INIS)

    Liu, L.C.

    1994-01-01

    It is sown that the pion-nucleon elastic scattering, eta-nucleon scattering length and the cross sections for pion-induced eta production on a nucleon satisfy a set of consistency relations. These relations are used to examine the ηN scattering lengths given by the various models. The nature of the threshold ηN interaction is discussed and recent advancements in ηN interaction is discussed and recent advancements in η-nucleus reaction theory are reviewed

  10. Does the excited state of the 3He nucleus exist?

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1994-01-01

    The suggestion is made that the excited state of the 3 He nucleus found out recently in the reaction has spin and parity 1/2 + and the same configuration that the ground open of 6 He. It is shown that in an elastic nd-scattering a resonance associated with the excited state may be absent due to destructive interference of potential and resonant scattering phases

  11. Coulomb effects in the deuteron-nucleus interaction

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.; Peresypkin, V.V.

    1990-01-01

    The authors develop a consistent theory for calculation of the potential of the deuteron interaction with the Coulomb field of a nucleus. They study the properties of this potential at large distances and give its explicit form at the deuteron-breakup threshold. In the limit of low energies they derive the potential, which includes intermediate off-energy-shell states, and explain the physical nature of its constants. The accuracy of the transition to the polarization interaction is estimated

  12. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting π 0 mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized 3 He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure

  13. Inclusive spectra of hadrons in proton-nucleus collisions

    International Nuclear Information System (INIS)

    Gevorkyan, S.R.; Gulkanyan, G.R.; Kotzinyan, A.M.; Zhamkochyan, V.M.

    1985-01-01

    A model is proposed, which allows one to describe all exprimental data on inclusive spectra of different hadrons produced on nuclei. The model is based on the following assumptions. After the first inelastic collision with nucleon in the nucleus the proton transforms into some excited system H, which collides with the other nucleons during its passage through the nucleus. Since in inelastic collisions the slow sea partons play the dominant role, the valence quarks of this system H coincide with those of proton. Fragmentation of H into hadrons (as well as into proton) is dilated in the lab system by the Lorentz factor E/m >> 1 and so it takes place out of the nucleus. Using the methods of multiple scattering theory one can receive the connection between inclusive spectra on nuclei and those on nucleons. The calculations of inclusive spectra of different hadrons (p, p, πsup(-+), ksup(+-)) were done, and a satisfactory description of the experimental data was obtained. It should be noted that this description was done without introduction of any free parameters. Analogous models are discussed, and their diffference from the method proposed is outlined

  14. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    International Nuclear Information System (INIS)

    Tsay, Fundow; Kim, S.S.; Liang, R.H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H 2 O, NH 3 , CH 4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed

  15. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    Science.gov (United States)

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. WIMP-nucleus scattering in chiral effective theory

    Science.gov (United States)

    Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory

    2012-10-01

    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.

  17. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    Science.gov (United States)

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  18. Laterodorsal nucleus of the thalamus: A processor of somatosensory inputs.

    Science.gov (United States)

    Bezdudnaya, Tatiana; Keller, Asaf

    2008-04-20

    The laterodorsal (LD) nucleus of the thalamus has been considered a "higher order" nucleus that provides inputs to limbic cortical areas. Although its functions are largely unknown, it is often considered to be involved in spatial learning and memory. Here we provide evidence that LD is part of a hitherto unknown pathway for processing somatosensory information. Juxtacellular and extracellular recordings from LD neurons reveal that they respond to vibrissa stimulation with short latency (median = 7 ms) and large magnitude responses (median = 1.2 spikes/stimulus). Most neurons (62%) had large receptive fields, responding to six and more individual vibrissae. Electrical stimulation of the trigeminal nucleus interpolaris (SpVi) evoked short latency responses (median = 3.8 ms) in vibrissa-responsive LD neurons. Labeling produced by anterograde and retrograde neuroanatomical tracers confirmed that LD neurons receive direct inputs from SpVi. Electrophysiological and neuroanatomical analyses revealed also that LD projects upon the cingulate and retrosplenial cortex, but has only sparse projections to the barrel cortex. These findings suggest that LD is part of a novel processing stream involved in spatial orientation and learning related to somatosensory cues. (c) 2008 Wiley-Liss, Inc.

