WorldWideScience

Sample records for rosiglitazone modulates innate

  1. Possible modulation of the antidiabetic effect of rosiglitazone by buspirone

    Directory of Open Access Journals (Sweden)

    Wafaa R. Mohamed

    2012-06-01

    Full Text Available Diabetes mellitus (DM is a group of metabolic disorders characterized by chronic hyperglycemia resulting from relative or absolute insulin deficiency with or without insulin resistance. As anxiolytics may have influence on glycemic control in diabetics, the present study was conducted to investigate the possible influence of buspirone in streptozotocin-induced DM and its possible interactions with rosiglitazone, an insulin sensitizer. Diabetes was induced by streptozotocin (50 mg/kg i.p.. Rats were classified into five groups namely: normal control, diabetic control, rosiglitazone (10 mg/kg p.o., buspirone (20 mg/kg i.p. or combination of both rosiglitazone and buspirone, respectively. All groups received daily treatments for 2 weeks after induction of DM including the normal group which received 1% Tween 80. There was no significant interaction between rosiglitazone and buspirone on the levels of serum glucose, insulin and C-peptide or liver glycogen content. Similarly, no interaction was observed between rosiglitazone and buspirone on oxidative stress parameters including serum malondialdehyde and blood glutathione levels or blood superoxide dismutase activity. In conclusion, the present study revealed that co-administration of buspirone with rosiglitazone does not produce serious reactions and buspirone can be safely administered as an anxiolytic in diabetic patients treated with rosiglitazone.

  2. Biliary Innate Immunity: Function and Modulation

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2010-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR family and recognize pathogen-associated molecular patterns (PAMPs. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ, is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Moreover, the epithelial-mesenchymal transition (EMT of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.

  3. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Directory of Open Access Journals (Sweden)

    Amy Llewellyn

    2017-10-01

    Full Text Available There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.

  4. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Science.gov (United States)

    Llewellyn, Amy; Foey, Andrew

    2017-01-01

    There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology. PMID:29065562

  5. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulo Czarnewski

    2017-01-01

    Full Text Available Vitamin A (VA is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs and innate lymphoid cells (ILCs. Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs.

  6. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  7. Rosiglitazone inhibits chlorpyrifos-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon; Jang, Sea Jeong [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2014-07-15

    Oxidative stress can lead to expression of inflammatory transcription factors, which are important regulatory elements in the induction of inflammatory responses. One of the transcription factors, nuclear transcription factor kappa-B (NF-κB) plays a significant role in the inflammation regulatory process. Inflammatory cell death has been implicated in neuronal cell death in some neurodegenerative disorders such as Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying apoptosis initiated by chlorpyrifos (CPF)-mediated oxidative stress. Based on the cytotoxic mechanism of CPF, we examined the neuroprotective effects of rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, against CPF-induced neuronal cell death. The treatment of SH-SY5Y cells with CPF induced oxidative stress. In addition, CPF activated the p38, JNK and ERK mitogen-activated protein kinases (MAPKs), and induced increases in the inflammatory genes such as COX-2 and TNF-α. CPF also induced nuclear translocation of NF-κB and inhibitors of NF-κB abolished the CPF-induced COX-2 expression. Pretreatment with RGZ significantly reduced ROS generation and enhanced HO-1 expression in CPF-exposed cells. RGZ blocked the activation of both p38 and JNK signaling, while ERK activation was strengthened. RGZ also attenuated CPF-induced cell death through the reduction of NF-κB-mediated proinflammatory factors. Results from this study suggest that RGZ may exert an anti-apoptotic effect against CPF-induced cytotoxicity by attenuation of oxidative stress as well as inhibition of the inflammatory cascade via inactivation of signaling by p38 and JNK, and NF-κB. - Highlights: • CPF induces apoptotic cell death in SH-SY5Y cells • ROS involved in CPF-mediated apoptotic cell death • Inflammation involved in CPF-mediated apoptotic cell death • Rosiglitazone modulates ROS and inflammatory response in CPF-treated cells.

  8. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  9. Abscisic acid synergizes with rosiglitazone to improve glucose tolerance, down-modulate macrophage accumulation in adipose tissue: possible action of the cAMP/PKA/PPAR γ axis

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Background & Aims Abscisic acid (ABA) is effective in preventing insulin resistance and obesity-related inflammation through a PPAR γ-dependent mechanism. The objective of this study was to assess the efficacy ABA in improving glucose homeostasis and suppress inflammation when administered in combination with rosiglitazone (Ros) and to determine whether PPAR γ activation by ABA is initiated via cAMP/protein kinase A (PKA) signaling. Methods Obese db/db mice were fed high-fat diets containing 0, 10, or 70 mg/kg Ros with and without racemic ABA (100 mg/kg) for 60 days. Glucose tolerance and fasting insulin levels were assessed at 6 and 8 weeks, respectively, and adipose tissue macrophage (ATM) infiltration was examined by flow cytometry. Gene expression was examined on white adipose tissue (WAT) and stromal vascular cells (SVCs) cultured with ABA, Ros, or an ABA/Ros combination. Results Both Ros and ABA improved glucose tolerance, and ABA decreased plasma insulin levels while having no effect on Ros-induced weight gain. ABA in combination with low-dose Ros (10 mg/kg; Roslo) synergistically inhibited ATM infiltration. Treatment of SVCs with Ros, ABA or ABA/Ros suppressed expression of the M1 marker CCL17. ABA and Ros synergistically increased PPAR γ activity and pretreatment with a cAMP-inhibitor or a PKA-inhibitor abrogated ABA-induced PPAR γ activation. Conclusions ABA and Ros act synergistically to modulate PPAR γ activity and macrophage accumulation in WAT and ABA enhances PPAR γ activity through a membrane-initiated mechanism dependent on cAMP/PKA signaling. PMID:20207056

  10. Immune modules shared by innate lymphoid cells and T cells.

    Science.gov (United States)

    Robinette, Michelle L; Colonna, Marco

    2016-11-01

    In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core "immune modules" that encompass transcriptional circuitry and effector functions while using nonredundant complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Rosiglitazone: a disappointing DREAM.

    Science.gov (United States)

    Nissen, Steven

    2007-09-01

    Dr Steven Nissen is a heart specialist and currently holds the position of chairman of cardiovascular medicine at the Cleveland Clinic, OH, USA. His work has involved the development of miniaturised ultrasound imaging devices that can be threaded into a patient's heart that allow measurement of the size and composition of plaques, which indicate early artery damage. The ability to characterize and measure the size of plaques provided a novel, effective method to evaluate the efficacy of anticholesterol medications, and for the past two decades Dr Nissen has been using these and other techniques to examine the efficacy of drugs. He has also developed a strong interest in drug safety. His work linked COX-2 inhibitors such as Celebrex and Vioxx (Merck, NJ, USA) with heart attacks, and prevented Merck's similar product, Arcoxia, from being approved. He also highlighted the serious heart attack risk associated with the experimental drug Pargluva and the drug was subsequently not approved by the US FDA. More recently, Dr Nissen's work has focused on the drug rosiglitazone, which was shown to have high cardiovascular risks and has since been given a FDA warning. Here, Dr Nissen discusses the publication of the rosiglitazone meta-analysis and why he considers work in this area to be crucially important for patients.

  12. Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila.

    Science.gov (United States)

    Su, Chih-Ying; Wang, Jing W

    2014-12-01

    Remarkable advances have been made in recent years in our understanding of innate behavior and the underlying neural circuits. In particular, a wealth of neuromodulatory mechanisms have been uncovered that can alter the input-output relationship of a hereditary neural circuit. It is now clear that this inbuilt flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands and physiological states. Here, we discuss recent insights into how modulation of neural circuits impacts innate behavior, with a special focus on how environmental cues and internal physiological states shape different aspects of feeding behavior in Drosophila. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    Science.gov (United States)

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    Science.gov (United States)

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Photoperiod but not food restriction modulates innate immunity in an opportunistic breeder, Loxia curvirostra.

    Science.gov (United States)

    Schultz, Elizabeth M; Hahn, Thomas P; Klasing, Kirk C

    2017-02-15

    An organism's investment in immune function often varies seasonally but understanding of how fluctuations in environmental conditions directly modulate investment remains limited. This experiment investigated how changes in photoperiod and food availability affect investment in constitutive innate immunity and the acute phase response induced by lipopolysaccharide (LPS) injections in captive red crossbills ( Loxia curvirostra ). Crossbills are reproductively flexible songbirds that specialize on an unpredictably available food resource and display temporal variation in immunity in the wild. Birds were separated into four treatments and exposed to long or short day lengths for 6 weeks before continuing on an ad libitum diet or experiencing a 20% food reduction for 10 days. Birds were un-injected or injected with LPS both before and after diet change. Innate immunity was quantified throughout the experiment to assess effects of photoperiod, food availability and their interactions on hemolysis-hemagglutination, haptoglobin, bacterial killing ability and leukocyte counts. Overall, increasing day length significantly increased both bacterial killing ability and leukocyte counts. Surprisingly, food restriction had little effect on the immune parameters, potentially owing to the 'low-cost' environment of captivity and suggesting that investment in innate immunity is prioritized and maintained whenever possible. LPS injections induced stereotypical sickness behaviors and increased bacterial killing ability in short day birds and complement activity (hemolysis) both before and after food restriction. These results demonstrate robust seasonal modulation of immune investment and an ability to maintain innate immunity in the face of limited resources in these temporally flexible songbirds. © 2017. Published by The Company of Biologists Ltd.

  16. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Maria Manuela Rosado

    2018-03-01

    Full Text Available In recent years, the effects of electromagnetic fields (EMFs on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.

  17. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling.

    Science.gov (United States)

    Zhang, Qingzhan; Yoo, Dongwan

    2016-12-02

    Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are emerged and reemerging viruses in pigs, and together with transmissible gastroenteritis virus (TGEV), pose significant economic concerns to the swine industry. These viruses infect epithelial cells of the small intestine and cause watery diarrhea, dehydration, and a high mortality in neonatal piglets. Type I interferons (IFN-α/β) are major antiviral cytokines forming host innate immunity, and in turn, these enteric coronaviruses have evolved to modulate the host innate immune signaling during infection. Accumulating evidence however suggests that IFN induction and signaling in the intestinal epithelial cells differ from other epithelial cells, largely due to distinct features of the gut epithelial mucosal surface and commensal microflora, and it appears that type III interferon (IFN-λ) plays a key role to maintain the antiviral state in the gut. This review describes the recent understanding on the immune evasion strategies of porcine enteric coronaviruses and the role of different types of IFNs for intestinal antiviral innate immunity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  19. TRPV1 Antagonism by Capsazepine Modulates Innate Immune Response in Mice Infected with Plasmodium berghei ANKA

    Directory of Open Access Journals (Sweden)

    Elizabeth S. Fernandes

    2014-01-01

    Full Text Available Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host’s defence to malaria. Transient receptor potential vanilloid 1 (TRPV1 modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 105 red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80+Ly6G+ cell numbers as well as activation of both F4/80+and F4/80+Ly6G+ cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1+ and natural killer (NK population, without interfering with natural killer T (NKT cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNFα and IFNγ, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNFα. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria.

  20. Different role of the ventral medial prefrontal cortex on modulation of innate and associative learned fear.

    Science.gov (United States)

    Lisboa, S F; Stecchini, M F; Corrêa, F M A; Guimarães, F S; Resstel, L B M

    2010-12-15

    Reversible inactivation of the ventral portion of medial prefrontal cortex (vMPFC) of the rat brain has been shown to induce anxiolytic-like effects in animal models based on associative learning. The role of this brain region in situations involving innate fear, however, is still poorly understood, with several contradictory results in the literature. The objective of the present work was to verify in male Wistar rats the effects of vMPFC administration of cobalt chloride (CoCl(2)), a selective inhibitor of synaptic activity, in rats submitted to two models based on innate fear, the elevated plus-maze (EPM) and light-dark box (LDB), comparing the results with those obtained in two models involving associative learning, the contextual fear conditioning (CFC) and Vogel conflict (VCT) tests. The results showed that, whereas CoCl(2) induced anxiolytic-like effects in the CFC and VCT tests, it enhanced anxiety in rats submitted to the EPM and LDB. Together these results indicate that the vMPFC plays an important but complex role in the modulation of defensive-related behaviors, which seems to depend on the nature of the anxiety/fear inducing stimuli. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    Science.gov (United States)

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  2. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  3. Abscisic acid synergizes with rosiglitazone to improve glucose tolerance and down-modulate macrophage accumulation in adipose tissue: possible action of the cAMP/PKA/PPAR γ axis.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-10-01

    Abscisic acid (ABA) is effective in preventing insulin resistance and obesity-related inflammation through a PPAR γ-dependent mechanism. The objective of this study was to assess the efficacy ABA in improving glucose homeostasis and suppress inflammation when administered in combination with rosiglitazone (Ros) and to determine whether PPAR γ activation by ABA is initiated via cAMP/protein kinase A (PKA) signaling. Obese db/db mice were fed high-fat diets containing 0, 10, or 70 mg/kg Ros with and without racemic ABA (100 mg/kg) for 60 days. Glucose tolerance and fasting insulin levels were assessed at 6 and 8 weeks, respectively, and adipose tissue macrophage (ATM) infiltration was examined by flow cytometry. Gene expression was examined on white adipose tissue (WAT) and stromal vascular cells (SVCs) cultured with ABA, Ros, or an ABA/Ros combination. Both Ros and ABA improved glucose tolerance, and ABA decreased plasma insulin levels while having no effect on Ros-induced weight gain. ABA in combination with low-dose Ros (10 mg/kg; Roslo) synergistically inhibited ATM infiltration. Treatment of SVCs with Ros, ABA or ABA/Ros suppressed expression of the M1 marker CCL17. ABA and Ros synergistically increased PPAR γ activity and pretreatment with a cAMP-inhibitor or a PKA-inhibitor abrogated ABA-induced PPAR γ activation. ABA and Ros act synergistically to modulate PPAR γ activity and macrophage accumulation in WAT and ABA enhances PPAR γ activity through a membrane-initiated mechanism dependent on cAMP/PKA signaling. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Rhubarb Supplementation Promotes Intestinal Mucosal Innate Immune Homeostasis through Modulating Intestinal Epithelial Microbiota in Goat Kids.

    Science.gov (United States)

    Jiao, Jinzhen; Wu, Jian; Wang, Min; Zhou, Chuanshe; Zhong, Rongzhen; Tan, Zhiliang

    2018-01-31

    The abuse and misuse of antibiotics in livestock production pose a potential health risk globally. Rhubarb can serve as a potential alternative to antibiotics, and several studies have looked into its anticancer, antitumor, and anti-inflammatory properties. The aim of this study was to test the effects of rhubarb supplementation to the diet of young ruminants on innate immune function and epithelial microbiota in the small intestine. Goat kids were fed with a control diet supplemented with or without rhubarb (1.25% DM) and were slaughtered at days 50 and 60 of age. Results showed that the supplementation of rhubarb increased ileal villus height (P = 0.036), increased jejujal and ileal anti-inflammatory IL-10 production (P immune function were accompanied by shifts in ileal epithelial bacterial ecosystem in favor of Blautia, Clostridium, Lactobacillus, and Pseudomonas, and with a decline in the relative abundance of Staphylococcus (P immune homeostasis by modulating intestinal epithelial microbiota during the early stages of animal development.

  5. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins.

    Science.gov (United States)

    Verthelyi, Daniela; Wang, Vivian

    2010-12-22

    Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs) that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS) and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st) dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  6. Trace levels of innate immune response modulating impurities (IIRMIs synergize to break tolerance to therapeutic proteins.

    Directory of Open Access Journals (Sweden)

    Daniela Verthelyi

    Full Text Available Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  7. Rosiglitazone

    Science.gov (United States)

    ... manage your diabetes and improve your health. This therapy may also decrease your chances of having a heart attack, stroke, or other diabetes-related complications such as kidney failure, nerve damage (numb, cold legs or feet; decreased sexual ability in men and women), eye ...

  8. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  9. Rational modulation of the innate immune system for neuroprotection in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Diana eAmantea

    2015-04-01

    Full Text Available The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs that contribute to blood–brain barrier (BBB disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF and interleukin (IL-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF-beta, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate towards several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13 or TGF-beta. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair.Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.

  10. Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats.

    Science.gov (United States)

    Vincenz, Daniel; Wernecke, Kerstin E A; Fendt, Markus; Goldschmidt, Jürgen

    2017-08-14

    Fear is an important behavioral system helping humans and animals to survive potentially dangerous situations. Fear can be innate or learned. Whereas the neural circuits underlying learned fear are already well investigated, the knowledge about the circuits mediating innate fear is still limited. We here used a novel, unbiased approach to image in vivo the spatial patterns of neural activity in odor-induced innate fear behavior in rats. We intravenously injected awake unrestrained rats with a 99m-technetium labeled blood flow tracer (99mTc-HMPAO) during ongoing exposure to fox urine or water as control, and mapped the brain distribution of the trapped tracer using single-photon emission computed tomography (SPECT). Upon fox urine exposure blood flow increased in a number of brain regions previously associated with odor-induced innate fear such as the amygdala, ventromedial hypothalamus and dorsolateral periaqueductal grey, but, unexpectedly, decreased at higher significance levels in the interpeduncular nucleus (IPN). Significant flow changes were found in regions monosynaptically connected to the IPN. Flow decreased in the dorsal tegmentum and entorhinal cortex. Flow increased in the habenula (Hb) and correlated with odor effects on behavioral defensive strategy. Hb lesions reduced avoidance of but increased approach to the fox urine while IPN lesions only reduced avoidance behavior without approach behavior. Our study identifies a new component, the IPN, of the neural circuit mediating odor-induced innate fear behavior in mammals and suggests that the evolutionarily conserved Hb-IPN system, which has recently been implicated in cued fear, also forms an integral part of the innate fear circuitry. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Modulating the innate immune response to influenza A virus: potential therapeutic use of anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Irene eRamos

    2015-07-01

    Full Text Available Infection by influenza A viruses (IAV is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV is a consequence of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models at reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e. NF kappa B transcription factors and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies.

  12. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    Science.gov (United States)

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  13. On the modulation of innate immunity by plant-parasitic cyst nematodes

    NARCIS (Netherlands)

    Postma, W.J.

    2013-01-01

    Plant-parasitic cyst nematodes are major agricultural pests worldwide. These obligate endoparasites invade the roots of host plants where they transform cells near the vascular cylinder into a permanent feeding site. Plants possess a multilayered innate immune system consisting of different

  14. Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila

    OpenAIRE

    Su, Chih-Ying; Wang, Jing W.

    2014-01-01

    Remarkable advances have been made in recent years in our understanding of innate behavior and the underlying neural circuits. In particular, a wealth of neuromodulatory mechanisms have been uncovered that can alter the input-output relationship of a hereditary neural circuit. It is now clear that this inbuilt flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands and physiological states. Here, we discuss recent insights into how mo...

  15. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells.

    Science.gov (United States)

    Kanmani, Paulraj; Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Komatsu, Ryoya; Humayun Kober, A K M; Ikeda-Ohtsubo, Wakako; Suda, Yoshihito; Aso, Hisashi; Makino, Seiya; Kano, Hiroshi; Saito, Tadao; Villena, Julio; Kitazawa, Haruki

    2018-01-01

    Previous studies demonstrated that the extracellular polysaccharides (EPSs) produced by Lactobacillus delbrueckii OLL1073R-1 (LDR-1) improve antiviral immunity, especially in the systemic and respiratory compartments. However, it was not studied before whether those EPSs are able to beneficially modulate intestinal antiviral immunity. In addition, LDR-1-host interaction has been evaluated mainly with immune cells while its interaction with intestinal epithelial cells (IECs) was not addressed before. In this work, we investigated the capacity of EPSs from LDR-1 to modulate the response of porcine IECs (PIE cells) to the stimulation with the Toll-like receptor (TLR)-3 agonist poly(I:C) and the role of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effect. We showed that innate immune response triggered by TLR3 activation in porcine IECs was differentially modulated by EPS from LDR-1. EPSs treatment induced an increment in the expression of interferon (IFN)-α and IFN-β in PIE cells after the stimulation with poly(I:C) as well as the expression of the antiviral factors MxA and RNase L. Those effects were related to the reduced expression of A20 in EPS-treated PIE cells. EPS from LDR-1 was also able to reduce the expression of IL-6 and proinflammatory chemokines. Although further in vivo studies are needed, our results suggest that these EPSs or a yogurt fermented with LDR-1 have potential to improve intestinal innate antiviral response and protect against intestinal viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation.

    Science.gov (United States)

    Chow, Zachary; Mueller, Scott N; Deane, James A; Hickey, Michael J

    2013-09-15

    Regulatory T cells (Tregs) are important in controlling skin inflammation, an effect dependent on their ability to home to this organ. However, little is known regarding their behavior in the skin. In this study, we used multiphoton imaging in Foxp3-GFP mice to examine the behavior of endogenous Tregs in resting and inflamed skin. Although Tregs were readily detectable in the uninflamed dermis, most were nonmotile. Induction of contact sensitivity increased the proportion of motile Tregs, and also induced Treg recruitment. This response was significantly blunted in mice challenged with an irrelevant hapten, or by inhibition of effector cell recruitment, indicating a role for T cell-dependent inflammation in induction of Treg migration. Moreover, induction of Treg migration was inhibited by local injection of a CCR4 antagonist, indicating a role for CCR4 in this response. Exposure of naive mice to hapten also induced an increase in the proportion of migratory Tregs, demonstrating that innate signals can also induce Treg migration. Simultaneous examination of the migration of CD4⁺ effector cells and Tregs in the same region of uninflamed skin demonstrated that effector cells behaved differently, being uniformly highly migratory. These findings indicate that Treg behavior in skin differs from that of CD4⁺ effector cells, in that only a low proportion of Tregs is migratory under resting conditions. However, in response to both adaptive and innate inflammation, the proportion of migratory Tregs increases, raising the possibility that this response is important in multiple forms of skin inflammation.

  17. MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity.

    Directory of Open Access Journals (Sweden)

    Apolline Salama

    Full Text Available In addition to important regulatory roles in gene expression through RNA interference, it has recently been shown that microRNAs display immune stimulatory effects through direct interaction with receptors of innate immunity of the Toll-like receptor family, aggravating neuronal damage and tumour growth. Yet no evidence exists on consequences of microRNA immune stimulatory actions in the context of an autoimmune disease. Using microRNA analogues, we here show that pancreatic beta cell-derived microRNA sequences induce pro-inflammatory (TNFa, IFNa, IL-12, IL-6 or suppressive (IL-10 cytokine secretion by primary mouse dendritic cells in a sequence-dependent manner. For miR-29b, immune stimulation in RAW264.7 macrophages involved the endosomal Toll-like receptor-7, independently of the canonical RNA interference pathway. In vivo, the systemic delivery of miR-29b activates CD11b+B220- myeloid and CD11b-B220+ plasmacytoid dendritic cells and induces IFNa, TNFa and IL-6 production in the serum of recipient mice. Strikingly, in a murine model of adoptive transfer of autoimmune diabetes, miR-29b reduces the cytolytic activity of transferred effector CD8+ T-cells, insulitis and disease incidence in a single standalone intervention. Endogenous miR-29b, spontaneously released from beta-cells within exosomes, stimulates TNFa secretion from spleen cells isolated from diabetes-prone NOD mice in vitro. Hence, microRNA sequences modulate innate and ongoing adaptive immune responses raising the question of their potential role in the breakdown of tolerance and opening up new applications for microRNA-based immune therapy.

  18. Lactobacillus crispatus Modulates Vaginal Epithelial Cell Innate Response to Candida albicans

    Directory of Open Access Journals (Sweden)

    Xiao-Xi Niu

    2017-01-01

    Conclusions: L. crispatus can attenuate the virulence of C. albicans, modulate the secretion of cytokines and chemokines, and enhance the immune response of VK2/E6E7 cells in vitro. The vaginal mucosa has a potential function in the local immune responses against pathogens that can be promoted by L. crispatus.

  19. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  20. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  1. The rosiglitazone decision process at FDA and EMA : What should we learn?

    NARCIS (Netherlands)

    Pouwels, Koen B.; van Grootheest, Kees

    2012-01-01

    In September 2010 the EMA decided to suspend the market authorisation of rosiglitazone, while the FDA decided to restrict the use of rosiglitazone. These actions were taken approximately 10 years after the introduction of rosiglitazone, because rosiglitazone might be associated with an increased

  2. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    Science.gov (United States)

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001 PMID:27692066

  3. Btp Proteins from Brucella abortus Modulate the Lung Innate Immune Response to Infection by the Respiratory Route.

    Science.gov (United States)

    Hielpos, Maria Soledad; Ferrero, Mariana C; Fernández, Andrea G; Falivene, Juliana; Vanzulli, Silvia; Comerci, Diego J; Baldi, Pablo C

    2017-01-01

    Although inhalation of infected aerosols is a frequent route for Brucella infection in humans, it rarely causes pulmonary clinical manifestations, suggesting a mild or nearly absent local inflammatory response. The goal of this study was to characterize the early innate immune response to intratracheal infection with Brucella abortus in mice and to evaluate whether it is modulated by this pathogen. After infection with 10 6  CFU of B. abortus , the pulmonary bacterial burden at 7 days post-infection (p.i.) was comparable to the initial inoculum, despite an initial transient decline. Brucella was detected in spleen and liver as early as 1 day p.i. IL-1β and MCP-1 increased at 3 days p.i., whereas IL-12, KC, TNF-α, and IFN-γ only increased at 7 days p.i. Histological examination did not reveal peribronchial or perivascular infiltrates in infected mice. Experiments were conducted to evaluate if the limited inflammatory lung response to B. abortus is caused by a bacterial mechanism of TLR signaling inhibition. Whereas inoculation of E. coli LPS to control mice [phosphate-buffered saline (PBS)/LPS] caused lung inflammation, almost no histological changes were observed in mice preinfected intratracheally with B. abortus (WT/LPS). We speculated that the Brucella TIR-containing proteins (Btps) A and B, which impair TLR signaling in vitro , may be involved in this modulation. After LPS challenge, mice preinfected with the B. abortus btpAbtpB double mutant exhibited a stronger pulmonary polymorphonuclear infiltrate than WT/LPS mice, although milder than that of the PBS/LPS group. In addition, lungs from B. abortus btpAbtpB -infected mice presented a stronger inflammatory infiltrate than those infected with the WT strain, and at day 7 p.i., the pulmonary levels of KC, MCP-1, and IL-12 were higher in mice infected with the mutant. This study shows that B. abortus infection produces a mild proinflammatory response in murine lungs, partially due to immune modulation

  4. Btp Proteins from Brucella abortus Modulate the Lung Innate Immune Response to Infection by the Respiratory Route

    Directory of Open Access Journals (Sweden)

    Maria Soledad Hielpos

    2017-08-01

    Full Text Available Although inhalation of infected aerosols is a frequent route for Brucella infection in humans, it rarely causes pulmonary clinical manifestations, suggesting a mild or nearly absent local inflammatory response. The goal of this study was to characterize the early innate immune response to intratracheal infection with Brucella abortus in mice and to evaluate whether it is modulated by this pathogen. After infection with 106 CFU of B. abortus, the pulmonary bacterial burden at 7 days post-infection (p.i. was comparable to the initial inoculum, despite an initial transient decline. Brucella was detected in spleen and liver as early as 1 day p.i. IL-1β and MCP-1 increased at 3 days p.i., whereas IL-12, KC, TNF-α, and IFN-γ only increased at 7 days p.i. Histological examination did not reveal peribronchial or perivascular infiltrates in infected mice. Experiments were conducted to evaluate if the limited inflammatory lung response to B. abortusis caused by a bacterial mechanism of TLR signaling inhibition. Whereas inoculation of E. coli LPS to control mice [phosphate-buffered saline (PBS/LPS] caused lung inflammation, almost no histological changes were observed in mice preinfected intratracheally with B. abortus (WT/LPS. We speculated that the Brucella TIR-containing proteins (Btps A and B, which impair TLR signaling in vitro, may be involved in this modulation. After LPS challenge, mice preinfected with the B. abortus btpAbtpB double mutant exhibited a stronger pulmonary polymorphonuclear infiltrate than WT/LPS mice, although milder than that of the PBS/LPS group. In addition, lungs from B. abortus btpAbtpB-infected mice presented a stronger inflammatory infiltrate than those infected with the WT strain, and at day 7 p.i., the pulmonary levels of KC, MCP-1, and IL-12 were higher in mice infected with the mutant. This study shows that B. abortus infection produces a mild proinflammatory response in murine lungs, partially due to immune

  5. Rosiglitazone, myocardial ischemic risk, and recent regulatory actions.

    Science.gov (United States)

    Bourg, Catherine A; Phillips, Beth Bryles

    2012-02-01

    To review the evidence surrounding rosiglitazone and ischemic cardiovascular risk and discuss the Food and Drug Administration (FDA) decision to revise safety information and restrict access to the drug. A literature search was conducted through MEDLINE (1950-January 2012), PubMed (1966-January 2012), and International Pharmaceutical Abstracts (1970-December 2011) using the search terms rosiglitazone and cardiovascular risk. Regulatory documents from the FDA and the Center for Drug Evaluation and Research, as well as reference citations from publications identified, were reviewed. All articles in English identified from the data sources were evaluated for inclusion. Literature regarding rosiglitazone and ischemic cardiovascular risk has shown inconsistent results. Meta-analyses by the FDA, GlaxoSmithKline, and several independent research groups suggest an increased risk for myocardial infarction (MI), while others have not. Long-term, controlled trials not designed to evaluate cardiovascular outcomes did not find a significant increase in cardiovascular events and had low event rates overall. The RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes in Oral Agent Combination Therapy for Type 2 Diabetes) trial is the only prospective randomized trial to date designed to evaluate cardiovascular outcomes of rosiglitazone; the results were limited because of issues with study design and event adjudication. The only direct comparisons between rosiglitazone and pioglitazone are observational studies in which pioglitazone had a more favorable MI risk profile. Data involving rosiglitazone and an association with ischemic cardiovascular risk have yielded variable results. The FDA made the decision to restrict access to rosiglitazone in September 2010 by requiring GlaxoSmithKline to submit a risk evaluation and mitigation strategy (REMS). Drug labeling was revised in February 2011, and the rosiglitazone REMS program took full effect in November 2011.

  6. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    Science.gov (United States)

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  7. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    Science.gov (United States)

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  8. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G.; Castiglione, F.; Vanzi, E.; Bottoncetti, A.; Pupi, A.

    2011-01-01

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  9. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  10. [Function and modulation of type Ⅱ innate lymphoid cells and their role in chronic upper airway inflammatory diseases].

    Science.gov (United States)

    Liu, Y; Liu, Z

    2017-02-07

    Type Ⅱ innate lymphoid cells (ILC2) is a family of innate immune lymphocytes, which provide effective immune responses to cytokines. ILC2 are regulated by the nuclear transcription factor ROR alpha and GATA3, secreting cytokines IL-5 and IL-13, etc. Animal models have shown that ILC2 are involved in allergic diseases, such as asthma and atopic dermatitis, and also play a very important role in the metabolic balance. In addition, recent reports suggest that ILC2 not only play a role in the initial stages of the disease, but also can lead to chronic pathological changes in the disease, such as fibrosis, and may have an effect on acquired immunity. This paper mainly focus in the role and regulation of ILC2 cells, and review the research status of ILC2 in the field of chronic upper airway inflammatory diseases including allergic rhinitis and chronic rhinosinusitis.

  11. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response

    DEFF Research Database (Denmark)

    Jakobsen, Henrik; Bojer, Martin Saxtorph; Marinus, Martin G.

    2013-01-01

    pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity....... Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.......The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin...

  12. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    Directory of Open Access Journals (Sweden)

    Henrik Jakobsen

    Full Text Available The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  13. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    Science.gov (United States)

    Jakobsen, Henrik; Bojer, Martin S; Marinus, Martin G; Xu, Tao; Struve, Carsten; Krogfelt, Karen A; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  14. Activation of PPAR by Rosiglitazone Does Not Negatively Impact Male Sex Steroid Hormones in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mahmoud Mansour

    2009-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPAR activation decreased serum testosterone (T in women with hyperthecosis and/or polycystic ovary syndrome and reduced the conversion of androgens to estradiol (E2 in female rats. This implies modulation of female sex steroid hormones by PPAR. It is not clear if PPAR modulates sex steroid hormones in diabetic males. Because PPAR activation by thiazolidinedione increased insulin sensitivity in type 2 diabetes, understanding the long term impact of PPAR activation on steroid sex hormones in males is critical. Our objective was to determine the effect of PPAR activation on serum and intratesticular T, luteinizing hormone (LH, follicle stimulating hormone (FSH and E2 concentrations in male Zucker diabetic fatty (ZDF rats treated with the PPAR agonist rosiglitazone (a thiazolidinedione. Treatment for eight weeks increased PPAR mRNA and protein in the testis and elevated serum adiponectin, an adipokine marker for PPAR activation. PPAR activation did not alter serum or intratesticular T concentrations. In contrast, serum T level but not intratesticular T was reduced by diabetes. Neither diabetes nor PPAR activation altered serum E2 or gonadotropins FSH and LH concentrations. The results suggest that activation of PPAR by rosiglitazone has no negative impact on sex hormones in male ZDF rats.

  15. Rosiglitazone evaluated for cardiovascular outcomes--an interim analysis

    DEFF Research Database (Denmark)

    Home, Philip D; Pocock, Stuart J; Beck-Nielsen, Henning

    2007-01-01

    BACKGROUND: A recent meta-analysis raised concern regarding an increased risk of myocardial infarction and death from cardiovascular causes associated with rosiglitazone treatment of type 2 diabetes. METHODS: We conducted an unplanned interim analysis of a randomized, multicenter, open...... group). The primary end point was hospitalization or death from cardiovascular causes. RESULTS: Because the mean follow-up was only 3.75 years, our interim analysis had limited statistical power to detect treatment differences. A total of 217 patients in the rosiglitazone group and 202 patients...... in the control group had the adjudicated primary end point (hazard ratio, 1.08; 95% confidence interval [CI], 0.89 to 1.31). After the inclusion of end points pending adjudication, the hazard ratio was 1.11 (95% CI, 0.93 to 1.32). There were no statistically significant differences between the rosiglitazone...

  16. Selective block of KATP channels: why the anti-diabetic sulphonylureas and rosiglitazone have more in common than we thought

    Science.gov (United States)

    Dart, Caroline

    2012-01-01

    Rosiglitazone, the thiazolidinedione class anti-diabetic withdrawn from Europe in 2010 amid reports of adverse cardiovascular effects, is revealed by Yu et al. in this issue of the British Journal of Pharmacology to be a selective blocker of ATP-sensitive potassium (KATP) channels. This seems little cause for excitement given that the closure of pancreatic KATP channels is integral to insulin secretion; and sulphonylureas, which inhibit KATP channels, are widely used to treat type II diabetes. However, rosiglitazone, whose primary targets are nuclear transcription factors that regulate genes involved in lipid metabolism, blocks KATP channels by a novel mechanism different to that of the sulphonylureas and has a worrying preference for blood flow–regulating vascular KATP channels. Identification of a new molecule that modulates KATP channel gating will not only tell us more about how these complex metabolic sensors work but also raises questions as to whether rosiglitazone suppresses the cardiovascular system's ability to cope with metabolic stress – a claim that has dogged the sulphonylureas for many years. LINKED ARTICLE This article is a commentary on Yu et al., pp. 26–36 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2012.01934.x PMID:22506686

  17. Innate immunity phenotypic features point toward simultaneous raise of activation and modulation events following 17DD live attenuated yellow fever first-time vaccination.

    Science.gov (United States)

    Martins, Marina Angela; Silva, Maria Luiza; Elói-Santos, Silvana Maria; Ribeiro, José Geraldo Leite; Peruhype-Magalhães, Vanessa; Marciano, Ana Paula Vieira; Homma, Akira; Kroon, Erna Geessien; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis

    2008-02-26

    Detailed multiparametric phenotypic investigation aiming to characterize the kinetics of the innate immune response in the peripheral blood following 17DD yellow fever (17DD-YF) first-time vaccination was performed. Results showed increased frequency of monocytes and NK cell subpopulations besides unexpected up-regulation of granulocytes activation status (CD28+/CD23+ and CD28+/HLA-DR+, respectively). Up-regulation of Fcgamma-R and IL-10-R expression emerge as putative events underlying the mixed pattern of phenotypic features triggered by the 17DD yellow fever (17DD-YF) vaccination. Mixed pattern of chemokine receptors expression further support our hypothesis that a parallel establishment of activation/modulation microenvironment plays a pivotal role in the protective immunity triggered by the 17DD-YF vaccine.

  18. Interactions of Rosiglitazone and Anti.Arrhythmic Drugs in Animal ...

    African Journals Online (AJOL)

    Interactions of Rosiglitazone and Anti.Arrhythmic Drugs in Animal Model. YM Mohammed, EI Mohammed, N Mohiuddin, SS Syeda. Abstract. Background: Diabetes increases the risk of vascular problems by two times compared with a healthy individual, with deposition of fats in blood vessel and this includes cardiovascular ...

  19. Rosiglitazone and Cardiovascular Risk – A Review | Isa | Bayero ...

    African Journals Online (AJOL)

    The thiazolidinediones (TZDs) are a class of oral drugs used for the management of type 2 diabetes mellitus and act as ligands for the transcription factor Peroxisome Proliferator-Activated Receptor gamma (PPARγ). Rosiglitazone, an example of TZD, is an anti-diabetic agent acting as a potent insulin sensitizer and is used ...

  20. A shift toward T helper 2 responses and an increase in modulators of innate immunity in depressed patients treated with escitalopram.

    Science.gov (United States)

    Ho, Pei-Shen; Yeh, Yi-Wei; Huang, San-Yuan; Liang, Chih-Sung

    2015-03-01

    Depression is hypothesized to involve inflammatory processes, and identifying the key cytokines targeted by antidepressant drugs is critical for tailoring treatment to specific cases. However, investigating a limited number of cytokines at one time cannot provide a broad picture of antidepressant-associated immunomodulation. Cytokines act in a network where one could demonstrate pleiotropism, redundancy, synergy, and antagonism with other cytokine functions. This study was aimed at determining whether escitalopram functions as an anti-inflammatory agent and, if so, how it influences cytokine networks. A total of 24 healthy controls and 26 patients with clinical depression requiring inpatient treatment were recruited. A multiplex assay, an efficient tool to simultaneously measure 27 cytokines, was applied in patients with depression before and after 4-week escitalopram treatment. Healthy controls did not take escitalopram and completed cytokine analyses once. We demonstrated that escitalopram increased the levels of interleukin (IL)-1 receptor antagonist and IL-2. Moreover, escitalopram contributed to a shift toward T helper 2 responses and an increase in modulators of innate immunity, leading to a decrease of immune system activation, both innate and adaptive. We suggest that escitalopram modulates the balance of IL-1 and IL-1 receptor antagonist and improves the function and number of T regulatory cells. However, diverse conclusions could be drawn if only a few cytokines were assessed or different significance levels were used. Further studies should investigate a wide range of cytokines in a reliable and valid way, which is key to disentangling the effects of different antidepressants on inflammatory processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Budget impact of rosiglitazone in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Orietta Zaniolo

    2007-03-01

    Full Text Available BACKGROUND: in type 2 diabetes, the maintenance of non-diabetic glycaemic levels has been shown to decrease the onset of long term complications and consequently their high management costs. In order to achieve and maintain normal blood glucose levels, lifestyle interventions are highly cost/effective, but require good compliance, strong motivation and efforts by the patients. For this reason, a majority of patients needs to start pharmacological therapy shortly after diagnosis. Rosiglitazone, an insulin-sensitising drug, is indicated for subjects with inadequate glycaemic control both as monotherapy, in those contraindicated to metformin, especially if overweight, and as combination therapy with metformin, sulphanilureas or both. OBJECTIVES: rosiglitazone offers clinical advantages over the alternatives, decreasing and/or postponing the need for insulin treatment. Its high acquisition cost may therefore be totally or partially offset by the reduction in future health care resources consumption, and by short-term practical advantages, such as the decrease in the need for blood glucose monitoring and of adverse events. Aim of this study was to investigate the impact of the use of rosiglitazone in eligible diabetic patients on the National Health System budget. METHODS: for this scope an analytic model was implemented, which pathway may be summarized as follows: a estimate of the number type 2 diabetes patients living in Italy, grouped according to current therapeutic classes; b estimate of the number of patients with inadequate glycaemic control for each subgroup; c identification of patients eligible to rosiglitazone treatment; d identification of the comparator strategy for each patient sub-group; e comparison of costs for each couple of alternative options; f calculation of budget impact. RESULTS: use of rosiglitazone monotherapy instead of sulphanilurea monotherapy induces a mild costs increase. Combination treatment with rosiglitazone added

  2. Trappin-2/elafin modulate innate immune responses of human endometrial epithelial cells to PolyI:C.

    Directory of Open Access Journals (Sweden)

    Anna G Drannik

    Full Text Available BACKGROUND: Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs. Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin-2 (Tr and its cleaved form, elafin (E, are alarm antimicrobials secreted by multiple cells, including genital epithelia. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated whether and how each Tr and E (Tr/E contribute to antiviral defenses against a synthetic mimic of viral dsRNA, polyinosine-polycytidylic acid (polyI:C and vesicular stomatitis virus. We show that delivery of a replication-deficient adenovector expressing Tr gene (Ad/Tr to human endometrial epithelial cells, HEC-1A, resulted in secretion of functional Tr, whereas both Tr/E were detected in response to polyI:C. Moreover, Tr/E were found to significantly reduce viral replication by either acting directly on virus or through enhancing polyI:C-driven antiviral protection. The latter was associated with reduced levels of pro-inflammatory factors IL-8, IL-6, TNFα, lowered expression of RIG-I, MDA5 and attenuated NF-κB activation. Interestingly, enhanced polyI:C-driven antiviral protection of HEC-Ad/Tr cells was partially mediated through IRF3 activation, but not associated with higher induction of IFNβ, suggesting multiple antiviral mechanisms of Tr/E and the involvement of alternative factors or pathways. CONCLUSIONS AND SIGNIFICANCE: This is the first evidence of both Tr/E altering viral binding/entry, innate recognition and mounting of antiviral and inflammatory responses in genital ECs that could have significant implications for homeostasis of the female genital tract.

