WorldWideScience

Sample records for room-temperature functional analogue

  1. Room-temperature antiferromagnetic memory resistor.

    Science.gov (United States)

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  2. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona

    2016-01-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer...... solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does...... not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both...

  3. Functional relationship of room temperature and setting time of alginate impression material

    Directory of Open Access Journals (Sweden)

    Dyah Irnawati

    2009-09-01

    Full Text Available Background: Indonesia is a tropical country with temperature variation. A lot of dental clinics do not use air conditioner. The room temperature influences water temperature for mixing alginate impression materials. Purpose: The aim of this study was to investigate the functional relationship of room temperature and initial setting time of alginate impression materials. Methods: The New Kromopan® alginate (normal and fast sets were used. The initial setting time were tested at 23 (control, 24, 25, 26, 27, 28, 29, 30 and 31 degrees Celcius room temperatures (n = 5. The initial setting time was tested based on ANSI/ADA Specification no. 18 (ISO 1563. The alginate powder was mixed with distilled water (23/50 ratio, put in the metal ring mould, and the initial setting time was measured by test rod. Data were statistically analyzed by linear regression (α = 0.05. result: The initial setting times were 149.60 ± 0.55 (control and 96.40 ± 0.89 (31° C seconds for normal set, and 122.00 ± 1.00 (control and 69.60 ± 0.55 (31° C seconds for fast set. The coefficient of determination of room temperature to initial setting time of alginate were R2 = 0.74 (normal set and R2 = 0.88 (fast set. The regression equation for normal set was Y = 257.6 – 5.5 X (p < 0.01 and fast set was Y = 237.7 – 5.6 X (p < 0.01. Conclusions: The room temperature gave high contribution and became a strength predictor for initial setting time of alginates. The share contribution to the setting time was 0.74% for normal set and 0.88% for fast set alginates.

  4. Room temperature superconductors

    International Nuclear Information System (INIS)

    Sleight, A.W.

    1995-01-01

    If the Holy Grail of room temperature superconductivity could be achieved, the impact on could be enormous. However, a useful room temperature superconductor for most applications must possess a T c somewhat above room temperature and must be capable of sustaining superconductivity in the presence of magnetic fields while carrying a significant current load. The authors will return to the subject of just what characteristics one might seek for a compound to be a room temperature superconductor. 30 refs., 3 figs., 1 tab

  5. Activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Gopalakrishnan, N.; Balasubramanian, T.

    2013-01-01

    Highlights: ► Room temperature ferromagnetism (RTFM) is observed in surface functionalized ZnO films. ► Surface functionalization is a new approach to make ZnO as ferromagnetic. ► The RTFM is attributed to the interaction between the adsorbates and the surface of ZnO. ► The oxygen vacancies are passivated upon surface functionalization. - Abstract: In this paper, we report the activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine. The pure and surface functionalized ZnO films have been examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements. XRD measurements show that all the films have single phase and (0 0 2) preferred orientation. The chemical bonding of ZnO with thiol and amine molecules has been confirmed by XPS measurements. The quenching of visible emission in PL spectra indicates that the surface defects are passivated by functionalization with thiol and amine. Surface functionalization of ZnO films with thiol and amine induces robust room temperature ferromagnetism in ZnO films as evidenced from VSM measurements. It is concluded that the observed ferromagnetic behavior in functionalized ZnO films is attributed to the different electronegativity of the atom in the thiol (or amine) and the surface of ZnO.

  6. Prussian Blue Analogues of Reduced Dimensionality

    NARCIS (Netherlands)

    Gengler, Regis Y. N.; Toma, Luminita M.; Pardo, Emilio; Lloret, Francesc; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Gournis, Dimitrios; Rudolf, Petra

    2012-01-01

    Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While

  7. Thermal power generation during heat cycle near room temperature

    Science.gov (United States)

    Shibata, Takayuki; Fukuzumi, Yuya; Kobayashi, Wataru; Moritomo, Yutaka

    2018-01-01

    We demonstrate that a sodium-ion secondary battery (SIB)-type thermocell consisting of two types of Prussian blue analogue (PBA) with different electrochemical thermoelectric coefficients (S EC ≡ ∂V/∂T V and T are the redox potential and temperature, respectively) produces electrical energy during heat cycles. The device produces an electrical energy of 2.3 meV/PBA per heat cycle between 295 K (= T L) and 323 K (= T H). The ideal thermal efficiency (η = 1.0%), which is evaluated using the heat capacity (C = 4.16 meV/K) of ideal Na2Co[Fe(CN)6], reaches 11% of the Carnot efficiency (ηth = 8.7%). Our SIB-type thermocell is a promising thermoelectric device that harvests waste heat near room temperature.

  8. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications

    International Nuclear Information System (INIS)

    Dong Wenjun; Huang Huandi; Zhu Yanjun; Li Xiaoyun; Wang Xuebin; Li Chaorong; Chen Benyong; Wang Ge; Shi Zhan

    2012-01-01

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide–amine intermediate and Ag + at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO 3 nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag–MoO 3 nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature. (paper)

  9. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    Science.gov (United States)

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  10. Room temperature CO and H2 sensing with carbon nanoparticles

    International Nuclear Information System (INIS)

    Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo

    2011-01-01

    We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H 2 at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H 2 at room temperature even without Pd or Pt catalysts commonly used for splitting H 2 molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H 2 molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.

  11. Microstructure stability of silver electrodeposits at room temperature

    International Nuclear Information System (INIS)

    Hansen, Karsten; Pantleon, Karen

    2008-01-01

    In situ quantitative X-ray diffraction analysis was used to investigate the kinetics of microstructure evolution at room temperature (self-annealing) in an electrodeposited silver layer. As a function of time at room temperature the as-deposited nanocrystalline microstructure evolved considerably: orientation-dependent grain growth and changes of the preferred grain orientation occurred. It is demonstrated for the first time that self-annealing occurs for electrodeposited silver layers and, hence, is not a unique feature of copper as often suggested

  12. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.

    Science.gov (United States)

    Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M

    2010-08-17

    We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.

  13. A Designed Room Temperature Multilayered Magnetic Semiconductor

    Science.gov (United States)

    Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team

    2015-03-01

    A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.

  14. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  15. Structure of photosystem II and substrate binding at room temperature.

    Science.gov (United States)

    Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira; Gul, Sheraz; Fuller, Franklin; Koroidov, Sergey; Brewster, Aaron S; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G; Stan, Claudiu A; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Long Vo, Pham; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T; Andi, Babak; Orville, Allen M; Glownia, James M; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S; Lane, Thomas J; Aquila, Andy; Koglin, Jason E; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Moriarty, Nigel W; Liebschner, Dorothee; Afonine, Pavel V; Waterman, David G; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I; Brunger, Axel T; Zwart, Petrus H; Adams, Paul D; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2016-12-15

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn 4 CaO 5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S 0 to S 4 ), in which S 1 is the dark-stable state and S 3 is the last semi-stable state before O-O bond formation and O 2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S 1 ), two-flash illuminated (2F; S 3 -enriched), and ammonia-bound two-flash illuminated (2F-NH 3 ; S 3 -enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S 1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn 4 CaO 5 cluster in the S 2 and S 3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.

  16. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    Science.gov (United States)

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  17. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  18. Evolution of the microstructure in nanocrystalline copper electrodeposits during room temperature storage

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time. In-situ studies were started immediately after electrodeposition......, crystallographic texture changes by multiple twinning and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer the slower is the microstructure evolution and self-annealing...

  19. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    Room temperature Compton profiles of momentum distribution of conduction electrons in -Ga metal are calculated in band model. For this purpose, the conduction electron wave functions are determined in a temperature-dependent non-local model potential. The profiles calculated along the crystallographic directions, ...

  20. Electrically Injected Twin Photon Emitting Lasers at Room Temperature

    Directory of Open Access Journals (Sweden)

    Claire Autebert

    2016-08-01

    Full Text Available On-chip generation, manipulation and detection of nonclassical states of light are some of the major issues for quantum information technologies. In this context, the maturity and versatility of semiconductor platforms are important assets towards the realization of ultra-compact devices. In this paper we present our work on the design and study of an electrically injected AlGaAs photon pair source working at room temperature. The device is characterized through its performances as a function of temperature and injected current. Finally we discuss the impact of the device’s properties on the generated quantum state. These results are very promising for the demonstration of electrically injected entangled photon sources at room temperature and let us envision the use of III-V semiconductors for a widespread diffusion of quantum communication technologies.

  1. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...

  2. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  3. Evolution of the microstructure in electrochemically deposited copper films at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The room temperature evolution of the microstructure in copper electrodeposits (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time with an unprecedented time resolution. Independent of the copper...... the crystallographic texture changes by a multiple twinning mechanism. The kinetics of self-annealing is strongly affected by the thickness of the deposit. Storage of the copper films at sub-zero temperatures effectively hinders self-annealing and does not affect the kinetics of self-annealing upon reheating to room...... temperature....

  4. Room-temperature ferromagnetism observed in C-/N-/O-implanted MgO single crystals

    Science.gov (United States)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Zhang, Jie; Zhang, Lijuan; Kong, Wei; Weng, Huimin; Ye, Bangjiao

    2013-01-01

    MgO single crystals were implanted with 70 keV C/N/O ions at room temperature with respective doses of 2 × 1016 and 2 × 1017 ions/cm2. All samples with high-dose implantation showed room temperature hysteresis in magnetization loops. Magnetization and slow positron annihilation measurements confirmed that room temperature ferromagnetism in O-implanted samples was attributed to the presence of Mg vacancies. Furthermore, the introduction of C or N played more effective role in ferromagnetic performance than Mg vacancies. Moreover, the magnetic moment possibly occurred from the localized wave function of unpaired electrons and the exchange interaction formed a long-range magnetic order.

  5. Dynamics and Interactions in Room Temperature Ionic Liquids, Surfaces and Interfaces

    Science.gov (United States)

    2016-01-13

    OHD-OKE) experiments. The first 2D IR experiments on functionalized SiO2 planar surface monolayers of alkyl chains with a vibrational probe head group...alkyl groups lowers the temperature for crystallization below room temperature and can also result in supercooling and glass formation rather than...heterodyne detected optical Kerr effect (OHD-OKE) experiments. During the grant, we performed the first 2D IR experiments on functionalized SiO2

  6. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.

    2015-06-23

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  7. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.; Rodrigues, J. N B; Su, Chenliang; Milletari, M.; Loh, Kian Ping; Wu, Tao; Chen, Wei; Neto, A. H Castro; Adam, Shaffique; Wee, Andrew T S

    2015-01-01

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  8. Room-temperature ductile inorganic semiconductor

    Science.gov (United States)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  9. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics

    Science.gov (United States)

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2016-04-01

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for

  10. Continuous-wave room-temperature diamond maser

    Science.gov (United States)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.