  19. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  20. Magnetic dipole excitations of the 163Dy nucleus

    Science.gov (United States)

    Zenginerler, Zemine; Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber

    2014-03-01

    In this study some properties of the magnetic dipole excitations of the deformed odd mass 163Dy nucleus were studied by using Quasiparticle-phonon nuclear model (QPNM). The several of the ground-state and low-lying magnetic dipole (M1) mode characteristics were calculated for deformed odd-mass nuclei using a separable Hamiltonian within the QPNM. The M1 excited states, reduced transition probabilities B(M1), the ground-state magnetic properties such as magnetic moment (μ), intrinsic magnetic moment (gK) , effective spin factor (gseff.) are the fundamental characteristics of the odd-mass nucleus and provide key information to understand nuclear structure. The theoretical results were compared with the available experimental data and other theoretical approaches. Calculations show that the spin-spin interaction in this isotopes leads to polarization effect influencing the magnetic moments. Furthermore we found a strong fragmentation of the M1 strength in 163Dy nucleus which was in qualitative agreement with the experimental data. Sakarya University, Project Number: 2012-50-02-007 and Z.Zenginerler acknowledge to TUBITAK-TURKEY 2013, fellowship No: 2219.

  1. Production of Kaon and Λ in Nucleus-Nucleus Collisions at Ultrarelativistic Energy from a Blast-Wave Model

    International Nuclear Information System (INIS)

    Chen, J. H.; Zhang, S.; Ma, Y. G.; Zhong, C.

    2015-01-01

    The particle production of Kaon and Λ is studied in nucleus-nucleus collisions at relativistic energy based on a chemical equilibrium blast-wave model. The transverse momentum spectra of Kaon and Λ at the kinetic freeze-out stage from our model are in good agreement with the experimental results. The kinetic freeze-out parameters of temperature (T kin ) and radial flow parameter ρ 0 are presented for the FOPI, RHIC, and LHC energies. And the resonance decay effect is also discussed. The systematic study for beam energy dependence of the strangeness particle production will help us to better understand the properties of the matter created in heavy-ion collisions at the kinetic freeze-out stage

  2. CASTOR A Forward Detector for the Identification of Centauro and Strangelets in Nucleus-Nucleus Collisions at the LHC

    CERN Document Server

    Angelis, Aris L S; Bogolyubsky, M Yu; Filippov, S N; Gladysz-Dziadus, E; Kharlov, Yu V; Kurepin, A B; Maevskaya, A I; Mavromanolakis, G; Panagiotou, A D; Sadovsky, S A; Stefanski, P; Wlodarczyk, Z

    2000-01-01

    Presentation made at the XXVIIIth Symposium on Multiparticle Dynamics, 6-11 September 1998, Delphi and published in World ScientificThe physics motivation for a very forward detector to be employed in heavy ion collisions at the CERN LHC is discussed. A phenomenological model describing the formation and decay of a Centauro fireball in nucleus-nucleus collisions is presented. The CASTOR detector which is aimed to measure the hadronic and photonic content of an interaction and to identify deeply penetrating objects in the very forward, baryon-rich phase space 5.6eta7.2 in an event-by-event mode is described. Results of simulations of the expected response of the calorimeter and, in particular, to the passage of strangelets, are presented.

  3. Energy dependence of the thermodynamical parameters in nucleus-nucleus collisions from 1A to 200A GeV

    International Nuclear Information System (INIS)

    Hong, Byung Sik

    1999-01-01

    The energy dependence of the thermodynamical parameters in nucleus-nucleus collisions are studied from 1A to 200A GeV in the framework of the statistical thermal model. The energy and entropy densities, as well as the pressure, of hot and dense hadronic matter are calculated by using the available input parameters of the model. No discontinuity or steep rise in the thermodynamical parameters has been found. The equation of state in terms of the speed of sound is investigated as a function of the energy density, and it increases monotonically up to 200A GeV. The estimated sonic velocities above 10A GeV are very close to that of an ideal ultrarelativistic hadron gas in the presence of resonances

  4. Charged pion coherent production in nucleus-nucleus collisions at incident energies between 86 and 330 MeV/nucleon

    International Nuclear Information System (INIS)

    Fassnacht, P.