  3. Rosiglitazone treatment of patients with extreme insulin resistance and diabetes mellitus due to insulin receptor mutations has no effects on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Pedersen, O

    2001-01-01

    Rosiglitazone, a thiazolidinedione (TZD), increases insulin sensitivity by reducing levels of plasma NEFA, triglycerides (TG), glucose and serum insulin. Rosiglitazone treatment decreases insulin resistance in type 2 diabetic patients, but no data exist concerning rosiglitazone treatment...

  4. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis

    Science.gov (United States)

    Köhler, Paulina; von Rauchhaupt, Ekaterina

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN. PMID:29854836

  5. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis.

    Science.gov (United States)

    Honarpisheh, Mohsen; Köhler, Paulina; von Rauchhaupt, Ekaterina; Lech, Maciej

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.

  6. Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response.

    Directory of Open Access Journals (Sweden)

    Cora N Pollak

    Full Text Available Outer membrane vesicles (OMVs released by some gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa and monocytes (THP-1, and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8 to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively. Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.

  7. Prolonged effect of Rosiglitazone one year after discontinuation

    DEFF Research Database (Denmark)

    Gram-Kampmann, Eva-Marie; Olesen, Thomas Bastholm; Olsen, Michael Hecht

    2015-01-01

    : This study is a continuation of the two-year study SDDS, where 371 patients were randomized to eight groups and treated with Insulin aspart three times daily or NPH insulin once daily, metformin or placebo and Rosiglitazone or placebo, respectively. During a 12-month run-out, use of insulin was continued...... and oral antidiabetics/placebo was changed to 2000 mg of metformin a day. During the following four visits, insulin was adjusted according to a treat-to-target algoritm with avoidance of hypoglycemia. Resultater: After 12 months, there was no difference in HbA1c. As expected, in the group formerly...... receiving insulin and two times placebo, insulindose could be lowered after institution of metformin. Compared to the insulin, metformin and placebo-group, insulin dose was significantly lower in the insulin, rosiglitazone and placebo-group (56,9 IUvs 73,6IU, p =0,05) after 12 months. The Insulin...

  8. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    International Nuclear Information System (INIS)

    Benko', Klara; Pintye, Eva; Szabo, Boglarka; Geresi, Krisztina; Megyeri, Attila; Benko, Ilona

    2008-01-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ--irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD 50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  9. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    Science.gov (United States)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  10. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Rose, Marie E. [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States); Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurosurgery, University of Pittsburgh, PA 15216 (United States); Department of Critical Care Medicine, University of Pittsburgh, PA 15216 (United States); Graham, Steven H., E-mail: Steven.Graham@va.gov [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States)

    2016-04-15

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  11. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    International Nuclear Information System (INIS)

    Liu, Hao; Rose, Marie E.; Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward; Graham, Steven H.

    2016-01-01

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  12. Foot-and-mouth disease virus 5'-terminal S fragment is required for replication and modulation of the innate immune response in host cells.

    Science.gov (United States)

    Kloc, Anna; Diaz-San Segundo, Fayna; Schafer, Elizabeth A; Rai, Devendra K; Kenney, Mary; de Los Santos, Teresa; Rieder, Elizabeth

    2017-12-01

    The S fragment of the FMDV 5' UTR is predicted to fold into a long stem-loop structure and it has been implicated in virus-host protein interactions. In this study, we report the minimal S fragment sequence required for virus viability and show a direct correlation between the extent of the S fragment deletion mutations and attenuated phenotypes. Furthermore, we provide novel insight into the role of the S fragment in modulating the host innate immune response. Importantly, in an FMDV mouse model system, all animals survive the inoculation with the live A 24 FMDV-S 4 mutant, containing a 164 nucleotide deletion in the upper S fragment loop, at a dose 1000 higher than the one causing lethality by parental A 24 FMDV, indicating that the A 24 FMDV-S 4 virus is highly attenuated in vivo. Additionally, mice exposed to high doses of live A 24 FMDV-S 4 virus are fully protected when challenged with parental A 24 FMDV virus. Published by Elsevier Inc.

  13. De besluitvorming over werkzaamheid en veiligheid van rosiglitazon bij de FDA en de EMA. Wat zijn de lessen?

    NARCIS (Netherlands)

    Pouwels, Koen; Van Grootheest, Kees

    2013-01-01

    The rosiglitazone decision process at FDA and EMA. What should we learn? In September 2010 the EMA decided to suspend the market authorisation of rosiglitazone while the FDA decided to restrict its use. These actions were taken because rosiglitazone had been associated with an increased risk of

  14. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  15. Hesperidin and low dose gamma irradiation alleviate rosiglitazone -induced cardiotoxicity in type 2 diabetic rats

    International Nuclear Information System (INIS)

    Morcos, N.Y.; Abdel-Ghaffar, A.B.; Osman, S.A.; Mohamed, M.Kh.; Arbid, M.S.; El-Eraky, W.I.

    2012-01-01

    Aim: The present study was designed to investigate the cardio protective effect of hesperidin and low dose γ- irradiation (LDR) against rosiglitazone cardiotoxicity. Experiment: Type 2 diabetes mellitus (T2DM) was induced in rats by single intraperitoneal injection of streptozotocin (STZ) followed by nicotinamide (NIC) (65 and 110 mg/kg b.wt, respectively). The diabetic rats were divided into 5 groups: untreated, LDR, LDR+ rosiglitazone, LDR + Hesperidin, LDR+ rosiglitazone + Hesperidin for one month, and blood and tissue samples were collected. Results: The diabetic rats showed elevated serum creatine kinase (CK-MB), lactate dehydrogenase (LDH), C-reactive protein (CRP), hyaluronidase activity, and reduced serum nitric oxide (NO) level, hematocrit % as well as final body weight, and pathological alterations in myocardial tissue. Treatment with LDR + rosiglitazone + Hesperidin ameliorated all these abnormalities approaching control levels. Conclusion: Results indicate the possible cardio protective role of hesperidin and LDR against rosiglitazone cardiotoxicity.

  16. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    International Nuclear Information System (INIS)

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo

    2006-01-01

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease

  17. Two different spectrofluorimetric methods for simultaneous determination of gemfibrozil and rosiglitazone in human plasma.

    Science.gov (United States)

    El-Din, Mohie M K Sharaf; Attia, Khalid A M; Nassar, Mohamed W I; Kaddah, Mohamed M Y

    2010-10-15

    Two accurate, reliable, and highly sensitive spectrofluorimetric methods were developed for simultaneous determination of binary mixture gemfibrozil and rosiglitazone in human plasma without prior separation steps. The first method is based on synchronous fluorescence spectrometry using double scans. At Δλ=27nm, gemfibrozil yields detectable signal that is independent of the presence of rosiglitazone. Similarly, at Δλ=120nm the signal of rosiglitazone is not influenced by the presence of gemfibrozil. Signals at two wavelengths, 301 (Δλ=27nm) and 368nm (Δλ=120nm) vary linearly with gemfibrozil and rosiglitazone concentrations over the range 100-700ngmL(-1) (for gemfibrozil) and 20-140ngmL(-1) (for rosiglitazone), respectively. The limits of detection (LOD) were 2.3 and 2.72ngmL(-1) for gemfibrozil and rosiglitazone, respectively. The second method is based on the technique of simultaneous equations (Vierodt's method), in which 258nm was selected as the excitation wavelength. Two equations are constructed based on the fact that at ( λ(EM)₂=302 nm of gemfibrozil) and (λ(EM)₂=369 nm of rosiglitazone) the fluorescence of the mixture is the sum of the individual fluorescence of gemfibrozil and rosiglitazone. The limits of detection (LOD) were 28.1 and 23.63ngmL(-1) for gemfibrozil and rosiglitazone, respectively. The proposed methods were successfully applied for the determination of the two compounds in synthetic mixtures and in human plasma with a good recovery. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The effect of trimethoprim on CYP2C8 mediated rosiglitazone metabolism in human liver microsomes and healthy subjects

    Science.gov (United States)

    Hruska, M W; Amico, J A; Langaee, T Y; Ferrell, R E; Fitzgerald, S M; Frye, R F

    2005-01-01

    Aims Rosiglitazone, a thiazolidinedione antidiabetic medication used in the treatment of Type 2 diabetes mellitus, is predominantly metabolized by the cytochrome P450 (CYP) enzyme CYP2C8. The anti-infective drug trimethoprim has been shown in vitro to be a selective inhibitor of CYP2C8. The purpose of this study was to evaluate the effect of trimethoprim on the CYP2C8 mediated metabolism of rosiglitazone in vivo and in vitro. Methods The effect of trimethoprim on the metabolism of rosiglitazone in vitro was assessed in pooled human liver microsomes. The effect in vivo was determined by evaluating rosiglitazone pharmacokinetics in the presence and absence of trimethoprim. Eight healthy subjects (four men and four women) completed a randomized, cross-over study. Subjects received single dose rosiglitazone (8 mg) in the presence and absence of trimethoprim 200 mg given twice daily for 5 days. Results Trimethoprim inhibited rosiglitazone metabolism both in vitro and in vivo. Inhibition of rosiglitazone para-hydroxylation by trimethoprim in vitro was found to be competitive with apparent Ki and IC50 values of 29 µm and 54.5 µm, respectively. In the presence of trimethoprim, rosiglitazone plasma AUC was increased by 31% (P = 0.01) from 2774 ± 645 µg l−1 h to 3643 ± 1051 µg l−1 h (95% confidence interval (Cl) for difference 189, 1549), and half-life was increased by 27% (P = 0.006) from 3.3 ± 0.5 to 4.2 ± 0.8 h (95% Cl for difference 0.36, 1.5). Trimethoprim reduced the para-O-sulphate rosiglitazone/rosiglitazone and the N-desmethylrosiglitazone/rosiglitazone AUC(0–24) ratios by 22% and 38%, respectively. Conclusions These results indicate that trimethoprim is a competitive inhibitor of CYP2C8-mediated rosiglitazone metabolism in vitro and that trimethoprim administration increases plasma rosiglitazone concentrations in healthy subjects. PMID:15606443

  19. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  20. Topical Rosiglitazone Treatment Improves Ulcerative Colitis by Restoring Peroxisome Proliferator-Activated Receptor-gamma Activity

    DEFF Research Database (Denmark)

    Pedersen, G.; Brynskov, Jørn

    2010-01-01

    and functional activity in human colonic epithelium and explored the potential of topical treatment with rosiglitazone (a PPAR gamma ligand) in patients with ulcerative colitis. METHODS: Spontaneous and rosiglitazone-mediated PPAR gamma and adipophillin expression (a gene transcriptionally activated by PPAR...... for 14 days. RESULTS: PPAR gamma expression was fourfold reduced in epithelial cells from inflamed compared with uninflamed mucosa and controls. Adipophillin levels were decreased in parallel. Rosiglitazone induced a concentration-dependent increase in adipophillin levels and restored PPAR gamma activity...... in epithelial cells from inflamed mucosa in vitro. Rosiglitazone enema treatment was well tolerated and reduced the Mayo ulcerative colitis score from 8.9 to 4.3 (P levels in the epithelial cells of the patients, indicating PPAR...

  1. Rosiglitazone delayed weight loss and anorexia while attenuating adipose depletion in mice with cancer cachexia.

    Science.gov (United States)

    Asp, Michelle L; Tian, Min; Kliewer, Kara L; Belury, Martha A

    2011-12-01

    Cachexia is characterized by severe weight loss, including adipose and muscle wasting, and occurs in a large percentage of cancer patients. Insulin resistance contributes to dysregulated metabolism in cachexia and occurs prior to weight loss in mice with colon-26 tumor-induced cachexia. Therefore, we hypothesized that the insulin sensitizer, rosiglitazone, would attenuate the loss of adipose and muscle to result in improved outcomes for mice with late-stage cachexia. Male CD2F1 mice were inoculated with colon-26 adenocarcinoma cells or vehicle. Treatments included vehicle, rosiglitazone (10 mg/kg body weight/day) or rosiglitazone plus pair-feeding to food intake of vehicle-treated mice with tumors. Rosiglitazone delayed weight loss onset by 2 d over the 16 d duration of this aggressive tumor model. This finding was associated, in part, with increased food intake. In addition, adipose mass, adipocyte cross-sectional area and inflammation were improved with rosiglitazone. However, at the time of necropsy 16 d after tumor inoculation rosiglitazone had no effect on retention of muscle mass, strength or proteolysis in late-stage cachexia. We did not measure stamina or endurance in this study. In early-stage cachexia, rosiglitazone normalized PDK4 and PPAR-delta mRNA in quadriceps muscle and rescued the decrease in insulin-stimulated glucose disappearance in mice with tumors. Rosiglitazone may delay weight loss onset by decreasing tumor-induced markers of metabolic change in early-stage cachexia. These changes predict for modest improvement in adipose, but no improvement in muscle strength in late-stage cachexia.

  2. The Alkaloid Compound Harmane Increases the Lifespan of Caenorhabditis elegans during Bacterial Infection, by Modulating the Nematode’s Innate Immune Response

    Science.gov (United States)

    Marinus, Martin G.; Xu, Tao; Struve, Carsten; Krogfelt, Karen A.; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs. PMID:23544153

  3. Simple method for the determination of rosiglitazone in human plasma using a commercially available internal standard.

    Science.gov (United States)

    Mamidi, Rao N V S; Benjamin, Biju; Ramesh, Mullangi; Srinivas, Nuggehally R

    2003-09-01

    To the best of our knowledge, bioanalytical methods to determine rosiglitazone in human plasma reported in literature use internal standards that are not commercially available. Our purpose was to develop a simple method for the determination of rosiglitazone in plasma employing a commercially available internal standard (IS). After the addition of celecoxib (IS), plasma (0.25 mL) samples were extracted into ethyl acetate. The residue after evaporation of the organic layer was dissolved in 750 microL of mobile phase and 50 microL was injected on to HPLC. The separation was achieved using a Hichrom KR 100, 250 x 4.6 mm C(18) with a mobile phase composition potassium dihydrogen phosphate buffer (0.01 m, pH 6.5):acetonitrile:methanol (40:50:10, v/v/v). The flow-rate of the mobile phase was set at 1 mL/min. The column eluate was monitored by fluorescence detector set at an excitation wavelength of 247 nm and emission wavelength of 367 nm. Linear relationships (r(2) > 0.99) were observed between the peak area ratio rosiglitazone to IS vs rosiglitazone concentrations across the concentration range 5-1000 ng/mL. The intra-run precision (%RSD) and accuracy (%Dev) in the measurement of rosiglitazone were 80% for both rosiglitazone and IS from human plasma. The lower limit of quantitation of the assay was 5 ng/mL. In summary, the methodology for rosiglitazone measurement in plasma was simple, sensitive and employed a commercially available IS. Copyright 2003 John Wiley & Sons, Ltd.

  4. Oral delivery of live yeast Debaryomyces hansenii modulates the main innate immune parameters and the expression of immune-relevant genes in the gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Reyes-Becerril, Martha; Salinas, Irene; Cuesta, Alberto; Meseguer, José; Tovar-Ramirez, Dariel; Ascencio-Valle, Felipe; Esteban, Maria Angeles

    2008-12-01

    Microorganisms isolated from fish can be used as prophylactic tools for aquaculture in the form of probiotic preparations. The purpose of this study was to evaluate the effects of dietary administration of the live yeast Debaryomyces hansenii CBS 8339 on the gilthead seabream (Sparus aurata L.) innate immune responses. Seabream were fed control or D. hansenii-supplemented diets (10(6) colony forming units, CFU g(-1)) for 4 weeks. Humoral (seric alternative complement and peroxidase activities), and cellular (peroxidase, phagocytic, respiratory burst and cytotoxic activities) innate immune parameters and antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) were measured from serum, head-kidney leucocytes and liver, respectively, after 2 and 4 weeks of feeding. Expression levels of immune-associated genes, Hep, IgM, TCR-beta, NCCRP-1, MHC-II alpha, CSF-1R, C3, TNF-alpha and IL-1 beta, were also evaluated by real-time PCR in head-kidney, liver and intestine. Humoral immune parameters were not significantly affected by the dietary supplementation of yeast at any time of the experiment. On the other hand, D. hansenii administration significantly enhanced leucocyte peroxidase and respiratory burst activity at week 4. Phagocytic and cytotoxic activities had significantly increased by week 2 of feeding yeast but unchanged by week 4. A significant increase in liver SOD activity was observed at week 2 of feeding with the supplemented diet; however CAT activity was not affected by the dietary yeast supplement at any time of the experiment. Finally, the yeast supplemented diet down-regulated the expression of most seabream genes, except C3, in liver and intestine and up-regulated all of them in the head-kidney. These results strongly support the idea that live yeast Debaryomyces hansenii strain CBS 8339 can stimulate the innate immune parameters in seabream, especially at cellular level.

  5. IFN-λ and microRNAs are important modulators of the pulmonary innate immune response against influenza A (H1N2) infection in pigs

    DEFF Research Database (Denmark)

    Brogaard, Louise; Larsen, Lars E.; Heegaard, Peter Mikael Helweg

    2018-01-01

    the expression of miRNAs and protein coding genes in the lungs of pigs 1, 3, and 14 days after challenge with swine IAV (H1N2). Through RT-qPCR we observed a 400-fold relative increase in IFN-lambda 3 gene expression on day 1 after challenge, and a strong interferon-mediated antiviral response was observed......The innate immune system is paramount in the response to and clearance of influenza A virus (IAV) infection in non-immune individuals. Known factors include type I and III interferons and antiviral pathogen recognition receptors, and the cascades of antiviral and pro- and anti-inflammatory gene...

  6. Combination of vildagliptin and rosiglitazone ameliorates nonalcoholic fatty liver disease in C57BL/6 mice.

    Science.gov (United States)

    Mookkan, Jeyamurugan; De, Soumita; Shetty, Pranesha; Kulkarni, Nagaraj M; Devisingh, Vijayaraj; Jaji, Mallikarjun S; Lakshmi, Vinitha P; Chaudhary, Shilpee; Kulathingal, Jayanarayan; Rajesh, Navin B; Narayanan, Shridhar

    2014-01-01

    To evaluate the effect of vildagliptin alone and in combination with metformin or rosiglitazone on murine hepatic steatosis in diet-induced nonalcoholic fatty liver disease (NAFLD). Male C57BL/6 mice were fed with high fat diet (60 Kcal %) and fructose (40%) in drinking water for 60 days to induce NAFLD. After the induction period, animals were divided into different groups and treated with vildagliptin (10 mg/kg), metformin (350 mg/kg), rosiglitazone (10 mg/kg), vildagliptin (10 mg/kg) + metformin (350 mg/kg), or vildagliptin (10 mg/kg) + rosiglitazone (10 mg/kg) orally for 28 days. Following parameters were measured: body weight, food intake, plasma glucose, triglyceride (TG), total cholesterol, liver function tests, and liver TG. Liver histopathology was also examined. Oral administration of vildagliptin and rosiglitazone in combination showed a significant reduction in fasting plasma glucose, hepatic steatosis, and liver TGs. While other treatments showed less or no improvement in the measured parameters. These preliminary results demonstrate that administration of vildagliptin in combination with rosiglitazone could be a promising therapeutic strategy for the treatment of NAFLD.

  7. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  8. Passive maternal exposure to environmental microbes selectively modulates the innate defences of chicken egg white by increasing some of its antibacterial activities.

    Science.gov (United States)

    Bedrani, Larbi; Helloin, Emmanuelle; Guyot, Nicolas; Réhault-Godbert, Sophie; Nys, Yves

    2013-06-07

    Egg defence against bacterial contamination relies on immunoglobulins (IgY) concentrated in the yolk and antimicrobial peptides/proteins predominantly localized in the egg white (EW). Hens contaminated with pathogenic microorganisms export specific IgYs to the egg (adaptative immunity). No evidence of such regulation has been reported for the antimicrobial peptides/proteins (innate immunity) which are preventively secreted by the hen oviduct and are active against a large range of microbes. We investigated whether the egg innate defences can be stimulated by the environmental microbial contamination by comparing the antimicrobial activity of EW of hens raised in three extreme breeding conditions: Germ-free (GF), Specific Pathogen Free (SPF) and Conventional (C) hens. The difference in the immunological status of GF, SPF and C hens was confirmed by the high stimulation of IL-1β, IL-8 and TLR4 genes in the intestine of C and SPF groups. EW from C and SPF groups demonstrated higher inhibitory effect against Staphylococcus aureus (13 to 18%) and against Streptococcus uberis (31 to 35%) as compared to GF but showed similar activity against Salmonella Enteritidis, Salmonella Gallinarum, Escherichia coli and Listeria monocytogenes. To further investigate these results, we explored putative changes amongst the three main mechanisms of egg antimicrobial defence: the sequestration of bacterial nutrients, the inactivation of exogenous proteases and the direct lytic action on microorganisms. Lysozyme activity, chymotrypsin-, trypsin- and papain-inhibiting potential of EW and the expression of numerous antimicrobial genes were not stimulated suggesting that these are not responsible for the change in anti-S. aureus and anti-S. uberis activity. Moreover, whereas the expression levels of IL-1β, IL-8 and TLR4 genes were modified by the breeding conditions in the intestine of C and SPF groups they were not modified in the magnum where egg white is formed. Altogether, these data

  9. Insulinotropic and anti-inflammatory effects of rosiglitazone in experimental autoimmune diabetes.

    Science.gov (United States)

    Awara, Wageh M; el-Sisi, Alaa E; el-Refaei, Mohamed; el-Naa, Mona M; el-Desoky, Karima

    2005-01-01

    Cytokines and nitric oxide (NO) are involved in the pathogenesis of autoimmune diabetes mellitus (DM). Rosiglitazone is an insulin-sensitizing drug that is a ligand for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The anti-inflammatory and immunomodulating properties of PPAR-gamma have been documented. The aim of this study is to investigate the effectiveness of rosiglitazone in autoimmune DM and to clarify the possible mechanism(s) involved. Autoimmune DM was induced in adult male Balb/c mice by co-administration of cyclosporin A and multiple low doses of streptozotocin. Diabetic mice were treated daily with rosiglitazone (7 mg/kg, p.o.) for 21 days. Blood glucose level (BGL), serum insulin level and pancreatic levels of tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and NO were measured. Histopathological examination and immunohistochemical determination of CD4 and CD8 T lymphocytes in the pancreatic islets were performed. In addition, analysis of pancreatic protein expression was carried out. The results showed that rosiglitazone treatment resulted in a significant decrease in the BGL and the pancreatic levels of TNF-alpha, IFN-gamma and NO compared to diabetic mice. The serum insulin level was significantly increased after rosiglitazone treatment compared to diabetic mice. The destroyed pancreatic islets were regenerated and became free from both CD4 and CD8 T cells after treatment. Furthermore, many changes in pancreatic protein expression were observed. These results suggest that rosiglitazone has a beneficial effect in the treatment of autoimmune diabetes, an effect that seemed to be a secondary consequence of its anti-inflammatory and immunomodulating properties and might be reflected at the level of protein expression.

  10. Rosiglitazone Decreases Plasma Levels of Osteoprotegerin in a Randomized Clinical Trial with Type 2 Diabetes Patients

    DEFF Research Database (Denmark)

    Nybo, Mads; Preil, Simone Rørdam; Juhl, Henning Friis

    2011-01-01

    regarding cardiovascular disease. The South Danish Diabetes Study, an investigator-driven, randomized, controlled clinical trial lasting 2 years, was used to test this hypothesis in patient groups with different medication strategies (insulin aspart or NPH insulin, added either metformin...... (R = 0.29, p = 0.0002), while this correlation was poor in those not receiving rosiglitazone (R = 0.06, p = 0.48). Treatment with rosiglitazone among patients with T2DM reduces the concentration of plasma OPG. This is not seen with metformin despite similar reductions in HbA(1c) . Alteration...

  11. Human innate lymphoid cells

    NARCIS (Netherlands)

    Hazenberg, Mette D.; Spits, Hergen

    2014-01-01

    Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of

  12. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets...

  13. Host Genetics: Fine-Tuning Innate Signaling

    OpenAIRE

    Fellay, Jacques; Goldstein, David B.

    2007-01-01

    A polymorphism modulating innate immunity signal transduction has recently been shown to influence human susceptibility to many different infections, providing one more indication of the potential of host genetics to reveal physiological pathways and mechanisms that influence resistance to infectious diseases.

  14. Modulation of innate and learned sexual behaviors by the TRP channel Painless expressed in the fruit fly brain: behavioral genetic analysis and its implications

    Directory of Open Access Journals (Sweden)

    Shoma eSato

    2014-12-01

    Full Text Available Transient receptor potential (TRP channels have attracted considerable attention because of their vital roles in primary sensory neurons, mediating responses to a wide variety of external environmental stimuli. However, much less is known about how TRP channels in the brain respond to intrinsic signals and are involved in neurophysiological processes that control complex behaviors. Painless (Pain is the Drosophila TRP channel that was initially identified as a molecular sensor responsible for detecting noxious thermal and mechanical stimuli. Here, we review recent behavioral genetic studies demonstrating that Pain expressed in the brain plays a critical role in both innate and learned aspects of sexual behaviors. Several members of the TRP channel superfamily play evolutionarily conserved roles in sensory neurons as well as in other peripheral tissues. It is thus expected that brain TRP channels in vertebrates and invertebrates would have some common physiological functions. Studies of Pain in the Drosophila brain using a unique combination of genetics and physiological techniques should provide valuable insights into the fundamental principles concerning TRP channels expressed in the vertebrate and invertebrate brains.

  15. Gradient HPLC method development and validation for Simultaneous estimation of Rosiglitazone and Gliclazide.

    Directory of Open Access Journals (Sweden)

    Uttam Singh Baghel

    2012-10-01

    Full Text Available Objective: The aim of present work was to develop a gradient RP-HPLC method for simultaneous analysis of rosiglitazone and gliclazide, in a tablet dosage form. Method: Chromatographic system was optimized using a hypersil C18 (250mm x 4.6mm, 5毺 m column with potassium dihydrogen phosphate (pH-7.0 and acetonitrile in the ratio of 60:40, as mobile phase, at a flow rate of 1.0 ml/min. Detection was carried out at 225 nm by a SPD-20A prominence UV/Vis detector. Result: Rosiglitazone and gliclazide were eluted with retention times of 17.36 and 7.06 min, respectively. Beer’s Lambert ’s Law was obeyed over the concentration ranges of 5 to 70 毺 g/ml and 2 to 12 毺 g/ml for rosiglitazone and gliclazide, respectively. Conclusion: The high recovery and low coefficients of variation confirm the suitability of the method for simultaneous analysis of both drugs in a tablets dosage form. Statistical analysis proves that the method is sensitive and significant for the analysis of rosiglitazone and gliclazide in pure and in pharmaceutical dosage form without any interference from the excipients. The method was validated in accordance with ICH guidelines. Validation revealed the method is specific, rapid, accurate, precise, reliable, and reproducible.

  16. Hyper-inflammation and skin destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency

    DEFF Research Database (Denmark)

    Das, Lopa M; Rosenjack, Julie; Au, Liemin

    2015-01-01

    Injury initiates recruitment of macrophages to support tissue repair; however, excessive macrophage activity may exacerbate tissue damage causing further destruction and subsequent delay in wound repair. Here we show that the peroxisome proliferation-activated receptor-γ agonist, rosiglitazone (R...

  17. Fenofibrate and rosiglitazone improve quality of lipoproteins in patients with type 2 diabetes mellitus

    Czech Academy of Sciences Publication Activity Database

    Vrablík, M.; Dobiášová, Milada; Štulc, T.; Kasalová, Z.; Doležalová, R.; Prázný, M.; Fait, T.; Češka, R.

    2008-01-01

    Roč. 29, č. 1 (2008), s. 146-150 ISSN 0172-780X R&D Projects: GA MZd(CZ) NR8328 Institutional research plan: CEZ:AV0Z50110509 Keywords : fenofibrate * rosiglitazone * type 2 diabetes mellitus Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.359, year: 2008

  18. Effects of Rosiglitazone, Glyburide, and Metformin on β-Cell Function and Insulin Sensitivity in ADOPT

    Science.gov (United States)

    Kahn, Steven E.; Lachin, John M.; Zinman, Bernard; Haffner, Steven M.; Aftring, R. Paul; Paul, Gitanjali; Kravitz, Barbara G.; Herman, William H.; Viberti, Giancarlo; Holman, Rury R.

    2011-01-01

    OBJECTIVE ADOPT (A Diabetes Outcome Progression Trial) demonstrated that initial monotherapy with rosiglitazone provided superior durability of glycemic control compared with metformin and glyburide in patients with recently diagnosed type 2 diabetes. Herein, we examine measures of β-cell function and insulin sensitivity from an oral glucose tolerance test (OGTT) over a 4-year period among the three treatments. RESEARCH DESIGN AND METHODS Recently diagnosed, drug-naïve patients with type 2 diabetes (4,360 total) were treated for a median of 4.0 years with rosiglitazone, metformin, or glyburide and were examined with periodic metabolic testing using an OGTT. RESULTS Measures of β-cell function and insulin sensitivity from an OGTT showed more favorable changes over time with rosiglitazone versus metformin or glyburide. Persistent improvements were seen in those who completed 4 years of monotherapy and marked deterioration of β-cell function in those who failed to maintain adequate glucose control with initial monotherapy. CONCLUSIONS The favorable combined changes in β-cell function and insulin sensitivity over time with rosiglitazone appear to be responsible for its superior glycemic durability over metformin and glyburide as initial monotherapy in type 2 diabetes. PMID:21415383

  19. Effects of Rosiglitazone on the Expression of PPAR-γ and on the ...

    African Journals Online (AJOL)

    Purpose: Peroxisome proliferator-activated receptor (PPAR)-γ ligand is known to repress the expression of pro-inflammatory mediators. However, it is unclear how it affects PPAR-γ expression and the inflammatory response in the human lung. We investigated the effects of rosiglitazone (synthetic PPAR-γ ligand) on the ...

  20. Approaching archetypes: reconsidering innateness.

    Science.gov (United States)

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion. © 2010, The Society of Analytical Psychology.

  1. Microdialysis combined blood sampling technique for the determination of rosiglitazone and glucose in brain and blood of gerbils subjected to cerebral ischemia.

    Science.gov (United States)

    Sheu, Wayne H-H; Chuang, Hsiu-Chun; Cheng, Shiu-Min; Lee, Maw-Rong; Chou, Chi-Chi; Cheng, Fu-Chou

    2011-03-25

    Rosiglitazone is a potent synthetic peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist which improves glucose control in the plasma and reduces ischemic brain injury. However, the pharmacokinetics of rosiglitazone in the brain is still unclear. In this study, a method using liquid chromatography-mass spectrometry coupled with microdialysis and an auto-blood sampling system was developed to determine rosiglitazone and glucose concentration in the brain and blood of gerbils subjected to treatment with rosiglitazone (3.0 mg kg(-1), i.p.). The results showed the limit of detection was 0.04 μg L(-1) and the correlation coefficient was 0.9997 for the determination of rosiglitazone in the brain. The mean parameters, maximum drug concentration (C(max)) and the area under the concentration-time curve from time zero to time infinity (AUC(inf)), following rosiglitazone administration were 1.06±0.28 μg L(-1) and 296.82±44.67 μg min L(-1), respectively. The time to peak concentration (C(max) or T(max)) of rosiglitazone occurred at 105±17.10 min, and the mean elimination half-life (t(1/2)) from brain was 190.81±85.18 min after administration of rosiglitazone. The brain glucose levels decreased to 71% of the basal levels in the rosiglitazone-treated group when compared with those in the control (pblood glucose levels to 80% at 1h after pretreatment of rosiglitazone (pglucose concentrations in brain and plasma. Rosiglitazone was effective at penetrating the blood-brain barrier as evidenced by the rapid appearance of rosiglitazone in the brain, and rosiglitazone may contribute to a reduction in the extent of injuries related to cerebral ischemic stroke via its hypoglycemic effect. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. TYK2, a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells

    DEFF Research Database (Denmark)

    Marroqui, Laura; Dos Santos, Reinaldo Sousa; Fløyel, Tina

    2015-01-01

    histocompatibility complex (MHC) class I proteins, a hallmark of early β-cell inflammation in type 1 diabetes. Importantly, TYK2 inhibition prevented PIC-induced β-cell apoptosis via the mitochondrial pathway of cell death. The present findings suggest that TYK2 regulates apoptotic and proinflammatory pathways...... in pancreatic β-cells via modulation of IFNα signaling, subsequent increase in MHC class I protein, and modulation of chemokines such as CXCL10 that are important for recruitment of T cells to the islets.......Pancreatic β-cells are destroyed by an autoimmune attack in type 1 diabetes. Linkage and genome-wide association studies point to >50 loci that are associated with the disease in the human genome. Pathway analysis of candidate genes expressed in human islets identified a central role for interferon...

  3. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-γ ligand, rosiglitazone

    International Nuclear Information System (INIS)

    Wakui, Yuta; Inoue, Jun; Ueno, Yoshiyuki; Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru

    2010-01-01

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-α, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPARα ligand, bezafibrate, and a PPARγ ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPARγ, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-α-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.

  4. Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells

    International Nuclear Information System (INIS)

    Cerquetti, Lidia; Sampaoli, Camilla; Amendola, Donatella; Bucci, Barbara; Masuelli, Laura; Marchese, Rodolfo; Misiti, Silvia; De Venanzi, Agostino; Poggi, Maurizio; Toscano, Vincenzo; Stigliano, Antonio

    2011-01-01

    Thiazolidinediones, specific peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands, used in type-2 diabetes therapy, show favourable effects in several cancer cells. In this study we demonstrate that the growth of H295R and SW13 adrenocortical cancer cells is inhibited by rosiglitazone, a thiazolidinediones member, even though the mechanisms underlying this effect appeared to be cell-specific. Treatment with GW9662, a selective PPAR-γ-inhibitor, showed that rosiglitazone acts through both PPAR-γ-dependent and -independent mechanisms in H295R, while in SW13 cells the effect seems to be independent of PPAR-γ. H295R cells treated with rosiglitazone undergo an autophagic process, leading to morphological changes detectable by electron microscopy and an increased expression of specific proteins such as AMPKα and beclin-1. The autophagy seems to be independent of PPAR-γ activation and could be related to an increase in oxidative stress mediated by reactive oxygen species production with the disruption of the mitochondrial membrane potential, triggered by rosiglitazone. In SW13 cells, flow cytometry analysis showed an arrest in the G0/G1 phase of the cell cycle with a decrease of cyclin E and cdk2 activity, following the administration of rosiglitazone. Our data show the potential role of rosiglitazone in the therapeutic approach to adrenocortical carcinoma and indicate the molecular mechanisms at the base of its antiproliferative effects, which appear to be manifold and cell-specific in adrenocortical cancer lines.

  5. Can modeling of health outcomes facilitate regulatory decision making? The benefit-risk tradeoff for rosiglitazone in 1999 vs. 2007.

    Science.gov (United States)

    Cross, J T; Veenstra, D L; Gardner, J S; Garrison, L P

    2011-03-01

    Rosiglitazone was initially approved for type 2 diabetes monotherapy. We tested health-outcomes modeling as an aid to regulatory decision making by quantifying the incremental net benefit (INB) value of rosiglitazone (relative to a comparator), both at the time of first approval (1999) and at the FDA advisory committee review (2007). Using 1999 data, rosiglitazone was projected to provide an additional 0.639 years of life (0.373 quality-adjusted life years (QALYs)) relative to placebo but a loss of 0.312 years (0.173 QALYs) relative to glyburide, with uncertainty in reduction of hemoglobin A(1c) (HbA(1c)) level having the greatest impact on the benefit-risk profile. By 2007, rosiglitazone was projected to provide an additional 0.222 years (0.091 QALYs) vs. glyburide and 0.026 years vs. metformin (0.009 QALYs). Modeling suggested that the use of rosiglitazone as monotherapy was not initially warranted, given the uncertainty with regard to benefit. Despite similar net benefit (NB) as metformin shown in postmarketing data, residual cardiovascular (CV) concerns did not support the use of rosiglitazone as first-line therapy. We adapted a mathematical diabetes model to estimate NB and uncertainty of diabetes monotherapy.

  6. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-{gamma} ligand, rosiglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Yuta; Inoue, Jun [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Ueno, Yoshiyuki, E-mail: yueno@mail.tains.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan)

    2010-05-28

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.

  7. Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cerquetti, Lidia; Sampaoli, Camilla [Endocrinology, Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Faculty of Medicine and Psychology ' Sapienza' University of Rome, Via di Grottarossa, 1035-00189 Rome (Italy); Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy); Amendola, Donatella; Bucci, Barbara [Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy); Masuelli, Laura [Department of Experimental Medicine, ' Sapienza' University of Rome, Rome (Italy); Marchese, Rodolfo [Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy); Misiti, Silvia [Endocrinology, Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Faculty of Medicine and Psychology ' Sapienza' University of Rome, Via di Grottarossa, 1035-00189 Rome (Italy); Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy); De Venanzi, Agostino; Poggi, Maurizio; Toscano, Vincenzo [Endocrinology, Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Faculty of Medicine and Psychology ' Sapienza' University of Rome, Via di Grottarossa, 1035-00189 Rome (Italy); Stigliano, Antonio, E-mail: antonio.stigliano@uniroma1.it [Endocrinology, Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Faculty of Medicine and Psychology ' Sapienza' University of Rome, Via di Grottarossa, 1035-00189 Rome (Italy); Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy)

    2011-06-10

    Thiazolidinediones, specific peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) ligands, used in type-2 diabetes therapy, show favourable effects in several cancer cells. In this study we demonstrate that the growth of H295R and SW13 adrenocortical cancer cells is inhibited by rosiglitazone, a thiazolidinediones member, even though the mechanisms underlying this effect appeared to be cell-specific. Treatment with GW9662, a selective PPAR-{gamma}-inhibitor, showed that rosiglitazone acts through both PPAR-{gamma}-dependent and -independent mechanisms in H295R, while in SW13 cells the effect seems to be independent of PPAR-{gamma}. H295R cells treated with rosiglitazone undergo an autophagic process, leading to morphological changes detectable by electron microscopy and an increased expression of specific proteins such as AMPK{alpha} and beclin-1. The autophagy seems to be independent of PPAR-{gamma} activation and could be related to an increase in oxidative stress mediated by reactive oxygen species production with the disruption of the mitochondrial membrane potential, triggered by rosiglitazone. In SW13 cells, flow cytometry analysis showed an arrest in the G0/G1 phase of the cell cycle with a decrease of cyclin E and cdk2 activity, following the administration of rosiglitazone. Our data show the potential role of rosiglitazone in the therapeutic approach to adrenocortical carcinoma and indicate the molecular mechanisms at the base of its antiproliferative effects, which appear to be manifold and cell-specific in adrenocortical cancer lines.