    2018-03-01

    The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  11. Conformational variation of proteins at room temperature is not dominated by radiation damage

    International Nuclear Information System (INIS)

    Russi, Silvia; González, Ana; Kenner, Lillian R.; Keedy, Daniel A.; Fraser, James S.; Bedem, Henry van den

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation

  12. Exploiting fast detectors to enter a new dimension in room-temperature crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Paterson, Neil; Axford, Danny; Aishima, Jun; Schulze-Briese, Clemens; Ren, Jingshan; Fry, Elizabeth E.; Stuart, David I.; Evans, Gwyndaf

    2014-01-01

    A departure from a linear or an exponential decay in the diffracting power of macromolecular crystals is observed and accounted for through consideration of a multi-state sequential model. A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first time to high frame-rate room-temperature data collection

  13. Rhodium-catalyzed C-H alkynylation of arenes at room temperature.

    Science.gov (United States)

    Feng, Chao; Loh, Teck-Peng

    2014-03-03

    The rhodium(III)-catalyzed ortho C-H alkynylation of non-electronically activated arenes is disclosed. This process features a straightforward and highly effective protocol for the synthesis of functionalized alkynes and represents the first example of merging a hypervalent iodine reagent with rhodium(III) catalysis. Notably, this reaction proceeds at room temperature, tolerates a variety of functional groups, and more importantly, exhibits high selectivity for monoalkynylation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan; Fang, Xin; Lin, Xiaoxi; Li, Huaifeng; He, Weiming; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2012-01-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  15. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan

    2012-12-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  16. Dual-function radiation sensitizers and bioreductive drugs: factors affecting cellular uptake and sensitizing efficiency in analogues of RSU 1069

    International Nuclear Information System (INIS)

    Walling, J.; Stratford, I.J.; Adams, G.E.; Stephens, M.A.

    1988-01-01

    Alkyl aziridine analogues of the hypoxic cell radiosensitizer RSU 1069 have been synthesized and one, RB 7040, containing tetramethyl substituted aziridine, is a more efficient sensitizer in vitro than RSU 1069 (Ahmed et al., 1986). The extent to which variation in drug uptake can influence the sensitizing efficiency of RSU 1069 and its analogues has been investigated by determining cellular uptake as a function of pH of extracellular medium (pHsub(e)) over the range 5.4-8.4. Following exposure of V79 cells for 1 h at room temperature, the ratio of intra-to extracellular concentration (Ci/Ce) was near unity at pH 5.4. Increasing pHsub(e) to 8.4 resulted in no change in the ratio Ci/Ce for RSU 1069 (pKsub(a) = 6.04). Values of Ci/Ce increased three-fold for RSU 1165 (pKsub(a) 7.38) and eleven-fold for RB 7040 (pKsub(a) = 8.45). Radiosensitization by RSU 1069 showed little dependence on pHsub(e) whereas increasing pH caused an apparent increase in sensitizing efficiency of both RSU 1165 and RB 7040. When enhancement ratios for sensitization were normalized to take account of the effect of extracellular pH on drug uptake, efficiency of sensitization was independent of pHsub(e). (author)

  17. Room temperature exchange bias in SmFeO_3 single crystal

    International Nuclear Information System (INIS)

    Wang, Xiaoxiong; Cheng, Xiangyi; Gao, Shang; Song, Junda; Ruan, Keqing; Li, Xiaoguang

    2016-01-01

    Exchange bias phenomenon is generally ascribed to the unidirectional magnetic shift along the field axes at interface of two magnetic materials. Room temperature exchange bias is found in SmFeO_3 single crystal. The behavior after different cooling procedure is regular, and the training behavior is attributed to the athermal training and its pinning origin is attributed to the antiferromagnetic clusters. Its being single phase and occurring at room temperature make it an appropriate candidate for application. - Graphical abstract: Room temperature exchange bias was found in oxide single crystal. Highlights: • Room temperature exchange bias has been discovered in single-crystalline SmFeO_3. • Its pinning origin is attributed to the antiferromagnetic clusters. • Its being single phase and occurring at room temperature make it an appropriate candidate for application.

  18. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    International Nuclear Information System (INIS)

    Zoch, H.L.

    1979-01-01

    A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims

  19. Low-temperature MIR to submillimeter mass absorption coefficient of interstellar dust analogues. II. Mg and Fe-rich amorphous silicates

    Science.gov (United States)

    Demyk, K.; Meny, C.; Leroux, H.; Depecker, C.; Brubach, J.-B.; Roy, P.; Nayral, C.; Ojo, W.-S.; Delpech, F.

    2017-10-01

    Context. To model the cold dust emission observed in the diffuse interstellar medium, in dense molecular clouds or in cold clumps that could eventually form new stars, it is mandatory to know the physical and spectroscopic properties of this dust and to understand its emission. Aims: This work is a continuation of previous studies aiming at providing astronomers with spectroscopic data of realistic cosmic dust analogues for the interpretation of observations. The aim of the present work is to extend the range of studied analogues to iron-rich silicate dust analogues. Methods: Ferromagnesium amorphous silicate dust analogues were produced by a sol-gel method with a mean composition close to Mg1-xFexSiO3 with x = 0.1, 0.2, 0.3, 0.4. Part of each sample was annealed at 500 °C for two hours in a reducing atmosphere to modify the oxidation state of iron. We have measured the mass absorption coefficient (MAC) of these eight ferromagnesium amorphous silicate dust analogues in the spectral domain 30-1000 μm for grain temperature in the range 10-300 K and at room temperature in the 5-40 μm range. Results: The MAC of ferromagnesium samples behaves in the same way as the MAC of pure Mg-rich amorphous silicate samples. In the 30-300 K range, the MAC increases with increasing grain temperature whereas in the range 10-30 K, we do not see any change of the MAC. The MAC cannot be described by a single power law in λ- β. The MAC of the samples does not show any clear trend with the iron content. However the annealing process has, on average, an effect on the MAC that we explain by the evolution of the structure of the samples induced by the processing. The MAC of all the samples is much higher than the MAC calculated by dust models. Conclusions: The complex behavior of the MAC of amorphous silicates with wavelength and temperature is observed whatever the exact silicate composition (Mg vs. Fe amount). It is a universal characteristic of amorphous materials, and therefore of

  20. In-situ investigation of the microstructure evolution in nanocrystalline copper electrodeposits at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2006-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of x-ray diffraction analysis and simultaneous measurements of the electrical resistivity as a function of time. In situ studies were started immediately after deposition...... growth, crystallographic texture changes by multiple twinning, and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer, the slower the microstructure evolution is......, and self-annealing is suppressed completely for a thin layer with 0.4 µm. The preferred crystallographic orientation of the as-deposited crystallites is suggested to cause the observed thickness dependence of the self-annealing kinetics. ©2006 American Institute of Physics...

  1. Room Temperature Memory for Few Photon Polarization Qubits

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden

    2014-05-01

    We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

  2. Materials for room temperature magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl Hansen, B.

    2010-07-15

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 - 310 K. A magnetic refrigerant should fulfill a number of criteria, among these a large magnetic entropy change, a large adiabatic temperature change, preferably little to no thermal or magnetic hysteresis and the material should have the stability required for long term use. As the temperature range required for room temperature cooling is some 40 - 50 K, the magnetic refrigerant should also be able to cover this temperature span either by exhibiting a very broad peak in magnetocaloric effect or by providing the opportunity for creating a materials series with varying transition temperatures. (Author)

  3. Room temperature ferromagnetic and photoluminescence ...

    Indian Academy of Sciences (India)

    32

    electrode, photo electronic devices, photo sensors, liquid crystal displays, electrochromic windows, solar panels and transparent coatings for solar-energy heat mirrors [11-13]. Here we report on magnetic properties of ITO nanoparticles at room temperature and at 100 K. 2. Experimental. The In1.9Sn0.1O3 powder samples ...

  4. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  5. Outrunning free radicals in room-temperature macromolecular crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A 2A adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography

  6. Outrunning free radicals in room-temperature macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Robinson, James I.; Morgan, Ann W. [University of Leeds, Leeds LS9 7FT (United Kingdom); Doré, Andrew S. [Heptares Therapeutics Ltd, BioPark, Welwyn Garden City AL7 3AX (United Kingdom); Lebon, Guillaume; Tate, Christopher G. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Fry, Elizabeth E.; Ren, Jingshan [The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2012-06-15

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A{sub 2A} adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.

  7. Neurobehavioral approach for evaluation of office workers' productivity: The effects of room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Li; Lian, Zhiwei; Pan, Li [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ye, Qian [Shanghai Research Institute of Building Science, Shanghai 200041 (China)

    2009-08-15

    Indoor environment quality has great influence on worker's productivity, and how to assess the effect of indoor environment on productivity remains to be the major challenge. A neurobehavioral approach was proposed for evaluation of office workers' productivity in this paper. The distinguishing characteristic of neurobehavioral approach is its emphasis on the identification and measurement of behavioral changes, for the influence of environment on brain functions manifests behaviorally. Therefore worker's productivity can be comprehensively evaluated by testing the neurobehavioral functions. Four neurobehavioral functions, including perception, learning and memory, thinking, and executive functions were measured with nine representative psychometric tests. The effect of room temperature on performance of neurobehavioral tests was investigated in the laboratory. Four temperatures (19 C, 24 C, 27 C, and 32 C) were investigated based on the thermal sensation from cold to hot. Signal detection theory was utilized to analyze response bias. It was found that motivated people could maintain high performance for a short time under adverse (hot or cold) environmental conditions. Room temperature affected task performance differentially, depending on the type of tasks. The proposed neurobehavioral approach could be worked to quantitatively and systematically evaluate office workers' productivity. (author)

  8. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  9. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    Science.gov (United States)

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  10. Airflow and Temperature Distribution in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Jacobsen, T. V.

    This thesis deals with air flow and temperature distribution in a room ventilated by the displacement principle. The characteristic features of the ventilation system are treated in the whole room but main emphasis is laid on the analysis of the stratified flow region in front of the inlet device....... After a prefatory description of the background and the fundamentals of displacement ventilation the objectives of the current study are specified. The subsequent sections describe the measurements of velocity and temperature profiles carried out in a full scale test room. Based on experimental data...... of measured data is of crucial importance. Qualitatively satisfactory results do not ensure quantitative agreement....

  11. Above Room Temperature Lead Salt VECSELs

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Chappuis, D.; Zogg, H.