    1984-01-01

    We have studied pion production in nucleus-nucleus collisions at foward angles for about twenty projectile target combinations. The incident energies were below or around 300 MeV/nucleon which is the threshold of the elementary reaction NN → NNπ. The study of the inclusive spectra shows some new ideas: shell effects in pion production, collective resonances excitations. These spectra have been analyzed following different models: hard-scattering models which describe the interaction on the basis of the elementary reaction NN → NNπ, statistical model and the pionic cloud model which is a coherent description of the interaction. In the study of the exclusive reactions, we established some empiric rules concerning the cross-section variations. These exclusive spectra were then analyzed in the framework of two-models: the semi-phenomenological model and the pionic fusion [fr

  5. Study of the peculiarities of multiparticle production via event-by-event analysis in asymmetric nucleus-nucleus interactions

    Science.gov (United States)

    Fedosimova, Anastasiya; Gaitinov, Adigam; Grushevskaya, Ekaterina; Lebedev, Igor

    2017-06-01

    In this work the study on the peculiarities of multiparticle production in interactions of asymmetric nuclei to search for unusual features of such interactions, is performed. A research of long-range and short-range multiparticle correlations in the pseudorapidity distribution of secondary particles on the basis of analysis of individual interactions of nuclei of 197 Au at energy 10.7 AGeV with photoemulsion nuclei, is carried out. Events with long-range multiparticle correlations (LC), short-range multiparticle correlations (SC) and mixed type (MT) in pseudorapidity distribution of secondary particles, are selected by the Hurst method in accordance with Hurst curve behavior. These types have significantly different characteristics. At first, they have different fragmentation parameters. Events of LC type are processes of full destruction of the projectile nucleus, in which multicharge fragments are absent. In events of mixed type several multicharge fragments of projectile nucleus are discovered. Secondly, these two types have significantly different multiplicity distribution. The mean multiplicity of LC type events is significantly more than in mixed type events. On the basis of research of the dependence of multiplicity versus target-nuclei fragments number for events of various types it is revealed, that the most considerable multiparticle correlations are observed in interactions of the mixed type, which correspond to the central collisions of gold nuclei and nuclei of CNO-group, i.e. nuclei with strongly asymmetric volume, nuclear mass, charge, etc. Such events are characterised by full destruction of the target-nucleus and the disintegration of the projectile-nucleus on several multi-charged fragments.

  6. Study of the peculiarities of multiparticle production via event-by-event analysis in asymmetric nucleus-nucleus interactions

    Directory of Open Access Journals (Sweden)

    Fedosimova Anastasiya

    2017-01-01

    Full Text Available In this work the study on the peculiarities of multiparticle production in interactions of asymmetric nuclei to search for unusual features of such interactions, is performed. A research of long-range and short-range multiparticle correlations in the pseudorapidity distribution of secondary particles on the basis of analysis of individual interactions of nuclei of 197 Au at energy 10.7 AGeV with photoemulsion nuclei, is carried out. Events with long-range multiparticle correlations (LC, short-range multiparticle correlations (SC and mixed type (MT in pseudorapidity distribution of secondary particles, are selected by the Hurst method in accordance with Hurst curve behavior. These types have significantly different characteristics. At first, they have different fragmentation parameters. Events of LC type are processes of full destruction of the projectile nucleus, in which multicharge fragments are absent. In events of mixed type several multicharge fragments of projectile nucleus are discovered. Secondly, these two types have significantly different multiplicity distribution. The mean multiplicity of LC type events is significantly more than in mixed type events. On the basis of research of the dependence of multiplicity versus target-nuclei fragments number for events of various types it is revealed, that the most considerable multiparticle correlations are observed in interactions of the mixed type, which correspond to the central collisions of gold nuclei and nuclei of CNO-group, i.e. nuclei with strongly asymmetric volume, nuclear mass, charge, etc. Such events are characterised by full destruction of the target-nucleus and the disintegration of the projectile-nucleus on several multi-charged fragments.

  7. 61. International conference NUCLEUS-2011 on problems of nuclear spectroscopy and structure of atomic nucleus. Book of abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The program of the 61th International conference NUCLEUS-2011 covers almost all actual problems of nuclear physics. The recent results of theoretical and experimental investigations of nuclear structure as well as nuclear reactions are presented. The fundamental problems of nuclear physics are discussed. The current achievements in the field of nuclear instrumentation and experimental techniques are considered. The considerable attention is given to modern nuclear databases as scientific research tools [ru

  8. Open-nucleus theory for beef cattle breeding systems: A revisitation

    International Nuclear Information System (INIS)

    Recami, E.; Packer, I.U.; Tenorio Vasconselos, M.