  8. Are innate immune signaling pathways in plants and animals conserved?

    Science.gov (United States)

    Ausubel, Frederick M

    2005-10-01

    Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

  9. Short-Term Therapy with Rosiglitazone, a PPAR-γ Agonist, Improves Metabolic Profile and Vascular Function in Nonobese Lean Wistar Rats

    OpenAIRE

    Naderali, Mohammad M.; Itua, Imose; Abubakari, Abdul-Razak; Naderali, Ebrahim K.

    2012-01-01

    A number of preclinical and clinical studies have reported blood-pressure-lowering benefits of thiazolidinediones in diabetic subjects and animal models of diabetes. This study was designed to further elucidate vascular effects of rosiglitazone, on healthy nonobese, lean animals. Adult male Wistar rats were randomized and assigned to control and rosiglitazone-treated groups and were dosed daily with either vehicle or rosiglitazone (10 mg kg−1 day−1) by oral gavage for 5 days. Compared with co...

  10. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression.

    Science.gov (United States)

    Toyota, Yosuke; Nomura, Sayaka; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru

    2017-06-15

    Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC 50 : 14μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Rosiglitazone Reduces Plasma Levels of Inflammatory and Hemostatic Biomarkers and Improves Global Endothelial Function in Habitual Heavy Smokers Without Diabetes Mellitus or Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    I-Chih Chen

    2010-02-01

    Conclusion: Rosiglitazone significantly reduces plasma levels of inflammatory and hemostatic biomarkers, and restores global endothelial dysfunction, independently from insulin sensitization, in healthy smokers.

  12. Effects of rosiglitazone on metabolic parameters and large artery sclerosis in nondiabetic patients with metabolic sydrome

    International Nuclear Information System (INIS)

    Shen Zhenhai; Lu Yun; Feng Yinbo; Jin Xian

    2010-01-01

    Objective: To observe the effects of rosiglitazone on metabolic parameters, carotid intimamedia thickness (IMT), brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) in nondiabetic patients with metabolic syndrome. Methods: Seventy-nine nondiabetic patients with metabolic syndrome were randomly divided into treatment group (n = 41) and control group (n = 38). The patients in treatment group were treated with rosiglitazone on the basis of life-style intervention, those in control group were treated with life-style intervention for 9 months. All patients were followed up every 3 months. Body mass index (BMI) ,waist circumference(WC), systolic blood pressure (SBP), diastolic blood pressure(DBP), fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), highdendity lipoprotein (HDL-C), Low-density lipoprotein (LDL), high sensitivity C-reactive protein (hsCRP), HbA 1 C, fasting insulin (FIns), HOMA-IR, IMT, baPWV and ABI were measured in both groups before treatment and at the 6th, 9th month after treatment. Results: (1) After treatment with rosiglitazone for 6 months, FPG, TG, HDL-C, hsC RP, HbA 1 C, Fins and HOMA-IR in treatment group were improved (P 1 C, Fins and HOMA-IR got further improvement at the 9th month after treatment (P 1 C, Fins and HOMA-IR were changed significantly in treatment group compared to those in control group (P 1 C and HOMA-IR was independently related to the improvement of ABI by multivarient analysis. Conclusion: In nondiabetic patients with metabolic syndrome, rosiglitazone can significantly improve insulin resistance, correct metabolic disorders, has anti-inflammatory effect and retard atherosclerosis at some extent. (authors)

  13. Rosiglitazone delayed weight loss and anorexia while attenuating adipose depletion in mice with cancer cachexia

    OpenAIRE

    Asp, Michelle L.; Tian, Min; Kliewer, Kara L.; Belury, Martha A.

    2011-01-01

    Cachexia is characterized by severe weight loss, including adipose and muscle wasting, and occurs in a large percentage of cancer patients. Insulin resistance contributes to dysregulated metabolism in cachexia and occurs prior to weight loss in mice with colon-26 tumor-induced cachexia. Therefore, we hypothesized that the insulin sensitizer, rosiglitazone, would attenuate the loss of adipose and muscle to result in improved outcomes for mice with late-stage cachexia. Male CD2F1 mice were inoc...

  14. A novel translabial platform utilizing bioexcipients from Litchi chinesis for the delivery of rosiglitazone maleate

    Directory of Open Access Journals (Sweden)

    N.V. Satheesh Madhav

    2013-12-01

    Full Text Available The aim of this study was to formulate drug-loaded bio-lipstrips using novel bioexcipients isolated from the fruit pulp of Litchi chinesis (biomaterial L and to explore the potentiality of lip skin as a novel translabial drug delivery system. The biomaterial, prepared by a simplified economical process and purified by hot dialysis, was subjected to various physicochemical evaluations along with spectral analysis including UV, FT-IR, Mass and 1H NMR. The lipstrip formulated with the novel bioexcipients was screened for its functional properties, including filmability using a film-casting method, and bio/muco-adhesitivity using a shear-stress method, the Park and Robinson method and a rotating cylinder method. Rosiglitazone-loaded bio-lipstrips were formulated by using biomaterial L as a strip former and dextrose as a flexicizer. The formulated strips were subjected to various evaluations, including thickness, folding endurance, in-vitro release and in-vivo release. The release of rosiglitazone maleate was maintained over 24 h, which was confirmed in in-vitro and in-vivo release experiments. Our results reveal that this biopolymer possesses promising stripability as well as bio-adhesitivity. The formulated bio-lipstrips are feasible for delivering rosiglitazone maleate by translabial administration.

  15. Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation

    International Nuclear Information System (INIS)

    Hirakata, Masao; Tozawa, Ryuichi; Imura, Yoshimi; Sugiyama, Yasuo

    2004-01-01

    In order to elucidate the antiatherogenic effects of pioglitazone (a peroxisome proliferator-activated receptor [PPAR]γ agonist with PPARα agonistic activity) and rosiglitazone (a more selective PPARγ agonist), we examined gene expression and cholesteryl ester accumulation in THP-1-derived macrophages. Pioglitazone enhanced the mRNA expression of the proatherogenic factors CD36 and adipophilin, but was approximately 10 times less potent than rosiglitazone. The potencies of the two agents appeared to correspond to their PPARγ agonistic activities in this respect. However, both agents were similarly potent in enhancing the mRNA expression of the antiatherogenic factors liver X receptor α and ATP-binding cassette-transporter A1. Furthermore, both agents enhanced cholesteryl ester hydrolase mRNA expression and inhibited acyl-CoA cholesterol acyltransferase-1 mRNA expression and cholesteryl ester accumulation in macrophages. In this respect, their potencies appeared to correspond to their PPARα agonistic activities. These results suggest that pioglitazone has an equally beneficial effect on antiatherogenic events to rosiglitazone, despite being almost 10 times less potent than a PPARγ agonist

  16. Human innate lymphoid cells.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Human innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Spits, Hergen

    2016-01-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune

  18. Tick Innate Immunity.

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Petr; Hajdušek, Ondřej; Burešová, Veronika; Daffre, S.

    2010-01-01

    Roč. 708, - (2010), 137-162 ISSN 0065-2598 R&D Projects: GA ČR GAP506/10/2136; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick * pathogen transmission * innate immunity Subject RIV: EC - Immunology Impact factor: 1.379, year: 2010

  19. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    Science.gov (United States)

    Lozano-Torres, Jose L.; Wilbers, Ruud H. P.; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C.; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  20. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    Science.gov (United States)

    Lozano-Torres, Jose L; Wilbers, Ruud H P; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-12-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  1. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    Directory of Open Access Journals (Sweden)

    Jose L Lozano-Torres

    2014-12-01

    Full Text Available Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes

  2. Effects of rosiglitazone on serum paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Atamer, Y. [Department of Medical Biochemistry, Faculty of Medicine, Dicle University, Diyarbakır (Turkey); Atamer, A. [Ministry of Health Haydarpaşa Numune Training and Research Hospital, Division of Gastroenterology, Department of Internal Medicine, Istanbul, Turkey, Division of Gastroenterology, Department of Internal Medicine, Ministry of Health Haydarpaşa Numune Training and Research Hospital, Istanbul (Turkey); Can, A.S. [Termal Professional School, Yalova University, Yalova (Turkey); Hekimoğlu, A. [Dicle University, Department of Pharmacology, Faculty of Medicine, Diyarbakir, Turkey, Department of Pharmacology, Faculty of Medicine, Dicle University, Diyarbakır (Turkey); Ilhan, N. [Firat University, Department of Medical Biochemistry, Faculty of Medicine, Elaziğ, Turkey, Department of Medical Biochemistry, Faculty of Medicine, Fırat University, Elazığ (Turkey); Yenice, N. [Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Harran University, Urfa (Turkey); Koçyiğit, Y. [Dicle University, Department of Physiology, Faculty of Medicine, Diyarbakir, Turkey, Department of Physiology, Faculty of Medicine, Dicle University, Diyarbakır (Turkey)

    2013-06-25

    Human serum paraoxonase contributes to the anti-atherogenic effect of high-density lipoprotein cholesterol (HDL-C) and has been shown to protect both low-density lipoprotein cholesterol (LDL-C) and HDL-C against lipid peroxidation. We investigated the effects of rosiglitazone on paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus [50 patients (30 males, 20 females); mean±SD age: 58.7±9.2 years, body mass index: 28.2±4.1'kg/m{sup 2}], in whom glucose control could not be achieved despite treatment with metformin, sulphonylurea, and/or insulin. The patients were given 4'mg/day rosiglitazone for 3 months in addition to their usual treatment. Serum paraoxonase activity, malondialdehyde, homocysteine, and lipid profile were measured at the time of initiation and at the end of therapy with rosiglitazone. After rosiglitazone therapy, serum levels of HDL-C, apolipoprotein A-1, and paraoxonase activity increased significantly (P<0.05) and malondialdehyde, homocysteine, lipoprotein(a), and glucose levels decreased significantly (P<0.05), but no significant changes in levels of total cholesterol and apolipoprotein B were observed. Triglyceride levels also increased significantly (P<0.05). Rosiglitazone treatment led to an improvement in glycemic control and to an increase in paraoxonase activity and HDL-C levels. Although rosiglitazone showed favorable effects on oxidant/antioxidant balance and lipid profile, further studies are needed to determine the effect of rosiglitazone on cardiovascular risk factors and cardiovascular morbidity and mortality.

  3. Effects of rosiglitazone on serum paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Atamer, Y.; Atamer, A.; Can, A.S.; Hekimoğlu, A.; Ilhan, N.; Yenice, N.; Koçyiğit, Y.

    2013-01-01

    Human serum paraoxonase contributes to the anti-atherogenic effect of high-density lipoprotein cholesterol (HDL-C) and has been shown to protect both low-density lipoprotein cholesterol (LDL-C) and HDL-C against lipid peroxidation. We investigated the effects of rosiglitazone on paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus [50 patients (30 males, 20 females); mean±SD age: 58.7±9.2 years, body mass index: 28.2±4.1'kg/m 2 ], in whom glucose control could not be achieved despite treatment with metformin, sulphonylurea, and/or insulin. The patients were given 4'mg/day rosiglitazone for 3 months in addition to their usual treatment. Serum paraoxonase activity, malondialdehyde, homocysteine, and lipid profile were measured at the time of initiation and at the end of therapy with rosiglitazone. After rosiglitazone therapy, serum levels of HDL-C, apolipoprotein A-1, and paraoxonase activity increased significantly (P<0.05) and malondialdehyde, homocysteine, lipoprotein(a), and glucose levels decreased significantly (P<0.05), but no significant changes in levels of total cholesterol and apolipoprotein B were observed. Triglyceride levels also increased significantly (P<0.05). Rosiglitazone treatment led to an improvement in glycemic control and to an increase in paraoxonase activity and HDL-C levels. Although rosiglitazone showed favorable effects on oxidant/antioxidant balance and lipid profile, further studies are needed to determine the effect of rosiglitazone on cardiovascular risk factors and cardiovascular morbidity and mortality

  4. Modulation of innate immunity and gene expressions in white shrimp Litopenaeus vannamei following long-term starvation and re-feeding

    Science.gov (United States)

    Lin, Yong-Chin; Chen, Jiann-Chu; C. Man, Siti Nursafura; W. Morni, Wan Zabidii; N.A. Suhaili, Awangku Shahrir; Cheng, Sha-Yen; Hsu, Chih-Hung

    2012-01-01

    after 5 days of re-feeding except for GCs, whereas all parameters of 14-day-starved shrimp failed to return to the baseline values even with 5 days of re-feeding. It was concluded that shrimp starved for 14 days exhibited three stages of modulation of gene expression, together with reductions in immune parameters, and decreased resistance against pathogens. PMID:24371579

  5. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice.

    Directory of Open Access Journals (Sweden)

    Olga Horakova

    Full Text Available Insulin resistance, the key defect in type 2 diabetes (T2D, is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA and thiazolidinediones (TZDs, anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F, cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI, cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients.

  6. Improvement in psoriasis with rosiglitazone in a diabetic and a nondiabetic patient.

    Science.gov (United States)

    Pershadsingh, Harrihar A; Benson, Steven C; Ellis, Charles N

    2005-01-01

    The authors conducted a prospective, open-label, pilot trial of the effects of the antidiabetic thiazolidinedione (TZD) rosiglitazone in two patients with moderate to severe plaque psoriasis. Case 1: A lean, euglycemic 43-year-old nondiabetic man with a 2-year history of plaque psoriasis presented with lesions involving 10% of his body surface (Figures 1A, 1B, 1C). He had no other chronic or acute medical problems. He had previously been managed sporadically with topical triamcinolone acetonide, an intermediate-strength glucocorticoid, and was off antipsoriatic medication for 5 months. He was started on rosiglitazone p.o., 8 mg q.d. After 10 weeks on rosiglitazone, the lesions developed increased erythema, spreading, and shedding of scale (Figures 2A, 2B, 2C). After an additional 26 weeks, the lesions had largely disappeared (Figures 3A, 3B, 3C). The patient remained euglycemic throughout the study. His liver function enzymes (alanine transferase [ALT] and aspartate transferase [AST]) remained normal throughout the study: ALT, 23 IU/L; AST, 47 IU/L before treatment; ALT, 25 IU/L; AST, 33 IU/L after treatment. There were no adverse events. Case 2: An overweight 68-year-old woman (body mass index, 29 kg/m2; with a 12-year history of type 2 diabetes and 5-year history of psoriasis presented with generalized plaque psoriasis over 20% of her body, including two large, thick, silvery plaques with the texture of leather over the lower part of the back (Figure 4A). She was given rosiglitazone p.o., 4 mg b.i.d. for 24 weeks, which resulted in significant improvement in psoriasis (Figure 4B). After an additional 26 weeks on rosiglitazone, the plaques had cleared on her back (Figure 4C) and over her entire body, including scalp, ears, and posterior forearms (not shown). Her glycemic control improved (hemoglobin A1c decreased from 7.7% to 7.2%) and liver function remained normal throughout the study (ALT, 24 IU/L; AST, 14 IU/L before treatment; and ALT, 26 IU/L; AST, 15 IU

  7. Anti-HIV drugs, lopinavir/ritonavir and atazanavir, modulate innate immune response triggered by Leishmania in macrophages: the role of NF-κB and PPAR-γ.

    Science.gov (United States)

    Alves, Érica Alessandra Rocha; de Miranda, Marthina Gomes; Borges, Tatiana Karla; Magalhães, Kelly Grace; Muniz-Junqueira, Maria Imaculada

    2015-02-01

    This study evaluated the influence of HIV protease inhibitors lopinavir/ritonavir (LPV/RTV) and atazanavir (ATV) on macrophage functions during their first interaction with Leishmania. Macrophages from BALB/c mice treated for 10days with LPV/RTV and ATV, infected or not in vitro with L. (L.) amazonensis, were used to investigate the effects of these drugs on infection index, leishmanicidal capacity, cytokine production and PPAR-γ and RelB expression. LPV/RTV and ATV treatments significantly increased the infection index and the percentage of Leishmania-infected macrophages compared to untreated infected macrophages. There was no correlated increase in the production of NO and H2O2 leishmanicidal molecules. Promastigotes derived from Leishmania-infected macrophages from LPV/RTV and ATV-treated BALB/c mice had an in vitro growth 45.1% and 56.4% higher in groups treated with LPV/RTV and ATV than with PBS in culture. ATV treatment reduced IL-12p70 and IL-10 secretion in Leishmania-infected macrophages, but had no effect on IL-23 and TNF production. LPV reduced IL-10 and had no effect on IL-12p70, TNF and IL-23 secretion. ATV treatment decreased PPAR-γ expression in Leishmania-infected macrophages compared to untreated infected macrophages. In addition, LPV/RTV, but not ATV, reduced RelB cytoplasm-to-nucleus translocation in Leishmania-infected macrophages. Results showed that LPV/RTV and ATV HIV protease inhibitors were able to modulate innate defense mechanisms against Leishmania via different intracellular pathways. Although HIV protease inhibitors are highly efficient to control the Human Immunodeficiency Virus, these drugs might also influence the course of leishmaniasis in HIV-Leishmania-co-infected individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    International Nuclear Information System (INIS)

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-01-01

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPARγ) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPARγ-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPARγ activation in an AD mouse model.

  9. Serial micro-CT assessment of the therapeutic effects of rosiglitazone in a bleomycin-induced lung fibrosis mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Jung; Jin, Gong Yong; Bok, Se Mi; Han, Young Min; Lee, Young Sun; Jung, Myung Ja; Kwon, Keun Sang [Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju (Korea, Republic of)

    2014-08-15

    The aim of this study was to assess the therapeutic effects of rosiglitazone with serial micro-CT findings before and after rosiglitazone administration in a lung fibrosis mouse model induced with bleomycin. We instilled the bleomycin solution directly into the trachea in twenty mice (female, C57BL/6 mice). After the instillation with bleomycin, mice were closely observed for 3 weeks and then all mice were scanned using micro-CT without sacrifice. At 3 weeks, the mice were treated with rosiglitazone on days 21 to 27 if they had abnormal CT findings (n = 9, 45%). For the mice treated with rosiglitazone, we performed micro-CT with mouse sacrifice 2 weeks after the rosiglitazone treatment completion. We assessed the abnormal CT findings (ground glass attenuation, consolidation, bronchiectasis, reticular opacity, and honeycombing) using a five-point scale at 3 and 6 weeks using Wilcoxon-signed ranked test. The micro-CT findings were correlated with the histopathologic results. One out of nine (11.1%) mice improved completely. In terms of consolidation, all mice (100%) showed marked decrease from 3.1 ± 1.4 at 3 weeks to 0.9 ± 0.9 at 6 weeks (p = 0.006). At 6 weeks, mild bronchiectasis (n = 6, 66.7%), mild reticular opacity (n 7, 77.8%) and mild honeycomb patterns (n = 3, 33.3%) appeared. A serial micro-CT enables the evaluation of drug effects in a lung fibrosis mouse model.

  10. The effects of human CYP2C8 genotype and fluvoxamine on the pharmacokinetics of rosiglitazone in healthy subjects

    DEFF Research Database (Denmark)

    Pedersen, Rasmus S; Damkier, Per; Brosen, Kim

    2006-01-01

    = 0.0066) increase in the AUC(0-infinity) of rosiglitazone, with a geometric mean ratio of 1.21 [95% confidence interval (CI) 1.06-1.39]. The elimination half-life (t(1/2)) was also significantly higher (P = 0.0203) with a geometric mean ratio of 1.38 [95% CI 1.06-1.79]. The coadministration...... of fluvoxamine had no influence on the pharmacokinetics of N-desmethylrosiglitazone. CONCLUSION: The importance of the CYP2C8*3 mutation in the in vivo metabolism of rosiglitazone could not be confirmed. Fluvoxamine increased the AUC(0-infinity) and t(1/2) of rosiglitazone moderately and hence may be a weak...

  11. Determination of glibenclamide, metformin hydrochloride and rosiglitazone maleate by reversed phase liquid chromatographic technique in tablet dosage form

    Directory of Open Access Journals (Sweden)

    Havele Shweta S.

    2014-01-01

    Full Text Available A simple, precise and accurate high performance liquid chromatography (HPLC method was developed for the simultaneous estimation of metformin hydrochloride, rosiglitazone maleate, glibenclamide present in multicomponent dosage forms. Chromatography was performed on a 25 cm × 4.6 mm i.d., 5-μm particle, C18 column with 78:22 (v/v methanol: 20 mM potassium dihydrogen phosphate buffer as mobile phase at a flow rate of 1.0 ml/min and UV detection at 238 nm for metformin hydrochloride, rosiglitazone maleate, and glibenclamide. The total elution time was shorter than 9 min. This method was found to be precise and reproducible. This proposed method was successfully applied for the analysis of metformin hydrochloride, rosiglitazone maleate, glibenclamide as a bulk drug and in pharmaceutical formulation without any interference from the excipients.

  12. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.

    Science.gov (United States)

    Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia

    2017-01-01

    Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  13. Improving microphage innate immunity by modulating protein ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Diseases that result from an infection are most often resolved by cells that use an immune response to clear foreign agents. ... The authors hypothesize that certain PTPs favour the generation of the pro-inflammatory M1 macrophages, thereby regulating the functions leading to promoting immune surveillance and killing of ...

  14. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  15. Effect of pomegranate peel alone and in combination with rosiglitazone on hyperglycemia and dyslipidemia in type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Shujaat, A.; Hussain, M.M.

    2016-01-01

    To evaluate the effect of pomegranate peel extract with or without rosiglitazone on plasma glucose and lipid profile in insulin resistant diabetic rats. Study Design: Randomized controlled trial. Place and Duration of Study: Department of Physiology, Army Medical College, Rawalpindi, in collaboration with National Institute of Health (N.I.H), Islamabad from 1st January 2011 to 28th May 2011. Material and Methods: Type 2 diabetes mellitus was induced in sixty healthy rats. The diabetic rats were divided into four groups, namely diabetic control group which received intraperitoneal injection of normal saline daily, pomegranate group which was treated similar to control group and also received pomegranate peel extract (200mg/kg body weight) orally once daily, rosiglitazone group which received intraperitoneal injection of rosiglitazone (5mg/kg body weight) daily and the combined group received both pomegranate extract (100 mg/kg body weight, orally) and intraperitoneal injection of rosiglitazone (2.5 mg/kg body weight) daily for 28 days. After four weeks of treatment, terminal intracardiac sampling was done to measure plasma glucose and lipid profile. Results: The plasma glucose and mean serum levels of cholesterol, triglyceride, low density lipoproteins and very low density lipoproteins was significantly reduced (p<0.001) in pomegranate, rosiglitazone and combined groups respectively as compared to the diabetic control. The mean serum levels of high density lipoproteins were significantly (p<0.001) elevated in above mentioned groups as compared to the diabetic control. Conclusion: Pomegranate peel extract is hypoglycemic and hypolipidemic agent in low doses when used alone or in combination with rosiglitazone in type 2 diabetic rats. (author)

  16. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  17. Simpson's paradox visualized: The example of the Rosiglitazone meta-analysis

    Directory of Open Access Journals (Sweden)

    Schumacher Martin

    2008-05-01

    Full Text Available Abstract Background Simpson's paradox is sometimes referred to in the areas of epidemiology and clinical research. It can also be found in meta-analysis of randomized clinical trials. However, though readers are able to recalculate examples from hypothetical as well as real data, they may have problems to easily figure where it emerges from. Method First, two kinds of plots are proposed to illustrate the phenomenon graphically, a scatter plot and a line graph. Subsequently, these can be overlaid, resulting in a overlay plot. The plots are applied to the recent large meta-analysis of adverse effects of rosiglitazone on myocardial infarction and to an example from the literature. A large set of meta-analyses is screened for further examples. Results As noted earlier by others, occurrence of Simpson's paradox in the meta-analytic setting, if present, is associated with imbalance of treatment arm size. This is well illustrated by the proposed plots. The rosiglitazone meta-analysis shows an effect reversion if all trials are pooled. In a sample of 157 meta-analyses, nine showed an effect reversion after pooling, though non-significant in all cases. Conclusion The plots give insight on how the imbalance of trial arm size works as a confounder, thus producing Simpson's paradox. Readers can see why meta-analytic methods must be used and what is wrong with simple pooling.

  18. ID’ing Innate and Innate-like Lymphoid Cells

    Science.gov (United States)

    Verykokakis, Mihalis; Zook, Erin C.; Kee, Barbara L.

    2014-01-01

    Summary The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. PMID:25123285

  19. ID'ing innate and innate-like lymphoid cells.

    Science.gov (United States)

    Verykokakis, Mihalis; Zook, Erin C; Kee, Barbara L

    2014-09-01

    The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: Assessed by micro-computed tomography and pathologic scores

    International Nuclear Information System (INIS)

    Jin, Gong Yong; Bok, Se Mi; Han, Young Min; Chung, Myung Ja; Yoon, Kwon-Ha; Kim, So Ri; Lee, Yong Chul

    2012-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) agonists exhibit potent anti-fibrotic effects in the lung and other tissues. Recently, micro-computed tomography (CT) has been a useful tool for the investigation of lung diseases in small animals and is now increasingly applied to visualize and quantify the pulmonary structures. However, there is little information on the assessment for therapeutic effects of PPARγ agonists on the pulmonary fibrosis in mice using micro-CT. This study was aimed to determine the capability of micro-CT in examining the effects of rosiglitazone on pulmonary fibrosis. We used a murine model of bleomycin-induced lung fibrosis to evaluate the feasibility of micro-CT in evaluating the therapeutic potential of rosiglitazone on pulmonary fibrosis, comparing with pathologic scores. On micro-CT findings, ground glass opacity (80%) and consolidation (20%) were observed predominantly at 3 weeks after the instillation of bleomycin, and the radiologic features became more complex at 6 weeks. In bleomycin-instilled mice treated with rosiglitazone, the majority (80%) showed normal lung features on micro-CT. Radiological-pathologic correlation analyses revealed that ground glass opacity and consolidation were correlated closely with acute inflammation, while reticular opacity was well correlated with histological honeycomb appearance. These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis in mice and that the visualization of bleomycin-induced pulmonary fibrosis using micro-CT is satisfactory to assess the effects of rosiglitazone. It implies that micro-CT can be applied to evaluate therapeutic efficacies of a variety of candidate drugs for lung diseases.

  1. Repurposing rosiglitazone, a PPAR-γ agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH.

    Science.gov (United States)

    Rashid, Jahidur; Alobaida, Ahmad; Al-Hilal, Taslim A; Hammouda, Samia; McMurtry, Ivan F; Nozik-Grayck, Eva; Stenmark, Kurt R; Ahsan, Fakhrul

    2018-06-28

    Peroxisome-proliferator-activated-receptor-gamma (PPAR-γ) is implicated, in some capacity, in the pathogenesis of pulmonary arterial hypertension (PAH). Rosiglitazone, an oral antidiabetic and PPAR-γ agonist, has the potential to dilate pulmonary arteries and to attenuate arterial remodeling in PAH. Here, we sought to test the hypothesis that rosiglitazone can be repurposed as inhaled formulation for the treatment of PAH. We have tested this conjecture by preparing and optimizing poly(lactic-co-glycolic) acid (PLGA) based particles of rosiglitazone, assessing the drug particles for pulmonary absorption, investigating the efficacy of the plain versus particulate drug formulation in improving the respiratory hemodynamics in PAH animals, and finally studying the effect of the drug in regulating the molecular markers associated with PAH pathogenesis. The optimized particles were slightly porous and spherical, and released 87.9% ± 6.7% of the drug in 24 h. The elimination half-life of the drug formulated in PLGA particles was 2.5-fold greater than that of the plain drug administered via the same route at the same dose. The optimized formulation, given via the pulmonary route, produced pulmonary selective vasodilation in PAH animals, but oral rosiglitazone had no effect in pulmonary hemodynamics. Rosiglitazone ameliorates the pathogenesis of PAH by balancing the molecular regulators involved in the vasoconstriction and vasodilation of human pulmonary arterial smooth muscle cells. All in all, data generated using intact animal and cellular models point to the conclusion that PLGA particles of an antidiabetic drug can be used for the treatment of a different disease, PAH. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. In vivo metabolic phenotyping of myocardial substrate metabolism in rodents: differential efficacy of metformin and rosiglitazone monotherapy.

    Science.gov (United States)

    Shoghi, Kooresh I; Finck, Brian N; Schechtman, Kenneth B; Sharp, Terry; Herrero, Pilar; Gropler, Robert J; Welch, Michael J

    2009-09-01

    Cardiovascular disease is the leading cause of death among diabetic patients, with alteration in myocardial substrate metabolism being a likely contributor. We aimed to assess noninvasively the efficacy of metformin and rosiglitazone monotherapy in normalizing myocardial substrate metabolism in an animal model of type 2 diabetes mellitus. The study used 18 male ZDF rats (fa/fa) with 6 rats in each group: an untreated group; a group treated with metformin (16.6 mg/kg/d), and a group treated with rosiglitazone (4 mg/kg). Each rat was scanned at age 14 weeks (baseline) and subsequently at 19 weeks with small-animal positron emission tomography to estimate myocardial glucose utilization (MGU) and myocardial utilization (MFAU), oxidation (MFAO), and esterification (MFAE). Treatment lasted for 5 weeks after baseline imaging. At week 19, rats were euthanized and hearts were extracted for expression analysis of select genes encoding for GLUT transporters and fatty acid transport and oxidation genes. In addition, echocardiography measurements were obtained at weeks 13 and 18 to characterize cardiac function. Metformin had no significant effect on either MGU or MFAU and MFAO. In contrast, rosiglitazone tended to enhance MGU and significantly reduced MFAU and MFAO. Rosiglitazone-induced increase in glucose uptake correlated significantly with increased expression of GLUT4, whereas diminished MFAO correlated significantly with decreased expression of FATP-1 and MCAD. Finally, changes in fractional shortening as a measure of cardiac function were unchanged throughout the study. Treatment with rosiglitazone enhanced glucose utilization and diminished MFAO, thus reversing the metabolic phenotype of the diabetic heart.

  3. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: Assessed by micro-computed tomography and pathologic scores

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Gong Yong; Bok, Se Mi; Han, Young Min [Department of Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Chung, Myung Ja [Department of Pathology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Yoon, Kwon-Ha [Department of Radiology, Iksan Hospital, Iksan (Korea, Republic of); Kim, So Ri [Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Yong Chul, E-mail: leeyc@jbnu.ac.kr [Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-08-15

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists exhibit potent anti-fibrotic effects in the lung and other tissues. Recently, micro-computed tomography (CT) has been a useful tool for the investigation of lung diseases in small animals and is now increasingly applied to visualize and quantify the pulmonary structures. However, there is little information on the assessment for therapeutic effects of PPAR{gamma} agonists on the pulmonary fibrosis in mice using micro-CT. This study was aimed to determine the capability of micro-CT in examining the effects of rosiglitazone on pulmonary fibrosis. We used a murine model of bleomycin-induced lung fibrosis to evaluate the feasibility of micro-CT in evaluating the therapeutic potential of rosiglitazone on pulmonary fibrosis, comparing with pathologic scores. On micro-CT findings, ground glass opacity (80%) and consolidation (20%) were observed predominantly at 3 weeks after the instillation of bleomycin, and the radiologic features became more complex at 6 weeks. In bleomycin-instilled mice treated with rosiglitazone, the majority (80%) showed normal lung features on micro-CT. Radiological-pathologic correlation analyses revealed that ground glass opacity and consolidation were correlated closely with acute inflammation, while reticular opacity was well correlated with histological honeycomb appearance. These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis in mice and that the visualization of bleomycin-induced pulmonary fibrosis using micro-CT is satisfactory to assess the effects of rosiglitazone. It implies that micro-CT can be applied to evaluate therapeutic efficacies of a variety of candidate drugs for lung diseases.

  4. SUMO-, MAPK- and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity

    NARCIS (Netherlands)

    Burg, van den H.A.; Takken, F.L.W.

    2010-01-01

    Upon pathogen perception plant innate immune receptors activate various signaling pathways that trigger host defenses. PAMP-triggered defense signaling requires mitogen-activated protein kinase (MAPK) pathways, which modulate the activity of transcription factors through phosphorylation. Here, we

  5. SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity

    NARCIS (Netherlands)

    van den Burg, H.A.; Takken, F.L.W.

    2010-01-01

    Upon pathogen perception plant innate immune receptors activate various signaling pathways that trigger host defenses. PAMP-triggered defense signaling requires mitogen-activated protein kinase (MAPK) pathways, which modulate the activity of transcription factors through phosphorylation. Here, we

  6. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial

    DEFF Research Database (Denmark)

    Home, Philip D; Pocock, Stuart J; Beck-Nielsen, Henning

    2009-01-01

    .80-1.63) for myocardial infarction, and 0.72 (0.49-1.06) for stroke. Heart failure causing admission to hospital or death occurred in 61 people in the rosiglitazone group and 29 in the active control group (HR 2.10, 1.35-3.27, risk difference per 1000 person-years 2.6, 1.1-4.1). Upper and distal lower limb fracture rates...... failure and of some fractures, mainly in women. Although the data are inconclusive about any possible effect on myocardial infarction, rosiglitazone does not increase the risk of overall cardiovascular morbidity or mortality compared with standard glucose-lowering drugs. FUNDING: GlaxoSmithKline plc, UK.......BACKGROUND: Rosiglitazone is an insulin sensitiser used in combination with metformin, a sulfonylurea, or both, for lowering blood glucose in people with type 2 diabetes. We assessed cardiovascular outcomes after addition of rosiglitazone to either metformin or sulfonylurea compared...

  7. Effect of the addition of rosiglitazone to metformin or sulfonylureas versus metformin/sulfonylurea combination therapy on ambulatory blood pressure in people with type 2 diabetes

    DEFF Research Database (Denmark)

    Komajda, Michel; Curtis, Paula; Hanefeld, Markolf

    2008-01-01

    BACKGROUND: Hypertension and type 2 diabetes are common co-morbidities. Preliminary studies suggest that thiazolidinediones reduce blood pressure (BP). We therefore used ambulatory BP to quantify BP lowering at 6-12 months with rosiglitazone used in combination with metformin or sulfonylureas...... compared to metformin and sulfonylureas in people with type 2 diabetes. METHODS: Participants (n = 759) in the multicentre RECORD study were studied. Those taking metformin were randomized (open label) to add-on rosiglitazone or sulfonylureas, and those on sulfonylurea to add-on rosiglitazone or metformin....... RESULTS: 24-Hour ambulatory BP was measured at baseline, 6 months and 12 months. At 6 and 12 months, reductions in 24-hour ambulatory systolic BP (sBP) were greater with rosiglitazone versus metformin (difference at 6 months 2.7 [95% CI 0.5-4.9] mmHg, p = 0.015; 12 months 2.5 [95% CI 0.2-4.8] mmHg, p = 0...

  8. Why Innate Lymphoid Cells?

    Science.gov (United States)

    Kotas, Maya E; Locksley, Richard M

    2018-06-19

    Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4 + T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Effects of metformin, rosiglitazone and insulin on bone metabolism in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Stage, Tore Bjerregaard; Christensen, Mette-Marie Hougaard; Jørgensen, Niklas Rye

    2018-01-01

    BACKGROUND: Fracture risk is increased in individuals with type 2 diabetes (T2D). The pathophysiological mechanisms accentuating fracture risk in T2D are convoluted, incorporating factors such as hyperglycaemia, insulinopenia, and antidiabetic drugs. The objectives of this study were to assess...... treatment in 371 T2D patients. Participants were randomized to short or long-acting human insulin (non-blinded) and then further randomized to metformin + placebo, rosiglitazone + placebo, metformin + rosiglitazone or placebo + placebo (blinded). Fasting bone turnover markers (BTM) representing bone......-up of the trial were analysed in mixed-effects models that included adjustments for age, gender, BMI, renal function and repeated measures of HbA1c. RESULTS: BTMs increased from baseline to month 12 and remained higher at month 24, with CTX and PINP increasing 28.5% and 23.0% (all: p 

  10. Innate lymphoid cells and asthma.

    Science.gov (United States)

    Yu, Sanhong; Kim, Hye Young; Chang, Ya-Jen; DeKruyff, Rosemarie H; Umetsu, Dale T

    2014-04-01

    Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  11. Effect of Recombinant Human Growth Hormone and Rosiglitazone for HIV-Associated Abdominal Fat Accumulation on Adiponectin and other Markers of Inflammation

    Science.gov (United States)

    Leung, Vivien; Chiu, Ya-Lin; Kotler, Donald P.; Albu, Jeanine; Zhu, Yuan-Shan; Ham, Kirsis; Engelson, Ellen S.; Hammad, Hoda; Christos, Paul; Donovan, Daniel S.; Ginsberg, Henry N.; Glesby, Marshall J.

    2016-01-01

    Background/Objective In a previous report of HIV-infected patients with fat redistribution, we found that recombinant human growth hormone (rhGH) therapy reduced visceral adipose tissue (VAT) but increased insulin resistance, and that the addition of rosiglitazone reversed the negative effects of rhGH on insulin sensitivity. In this study, we sought to determine the effects of recombinant human growth hormone (rhGH) and rosiglitazone therapy on an array of inflammatory and fibrinolytic markers. Methods 72 patients with HIV-associated abdominal obesity and insulin resistance were randomized to treatment with rhGH, rosiglitazone, the combination of rhGH and rosiglitazone, or placebo for 12 weeks. Subjects with plasma and serum samples available at weeks 0 (n = 63) and 12 (n = 46-48) were assessed for adiponectin, C-reactive protein (CRP), homocysteine, interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), fibrinogen, plasminogen activator inhibitor-1 (PAI-1) antigen, and tissue plasminogen activator (tPA) antigen. Results Treatment with both rosiglitazone alone and the combination of rosiglitazone and rhGH for 12 weeks resulted in significant increases in adiponectin levels from baseline. Adiponectin levels did not change significantly in the rhGH alone arm. There were no significant changes in the other biomarkers amongst the different treatment groups. Discussion In this study of HIV-infected patients with altered fat distribution, treatment with rosiglitazone had beneficial effects on adiponectin concentrations, an effect that was also seen with combination rosiglitazone and rhGH. RhGH administration alone, however, did not demonstrate any significant impact on adiponectin levels despite reductions in VAT. PMID:27077672

  12. A Study of Effects of Pioglitazone and Rosiglitazone on Various Parameters in Patients of Type-2 Diabetes Mellitus with Special Reference to Lipid Profile.

    Science.gov (United States)

    Sharma, S K; Verma, S H

    2016-09-01

    To study the complete fasting lipid profile and other parameters (weight, body mass index, HbA1c, fasting blood sugar and postprandial blood sugar)in Type 2 diabetes mellitus patients on OHA/insulin, to study the effect of addition of pioglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin, to study the effect of addition of rosiglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin and to compare the effect of pioglitazone and rosiglitazone on lipid profile and other parameters in Type 2 diabetes mellitus patients on OHA/insulin. In the study, 100 Type 2 diabetes cases on oral hypoglycemic agent/insulin with deranged lipid profile were chosen and divided into 2 groups 50 and 50 in group A and group B respectively.Pioglitazone was given initially 15mg/day then if required increasing upto 45mg/day in group A for period of 18 weeks and rosiglitazone was given initially 2 mg/day then if required increasing upto 8 mg/day in group B for period of 18 weeks. Detailed clinical history was obtained and thorough physical examination was done and following parameters were established-Age, Height, Weight, Body mass index, Fasting and Postprandial blood sugar, HbA1c levels and fasting complete lipid profile done at 0 and 18 weeks. Each patient itself served as a control for this study. Maximum no. of patients were in sixth decade (53.30%) and minimum patients were in seventh decade (6.6%). Males were 63.3% and females were 36.8%. Fasting blood sugar levels decreased by 23% with pioglitazone in group A and 14.07% with rosiglitazone in group B. The postprandial blood sugar levels decreased by 29.9% with pioglitazone in group A and 20.17% with rosiglitazone in group B.The mean HbA1c decreased by 2.13 % pioglitazone in group A and 3.8% with rosiglitazone in group B after 18 weeks of therapy. The effects of both drugs on BMI and weight were not significant. In group A the total cholesterol

  13. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  14. Postnatal Innate Immune Development: From Birth to Adulthood

    Directory of Open Access Journals (Sweden)

    Anastasia Georgountzou

    2017-08-01

    Full Text Available It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.