    2010-01-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSEL) were developed for the wavelength range 4 to 5 μm. The devices are based on lead salt materials grown by MBE on BaF2 or Si substrate. The VECSELs are optically pumped with a 1.55 μm wavelength laser. They are operating up to above room temperature. An output power 6 mWp was reached at a temperature of +27°C. The VECSELs are temperature tunable and lasing is observed from ˜4.8 μm at -60°C down to ˜4.2 μm at +40°C heat sink temperature.

  12. Thermal investigations of a room temperature magnetic refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Smaili, Arezki; Chiba, Younes [Ecole Nationale Polytechnique d' Alger (Algeria)], email: arezki.smaili@enp.edu.dz

    2011-07-01

    Magnetic refrigeration is a concept based on the magnetocaloric effect that some materials exhibit when the external magnetic field changes. The aim of this paper is to assess the performance of a numerical model in predicting parameters of an active magnetic regenerator refrigerator. Numerical simulations were conducted to perform a thermal analysis on an active magnetic regenerator refrigerator operating near room temperature with and without applied cooling load. Curves of temperature span, cooling capacity and thermal efficiency as functions of the operating conditions were drawn and are presented in this paper. Results showed that at fixed frequency Ql versus mf has an optimum and COP was increased with cycle frequency values. This study demonstrated that the proposed numerical model could be used to predict parameters of an active magnetic regenerator refrigerator as it provides consistent results.

  13. Electromagnon Resonance at Room Temperature with Gigantic Magnetochromism

    Science.gov (United States)

    Shishikura, H.; Tokunaga, Y.; Takahashi, Y.; Masuda, R.; Taguchi, Y.; Kaneko, Y.; Tokura, Y.

    2018-04-01

    The elementary excitation characteristic of magnetoelectric (ME) multiferroics is a magnon endowed with electric activity, which is referred to as an electromagnon. The electromagnon resonance mediated by the bilinear exchange coupling potentially exhibits strong terahertz light-matter interaction with optical properties different from the conventional magnon excitation. Here we report the robust electromagnon resonance on helimagnetic Y -type hexaferrites in a wide temperature range including room temperature. Furthermore, the efficient magnetic field controls of the electromagnon are demonstrated on the flexible spin structure of these compounds, leading to the generation or annihilation of the resonance as well as the large resonance energy shift. These terahertz characteristics of the electromagnon exemplify the versatile magneto-optical functionality driven by the ME coupling in multiferroics, paving a way for possible terahertz applications as well as terahertz control of a magnetic state of matter.

  14. Magnetic refrigeration--towards room-temperature applications

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Li, X.W.; Boer, F.R. de; Buschow, K.H.J.

    2003-01-01

    Modern society relies very much on readily available cooling. Magnetic refrigeration based on the magneto-caloric effect (MCE) has become a promising competitive technology for the conventional gas-compression/expansion technique in use today. Recently, there have been two breakthroughs in magnetic-refrigeration research: one is that American scientists demonstrated the world's first room-temperature, permanent-magnet, magnetic refrigerator; the other one is that we discovered a new class of magnetic refrigerant materials for room-temperature applications. The new materials are manganese-iron-phosphorus-arsenic (MnFe(P,As)) compounds. This new material has important advantages over existing magnetic coolants: it exhibits a huge MCE, which is larger than that of Gd metal; and its operating temperature can be tuned from about 150 to about 335 K by adjusting the P/As ratio. Here we report on further improvement of the materials by increasing the Mn content. The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field. Addition of Mn reduces the thermal hysteresis, which is intrinsic to the first-order transition. This implies that already moderate applied magnetic fields of below 2 T may suffice

  15. Function analysis and function assignment of NPP advanced main control room

    International Nuclear Information System (INIS)

    Zheng Mingguang; Xu Jijun

    2001-01-01

    The author addresses the requirements of function analysis and function assignment, which should be carried out in the design of main control room in nuclear power plant according to the design research of advanced main control room, then states its contents, functions, importance and necessity as well as how to implement these requirements and how to do design verification and validation in the design of advanced main control room of nuclear power plant

  16. CFD analysis of the temperature field in emergency pump room in Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Rämä, Tommi, E-mail: tommi.rama@fortum.com [Fortum Power and Heat, P.O.B. 100, FI-00048 Fortum (Finland); Toppila, Timo, E-mail: timo.toppila@fortum.com [Fortum Power and Heat, P.O.B. 100, FI-00048 Fortum (Finland); Kelavirta, Teemu, E-mail: teemu.kelavirta@fortum.com [Fortum Power and Heat, Loviisa Power Plant, P.O.B. 23, FI-07901 Loviisa (Finland); Martin, Pasi, E-mail: pasi.martin@fortum.com [Fortum Power and Heat, Loviisa Power Plant, P.O.B. 23, FI-07901 Loviisa (Finland)

    2014-11-15

    Highlights: • Laser scanned room geometry from Loviisa NPP was utilized for CFD simulation. • Uncertainty of CFD simulation was estimated using the Grid Convergence Index. • Measured temperature field of pump room was reproduced with CFD simulation. - Abstract: In the Loviisa Nuclear Power Plant (NPP) six emergency pumps belonging to the same redundancy are located in the same room. During a postulated accident the cooling of the room is needed as the engines of the emergency pumps generate heat. Cooling is performed with fans blowing air to the upper part of the room. Temperature limits have been given to the operating conditions of the main components in order to ensure their reliable operation. Therefore the temperature field of the room is important to know. Temperature measurements were made close to the most important components of the pump room to get a better understanding of the temperature field. For these measurements emergency pumps and cooling fan units were activated. To simulate conditions during a postulated accident additional warm-air heaters were used. Computational fluid dynamic (CFD) simulations were made to support plant measurements. For the CFD study one of the pump rooms of Loviisa NPP was scanned with a laser and this data converted to detailed 3-D geometry. Tetrahedral computation grid was created inside the geometry. Grid sensitivity studies were made, and the model was then validated against the power plant tests. With CFD the detailed temperature and flow fields of the whole room were produced. The used CFD model was able to reproduce the temperature field of the measurements. Two postulated accident cases were simulated. In the cases the operating cooling units were varied. The temperature profile of the room changes significantly depending on which units are cooling and which only circulating the air. The room average temperature stays approximately the same. The simulation results were used to ensure the acceptable operating

  17. Design of ultra-stable insulin analogues for the developing world

    Directory of Open Access Journals (Sweden)

    Michael A Weiss

    2013-01-01

    Full Text Available The engineering of insulin analogues illustrates the application of structure-based protein design to clinical medicine. Such design has traditionally been based on structures of wild-type insulin hexamers in an effort to optimize the pharmacokinetic (PK and pharmacodynamic properties of the hormone. Rapid-acting insulin analogues (in chronological order of their clinical introduction, Humalog ® [Eli Lilly & Co.], Novolog ® [Novo-Nordisk], and Apidra ® [Sanofi-Aventis] exploit the targeted destabilization of subunit interfaces to facilitate capillary absorption. Conversely, long-acting insulin analogues exploit the stability of the insulin hexamer and its higher-order self-assembly within the subcutaneous depot to enhance basal glycemic control. Current products either operate through isoelectric precipitation (insulin glargine, the active component of Lantus ® ; Sanofi-Aventis or employ an albumin-binding acyl tether (insulin detemir, the active component of Levemir ® ; Novo-Nordisk. Such molecular engineering has often encountered a trade-off between PK goals and product stability. Given the global dimensions of the diabetes pandemic and complexity of an associated cold chain of insulin distribution, we envisage that concurrent engineering of ultra-stable protein analogue formulations would benefit the developing world, especially for patients exposed to high temperatures with inconsistent access to refrigeration. We review the principal mechanisms of insulin degradation above room temperature and novel molecular approaches toward the design of ultra-stable rapid-acting and basal formulations.

  18. Origin of Ferrimagnetism and Ferroelectricity in Room-Temperature Multiferroic ɛ -Fe2O3

    Science.gov (United States)

    Xu, K.; Feng, J. S.; Liu, Z. P.; Xiang, H. J.

    2018-04-01

    Exploring and identifying room-temperature multiferroics is critical for developing better nonvolatile random-access memory devices. Recently, ɛ -Fe2O3 was found to be a promising room-temperature multiferroic with a large polarization and magnetization. However, the origin of the multiferroicity in ɛ -Fe2O3 is still puzzling. In this work, we perform density-functional-theory calculations to reveal that the spin frustration between tetrahedral-site Fe3 + spins gives rise to the unexpected ferrimagnetism. For the ferroelectricity, we identify a low-energy polarization switching path with an energy barrier of 85 meV /f .u . by performing a stochastic surface walking simulation. The switching of the ferroelectric polarization is achieved by swapping the tetrahedral Fe ion with the octahedral Fe ion, different from the usual case (e.g., in BaTiO3 and BiFeO3 ) where the coordination number remains unchanged after the switching. Our results not only confirm that ɛ -Fe2O3 is a promising room-temperature multiferroic but also provide guiding principles to design high-performance multiferroics.

  19. Protocols for dry DNA storage and shipment at room temperature.

    Science.gov (United States)

    Ivanova, Natalia V; Kuzmina, Masha L

    2013-09-01

    The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica(®) DNAstable(®) plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at -20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica(®) provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica(®) at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at -20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  20. Hydrogen-induced room-temperature plasticity in TC4 and TC21 alloys

    DEFF Research Database (Denmark)

    Yuan, Baoguo; Jin, Yongyue; Hong, Chuanshi

    2017-01-01

    In order to reveal the effect of hydrogen on the room-temperature plasticity of the titanium alloys TC4 and TC21, compression tests have been carried out at room temperature. Results show that an appropriate amount of hydrogen can improve the room-temperature plasticity of both the TC4 and TC21...... alloys. The ultimate compression strain of the TC4 alloy containing a hydrogen concentration of 0.5 wt.% increases by 39% compared to the untreated material. For the TC21 alloy the ultimate compression strain is increased by 33% at a hydrogen concentration of 0.6 wt.%. The main reason for the improvement...... of hydrogen-induced room-temperature plasticity of the TC4 and TC21 alloys is discussed....