    1990-07-01

    A theoretical model for Open-Nucleus Systems is herein described in the case of beef cattle breeding. One of the starting points is the observation that the majority of the standard theoretical models for open-nucleus breeding systems were constructed for the case of discrete generations, i.e. for the cases in which the dam average fertility coefficient is f>2. In the case of cattle herds, when only a fraction of the breeding dams can be replaced, it is therefore worthwhile to build up anew a rather rigorous theoretical model, with overlapping generations, and check its predictions. Namely, we apply the new formulae - explicitly depending on β F , ν F , ν M , K and R - to the system in which all breeding sires are in the Nucleus (and are reared in the nucleus itself), and are mated to both Nucleus and Base dams via artificial insemination. Optimal system design has been looked for by the NAG and MINOS computation programs, operated on Vax computers. Opening the nucleus in this situation results to be very effective since the (optimum) asymptotic genetic gain per generation for ''closed nucleus'' systems (x=0) results to be, when e.g. R≡F/M≅200, more than 40% lower than the (optimum) asymptotic genetic gain, G*, for open nucleus systems. Optimal design corresponds to: (i) having a fraction p≅16% of the female population in the nucleus; (ii) replacing practically all the (nucleus) breeding sires by the best (nucleus born) males: ν M =97/98%; (iii) using for dam replacement all (b≅100%) the (base and nucleus born) females; (iv) implementing a high upward gene migration (x≅80%), while all the surplus nucleus-born females are to be used as base replacements. This corresponds to replace, at each generation, also almost all the nucleus dams (ν F ≅95/100%), and the largest possible fraction of base dams (β F ≅30%, a value changing with p). 17 refs

  9. The role of the nucleus basalis of Meynert and reticular thalamic nucleus in pathogenesis of genetically determined absence epilepsy in rats : A lesion study

    NARCIS (Netherlands)

    Berdiev, R. K.; Chepurnov, S. A.; Veening, J. G.; Chepurnova, N. E.; van Luiftelaar, G.

    2007-01-01

    The role of cholinergic nucleus basalis (of Meynert) and the reticular thalamic nucleus in mechanisms of the generation spontaneous spike-and-wave discharges (SWDs) was investigated in the WAG/Rij rat model of absence epilepsy. Selective lesions were affected by local unilateral intraparenchymal

  10. Neutrino-nucleus cross sections for oscillation experiments

    Science.gov (United States)

    Katori, Teppei; Martini, Marco

    2018-01-01

    Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams

  11. The nucleus pararaphales in the human, chimpanzee, and macaque monkey.

    Science.gov (United States)

    Baizer, Joan S; Weinstock, Nadav; Witelson, Sandra F; Sherwood, Chet C; Hof, Patrick R

    2013-03-01

    The human cerebral cortex and cerebellum are greatly expanded compared to those of other mammals, including the great apes. This expansion is reflected in differences in the size and organization of precerebellar brainstem structures, such as the inferior olive. In addition, there are cell groups unique to the human brainstem. One such group may be the nucleus pararaphales (PRa); however, there is disagreement among authors about the size and location of this nucleus in the human brainstem. The name "pararaphales" has also been used for neurons in the medulla shown to project to the flocculus in the macaque monkey. We have re-examined the existence and status of the PRa in eight humans, three chimpanzees, and four macaque monkeys using Nissl-stained sections as well as immunohistochemistry. In the human we found a cell group along the midline of the medulla in all cases; it had the form of interrupted cell columns and was variable among cases in rostrocaudal and dorsoventral extent. Cells and processes were highly immunoreactive for non-phosphorylated neurofilament protein (NPNFP); somata were immunoreactive to the synthetic enzyme for nitric oxide, nitric oxide synthase, and for calretinin. In macaque monkey, there was a much smaller oval cell group with NPNFP immunoreactivity. In the chimpanzee, we found a region of NPNFP-immunoreactive cells and fibers similar to what was observed in macaques. These results suggest that the "PRa" in the human may not be the same structure as the flocculus-projecting cell group described in the macaque. The PRa, like the arcuate nucleus, therefore may be unique to humans.