  15. Innate ideas in Islamic philosophy

    Directory of Open Access Journals (Sweden)

    Halilović Tehran

    2017-01-01

    Full Text Available The human soul is the subject of debates in numerous scientific disciplines. Philosophical considerations encompass a special dimension of the human soul that is related to ontological truths. Among different philosophical questions raised regarding the human soul, the issue of innate ideas particularly stands out. Well-known points of disagreement between Plato and Aristotle regarding this question are usually focused on whether a person possesses knowledge and thoughts from their creation, i.e. birth, or they acquire them through time and experience. With the appearance of Cartesian scepticism and following the solutions Descartes offered for the problem of certain knowledge, the issue of innate ideas has remained the focal question for many prominent philosophers. In the Islamic philosophy, the rational explanation of the nature of innate ideas originates from the more comprehensive theory of the human soul and it states that a person, according to their nature, possesses already existent cognitive abilities they were born with. Innate cognitive abilities discussed in the Islamic philosophy do not refer just to theoretical, but to practical knowledge, as well. Therefore, the analysis of innate ideas in the works of Muslim philosophers is connected to a larger number of scientific disciplines than when it comes to most Western philosophers. The difference between the practical and theoretic intellect will serve as a cognitive basis for defining another aspect of innate ideas. The products of a practical intellect, the human will and his actions, are personal and particular and, therefore, can be connected to the everyday life of a person. Owing to the general presence of the practical intellect in all life spheres, the influence of innate ideas, which are determined in a human being, is recognizable in all most detailed moments of their life.

  16. Effects of kefir fractions on innate immunity.

    Science.gov (United States)

    Vinderola, Gabriel; Perdigon, Gabriela; Duarte, Jairo; Thangavel, Deepa; Farnworth, Edward; Matar, Chantal

    2006-01-01

    Innate immunity that protects against pathogens in the tissues and circulation is the first line of defense in the immune reaction, where macrophages have a critical role in directing the fate of the infection. We recently demonstrated that kefir modulates the immune response in mice, increasing the number of IgA+ cells in the intestinal and bronchial mucosa and the phagocytic activity of peritoneal and pulmonary macrophages. The aim of this study was to further characterize the immunomodulating capacity of the two fractions of kefir (F1: solids including bacteria and F2: liquid supernatant), by studying the cytokines produced by cells from the innate immune system: peritoneal macrophages and the adherent cells from Peyer's patches. BALB/c mice were fed either kefir solid fraction (F1) or kefir supernatant (F2) for 2, 5 or 7 consecutive days. The number of cytokine (IL-1alpha, IFNgamma, TNFalpha, IL-6 and IL-10) producing cells was determined on peritoneal macrophages and adherent cells from Peyer's patches. Both kefir fractions (F1 and F2) induced similar cytokine profiles on peritoneal macrophages (only TNFalpha and IL-6 were up-regulated). All cytokines studied on adherent cells from Peyer's patches were enhanced after F1 and F2 feeding, except for IFNgamma after F2 administration. Moreover, the percentage of IL-10+cells induced by fraction F2 on adherent cells from Peyer's patches was significantly higher than the one induced by fraction F1. Different components of kefir have an in vivo role as oral biotherapeutic substances capable of stimulating immune cells of the innate immune system, to down-regulate the Th2 immune phenotype or to promote cell-mediated immune responses against tumours and also against intracellular pathogenic infections.

  17. Synergic effect of n-3 polyunsaturated fatty acids and rosiglitazone in the amelioration of insulin resistance and adipose tissue inflammatinon

    Czech Academy of Sciences Publication Activity Database

    Kuda, Ondřej; Jílková, Zuzana; Rossmeisl, Martin; Flachs, Pavel; Ogston, N. C.; Mohamed-Ali, V.; Cinti, S.; Kopecký, Jan

    2007-01-01

    Roč. 50, Suppl.1 (2007), S260-S260 ISSN 0012-186X. [Annual Meeting of the European Association for the Study of Diabetes /43./. 18.09.2007-21.09.2007, Amsterdam] R&D Projects: GA ČR(CZ) GD303/03/H065 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * insulin * rosiglitazone * PUFA Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  18. Alcohol, aging, and innate immunity.

    Science.gov (United States)

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  19. The role of extracellular vesicles when innate meets adaptive.

    Science.gov (United States)

    Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M

    2018-04-03

    Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.

  20. Effect of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome.

    Science.gov (United States)

    Belli, Susana H; Graffigna, Mabel N; Oneto, Adriana; Otero, Patricia; Schurman, Leon; Levalle, Oscar A

    2004-03-01

    To evaluate the effects of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome (PCOS). Prospective study. Women with PCOS attending as outpatients of the Endocrine Division, Hospital Durand, Buenos Aires. Twenty-four insulin-resistant women with PCOS. Hormonal evaluations and a standardized oral glucose tolerance test before and after a 3-month trial of 4 mg of rosiglitazone daily. Serum LH, FSH, T, IGF-1, IGFBP-1, IGFBP-3, leptin, 17alpha-hydroxyprogesterone, insulin, and glucose concentrations. The area under insulin curve (AUC-insulin), the HOMA index (insulin resistance), the QUICKI index (insulin sensitivity), and the beta-cell function were calculated. Body mass index (BMI) and the waist/hip ratio were evaluated. A significant decrease was observed in serum fasting insulin, AUC insulin, HOMA index, beta-cell function, IGF-1, LH, and waist/hip ratio. The QUICKI index and IGFBP-1 increased significantly. Serum sex hormone-binding globulin, androgens, leptin, IGFBP-3, and BMI remained unchanged. Twenty-two of 23 females had their menses restored, and three patients became pregnant. One patient was excluded because she became pregnant at the second month. Associated with the decrease in LH, rosiglitazone improved insulin-resistance parameters and normalized the menstrual cycle, which suggests that this drug could improve the endocrine-reproductive condition in insulin-resistant women with PCOS.

  1. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  2. Evidence Synthesis in Harm Assessment of Medicines Using the Example of Rosiglitazone and Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Charlotte Rietbergen

    2018-02-01

    Full Text Available The current system of harm assessment of medicines has been criticized for relying on intuitive expert judgment. There is a call for more quantitative approaches and transparency in decision-making. Illustrated with the case of cardiovascular safety concerns for rosiglitazone, we aimed to explore a structured procedure for the collection, quality assessment, and statistical modeling of safety data from observational and randomized studies. We distinguished five stages in the synthesis process. In Stage I, the general research question, population and outcome, and general inclusion and exclusion criteria are defined and a systematic search is performed. Stage II focusses on the identification of sub-questions examined in the included studies and the classification of the studies into the different categories of sub-questions. In Stage III, the quality of the identified studies is assessed. Coding and data extraction are performed in Stage IV. Finally, meta-analyses on the study results per sub-question are performed in Stage V. A Pubmed search identified 30 randomized and 14 observational studies meeting our search criteria. From these studies, we identified 4 higher level sub-questions and 4 lower level sub-questions. We were able to categorize 29 individual treatment comparisons into one or more of the sub-question categories, and selected study duration as an important covariate. We extracted covariate, outcome, and sample size information at the treatment arm level of the studies. We extracted absolute numbers of myocardial infarctions from the randomized study, and adjusted risk estimates with 95% confidence intervals from the observational studies. Overall, few events were observed in the randomized studies that were frequently of relatively short duration. The large observational studies provided more information since these were often of longer duration. A Bayesian random effects meta-analysis on these data showed no significant increase

  3. Resistin production from adipose tissue is decreased in db/db obese mice, and is reversed by rosiglitazone.

    Directory of Open Access Journals (Sweden)

    Hongying Ye

    Full Text Available OBJECTIVE: This study was designed to (1 investigate the expression profiles of resistin in db/db mice and its dynamic association with metabolic parameters; and (2 evaluate the effects of Rosiglitazone on production of resistin. METHODS: Db/db mice and their lean litter mates were used for this study. Epididymal fat tissue was excised from mice of different age (from 5 to 12 weeks for ex vivo incubation. Resistin,along with adiponectin,in serum and conditioned culture medium of epididymal fat pads were measured with immunoassays. The gene expression of resistin was determined by real-time PCR. Rosiglitazone or the vehicle (PBS was administered into db/db mice by daily intra-gastric gavage. Differentiated 3T3-L1 adipocytes were used for in vitro evaluation. RESULTS: The secretion of resistin from the fat pads in db/db mice was significantly lower than that in lean mice (P<0.01. The mRNA expression of the resistin gene in fat tissue of db/db mice at the age of 5 weeks was decreased by 60.5% compared to lean controls (p<0.05. Serum levels of resistin were comparable between the obese and lean groups, perhaps due to the increased total fat mass in db/db mice. Correlation analysis showed that serum resistin levels were positively correlated to resistin secretion from fat pads(r = 0.844,P = 0.000, while negatively associated with the body weight (r = -0.515, P = 0.000 and fasting glucose level (r = -0.357, P = 0.002. Notably, treatment with rosiglitazone increased the serum resistin levels by 66.4%(P<0.05in db/db mice. In 3T3-L1 adipocytes, Rosiglitazone (10 uM markedly enhanced the secretion of resistin by 120% (P<0.01 and its gene expression by 78.1% (P<0.05. CONCLUSION: Both resistin gene expression and its secretion from the epididymal adipose tissue were decreased in db/db obese mice, while the insulin-sensitizing drug rosiglitazone increased resistin production. Our results do not support the role of resistin as an

  4. Opinion: Interactions of innate and adaptive lymphocytes

    Science.gov (United States)

    Gasteiger, Georg; Rudensky, Alexander Y.

    2015-01-01

    Innate lymphocytes, including natural killer (NK) cells and the recently discovered innate lymphoid cells (ILCs) have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. Less well understood is the contribution of the adaptive immune system to the orchestration of innate lymphocyte responses. We review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a model in which adaptive T cells function as antigen-specific sensors for the activation of innate lymphocytes to amplify and instruct local immune responses. We highlight the potential role of regulatory and helper T cells in these processes and discuss major questions in the emerging area of crosstalk between adaptive and innate lymphocytes. PMID:25132095

  5. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  6. Rosiglitazone decreases postprandial production of acylation stimulating protein in type 2 diabetics

    Directory of Open Access Journals (Sweden)

    Tan Garry D

    2007-05-01

    Full Text Available Abstract Background We evaluated plasma ASP and its precursor C3 in type 2 diabetic men with/without rosiglitazone (ROSI treatment compared to healthy non-obese men. We tested (1 whether plasma ASP or C3 are altered postprandially in subcutaneous adipose tissue or forearm muscle effluent assessed by arteriovenous (A-V differences in healthy lean men and older obese diabetic men and (2 whether treatment with ROSI changes the arteriovenous gradient of ASP and/or C3. Methods In this ongoing placebo-controlled, crossover, double-blinded study, AV differences following a mixed meal were measured in diabetic men (n = 6 as compared to healthy men (n = 9. Results Postprandial arterial and adipose venous TG and venous NEFA were increased in diabetics vs. controls (p Conclusion Increased postprandial venous production of ASP is specific for adipose tissue (absent in forearm muscle. Increased postprandial C3 and ASP in diabetic subjects is consistent with an ASP resistant state, this state is partially normalized by treatment with ROSI.

  7. Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS

    Directory of Open Access Journals (Sweden)

    Xinyue Jing

    2016-01-01

    Full Text Available We investigate the effect of electroacupuncture (EA on protecting the weight gain side effect of rosiglitazone (RSG in type 2 diabetes mellitus (T2DM rats and its possible mechanism in central nervous system (CNS. Our study showed that RSG (5 mg/kg significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3 were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited.

  8. Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Luconi Michaela

    2008-07-01

    Full Text Available Rosiglitazone (RGZ, a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R of human adrenocortical carcinoma (ACC and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR. We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K-Akt, and extracellular signal-regulated kinase (ERK1/2 cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.

  9. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    Science.gov (United States)

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.

  10. Resistin production from adipose tissue is decreased in db/db obese mice, and is reversed by rosiglitazone.

    Science.gov (United States)

    Ye, Hongying; Zhang, Herbert J; Xu, Aimin; Hoo, Ruby L C

    2013-01-01

    This study was designed to (1) investigate the expression profiles of resistin in db/db mice and its dynamic association with metabolic parameters; and (2) evaluate the effects of Rosiglitazone on production of resistin. Db/db mice and their lean litter mates were used for this study. Epididymal fat tissue was excised from mice of different age (from 5 to 12 weeks) for ex vivo incubation. Resistin,along with adiponectin,in serum and conditioned culture medium of epididymal fat pads were measured with immunoassays. The gene expression of resistin was determined by real-time PCR. Rosiglitazone or the vehicle (PBS) was administered into db/db mice by daily intra-gastric gavage. Differentiated 3T3-L1 adipocytes were used for in vitro evaluation. The secretion of resistin from the fat pads in db/db mice was significantly lower than that in lean mice (Plean controls (plean groups, perhaps due to the increased total fat mass in db/db mice. Correlation analysis showed that serum resistin levels were positively correlated to resistin secretion from fat pads(r = 0.844,P = 0.000), while negatively associated with the body weight (r = -0.515, P = 0.000) and fasting glucose level (r = -0.357, P = 0.002). Notably, treatment with rosiglitazone increased the serum resistin levels by 66.4%(Pproduction. Our results do not support the role of resistin as an etiological link between obesity and diabetes.

  11. Innate Immune Responses in Leprosy

    Science.gov (United States)

    Pinheiro, Roberta Olmo; Schmitz, Veronica; Silva, Bruno Jorge de Andrade; Dias, André Alves; de Souza, Beatriz Junqueira; de Mattos Barbosa, Mayara Garcia; de Almeida Esquenazi, Danuza; Pessolani, Maria Cristina Vidal; Sarno, Euzenir Nunes

    2018-01-01

    Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management. PMID:29643852

  12. Metformin, but not rosiglitazone, attenuates the increasing plasma levels of a new cardiovascular marker, fibulin-1, in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Skov, Vibe; Cangemi, Claudia; Gram, Jeppe

    2013-01-01

    ObjectiveThe extracellular matrix protein fibulin-1 is upregulated in the arterial wall in type 2 diabetes and circulates in increased concentrations in diabetes. Metformin is an anti-diabetic drug with beneficial CVD effects in diabetes. We hypothesized that metformin would influence the increased...... level of plasma fibulin-1 in diabetes.Research Design and MethodsAfter a four-week run-in period, 371 eligible patients with type 2 diabetes were randomized to treatment groups in a factorial design including insulin alone (control), +metformin, +rosiglitazone, or +both metformin and rosiglitazone...

  13. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  14. Rosiglitazone Improves Survival and Hastens Recovery from Pancreatic Inflammation in Obese Mice

    Science.gov (United States)

    Pini, Maria; Rhodes, Davina H.; Castellanos, Karla J.; Cabay, Robert J.; Grady, Eileen F.; Fantuzzi, Giamila

    2012-01-01

    Obesity increases severity of acute pancreatitis (AP) by unclear mechanisms. We investigated the effect of the PPAR-gamma agonist rosiglitazone (RGZ, 0.01% in the diet) on severity of AP induced by administration of IL-12+ IL-18 in male C57BL6 mice fed a low fat (LFD) or high fat diet (HFD), under the hypothesis that RGZ would reduce disease severity in HFD-fed obese animals. In both LFD and HFD mice without AP, RGZ significantly increased body weight and % fat mass, with significant upregulation of adiponectin and suppression of erythropoiesis. In HFD mice with AP, RGZ significantly increased survival and hastened recovery from pancreatic inflammation, as evaluated by significantly improved pancreatic histology, reduced saponification of visceral adipose tissue and less severe suppression of erythropoiesis at Day 7 post-AP. This was associated with significantly lower circulating and pancreas-associated levels of IL-6, Galectin-3, osteopontin and TIMP-1 in HFD + RGZ mice, particularly at Day 7 post-AP. In LFD mice with AP, RGZ significantly worsened the degree of intrapancreatic acinar and fat necrosis as well as visceral fat saponification, without affecting other parameters of disease severity or inflammation. Induction of AP lead to major suppression of adiponectin levels at Day 7 in both HFD and HFD + RGZ mice. In conclusion, RGZ prevents development of severe AP in obese mice even though it significantly increases adiposity, indicating that obesity can be dissociated from AP severity by improving the metabolic and inflammatory milieu. However, RGZ worsens selective parameters of AP severity in LFD mice. PMID:22815875

  15. Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats.

    Science.gov (United States)

    Johnson, Julia A; Trasino, Steven E; Ferrante, Anthony W; Vasselli, Joseph R

    2007-11-01

    The anti-diabetic thiazolidinediones (TZDs) stimulate adipocyte differentiation and decrease mean adipocyte size. However, whether these smaller, more insulin-sensitive adipocytes maintain their size after TZD therapy is discontinued has not been studied. Adult female Sprague-Dawley rats were fed a low-fat (10% fat) diet or, to elevate body weight (BW), a high-fat (HF) diet (45% fat) for 6 weeks. Rats were initially randomized to groups (n = 12) fed either low-fat or HF diets, with or without the TZD rosiglitazone (ROSI; 5 mg/kg per day), for 6 weeks. ROSI was then discontinued, and all animals were fed HF for another 6 weeks before sacrifice. Retroperitoneal (RP) adipose tissue morphology was determined from tissue collected by serial biopsies before and after 6 weeks of ROSI treatment and at sacrifice. Measures of BW and adiposity did not differ among groups 6 weeks after stopping ROSI treatment. However, during treatment, ROSI in both diets significantly decreased RP adipocyte size and increased RP DNA content, and these effects continued to be observed after discontinuing treatment. ROSI administration also decreased circulating insulin, leptin, and triglycerides and increased circulating adiponectin levels; however, these effects were reversed on stopping treatment. These results demonstrated that TZD-induced effects on adipocyte size and number were maintained after discontinuing treatment, even with consumption of an obesigenic diet. However, additional studies are needed to determine whether TZD-treated animals eventually achieve an adipocyte size similar to that of untreated animals at the expense of a higher BW.

  16. Bruton’s Tyrosine Kinase: An Emerging Key Player in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Alexander N. R. Weber

    2017-11-01

    Full Text Available Bruton’s tyrosine kinase (BTK was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  17. MicroRNA in innate immunity and autophagy during mycobacterial infection.

    Science.gov (United States)

    Kim, Jin Kyung; Kim, Tae Sung; Basu, Joyoti; Jo, Eun-Kyeong

    2017-01-01

    The fine-tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non-coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host-directed anti-mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections. © 2016 John Wiley & Sons Ltd.

  18. 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces Radiation-Induced DNA Damage and Induces Genes that Modulate Cell Cycle Progression and Apoptosis

    Science.gov (United States)

    2012-07-22

    modulate cell cycle progression and apoptosis. INTRODUCTION Because of the increasing threat posed by nuclear weapons [1], there is a pressing need for both...Detection System ( Bio -Rad Laboratories, Hercules CA) on 96-well microtiter plates with optical caps. Reactions were performed in a total volume of 50 µL... antigen -induced arthritis by dehydroepiandrosterone (DHEA). Inflamm Res 2004;53:189–98. 56. Auci D, Nicoletti F, Mangano K et al. Anti-inflammatory and

  19. Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization.

    Science.gov (United States)

    Alva-Murillo, Nayeli; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2017-01-01

    Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate immune response (IIR). However, the molecular mechanisms have not been described, which was the aim of this study. The results showed that α5β1 integrin membrane abundance (MA) was increased in 0.25 mM NaO-treated cells, but TLR2 or CD36 MA was not modified. When these receptors were blocked individually, 0.25 mM NaO-increased S. aureus internalization was notably reduced. Interestingly, in this condition, the IIR of the bMECs was impaired because MAPK (p38, JNK, and ERK1/2) phosphorylation and the activation of transcription factors related to these pathways were decreased. In addition, the 1 mM NaO treatment induced TLR2 MA, but neither the integrin nor CD36 MA was modified. The reduction in S. aureus internalization induced by 1 mM NaO was increased further when TLR2 was blocked. In addition, the phosphorylation levels of the MAPKs increased, and 13 transcriptional factors related to the IIR were slightly activated (CBF, CDP, c-Myb, AP-1, Ets-1/Pea-3, FAST-1, GAS/ISRE, AP-2, NFAT-1, OCT-1, RAR/DR-5, RXR/DR-1, and Stat-3). Moreover, the 1 mM NaO treatment up-regulated gene expression of IL-8 and RANTES and secretion of IL-1β. Notably, when 1 mM NaO-treated bMECs were challenged with S. aureus , the gene expression of IL-8 and IL-10 increased, while IL-1β secretion was reduced. In conclusion, our results showed that α5β1 integrin, TLR2 and CD36 are involved in 0.25 mM NaO-increased S. aureus internalization in bMECs. In addition, 1 mM NaO activates bMECs via the TLR2 signaling pathways (p38, JNK, and ERK1/2), which improves IIR before S. aureus invasion. Additionally

  20. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young; Jung, Won Hoon; Kim, Hee-Youn; Park, Ji Seon; Cheon, Hyae Gyeong [Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon (Korea, Republic of); Rhee, Sang Dal, E-mail: sdrhee@krict.re.kr [Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon (Korea, Republic of)

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreased expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.

  1. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  2. Innate Immunity and Breast Milk.

    Science.gov (United States)

    Cacho, Nicole Theresa; Lawrence, Robert M

    2017-01-01

    Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.

  3. Innate Immunity and Breast Milk

    Directory of Open Access Journals (Sweden)

    Nicole Theresa Cacho

    2017-05-01

    Full Text Available Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system

  4. Innate lymphoid cells and the skin

    OpenAIRE

    Salimi, Maryam; Ogg, Graham

    2014-01-01

    Innate lymphoid cells are an emerging family of effector cells that contribute to lymphoid organogenesis, metabolism, tissue remodelling and protection against infections. They maintain homeostatic immunity at barrier surfaces such as lung, skin and gut (Nature 464:1367?1371, 2010, Nat Rev Immunol 13: 145?149, 2013). Several human and mouse studies suggest a role for innate lymphoid cells in inflammatory skin conditions including atopic eczema and psoriasis. Here we review the innate lymphoid...

  5. Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Mark Asquith

    2012-06-01

    Full Text Available Aged individuals are more susceptible to infections due to a general decline in immune function broadly referred to as immune senescence. While age-related changes in the adaptive immune system are well documented, aging of the innate immune system remains less well understood, particularly in nonhuman primates. A more robust understanding of age-related changes in innate immune function would provide mechanistic insight into the increased susceptibility of the elderly to infection. Rhesus macaques have proved a critical translational model for aging research, and present a unique opportunity to dissect age-dependent modulation of the innate immune system. We examined age-related changes in: (i innate immune cell frequencies; (ii expression of pattern recognition receptors (PRRs and innate signaling molecules; (iii cytokine responses of monocytes and dendritic cells (DC following stimulation with PRR agonists; and (iv plasma cytokine levels in this model. We found marked changes in both the phenotype and function of innate immune cells. This included an age-associated increased frequency of myeloid DC (mDC. Moreover, we found toll-like receptor (TLR agonists lipopolysaccharide (TLR4, fibroblast stimulating ligand-1 (TLR2/6, and ODN2006 (TLR7/9 induced reduced cytokine responses in aged mDC. Interestingly, with the exception of the monocyte-derived TNFα response to LPS, which increased with age, TNFα, IL-6, and IFNα responses declined with age. We also found that TLR4, TLR5, and innate negative regulator, sterile alpha and TIR motif containing protein (SARM, were all expressed at lower levels in young animals. By contrast, absent in melanoma 2 and retinoic acid-inducible gene I expression was lowest in aged animals. Together, these observations indicate that several parameters of innate immunity are significantly modulated by age and contribute to differential immune function in aged macaques.

  6. Innate Immunity against Leishmania Infections

    Science.gov (United States)

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2015-01-01

    Leishmaniasis is a major health problem that affects more than 300 million people throughout the world. The morbidity associated with the disease causes serious economic burden in Leishmania endemic regions. Despite the morbidity and economic burden associated with Leishmaniasis, this disease rarely gets noticed and is still categorized under neglected tropical diseases. The lack of research combined with the ability of Leishmania to evade immune recognition has rendered our efforts to design therapeutic treatments or vaccines challenging. Herein, we review the literature on Leishmania from innate immune perspective and discuss potential problems as well as solutions and future directions that could aid in identifying novel therapeutic targets to eliminate this parasite. PMID:26249747

  7. Shaping Innate Lymphoid Cell Diversity

    Directory of Open Access Journals (Sweden)

    Qiutong Huang

    2017-11-01

    Full Text Available Innate lymphoid cells (ILCs are a key cell type that are enriched at mucosal surfaces and within tissues. Our understanding of these cells is growing rapidly. Paradoxically, these cells play a role in maintaining tissue integrity but they also function as key drivers of allergy and inflammation. We present here the most recent understanding of how genomics has provided significant insight into how ILCs are generated and the enormous heterogeneity present within the canonical subsets. This has allowed the generation of a detailed blueprint for ILCs to become highly sensitive and adaptive sensors of environmental changes and therefore exquisitely equipped to protect immune surfaces.

  8. Insulin Sensitizing and Antioxidant Effects of Hesperidin and Low Dose Gamma Irradiation in Combination with Rosiglitazone in Type 2 Diabetic Rats

    International Nuclear Information System (INIS)

    Morcos, N.Y.; Abdel-Ghaffar, A.B.; Osman, S.A.; Mohamed, M.Kh.; Arbid, M.S.; El-Eraky, W.I.

    2012-01-01

    The present study was designed to investigate the possible ameliorative effect of hesperidin and low dose fÁ-irradiation (LDR) in combination with rosiglitazone in an experimental model of insulin resistance. Type 2 diabetes mellitus (T2DM) was induced in rats by single intraperitoneal injection of streptozotocin (STZ) followed by nicotinamide (NIC) (65 and 110 mg/kg b.wt; i.p respectively). After verifying T2DM in rats, they were subjected to LDR (50 cGy) and then treated with rosiglitazone (4 mg/kg b.wt; p.o) and hesperidin (100 mg/kg b.wt; p.o) for 30 days. Results showed that STZ injection significantly elevated blood glucose, glycosylated hemoglobin (HbA1c), insulin, homeostasis model assessment of insulin resistance (HOMA-IR), lipid peroxides (TBARS; MDA) accompanied with a reduction in adiponectin plasma level, reduced glutathione (GSH) and superoxide dismutase (SOD) serum level. Treatment of diabetic rats with rosiglitazone, hesperidin and LDR significantly reduced blood glucose, HbA1c, insulin, HOMA-IR and MDA levels. Whereas, plasma adiponectin, SOD in serum and GSH plasma level were significantly elevated. Therefore, our data suggest that hesperidin and LDR might be useful adjuvants with rosiglitazone and attenuate insulin resistance and oxidative stress in T2DM.

  9. A pilot study investigating the effects of rosiglitazone on performance in neuropsychological tests in patients with mild-to-moderate Alzheimer's disease

    NARCIS (Netherlands)

    Peers, P.V.; Semple, J.; Lai, R.Y.K.; Smith, G.R.; Altman, J.; Risner, M.; Riedel, W.J.

    2006-01-01

    Background: Rosiglitazone (a PPARg agonist) has shown beneficial effects on memory and executive function tasks in Alzheimer’s disease (AD)[1] Objective(s): To examine the use of standard clinical measures (e.g ADAS-cog) and experimental measures of simple and choice reaction time (examining

  10. Recombinant human growth hormone and rosiglitazone for abdominal fat accumulation in HIV-infected patients with insulin resistance: a randomized, double-blind, placebo-controlled, factorial trial.

    Directory of Open Access Journals (Sweden)

    Marshall J Glesby

    Full Text Available Recombinant human growth hormone (rhGH reduces visceral adipose tissue (VAT volume in HIV-infected patients but can worsen glucose homeostasis and lipoatrophy. We aimed to determine if adding rosiglitazone to rhGH would abrogate the adverse effects of rhGH on insulin sensitivity (SI and subcutaneous adipose tissue (SAT volume.Randomized, double-blind, placebo-controlled, multicenter trial using a 2×2 factorial design in which HIV-infected subjects with abdominal obesity and insulin resistance were randomized to rhGH 3 mg daily, rosiglitazone 4 mg twice daily, combination rhGH + rosiglitazone, or double placebo (control for 12 weeks. The primary endpoint was change in SI by frequently sampled intravenous glucose tolerance test from entry to week 12. Body composition was assessed by whole body magnetic resonance imaging (MRI and dual Xray absorptiometry (DEXA. Seventy-seven subjects were randomized of whom 72 initiated study drugs. Change in SI from entry to week 12 differed across the 4 arms by 1-way ANCOVA (P = 0.02; by pair-wise comparisons, only rhGH (decreasing SI; P = 0.03 differed significantly from control. Changes from entry to week 12 in fasting glucose and glucose area under the curve on 2-hour oral glucose tolerance test differed across arms (1-way ANCOVA P = 0.004, increasing in the rhGH arm relative to control. VAT decreased significantly in the rhGH arms (-17.5% in rhGH/rosiglitazone and -22.7% in rhGH but not in the rosiglitazone alone (-2.5% or control arms (-1.9%. SAT did not change significantly in any arm. DEXA results were consistent with the MRI data. There was no significant rhGH x rosiglitazone interaction for any body composition parameter.The addition of rosiglitazone abrogated the adverse effects of rhGH on insulin sensitivity and glucose tolerance while not significantly modifying the lowering effect of rhGH on VAT.Clinicaltrials.gov NCT00130286.

  11. Recombinant human growth hormone and rosiglitazone for abdominal fat accumulation in HIV-infected patients with insulin resistance: a randomized, double-blind, placebo-controlled, factorial trial.

    Science.gov (United States)

    Glesby, Marshall J; Albu, Jeanine; Chiu, Ya-Lin; Ham, Kirsis; Engelson, Ellen; He, Qing; Muthukrishnan, Varalakshmi; Ginsberg, Henry N; Donovan, Daniel; Ernst, Jerry; Lesser, Martin; Kotler, Donald P

    2013-01-01

    Recombinant human growth hormone (rhGH) reduces visceral adipose tissue (VAT) volume in HIV-infected patients but can worsen glucose homeostasis and lipoatrophy. We aimed to determine if adding rosiglitazone to rhGH would abrogate the adverse effects of rhGH on insulin sensitivity (SI) and subcutaneous adipose tissue (SAT) volume. Randomized, double-blind, placebo-controlled, multicenter trial using a 2×2 factorial design in which HIV-infected subjects with abdominal obesity and insulin resistance were randomized to rhGH 3 mg daily, rosiglitazone 4 mg twice daily, combination rhGH + rosiglitazone, or double placebo (control) for 12 weeks. The primary endpoint was change in SI by frequently sampled intravenous glucose tolerance test from entry to week 12. Body composition was assessed by whole body magnetic resonance imaging (MRI) and dual Xray absorptiometry (DEXA). Seventy-seven subjects were randomized of whom 72 initiated study drugs. Change in SI from entry to week 12 differed across the 4 arms by 1-way ANCOVA (P = 0.02); by pair-wise comparisons, only rhGH (decreasing SI; P = 0.03) differed significantly from control. Changes from entry to week 12 in fasting glucose and glucose area under the curve on 2-hour oral glucose tolerance test differed across arms (1-way ANCOVA P = 0.004), increasing in the rhGH arm relative to control. VAT decreased significantly in the rhGH arms (-17.5% in rhGH/rosiglitazone and -22.7% in rhGH) but not in the rosiglitazone alone (-2.5%) or control arms (-1.9%). SAT did not change significantly in any arm. DEXA results were consistent with the MRI data. There was no significant rhGH x rosiglitazone interaction for any body composition parameter. The addition of rosiglitazone abrogated the adverse effects of rhGH on insulin sensitivity and glucose tolerance while not significantly modifying the lowering effect of rhGH on VAT. Clinicaltrials.gov NCT00130286.

  12. Assessment on the Prevention of Progression by Rosiglitazone on Atherosclerosis in diabetes patients with Cardiovascular History (APPROACH): study design and baseline characteristics.

    Science.gov (United States)

    Ratner, Robert E; Cannon, Christopher P; Gerstein, Hertzel C; Nesto, Richard W; Serruys, Patrick W; Van Es, Gerrit-Anne; Kolatkar, Nikheel S; Kravitz, Barbara G; Zalewski, Andrew; Fitzgerald, Peter J

    2008-12-01

    Rosiglitazone, a thiazolidinedione, has effects on insulin sensitivity and cardiovascular risk factors that may favorably impact the progression of coronary atherosclerosis. APPROACH is a double-blind randomized clinical trial comparing the effects of the insulin sensitizer rosiglitazone with the insulin secretagogue glipizide on the progression of coronary atherosclerosis. Patients with type 2 diabetes and coronary artery disease undergoing clinically indicated coronary angiography or percutaneous coronary intervention are randomized to receive rosiglitazone or glipizide for 18 months using a titration algorithm designed to provide comparable glycemic control between treatment groups. The primary end point is change in percent atheroma volume from baseline to study completion in a nonintervened coronary artery, as measured by intravascular ultrasound. Cardiovascular events are adjudicated by an end point committee. A total of 672 patients were randomized. The mean age was 61 years, hemoglobin A(1c) (HbA(1c)) 7.2%, body mass index 29.5 kg/m(2), and median duration of diabetes 4.8 years. At baseline, approximately half of the participants were receiving oral antidiabetic monotherapy (53.9%) with 27.5% receiving dual combination therapy and 17.9% treated with diet and exercise alone. Approximately two thirds of the participants (68%) had dyslipidemia, 79.9% hypertension, and 24% prior myocardial infarction. APPROACH has fully enrolled a high-risk patient population and will compare the glucose-independent effects of rosiglitazone and glipizide on the progression of coronary atherosclerosis, as well as provide additional data on the cardiovascular safety of rosiglitazone in patients with type 2 diabetes and coronary artery disease.

  13. Drospirenone/ethinyl estradiol versus rosiglitazone treatment in overweight adolescents with polycystic ovary syndrome: comparison of metabolic, hormonal, and cardiovascular risk factors.

    Science.gov (United States)

    Tfayli, Hala; Ulnach, Julia Warren; Lee, SoJung; Sutton-Tyrrell, Kim; Arslanian, Silva

    2011-05-01

    Adolescents with polycystic ovary syndrome (PCOS) have insulin resistance and higher rates of the metabolic syndrome. Our objective was to compare the effects of 6 months treatment with drospirenone/ethinyl estradiol (EE) (3 mg/30 μg) vs. rosiglitazone (4 mg) daily on the hormonal and cardiometabolic profiles of overweight/obese adolescents with PCOS. We conducted a randomized, double-blinded, parallel clinical trial in an academic hospital, with n = 46 patients. The primary outcome measure was insulin sensitivity, hepatic with [6,6-(2)H(2)]glucose and peripheral with a 3-h hyperinsulinemic-euglycemic clamp. Other outcome measures included plasma androgen profile and response to ACTH stimulation, glucose and insulin response to oral glucose tolerance test, insulin secretion with a 2-h hyperglycemic clamp, fasting lipid profile, inflammatory markers, intima media thickness, aortic pulse wave velocity, body composition by dual-energy x-ray absorptiometry, and abdominal adiposity by computed tomography scan. Drospirenone/EE resulted in greater reductions in androgenemia. Neither treatment led to change in weight or body mass index, but rosiglitazone led to a significant decrease in visceral adiposity. Compared with drospirenone/EE, treatment with rosiglitazone improved hepatic and peripheral insulin sensitivity and lowered fasting and stimulated insulin levels during the oral glucose tolerance test. Treatment with drospirenone/EE was associated with elevations in total cholesterol, high-sensitivity C-reactive protein and leptin concentrations, whereas treatment with rosiglitazone led to lower triglycerides and higher adiponectin concentrations. Neither treatment affected intima media thickness or pulse wave velocity. In overweight/obese adolescents with PCOS, 6 months treatment with rosiglitazone was superior to drospirenone/EE in improving the cardiometabolic risk profile, and effective but inferior in attenuating hyperandrogenemia. Additional studies are needed to

  14. Human innate lymphoid cells (ILCs) in filarial infections.

    Science.gov (United States)

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  15. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  16. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  17. Innate lymphoid cells in atherosclerosis.

    Science.gov (United States)

    Engelbertsen, Daniel; Lichtman, Andrew H

    2017-12-05

    The family of innate lymphoid cells (ILCs) consisting of NK cells, lymphoid tissue inducer cells and the 'helper'-like ILC subsets ILC1, ILC2 and ILC3 have been shown to have important roles in protection against microbes, regulation of inflammatory diseases and involved in allergic reactions. ILC1s produce IFN-γ upon stimulation with IL-12 and IL-18, ILC2s produce IL-5 and IL-13 responding to IL-33 and IL-25 while ILC3s produce IL-17 and IL-22 after stimulation with IL-23 or IL-1. Although few studies have directly investigated the role for ILCs in atherosclerosis, several studies have investigated transcription factors and cytokines shared by ILCs and T helper cells. In this review we summarize our current understanding of the role of ILC in atherosclerosis and discuss future directions. Copyright © 2017. Published by Elsevier B.V.

  18. Innate immune system and preeclampsia

    Directory of Open Access Journals (Sweden)

    Alejandra ePerez-Sepulveda

    2014-05-01

    Full Text Available Normal pregnancy is considered as a Th2 type immunological state that favors an immune-tolerance environment in order to prevent fetal rejection. PE has been classically described as a Th1/Th2 imbalance; however, the Th1/Th2 paradigm has proven insufficient to fully explain the functional and molecular changes observed during normal/pathological pregnancies. Recent studies have expanded the Th1/Th2 into a Th1⁄Th2⁄Th17 and regulatory T (Treg cells paradigm and where dendritic cells could have a crucial role. Recently, some evidence has emerged supporting the idea that mesenchymal stem cells might be part of the feto-maternal tolerance environment. This review will discuss the involvement of the innate immune system in the establishment of a physiological environment that favors pregnancy and possible alterations related to the development of preeclampsia.

  19. TLR4 links podocytes with the innate immune system to mediate glomerular injury

    DEFF Research Database (Denmark)

    Banas, Miriam C; Banas, Bernhard; Hudkins, Kelly L

    2008-01-01

    profile of chemokines. In conclusion, it was demonstrated that TLR4 is constitutively expressed by podocytes and is upregulated in MPGN, where it may mediate glomerular injury by modulating expression of chemokines; therefore, TLR4 may link podocytes with the innate immune system to mediate MPGN triggered...... by the deposition of immune complexes....

  20. Characterization of alendronic- and undecylenic acid coated magnetic nanoparticles for the targeted delivery of rosiglitazone to subcutaneous adipose tissue.