  1. A room temperature light source based on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lo Faro, M.J. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Andrea, C. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Messina, E.; Fazio, B. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); Musumeci, P. [Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Franzò, G. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Gucciardi, P.G.; Vasi, C. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); Priolo, F. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Via Valdisavoia 9, 95123 Catania (Italy); Iacona, F. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Irrera, A., E-mail: irrera@me.cnr.it [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy)

    2016-08-31

    We synthesized ultrathin Si nanowires (NWs) by metal assisted chemical wet etching, using a very thin discontinuous Au layer as precursor for the process. A bright room temperature emission in the visible range due to electron–hole recombination in quantum confined Si NWs is reported. A single walled carbon nanotube (CNT) suspension was prepared and dispersed in Si NW samples. The hybrid Si NW/CNT system exhibits a double emission at room temperature, both in the visible (due to Si NWs) and the IR (due to CNTs) range, thus demonstrating the realization of a low-cost material with promising perspectives for applications in Si-based photonics. - Highlights: • Synthesis of ultrathin Si nanowires (NWs) by metal-assisted chemical etching • Synthesis of NW/carbon nanotube (CNT) hybrid systems • Structural characterization of Si NWs and Si NW/CNT • Room temperature photoluminescence (PL) properties of Si NWs and of Si NW/CNT • Tuning of the PL properties of the Si NW/CNT hybrid system.

  2. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.

    Science.gov (United States)

    Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J

    2017-11-03

    Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.

  3. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  4. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    Science.gov (United States)

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  5. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  6. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Layek, Samar, E-mail: samarlayek@gmail.com; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni{sub 1−x}Mn{sub x}O (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  7. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    International Nuclear Information System (INIS)

    Layek, Samar; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni_1_−_xMn_xO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  8. Electrochemical applications of room temperature ionic liquids in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2008-01-01

    Applications of room temperature ionic liquids (RTILs) have invaded all branches of science. They are also receiving an upsurge, in recent years, for possible applications in various stages of nuclear fuel cycle. Ionic liquids are compounds composed entirely of ions existing in liquid state and RTILs are ionic liquids molten at temperatures lower than 373 K. RTILs are generally made up of an organic cation and an inorganic or an organic anion. Room temperature ionic liquids have several fascinating properties, which are unique to a particular combination of cation and anion. The properties such as insignificant vapor pressure, amazing ability to dissolve organic and inorganic compounds, wide electrochemical window are the specific advantages when dealing with application of RTILs for reprocessing of spent nuclear fuel. The ionic liquids are regarded as designer or tailor-made solvents as their properties can be tuned for desired application by appropriate cation-anion combinations. An excellent review by Wilkes describes about the historical perspectives of room temperature ionic liquids, pioneers in that area, events and the products delivered till 2001. Furthermore, several comprehensive reviews have been made on room temperature ionic liquids by various authors

  9. Glass Transitions and Low-Frequency Dynamics of Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Yamamuro, O.; Inamura, Y.; Hayashi, S.; Hamaguchi, H.

    2006-01-01

    We have measured the heat capacity and neutrion quasi- and inelastic scattering spectra of some salts of 1-butyl-3-methylimidazolium ion bmim+, which is a typical cation of room-temperature ionic liquids, and its derivatives. The heat capacity measurements revealed that the room-temperature ionic liquids have glass transitions as molecular liquids. The temperature dependence of configurational entropy demonstrated that the room-temperature ionic liquids are 'fragile liquids'. Both heat capacity and inelastic neutron scattering data revealed that the glassy phases exhibit large low-energy excitations usually called 'boson peak'. The quasielastic neutron scattering data showed that so-called 'fast process' appears around Tg as in molecular and polymer glasses. The temperature dependence of the self-diffusion coefficient derived from the neutron scattering data indicated that the orientation of bmim+ ions and/or butyl-groups of bmim+ ions is highly disordered and very flexible in an ionic liquid phase

  10. On buoyancy-driven natural ventilation of a room with a heated floor

    Science.gov (United States)

    Gladstone, Charlotte; Woods, Andrew W.

    2001-08-01

    The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.

  11. The influence of heated or cooled seats on the acceptable ambient temperature range

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Wyon, David Peter; Fang, Lei

    2007-01-01

    series, subjects were preconditioned to be too hot, while in other series they were preconditioned to be thermally neutral. They reported their thermal sensations, overall thermal acceptability and comfort on visual analogue scales at regular intervals. Instantaneous heat flow to the seat was measured...... continuously. At each ambient room temperature, the percentage dissatisfied was found to be a second-order polynomial function of local heat flow. Zero heat flow was preferred at an air temperature of 22 degrees C and the heat flow that minimized the percentage dissatisfied was found to be a single linear...

  12. Influence of sequential room-temperature compressive creep on flow stress of TA2

    Science.gov (United States)

    Mengyuan, Zhang; Boqin, Gu; Jiahui, Tao

    2018-03-01

    This paper studied the sequential room temperature compressive creep and its effects on compressive properties of TA2 with stress-control loading pattern by using cylindrical compressive test specimen. The significant time-dependent deformation under constant load was observed in the TA2 at room temperature, and the deformation was dependent on the loading process under the same loading stress rate. It was also found that the occurrence of room temperature compressive creep obviously enhanced the subsequent yielding strength and flow stress of TA2 due to the increase of network dislocation density. And the effects of room temperature creep on the strain rate-stress behavior could be explained by the local mobile dislocation density model.

  13. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    Science.gov (United States)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data

  14. Magnetic heat pumping near room temperature

    Science.gov (United States)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  15. Cyclic plastic response of nickel-based superalloy at room and at elevated temperatures

    International Nuclear Information System (INIS)

    Polak, Jaroslav; Petrenec, Martin; Chlupova, Alice; Tobias, Jiri; Petras, Roman

    2015-01-01

    Nickel-based cast IN 738LC superalloy has been cycled at increasing strain amplitudes at room temperature and at 800 C. Hysteresis loops were analyzed using general statistical theory of the hysteresis loop. Dislocation structures of specimens cycled at these two temperatures were studied. They revealed localization of the cyclic plastic strain in the thin bands which are rich in dislocations. The analysis of the loop shapes yields effective stresses of the matrix and of the precipitates and the probability density function of the critical internal stresses at both temperatures. It allows to find the sources of the high cyclic stress.

  16. Automation Of An Analogue Temperature Control System For Chlorination Process Of Zircon Sand In A Bricket Form

    International Nuclear Information System (INIS)

    Triyono; Wasito, Bangun; Aryadi

    2000-01-01

    Automation of an analogue temperature control system for chlorination process of zircon sand in a bricket form has been carried out. Principally, automation of an analogue temperature control is a simple and a closed loop system model controller. The used controller system is an ON-OFF model thermocople probe as a sensor. The output system is in the form of ON-OFF relay which is connected to contactor relay, so that it is able to serve the chlorination furnace. The prepared automatic temperature control system for chlorination process of zircon sand has been continuously tested at temperatures between 800 to 1050 o C. This required heating times between 8 to 17 minutes

  17. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.; Stolojan, Vlad; Zeze, Dagou A.; Forrest, Roy D.; Silva, S. Ravi P.; Haq, Sajad

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperature. This method would allow room-temperature direct synthesized nanofiber networks over relatively large areas, for a range of temperature sensitive substrates, such as organic materials, plastics, and other polymers of interest for nanoelectronic two-dimensional networks, nanoelectromechanical devices, nanoactuators, and composite materials

  18. Effect of extrusion temperature and moisture content of corn flour on crystallinity and hardness of rice analogues

    Science.gov (United States)

    Budi, Faleh Setia; Hariyadi, Purwiyatno; Budijanto, Slamet; Syah, Dahrul

    2015-12-01

    Rice analogues are food products made of broken rice and/or any other carbohydrate sources to have similar texture and shape as rice. They are usually made by hot extrusion processing. The hot extrusion process may change the crystallinity of starch and influence the characteristic of rice analogues. Therefore, this research aimed to study the effect of moisture content of incoming dough and temperature of extrusion process on the crystallinity and hardness of resulting rice analogues. The dough's were prepared by mixing of corn starch-flour with ratio 10/90 (w/w) and moisture content of 35%, 40% and 45% (w/w) and extrusion process were done at temperature of 70, 80, 90°C by using of twin screw extruder BEX-DS-2256 Berto. The analyses were done to determine the type of crystal, degree of crystallinity, and hardness of the resulting rice analogues. Our result showed that the enhancement of extrusion temperature from 70 - 90°C increased degree of crystallinity from 5.86 - 15.00% to 10.70 - 18.87% and hardness from 1.71 - 4.36 kg to 2.05 - 5.70 kg. The raising of dough moisture content from 35 - 45% decreased degree of crystallinity from 15.00 - 18.87% to 5.86 - 10.70% and hardness from 4.36 - 5.70 kg to 1.71 - 2.05 kg. The increase of degree of crystallinity correlated positively with the increase of hardness of rice analogues (r = 0.746, p = 0.05).

  19. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids.

    Science.gov (United States)

    Lian, Cheng; Zhao, Shuangliang; Liu, Honglai; Wu, Jianzhong

    2016-11-28

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this work, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the duration of charging. Furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.

  20. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  1. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.

    2006-01-01

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  2. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun; Qian, Yitai

    2012-01-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  3. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun

    2012-10-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  4. Metal nanoparticle film-based room temperature Coulomb transistor.

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  5. Structural and electrical properties of room temperature pulsed laser deposited and post-annealed thin SrRuO3 films

    International Nuclear Information System (INIS)

    Gautreau, O.; Harnagea, C.; Normandin, F.; Veres, T.; Pignolet, A.

    2007-01-01

    Good quality strontium ruthenate (SrRuO 3 ) thin continuous films (15 to 125 nm thick) have been synthesized on silicon (100) substrates by room temperature pulsed laser deposition under vacuum followed by a post-deposition annealing, a route unexplored and yet not reported for SrRuO 3 film growth. The presence of an interfacial Sr 2 SiO 4 layer has been identified for films annealed at high temperature, and the properties of this interface layer as well as the properties of the SrRuO 3 film have been analyzed and characterized as a function of the annealing temperature. The room temperature resistivity of the SrRuO 3 films deposited by laser ablation at room temperature and post-annealed is 2000 μΩ.cm. A critical thickness of 120 nm has been determined above which the influence of the interface layer on the resistivity becomes negligible

  6. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  7. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J.; Glatzel, Pieter; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; McQueen, Trevor A.; DiFiore, Dörte; Fry, Alan R.; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W.; Seibert, M. Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Messinger, Johannes; Sauter, Nicholas K.; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2012-01-01

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation. PMID:22665786

  8. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Science.gov (United States)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  9. Room-temperature synthesis of ultraviolet-emitting nanocrystalline GaN films using photochemical vapor deposition

    International Nuclear Information System (INIS)

    Yamazaki, Shunsuke; Yatsui, Takashi; Ohtsu, Motoichi; Kim, Taw-Won; Fujioka, Hiroshi

    2004-01-01

    We fabricated UV-emitting nanocrystalline gallium nitride (GaN) films at room temperature using photochemical vapor deposition (PCVD). For the samples synthesized at room temperature with V/III ratios exceeding 5.0x10 4 , strong photoluminescence peaks at 3.365 and 3.310 eV, which can be ascribed to transitions in a mixed phase of cubic and hexagonal GaN, were observed at 5 K. A UV emission spectrum with a full width at half-maximum of 100 meV was observed, even at room temperature. In addition, x-ray photoelectron spectroscopy measurement revealed that the film deposited by PCVD at room temperature was well nitridized

  10. Metal nanoparticle film–based room temperature Coulomb transistor

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  11. Room temperature excitation spectroscopy of single quantum dots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2011-08-01

    Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

  12. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    KAUST Repository

    Wu, Mengchun

    2018-05-18

    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  13. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    KAUST Repository

    Wu, Mengchun; Shi, Yusuf; Chang, Jian; Li, Renyuan; Ong, Chi Siang; Wang, Peng

    2018-01-01

    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  14. Room Temperature Monoclinic Phase in BaTiO3 Single Crystals

    Science.gov (United States)

    Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman

    2010-03-01

    BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.