  12. Stereotactic localization and visualization of the subthalamic nucleus

    Institute of Scientific and Technical Information of China (English)

    SHEN Wei-gao; WANG Hai-yang; LIN Zhi-guo; SHEN Hong; CHEN Xiao-guang; FU Yi-li; GAO Wen-peng

    2009-01-01

    Background The subthalamic nucleus (STN) is widely recognized as one of the most important and commonly targeted nuclei in stereotactic and functional neurosurgery. The success of STN surgery depends on accuracy in target determination. Construction of a digitalized atlas of STN based on stereotactic MRI will play an instrumental role in the accuracy of anatomical localization. The aim of this study was to investigate the three-dimensional (3D) target location of STN in stereotactic space and construct a digitalized atlas of STN to accomplish the visualization of the STN on stereotactic MRI, thus providing clinical guidance on the precise anatomical localization of STN.Methods One hundred and twenty healthy people volunteered to be scanned by 1.5 Tesla MRI scanning with 1-mm-thick slice in the standard stereotactic space between 2005 and 2006. One adult male was selected for 3D reconstruction of STN. The precess of 3D reconstruction included identification, manual segmentation, extraction,conservation and reconstruction.Results There was a significant correlation between the coordinates and age (P <0.05). The volume of left STN was significantly larger than the right STN, and there was a significant negative correlation between volume and age (P <0.05).The surface of the STN nucleus after 3D reconstruction appeared smooth, natural and realistic. The morphological feature of STN on the individual brain could be visualized directly in 3D. The 3D reconstructed STN could be rotated,zoomed and displayed at any direction in the stereotactic space. The anteroposterior diameter of the STN nucleus was longer than the vertical and transverse diameters in 3D space. The 3D reconstruction of STN manifested typical structure of the "dual lens".Conclusions The visualization of individual brain atlas based on stereotactic MRI is feasible. However, software for automated segmentation, extraction and registration of MR images need to be further developed.

  13. Scaling and mean normalized multiplicity in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, M.Q.R.; Ahmad, M.S.; Hasan, R.

    1987-01-01

    Recently it has been reported that the dependence of the mean normalized multiplicity, R A , in hadron-nucleus collisions upon the effective number of projectile encounters, , is projectile independent. We report the failure of this kind of scaling using the world data at accelerator and cosmic ray energies. Infact, we have found that the dependence of R A upon the number of projectile encounters hA is projectile independent. This leads to a new kind of scaling. Further, the scaled multiplicity distributions are found independent on the nature and energy of the incident hadron in the energy range ≅ (17.2-300) GeV. (orig.)

  14. Vacuum oscillations around a large-Z ''nucleus''

    International Nuclear Information System (INIS)

    Kumano, S.; Iwazaki, A.

    1989-01-01

    We investigate a possible explanation of sharp e + peaks in heavy-ion collisions by analyzing QED with a large atomic number external source. We show that a highly polarized vacuum around a large Z ''nucleus'' has at least two neutral oscillation modes, whose energies are calculated to be 1.8 MeV and 1.5 MeV with an appropriate choice of the nuclear radius. They decay into a pair of e/sup +-/ through electromagnetic interactions. 8 refs., 1 fig

  15. Hadron-nucleus interactions in the nucleon resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Gessler, Stefanie

    2017-06-15

    Experiments with high-energy hadron beams have found renewed attention. In the near future nuclear studies with hadron beams are planned at least at two facilities, namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory investigation of interactions of mesons and baryons with nuclei at energies of interest for future research with antiprotons at FAIR. The theoretical discussion is started with an introductory presentation of the optical model and Eikonal theory as appropriate tools for the description of scattering processes at high energies. In antiproton interactions with nucleons and nuclei, annihilation processes into pions are playing the major role for the reaction dynamics. Therefore, we consider first the interactions of pions with nuclei by deriving an extended selfenergy scheme for a large range of incident pion energies. In order to have a uniform description over a broad energy interval, the existing approaches had to be reconsidered and in essential parts reformulated and extended. A central result is the treatment of pion-nucleus self-energies from high lying N{sup *} resonances. Only by including those channels in a proper manner into the extended pion optical potential, pion-nucleus scattering could be described over the required large energy range. At low energies the well known Kisslinger potential is recapped. Next, the same type of reaction theory is used to analyze antiproton-nucleon and nucleus scattering from low to highly relativistic energies. The reaction dynamics of antiproton interactions with nuclear targets is discussed. We start with a new approach to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived, covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is used to describe the antiproton scattering amplitudes in momentum and in coordinate space. We consider, in particular, interactions with nuclei at energies around and well above 1 GeV. The antiproton-nucleus