    Science.gov (United States)

    Saatchi, Katayoun; Tod, Sarah E; Leung, Donna; Nicholson, Kenton E; Andreu, Irene; Buchwalder, Christian; Schmitt, Veronika; Häfeli, Urs O; Gray, Sarah L

    2017-02-01

    Obesity is a state of positive energy balance where excess white adipose tissue accumulates to the detriment of metabolic health. Improving adipocyte function with systemic administration of thiazolidinediones (TZDs) improves metabolic outcomes in obesity, however TZD use is limited clinically due to undesirable side effects. Here we evaluate magnetic nanoparticles (MNPs) as a tool to target rosiglitazone (Rosi) specifically to adipose tissue. Results show Rosi can be adsorbed to MNPs (Rosi-MNPs) with hydrophobic coatings for which we present binding and release kinetics. Rosi adsorbed to MNPs retained the ability to induce PPARγ target gene expression in cells. Biodistribution analysis of radiolabeled Rosi-MNPs revealed a fat-implanted magnet significantly enhanced localization of Rosi to the targeted adipose tissue when administered by subcutaneous injection to obese mice. We propose MNPs for targeted delivery of anti-diabetic agents to superficially located subcutaneous adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression

    International Nuclear Information System (INIS)

    Kim, Hyo-Sup; Noh, Jung-Hyun; Hong, Seung-Hyun; Hwang, You-Cheol; Yang, Tae-Young; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2008-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ is a member of the nuclear receptor superfamily, and its ligands, the thiazolidinediones, might directly stimulate insulin release and insulin synthesis in pancreatic β-cells. In the present study, we examined the effects of rosiglitazone (RGZ) on insulin release and synthesis in pancreatic β-cell (INS-1). Insulin release and synthesis were stimulated by treatment with RGZ for 24 h. RGZ upregulated the expressions of GLUT-2 and glucokinase (GCK). Moreover, it was found that RGZ increased the expression of BETA2/NeuroD gene which could regulate insulin gene expression. These results suggest that RGZ could stimulate the release and synthesis of insulin through the upregulation of GLUT-2, GCK, and BETA2/NeuroD gene expression

  2. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3

    International Nuclear Information System (INIS)

    Magenta, Gabriela; Borenstein, Ximena; Rolando, Romina; Jasnis, María Adela

    2008-01-01

    Activation of peroxisome proliferator-activated receptors γ (PPARγ) induces diverse effects on cancer cells. The thiazolidinediones (TZDs), such as troglitazone and ciglitazone, are PPARγ agonists exhibiting antitumor activities; however, the underlying mechanism remains inconclusive. Rosiglitazone (RGZ), a synthetic ligand of PPARγ used in the treatment of Type 2 diabetes, inhibits growth of some tumor cells and is involved in other processes related to cancer progression. Opposing results have also been reported with different ligands on tumor cells. The purpose of this study was to determine if RGZ and 15d-PGJ 2 induce antitumor effects in vivo and in vitro on the murine mammary tumor cell line LMM3. The effect on LMM3 cell viability and nitric oxide (NO) production of different doses of RGZ, 15-dPGJ 2 , BADGE and GW9662 were determined using the MTS colorimetric assay and the Griess reaction respectively. In vivo effect of orally administration of RGZ on tumor progression was evaluated either on s.c. primary tumors as well as on experimental metastasis. Cell adhesion, migration (wound assay) and invasion in Transwells were performed. Metalloproteinase activity (MMP) was determined by zymography in conditioned media from RGZ treated tumor cells. PPARγ expression was detected by inmunohistochemistry in formalin fixed tumors and by western blot in tumor cell lysates. RGZ orally administered to tumor-bearing mice decreased the number of experimental lung metastases without affecting primary s.c. tumor growth. Tumor cell adhesion and migration, as well as metalloproteinase MMP-9 activity, decreased in the presence of 1 μM RGZ (non-cytotoxic dose). RGZ induced PPARγ protein expression in LMM3 tumors. Although metabolic activity -measured by MTS assay- diminished with 1–100 μM RGZ, 1 μM-treated cells recovered their proliferating capacity while 100 μM treated cells died. The PPARγ antagonist Biphenol A diglicydyl ether (BADGE) did not affect RGZ activity

  3. Exposure to rosiglitazone, a PPAR-γ agonist, in late gestation reduces the abundance of factors regulating cardiac metabolism and cardiomyocyte size in the sheep fetus.

    Science.gov (United States)

    Lie, Shervi; Hui, Melisa; McMillen, I Caroline; Muhlhausler, Beverly S; Posterino, Giuseppe S; Dunn, Stacey L; Wang, Kimberley C; Botting, Kimberley J; Morrison, Janna L

    2014-03-15

    It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid oxidation as the main source of energy after birth is dependent on the maturation of the cardiomyocytes' metabolic system, or on the limitation of substrate availability before birth. This study aimed to investigate whether intrafetal administration of a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac growth and metabolism in preparation for birth, and the consequences of cardiac contractility in the fetal sheep at ∼140 days gestation. The mRNA expression and protein abundance of key factors regulating growth and metabolism were quantified using quantitative RT-PCR and Western blot analysis, respectively. Cardiac contractility was determined by measuring the Ca(2+) sensitivity and maximum Ca(2+)-activated force of skinned cardiomyocyte bundles. Rosiglitazone-treated fetuses had a lower cardiac abundance of insulin-signaling molecules, including insulin receptor-β, insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Tyr-895), phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, PI3K catalytic subunit p110α, phospho-3-phosphoinositide-dependent protein kinase 1 (Ser-241), protein kinase B (Akt-1), phospho-Akt (Ser-273), PKCζ, phospho-PKCζ(Thr-410), Akt substrate 160 kDa (AS160), phospho-AS160 (Thr-642), and glucose transporter type-4. Additionally, cardiac abundance of regulators of fatty acid β-oxidation, including adiponectin receptor 1, AMPKα, phospho-AMPKα (Thr-172), phospho-acetyl CoA carboxylase (Ser-79), carnitine palmitoyltransferase-1, and PGC-1α was lower in the rosiglitazone-treated group. Rosiglitazone administration also resulted in a decrease in cardiomyocyte size. Rosiglitazone administration in the late-gestation sheep fetus resulted in a decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation, and

  4. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  5. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  6. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  7. Adverse drug effects observed with vildagliptin versus pioglitazone or rosiglitazone in the treatment of patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Bundhun, Pravesh Kumar; Janoo, Girish; Teeluck, Abhishek Rishikesh; Huang, Feng

    2017-10-23

    Vildagliptin and pioglitazone/rosiglitazone are emerging Oral Hypoglycemic Agents (OHAs) which are used to treat patients suffering from Type 2 Diabetes Mellitus (T2DM). In this analysis, we aimed to systematically compare the adverse drug events which were observed with the use of vildagliptin versus pioglitazone or rosiglitazone respectively. Online databases were searched for studies comparing vildagliptin with pioglitazone/rosiglitazone. Adverse drug events were considered as the clinical endpoints in this analysis. We calculated Odds Ratios (OR) with 95% Confidence Intervals (CIs) using the RevMan 5.3 software. All the authors had full access to the data which were used and approved the final version of the manuscript. A total number of 2396 patients were analyzed (1486 and 910 patients were treated with vildagliptin and pioglitazone/rosiglitazone respectively). Vildagliptin and pioglitazone/rosiglitazone were both associated with similar overall adverse drug events (OR: 1.00, 95% CI: 0.81-1.24; P = 1.00). Headache (OR: 0.88, 95% CI: 0.60-1.27; P = 0.49) and upper respiratory tract infection (OR: 0.95, 95% CI: 0.71-1.27; P = 0.75) were similarly observed. However, dizziness was significantly lower with pioglitazone/rosiglitazone (OR: 0.63, 95% CI: 0.43-0.92; P = 0.02). Back pain, diarrhea and nausea were insignificantly lower with pioglitazone/rosiglitazone (OR: 0.81, 95% CI: 0.49-1.33; P = 0.40), (OR: 0.83, 95% CI: 0.48-1.44; P = 0.52) and (OR: 0.52, 95% CI: 0.25-1.05; P = 0.07) respectively, whereas peripheral edema and weight gain were insignificantly higher (OR: 1.21, 95% CI: 0.56-2.62; P = 0.63) and (OR: 2.29, 95% CI: 0.51-10.34; P = 0.28) respectively. Nevertheless, when pioglitazone and rosiglitazone were separately compared with vildagliptin, peripheral edema and weight gain were significantly higher with rosiglitazone (OR: 2.36, 95% CI: 1.40-3.99; P = 0.001) and (OR: 5.20, 95% CI: 2.47-10.92; P = 0.0001) respectively. Both

  8. Rosiglitazone attenuates NF-κB-dependent ICAM-1 and TNF-α production caused by homocysteine via inhibiting ERK1/2/p38MAPK activation

    International Nuclear Information System (INIS)

    Bai, Yong-Ping; Liu, Yu-Hui; Chen, Jia; Song, Tao; You, Yu; Tang, Zhen-Yan; Li, Yuan-Jian; Zhang, Guo-Gang

    2007-01-01

    Previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-κB) activation and homocysteine (Hcy)-induced cytokines expression in endothelial cells and vascular smooth muscle cells. However, the underlying mechanism remains illusive. In this study, we investigated the effects of Hcy on NF-κB-mediated sICAM-1, TNF-α production and the possible involvement of ERK 1/2 /p38MAPK pathway. The effects of rosiglitazone intervention were also examined. Our results show that Hcy increased the levels of sICAM-1 and TNF-α in cultured human umbilical vein endothelial cells (HUVECs) in a time- and concentration-dependent manner. This effect was significantly depressed by rosiglitazone and different inhibitors (PDTC, NF-κB inhibitor; PD98059, MEK inhibitor; SB203580, p38MAPK specific inhibitor; and staurosporine, PKC inhibitor). Next, we investigated the effect of Hcy on ERK 1/2 /p38MAPK pathway and NF-κB activity in HUVECs. The results show that Hcy activated both ERK 1/2 /p38MAPK pathway and NF-κB-DNA-binding activity. These effects were markedly inhibited by rosiglitazone as well as other inhibitors (SB203580, PD98059, and PDTC). Further, the pretreatment of staurosporine abrogated ERK 1/2 /p38MAPK phosphorylation, suggesting that Hcy-induced ERK 1/2 /p38MAPK activation is associated with PKC activity. Our results provide evidence that Hcy-induced NF-κB activation was mediated by activation of ERK 1/2 /p38MAPK pathway involving PKC activity. Rosiglitazone reduces the NF-κB-mediated sICAM-1 and TNF-α production induced by Hcy via inhibition of ERK 1/2 /p38MAPK pathway

  9. n-3 Fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet

    Czech Academy of Sciences Publication Activity Database

    Kuda, Ondřej; Jeleník, Tomáš; Jílková, Zuzana; Flachs, Pavel; Rossmeisl, Martin; Hensler, Michal; Kazdová, L.; Ogston, N.; Baranowski, M.; Gorski, J.; Janovská, Petra; Kůs, Vladimír; Polák, J.; Mohamed-Ali, V.; Burcelin, R.; Cinti, S.; Bryhn, M.; Kopecký, Jan

    2009-01-01

    Roč. 52, č. 5 (2009), s. 941-951 ISSN 0012-186X R&D Projects: GA ČR(CZ) GA303/08/0664; GA MŠk(CZ) 1M0520; GA MŠk(CZ) OC08007 Grant - others:EC(XE) LSMH-CT-2004005272 Institutional research plan: CEZ:AV0Z50110509 Keywords : fish oil * rosiglitazone * obesity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 6.551, year: 2009

  10. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality.

    Science.gov (United States)

    Minge, Cadence E; Bennett, Brenton D; Norman, Robert J; Robker, Rebecca L

    2008-05-01

    Obesity and its physiological consequences are increasingly prevalent among women of reproductive age and are associated with infertility. To investigate, female mice were fed a high-fat diet until the onset of insulin resistance, followed by assessments of ovarian gene expression, ovulation, fertilization, and oocyte developmental competence. We report defects to ovarian function associated with diet-induced obesity (DIO) that result in poor oocyte quality, subsequently reduced blastocyst survival rates, and abnormal embryonic cellular differentiation. To identify critical cellular mediators of ovarian responses to obesity induced insulin resistance, DIO females were treated for 4 d before mating with an insulin-sensitizing pharmaceutical: glucose and lipid-lowering AMP kinase activator, 5-aminoimidazole 4-carboxamide-riboside, 30 mg/kg.d; sodium salicylate, IkappaK inhibitor that reverses insulin resistance, 50 mg/kg.d; or peroxisome proliferator activated receptor-gamma agonist rosiglitazone, 10 mg/kg.d. 5-aminoimidazole 4-carboxamide-riboside or sodium salicylate treatment did not have significant effects on the reproductive parameters examined. However, embryonic development to the blastocyst stage was significantly improved when DIO mice were treated with rosiglitazone, effectively repairing development rates. Rosiglitazone also normalized DIO-associated abnormal blastomere allocation to the inner cell mass. Such improvements to oocyte quality were coupled with weight loss, improved glucose metabolism, and changes in ovarian mRNA expression of peroxisome proliferator activated receptor-regulated genes, Cd36, Scarb1, and Fabp4 cholesterol transporters. These studies demonstrate that peri-conception treatment with select insulin-sensitizing pharmaceuticals can directly influence ovarian functions and ultimately exert positive effects on oocyte developmental competence. Improved blastocyst quality in obese females treated with rosiglitazone before mating

  11. Comparison of the Efficacy of Glimepiride, Metformin, and Rosiglitazone Monotherapy in Korean Drug-Naïve Type 2 Diabetic Patients: The Practical Evidence of Antidiabetic Monotherapy Study

    Directory of Open Access Journals (Sweden)

    Kun Ho Yoon

    2011-02-01

    Full Text Available BackgroundAlthough many anti-diabetic drugs have been used to control hyperglycemia for decades, the efficacy of commonly-used oral glucose-lowering agents in Korean type 2 diabetic patients has yet to be clearly demonstrated.MethodsWe evaluated the efficacy of glimepiride, metformin, and rosiglitazone as initial treatment for drug-naïve type 2 diabetes mellitus patients in a 48-week, double-blind, randomized controlled study that included 349 Korean patients. Our primary goal was to determine the change in HbA1c levels from baseline to end point. Our secondary goal was to evaluate changes in fasting plasma glucose (FPG levels, body weight, frequency of adverse events, and the proportion of participants achieving target HbA1c levels.ResultsHbA1c levels decreased from 7.8% to 6.9% in the glimepiride group (P<0.001, from 7.9% to 7.0% in the metformin group (P<0.001, and from 7.8% to 7.0% (P<0.001 in the rosiglitazone group. Glimepiride and rosiglitazone significantly increased body weight and metformin reduced body weight during the study period. Symptomatic hypoglycemia was more frequent in the glimepiride group and diarrhea was more frequent in the metformin group.ConclusionThe efficacy of glimepiride, metformin, and rosiglitazone as antidiabetic monotherapies in drug-naïve Korean type 2 diabetic patients was similar in the three groups, with no statistical difference. This study is the first randomized controlled trial to evaluate the efficacy of commonly-used oral hypoglycemic agents in Korean type 2 diabetic patients. An additional subgroup analysis is recommended to obtain more detailed information.

  12. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance.

    Science.gov (United States)

    Potenza, Maria A; Marasciulo, Flora L; Tarquinio, Mariela; Quon, Michael J; Montagnani, Monica

    2006-12-01

    Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.

  13. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    Science.gov (United States)

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  14. Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADOPT (A Diabetes Outcome Progression Trial) and RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and Regulation of Glycaemia in Diabetes) clinical trials.

    Science.gov (United States)

    Home, P D; Kahn, S E; Jones, N P; Noronha, D; Beck-Nielsen, H; Viberti, G

    2010-09-01

    Observational and mechanistic studies have suggested a possible relationship between treatment with metformin and decreased incidence of cancer in participants with type 2 diabetes. We extracted data for malignancies from the ADOPT (A Diabetes Outcome Progression Trial) and RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and Regulation of Glycaemia in Diabetes) randomised controlled clinical trials, in which the efficacy and/or safety of metformin was assessed in comparison with sulfonylureas and rosiglitazone. Neoplasm occurrences were collected as adverse events in these studies. We reviewed and re-analysed the individual participant data in both studies for serious adverse events, malignancies reported as adverse events and related neoplasms of special interest. In ADOPT, 50 participants (3.4%) on metformin and 55 (3.8%) on each of rosiglitazone and glibenclamide (known as glyburide in the USA and Canada) developed serious adverse event malignancies (excluding non-melanoma skin cancers). This corresponds to 1.03, 1.12 and 1.31 per 100 person-years, giving hazard ratios for metformin of 0.92 (95% CI 0.63-1.35) vs rosiglitazone and 0.78 (0.53-1.14) vs glibenclamide. In RECORD, on a background of sulfonylurea, 69 (6.1%) participants developed malignant neoplasms in the metformin group, compared with 56 (5.1%) in the rosiglitazone group (HR 1.22 [0.86-1.74]). On a background of metformin, 74 (6.7%) participants in the sulfonylurea group developed malignant neoplasms, compared with 57 (5.1%) in the rosiglitazone group (HR 1.33 [0.94-1.88]). The malignancy rates in these two randomised controlled clinical trials do not support a view that metformin offers any particular protection against malignancy compared with rosiglitazone. However, they do not refute the possibility of a difference compared with sulfonylureas.

  15. Immune regulation by pericytes: modulating innate and adaptive immunity

    DEFF Research Database (Denmark)

    Navarro, Rocio; Compte, Marta; Álvarez-Vallina, Luis

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells (EC) in small blood vessels. PC have traditionally been endowed with structural functions, being essential for vessel maturation and stabilization. However, accumulating evidence suggest that PC also display immune properties. They ca...

  16. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    Science.gov (United States)

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  17. Rosiglitazone attenuates the metalloprotease/anti-metalloprotease imbalance in emphysema induced by cigarette smoke: involvement of extracellular signal-regulated kinase and NFκB signaling

    Directory of Open Access Journals (Sweden)

    Hou G

    2015-04-01

    Full Text Available Gang Hou, Yan Yin, Dan Han, Qiu-yue Wang, Jian Kang Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China Objective: We investigated how rosiglitazone attenuated cigarette smoke (CS-induced emphysema in a rat model. In particular, we focused on its possible effects on the imbalance between metalloprotease (MMP and anti-MMP activity, mitogen-activated protein kinase (MAPK phosphorylation, and nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB signaling pathway over-activation.Methods: A total of 36 Wistar rats were divided into three groups (n=12 each: animals were exposed to CS for 12 weeks in the absence (the CS group or presence of 30 mg/kg rosiglitazone (the rosiglitazone-CS [RCS] group; a control group was treated with the rosiglitazone vehicle only, without any CS exposure. Histopathology of lung tissue in all groups was evaluated to grade severity of the disease. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ, MMP2, and MMP9 in lung tissue were determined and compared using Western blotting and immunohistochemistry. Activation of MAPKs, NFκB, and the nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα phosphorylation in lung tissue was examined by Western blotting.Results: Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in the RCS group than in the CS group. Compared with the CS group, levels of PPARγ were higher in the RCS group, and levels of MMP2 and MMP9 proteins were lower in the RCS rats. Levels of activated MAPKs and NFκB were also lower, while the IκBαphosphorylation was increased in the lung tissue of RCS rats.Conclusion: Our findings suggest that oral administration of rosiglitazone attenuates the metalloprotease activity induced by CS, and the underlying mechanism might involve the activation of signaling pathways

  18. FOXO-dependent regulation of innate immune homeostasis.

    Science.gov (United States)

    Becker, Thomas; Loch, Gerrit; Beyer, Marc; Zinke, Ingo; Aschenbrenner, Anna C; Carrera, Pilar; Inhester, Therese; Schultze, Joachim L; Hoch, Michael

    2010-01-21

    The innate immune system represents an ancient host defence mechanism that protects against invading microorganisms. An important class of immune effector molecules to fight pathogen infections are antimicrobial peptides (AMPs) that are produced in plants and animals. In Drosophila, the induction of AMPs in response to infection is regulated through the activation of the evolutionarily conserved Toll and immune deficiency (IMD) pathways. Here we show that AMP activation can be achieved independently of these immunoregulatory pathways by the transcription factor FOXO, a key regulator of stress resistance, metabolism and ageing. In non-infected animals, AMP genes are activated in response to nuclear FOXO activity when induced by starvation, using insulin signalling mutants, or by applying small molecule inhibitors. AMP induction is lost in foxo null mutants but enhanced when FOXO is overexpressed. Expression of AMP genes in response to FOXO activity can also be triggered in animals unable to respond to immune challenges due to defects in both the Toll and IMD pathways. Molecular experiments at the Drosomycin promoter indicate that FOXO directly binds to its regulatory region, thereby inducing its transcription. In vivo studies in Drosophila, but also studies in human lung, gut, kidney and skin cells indicate that a FOXO-dependent regulation of AMPs is evolutionarily conserved. Our results indicate a new mechanism of cross-regulation of metabolism and innate immunity by which AMP genes can be activated under normal physiological conditions in response to the oscillating energy status of cells and tissues. This regulation seems to be independent of the pathogen-responsive innate immunity pathways whose activation is often associated with tissue damage and repair. The sparse production of AMPs in epithelial tissues in response to FOXO may help modulating the defence reaction without harming the host tissues, in particular when animals are suffering from energy shortage

  19. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  1. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  2. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  3. Genetic adaptation of the antibacterial human innate immunity network.

    Science.gov (United States)

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  4. The biology of human innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, J.H.J.

    2016-01-01

    In this thesis I performed studies to investigate the contribution of human innate lymphoid cells (ILCs) in maintaining the mucosal homeostasis, initiating and/or propagating inflammatory responses, but also - when not properly regulated - how these cells contribute to immunopathology. First I

  5. Innate lymphoid cells in inflammation and immunity

    NARCIS (Netherlands)

    McKenzie, Andrew N. J.; Spits, Hergen; Eberl, Gerard

    2014-01-01

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles

  6. Innate lymphoid cells in inflammatory bowel diseases

    NARCIS (Netherlands)

    Peters, C. P.; Mjösberg, J. M.; Bernink, J. H.; Spits, H.

    2016-01-01

    It is generally believed that inflammatory bowel diseases (IBD) are caused by an aberrant immune response to environmental triggers in genetically susceptible individuals. The exact contribution of the adaptive and innate immune system has not been elucidated. However, recent advances in treatments

  7. The biology of innate lymphoid cells

    NARCIS (Netherlands)

    Artis, David; Spits, Hergen

    2015-01-01

    The innate immune system is composed of a diverse array of evolutionarily ancient haematopoietic cell types, including dendritic cells, monocytes, macrophages and granulocytes. These cell populations collaborate with each other, with the adaptive immune system and with non-haematopoietic cells to

  8. Transcriptional control of innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Bernink, Jochem; Peters, Charlotte; Spits, Hergen

    2012-01-01

    Cells that belong to the family of innate lymphoid cells (ILCs) not only form a first line of defense against invading microbes, but also play essential roles in tissue remodeling and immune pathology. Ror?t+ ILCs, producing the cytokines IL-22 and IL-17, include lymphoid tissue inducer (LTi) cells

  9. Is there an innate need for children

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    1974-01-01

    textabstractABSTRACT It is commonly assumed that we have an innate need for children, in particular, that women have a 'mother instinct'. This belief lives in the general public as well as among scientists. In this paper that theory is criticized on two grounds: Firstly, it is argued that the theory

  10. Innate immune signalling of the zebrafish embryo

    NARCIS (Netherlands)

    Stockhammer, Oliver W.

    2010-01-01

    In the last decade the study of the innate immune system has gained renewed scientific momentum as a result of the discovery of essential receptor families, such as the Toll-like receptor (TLR) family, that are required for pathogen recognition. These receptors detect specific molecular structures

  11. Beneficial effects of co-enzyme Q10 and rosiglitazone in fructose-induced metabolic syndrome in rats

    Directory of Open Access Journals (Sweden)

    Suzan M. Mansour

    2013-06-01

    Full Text Available Increased fructose consumption is strongly associated with metabolic syndrome (MS. This study was performed to elucidate the role of co-enzyme Q10 (CoQ and/or rosiglitazone (Rosi in fructose induced MS. Four groups of rats (n = 8–10 were fed on fructose-enriched diet (FED for 16 weeks. One served as FED-control while the remaining groups were treated with CoQ (10 mg/kg/day, Rosi (4 mg/kg/day or their combination during the last 6 weeks. Another group was fed on normal laboratory chow (normal control. At the end of the experiment, blood samples were collected for estimation of markers related to MS. In addition, histological examination of liver, kidney and pancreas samples was done. Induction of the MS was associated with increased body weight gain (34% coupled with elevated levels of blood glucose (48%, insulin (86%, insulin resistance (270%, uric acid (69%, urea (155%, creatinine (129% and blood lipids with different degrees. Fructose-induced MS also reduced plasma catalase (62% and glutathione peroxidase (89% activities parallel to increased serum leptin and tumor necrosis factor-alpha (TNF-α levels. These changes were coupled by marked histological changes in the examined tissues. Treatment with CoQ or Rosi attenuated most of MS-induced changes. Besides, the combination of both agents further reduced blood glucose, total cholesterol, triglycerides and urea levels, as well as, normalized serum levels of leptin and TNF-α. In addition, combined therapy of both agents elevated HDL-cholesterol level and glutathione peroxidase activity. In conclusion, the present study proves the benefits of co-supplementation of CoQ and Rosi in a fructose-induced model of insulin resistance.

  12. Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Boris Betz

    2012-01-01

    Full Text Available Background. Nitric oxide (NO-signal transduction plays an important role in renal ischemia/reperfusion (I/R injury. NO produced by endothelial NO-synthase (eNOS has protective functions whereas NO from inducible NO-synthase (iNOS induces impairment. Rosiglitazone (RGZ, a peroxisome proliferator-activated receptor (PPAR-γ agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg was administered i.p. to SD-rats (f subjected to bilateral renal ischemia (60 min. Following 24 h of reperfusion, inulin- and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NOx-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3 was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion and reduces histomorphological injury. Additionally, RGZ reduces NOx plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury.

  13. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Directory of Open Access Journals (Sweden)

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  14. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    Science.gov (United States)

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  15. Kinetic Assessment and Therapeutic Modulation of Metabolic and Inflammatory Profiles in Mice on a High-Fat and Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Laura W. Engstrom

    2010-01-01

    Full Text Available The kinetics of metabolic and inflammatory parameters associated with obesity were evaluated in a murine diet-induced obesity (DIO model using a diet high in fat and cholesterol. Cellular infiltration and mediator production were assessed and shown to be therapeutically modulated by the PPARgamma agonist rosiglitazone. C57BL/6 mice were maintained on a 45% fat/0.12% cholesterol (HF/CH or Chow diet for 3, 6, 16, or 27 weeks. Flow cytometry was employed to monitor peripheral blood monocytes and adipose tissue macrophages (ATM. Gene expression and protein analysis methods were used to evaluate mediator production from total epididymal fat (EF, stromal vascular fraction (SVF, and sorted SVF cells. To investigate therapeutic intervention, mice were fed a HF/CH diet for 12 weeks and then a diet formulated with rosiglitazone (5 mg/kg for an additional 6 weeks. A HF/CH diet correlated with obesity and a dramatic proinflammatory state. Therapeutic intervention with rosiglitazone attenuated the HF/CH induced inflammation. In addition, a novel population was found that expressed the highest levels of the pro-inflammatory mediators CCL2 and IL-6.

  16. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  17. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  18. Innate lymphoid cells and the MHC.

    Science.gov (United States)

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Isolation of Human Innate Lymphoid Cells.

    Science.gov (United States)

    Krabbendam, Lisette; Nagasawa, Maho; Spits, Hergen; Bal, Suzanne M

    2018-06-29

    Innate lymphoid cells (ILCs) are innate immune cells of lymphoid origin that have important effector and regulatory functions in the first line of defense against pathogens, but also regulate tissue homeostasis, remodeling, and repair. Their function mirrors T helper cells and cytotoxic CD8 + T lymphocytes, but they lack expression of rearranged antigen-specific receptors. Distinct ILC subsets are classified in group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s and lymphoid tissue-inducer cells), based on the expression of transcription factors and the cytokines they produce. As the frequency of ILCs is low, their isolation requires extensive depletion of other cell types. The lack of unique cell surface antigens further complicates the identification of these cells. Here, methods for ILC isolation and characterization from human peripheral blood and different tissues are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  20. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  1. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  2. Neuromodulation of Innate Behaviors in Drosophila.

    Science.gov (United States)

    Kim, Susy M; Su, Chih-Ying; Wang, Jing W

    2017-07-25

    Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.

  3. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Innate Immunity Dysregulation in Myelodysplastic Syndromes

    Science.gov (United States)

    2013-10-01

    by the Regional Ministry of Education of Castilla-la Mancha, Spain, supported by the European Social Fund (ESF). We are thankful for the efforts...consistent with previous reports that aber rant activation of innate immune signals in MDS, including overcxpression of several TLRs (36) and loss...281: 1652- 1659. 14. Loiarro M, Set te C , Gallo G. Ciacc.i A, Fa nto N, et al. (2005) Peptide- media ted interference of T JR domain dimeri7.ation

  5. Innate lymphoid cells and their stromal microenvironments.

    Science.gov (United States)

    Kellermayer, Zoltán; Vojkovics, Dóra; Balogh, Péter

    2017-09-01

    In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Epigenomic Views of Innate Lymphoid Cells.

    Science.gov (United States)

    Sciumè, Giuseppe; Shih, Han-Yu; Mikami, Yohei; O'Shea, John J

    2017-01-01

    The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.

  7. Characteristic of innate lymphoid cells (ILC

    Directory of Open Access Journals (Sweden)

    Mateusz Adamiak

    2014-12-01

    Full Text Available Innate lymphoid cells (ILC is a newly described family of immune cells that are part of the natural immunity which is important not only during infections caused by microorganisms, but also in the formation of lymphoid tissue, tissue remodeling after damage due to injury and homeostasis tissue stromal cells. Family ILC cells form NK cells (natural killer and lymphoid tissue inducer T cells (LTi, which, although they have different functions, are evolutionarily related. NK cells are producing mainly IFN-γ, whereas LTi cells as NKR+LTi like, IL-17 and/or IL-22, which suggests that the last two cells, can also represent the innate versions of helper T cell - TH17 and TH22. Third population of ILC is formed by cells with characteristics such as NK cells and LTi (ILC22 - which are named NK22 cells, natural cytotoxicity receptor 22 (NCR22 cells or NK receptor-positive (LTi NKR+ LTi cells. Fourth population of ILC cells are ILC17 - producing IL-17, while the fifth is formed by natural helper type 2 T cells (nTH2, nuocyte, innate type 2 helper cells (IH2 and multi-potent progenitor type 2 cells (MPPtype2. Cells of the last population synthesize IL-5 and IL-13. It is assumed that an extraordinary functional diversity of ILC family, resembles T cells, probably because they are under the control of the corresponding transcription factors - as direct regulation factors, such as the family of lymphocytes T.

  8. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  9. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    Directory of Open Access Journals (Sweden)

    Ulrich E. Schaible

    2017-12-01

    Full Text Available The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  10. The role of genetic variants in CYP2C8, LPIN1, PPARGC1A and PPARγ on the trough steady-state plasma concentrations of rosiglitazone and on glycosylated haemoglobin A1c in type 2 diabetes

    DEFF Research Database (Denmark)

    Stage, Tore B; Christensen, Mette M H; Feddersen, Søren

    2013-01-01

    OBJECTIVE: The aim of this study was to examine the effect of single nucleotide polymorphisms in CYP2C8, LPIN1, PPARGC1A and PPARγ on rosiglitazone's (i) trough steady-state plasma concentration (C(ss,min)), (ii) on glycosylated haemoglobin A1c (HbA1c) and (iii) the risk of developing adverse eve...

  11. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    Science.gov (United States)

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  12. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells

    Directory of Open Access Journals (Sweden)

    Isabella Quinti

    2017-06-01

    Full Text Available Intravenous immunoglobulin administered at replacement dosages modulates innate and adaptive immune cells in primary antibody deficiencies (PAD in a different manner to what observed when high dosages are used or when their effect is analyzed by in vitro experimental conditions. The effects seem to be beneficial on innate cells in that dendritic cells maturate, pro-inflammatory monocytes decrease, and neutrophil function is preserved. The effects are less clear on adaptive immune cells. IVIg induced a transient increase of Treg and a long-term increase of CD4 cells. More complex and less understood is the interplay of IVIg with defective B cells of PAD patients. The paucity of data underlies the need of more studies on patients with PAD before drawing conclusions on the in vivo mechanisms of action of IVIg based on in vitro investigations.

  13. Innate lymphoid cells in the initiation, regulation and resolution of inflammation

    Science.gov (United States)

    Sonnenberg, Gregory F.; Artis, David

    2016-01-01

    A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198

  14. [The role of the innate immune system in atopic dermatitis].

    Science.gov (United States)

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  15. Mechanism of action study to evaluate the effect of rosiglitazone on bone in postmenopausal women with type 2 diabetes mellitus: rationale, study design and baseline characteristics

    Science.gov (United States)

    Fitzpatrick, Lorraine A.; Bilezikian, John P.; Wooddell, Margaret; Paul, Gitanjali; Kolatkar, Nikheel S.; Nino, Antonio J.; Miller, Colin G.; Bogado, Cesar E.; Arnaud, Claude D.; Cobitz, Alexander R.

    2012-01-01

    Objectives Post-hoc analyses have shown an increase incidence of fractures among type 2 diabetes (T2DM) patients treated with thiazolidinediones (TZDs). The mechanisms by which TZDs may be associated with increased fracture risk is not well understood. This article describes the study design and baseline characteristics for a prospective, randomized, double-blind, active-controlled trial to evaluate the effects of rosiglitazone on changes in measures of skeletal structure, surrogates of bone strength and metabolism. Methods Postmenopausal women without osteoporosis and diagnosed with T2DM were randomized in a double-blind design to either rosiglitazone or metformin for 52 weeks, then all subjects received open-label metformin for 24 weeks. Study endpoints included changes in bone mineral density (BMD), quantitative computed tomography (QCT), digitized hip radiography (HXR) and high resolution magnetic resonance imaging (hrMRI). Serum markers of bone metabolism and indices of glycemic control were assessed within and between treatment groups. Results A total of 226 subjects were randomized. Baseline characteristics included: age 63.8 ± 6.5 years; years postmenopausal 16.9 ± 8.4; duration of diabetes 3.5 (1.8–7.8) years; body mass index (BMI) 31.4 ± 5.9 kg/m2; and glycated hemoglobin (HbA1c) 6.4 ± 0.65%. At baseline, mean T-scores were −0.95 ± 0.91 at the femoral neck, −0.02 ± 0.97 at the total hip and −0.55 ± 1.25 at the total spine. Since there are no well recognized techniques to determine bone mass and structure at the distal limbs (cortical bone sites where fractures were reported in RSG subjects), using the femoral neck as a surrogate for these areas may be a potential limitation of the study. Conclusion This is the first randomized trial utilizing multiple techniques to evaluate bone mass, structure, serum markers of bone remodeling, and potential reversibility of changes after discontinuation of rosiglitazone. This

  16. Innate Lymphoid Cells in Tumor Immunity.

    Science.gov (United States)

    van Beek, Jasper J P; Martens, Anne W J; Bakdash, Ghaith; de Vries, I Jolanda M

    2016-02-25

    Innate lymphoid cells (ILCs) are a group of immune cells of the lymphoid lineage that do not possess antigen specificity. The group includes natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and the recently identified ILC1s, ILC2s and ILC3s. Although the role of NK cells in the context of cancer has been well established, the involvement of other ILC subsets in cancer progression and resistance is just emerging. Here, we review the literature on the role of the different ILC subsets in tumor immunity and discuss its implications for cancer treatment and monitoring.

  17. The Development of Adult Innate Lymphoid Cells

    Science.gov (United States)

    Yang, Qi; Bhandoola, Avinash

    2016-01-01

    Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally-distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC. PMID:26871595

  18. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  19. Tweaking Innate Immunity: The Promise of Innate Immunologicals as Anti-Infectives

    Directory of Open Access Journals (Sweden)

    Kenneth L Rosenthal

    2006-01-01

    Full Text Available New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals' can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.

  20. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  1. Necroptotic signaling in adaptive and innate immunity.

    Science.gov (United States)

    Lu, Jennifer V; Chen, Helen C; Walsh, Craig M

    2014-11-01

    The vertebrate immune system is highly dependent on cell death for efficient responsiveness to microbial pathogens and oncogenically transformed cells. Cell death pathways are vital to the function of many immune cell types during innate, humoral and cellular immune responses. In addition, cell death regulation is imperative for proper adaptive immune self-tolerance and homeostasis. While apoptosis has been found to be involved in several of these roles in immunity, recent data demonstrate that alternative cell death pathways are required. Here, we describe the involvement of a programmed form of cellular necrosis called "necroptosis" in immunity. We consider the signaling pathways that promote necroptosis downstream of death receptors, type I transmembrane proteins of the tumor necrosis factor (TNF) receptor family. The involvement of necroptotic signaling through a "RIPoptosome" assembled in response to innate immune stimuli or genotoxic stress is described. We also characterize the induction of necroptosis following antigenic stimulation in T cells lacking caspase-8 or FADD function. While necroptotic signaling remains poorly understood, it is clear that this pathway is an essential component to effective vertebrate immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fish innate immunity against intestinal helminths.

    Science.gov (United States)

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Role for PML in Innate Immunity

    Science.gov (United States)

    Lunardi, Andrea; Gaboli, Mirella; Giorgio, Marco; Rivi, Roberta; Bygrave, Anne; Antoniou, Michael; Drabek, Dubravka; Dzierzak, Elaine; Fagioli, Marta; Salmena, Leonardo; Botto, Marina; Cordon-Cardo, Carlos; Luzzatto, Lucio; Pelicci, Pier Giuseppe; Grosveld, Frank; Pandolfi, Pier Paolo

    2011-01-01

    The promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune response to viral infection. Herein, we report that Pml −/− mice spontaneously develop an atypical invasive and lethal granulomatous lesion known as botryomycosis (BTM). In Pml −/− mice, BTM is the result of impaired function of macrophages, whereby they fail to become activated and are thus unable to clear pathogenic microorganisms. Accordingly, Pml −/− mice are resistant to lipopolysaccharide (LPS)–induced septic shock as a result of an ineffective production of cytokines and chemokines, suggesting a role for PML in the innate immune Toll-like receptor (TLR)/NF-κB prosurvival pathway. These results not only shed light on a new fundamental function of PML in innate immunity, but they also point to a proto-oncogenic role for PML in certain cellular and pathological contexts. PMID:21779477

  4. Innateness and the instinct to learn

    Directory of Open Access Journals (Sweden)

    Peter Marler

    2004-06-01

    Full Text Available Concepts of innateness were at the heart of Darwin's approach to behavior and central to the ethological theorizing of Lorenz and, at least to start with, of Tinbergen. Then Tinbergen did an about face, and for some twenty years the term 'innate' became highly suspect. He attributed the change to Lehrman's famous 1953 critique in which he asserted that classifying behaviors as innate tells us nothing about how they develop. Although Lehrman made many valid points, I will argue that this exchange also led to profound misunderstandings that were ultimately damaging to progress in research on the development of behavior. The concept of 'instincts to learn', receiving renewed support from current theorizing among geneticists about phenotypic plasticity, provides a potential resolution of some of the controversies that Lehrman created. Bioacoustical studies, particularly on song learning in birds, serve both to confirm some of Lehrman's anxieties about the term 'innate', but also to make a case that he threw out the genetic baby with the bathwater. The breathtaking progress in molecular and developmental genetics has prepared the way for a fuller understanding of the complexities underlying even the simplest notions of innate behavior, necessary before we can begin to comprehend the ontogeny of behavior.O conceito de inato estava no cerne da abordagem de Darwin ao comportamento assim como no das teorias etológicas de Lorenz e, pelo menos inicialmente, de Tinbergen. Depois, Tinbergen deu uma reviravolta e, durante mais ou menos vinte anos, o termo ''inato'' tornou-se altamente suspeito. Tinbergen atribuiu sua mudança à famosa crítica de Lehrman, em 1953, segundo a qual classificar comportamentos como inatos não traz informação alguma a respeito de seu desenvolvimento. Embora muitas das críticas de Lehrman sejam relevantes, tentarei mostrar que a mudança de enfoque também gerou sérios equívocos que acabaram prejudicando o progresso da

  5. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans.

    Science.gov (United States)

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; León-Contreras, Juan C; Hernández-Pando, Rogelio; Escobedo, Dante; Torres, Martha; Sada, Eduardo

    2012-04-01

    A role for the nucleotide-binding oligomerization domain 2 (NOD2) receptor in pulmonary innate immune responses has recently been explored. In the present study, we investigated the role that NOD2 plays in human alveolar macrophage innate responses and determined its involvement in the response to infection with virulent Mycobacterium tuberculosis. Our results showed that NOD2 was expressed in human alveolar macrophages, and significant amounts of IL-1β, IL-6, and TNF-α were produced upon ligand recognition with muramyldipeptide (MDP). NOD2 ligation induced the transcription and protein expression of the antimicrobial peptide LL37 and the autophagy enzyme IRGM in alveolar macrophages, demonstrating a novel function for this receptor in these cells. MDP treatment of alveolar macrophages improved the intracellular growth control of virulent M. tuberculosis; this was associated with a significant release of TNF-α and IL-6 and overexpression of bactericidal LL37. In addition, the autophagy proteins IRGM, LC3 and ATG16L1 were recruited to the bacteria-containing autophagosome after treatment with MDP. In conclusion, our results suggest that NOD2 can modulate the innate immune response of alveolar macrophages and play a role in the initial control of respiratory M. tuberculosis infections. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Can Innate, modular "foundations" explain morality? Challenges for Haidt's Moral Foundations Theory.