  15. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    OpenAIRE

    Boskovic, BO; Stolojan, V; Zeze, DA; Forrest, RD; Silva, SRP; Haq, S

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperatur...

  16. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Bina S. Siddiqui

    2008-08-01

    Full Text Available A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total were in the 6-34% range and all compounds were fully characterized.

  17. La0.7Sr0.3MnO3 Thin Films for Magnetic and Temperature Sensors at Room Temperature

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2012-03-01

    Full Text Available In this paper, the potentialities of the manganese oxide La0.7Sr0.3MnO3 (LSMO for the realization of sensitive room temperature thermometers and magnetic sensors are discussed. LSMO exhibits both a large change of the resistance versus temperature at its metal-to-insulator transition (about 330 K and low field magnetoresistive effects at room temperature. The sensor performances are described in terms of signal-to-noise ratio in the 1 Hz - 100 kHz frequency range. It is shown that due to the very low 1/f noise level, LSMO based sensors can exhibit competitive performances at room temperature.

  18. Room temperature triplet state spectroscopy of organic semiconductors.

    Science.gov (United States)

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  19. Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature.

    Science.gov (United States)

    Norte, R A; Moura, J P; Gröblacher, S

    2016-04-08

    All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.

  20. Growth of room temperature ferromagnetic Ge1-xMnx quantum dots on hydrogen passivated Si (100) surfaces

    Science.gov (United States)

    Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo

    2018-05-01

    A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.

  1. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    Science.gov (United States)

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  2. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    Science.gov (United States)

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  3. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature

    Science.gov (United States)

    Xu, Feiyan; Le, Yao; Cheng, Bei; Jiang, Chuanjia

    2017-12-01

    Catalytic oxidation at room temperature over well-designed catalysts is an environmentally friendly method for the abatement of indoor formaldehyde (HCHO) pollution. Herein, nanocomposites of platinum (Pt) and titanium dioxide (TiO2) nanofibers with various phase compositions were prepared by calcining the electrospun TiO2 precursors at different temperatures and subsequently depositing Pt nanoparticles (NPs) on the TiO2 through a NaBH4-reduction process. The phase compositions and structures of Pt/TiO2 can be easily controlled by varying the calcination temperature. The Pt/TiO2 nanocomposites showed a phase-dependent activity towards the catalytic HCHO oxidation. Pt/TiO2 containing pure rutile phase showed enhanced activity with a turnover frequency (TOF) of 16.6 min-1 (for a calcination temperature of 800 °C) as compared to those containing the anatase phase or mixed phases. Density functional theory calculation shows that TiO2 nanofibers with pure rutile phase have stronger adsorption ability to Pt atoms than anatase phase, which favors the reduction of Pt over rutile phase TiO2, leading to higher contents of metallic Pt in the nanocomposite. In addition, the Pt/TiO2 with rutile phase possesses more abundant oxygen vacancies, which is conducive to the activation of adsorbed oxygen. Consequently, the Pt/rutile-TiO2 nanocomposite exhibited better catalytic activity towards HCHO oxidation at room temperature.

  4. FAST TRACK COMMUNICATION: Reproducible room temperature giant magnetocaloric effect in Fe-Rh

    Science.gov (United States)

    Manekar, Meghmalhar; Roy, S. B.

    2008-10-01

    We present the results of magnetocaloric effect (MCE) studies in polycrystalline Fe-Rh alloy over a temperature range of 250-345 K across the first order antiferromagnetic to ferromagnetic transition. By measuring the MCE under various thermomagnetic histories, contrary to the long held belief, we show here explicitly that the giant MCE in Fe-Rh near room temperature does not vanish after the first field cycle. In spite of the fact that the virgin magnetization curve is lost after the first field cycle near room temperature, reproducibility in the MCE under multiple field cycles can be achieved by properly choosing a combination of isothermal and adiabatic field variation cycles in the field-temperature phase space. This reproducible MCE leads to a large effective refrigerant capacity of 324.42 J kg-1, which is larger than that of the well-known magnetocaloric material Gd5Si2Ge2. This information could be important as Fe-Rh has the advantage of having a working temperature of around 300 K, which can be used for room temperature magnetic refrigeration.

  5. Room temperature inductively coupled plasma etching of InAs/InSb in BCl 3/Cl 2/Ar

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen

    2012-01-01

    Inductively coupled plasma (ICP) etching of InAs and InSb at room temperature has been investigated using BCl 3/Cl 2/Ar plasma. Specifically, the etch rate and post-etching surface morphology were investigated as functions of the gas composition

  6. Room temperature electrodeposition of actinides from ionic solutions

    Science.gov (United States)

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  7. Efficient synthesis of RITA and its analogues: derivation of analogues with improved antiproliferative activity via modulation of p53/miR-34a pathway.

    Science.gov (United States)

    Lin, Jinshun; Jin, Xiuli; Bu, Yiwen; Cao, Deliang; Zhang, Nannan; Li, Shangfu; Sun, Qinsheng; Tan, Chunyan; Gao, Chunmei; Jiang, Yuyang

    2012-12-28

    A novel approach to synthesize RITA by practical palladium-catalyzed C-C bond-forming Suzuki reactions at room temperature was developed, which was used for deriving a series of substituted tricyclic α-heteroaryl (furan/thiophene) analogues of RITA under mild conditions. These novel analogues showed notable antiproliferative activity against cancer cell lines with wild-type p53 (i.e., HCT116, A549, MCF-7 and K562), but much less activity in HCT116/p53(-/-) cells. In particular, compound 1f demonstrated promising antiproliferative activity compared to RITA, with IC(50) = 28 nM in MCF-7 vs. 54 nM for RITA, and cancer cell selectivity. Compound 1f markedly activated p53 in HCT116 cells at 100 nM, triggering apoptosis. Importantly, we found that both RITA and compound 1f induced G(0)/G(1) cell cycle arrest by up-regulating miR-34a, which in turn down-regulated the expression of cell cycle-related proteins CDK4 and E2F1. In summary, this study reports an effective synthetic approach for RITA and its analogues, and elucidates a novel antiproliferative mechanism of these compounds.

  8. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  9. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  10. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-03-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  11. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  12. Enhanced room temperature multiferroicity in Gd doped BFO

    CSIR Research Space (South Africa)

    Pradhan, SK

    2009-01-01

    Full Text Available deficient Gd doped multiferroic BFO system. At particular doping level of Gd, this bulk ceramics showed spectacular M~H behavior at room temperature which is likely to open a new avenue for the potential applications in information storing technology as well...

  13. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  14. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  15. Room-Temperature Alternative to the Arbuzov Reaction: The Reductive Deoxygenation of Acyl Phosphonates

    OpenAIRE

    Kedrowski, Sean M. A.; Dougherty, Dennis A.

    2010-01-01

    The reductive deoxygenation of acyl phosphonates using a Wolff−Kishner-like sequence is described. This transformation allows direct access to alkyl phosphonates from acyl phosphonates at room temperature. The method can be combined with acyl phosphonate synthesis into a one pot, four-step procedure for the conversion of carboxylic acids into alkyl phosphonates. The methodology works well for a variety of aliphatic acids and shows a functional group tolerance similar to that of other hydrazon...

  16. Materials for Room Temperature Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered...... candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material...... to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 – 310 K. A magnetic refrigerant...

  17. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  18. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser

    KAUST Repository

    Das, Ayan; Heo, Junseok; Jankowski, Marc; Guo, Wei; Zhang, Lei; Deng, Hui; Bhattacharya, Pallab

    2011-01-01

    , and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing. © 2011 American Physical Society.

  19. Dipolar molecules inside C-70: an electric field-driven room-temperature single-molecule switch

    Czech Academy of Sciences Publication Activity Database

    Foroutan-Nejad, C.; Andrushchenko, Valery; Straka, Michal

    2016-01-01

    Roč. 18, č. 48 (2016), s. 32673-32677 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : room-temperature single-molecule switch * electric field * endohedral fullerene * density functional calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlepdf/2016/cp/c6cp06986j

  20. Room-Temperature Single-Photon Source for Secure Quantum Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — We are asking for four years of support for PhD student Justin Winkler's work on a research project entitled "Room temperature single photon source for secure...

  1. Ratchetting behavior of type 304 stainless steel at room and elevated temperatures

    International Nuclear Information System (INIS)

    Ruggles, M.; Krempl, E.

    1988-01-01

    The zero-to-tension ratchetting behavior was investigated under uniaxial loading at room temperature and at 550, 600 and 650/degree/ C. In History I the maximum stress level of ratchetting was equal to the stress reached in a tensile test at one percent strain. For History II the maximum stress level was established as the stress reached after a 2100 s relaxation at one percent strain. Significant ratchetting was observed for History I at room temperature but not at the elevated temperatures. The accumulated ratchet strain increases with decreasing stress rate. Independent of the stress rates used insignificant ratchet strain was observed at room temperature for History II. This observation is explained in the context of the viscoplasticity theory based on overstress by the exhaustion of the viscous contribution to the stress during relaxation. The viscous part of the stress is the driving force for the ratchetting in History I. Strain aging is presumably responsible for the lack of short-time inelastic deformation resulting in a nearly rate-independent behavior at the elevated temperatures. 26 refs., 7 figs., 1 tab

  2. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Polák, Jaroslav, E-mail: polak@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Petráš, Roman; Heczko, Milan; Kuběna, Ivo [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Kruml, Tomáš [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Chai, Guocai [Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Linköping University, Engineering Materials, SE-581 83 Linköping (Sweden)

    2014-10-06

    Austenitic heat resistant Sanicro 25 steel developed for high temperature applications in power generation industry has been subjected to strain controlled low cycle fatigue tests at ambient and at elevated temperature in a wide interval of strain amplitudes. Fatigue hardening/softening curves, cyclic stress–strain curves and fatigue life curves were evaluated at room temperature and at 700 °C. The internal dislocation structures of the material at room and at elevated temperature were studied using transmission electron microscopy. High resolution surface observations and FIB cuts revealed early damage at room temperature in the form of persistent slip bands and at elevated temperature as oxidized grain boundary cracks. Dislocation arrangement study and surface observations were used to identify the cyclic slip localization and to discuss the fatigue softening/hardening behavior and the temperature dependence of the fatigue life.