  16. Magnetic moment of extremely proton-rich nucleus 23Al

    International Nuclear Information System (INIS)

    Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M

    2005-01-01

    The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N

  17. Continuum emission from the nucleus of NGC 1275

    International Nuclear Information System (INIS)

    Longmore, A.J.; Sharples, R.M.; Robson, E.I.; Ade, P.A.R.; Radostitz, J.

    1984-01-01

    Sub-millimeter and multi-aperture near-infrared observations of NGC 1275 are presented. The luminosity of the extended stellar component within the near-infrared apertures has been determined, and consequently also the 1.25-3.5 μm energy distribution of the unresolved nucleus. The 1 μm-30 cm energy distribution is reviewed. It is argued that the most likely origin for the 100 μm-30 cm radiation is synchrotron emission, with this non-thermal component also contributing significant flux at 10 μm. (author)

  18. Tools for visualization of phosphoinositides in the cell nucleus

    Czech Academy of Sciences Publication Activity Database

    Kalasová, Ilona; Fáberová, Veronika; Kalendová, Alžběta; Uličná, Lívia; Yildirim, Sukriye; Venit, Tomáš; Hozák, Pavel

    2016-01-01

    Roč. 145, č. 4 (2016), s. 485-496 ISSN 0948-6143 R&D Projects: GA ČR GA16-03403S; GA ČR GAP305/11/2232; GA MŠk(CZ) ED1.1.00/02.0109; GA CR GA16-03403S Grant - others: Human Frontier Science Program(FR) RGP0017/2013 Institutional support: RVO:68378050 Keywords : Nucleus * Phosphoinositides * PI(4,5)P2 * PI(4)P Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.553, year: 2016

  19. Recent developments in the understanding of pion-nucleus scattering

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1983-01-01

    A development of the theory of pion-nucleus scattering is given in a field theoretical framework. The theory is designed to describe pion elastic scattering and single- and double-charge exchange to isobaric analog states. An analysis of recent data at low and resonance energies is made. Strong modifications to the simple picture of the scattering as a succession of free pion-nucleon interactions are required in order to understand the data. The extent to which the experiment is understood in terms of microscopic theory is indicated. 71 references

  20. Hadron-nucleus interactions in the nucleon resonance region

    International Nuclear Information System (INIS)

    Gessler, Stefanie

    2017-06-01

    Experiments with high-energy hadron beams have found renewed attention. In the near future nuclear studies with hadron beams are planned at least at two facilities, namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory investigation of interactions of mesons and baryons with nuclei at energies of interest for future research with antiprotons at FAIR. The theoretical discussion is started with an introductory presentation of the optical model and Eikonal theory as appropriate tools for the description of scattering processes at high energies. In antiproton interactions with nucleons and nuclei, annihilation processes into pions are playing the major role for the reaction dynamics. Therefore, we consider first the interactions of pions with nuclei by deriving an extended selfenergy scheme for a large range of incident pion energies. In order to have a uniform description over a broad energy interval, the existing approaches had to be reconsidered and in essential parts reformulated and extended. A central result is the treatment of pion-nucleus self-energies from high lying N * resonances. Only by including those channels in a proper manner into the extended pion optical potential, pion-nucleus scattering could be described over the required large energy range. At low energies the well known Kisslinger potential is recapped. Next, the same type of reaction theory is used to analyze antiproton-nucleon and nucleus scattering from low to highly relativistic energies. The reaction dynamics of antiproton interactions with nuclear targets is discussed. We start with a new approach to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived, covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is used to describe the antiproton scattering amplitudes in momentum and in coordinate space. We consider, in particular, interactions with nuclei at energies around and well above 1 GeV. The antiproton-nucleus