    Science.gov (United States)

    Suhler, Christopher L; Churchland, Patricia

    2011-09-01

    Jonathan Haidt's Moral Foundations Theory is an influential scientific account of morality incorporating psychological, developmental, and evolutionary perspectives. The theory proposes that morality is built upon five innate "foundations," each of which is believed to have been selected for during human evolution and, subsequently, tuned-up by learning during development. We argue here that although some general elements of Haidt's theory are plausible, many other important aspects of his account are seriously flawed. First, innateness and modularity figure centrally in Haidt's account, but terminological and conceptual problems foster confusion and ambiguities. Second, both the theory's proposed number of moral foundations and its taxonomy of the moral domain appear contrived, ignoring equally good candidate foundations and the possibility of substantial intergroup differences in the foundations' contents. Third, the mechanisms (viz., modules) and categorical distinctions (viz., between foundations) proposed by the theory are not consilient with discoveries in contemporary neuroscience concerning the organization, functioning, and development of the brain. In light of these difficulties, we suggest that Haidt's theory is inadequate as a scientific account of morality. Nevertheless, the theory's weaknesses are instructive, and hence, criticism may be useful to psychologists, neuroscientists, and philosophers attempting to advance theories of morality, as well as to researchers wishing to invoke concepts such as innateness and modularity more generally.

  7. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.

    Science.gov (United States)

    García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C

    2016-05-01

    The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Aspergillus-Associated Airway Disease, Inflammation, and the Innate Immune Response

    Science.gov (United States)

    Chotirmall, Sanjay H.; Al-Alawi, Mazen; Logan, P. Mark; Greene, Catherine M.; McElvaney, Noel G.

    2013-01-01

    Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit. PMID:23971044

  9. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice

    Directory of Open Access Journals (Sweden)

    Montine Thomas J

    2006-04-01

    Full Text Available Abstract Background Inheritance of the three different alleles of the human apolipoprotein (apo E gene (APOE are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid β metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the ε4 allele (TR APOE4 and that derives from p38 mitogen-activated protein kinase (p38MAPK activity. Methods Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS. ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-κB subunit activity were measured and compared. Results Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-κB subunit activity. Conclusion Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-κB signaling in these two cell types.

  10. Aspergillus-Associated Airway Disease, Inflammation, and the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Sanjay H. Chotirmall

    2013-01-01

    Full Text Available Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit.

  11. Innate immunological function of TH2 cells in vivo

    Science.gov (United States)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  12. Innatism, Concept Formation, Concept Mastery and Formal Education

    Science.gov (United States)

    Winch, Christopher

    2015-01-01

    This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…

  13. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  14. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  15. Innate immune defences in the human endometrium

    Directory of Open Access Journals (Sweden)

    Kelly Rodney W

    2003-11-01

    Full Text Available Abstract The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.

  16. The sweet side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation

    Directory of Open Access Journals (Sweden)

    Antonio eInforzato

    2013-01-01

    Full Text Available Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs that recognise pathogen associated molecular patterns (PAMPs and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a non-redundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the crossroad between innate immunity, inflammation and female fertility. The human PTX3 protein contains a single N-glycosylation site that is fully occupied by complex type oligosaccharides, mainly fucosylated and sialylated biantennary glycans. Glycosylation has been implicated in a number of PTX3 activities, including neutralization of influenza viruses, modulation of the complement system, and attenuation of leukocyte recruitment. Therefore, this post translational modification might act as a fine tuner of PTX3 functions in native immunity and inflammation.Here we review the studies on PTX3, with emphasis on the glycan-dependent mechanisms underlying pathogen recognition and crosstalk with other components of the innate immune system.

  17. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    Science.gov (United States)

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  19. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  20. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    2015-12-01

    Full Text Available Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.

  1. Extremely low frequency electromagnetic field exposure does not modulate Toll-like receptor signaling in human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Kleijn, de S.; Bouwens, M.; Verburg-van Kemenade, B.M.L.; Cuppen, J.J.M.; Ferwerda, G.; Hermans, P.

    2011-01-01

    The effects of extremely low frequency electromagnetic fields (ELF-EMF) on human health remain unclear. It has been reported that ELF-EMF may modulate the innate immune response to microorganisms in animal models and mammalian cell-lines. With the recently gained insight in innate immune signaling

  2. Evidence of the innate antiviral and neuroprotective properties of progranulin.

    Directory of Open Access Journals (Sweden)

    Hyeon-Sook Suh

    Full Text Available Compelling data exist that show that normal levels of progranulin (PGRN are required for successful CNS aging. PGRN production is also modulated by inflammation and infection, but no data are available on the production and role of PGRN during CNS HIV infection.To determine the relationships between PGRN and HIV disease, neurocognition, and inflammation, we analyzed 107 matched CSF and plasma samples from CHARTER, a well-characterized HIV cohort. Levels of PGRN were determined by ELISA and compared to levels of several inflammatory mediators (IFNγ, IL-6, IL-10, IP-10, MCP-1, TNFα, IL-1β, IL-4 and IL-13, as well as clinical, virologic and demographic parameters. The relationship between HIV infection and PGRN was also examined in HIV-infected primary human microglial cultures.In plasma, PGRN levels correlated with the viral load (VL, p<0.001. In the CSF of subjects with undetectable VL, lower PGRN was associated with neurocognitive impairment (p = 0.046. CSF PGRN correlated with CSF IP-10, TNFα and IL-10, and plasma PGRN correlated with plasma IP-10. In vitro, microglial HIV infection increased PGRN production and PGRN knockdown increased HIV replication, demonstrating that PGRN is an innate antiviral protein.We propose that PGRN plays dual roles in people living with HIV disease. With active HIV replication, PGRN is induced in infected macrophages and microglia and functions as an antiviral protein. In individuals without active viral replication, decreased PGRN production contributes to neurocognitive dysfunction, probably through a diminution of its neurotrophic functions. Our results have implications for the pathogenesis, biomarker studies and therapy for HIV diseases including HIV-associated neurocognitive dysfunction (HAND.

  3. Mechanisms by which Porphyromonas gingivalis evades innate immunity.

    Directory of Open Access Journals (Sweden)

    Kaveh Abdi

    Full Text Available The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis and Fusobacterium nucleatum (F. nucleatum, on Dendritic Cell (DC activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli. Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50 that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1 and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.

  4. Targeting the innate repair receptor to treat neuropathy

    Directory of Open Access Journals (Sweden)

    Albert Dahan

    2016-07-01

    Full Text Available Abstract. The innate repair receptor (IRR is a heteromer of the erythropoietin receptor and the β-common (CD131 receptor, which simultaneously activates anti-inflammatory and tissue repair pathways. Experimental data suggest that after peripheral nerve injury, the IRR is upregulated in the spinal cord and modulates the neurogenic inflammatory response. The recently introduced selective IRR agonist ARA290 is an 11-amino acid peptide initially tested in animal models of neuropathy. After sciatic nerve injury, ARA290 produced a rapid and long-term relief of mechanical and cold allodynia in normal mice, but not in animals with a β-common receptor knockout phenotype. In humans, ARA290 has been evaluated in patients with small fiber neuropathy associated with sarcoidosis or type 2 diabetes (T2D mellitus. In patients with sarcoidosis, ARA290 significantly improved neuropathic and autonomic symptoms, as well as quality of life as assessed by the small fiber neuropathy screening list questionnaire. In addition, ARA290 treatment for 28 days initiated a regrowth of small nerve fibers in the cornea, but not in the epidermis. In patients with T2D, the results were similar to those observed in patients with sarcoidosis along with an improved metabolic profile. In both populations, ARA290 lacked significant adverse effects. These experimental and clinical studies show that ARA290 effectively reprograms a proinflammatory, tissue-damaging milieu into one of healing and tissue repair. Further clinical trials with long-term treatment and follow-up are needed to assess the full potential of IRR activation by ARA290 as a disease-modifying therapy in neuropathy of various etiologies.

  5. Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection.

    Directory of Open Access Journals (Sweden)

    Paula Rodrigues Oblessuc

    Full Text Available BACKGROUND: The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.. Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. METHODOLOGY AND PRINCIPAL FINDINGS: As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling. CONCLUSIONS/SIGNIFICANCE: We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to

  6. Gene networks specific for innate immunity define post-traumatic stress disorder.

    Science.gov (United States)

    Breen, M S; Maihofer, A X; Glatt, S J; Tylee, D S; Chandler, S D; Tsuang, M T; Risbrough, V B; Baker, D G; O'Connor, D T; Nievergelt, C M; Woelk, C H

    2015-12-01

    The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.

  7. Effect of chromium enriched fermentation product of barley and brewer’s yeast and its combination with rosiglitazone on experimentally induced hyperglycaemia in mice

    Directory of Open Access Journals (Sweden)

    Cekić Vlada

    2011-01-01

    Full Text Available Introduction. In the recent years, herbal preparations have been more used to treat diabetes. Dietetic supplement based on barley and beer yeast enriched with chromium (BBCr is registered in Serbia as a supplement in the treatment of type 2 diabetes. Objective. To investigate the effect of the preparation based on barley and brewer’s yeast with chromium (BBCr, rosiglitazone (R and their combination (BBCr+R on fasting glycaemia and glycaemia in mice after glucose, adrenalin and alloxan application. Methods. The animals were divided into three groups: glucose 500 mg/kg (I; adrenalin 0.2 mg/kg (II; and alloxan 100 mg/kg (III and into subgroups according to the substance they received (BBCr: 750 mg/kg, R: 0.75 mg/kg and BBCr+R. Each animal was its own control in respect of glycaemia before and after the treatment with test substances, except for group III which contained a placebo subgroup. Results. BBCr caused a significant decrease of fasting glycaemia and significant reduction of glycaemia after glucose load compared to the values before treatment (7.4±0.6 mmol/l vs 9.2±0.6 mmol/l; p=0.01. R and BBCr+R significantly decreased glycaemia after adrenalin load (R: 8.6±1.8 mmol/l vs 15.4±3.2 mmol/l; p=0.004; BBCr+R: 9.6±2.4 mmol/l vs 15.0±4.4 mmol/l; p=0.04. After alloxan application the glycaemia was significantly lower in the subgroups treated with BBCr, R and BBCr+R compared to placebo subgroup (10.1±8.0 mmol/l vs 6.8±2.7 mmol/l vs 13.5±9.7 mmol/l vs 24.5±4.7 mmol/l; p=0.001. Conclusion. Pretreatment with BBCr caused a significant reduction of fasting glycaemia and glycaemia after glucose load. Rosiglitazone and BBCr+R caused a significant reduction of glycaemia after adrenalin load. Pretreatment with BBCr, R and BBCr+R prevented the onset of experimental diabetes caused by alloxan, which was confirmed by histological analysis of pancreas tissue.

  8. Innate lymphoid cells, precursors and plasticity.

    Science.gov (United States)

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2016-11-01

    Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Innate lymphoid cells in secondary lymphoid organs.

    Science.gov (United States)

    Bar-Ephraïm, Yotam E; Mebius, Reina E

    2016-05-01

    The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    pathway and are able to modulate the innate-adaptive interface. These mechanistic insights into the adjuvant-like property of EBOV GP may help to develop a better understanding of how optimal prophylactic efficacy of EBOV vaccines can be achieved as well as further explore the potential post-exposure use of vaccines to prevent filoviral disease.

  11. TOX sets the stage for innate lymphoid cells

    NARCIS (Netherlands)

    Spits, Hergen

    2015-01-01

    Like T cells and B cells, innate lymphoid cells (ILCs) develop from common lymphoid progenitors, but how commitment to the ILC lineage is regulated has remained unclear. The transcriptional regulator TOX is important in this process

  12. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dissecting the hypothalamic pathways that underlie innate behaviors.

    Science.gov (United States)

    Zha, Xi; Xu, Xiaohong

    2015-12-01

    Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.

  14. Diversity, Function and Transcriptional Regulation of Gut Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Lucille eRankin

    2013-03-01

    Full Text Available The innate immune system plays a critical early role in host defense against viruses, bacteria and tumour cells. Until recently, natural killer (NK cells and lymphoid tissue inducer (LTi cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations (ILCs remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.

  15. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  16. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  17. Recognition Strategies of Group 3 Innate Lymphoid Cells

    OpenAIRE

    Killig, Monica; Glatzer, Timor; Romagnani, Chiara

    2014-01-01

    During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors (actR) with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells (APC) in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are share...

  18. What can the semantic properties of innate representations explain?

    OpenAIRE

    Jacob , Pierre

    1997-01-01

    Dretske has argued that, unlike the content of beliefs and desires (formed by learning), the contents of innate representations (depending directly on evolution by natural selection) cannot in principle play a role in the causal explanation of an individual's behavior. I examine this "asymmetry" and against it, I argue that the content of innate mental representations too can play a causal role in the explanation of behavior.

  19. Innate immune reconstitution with suppression of HIV-1.

    Science.gov (United States)

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  20. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  1. HMGB1 and cord blood: its role as immuno-adjuvant factor in innate immunity.

    Directory of Open Access Journals (Sweden)

    Alessandra Ciucci

    Full Text Available In newborn the innate immune system provides essential protection during primary infections before the generation of an appropriate adaptive immune response that is initially not fully operative. Innate immune response is evoked and perpetuated by molecules derived from microorganisms or by the damage/death of host cells. These are collectively known as damage-associated molecular-pattern (DAMP molecules. High-mobility group box 1 protein (HMGB1 or amphoterin, which previously was considered to be only a nuclear factor, has been recently identified as a DAMP molecule. When it is actively secreted by inflammatory cells or passively released from necrotic cells, HMGB1 mediates the response to infection, injury and inflammation, inducing dendritic cells maturation and T helper-1-cell responses. To characterize the role of HMGB1 in the innate and immature defense mechanisms in newborns, human cord blood (CB mononuclear cells, in comparison to adult peripheral blood (PB mononuclear cells, have been analyzed for its expression. By flow cytometry and western blot analysis, we observed that in CB and PB cells: i HMGB1 is expressed on cell surface membranes of myeloid dendritic cell precursors, mostly, and lymphocytes (gamma/delta and CD4(+ T cells to a lesser extent; ii different pro-inflammatory stimuli or molecules that mimic infection increased cell surface expression of HMGB1 as well as its secretion into extracellular environment; iii the treatment with synthetic molecules such as aminobisphosphonates (ABs, identified to be γδ T cell antigens, triggered up-regulation of HMGB1 expression on mononuclear cells, as well γδ T lymphocytes, inducing its secretion. The modulation of its secretion and the HMGB1-mediated migration of monocytes indicated HMGB1 as regulator of immune response in an immature system, like CB, through engagement of γδ T lymphocytes and myeloid dendritic cell precursors, essential components of innate immunity. In addition

  2. Adverse hepatic and cardiac responses to rosiglitazone in a new mouse model of type 2 diabetes: relation to dysregulated phosphatidylcholine metabolism.

    Science.gov (United States)

    Pan, Huei-Ju; Lin, Yiming; Chen, Yuqing E; Vance, Dennis E; Leiter, Edward H

    2006-07-01

    Given the heterogeneous nature of metabolic dysfunctions associated with insulin resistance and type 2 diabetes (T2D), a single pharmaceutical cannot be expected to provide complication-free therapy in all patients. Thiazolidinediones (TZD) increase insulin sensitivity, reduce blood glucose and improve cardiovascular parameters. However, in addition to increasing fat mass, TZD have the potential in certain individuals to exacerbate underlying hepatosteatosis and diabetic cardiomyopathy. Pharmacogenetics should allow patient selection to maximize therapy and minimize risk. To this end, we have combined two genetically diverse inbred strains, NON/Lt and NZO/Lt, to produce a "negative heterosis" increasing the frequency of T2D in F1 males. As in humans with T2D, treatment of diabetic and hyperlipemic F1 males with rosiglitazone (Rosi), an agonist of peroxisome proliferator-activated gamma receptor (PPARgamma), reverses these disease phenotypes. However, the hybrid genome perturbed both major pathways for phosphatidylcholine (PC) biosynthesis in the liver, and effected remarkable alterations in the composition of cardiolipin in heart mitochondria. These metabolic defects severely exacerbated an underlying hepatosteatosis and increased levels of the adipokine, plasminogen activator inhibitor-1 (PAI-1), a risk factor for cardiovascular events. This model system demonstrates how the power of mouse genetics can be used to identify the metabolic signatures of individuals who may be prone to drug side effects.

  3. Coordinate Transcriptomic and Metabolomic Effects of the Insulin Sensitizer Rosiglitazone on Fundamental Metabolic Pathways in Liver, Soleus Muscle, and Adipose Tissue in Diabetic db/db Mice

    Directory of Open Access Journals (Sweden)

    Sabrina Le Bouter

    2010-01-01

    Full Text Available Rosiglitazone (RSG, developed for the treatment of type 2 diabetes mellitus, is known to have potent effects on carbohydrate and lipid metabolism leading to the improvement of insulin sensitivity in target tissues. To further assess the capacity of RSG to normalize gene expression in insulin-sensitive tissues, we compared groups of 18-day-treated db/db mice with increasing oral doses of RSG (10, 30, and 100 mg/kg/d with untreated non-diabetic littermates (db/+. For this aim, transcriptional changes were measured in liver, inguinal adipose tissue (IAT and soleus muscle using microarrays and real-time PCR. In parallel, targeted metabolomic assessment of lipids (triglycerides (TGs and free fatty acids (FFAs in plasma and tissues was performed by UPLC-MS methods. Multivariate analyses revealed a relationship between the differential gene expressions in liver and liver trioleate content and between blood glucose levels and a combination of differentially expressed genes measured in liver, IAT, and muscle. In summary, we have integrated gene expression and targeted metabolomic data to present a comprehensive overview of RSG-induced changes in a diabetes mouse model and improved the molecular understanding of how RSG ameliorates diabetes through its effect on the major insulin-sensitive tissues.

  4. Electroacupuncture and Rosiglitazone Combined Therapy as a Means of Treating Insulin Resistance and Type 2 Diabetes Mellitus: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Rong-Tsung Lin

    2013-01-01

    Full Text Available Aims. To evaluate the efficacy of rosiglitazone (TZD and electroacupuncture (EA combined therapy as a treatment for type 2 diabetes mellitus (T2DM patients by randomized single-blind placebo controlled clinical trial. Methods. A total of 31 newly diagnostic T2DM patients, who fulfilled the study's eligibility criteria, were recruited. The individuals were randomly assigned into two groups, the control group (TZD, N=15 and the experimental group (TZD + EA, N=16. Changes in their plasma free fatty acid (FFA, glucose, and insulin levels, together with their homeostasis model assessment (HOMA indices, were statistically compared before and after treatment. Hypoglycemic activity (% was also compared between these two groups. Results. There was no significant difference in hypoglycemic activity between the TZD and TZD + EA group. The effectiveness of the combined therapy seems to derive from an improvement in insulin resistance and a significant lowering of the secreted insulin rather than the effect of TZD alone on T2DM. The combined treatment had no significant adverse effects. A lower plasma FFA concentration is likely to be the mechanism that causes this effect. Conclusion. This combined therapy seems to suppress endogenous insulin secretion by improving insulin resistance via a mechanism involving a reduction in plasma FFA. This trial is registered with ClinicalTrials.gov NCT01577095.

  5. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  6. Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection

    Directory of Open Access Journals (Sweden)

    Julio Villena

    2016-12-01

    Full Text Available The mucosal tissues of the gastrointestinal tract are the main portal entry of pathogens such as rotavirus (RVs, which is a leading cause of death due to diarrhea among young children across the globe and a major cause of severe acute intestinal infection in livestock animals. The interactions between intestinal epithelial cells (IECs and immune cells with RVs have been studied for several years, and now it is known that the innate immune responses triggered by this virus can have both beneficial and detrimental effects for the host. It was demonstrated that natural RVs infection in infants and experimental challenges in mice result in the intestinal activation of pattern recognition receptors (PRRs like Toll-like receptor 3 (TLR3 and striking secretion of pro-inflammatory mediators that can lead to increased local tissue damage and immunopathology. Therefore, modulating desregulated intestinal immune responses triggered by PRRs activation are a significant promise for reducing the burden of RVs diseases. The ability of immunoregulatory probiotic microorganisms (immunobiotics to protect against intestinal infections such as those caused by RVs, are among the oldest effects studied for these important group of beneficial microbes. In this review, we provide an update of the current status on the modulation of intestinal antiviral innate immunity by immunobiotics, and their beneficial impact on RVs infection. In addition, we describe the research of our group that demonstrated the capacity of immunobiotic strains to beneficially modulated TLR3-triggered immune response in IECs, reduce the disruption of intestinal homeostasis caused by intraepithelial lymphocytes, and improve the resistance to RVs infections.

  7. Emerging Role of D-Amino Acid Metabolism in the Innate Defense

    Directory of Open Access Journals (Sweden)

    Jumpei Sasabe

    2018-05-01

    Full Text Available Mammalian innate and adaptive immune systems use the pattern recognition receptors, such as toll-like receptors, to detect conserved bacterial and viral components. Bacteria synthesize diverse D-amino acids while eukaryotes and archaea generally produce two D-amino acids, raising the possibility that many of bacterial D-amino acids are bacteria-specific metabolites. Although D-amino acids have not been identified to bind to any known pattern recognition receptors, D-amino acids are enantioselectively recognized by some other receptors and enzymes including a flavoenzyme D-amino acid oxidase (DAO in mammals. At host–microbe interfaces in the neutrophils and intestinal mucosa, DAO catalyzes oxidation of bacterial D-amino acids, such as D-alanine, and generates H2O2, which is linked to antimicrobial activity. Intestinal DAO also modifies the composition of microbiota through modulation of growth for some bacteria that are dependent on host nutrition. Furthermore, regulation and recognition of D-amino acids in mammals have additional meanings at various host–microbe interfaces; D-phenylalanine and D-tryptophan regulate chemotaxis of neutrophils through a G-coupled protein receptor, D-serine has a bacteriostatic role in the urinary tract, D-phenylalanine and D-leucine inhibit innate immunity through the sweet taste receptor in the upper airway, and D-tryptophan modulates immune tolerance in the lower airway. This mini-review highlights recent evidence supporting the hypothesis that D-amino acids are utilized as inter-kingdom communication at host–microbe interface to modulate bacterial colonization and host defense.

  8. Early life innate immune signatures of persistent food allergy.

    Science.gov (United States)

    Neeland, Melanie R; Koplin, Jennifer J; Dang, Thanh D; Dharmage, Shyamali C; Tang, Mimi L; Prescott, Susan L; Saffery, Richard; Martino, David J; Allen, Katrina J

    2017-11-14

    Food allergy naturally resolves in a proportion of food-allergic children without intervention; however the underlying mechanisms governing the persistence or resolution of food allergy in childhood are not understood. This study aimed to define the innate immune profiles associated with egg allergy at age 1 year, determine the phenotypic changes that occur with the development of natural tolerance in childhood, and explore the relationship between early life innate immune function and serum vitamin D. This study used longitudinally collected PBMC samples from a population-based cohort of challenge-confirmed egg-allergic infants with either persistent or transient egg allergy outcomes in childhood to phenotype and quantify the functional innate immune response associated with clinical phenotypes of egg allergy. We show that infants with persistent egg allergy exhibit a unique innate immune signature, characterized by increased numbers of circulating monocytes and dendritic cells that produce more inflammatory cytokines both at baseline and following endotoxin exposure when compared with infants with transient egg allergy. Follow-up analysis revealed that this unique innate immune signature continues into childhood in those with persistent egg allergy and that increased serum vitamin D levels correlate with changes in innate immune profiles observed in children who developed natural tolerance to egg. Early life innate immune dysfunction may represent a key immunological driver and predictor of persistent food allergy in childhood. Serum vitamin D may play an immune-modulatory role in the development of natural tolerance. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. DMPD: Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antiviral innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395579 Innate immunity minireview series: making biochemical sense of nucleic aci...007 Mar 29. (.png) (.svg) (.html) (.csml) Show Innate immunity minireview series: making biochemical sense o...itle Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antivir

  10. Viral degradasome hijacks mitochondria to suppress innate immunity

    Science.gov (United States)

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  11. Infectious Agents as Stimuli of Trained Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulina Rusek

    2018-02-01

    Full Text Available The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  12. Alternatives to conventional vaccines--mediators of innate immunity.

    Science.gov (United States)

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  13. Role of innate T cells in anti-bacterial immunity

    Directory of Open Access Journals (Sweden)

    Yifang eGao

    2015-06-01

    Full Text Available Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 hours upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely Invariant NKT cells (iNKT; Mucosal associated invariant T cells (MAIT and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1 and CD1a.They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review we focus on the functional properties of these 3 innate T cell populations and how they are purposed for antimicrobial defense. Furthermore we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly we speculate on future roles of these cell types in therapeutic settings such as vaccination.

  14. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  15. The Emerging Role of TLR and Innate Immunity in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Rolf Spirig

    2012-01-01

    Full Text Available Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.

  16. Role of the peripheral innate immune system in the development of Alzheimer's disease.

    Science.gov (United States)

    Le Page, Aurélie; Dupuis, Gilles; Frost, Eric H; Larbi, Anis; Pawelec, Graham; Witkowski, Jacek M; Fulop, Tamas

    2017-12-21

    Alzheimer's disease is one of the most devastating neurodegenerative diseases. The exact cause of the disease is still not known although many scientists believe in the beta amyloid hypothesis which states that the accumulation of the amyloid peptide beta (Aβ) in brain is the initial cause which consequently leads to pathological neuroinflammation. However, it was recently shown that Aβ may have an important role in defending the brain against infections. Thus, the balance between positive and negative impact of Aβ may determine disease progression. Microglia in the brain are innate immune cells, and brain-initiated inflammatory responses reflected in the periphery suggests that Alzheimer's disease is to some extent also a systemic inflammatory disease. Greater permeability of the blood brain barrier facilitates the transport of peripheral immune cells to the brain and vice versa so that a vicious circle originating on the periphery may contribute to the development of overt clinical AD. Persistent inflammatory challenges by pathogens in the periphery, increasing with age, may also contribute to the central propagation of the pathological changes seen clinically. Therefore, the activation status of peripheral innate immune cells may represent an early biomarker of the upcoming impact on the brain. The modulation of these cells may thus become a useful mechanism for modifying disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Adriana Albini

    2018-04-01

    Full Text Available The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.

  18. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    Science.gov (United States)

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  19. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe......-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant...

  20. Cheetahs have a stronger constitutive innate immunity than leopards.

    Science.gov (United States)

    Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina

    2017-03-23

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.

  1. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    Science.gov (United States)

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  2. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.

    Science.gov (United States)

    Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing

    2016-09-02

    Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.

  3. Multi-objective optimization strategy based on desirability functions used for electrophoratic separation and quantification of rosiglitazone and glimepiride in plasma and formulations.

    Science.gov (United States)

    Hefnawy, Mohamed M; Sultan, Maha A; Al-Johar, Haya I; Kassem, Mohamed G; Aboul-Enein, Hassan Y

    2012-01-01

    Multiple response simultaneous optimization employing Derringer's desirability function was used for the development of a capillary electrophoresis method for the simultaneous determination of rosiglitazone (RSG) and glimepiride (GLM) in plasma and formulations. Twenty experiments, taking the two resolutions, the analysis time, and the capillary current as the responses with three important factors--buffer morality, volte and column temperature--were used to design mathematical models. The experimental responses were fitted into a second order polynomial and the six responses were simultaneously optimized to predict the optimum conditions for the effective separation of the studied compounds. The separation was carried out by using capillary zone electrophoresis (CZE) with a silica capillary column and diode array detector at 210 nm. The optimum assay conditions were 52 mmol l⁻¹ phosphate buffer, pH 7, and voltage of 22 kV at 29 °C. The method showed good agreement between the experimental data and predictive value throughout the studied parameter space. The assay limit of detection was 0.02 µg ml⁻¹ and the effective working range at relative standard deviation (RSD) of ≤ 5% was 0.05-16 µg ml⁻¹ (r = 0.999) for both drugs. Analytical recoveries of the studied drugs from spiked plasma were 97.2-101.9 ± 0.31-3.0%. The precision of the assay was satisfactory; RSD was 1.07 and 1.14 for intra- and inter-assay precision, respectively. The proposed method has a great value in routine analysis of RSG and GLM for its therapeutic monitoring and pharmacokinetic studies. Copyright © 2011 John Wiley & Sons, Ltd.

  4. The effect of recombinant human growth hormone with or without rosiglitazone on hepatic fat content in HIV-1-infected individuals: a randomized clinical trial.

    Science.gov (United States)

    Kotler, Donald P; He, Qing; Engelson, Ellen S; Albu, Jeanine B; Glesby, Marshall J

    2016-01-01

    Hepatic fat is related to insulin resistance (IR) and visceral adipose tissue (VAT) in HIV+ and uninfected individuals. Growth hormone (GH) reduces VAT but increases IR. We evaluated the effects of recombinant human GH (rhGH) and rosiglitazone (Rosi) on hepatic fat in a substudy of a randomized controlled trial. HIV+ subjects with abdominal obesity and IR (QUICKI≤0.33) were randomized to rhGH 3 mg daily, Rosi 4 mg twice daily, the combination or double placebo. Hepatic fat was measured by magnetic resonance spectroscopy, visceral fat by MRI and IR by frequently sampled intravenous glucose tolerance tests at baseline and week 12. 31 subjects were studied at both time points. Significant correlations between hepatic fat and VAT (r=0.41; P=0.02) and QUICKI (r=0.39; P<0.05) were seen at baseline. IR rose with rhGH but not Rosi. When rhGH treatment groups were combined, hepatic fat expressed as percentage change decreased significantly (P<0.05) but did not change in Rosi (P=0.71). There were no correlations between changes in hepatic fat and VAT (P=0.4) or QUICKI (P=0.6). In a substudy of 21 subjects, a trend was noticed between changes in hepatic fat and serum insulin-like growth factor-1 (IGF-1; P=0.09). Hepatic fat correlates significantly with both VAT and IR, but changes in hepatic fat do not correlate with changes in VAT and glucose metabolism. Hepatic fat content is reduced by rhGH but Rosi has no effect. These results suggest an independent effect of GH or IGF-1 on hepatic fat. The study was registered at Clinicaltrials.gov (NCT00130286).

  5. The effect of recombinant human growth hormone with or without rosiglitazone on hepatic fat content in HIV-1 infected individuals; a randomized clinical trial

    Science.gov (United States)

    Kotler, Donald P; He, Qing; Engelson, Ellen S; Albu, Jeanine B; Glesby, Marshall J

    2016-01-01

    Background Hepatic fat is related to insulin resistance (IR) and visceral adipose tissue (VAT) in HIV+ and uninfected individuals. Growth hormone (GH) reduces VAT but increases IR. We evaluated the effects of recombinant human GH (rhGH) and rosiglitazone (Rosi) on hepatic fat in a substudy of a randomized controlled trial. Methods HIV+ subjects with abdominal obesity and IR (QUICKI ≤ 0.33) were randomized to rhGH 3 mg daily, Rosi 4 mg twice daily, the combination, or double placebo. Hepatic fat was measured by magnetic resonance spectroscopy (MRS), visceral fat by MRI, and IR by frequently sampled IV glucose tolerance tests at baseline and week 12. Results 31 subjects were studied at both time points. Significant correlations between hepatic fat and VAT (r = 0.41, p=0.02) and QUICKI (r = 0.39, p<0.05) were seen at baseline. Insulin resistance rose with rhGH but not Rosi. When rhGH treatment groups were combined, hepatic fat expressed as percent change decreased significantly (p<0.05) but did not change in Rosi (p=0.71). There were no correlations between changes in hepatic fat and VAT (p=0.4) or QUICKI (p=0.6). In a substudy of 21 subjects, a trend was noticed between changes in hepatic fat and serum IGF-1 (p=0.09). Conclusions Hepatic fat correlates significantly with both VAT and IR, but changes in hepatic fat do not correlate with changes in VAT and glucose metabolism. Hepatic fat content is reduced by rhGH but Rosi has no effect. These results suggest an independent effect of growth hormone or IGF-1 on hepatic fat. The study was registered at Clinicaltrials.gov (NCT00130286). PMID:25536669

  6. Interactions between the intestinal microbiota and innate lymphoid cells

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  7. Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides.

    Science.gov (United States)

    Sun, Aizhen; Nie, Shengjun; Xing, Da

    2012-10-01

    The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity.

  8. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2017-03-01

    Full Text Available The cyclic GMP-AMP synthase (cGAS, upon cytosolic DNA stimulation, catalyzes the formation of the second messenger 2'3'-cGAMP, which then binds to stimulator of interferon genes (STING and activates downstream signaling. It remains to be elucidated how the cGAS enzymatic activity is modulated dynamically. Here, we reported that the ER ubiquitin ligase RNF185 interacted with cGAS during HSV-1 infection. Ectopic-expression or knockdown of RNF185 respectively enhanced or impaired the IRF3-responsive gene expression. Mechanistically, RNF185 specifically catalyzed the K27-linked poly-ubiquitination of cGAS, which promoted its enzymatic activity. Additionally, Systemic Lupus Erythematosus (SLE patients displayed elevated expression of RNF185 mRNA. Collectively, this study uncovers RNF185 as the first E3 ubiquitin ligase of cGAS, shedding light on the regulation of cGAS activity in innate immune responses.

  9. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    Science.gov (United States)

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  10. Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity — Clues for Treatments and Vaccines

    Directory of Open Access Journals (Sweden)

    Jesper Melchjorsen

    2013-01-01

    Full Text Available Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs, recognizing distinct conserved pathogen-associated molecular patterns (PAMPs. The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.

  11. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands.

    Science.gov (United States)

    Yuan, Ruoxi; Geng, Shuo; Li, Liwu

    2016-01-01

    In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  12. Molecular mechanisms that underlie the dynamic adaptation of innate monocyte memory to varying stimulant strength of TLR ligands

    Directory of Open Access Journals (Sweden)

    Ruoxi Yuan

    2016-11-01

    Full Text Available In adaptation to rising stimulant strength, innate monocytes can be dynamically programmed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programming may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS, the model stimulant of Toll-Like-Receptor 4 (TLR4, we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor IRF5 and reduced levels of transcriptional modulator BLIMP-1. Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  13. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and preeclampsia

    Directory of Open Access Journals (Sweden)

    Peter eHsu

    2014-03-01

    Full Text Available Maternal immune tolerance of the fetus is indispensible for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal-maternal interface – the decidua, the site of implantation and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, preeclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3+ regulatory T (Treg cells are crucial for ensuring immune tolerance towards the semi-allogeneic fetus. Additionally, another population of CD4+HLA-G+ suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy.

  14. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection

    Science.gov (United States)

    Sun, Xingmin; Hirota, Simon A.

    2014-01-01

    Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of Clostridium difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis. PMID:25242213

  15. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices.

    Science.gov (United States)

    Switalla, S; Lauenstein, L; Prenzler, F; Knothe, S; Förster, C; Fieguth, H-G; Pfennig, O; Schaumann, F; Martin, C; Guzman, C A; Ebensen, T; Müller, M; Hohlfeld, J M; Krug, N; Braun, A; Sewald, K

    2010-08-01

    Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. The initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1β, MIP-1β, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-γ, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation >0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1β, and IFN-γ. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. DMPD: IRAK1: a critical signaling mediator of innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...IRAK1: a critical signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling mediator

  17. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    National Research Council Canada - National Science Library

    Ribot, Wilson J; Panchal, Rekha G; Brittingham, Katherine C; Ruthel, Gordon; Kenny, Tara A; Lane, Douglas; Curry, Bob; Hoover, Timothy A; Friedlander, Arthur M; Bavari, Sina

    2006-01-01

    Alveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses...

  18. Survey of innate immune responses to Burkholderia pseudomallei in human blood identifies a central role for lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Narisara Chantratita

    Full Text Available B. pseudomallei is a gram-negative bacterium that causes the tropical infection melioidosis. In northeast Thailand, mortality from melioidosis approaches 40%. As exemplified by the lipopolysaccharide-Toll-like receptor 4 interaction, innate immune responses to invading bacteria are precipitated by activation of host pathogen recognition receptors by pathogen associated molecular patterns. Human melioidosis is characterized by up-regulation of pathogen recognition receptors and pro-inflammatory cytokine release. In contrast to many gram-negative pathogens, however, the lipopolysaccharide of B. pseudomallei is considered only weakly inflammatory. We conducted a study in 300 healthy Thai subjects to investigate the ex vivo human blood response to various bacterial pathogen associated molecular patterns, including lipopolysaccharide from several bacteria, and to two heat-killed B. pseudomallei isolates. We measured cytokine levels after stimulation of fresh whole blood with a panel of stimuli. We found that age, sex, and white blood cell count modulate the innate immune response to B. pseudomallei. We further observed that, in comparison to other stimuli, the innate immune response to B. pseudomallei is most highly correlated with the response to lipopolysaccharide. The magnitude of cytokine responses induced by B. pseudomallei lipopolysaccharide was significantly greater than those induced by lipopolysaccharide from Escherichia coli and comparable to many responses induced by lipopolysaccharide from Salmonella minnesota despite lower amounts of lipid A in the B. pseudomallei lipopolysaccharide preparation. In human monocytes stimulated with B. pseudomallei, addition of polymyxin B or a TLR4/MD-2 neutralizing antibody inhibited the majority of TNF-α production. Challenging existing views, our data indicate that the innate immune response to B. pseudomallei in human blood is largely driven by lipopolysaccharide, and that the response to B

  19. A Systematic Review of Innate Immunomodulatory Effects of Household Air Pollution Secondary to the Burning of Biomass Fuels.

    Science.gov (United States)

    Lee, Alison; Kinney, Patrick; Chillrud, Steve; Jack, Darby

    2015-01-01

    Household air pollution (HAP)-associated acute lower respiratory infections cause 455,000 deaths and a loss of 39.1 million disability-adjusted life years annually. The immunomodulatory mechanisms of HAP are poorly understood. The aim of this study was to conduct a systematic review of all studies examining the mechanisms underlying the relationship between HAP secondary to solid fuel exposure and acute lower respiratory tract infection to evaluate current available evidence, identify gaps in knowledge, and propose future research priorities. We conducted and report on studies in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. In all, 133 articles were fully reviewed and main characteristics were detailed, namely study design and outcome, including in vivo versus in vitro and pollutants analyzed. Thirty-six studies were included in a nonexhaustive review of the innate immune system effects of ambient air pollution, traffic-related air pollution, or wood smoke exposure of developed country origin. Seventeen studies investigated the effects of HAP-associated solid fuel (biomass or coal smoke) exposure on airway inflammation and innate immune system function. Particulate matter may modulate the innate immune system and increase susceptibility to infection through a) alveolar macrophage-driven inflammation, recruitment of neutrophils, and disruption of barrier defenses; b) alterations in alveolar macrophage phagocytosis and intracellular killing; and c) increased susceptibility to infection via upregulation of receptors involved in pathogen invasion. HAP secondary to the burning of biomass fuels alters innate immunity, predisposing children to acute lower respiratory tract infections. Data from biomass exposure in developing countries are scarce. Further study is needed to define the inflammatory response, alterations in phagocytic function, and upregulation of receptors important in bacterial and viral

  20. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  1. Innate immunity in the lung regulates the development of asthma.

    Science.gov (United States)

    DeKruyff, Rosemarie H; Yu, Sanhong; Kim, Hye Young; Umetsu, Dale T

    2014-07-01

    The lung, while functioning as a gas exchange organ, encounters a large array of environmental factors, including particulate matter, toxins, reactive oxygen species, chemicals, allergens, and infectious microbes. To rapidly respond to and counteract these elements, a number of innate immune mechanisms have evolved that can lead to lung inflammation and asthma, which is the focus of this review. These innate mechanisms include a role for two incompletely understood cell types, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs), which together produce a wide range of cytokines, including interleukin-4 (IL-4), IL-5, IL-13, interferon-γ, IL-17, and IL-22, independently of adaptive immunity and conventional antigens. The specific roles of iNKT cells and ILCs in immunity are still being defined, but both cell types appear to play important roles in the lungs, particularly in asthma. As we gain a better understanding of these innate cell types, we will acquire great insight into the mechanisms by which allergic and non-allergic asthma phenotypes develop. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Experimental evidence for innate predator recognition in the Seychelles warbler

    NARCIS (Netherlands)

    Veen, Thor; Richardson, David S.; Blaakmeer, Karen; Komdeur, Jan

    2000-01-01

    Nest predation is a major determinant of fitness in birds and costly nest defence behaviours have evolved in order to reduce nest predation. Some avian studies have suggested that predator recognition is innate whereas others hate stressed the importance: of learning. However, none of these studies

  3. Hypoxia, innate immunity and infection in the lung.

    LENUS (Irish Health Repository)

    Schaible, Bettina

    2012-02-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation.