  3. Room-temperature Pd-catalyzed C-H chlorination by weak coordination: one-pot synthesis of 2-chlorophenols with excellent regioselectivity.

    Science.gov (United States)

    Sun, Xiuyun; Sun, Yonghui; Zhang, Chao; Rao, Yu

    2014-02-07

    A room-temperature Pd(II)-catalyzed regioselective chlorination reaction has been developed for a facile one-pot synthesis of a broad range of 2-chlorophenols. The reaction demonstrates an excellent regioselectivity and reactivity for C-H chlorination. This reaction represents one of the rare examples of mild C-H functionalization at ambient temperature.

  4. Thermoluminescence in KBr:D electron irradiated at room temperature

    International Nuclear Information System (INIS)

    Paredes Campoy, J.C.; Lopez Carranza, E.

    1991-07-01

    The thermoluminescence of KBr:D samples electron irradiated at room temperature after thermal annealing at 673 K for 1 hour have been studied in the temperature range 360-730 K. The experimental TL-curve was discomposed by computer analysis in seven overlapping TL peaks, giving for them the order of the kinetics of thermal stimulation, the activation energy, the frequency factor, the relative values of the electronic concentration in traps at the initial heating temperature and the temperature at the maximum of the peak. (author). 18 refs, 1 fig., 3 tabs

  5. Multi-podant diglycolamides and room temperature ionic liquid impregnated resins: an excellent combination for extraction chromatography of actinides

    NARCIS (Netherlands)

    Gujar, R.B.; Ansari, S.A.; Verboom, Willem; Mohapatra, P.K.

    2016-01-01

    Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide

  6. Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

    OpenAIRE

    Ahmed, Ejaz

    2011-01-01

    Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 i...

  7. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  8. Analogue demonstration of a high temperature superconducting sigma-delta modulator with 27 GHz sampling

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, M.G.; Hunt, B.D.; Miller, D.L.; Talvacchio, J.; Young, R.M. [Northrop Grumman Science and Technology Center, Pittsburgh, PA 15235-5098 (United States)

    1999-11-01

    We have successfully fabricated and tested a high temperature superconducting (HTS) sigma-delta modulator for analogue-to-digital conversion. This is the first demonstration of a GHz sampling A-to-D in HTS. The 15-junction single-flux-quantum (SFQ) circuit, fabricated using an epitaxial multilayer HTS process with YBCO/Co-YBCO/YBCO edge junctions, was internally clocked at 27 GHz and used to convert a 5.01 MHz signal. The modulator demonstrated a spur-free dynamic range of more than 75 dB. Two-tone measurements with 5.01 MHz and 5.51 MHz signals demonstrated third-order intermodulation products to be lower than -59 dBc. Demonstration of a functional HTS modulator represents a significant milestone in the development of high dynamic range ADCs suitable for such applications as surveillance radar. (author)

  9. Room temperature photoinduced magnetism in [py.H]{sub 3}[FeCl{sub 4}]{sub 2}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Baniasadi, F. [Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Fathi, M.B. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Safari, N.; Amani, V. [Faculty of Chemistry, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-11-15

    Photoinduced magnetism in a homogeneous solution of [py.H]{sub 3}[FeCl{sub 4}]{sub 2}Cl is measured by Faraday rotation in visible light (λ∼450–750 nm) at room temperature. The physics of this phenomenon may be attributed to electronic transitions caused by absorption of light. X-ray diffraction and Debye function analysis are therefore applied to find the abundant unit of molecules dissolved in the solution which are being further utilized to investigate the electronic structure and molecular orbitals by means of hybrid density function theory (B3LYP). Faraday rotation is observed at certain wavelengths consistent with energy differences of HOMO-LUMO energy levels. Thus this work puts forward a new material with certain photomagnetic properties which may be used in fabrication of room temperature magneto-optical switches. - Highlights: • Photoinduced magnetism in (FeCl{sub 4}){sub 2}(py.H){sub 3}Cl is illustrated via Faraday rotation. • The abundant unit of molecule is characterized by Debye function analysis of XRD. • PIM in the molecule is attributed to the charge transfer between HOMO-LUMO.

  10. Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals

    International Nuclear Information System (INIS)

    Ray, Sugata; Kolen'ko, Yury V; Watanabe, Tomoaki; Yoshimura, Masahiro; Itoh, Mitsuru; Kovnir, Kirill A; Lebedev, Oleg I; Turner, Stuart; Erni, Rolf; Tendeloo, Gustaaf Van; Chakraborty, Tanushree

    2012-01-01

    Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO 3 . The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site and oxygen vacancies and their relative concentrations at the surface and the core of the nanocrystal, which could be controlled by post-synthesis drying and thermal treatments.

  11. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    International Nuclear Information System (INIS)

    Rani, Sumita; Kumar, Mukesh; Kumar, Dinesh; Sharma, Sumit

    2015-01-01

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO 2 /Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents

  12. Immobilization of Ag(i) into a metal-organic framework with -SO3H sites for highly selective olefin-paraffin separation at room temperature.

    Science.gov (United States)

    Chang, Ganggang; Huang, Minhui; Su, Ye; Xing, Huabin; Su, Baogen; Zhang, Zhiguo; Yang, Qiwei; Yang, Yiwen; Ren, Qilong; Bao, Zongbi; Chen, Banglin

    2015-02-18

    Introduction of Ag(i) ions into a sulfonic acid functionalized MOF ((Cr)-MIL-101-SO3H) significantly enhances its interactions with olefin double bonds, leading to its much higher selectivities for the separation of C2H4-C2H6 and C3H6-C3H8 at room temperature over the original (Cr)-MIL-101-SO3H and other adsorbents at room temperature.

  13. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    Science.gov (United States)

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  14. Room temperature growth of ZnO nanorods by hydrothermal synthesis

    Science.gov (United States)

    Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo

    2018-05-01

    The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.

  15. Room-Temperature Single-photon level Memory for Polarization States

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordaan, Bertus; Namazi, Mehdi; Nölleke, Christian; Figueroa, Eden

    2015-01-01

    An optical quantum memory is a stationary device that is capable of storing and recreating photonic qubits with a higher fidelity than any classical device. Thus far, these two requirements have been fulfilled for polarization qubits in systems based on cold atoms and cryogenically cooled crystals. Here, we report a room-temperature memory capable of storing arbitrary polarization qubits with a signal-to-background ratio higher than 1 and an average fidelity surpassing the classical benchmark for weak laser pulses containing 1.6 photons on average, without taking into account non-unitary operation. Our results demonstrate that a common vapor cell can reach the low background noise levels necessary for polarization qubit storage using single-photon level light, and propels atomic-vapor systems towards a level of functionality akin to other quantum information processing architectures.

  16. Stability of 2-Alkylcyclobutanones in irradiated retort pouch Gyudon topping during room temperature storage

    International Nuclear Information System (INIS)

    Kitagawa, Yoko; Okihashi, Masahiro; Takatori, Satoshi; Fukui, Naoki; Kajimura, Keiji; Obana, Hirotaka; Furuta, Masakazu

    2016-01-01

    2-Alkylcyclobutanones (ACBs), such as 2-dodecylcyclobutanone (DCB) and 2-tetradecylcylobutanone (TCB) are specific products in the irradiated liquid. Thus, DCB and TCB are suitable for indicators of the irradiation history of food. We previously reported DCB and TCB concentrations in irradiated retort pouch Gyudon topping (instant Gyudon mixes which were made from a beef, onion and soy sauce and could be preserved for a long term at room temperature) after storage for one year. Here, we have evaluated the stability of ACBs preserved in irradiated retort pouch Gyudon topping at room temperature for three years. Although interfering peaks were detected frequently after the storage at room temperature, it was possible for the detection of the irradiation history and there was no apparent decrease of ACBs concentrations in comparison with the one year storage after irradiation. These results concluded that DCB and TCB formed in retort pouch would be stable at room temperature for three years. (author)

  17. Structure determination of an integral membrane protein at room temperature from crystals in situ

    International Nuclear Information System (INIS)

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-01-01

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines

  18. Structure determination of an integral membrane protein at room temperature from crystals in situ

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Hu, Nien-Jen; Choudhury, Hassanul Ghani [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Kyoto University, Kyoto 606-8501 (Japan); Beis, Konstantinos [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom)

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  19. Room temperature lasing unraveled by a strong resonance between gain and parasitic absorption in uniaxially strained germanium

    Science.gov (United States)

    Gupta, Shashank; Nam, Donguk; Vuckovic, Jelena; Saraswat, Krishna

    2018-04-01

    A complementary metal-oxide semiconductor compatible on-chip light source is the holy grail of silicon photonics and has the potential to alleviate the key scaling issues arising due to electrical interconnects. Despite several theoretical predictions, a sustainable, room temperature laser from a group-IV material is yet to be demonstrated. In this work, we show that a particular loss mechanism, inter-valence-band absorption (IVBA), has been inadequately modeled until now and capturing its effect accurately as a function of strain is crucial to understanding light emission processes from uniaxially strained germanium (Ge). We present a detailed model of light emission in Ge that accurately models IVBA in the presence of strain and other factors such as polarization, doping, and carrier injection, thereby revising the road map toward a room temperature Ge laser. Strikingly, a special resonance between gain and loss mechanisms at 4%-5% 〈100 〉 uniaxial strain is found resulting in a high net gain of more than 400 cm-1 at room temperature. It is shown that achieving this resonance should be the goal of experimental work rather than pursuing a direct band gap Ge.

  20. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    OpenAIRE

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst...

  1. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors

    Science.gov (United States)

    Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.

    2018-04-01

    Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

  2. Room temperature ammonia and VOC sensing properties of CuO nanorods

    International Nuclear Information System (INIS)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2016-01-01

    Here, we report a NH 3 and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  3. Room temperature ammonia and VOC sensing properties of CuO nanorods

    Science.gov (United States)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2016-05-01

    Here, we report a NH3 and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  4. Room temperature ammonia and VOC sensing properties of CuO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu [Thin film laboratory, National Institute of Technology, Tiruchirappalli-620015 (India)

    2016-05-23

    Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  5. Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface

    Directory of Open Access Journals (Sweden)

    Yasushi Kawashima

    2013-05-01

    Full Text Available Electrical resistances of conductors obtained by bringing alkanes into contact with a graphite surface have been investigated at room temperatures. Ring current in a ring-shaped container into which n-octane-soaked thin graphite flakes were compressed did not decay for 50 days at room temperature. After two HOPG plates were immersed into n-heptane and n-octane at room temperature, changes in resistances of the two samples were measured by four terminal technique. The measurement showed that the resistances of these samples decrease to less than the smallest resistance that can be measured with a high resolution digital voltmeter (0.1μV. The observation of persistent currents in the ring-shaped container suggests that the HOPG plates immersed in n-heptane and n-octane really entered zero-resistance state at room temperature. These results suggest that room temperature superconductor may be obtained by bringing alkanes into contact with a graphite surface.

  6. Controllable synthesis of Co3O4/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH3 gas sensing at room temperature

    International Nuclear Information System (INIS)

    Lin, Yufei; Kan, Kan; Song, Wanzhen; Zhang, Guo; Dang, Lifang; Xie, Yu; Shen, Peikang; Li, Li; Shi, Keying

    2015-01-01

    Graphical abstract: Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co 3 O 4 and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co 3 O 4 nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co 3 O 4 nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH 3 ) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors

  7. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  8. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  9. Analogue Hawking radiation from astrophysical black-hole accretion

    International Nuclear Information System (INIS)

    Das, Tapas K

    2004-01-01

    We show that spherical accretion onto astrophysical black holes can be considered as a natural example of an analogue system. We provide, for the first time, an exact analytical scheme for calculating the analogue Hawking temperature and surface gravity for general relativistic accretion onto astrophysical black holes. Our calculation may bridge the gap between the theory of transonic astrophysical accretion and the theory of analogue Hawking radiation. We show that the domination of the analogue Hawking temperature over the actual Hawking temperature may be a real astrophysical phenomenon, though observational tests of this fact will at best be difficult and at worst might prove to be impossible. We also discuss the possibilities of the emergence of analogue white holes around astrophysical black holes. Our calculation is general enough to accommodate accreting black holes with any mass

  10. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    Science.gov (United States)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  11. A primary exploration to quasi-two-dimensional rare-earth ferromagnetic particles: holmium-doped MoS2 sheet as room-temperature magnetic semiconductor

    Science.gov (United States)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.

  12. Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates

    International Nuclear Information System (INIS)

    Venturi, F; Calizzi, M; Pasquini, L; Bals, S; Perkisas, T

    2015-01-01

    Magnesium nanoparticles (NPs) with initial size in the 10–50 nm range were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features. (paper)

  13. Room and low temperature synthesis of carbon nanofibres

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.

    2002-01-01

    Carbon nanotubes and nanofibres have attracted attention in recent years as new materials with a number of very promising potential applications. Carbon nanotubes are potential candidates for field emitters in flat panel displays. Carbon nanofibres could also be used as a hydrogen storage material and as a filling material in polymer composites. Carbon nanotubes are already used as tips in scanning probe microscopy due to their remarkable mechanical and electrical properties, and could be soon used as nanotweezers. Use of carbon nanotubes in nanoelectronics will open further miniaturisation prospects. Temperatures ranging from 450 to 1000 deg C have been a required for catalytic growth of carbon nanotubes and nanofibres. Researchers have been trying to reduce the growth temperatures for decades. Low temperature growth conditions will allow the growth of carbon nanotubes on different substrates, such glass (below 650 deg C) and as plastics (below 150 deg C) over relatively large areas, which is especially suitable for fiat panel display applications. Room temperature growth conditions could open up the possibility of using different organic substrates and bio-substrates for carbon nanotubes synthesis. Carbon nanofibres have been synthesised at room temperature and low temperatures below 250 deg C using radio frequency plasma enhanced chemical vapour deposition (r.f. PECVD). Previously, the growth of carbon nanofibres has been via catalytic decomposition of hydrocarbons or carbon monoxide at temperatures above 300 deg C. To the best of our knowledge, this is the first evidence of the growth of carbon nanofibres at temperatures lower than 300 deg C by any method. The use of a transition metal catalyst and r.f.-PECVD system is required for the growth of the carbon nanofibre when a hydrocarbon flows above the catalyst. Within the semiconductor industry r.f.-PECVD is a well established technique which lends itself for the growth of carbon nanofibres for various

  14. Investigation on low room-temperature resistivity Cr/(Ba0.85Pb0.15)TiO3 positive temperature coefficient composites

    DEFF Research Database (Denmark)

    He, Zeming; Ma, J.; Qu, Yuanfang

    2009-01-01

    discussed. Using these special processes, the prepared composite with 20 wt% Cr possessed low room-temperature resistivity (2.96 Ω cm at 25 °C) and exhibited PTC effect (resistivity jump of 10), which is considered as a promising candidate for over-current protector when working at low voltage. The grain......Low room-temperature resistivity positive temperature coefficient (PTC) Cr/(Ba0.85Pb0.15)TiO3 composites were produced via a reducing sintering and a subsequent oxidation treatment. The effects of metallic content and processing conditions on materials resistivity–temperature properties were...

  15. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    Science.gov (United States)

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  16. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  17. Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods

    Energy Technology Data Exchange (ETDEWEB)

    Sakthiraj, K.; Hema, M. [Department of Physics, Kamaraj College of Engineering and Technology, Virudhunagar 626001, Tamil Nadu (India); Balachandrakumar, K. [Department of Physics, Raja Doraisingam Government Arts College, Sivagangai 630561, Tamil Nadu (India)

    2016-04-15

    The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol–gel, microwave assisted sol–gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6–12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M–H curve of all the samples. But the sol–gel derived sample shows the higher values of saturation magnetization (M{sub s}) and remanence (M{sub r}) than other two samples. This study reveals that the sol–gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.

  18. Room temperature continuous wave mid-infrared VCSEL operating at 3.35 μm

    Science.gov (United States)

    Jayaraman, V.; Segal, S.; Lascola, K.; Burgner, C.; Towner, F.; Cazabat, A.; Cole, G. D.; Follman, D.; Heu, P.; Deutsch, C.

    2018-02-01

    Tunable vertical cavity surface emitting lasers (VCSELs) offer a potentially low cost tunable optical source in the 3-5 μm range that will enable commercial spectroscopic sensing of numerous environmentally and industrially important gases including methane, ethane, nitrous oxide, and carbon monoxide. Thus far, achieving room temperature continuous wave (RTCW) VCSEL operation at wavelengths beyond 3 μm has remained an elusive goal. In this paper, we introduce a new device structure that has enabled RTCW VCSEL operation near the methane absorption lines at 3.35 μm. This device structure employs two GaAs/AlGaAs mirrors wafer-bonded to an optically pumped active region comprising compressively strained type-I InGaAsSb quantum wells grown on a GaSb substrate. This substrate is removed in processing, as is one of the GaAs mirror substrates. The VCSEL structure is optically pumped at room temperature with a CW 1550 nm laser through the GaAs substrate, while the emitted 3.3 μm light is captured out of the top of the device. Power and spectrum shape measured as a function of pump power exhibit clear threshold behavior and robust singlemode spectra.

  19. Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity

    Science.gov (United States)

    Zeng, Rongjin; Chen, Guoliang; Xiong, Chungang; Li, Gengxian; Zheng, Yinzhi; Chen, Jian; Long, Yunfei; Chen, Shu

    2018-03-01

    A stable zincporphyrin functionalized graphene nanocomposite was prepared by using positively charged cationic porphyrin (5,10,15,20-tetra(4-propyl pyridinio) porphyrin, TPPyP) and successive reduced graphene oxide (rGO) with tuned negative charge. The nanocomposite preparation was accompanied first by distinct electrostatic interactions and π-π stacking between TPPyP and rGO, and followed by fast Zinc-metallation at room temperature. In contrast to free TPPyP with Zn2+, the incorporation reaction is very slow at room temperature and heating or reflux conditions are required to increase the metallation rate. While at the surface of rGO nanosheet, the Zinc-metallation of TPPyP was greatly accelerated to 30 min at 25 °C in aqueous solution. The interaction process and composites formation were fully revealed by significant variations in UV-vis absorption spectra, X-ray photoelectron spectra (XPS) measurements, atomic force microscope (AFM) images, and fluorescence spectra. Furthermore, photoelectrochemical activity of resultant rGO/TPPyP-Zn nanocomposites was evaluated under visible-light irradiation, and enhancement of the photoelectrocatalytic reduction of CO2 was achieved.

  20. A Sleeping Beauty DNA transposon-based genetic sensor for functional screening of vitamin D3 analogues

    DEFF Research Database (Denmark)

    Staunstrup, Nicklas Heine; Sharma, Nynne; Bak, Rasmus Otkjær

    2011-01-01

    Analogues of vitamin D3 are extensively used in the treatment of various illnesses, such as osteoporosis, inflammatory skin diseases, and cancer. Functional testing of new vitamin D3 analogues and formulations for improved systemic and topical administration is supported by sensitive screening me...

  1. Tunable Curie temperature around room temperature and magnetocaloric effect in ternary Ce–Fe–B amorphous ribbons

    International Nuclear Information System (INIS)

    Li, Zhu-bai; Zhang, Le-le; Zhang, Xue-feng; Li, Yong-feng; Zhao, Qian; Zhao, Tong-yun; Shen, Bao-gen

    2017-01-01

    Ce 13−x Fe 81+x B 6 ( x   =  0, 0.5, 1, 1.5, and 2) amorphous magnets were prepared by melt-spinning method. These magnets are magnetically soft at low temperature, and undergo a second-order phase transition from ferromagnetic to paramagnetic state near room temperature with a broad temperature span. The phase-transition temperature is tunable by the variation of the Ce/Fe atomic ratio, which is mainly due to the change of the coordination number of Fe atoms in these ternary Ce–Fe–B amorphous magnets. Though the entropy change is low, the refrigeration capacities are in the ranges of 116–150 J kg −1 and 319–420 J kg −1 , respectively, for the magnetic field changes of 0–2 T and 0–5 T, which is comparable with those of conventional magnetic materials for room-temperature refrigeration. Given the low cost of Fe and Ce, Ce–Fe–B amorphous magnets are attractive magnetic refrigerant candidates. (paper)

  2. One-Dimensional Vanadium Dioxide Nanostructures for Room Temperature Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Aline Simo

    2015-06-01

    Full Text Available In relation to hydrogen (H2 economy in general and gas sensing in particular, an extensive set of one dimensional (1-D nano-scaled oxide materials are being investigated as ideal candidates for potential gas sensing applications. This is correlated to their set of singular surface characteristics, shape anisotropy and readiness for integrated devices. Nanostructures of well- established gas sensing materials such as Tin Oxide (SnO2, Zinc Oxide (ZnO, Indium (III Oxide (In2O3, and Tungsten Trioxide (WO3 have shown higher sensitivity and gas selectivity, quicker response, faster time recovery, as well as an enhanced capability to detect gases at low concentrations. While the overall sensing characteristics of these so called 1-D nanomaterials are superior, they are efficient at high temperature; generally above 200 0C. This operational impediment results in device complexities in integration that limit their technological applications, specifically in their miniaturized arrangements. Unfortunately, for room temperature applications, there is a necessity to dope the above mentioned nano-scaled oxides with noble metals such as Platinum (Pt, Palladium (Pd, Gold (Au, Ruthenium (Ru. This comes at a cost. This communication reports, for the first time, on the room temperature enhanced H2 sensing properties of a specific phase of pure Vanadium Dioxide (VO2 phase A in their nanobelt form. The relatively observed large H2 room temperature sensing in this Mott type specific oxide seems to reach values as low as 14 ppm H2 which makes it an ideal gas sensing in H2 fuelled systems.