  4. Innate lymphoid cells and parasites: Ancient foes with shared history.

    Science.gov (United States)

    Neill, D R; Fallon, P G

    2018-02-01

    This special issue of Parasite Immunology charts the rapid advances made in our understanding of the myriad interactions between innate lymphoid cells and parasites and how these interactions have shaped our evolutionary history. Here, we provide an overview of the issue and highlight key findings from studies in mice and man. © 2017 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  5. Innate immune factors associated with HIV-1 transmission

    NARCIS (Netherlands)

    Pollakis, Georgios; Stax, Martijn J.; Paxton, William A.

    2011-01-01

    Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response

  6. Innate, adaptive and regulatory responses in schistosomiasis: Relationship to allergy

    NARCIS (Netherlands)

    Hartgers, F.C.; Smits, H.H.; Kleij, D. van der; Yazdanbakhsh, M.

    2006-01-01

    Helminth infections have profound effects on the immune system. Here, recent insights in the molecular interactions between schistosomes and the host are described with respect to adaptive but also with respect to innate immune responses. Furthermore, the different mechanisms of immune

  7. Developmental acquisition of regulomes underlies innate lymphoid cell functionality

    Science.gov (United States)

    Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis, and they mirror adaptive CD4+ T helper (Th) cell subtypes in both usages of effector molecules and ·transcription factors. To better understand ILC subsets and their relationship with Th cells, we measur...

  8. Innate lymphoid cells--a proposal for uniform nomenclature

    NARCIS (Netherlands)

    Spits, Hergen; Artis, David; Colonna, Marco; Diefenbach, Andreas; Di Santo, James P.; Eberl, Gerard; Koyasu, Shigeo; Locksley, Richard M.; McKenzie, Andrew N. J.; Mebius, Reina E.; Powrie, Fiona; Vivier, Eric

    2013-01-01

    Innate lymphoid cells (ILCs) are a family of developmentally related cells that are involved in immunity and in tissue development and remodelling. Recent research has identified several distinct members of this family. Confusingly, many different names have been used to characterize these newly

  9. Innate lymphoid cells: the new kids on the block.

    Science.gov (United States)

    Withers, David R; Mackley, Emma C; Jones, Nick D

    2015-08-01

    The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.

  10. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  11. Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases

    NARCIS (Netherlands)

    Shikhagaie, Medya M.; Germar, Kristine; Bal, Suzanne M.; Ros, Xavier Romero; Spits, Hergen

    2017-01-01

    Innate lymphoid cells (ILCs) are important in the regulation of barrier homeostasis. These cells do not express T cell receptors but share many functional similarities with T helper cells and cytotoxic CD8(+) T lymphocytes. ILCs are divided into three groups, namely group 1 ILCs, group 2 ILCs and

  12. Potential of probiotics as biotherapeutic agents targeting the innate ...

    African Journals Online (AJOL)

    Potential of probiotics as biotherapeutic agents targeting the innate immune system. ... Some of the positive effects of probiotics are: growth promotion of farm animals, protection of host from intestinal infections, alleviation of lactose intolerance, relief of constipation, anticarcinogenic effect, anticholesterolaemic effects, ...

  13. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  14. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  15. Mycobacteria and innate cells: critical encounter for immunogenicity

    Indian Academy of Sciences (India)

    Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated macrophages. To date, many aspects of mycobacterial immunity have shown that innate cells are the key elements that substantially influence the subsequent adaptive ...

  16. Vitamin D signaling in intestinal innate immunity and homeostasis.

    Science.gov (United States)

    Dimitrov, Vassil; White, John H

    2017-09-15

    The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects

  17. DMPD: Innate immune recognition of, and regulation by, DNA. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979939 Innate immune recognition of, and regulation by, DNA. Ishii KJ, Akira S. T...rends Immunol. 2006 Nov;27(11):525-32. Epub 2006 Sep 18. (.png) (.svg) (.html) (.csml) Show Innate immune recognition... of, and regulation by, DNA. PubmedID 16979939 Title Innate immune recognition of, and regulation b

  18. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  19. Functional differences between human NKp44(-) and NKp44(+) RORC+ innate lymphoid cells

    NARCIS (Netherlands)

    Hoorweg, Kerim; Peters, Charlotte P.; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M.; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human

  20. Unravelling the nature of non-specific effects of vaccines-A challenge for innate immunologists

    DEFF Research Database (Denmark)

    Jensen, Kristoffer Jarlov; Benn, Christine Stabell; van Crevel, Reinout

    2016-01-01

    ) of vaccines, including heterologous T-cell reactivity and innate immune memory or 'trained innate immunity', which involves epigenetic reprogramming of innate immune cells. Here, we review the epidemiological evidence for NSE as well as human, animal and in vitro immunological data that could explain...

  1. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  2. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  3. Role of Type 2 Innate Lymphoid Cells in Allergic Diseases.

    Science.gov (United States)

    Cosmi, Lorenzo; Liotta, Francesco; Maggi, Laura; Annunziato, Francesco

    2017-09-11

    The adaptive immune response orchestrated by type 2 T helper (Th2) lymphocytes, strictly cooperates with the innate response of group 2 innate lymphoid cells (ILC2), in the protection from helminths infection, as well as in the pathogenesis of allergic disease. The aim of this review is to explore the pathogenic role of ILC2 in different type 2-mediated disorders. Recent studies have shown that epithelial cell-derived cytokines and their responding cells, ILC2, play a pathogenic role in bronchial asthma, chronic rhinosinusitis, and atopic dermatitis. The growing evidences of the contribution of ILC2 in the induction and maintenance of allergic inflammation in such disease suggest the possibility to target them in therapy. Biological therapies blocking ILC2 activation or neutralizing their effector cytokines are currently under evaluation to be used in patients with type 2-dominated diseases.

  4. Migration and Tissue Tropism of Innate Lymphoid Cells

    Science.gov (United States)

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  5. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  6. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  7. Characterization of innate immune activity in Phrynops geoffroanus (Testudines: Chelidae

    Directory of Open Access Journals (Sweden)

    Bruno O. Ferronato

    2009-12-01

    Full Text Available The innate immune activity of the freshwater turtle Phrynops geoffroanus (Schweigger, 1812 was investigated, using a sheep-red-blood cell hemolysis assay. The time- and concentration-dependent hemolytic activity of the turtle plasma was low compared to that reported for other reptiles. However the plasma of P. geoffroanus exhibited higher activity at elevated temperatures, resulting in temperature-dependent hemolysis. The sensitivity of turtle plasma to temperature could be interpreted as a mechanism by which freshwater turtles use basking behavior to elevate body temperature, thus enhancing the innate immune response. However, we cannot discard the possibility that environmental contaminants could be affecting the turtle's immune response, since the animals in this investigation were captured in a polluted watercourse.

  8. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  9. Beyond NK cells: the expanding universe of innate lymphoid cells.

    Science.gov (United States)

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  10. Beyond NK cells: the expanding universe of Innate Lymphoid Cells.

    Directory of Open Access Journals (Sweden)

    Marina eCella

    2014-06-01

    Full Text Available For a long time NK cells were thought to be the only immune innate lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different Innate Lymphoid Cells found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. ILC populations closely mirror the phenotype of adaptive Thelper subsets in their ability to secrete soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response appropriate to the incoming insult. Here we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  11. Boosting innate immunity to sustainably control diseases in crops.

    Science.gov (United States)

    Nicaise, Valerie

    2017-10-01

    Viruses cause epidemics in all major crops, threatening global food security. The development of efficient and durable resistance able to withstand viral attacks represents a major challenge for agronomy, and relies greatly on the understanding of the molecular dialogue between viral pathogens and their hosts. Research over the last decades provided substantial advances in the field of plant-virus interactions. Remarkably, the advent of studies of plant innate immunity has recently offered new strategies exploitable in the field. This review summarizes the recent breakthroughs that define the mechanisms underlying antiviral innate immunity in plants, and emphasizes the importance of integrating that knowledge into crop improvement actions, particularly by exploiting the insights related to immune receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bilingualism changes children's beliefs about what is innate.

    Science.gov (United States)

    Byers-Heinlein, Krista; Garcia, Bianca

    2015-03-01

    Young children engage in essentialist reasoning about natural kinds, believing that many traits are innately determined. This study investigated whether personal experience with second language acquisition could alter children's essentialist biases. In a switched-at-birth paradigm, 5- and 6-year-old monolingual and simultaneous bilingual children expected that a baby's native language, an animal's vocalizations, and an animal's physical traits would match those of a birth rather than of an adoptive parent. We predicted that sequential bilingual children, who had been exposed to a new language after age 3, would show greater understanding that languages are learned. Surprisingly, sequential bilinguals showed reduced essentialist beliefs about all traits: they were significantly more likely than other children to believe that human language, animal vocalizations, and animal physical traits would be learned through experience rather than innately endowed. These findings suggest that bilingualism in the preschool years can profoundly change children's essentialist biases. © 2014 John Wiley & Sons Ltd.

  13. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation

    Directory of Open Access Journals (Sweden)

    Amanda Croasdell

    2015-01-01

    Full Text Available The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer’s disease, and obesity in animal models. Finally, novel specialized proresolving mediators—eicosanoids with critical roles in resolution—may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.

  14. Innate immune performance and steroid hormone profiles of pregnant versus nonpregnant cottonmouth snakes (Agkistrodon piscivorus).

    Science.gov (United States)

    Graham, Sean P; Earley, Ryan L; Guyer, Craig; Mendonça, Mary T

    2011-12-01

    Squamates (lizards and snakes) have independently evolved viviparity over 100 times, and exhibit a wide range of maternal investment in developing embryos from the extremes of lecithotrophic oviparity to matrotrophic viviparity. This group therefore provides excellent comparative opportunities for studying endocrine and immune involvement during pregnancy, and their possible interactions. We studied the cottonmouth (Agkistrodon piscivorus), since they exhibit limited placentation (e.g., ovoviviparity), allowing comparison with squamate species hypothesized to require considerable maternal immune modulation due to the presence of a more extensive placental connection. Furthermore, the cottonmouth's biennial reproductive cycle provides an opportunity for simultaneously comparing pregnant and non-pregnant females in the wild. We document significantly elevated concentrations of progesterone (P4) and significantly lower concentrations of estradiol (E2) in pregnant females relative to non-pregnant females. Pregnant females had lower plasma bacteria lysis capacity relative to non-pregnant females. This functional measure of innate immunity is a proxy for complement performance, and we also determined significant correlations between P4 and decreased complement performance in pregnant females. These findings are consistent with studies that have determined P4's role in complement modulation during pregnancy in mammals, and thus this study joins a growing number of studies that have demonstrated convergent and/or conserved physiological mechanisms regulating viviparous reproduction in vertebrates. Copyright © 2011. Published by Elsevier Inc.

  15. Group 1 innate lymphoid cells in Toxoplasma gondii infection.

    Science.gov (United States)

    Dunay, I R; Diefenbach, A

    2018-02-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that carry out important functions in immunity to infections and in organ homeostasis at epithelial barrier surfaces. ILCs are innate immune cells that provide an early source of cytokines to initiate immune responses against pathogens. Cytotoxic ILCs (i.e. conventional (c)NK cells) and several subsets of helper-like ILCs are the major branches of the ILC family. Conventional NK cells and group 1 ILCs share several characteristics such as surface receptors and the ability to produce IFN-γ upon activation, but they differ in their developmental paths and in their dependence on specific transcription factors. Infection of mice with the intracellular parasite Toxoplasma gondii is followed by a strong Th1-mediated immune response. Previous studies indicate that NK1.1 + cells contribute to the production of IFN-γ and TNF and cytotoxicity during acute T. gondii infection. Upon oral infection, the parasite infects intestinal enterocytes, and within the lamina propria, innate immune responses lead to initial parasite control although the infection disseminates widely and persists long-term in immune privileged sites despite adaptive immunity. Upon parasite entry into the small intestine, during the acute stage, ILC1 produce high levels of IFN-γ and TNF protecting barrier surfaces, thus essentially contributing to early parasite control. We will discuss here the role of innate lymphocytes during T. gondii infection in the context of the only recently appreciated diversity of ILC subsets. © 2018 John Wiley & Sons Ltd.

  16. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  17. Five reasons to doubt the existence of a geometric module.

    Science.gov (United States)

    Twyman, Alexandra D; Newcombe, Nora S

    2010-09-01

    It is frequently claimed that the human mind is organized in a modular fashion, a hypothesis linked historically, though not inevitably, to the claim that many aspects of the human mind are innately specified. A specific instance of this line of thought is the proposal of an innately specified geometric module for human reorientation. From a massive modularity position, the reorientation module would be one of a large number that organized the mind. From the core knowledge position, the reorientation module is one of five innate and encapsulated modules that can later be supplemented by use of human language. In this paper, we marshall five lines of evidence that cast doubt on the geometric module hypothesis, unfolded in a series of reasons: (1) Language does not play a necessary role in the integration of feature and geometric cues, although it can be helpful. (2) A model of reorientation requires flexibility to explain variable phenomena. (3) Experience matters over short and long periods. (4) Features are used for true reorientation. (5) The nature of geometric information is not as yet clearly specified. In the final section, we review recent theoretical approaches to the known reorientation phenomena. Copyright © 2009 Cognitive Science Society, Inc.

  18. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-01-01

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM 10 ) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM 2.5 ) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  19. Interaction of Streptococcus agalactiae and cellular innate immunity in colonization and disease

    Directory of Open Access Journals (Sweden)

    Sybille eLandwehr-Kenzel

    2014-10-01

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis and death at the beginning of life, in the elderly and in diabetic patients. Thus GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days seven and 90 of life are at risk of a particularly striking sepsis manifestation (late onset disease, LOD, where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases is caused by one clone, GBS ST-17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like GAPDH-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors (TLRs and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just

  20. Vancomycin pre-treatment impairs tissue healing in experimental colitis: Importance of innate lymphoid cells.

    Science.gov (United States)

    Zhao, Di; Cai, Chenwen; Zheng, Qing; Jin, Shuang; Song, Dongjuan; Shen, Jun; Ran, Zhihua

    2017-01-29

    The interplay between luminal microbes and innate immunity during colonic epithelial repair has been well noted. At the same time, antibiotic has widely been used during flare-ups of ulcerative colitis. The possible effects of luminal microbiota disruption caused by antibiotics usage on epithelial repairing have been scarcely discussed. Innate lymphoid cells (ILCs) embedded in the lamina propria can be modulated by gut microbes, resulting in altered colonic IL-22/pSTAT3 levels, which is considered a prominent molecular axis in tissue repairing after epithelium damage. This study aimed to investigate whether antibiotics could interfere with ILCs-dependent tissue repair. Dextran sodium sulfate (DSS)-induced colitis was established in mice pre-treated with reagent of different antibiotic spectrum. Both morphological and molecular markers of tissue repair after DSS cessation were detected. ILCs population and function status were also recorded. Further attention was paid to the response of dendritic cells after antibiotics treatment, which were claimed to regulate colonic ILC3s in an IL-23 dependent way. Using of vancomycin resulted in delayed tissue repairing after experimental colitis. Both colonic IL-22/pSTAT3 axis and ILC3 population were found decreased in this situation. Vancomycin treatment diminished the upstream IL-23 and producer dendritic cell population. The reduced dendritic cell number may due to inadequate chemokines and colony-stimulating factors supply. Presence of vancomycin-sensitive microbiota is required for the maturation of ILC3-activating dendritic cells hence maintain the sufficient IL-22/pSTAT3 level in the colon during tissue healing. Manipulation of colonic microbiota may help achieve colonic mucosal healing post inflammation and injury. Copyright © 2016. Published by Elsevier Inc.

  1. Innate Immunity and Human Milk MicroRNAs Content: A New Perspective for Premature Newborns

    Directory of Open Access Journals (Sweden)

    Erika Cione

    2017-02-01

    Full Text Available Context The premature newborns are prone to develop both early onset and late onset neonatal sepsis. The major causes of this phenomenon rely on the immaturity of the immune system, which has reduced capability to respond adequately to pathogens. Evidence Acquisition Titles and abstracts of previous papers were scanned before reading the full-text, in order to retrieve appropriate information. The databases used for searching were PubMed, Cochrane, and Embase for articles published before 1st of July, 2016. Secondary search for articles cited in reference lists were identified by the primary search. This review focused on neonatal sepsis incidence and the associated immune response with regards to microRNAs of human milk as a new microelement that enables regulation of innate immunity functions. Results Since human milk is a valuable source of microRNAs, a better understanding of its content will open a new therapeutic avenue for the clinical management of infectious diseases affecting premature newborns. The variation in miRNAs quantity in human milk needs to be considered. Mother’s milk can have different amounts of miRNAs and the identification of a microMilk batch richer of miRNAs can be a nutrition intervention method for modulating innate immunity in clinical management of premature newborns. Conclusions Routine translation of the microMilk concept for neonatal intensive care unit (NICU, in the management of premature newborns could be a way of defending premature newborns and Very Low Birth Weight (VLBW infants from both early and late sepsis.

  2. Impact of the Innate Immune Response in the Actions of Ethanol on the Central Nervous System.

    Science.gov (United States)

    Montesinos, Jorge; Alfonso-Loeches, Silvia; Guerri, Consuelo

    2016-11-01

    The innate immune response in the central nervous system (CNS) participates in both synaptic plasticity and neural damage. Emerging evidence from human and animal studies supports the role of the neuroimmune system response in many actions of ethanol (EtOH) on the CNS. Research studies have shown that alcohol stimulates brain immune cells, microglia, and astrocytes, by activating innate immune receptors Toll-like receptors (TLRs) and NOD-like receptors (inflammasome NLRs) triggering signaling pathways, which culminate in the production of pro-inflammatory cytokines and chemokines that lead to neuroinflammation. This review focuses on evidence that indicates the participation of TLRs and the inflammasome NLRs signaling response in many effects of EtOH on the CNS, such as neuroinflammation associated with brain damage, cognitive and behavioral dysfunction, and adolescent brain development alterations. It also reviews findings that indicate the role of TLR4-dependent signaling immune molecules in alcohol consumption, reward, and addiction. The research data suggest that overactivation of TLR4 or NLRs increases pro-inflammatory cytokines and mediators to cause neural damage in the cerebral cortex and hippocampus, while modest TLR4 activation, along with the generation of certain cytokines and chemokines in specific brain areas (e.g., amygdala, ventral tegmental area), modulate neurotransmission, alcohol drinking, and alcohol rewards. Elimination of TLR4 and NLRP3 abolishes many neuroimmune effects of EtOH. Despite much progress being made in this area, there are some research gaps and unanswered questions that this review discusses. Finally, potential therapies that target neuroimmune pathways to treat neuropathological and behavioral consequences of alcohol abuse are also evaluated. Copyright © 2016 by the Research Society on Alcoholism.

  3. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  4. The Notch Signaling Pathway Is Balancing Type 1 Innate Lymphoid Cell Immune Functions

    Directory of Open Access Journals (Sweden)

    Thibaut Perchet

    2018-06-01

    Full Text Available The Notch pathway is one of the canonical signaling pathways implicated in the development of various solid tumors. During carcinogenesis, the Notch pathway dysregulation induces tumor expression of Notch receptor ligands participating to escape the immune surveillance. The Notch pathway conditions both the development and the functional regulation of lymphoid subsets. Its importance on T cell subset polarization has been documented contrary to its action on innate lymphoid cells (ILC. We aim to analyze the effect of the Notch pathway on type 1 ILC polarization and functions after disruption of the RBPJk-dependent Notch signaling cascade. Indeed, type 1 ILC comprises conventional NK (cNK cells and type 1 helper innate lymphoid cells (ILC1 that share Notch-related functional characteristics such as the IFNg secretion downstream of T-bet expression. cNK cells have strong antitumor properties. However, data are controversial concerning ILC1 functions during carcinogenesis with models showing antitumoral capacities and others reporting ILC1 inability to control tumor growth. Using various mouse models of Notch signaling pathway depletion, we analyze the effects of its absence on type 1 ILC differentiation and cytotoxic functions. We also provide clues into its role in the maintenance of immune homeostasis in tissues. We show that modulating the Notch pathway is not only acting on tumor-specific T cell activity but also on ILC immune subset functions. Hence, our study uncovers the intrinsic Notch signaling pathway in ILC1/cNK populations and their response in case of abnormal Notch ligand expression. This study help evaluating the possible side effects mediated by immune cells different from T cells, in case of multivalent forms of the Notch receptor ligand delta 1 treatments. In definitive, it should help determining the best novel combination of therapeutic strategies in case of solid tumors.

  5. The Role of Innate Immune System Receptors in Epilepsy Research.

    Science.gov (United States)

    Cordero-Arreola, Jessica; West, Rachel M; Mendoza-Torreblanca, Julieta; Mendez-Hernandez, Edna; Salas-Pacheco, Jose; Menendez-Gonzalez, Manuel; Freire, Rafael C; Machado, Sergio; Murillo-Rodriguez, Eric; Nardi, Antonio E; Arias-Carrion, Oscar

    2017-01-01

    Epilepsy is one of the most complex neurological disorders and its study requires a broad knowledge of neurology and neuroscience. It comprises a diverse group of neurological disorders that share the central feature of spontaneous recurrent seizures, and are often accompanied by cognitive deficits and mood disorder. This condition is one of the most common neurological disorders. Until recently, alterations of neuronal activities had been the focus of epilepsy research. This neurocentric emphasis did not address issues that arise in more complex models of epileptogenesis. An important factor in epilepsy that is not regulated directly by neurons is inflammation and the immune response of the brain. Recent evidence obtained in rodent epilepsy models supports the role of immune responses in the initiation and maintenance of epilepsy. Recognition of exogenous pathogens by the innate immune system is mediated by some pattern recognition receptors such as Toll-like receptors leading to cell activation and cytokine production. Currently, these receptors have been the focus of epilepsy studies looking to determine whether the innate immune activation is neuroprotective or neurotoxic for the brain. Here, we present the evidence in the literature of the involvement of key innate immune receptors in the development of epilepsy. We address some of the contradictory findings in these studies and also mention possible avenues for research into epilepsy treatments that target these receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Hepatitis C, innate immunity and alcohol: friends or foes?

    Science.gov (United States)

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-02-05

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  7. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  8. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Innate lymphoid cells in tissue homeostasis and diseases.

    Science.gov (United States)

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  10. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency.

    Science.gov (United States)

    Maglione, Paul J; Cols, Montserrat; Cunningham-Rundles, Charlotte

    2017-10-05

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.

  11. Emerging concepts and future challenges in innate lymphoid cell biology

    Science.gov (United States)

    Artis, David

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role. PMID:27811053

  12. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  13. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  14. Activation of type 4 dopaminergic receptors in the prelimbic area of medial prefrontal cortex is necessary for the expression of innate fear behavior.

    Science.gov (United States)

    Vergara, Macarena D; Keller, Victor N; Fuentealba, José A; Gysling, Katia

    2017-05-01

    The prelimbic area (PL) of the medial Prefrontal cortex (mPFC) is involved in the acquisition and expression of conditioned and innate fear. Both types of fear share several neuronal pathways. It has been documented that dopamine (DA) plays an important role in the regulation of aversive memories in the mPFC. The exposure to an aversive stimulus, such as the smell of a predator odor or the exposure to footshock stress is accompanied by an increase in mPFC DA release. Evidence suggests that the type 4 dopaminergic receptor (D4R) is the molecular target through which DA modulates fear expression. In fact, the mPFC is the brain region with the highest expression of D4R; however, the role of D4R in the expression of innate fear has not been fully elucidated. Therefore, the principal objective of this work was to evaluate the participation of mPFC D4R in the expression of innate fear. Rats were exposed to the elevated plus-maze (EPM) and to the cat odor paradigm after the intra PL injection of L-745,870, selective D4R antagonist, to measure the expression of fear-related behaviors. Intra PL injection of L-745,870 increased the time spent in the EPM open arms and decreased freezing behavior in the cat odor paradigm. Our results also showed that D4R is expressed in GABAergic and pyramidal neurons in the PL region of PFC. Thus, D4R antagonism in the PL decreases the expression of innate fear-behavior indicating that the activation of D4R in the PL is necessary for the expression of innate fear-behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. RSV-Induced H3K4 Demethylase KDM5B Leads to Regulation of Dendritic Cell-Derived Innate Cytokines and Exacerbates Pathogenesis In Vivo

    DEFF Research Database (Denmark)

    Ptaschinski, Catherine; Mukherjee, Sumanta; Moore, Martin L

    2015-01-01

    -transfected cells. The generation of Kdm5bfl/fl-CD11c-Cre+ mice recapitulated the latter results during in vitro DC activation showing innate cytokine modulation. In vivo, infection of Kdm5bfl/fl-CD11c-Cre+ mice with RSV resulted in higher production of IFN-γ and reduced IL-4 and IL-5 compared to littermate....../fl-CD11c-CRE mice were used, the exacerbated response was abrogated. Importantly, human monocyte-derived DCs treated with a chemical inhibitor for KDM5B resulted in increased innate cytokine levels as well as elicited decreased Th2 cytokines when co-cultured with RSV reactivated CD4+ T cells...

  16. Expression of microRNAs and innate immune factor genes in lung tissue of pigs infected with influenza virus (H1N2)

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, S.; Vasby, D.

    A infection. The present work aimed of providing a better understanding of the involvement of innate immune factors including miRNA in the host response to establishment and progression of influenza virus infection. Twenty pigs were challenged by aerosol containing H1N2 (A/swine/Denmark/12687/03) influenza......Swine influenza is a highly infectious respiratory disease in pigs caused by influenza A virus. Activation of a frontline of pattern-recognition receptors (PRRs) expressed by epithelial cells as well as immune cells of the upper respiratory tract, leads to a potent type 1 interferon (IFN) release......, this response must be tightly regulated. Recently, microRNA (miRNA) has been proposed to play an important role in modulating and fine tuning the innate immune response in order to avoid such harmful overreactions. Little is known about the significance of miRNA regulation in the lung during acute influenza...

  17. PAM-1616, a selective peroxisome proliferator-activated receptor γ modulator with preserved anti-diabetic efficacy and reduced adverse effects.

    Science.gov (United States)

    Kim, Mi-Kyung; Chae, Yu Na; Choi, Song-hyen; Moon, Ho Sang; Son, Moon-Ho; Bae, Myung-Ho; Choi, Hyun-ho; Hur, Youn; Kim, Eunkyung; Park, Yoo Hoi; Park, Chan Sun; Kim, Jae Gyu; Lim, Joong In; Shin, Chang Yell

    2011-01-15

    Peroxisome proliferator-activated receptor (PPAR) γ is known to be a key regulator of insulin resistance. PAM-1616 is a novel, non-thiazolidinedione small molecule compound synthesized in Dong-A Research Center. In this study, we characterized the pharmacological and safety profiles of PAM-1616 as a selective PPARγ modulator. PAM-1616 selectively binds to human PPARγ (IC(50), 24.1±5.6 nM) and is a partial agonist for human PPARγ with an EC(50) of 83.6±43.7 nM and a maximal response of 24.9±7.1% relative to the full agonist, rosiglitazone. PAM-1616 was selective for human PPARγ than for human PPARα (EC(50), 2658±828 nM) without activating human PPARδ, which makes it a selective modulator of PPARγ. Treatment of high fat diet-induced obese C57BL/6J mice with PAM-1616 for 21 days improved HOMA-IR. Furthermore, PAM-1616 significantly improved hyperglycemia in db/db mice with little side effect when orally administered at a dose of 1 mg/kg/day for 28 days. Intriguingly, PAM-1616 was seen to increase the gene expression of inducible glucose transporter (GLUT4), while it partially induced that of a fatty acid carrier, aP2 in 3T3-L1 adipocytes, and it also showed partial recruitment of an adipogenic cofactor, TRAP220 as compared to rosiglitazone. PAM-1616 did not cause a significant increase in plasma volume of ICR mice when orally administered at a dose of 10 mg/kg/day for 9 days. PAM-1616 increased the expression of fluid retention-inducing genes such as serum/glucocorticoid-regulated kinase (SGK)-1 to a lesser extent as compared to rosiglitazone in human renal epithelial cells. These results suggest that PAM-1616 acts as a selective modulator of PPARγ with excellent antihyperglycemic property. The differential modulation of target gene by PAM-1616 might contribute to the improved side effect profiles. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition

    Directory of Open Access Journals (Sweden)

    Mariusz P. Madej

    2017-06-01

    Full Text Available Production and activity of interleukin (IL-1β are kept under strict control in our body, because of its powerful inflammation-promoting capacity. Control of IL-1β production and activity allows IL-1 to exert its defensive activities without causing extensive tissue damage. Monocytes are the major producers of IL-1β during inflammation, but they are also able to produce significant amounts of IL-1 inhibitors such as IL-1Ra and the soluble form of the decoy receptor IL-1R2, in an auto-regulatory feedback loop. Here, we investigated how innate immune memory could modulate production and activity of IL-1β by human primary monocytes and monocyte-derived tissue-like/deactivated macrophages in vitro. Cells were exposed to Gram-negative (Escherichia coli and Gram-positive (Lactobacillus acidophilus bacteria for 24 h, then allowed to rest, and then re-challenged with the same stimuli. The presence of biologically active IL-1β in cell supernatants was calculated as the ratio between free IL-1β (i.e., the cytokine that is not bound/inhibited by sIL-1R2 and its receptor antagonist IL-1Ra. As expected, we observed that the responsiveness of tissue-like/deactivated macrophages to bacterial stimuli was lower than that of monocytes. After resting and re-stimulation, a memory effect was evident for the production of inflammatory cytokines, whereas production of alarm signals (chemokines was minimally affected. We observed a high variability in the innate memory response among individual donors. This is expected since innate memory largely depends on the previous history of exposure or infections, which is different in different subjects. Overall, innate memory appeared to limit the amount of active IL-1β produced by macrophages in response to a bacterial challenge, while enhancing the responsiveness of monocytes. The functional re-programming of mononuclear phagocytes through modulation of innate memory may provide innovative approaches in the management

  19. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility.

    Science.gov (United States)

    Morley, Lara C; Tang, Thomas; Yasmin, Ephia; Norman, Robert J; Balen, Adam H

    2017-11-29

    Polycystic ovary syndrome (PCOS) is characterised by infrequent or absent ovulation, and high levels of androgens and insulin (hyperinsulinaemia). Hyperinsulinaemia occurs secondary to insulin resistance and is associated with increased risk of cardiovascular disease and diabetes mellitus. Insulin-sensitising agents such as metformin may be effective in treating PCOS-related anovulation. To evaluate the effectiveness and safety of insulin-sensitising drugs in improving reproductive and metabolic outcomes for women with PCOS undergoing ovulation induction. We searched the following databases from inception to January 2017: Cochrane Gynaecology and Fertility Group Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO and CINAHL. We searched registers of ongoing trials and reference lists from relevant studies. We included randomised controlled trials of insulin-sensitising drugs compared with placebo, no treatment, or an ovulation-induction agent for women with oligo and anovulatory PCOS. Two review authors independently assessed studies for eligibility and bias. Primary outcomes were live birth rate and gastrointestinal adverse effects. Secondary outcomes included other pregnancy outcomes, menstrual frequency and metabolic effects. We combined data to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). We assessed statistical heterogeneity using the I 2 statistic and reported quality of the evidence for primary outcomes using GRADE methodology. We assessed the interventions metformin, clomiphene citrate, metformin plus clomiphene citrate, D-chiro-inositol, rosiglitazone and pioglitazone. We compared these with each other, placebo or no treatment. We included 48 studies (4451 women), 42 of which investigated metformin (4024 women). Evidence quality ranged from very low to moderate. Limitations were risk of bias (poor reporting of methodology and incomplete outcome data), imprecision and inconsistency. Metformin versus placebo or no treatment

  20. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries

    Directory of Open Access Journals (Sweden)

    Johansson Ingegerd

    2007-06-01

    Full Text Available Abstract Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries, harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19 or low (n = 19 caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively. The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37 and saliva adhesion of S. mutans Ingbritt (VIP = 1.47. The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries susceptibility protein.

  1. Polyphenols from red wine are potent modulators of innate and adaptive immune responsiveness.

    Science.gov (United States)

    Magrone, Thea; Jirillo, Emilio

    2010-08-01

    It is well known that the consumption of dietary polyphenols leads to beneficial effects for human health as in the case of prevention and/or attenuation of cardiovascular, inflammatory, neurodegenerative and neoplastic diseases. This review summarizes the role of polyphenols from red wine in the immune function. In particular, using healthy human peripheral blood mononuclear cells, we have demonstrated the in vitro ability of Negroamaro, an Italian red wine, to induce the release of nitric oxide and both pro-inflammatory and anti-inflammatory cytokines, thus leading to the maintenance of the immmune homeostasis in the host. All these effects were abrogated by deprivation of polyphenols from red wine samples. We have also provided evidence that Negromaro polyphenols are able to activate extracellular regulated kinase and p38 kinase and switch off the NF-kappaB pathway via an increased expression with time of the IkappaBalpha phosphorylated form. These mechanisms may represent key molecular events leading to inhibition of the pro-inflammatory cascade and atherogenesis. In conclusion, according to the current literature and our own data, moderate consumption of red wine seems to be protective for the host in the prevention of several diseases, even including aged-related diseases by virtue of its immunomodulating properties.

  2. Involvement of TRPV1 channels in the periaqueductal grey on the modulation of innate fear responses.

    Science.gov (United States)

    Aguiar, Daniele C; Almeida-Santos, Ana F; Moreira, Fabricio A; Guimarães, Francisco S

    2015-04-01

    The transient receptor potential vanilloid type-1 channel (TRPV1) is expressed in the midbrain periaqueductal grey (PAG), a region of the brain related to aversive responses. TRPV1 antagonism in the dorsolateral PAG (dlPAG) induces anxiolytic-like effects in models based on conflict situations. No study, however, has investigated whether these receptors could contribute to fear responses to proximal threat. Thus, we tested the hypothesis that TRPV1 in the PAG could mediate fear response in rats exposed to a predator. We verified whether exposure to a live cat (a natural predator) would activate TRPV1-expressing neurons in the PAG. Double-staining immunohistochemistry was used as a technique to detect c-Fos, a marker of neuronal activation, and TRPV1 expression. We also investigated whether intra-dlPAG injections of the TRPV1 antagonist, capsazepine (CPZ), would attenuate the behavioural consequences of predator exposure. Exposure to a cat increased c-Fos expression in TRPV1-positive neurons, mainly in the dorsal columns of the PAG, suggesting that TRPV1-expressing neurons are activated by threatening stimuli. Accordingly, local injection of CPZ inhibited the fear responses. These data support the hypothesis that TRPV1 channels mediate fear reactions in the dlPAG. This may have an implication for the development of TRPV1-antagonists as potential drugs for the treatment of certain psychiatric disorders.

  3. Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus

    DEFF Research Database (Denmark)

    White, Mitchell R; Crouch, Erika; Vesona, Jenny

    2005-01-01

    of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent proinflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms...... of IAV while reducing the respiratory burst response to virus....

  4. A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses.

    Science.gov (United States)

    Köberlin, Marielle S; Snijder, Berend; Heinz, Leonhard X; Baumann, Christoph L; Fauster, Astrid; Vladimer, Gregory I; Gavin, Anne-Claude; Superti-Furga, Giulio

    2015-07-02

    Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Immuno-regulatory function of indoleamine 2,3 dioxygenase through modulation of innate immune responses.

    Directory of Open Access Journals (Sweden)

    Malihe-Sadat Poormasjedi-Meibod

    Full Text Available Successful long-term treatment of type-1 diabetes mainly relies on replacement of β-cells via islet transplantation. Donor shortage is one of the main obstacles preventing transplantation from becoming the treatment of choice. Although animal organs could be an alternative source for transplantation, common immunosuppressive treatments demonstrate low efficacy in preventing xenorejection. Immunoprotective effects of indoleamine 2,3-dioxygenase (IDO on T-cell mediated allorejection has been extensively studied. Our studies revealed that IDO expression by fibroblasts, induced apoptosis in T-cells while not affecting non-immune cell survival/function. Since macrophages play a pivotal role in xenograft rejection, herein we investigated the effect of IDO-induced tryptophan deficiency/kynurenine accumulation on macrophage function/survival. Moreover, we evaluated the local immunosuppressive effect of IDO on islet-xenograft protection. Our results indicated that IDO expression by bystander fibroblasts significantly reduced the viability of primary macrophages via apoptosis induction. Treatment of peritoneal macrophages by IDO-expressing fibroblast conditioned medium significantly reduced their proinflammatory activity through inhibition of iNOS expression. To determine whether IDO-induced tryptophan starvation or kynurenine accumulation is responsible for macrophage apoptosis and inhibition of their proinflammatory activity, Raw264.7 cell viability and proinflammatory responses were evaluated in tryptophan deficient medium or in the presence of kynurenine. Tryptophan deficiency, but not kynurenine accumulation, reduced Raw264.7 cell viability and suppressed their proinflammatory activity. Next a three-dimensional islet-xenograft was engineered by embedding rat islets within either control or IDO-expressing fibroblast-populated collagen matrix. Islets morphology and immune cell infiltration were then studied in the xenografts transplanted into the C57BL/6 mouse renal sub-capsular space. Local IDO significantly decreased the number of infiltrating macrophages (11 ± 1.47 vs. 70.5 ± 7.57 cells/HPF, T-cells (8.75 ± 1.03 vs. 75.75 ± 5.72 cells/HPF and iNOS expression in IDO-expressing xenografts versus controls. Islet morphology remained intact in IDO-expressing grafts and islets were strongly stained for insulin/glucagon compared to control. These findings support the immunosuppressive role of IDO on macrophage-mediated xeno-rejection.

  6. Stress-induced modulation of the innate immune system in cardiovascular disease

    NARCIS (Netherlands)

    Lagraauw, Hendrik Maxime

    2015-01-01

    Atherosclerosis is a chronic inflammatory disease in which lipids and cells of the immune system accumulate in the vessel wall. Clinical complications, such as a myocardial infarction or stroke may occur when advanced atherosclerotic lesions become unstable and rupture. In this thesis, the influence

  7. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  8. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    Science.gov (United States)

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  9. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  10. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  11. Verneuil's disease, innate immunity and vitamin D: a pilot study.

    Science.gov (United States)

    Guillet, A; Brocard, A; Bach Ngohou, K; Graveline, N; Leloup, A-G; Ali, D; Nguyen, J-M; Loirat, M-J; Chevalier, C; Khammari, A; Dreno, B

    2015-07-01

    Verneuil's disease is a chronic inflammatory skin disease of the follicles in apocrine glands rich area of the skin (axillary, inguinal, anogenital) and is associated with a deficient skin innate immunity. It is characterized by the occurrence of nodules, abscesses, fistulas, scars. Recently, vitamin D has been shown to stimulate skin innate immunity. The primary objective of the study was to assess whether Verneuil's disease was associated with vitamin D deficiency. The secondary objective was to determine whether vitamin D supplementation could improve inflammatory lesions. First, 25(OH) vitamin D3 serum levels in patients with Verneuil's disease followed at Nantes University Hospital were compared to those of healthy donors from the French Blood Bank. Then, a pilot study was conducted in 14 patients supplemented with vitamin D according to their vitamin D level at baseline at months 3 and 6. The endpoints at 6 months were decreased by at least 20% in the number of nodules and in the frequency of flare-ups. Twenty-two patients (100%) had vitamin D deficiency (level vitamin D deficiency (91%) of whom 14% were severely deficient. In 14 patients, the supplementation significantly decreased the number of nodules at 6 months (P = 0.01133), and the endpoints were achieved in 79% of these patients. A correlation between the therapeutic success and the importance of the increase in vitamin D level after supplementation was observed (P = 0.01099). Our study shows that Verneuil's disease is associated with a major vitamin D deficiency, correlated with the disease severity. It suggests that vitamin D could significantly improve the inflammatory nodules, probably by stimulating the skin innate immunity. A larger randomized study is needed to confirm these findings. © 2014 European Academy of Dermatology and Venereology.

  12. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  13. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  14. Isolation and characterization of mouse innate lymphoid cells.

    Science.gov (United States)

    Halim, Timotheus Y F; Takei, Fumio

    2014-08-01

    Innate lymphoid cells (ILCs) are rare populations of cytokine-producing lymphocytes and are divided into three groups, namely ILC1, ILC2, and ILC3, based on the cytokines that they produce. They comprise less than 1% of lymphocytes in mucosal tissues and express no unique cell surface markers. Therefore, they can only be identified by combinations of multiple cell surface markers and further characterized by cytokine production in vitro. Thus, multicolor flow cytometry is the only reliable method to purify and characterize ILCs. Here we describe the methods for cell preparation, flow cytometric analysis, and purification of murine ILC2 and ILC3. Copyright © 2014 John Wiley & Sons, Inc.

  15. Innate-Type and Acquired-Type Allergy Regulated by IL-33

    Directory of Open Access Journals (Sweden)

    Tomohiro Yoshimoto

    2014-01-01

    Full Text Available We propose two types of allergic response: IgE-dependent and IgE-independent, and designate these as 'acquired-type allergy' and 'innate-type allergy', respectively. IL-33 stimulates both innate (basophils, mast cells, or group 2 innate lymphoid cells and acquired (Th2 cells allergy-related cells to induce and/or augment Th2 cytokine production, which leads to eosinophilic inflammation in vivo. Thus, IL-33 is an essential regulator for both 'innate-type allergy' and 'acquired-type allergy', and might be an attractive therapeutic target for allergic diseases.

  16. Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population.

    Science.gov (United States)

    Tschirren, Barbara; Andersson, Martin; Scherman, Kristin; Westerdahl, Helena; Mittl, Peer R E; Råberg, Lars

    2013-05-22

    The discovery of the key role of Toll-like receptors (TLRs) in initiating innate immune responses and modulating adaptive immunity has revolutionized our understanding of vertebrate defence against pathogens. Yet, despite their central role in pathogen recognition and defence initiation, there is little information on how variation in TLRs influences disease susceptibility in natural populations. Here, we assessed the extent of naturally occurring polymorphisms at TLR2 in wild bank voles (Myodes glareolus) and tested for associations between TLR2 variants and infection with Borrelia afzelii, a common tick-transmitted pathogen in rodents and one of the causative agents of human Lyme disease. Bank voles in our population had 15 different TLR2 haplotypes (10 different haplotypes at the amino acid level), which grouped in three well-separated clusters. In a large-scale capture-mark-recapture study, we show that voles carrying TLR2 haplotypes of one particular cluster (TLR2c2) were almost three times less likely to be Borrelia infected than animals carrying other haplotypes. Moreover, neutrality tests suggested that TLR2 has been under positive selection. This is, to our knowledge, the first demonstration of an association between TLR polymorphism and parasitism in wildlife, and a striking example that genetic variation at innate immune receptors can have a large impact on host resistance.

  17. Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans

    Science.gov (United States)

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Willis, Craig K. R.; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes. PMID:25391018

  18. Bacterial subversion of cAMP signalling inhibits cathelicidin expression, which is required for innate resistance to Mycobacterium tuberculosis

    Science.gov (United States)

    Gupta, Shashank; Winglee, Kathryn; Gallo, Richard; Bishai, William R

    2017-01-01

    Antimicrobial peptides such as cathelicidins are an important component of innate immune defence against inhaled microorganisms and have demonstrated antimicrobial activity against Mycobacterium tuberculosis with in vitro models. Despite this, little is known about the regulation and expression of cathelicidin during tuberculosis in vivo. We sought to determine whether the cathelicidin-related antimicrobial peptide (Cramp) gene, the murine functional homologue of the human cathelicidin gene (CAMP or LL-37), is required for regulating protective immunity during M. tuberculosis infection in vivo. We used Cramp−/− mice in a validated model of pulmonary tuberculosis and conducted cell-based assays with macrophages from these mice. We evaluated the in vivo susceptibility of Cramp−/− mice to infection and further dissected various pro-inflammatory immune responses against M. tuberculosis. We observed increased susceptibility of Cramp−/− mice to M. tuberculosis compared to wild type mice. Macrophages from Cramp−/− mice were unable to control M. tuberculosis growth in an in vitro infection model, were deficient in intracellular calcium influx and were defective in stimulating T-cells. Additionally, CD4 and CD8 T-cells from Cramp−/− mice produced less IFNβ upon stimulation. Furthermore, bacterial-derived cyclic-AMP modulated cathelicidin expression in macrophages. Our results demonstrate that cathelicidin is required for innate resistance to M. tuberculosis in a relevant animal model and is a key mediator in regulating the levels of pro-inflammatory cytokines by calcium and cyclic nucleotides. PMID:28097645

  19. Activation of innate immune-response genes in little brown bats (Myotis lucifugus infected with the fungus Pseudogymnoascus destructans.

    Directory of Open Access Journals (Sweden)

    Noreen Rapin

    Full Text Available Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  20. Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

    Science.gov (United States)

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Willis, Craig K R; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  1. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  2. Modulation of Immune Functions by Foods

    Directory of Open Access Journals (Sweden)

    Shuichi Kaminogawa

    2004-01-01

    Full Text Available Evidence is rapidly accumulating as to the beneficial effects of foods. However, it is not always clear whether the information is based on data evaluated impartially in a scientific fashion. Human research into whether foods modulate immune functions in either intervention studies or randomized controlled trials can be classified into three categories according to the physical state of subjects enrolled for investigation: (i studies examining the effect of foods in healthy individuals; (ii studies analyzing the effect of foods on patients with hypersensitivity; and (iii studies checking the effect of foods on immunocompromized subjects, including patients who had undergone surgical resection of cancer and newborns. The systematization of reported studies has made it reasonable to conclude that foods are able to modulate immune functions manifesting as either innate immunity (phagocytic activity, NK cell activity or acquired immunity (T cell response, antibody production. Moreover, improvement of immune functions by foods can normalize the physical state of allergic patients or cancer patients, and may reduce the risk of diseases in healthy individuals. Therefore, it is valuable to assess the immune-modulating abilities of foods by measuring at least one parameter of either innate or acquired immunity.

  3. Determination of the Fate and Function of Innate Lymphoid Cells Following Adoptive Transfer of Innate Lymphoid Cell Precursors.

    Science.gov (United States)

    O'Sullivan, Timothy E; Sun, Joseph C

    2018-01-01

    Innate lymphoid cells are a heterogeneous family of tissue-resident and circulating lymphocytes that play an important role in host immunity. Recent studies have profiled the developmental pathways of mature ILCs and have identified ILC progenitors in the bone marrow through the use of transcription factor reporter mice. Here we describe methodology to identify and isolate bone marrow CHILP and ILC2 progenitor (ILC2P) cells based on cell surface marker expression for adoptive transfer into lymphopenic mice to track the fate of developing ILCs.

  4. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Directory of Open Access Journals (Sweden)

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  5. GSL-enriched membrane microdomains in innate immune responses.

    Science.gov (United States)

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  6. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  7. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  8. Innate Lymphoid Cells in HIV/SIV Infections

    Directory of Open Access Journals (Sweden)

    Spandan V. Shah

    2017-12-01

    Full Text Available Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  9. Innate resistance to myxomatosis in wild rabbits in England*

    Science.gov (United States)

    Ross, J.; Sanders, M. F.

    1977-01-01

    Wild rabbits (Oryctolagus cuniculus) from one study area in England have been used over a period of 11 years to investigate the possible appearance of innate resistance to myxomatosis. Rabbits of 4-6 weeks old were captured alive, retained in the laboratory until at least 4 months old, and then infected with a type of myxoma virus which kills 90-95% of laboratory rabbits. Observations were made of symptoms, mortality rate and survival times. In the first 4 years of the study (1966-9), mortality rates were not significantly different from those of laboratory rabbits, although survival times of wild rabbits were appreciably longer. In 1970, the mortality rate amongst wild rabbits was 59%, in 1974 it was 17%, and in 1976 it was 20%, thus showing that a considerable degree of inherited resistance to myxomatosis has developed. The types of myxoma virus most commonly isolated from wild rabbits in Great Britain in recent years have been those which cause 70-95% mortality in laboratory rabbits. Therefore, if the degree of innate resistance demonstrated is widespread in Great Britain, there are serious implications regarding the size of the rabbit population, because myxomatosis has been an important factor in holding rabbit numbers at a relatively low level. PMID:270526

  10. Innate resistance to myxomatosis in wild rabbits in England.

    Science.gov (United States)

    Ross, J; Sanders, M F

    1977-12-01

    Wild rabbits (Oryctolagus cuniculus) from one study area in England have been used over a period of 11 years to investigate the possible appearance of innate resistance to myxomatosis. Rabbits of 4-6 weeks old were captured alive, retained in the laboratory until at least 4 months old, and then infected with a type of myxoma virus which kills 90-95% of laboratory rabbits. Observations were made of symptoms, mortality rate and survival times.In the first 4 years of the study (1966-9), mortality rates were not significantly different from those of laboratory rabbits, although survival times of wild rabbits were appreciably longer. In 1970, the mortality rate amongst wild rabbits was 59%, in 1974 it was 17%, and in 1976 it was 20%, thus showing that a considerable degree of inherited resistance to myxomatosis has developed.The types of myxoma virus most commonly isolated from wild rabbits in Great Britain in recent years have been those which cause 70-95% mortality in laboratory rabbits. Therefore, if the degree of innate resistance demonstrated is widespread in Great Britain, there are serious implications regarding the size of the rabbit population, because myxomatosis has been an important factor in holding rabbit numbers at a relatively low level.

  11. Antagonism of Innate Immunity by Paramyxovirus Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Raychel Chambers

    2009-10-01

    Full Text Available Paramyxovirinae, a subfamily of Paramyxoviridae, are negative strand RNA viruses comprised of many important human and animal pathogens, which share a high degree of genetic and structural homology. The accessory proteins expressed from the P/V/C gene are major factors in the pathogenicity of the viruses, because of their ability to abrogate various facets of type I interferon (IFN induction and signaling. Most of the paramyxoviruses exhibit a commonality in their ability to antagonize innate immunity by blocking IFN induction and the Jak/STAT pathway. However, the manner in which the accessory proteins inhibit the pathway differs among viruses. Similarly, there are variations in the capability of the viruses to counteract intracellular detectors (RNA helicases, mda-5 and RIG-I. Furthermore, a functional specificity in the antagonism of the IFN response has been reported, suggesting that specificity in the circumvention of innate immunity restricts viral host range. Available evidence indicates that paramyxoviruses employ specific strategies to antagonize the IFN response of their specific hosts, which is one of the major factors that determine viral pathogenicity and host range.

  12. John Stuart Mill, innate differences, and the regulation of reproduction.

    Science.gov (United States)

    Paul, Diane B; Day, Benjamin

    2008-06-01

    In this paper, we show that the question of the relative importance of innate characteristics and institutional arrangements in explaining human difference was vehemently contested in Britain during the first half of the nineteenth century. Thus Sir Francis Galton's work of the 1860s should be seen as an intervention in a pre-existing controversy. The central figure in these earlier debates-as well as many later ones-was the philosopher and economist John Stuart Mill. In Mill's view, human nature was fundamentally shaped by history and culture, factors that accounted for most mental and behavioral differences between men and women and among people of different classes, nationalities, and races. Indeed, Mill's whole program of social reform depended on the assumption that human differences were not fixed by nature. To identify the leading figures in these disputes about difference and the concrete context in which they occurred, we explore three debates in which Mill played a key role: over the capacities and rights of women, the viability of peasant proprietorship in India and Ireland, and the status of black labor in Jamaica. The last two draw our attention to the important colonial context of the nature-nurture debate. We also show that ideas that for us seem of a piece were not always linked for these earlier thinkers, nor did views on innateness necessarily have the political correlates that we now take for granted.

  13. Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jennifer L. Granick

    2012-01-01

    Full Text Available Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC. While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.

  14. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.

    Science.gov (United States)

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  15. Innate Lymphoid Cells in HIV/SIV Infections.

    Science.gov (United States)

    Shah, Spandan V; Manickam, Cordelia; Ram, Daniel R; Reeves, R Keith

    2017-01-01

    Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  16. Innate lymphoid cells at the interface between obesity and asthma.

    Science.gov (United States)

    Everaere, Laetitia; Ait Yahia, Saliha; Bouté, Mélodie; Audousset, Camille; Chenivesse, Cécile; Tsicopoulos, Anne

    2018-01-01

    Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma. © 2017 John Wiley & Sons Ltd.

  17. Differential activity of innate defense antimicrobial peptides against Nocardia species.

    Science.gov (United States)

    Rieg, Siegbert; Meier, Benjamin; Fähnrich, Eva; Huth, Anja; Wagner, Dirk; Kern, Winfried V; Kalbacher, Hubert

    2010-02-23

    Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs) in innate defense against Nocardia, the activity of human alpha-defensins human neutrophil peptides (HNPs) 1-3, human beta-defensin (hBD)-3 and cathelicidin LL-37 as well as bovine beta-defensins lingual and tracheal antimicrobial peptides (LAP, TAP) and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human alpha-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  18. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  19. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  20. Fundamental roles of the innate-like repertoire of natural antibodies in immune homeostasis

    Directory of Open Access Journals (Sweden)

    Jaya eVas

    2013-02-01

    Full Text Available The composition of the early immune repertoire is biased with prominent expression of spontaneously arising B-cell clones that produce IgM with recurrent and often autoreactive binding specificities. Amongst these naturally-arising antibodies (NAbs are IgM antibodies that specifically recognize damaged and senescent cells, often via oxidation-associated neo-determinants. These NAbs are present from birth and can be further boosted by apoptotic cell challenge. Recent studies have shown that IgM NAb to apoptotic cells can enhance phagocytic clearance, as well as suppress pro-inflammatory responses induced via Toll-like receptors, and block pathogenic IgG-immune complex (IC-mediated inflammatory responses. Specific antibody effector functions appear to be involved, as these anti-inflammatory properties are dependent on IgM-mediated recruitment of the early recognition factors of complement. Clinical surveys have suggested that anti-AC IgM NAbs may modulate disease activity in some patients with autoimmune disease. In mechanistic studies, anti-AC NAbs were shown to act in dendritic cells by inhibition of the Mitogen Activated Protein Kinase (MAPK pathway, a primary signal transduction pathway that controls inflammatory responses. This immunomodulatory pathway has an absolute requirement for the induction of MAPK Phosphatase-1. Taken together, recent studies have elucidated the novel properties of a class of protective NAbs, which may directly blunt inflammatory responses through a primitive pathway for regulation of the innate immune system.

  1. Soluble CD14 in human breast milk and its role in innate immune responses.

    Science.gov (United States)

    Vidal, K; Labéta, M O; Schiffrin, E J; Donnet-Hughes, A

    2001-10-01

    Immune factors secreted in milk are important for health in the neonatal gut. We have detected the bacterial pattern recognition receptor, soluble CD14 (sCD14) in human breast milk at different times during lactation. The molecule occurs in a single form in milk, in contrast to human serum, in which there are two isoforms. Produced by mammary epithelial cells, milk sCD14 mediates secretion of innate immune response molecules such as interleukin-8, tumor necrosis factor-alpha, and epithelial neutrophil activator-78 by CD14-negative intestinal epithelial cells exposed to lipopolysaccharide (LPS) or bacteria. Although present at low concentrations in milk, LPS-binding protein may be implicated in the biological effects observed. Our findings support the premise that milk sCD14 acts as a 'sentinel' molecule and immune modulator in homeostasis and in the defense of the neonatal intestine. In so doing, it may prevent the immune and inflammatory conditions of the gut to which non-breastfed infants are predisposed.

  2. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response.

    Science.gov (United States)

    Paramo, Teresa; Tomasio, Susana M; Irvine, Kate L; Bryant, Clare E; Bond, Peter J

    2015-12-09

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the "membrane-like" nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics.

  3. Role of ABO secretor status in mucosal innate immunity and H. pylori infection.

    Directory of Open Access Journals (Sweden)

    Sara Lindén

    2008-01-01

    Full Text Available The fucosylated ABH antigens, which constitute the molecular basis for the ABO blood group system, are also expressed in salivary secretions and gastrointestinal epithelia in individuals of positive secretor status; however, the biological function of the ABO blood group system is unknown. Gastric mucosa biopsies of 41 Rhesus monkeys originating from Southern Asia were analyzed by immunohistochemistry. A majority of these animals were found to be of blood group B and weak-secretor phenotype (i.e., expressing both Lewis a and Lewis b antigens, which are also common in South Asian human populations. A selected group of ten monkeys was inoculated with Helicobacter pylori and studied for changes in gastric mucosal glycosylation during a 10-month period. We observed a loss in mucosal fucosylation and concurrent induction and time-dependent dynamics in gastric mucosal sialylation (carbohydrate marker of inflammation, which affect H. pylori adhesion targets and thus modulate host-bacterial interactions. Of particular relevance, gastric mucosal density of H. pylori, gastritis, and sialylation were all higher in secretor individuals compared to weak-secretors, the latter being apparently "protected." These results demonstrate that the secretor status plays an intrinsic role in resistance to H. pylori infection and suggest that the fucosylated secretor ABH antigens constitute interactive members of the human and primate mucosal innate immune system.

  4. Vitamin D3 affects innate immune status of European sea bass (Dicentrarchus labrax L.).

    Science.gov (United States)

    Dioguardi, M; Guardiola, F A; Vazzana, M; Cuesta, A; Esteban, M A; Cammarata, M

    2017-08-01

    The effects of vitamin D 3 dietary administration on certain innate immune parameters on the expression of immune-related genes in head-kidney (HK) and gut were investigated in European sea bass Dicentrarchus labrax. Vitamin D 3 (vD 3 ) was orally administered to fish in a commercial pellet food supplemented with 0 (control); 3750; 18,750; or 37,500 U kg -1 . Furthermore, gut histology was considered. This study showed a modulation in the activities examined in fish fed with the addition of vD 3 . After just 2 weeks of administration, diet supplementation with the vitamin resulted in increased phagocytic ability, while serum peroxidase content was increased in fish fed with all experimental diets after 4 weeks, no significant differences were observed in protease, anti-protease, natural haemolytic complement activities and total IgM level. At gene level, fbl and rbl transcripts were up-regulated in HK in fish fed with the highest concentration of vD 3 -supplemented diets after 4 weeks, while in the gut, an up-regulation of hep gene was observed in fish fed with the different doses of vD 3 . These results suggest that vD 3 may be of great interest for immunostimulatory purposes in fish farms.

  5. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    Science.gov (United States)

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  6. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Didier Salmon

    2018-04-01

    Full Text Available Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria. In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC that are topologically similar to receptor-type guanylate cyclase (GC of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs, rather than the classical protein kinase A cAMP effector (PKA. T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  7. Intranasal treatment with a novel immunomodulator mediates innate immune protection against lethal pneumonia virus of mice.

    Science.gov (United States)

    Martinez, Elisa C; Garg, Ravendra; Shrivastava, Pratima; Gomis, Susantha; van Drunen Littel-van den Hurk, Sylvia

    2016-11-01

    Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in infants and young children. There are no licensed RSV vaccines available, and the few treatment options for high-risk individuals are either extremely costly or cause severe side effects and toxicity. Immunomodulation mediated by a novel formulation consisting of the toll-like receptor 3 agonist poly(I:C), an innate defense regulator peptide and a polyphosphazene (P-I-P) was evaluated in the context of lethal infection with pneumonia virus of mice (PVM). Intranasal delivery of a single dose of P-I-P protected adult mice against PVM when given 24 h prior to challenge. These animals experienced minimal weight loss, no clinical disease, 100% survival, and reduced lung pathology. Similar clinical outcomes were observed in mice treated up to 3 days prior to infection. P-I-P pre-treatment induced early mRNA and protein expression of key chemokine and cytokine genes, reduced the recruitment of neutrophils and eosinophils, decreased virus titers in the lungs, and modulated the delayed exacerbated nature of PVM disease without any short-term side effects. On day 14 post-infection, P-I-P-treated mice were confirmed to be PVM-free. These results demonstrate the capacity of this formulation to prevent PVM and possibly other viral respiratory infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Unveiling the Dual Role of the Dopaminergic System on Locomotion and the Innate Value for an Aversive Olfactory Stimulus in Drosophila.

    Science.gov (United States)

    Fuenzalida-Uribe, Nicolás; Campusano, Jorge M

    2018-02-10

    The communication between sensory systems and the specific brain centers that process this information is crucial to develop adequate behavioral responses. Modulatory systems, including dopaminergic circuits, regulate this communication to finely tune the behavioral response associated to any given stimulus. For instance, the Mushroom Body (MB), an insect brain integration center that receives and processes several sensory stimuli and organizes the execution of motor programs, communicates with MB output neurons (MBONs) to develop behavioral responses associated to olfactory stimuli. This communication is modulated by dopaminergic neural systems. Here we show that silencing dopaminergic neurons increases the aversive response observed in adult flies exposed to Benzaldehyde (Bz) or octanol. We studied the contribution of two dopaminergic clusters that innervate different zones of MB, Protocerebral anterior medial (PAM) and Protocerebral posterior lateral 1 (PPL1), on the innate value to the aversive stimulus and the associated locomotor behavior. In order to do this, we manipulated the synaptic transmission of these neural clusters through the expression of Tetanus toxin, Kir2.1 and Transient receptor potential cation channel A1 (TrpA1) channels. Our results show that neurons in PPL1 and PAM differentially modulate the innate value to Bz in adult flies. On the other hand, blocking neurotransmission or genetic silencing of PAM neurons results in decreased locomotor behavior in flies, an effect not observed when silencing PPL1. Our results suggest that as in mammals, specific dopaminergic pathways differentially modulate locomotor behavior and the innate value for an odorant, a limbic-like response in Drosophila. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Innate defense regulator peptide 1018 in wound healing and wound infection.

    Directory of Open Access Journals (Sweden)

    Lars Steinstraesser

    Full Text Available Innate defense regulators (IDRs are synthetic immunomodulatory versions of natural host defense peptides (HDP. IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.

  10. Forkhead, a new cross regulator of metabolism and innate immunity downstream of TOR in Drosophila.

    Science.gov (United States)

    Varma, Disha; Bülow, Margret H; Pesch, Yanina-Yasmin; Loch, Gerrit; Hoch, Michael

    2014-10-01

    Antimicrobial peptides (AMPs) are conserved cationic peptides which act both as defense molecules of the host immune system and as regulators of the commensal microbiome. Expression of AMPs is induced in response to infection by the Toll and Imd pathway. Under non-infected conditions, the transcription factor dFOXO directly regulates a set of AMP expression at low levels when nutrients are limited. Here we have analyzed whether target of rapamycin (TOR), another major regulator of growth and metabolism, also modulates AMP responses in Drosophila. We found that downregulation of TOR by feeding the drug rapamycin or by overexpressing the negative TOR regulators TSC1/TSC2, resulted in a specific induction of the AMPs Diptericin (Dpt) and Metchnikowin (Mtk). In contrast, overexpression of Rheb, which positively regulates TOR led to a repression of the two AMPs. Genetic and pharmacological experiments indicate that Dpt and Mtk activation is controlled by the transcription factor Forkhead (FKH), the founding member of the FoxO family. Shuttling of FKH from the cytoplasm to the nucleus is induced in the fat body and in the posterior midgut in response to TOR downregulation. The FKH-dependent induction of Dpt and Mtk can be triggered in dFOXO null mutants and in immune-compromised Toll and IMD pathway mutants indicating that FKH acts in parallel to these regulators. Together, we have discovered that FKH is the second conserved member of the FoxO family cross-regulating metabolism and innate immunity. dFOXO and FKH, which are activated upon downregulation of insulin or TOR activities, respectively, act in parallel to induce different sets of AMPs, thereby modulating the immune status of metabolic tissues such as the fat body or the gut in response to the oscillating energy status of the organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  12. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Science.gov (United States)

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  13. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  14. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    Science.gov (United States)

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  15. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosol...ic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D

  16. MECHANISMS OF ANTIINFECTIOUS FUNCTIONS OF INNATE IMMUNITY: ROLE OF TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    S. I. Suskov

    2012-01-01

    Full Text Available This review describes the main role of toll-like receptors of innate immunity for pathogen recognition; signaling; production of inflammatory response. Also Interrelation of innate and adaptive Immunity in conditions of pathology and organ transplantation were considered. 

  17. S1P dependent inter organ trafficking of group 2 innate lymphoid cells suppots host defense

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are considered to be the innate counterparts of adaptive T lymphocytes and play important roles in host defense, tissue repair, metabolic homeostasis, and inflammatory diseases. ILCs are generally thought of as tissue-resident cells, but whether ILCs strictly behave in a...

  18. Th1- and Th2-like subsets of innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, Jochem; Mjösberg, Jenny; Spits, Hergen

    2013-01-01

    Innate lymphoid cells (ILCs) constitute a family of effectors in innate immunity and regulators of tissue remodeling that have a cytokine and transcription factor expression pattern that parallels that of the T-helper (Th) cell family. Here, we discuss how ILCs can be categorized and summarize the

  19. Another Armament in Gut Immunity: Lymphotoxin-Mediated Crosstalk between Innate Lymphoid and Dendritic Cells

    NARCIS (Netherlands)

    Spits, H.

    2011-01-01

    Innate lymphoid cells (ILCs) are novel players in innate immunity. Tumanov et al. (Tumanov et al., 2011) demonstrate that crosstalk between ILCs and dendritic cells involving membrane-bound lymphotoxin in ILCs and its receptor is critical for protection against colitogenic bacteria

  20. DMPD: Peptidoglycan signaling in innate immunity and inflammatory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15802263 Peptidoglycan signaling in innate immunity and inflammatory disease. McDon...ald C, Inohara N, Nunez G. J Biol Chem. 2005 May 27;280(21):20177-80. Epub 2005 Mar 31. (.png) (.svg) (.html) (.csml) Show Peptidog...lycan signaling in innate immunity and inflammatory disease. PubmedID 15802263 Title Peptidog

  1. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  2. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available va Correia J. Vaccine. 2004 Dec 6;22 Suppl 1:S25-30. (.png) (.svg) (.html) (.csml) Show Innate immune responses during infection. Pub...medID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ,

  3. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  4. Manipulation of innate immunity by a bacterial secreted peptide: Lantibiotic nisin Z is selectively immunomodulatory

    NARCIS (Netherlands)

    Kindrachuk, J.; Jenssen, H.; Elliott, M.; Breukink, E.J.; Hancock, R.E.W.; et al., [No Value

    2013-01-01

    Innate immunity is triggered by a variety of bacterial molecules, resulting in both protective and potentially harmful proinflammatory responses. Further, innate immunity also provides a mechanism for the maintenance of homeostasis between the host immune system and symbiotic or non-pathogenic

  5. The role of intracellular thyroid hormone metabolism in innate immune cells

    NARCIS (Netherlands)

    van der Spek, A.H.

    2018-01-01

    Innate immune cells have recently been identified as important thyroid hormone target cells. This thesis studies the role of intracellular thyroid hormone metabolism in the function of neutrophils and macrophages, two essential cell types of the innate immune system. Neutrophils, monocytes and

  6. The bovine spleen: Interactions among splenic cell populations in the innate immunologic control of hemoparasitic infections

    Science.gov (United States)

    Over the past several years, innate immunity has been recognized as having an important role as a front-line defense mechanism and as an integral part of the adaptive immune response. Innate immunity in cattle exposed to hemoparasites is spleen-dependent and age-related. In this review, we discuss g...

  7. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  8. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    Science.gov (United States)

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success

  9. Oxidative stress, innate immunity, and age-related macular degeneration

    Science.gov (United States)

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  10. Gut microbiome and innate immune response patterns in IgE-associated eczema.

    Science.gov (United States)

    West, C E; Rydén, P; Lundin, D; Engstrand, L; Tulic, M K; Prescott, S L

    2015-09-01

    Gut microbiome patterns have been associated with predisposition to eczema potentially through modulation of innate immune signalling. We examined gut microbiome development in the first year of life in relation to innate immune responses and onset of IgE-associated eczema over the first 2.5 years in predisposed children due to maternal atopy [www.anzctr.org.au, trial ID ACTRN12606000280505]. Microbial composition and diversity were analysed with barcoded 16S rRNA 454 pyrosequencing in stool samples in pregnancy and at ages 1 week, 1 month and 12 months in infants (n = 10) who developed IgE-associated eczema and infants who remained free of any allergic symptoms at 2.5 years of age (n = 10). Microbiome data at 1 week and 1 month were analysed in relation to previously assessed immune responses to TLR 2 and 4 ligands at 6 months of age. The relative abundance of Gram-positive Ruminococcaceae was lower at 1 week of age in infants developing IgE-associated eczema, compared with controls (P = 0.0047). At that age, the relative abundance of Ruminococcus was inversely associated with TLR2 induced IL-6 (-0.567, P = 0.042) and TNF-α (-0.597, P = 0.032); there was also an inverse association between the abundance of Proteobacteria (comprising Gram-negative taxa) and TLR4-induced TNF-α (rs = -0.629, P = 0.024). This relationship persisted at 1 month, with inverse associations between the relative abundance of Enterobacteriaceae (within the Proteobacteria phylum) and TLR4-induced TNF-α (rs = -0.697, P = 0.038) and Enterobacteriaceae and IL-6 (rs = -0.709, P = 0.035). Mothers whose infants developed IgE-associated eczema had lower α-diversity of Bacteroidetes (P = 0.04) although this was not seen later in their infants. At 1 year, α-diversity of Actinobacteria was lower in infants with IgE-associated eczema compared with controls (P = 0.002). Our findings suggest that reduced relative abundance of potentially immunomodulatory gut bacteria is associated with exaggerated

  11. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  12. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages. Keywords: Macrophage, ATF7, Innate immune memory, Microarray

  13. The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes?

    Science.gov (United States)

    Wang, Weijun; Zhang, Yaxing; Yang, Ling; Li, Hongliang

    2017-02-28

    The innate immune system is responsible for sensing pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by several types of germline-encoded pattern-recognition receptors (PRRs). It has the capacity to help the human body maintain homeostasis under normal conditions. However, in pathological conditions, PAMPs or DAMPs trigger aberrant innate immune and inflammatory responses and thus negatively or positively influence the progression of cancer and cardiometabolic diseases. Interestingly, we found that some elements of innate immune signaling are involved in these diseases partially via immune-independent manners, indicating a deeper understanding of the function of innate immune signaling in these diseases is urgent. In this review, we summarize the primary innate immune signaling pathways and their association with cancer and cardiometabolic diseases, with the aim of providing effective therapies for these diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    Science.gov (United States)

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma. PMID:23209480

  15. Viral evasion of DNA-stimulated innate immune responses

    Science.gov (United States)

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769

  16. Identification of innate immunodeficiencies by whole genome sequencing

    DEFF Research Database (Denmark)

    Mogensen, Trine; Christiansen, Mette; Veirum, Jens Erik

    2014-01-01

    encephalitis or other herpes simplex virus (HSV) disease manifestations. The goal is to identify host factors in innate immunity which may explain the hitherto unknown mechanism underlying differential susceptibility to HSV infections between individuals. Such knowledge may have clinical and therapeutical...... implications. Methods: As part of a pilot study we performed WES on 4 patients with herpes encephalitis or mucocutaneous manifestations of HSV infection. WES was performed with Illumina technology (Illumina HiSeq/MiSeq) and analyzed PolyPhen-2 (Polymorphism Phenotyping v2) PhyloP, and SIFT prediction software......, TBK1 and Unc93B) may contribute to the development of herpes encephalitis. Common to these genetic defects is that they lead to reduced antiviral interferon (IFN) responses. In this study whole exome sequencing (WES) was performed to identify mutations associated with susceptibility to herpes...

  17. Viral evasion of DNA-stimulated innate immune responses.

    Science.gov (United States)

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP-AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway.

  18. Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Yuhao Jiao

    2016-10-01

    Full Text Available Group 1 innate lymphoid cells (ILC comprise the natural killer (NK cells and ILC1 which reside within peripheral tissues. Several different ILC1 subsets have recently been characterised, however no unique markers to define these subsets have been identified. Whether ILC1 and NK cells are in fact distinct lineages, or alternately exhibit transitional molecular programs, that allow them to adapt to different tissue niches remains an open question. NK cells are the prototypic member of the Group 1 ILC and have been historically assigned the functions of what now appears to be a multi-subset family that are distributed throughout the body. This raises the question of whether each of these populations mediate distinct functions during infection and tumour immunosurveillance. Here, we review the diversity in the Group 1 ILC subsets with regards to their transcriptional regulation, localization, mobility and receptor expression and highlight the challenges in unraveling the individual functions of these different populations of cells.

  19. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells.

    Science.gov (United States)

    Melo-Gonzalez, Felipe; Hepworth, Matthew R

    2017-03-01

    Group 3 innate lymphoid cells (ILC3), defined by expression of the transcription factor retinoid-related orphan receptor γt, play key roles in the regulation of inflammation and immunity in the gastrointestinal tract and associated lymphoid tissues. ILC3 consist largely of two major subsets, NCR + ILC3 and LTi-like ILC3, but also demonstrate significant plasticity and heterogeneity. Recent advances have begun to dissect the relationship between ILC3 subsets and to define distinct functional states within the intestinal tissue microenvironment. In this review we discuss the ever-expanding roles of ILC3 in the context of intestinal homeostasis, infection and inflammation - with a focus on comparing and contrasting the relative contributions of ILC3 subsets. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  20. Innate Lymphoid Cells: a new paradigm in immunology

    Science.gov (United States)

    Eberl, Gérard; Colonna, Marco; Di Santo, James P.; McKenzie, Andrew N.J.

    2016-01-01

    Summary Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex crosstalk between microenvironment, ILCs and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed to regulate or enhance immune responses in disease prevention and therapy. PMID:25999512

  1. New insights into innate immune control of systemic candidiasis

    Science.gov (United States)

    Lionakis, Michail S.

    2014-01-01

    Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted. PMID:25023483

  2. Innate and Cultural Spatial Time: A Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Barbara Magnani

    2017-05-01

    Full Text Available We reviewed literature to understand when a spatial map for time is available in the brain. We carefully defined the concepts of metrical map of time and of conceptual representation of time as the mental time line (MTL in order to formulate our position. It is that both metrical map and conceptual representation of time are spatial in nature. The former should be innate, related to motor/implicit timing, it should represent all magnitudes with an analogic and bi-dimensional structure. The latter MTL should be learned, available at about 8–10 years-old and related to cognitive/explicit time. It should have uni-dimensional, linear and directional structure (left-to-right in Western culture. We bear the centrality of the development of number cognition, of time semantic concepts and of reading/writing habits for the development of ordinality and linearity of the MTL.

  3. BACH transcription factors in innate and adaptive immunity.

    Science.gov (United States)

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4 + regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  4. Innate recognition of water bodies in echolocating bats.

    Science.gov (United States)

    Greif, Stefan; Siemers, Björn M

    2010-11-02

    In the course of their lives, most animals must find different specific habitat and microhabitat types for survival and reproduction. Yet, in vertebrates, little is known about the sensory cues that mediate habitat recognition. In free flying bats the echolocation of insect-sized point targets is well understood, whereas how they recognize and classify spatially extended echo targets is currently unknown. In this study, we show how echolocating bats recognize ponds or other water bodies that are crucial for foraging, drinking and orientation. With wild bats of 15 different species (seven genera from three phylogenetically distant, large bat families), we found that bats perceived any extended, echo-acoustically smooth surface to be water, even in the presence of conflicting information from other sensory modalities. In addition, naive juvenile bats that had never before encountered a water body showed spontaneous drinking responses from smooth plates. This provides the first evidence for innate recognition of a habitat cue in a mammal.

  5. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2017-09-01

    Full Text Available Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial uptake of lipid, mitochondrial fuel utilization shifting to glutamine, and significantly decreased immune reactivity. Mice with knockdown of the Lpl gene in microglia gained more body weight than control mice on a high-carbohydrate high-fat (HCHF diet. In these mice, microglial reactivity was significantly decreased in the mediobasal hypothalamus, accompanied by downregulation of phagocytic capacity and increased mitochondrial dysmorphologies. Furthermore, HCHF-diet-induced POMC neuronal loss was accelerated. These results show that LPL-governed microglial immunometabolism is essential to maintain microglial function upon exposure to an HCHF diet. In a hypercaloric environment, lack of such an adaptive immunometabolic response has detrimental effects on CNS regulation of energy metabolism.

  6. Glucosinolate metabolites required for an Arabidopsis innate immune response.

    Science.gov (United States)

    Clay, Nicole K; Adio, Adewale M; Denoux, Carine; Jander, Georg; Ausubel, Frederick M

    2009-01-02

    The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.

  7. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response*

    Science.gov (United States)

    Clay, Nicole K.; Adio, Adewale M.; Denoux, Carine; Jander, Georg; Ausubel, Frederick M.

    2008-01-01

    Summary The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity, and is defined in part by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens. PMID:19095898

  8. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  9. Innate Immune Response to Rift Valley Fever Virus in Goats

    Science.gov (United States)

    Nfon, Charles K.; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M.

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings. PMID:22545170

  10. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  11. Irreducible Specht modules are signed Young modules

    OpenAIRE

    Hemmer, David J.

    2005-01-01

    Recently Donkin defined signed Young modules as a simultaneous generalization of Young and twisted Young modules for the symmetric group. We show that in odd characteristic, if a Specht module $S^\\lambda$ is irreducible, then $S^\\lambda$ is a signed Young module. Thus the set of irreducible Specht modules coincides with the set of irreducible signed Young modules. This provides evidence for our conjecture that the signed Young modules are precisely the class of indecomposable self-dual module...

  12. DMPD: Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15051069 Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Miy...ake K. Trends Microbiol. 2004 Apr;12(4):186-92. (.png) (.svg) (.html) (.csml) Show Innate recognition of lip...opolysaccharide by Toll-like receptor 4-MD-2. PubmedID 15051069 Title Innate recognition of lipopolysacchari

  13. DMPD: Glucocorticoids and the innate immune system: crosstalk with the toll-likereceptor signaling network. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17576036 Glucocorticoids and the innate immune system: crosstalk with the toll-like...07 May 13. (.png) (.svg) (.html) (.csml) Show Glucocorticoids and the innate immune system: crosstalk with t...nd the innate immune system: crosstalk with the toll-likereceptor signaling network. Authors Chinenov Y, Rog

  14. DMPD: Nod1 and Nod2 in innate immunity and human inflammatory disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031249 Nod1 and Nod2 in innate immunity and human inflammatory disorders. Le Bour...w Nod1 and Nod2 in innate immunity and human inflammatory disorders. PubmedID 18031249 Title Nod1 and Nod2 in innate immunity and hum...an inflammatory disorders. Authors Le Bourhis L, Benko S

  15. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins

  16. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  17. Innate immunity and the sensing of infection, damage and danger in the female genital tract.

    Science.gov (United States)

    Sheldon, Iain Martin; Owens, Siân-Eleri; Turner, Matthew Lloyd

    2017-02-01

    Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Philippe Saas

    2017-06-01

    Full Text Available There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC, another type of innate immune cells. These cells are the main type I interferon (IFN producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6 or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β. Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis, as well as lipid metabolism (including both cholesterol and fatty acid metabolism may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR] in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations

  19. The role of innate lymphoid cells in healthy and inflamed skin

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte M.; Geisler, Carsten

    2016-01-01

    system. During the last years, it has become clear that innate lymphoid cells play a role in homeostasis and inflammation of the skin in humans and mice. In this review, we will discuss the role of innate lymphoid cells in healthy and inflamed skin with special focus on their role in atopic dermatitis.......The skin constitutes the interface between the organism and the environment, and it protects the body from harmful substances in the environment via physical, chemical and immunological barriers. The immunological barrier of the skin comprises both cells from the innate and the adaptive immune...

  20. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans.

    Science.gov (United States)

    Kim, Dennis H; Ausubel, Frederick M

    2005-02-01

    Genetic and functional genomic approaches have begun to define the molecular determinants of pathogen resistance in Caenorhabditis elegans. Conserved signal transduction components are required for pathogen resistance, including a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. We suggest that this pathway is an ancestral innate immune signaling pathway present in the common ancestor of nematodes, arthropods and vertebrates, which is likely to predate the involvement of canonical Toll signaling pathways in innate immunity. We anticipate that the study of pathogen resistance in C. elegans will continue to provide evolutionary and mechanistic insights into the signal transduction and physiology of innate immunity.