  3. Multiwalled carbon nanotubes sensor for organic liquid detection at room temperature

    Science.gov (United States)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-04-01

    We have explored the possibility of using multiwalled carbon nanotubes (MWCNTs) as room temperature chemical sensor for the detection of organic liquids such as ethanol, propanol, methanol and toluene. MWCNTs were synthesized by thermal chemical vapor deposition (TCVD) technique. The interdigitated electrodes were fabricated by conventional photolithography technique. The sensor was fabricated by drop depositing MWCNT suspension onto the interdigitated electrodes. The sensing properties of MWCNTs sensor was studied for organic liquids detection. The resistance of sensor was found to increase upon exposure to these liquids. Sensor shows good reversibility and fast response at room temperature. Charge transfer between the organic liquid and sensing element is the dominant sensing mechanism.

  4. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature.

    Science.gov (United States)

    Stolworthy, Dean K; Zirbel, Shannon A; Howell, Larry L; Samuels, Marina; Bowden, Anton E

    2014-05-01

    The soft tissues of the spine exhibit sensitivity to strain-rate and temperature, yet current knowledge of spine biomechanics is derived from cadaveric testing conducted at room temperature at very slow, quasi-static rates. The primary objective of this study was to characterize the change in segmental flexibility of cadaveric lumbar spine segments with respect to multiple loading rates within the range of physiologic motion by using specimens at body or room temperature. The secondary objective was to develop a predictive model of spine flexibility across the voluntary range of loading rates. This in vitro study examines rate- and temperature-dependent viscoelasticity of the human lumbar cadaveric spine. Repeated flexibility tests were performed on 21 lumbar function spinal units (FSUs) in flexion-extension with the use of 11 distinct voluntary loading rates at body or room temperature. Furthermore, six lumbar FSUs were loaded in axial rotation, flexion-extension, and lateral bending at both body and room temperature via a stepwise, quasi-static loading protocol. All FSUs were also loaded using a control loading test with a continuous-speed loading-rate of 1-deg/sec. The viscoelastic torque-rotation response for each spinal segment was recorded. A predictive model was developed to accurately estimate spine segment flexibility at any voluntary loading rate based on measured flexibility at a single loading rate. Stepwise loading exhibited the greatest segmental range of motion (ROM) in all loading directions. As loading rate increased, segmental ROM decreased, whereas segmental stiffness and hysteresis both increased; however, the neutral zone remained constant. Continuous-speed tests showed that segmental stiffness and hysteresis are dependent variables to ROM at voluntary loading rates in flexion-extension. To predict the torque-rotation response at different loading rates, the model requires knowledge of the segmental flexibility at a single rate and specified

  5. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    Science.gov (United States)

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  6. Nickel-catalyzed synthesis of aryl trifluoromethyl sulfides at room temperature.

    Science.gov (United States)

    Zhang, Cheng-Pan; Vicic, David A

    2012-01-11

    Inexpensive nickel-bipyridine complexes were found to be active for the trifluoromethylthiolation of aryl iodides and aryl bromides at room temperature using the convenient [NMe(4)][SCF(3)] reagent. © 2011 American Chemical Society

  7. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    Science.gov (United States)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  8. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    Science.gov (United States)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  9. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    International Nuclear Information System (INIS)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Han, Z.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-01-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature

  10. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  11. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine—a chemotherapy agent. Focus on nanoparticulate cubosomes™ of the oleyl analogue

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Mulet, Xavier; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J.

    2014-09-24

    A series of prodrug analogues based on the established chemotherapy agent, 5-fluorouracil, have been prepared and characterized. C18 alkyl and alkenyl chains with increasing degree of unsaturation were attached to the N4 position of the 5-fluorocytosine (5-FC) base via a carbamate bond. Physicochemical characterization of the prodrug analogues was carried out using a combination of differential scanning calorimetry, cross-polarized optical microscopy, X-ray diffraction and small-angle X-ray scattering. The presence of a monounsaturated oleyl chain was found to promote lyotropic liquid crystalline phase formation in excess water with a fluid lamellar phase observed at room temperature and one or more bicontinuous cubic phases at 37 °C. The bulk phase was successfully dispersed into liposomes or cubosomes at room and physiological temperature respectively. In vitro toxicity of the nanoparticulate 5-FCOle dispersions was evaluated against several normal and cancer cell types over a 48 h period and exhibited an IC50 of -100 μM against all cell types. The in vivo efficacy of 5-FCOle cubosomes was assessed against the highly aggressive mouse 4T1 breast cancer model and compared to Capecitabine (a water-soluble commercially available 5-FU prodrug) delivered at the same dosages. After 21 days of treatment, the 0.5 mmol 5-FCOle treatment group exhibited a significantly smaller average tumour volume than all other treatment groups including Capecitabine at similar dosage. These results exemplify the potential of self-assembled amphiphile prodrugs for delivery of bioactives in vivo.

  12. Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues.

    Science.gov (United States)

    Wu, Menghao; Zeng, Xiao Cheng

    2016-05-11

    Phosphorene and phosphorene analogues such as SnS and SnSe monolayers are promising nanoelectronic materials with desired bandgap, high carrier mobility, and anisotropic structures. Here, we show first-principles calculation evidence that these monolayers are potentially the long-sought two-dimensional (2D) materials that can combine electronic transistor characteristic with nonvolatile memory readable/writeable capability at ambient condition. Specifically, phosphorene is predicted to be a 2D intrinsic ferroelastic material with ultrahigh reversible strain, whereas SnS, SnSe, GeS, and GeSe monolayers are multiferroic with coupled ferroelectricity and ferroelasticity. Moreover, their low-switching barriers render room-temperature nonvolatile memory accessible, and their notable structural anisotropy enables ferroelastic or ferroelectric switching readily readable via electrical, thermal, optical, mechanical, or even spintronic detection upon the swapping of the zigzag and armchair direction. In addition, it is predicted that the GeS and GeSe monolayers as well as bulk SnS and SnSe can maintain their ferroelasticity and ferroelectricity (anti-ferroelectricity) beyond the room temperature, suggesting high potential for practical device application.

  13. Gold catalysed synthesis of 3-alkoxyfurans at room temperature.

    Science.gov (United States)

    Pennell, Matthew N; Foster, Robert W; Turner, Peter G; Hailes, Helen C; Tame, Christopher J; Sheppard, Tom D

    2014-02-09

    Synthetically important 3-alkoxyfurans can be prepared efficiently via treatment of acetal-containing propargylic alcohols (obtained from the addition of 3,3-diethoxypropyne to aldehydes) with 2 mol% gold catalyst in an alcohol solvent at room temperature. The resulting furans show useful reactivity in a variety of subsequent transformations.

  14. Unconditional polarization qubit quantum memory at room temperature

    Science.gov (United States)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  15. Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature

    Directory of Open Access Journals (Sweden)

    G. Behzadi pour

    Full Text Available In this study, fabrication of highly sensitive PdNPs/SiO2/Si hydrogen gas sensor using experimental and theoretical methods has been investigated. Using chemical method the PdNPs are synthesized and characterized by X-ray diffraction (XRD. The average size of PdNPs is 11 nm. The thickness of the oxide film was 20 nm and the surface of oxide film analyzed using Atomic-force microscopy (AFM. The C-V curve for the PdNPs/SiO2/Si hydrogen gas sensor in 1% hydrogen concentration and at the room temperature has been reported. The response time and recovery time for 1% hydrogen concentration at room temperature were 1.2 s and 10 s respectively. The response (R% for PdNPs/SiO2/Si MOS capacitor hydrogen sensor was 96%. The PdNPs/SiO2/Si MOS capacitor hydrogen sensor showed very fast response and recovery times compared to SWCNTs/PdNPs, graphene/PdNPs, nanorod/PdNPs and nanowire/PdNPs hydrogen gas sensors. Keywords: Sensitive, Oxide film, Capacitive, Resistance

  16. Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor

    International Nuclear Information System (INIS)

    Yu, Ming-Ru; Suyambrakasam, Gobalakrishnan; Wu, Ren-Jang; Chavali, Murthy

    2012-01-01

    Graphical abstract: Sensor response (resistance) curves of time were changed from 150 ppm to 250 ppm alcohol concentration of ZnO–CuO 1:1. The response and recovery times were measured to be 62 and 83 s, respectively. The sensing material ZnO–CuO is a high potential alcohol sensor which provides a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature. Highlights: ► The main advantages of the ethanol sensor are as followings. ► Novel materials ZnO–CuO ethanol sensor. ► The optimized ZnO–CuO hetero contact system. ► A good sensor response and room working temperature (save energy). -- Abstract: A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = R air /R alcohol ) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R 2 of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.

  17. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    Science.gov (United States)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  18. Room temperature ferromagnetism in nano-crystalline Co:ThO2 powders

    International Nuclear Information System (INIS)

    Bhide, M.K.; Kadam, R.M.; Godbole, S.V.; Tyagi, A.K.; Salunke, H.G.

    2012-01-01

    The major interest in dilute magnetic semiconductors (DMS's) had been directed towards the synthesis of room temperature ferromagnetic (RTF) materials for their potential applications in spintronic devices. Room temperature (RT) ferromagnetism was initially reported in Co doped TiO 2 , ZnO 2 and SnO 2 thin films and in the recent past in transition metal doped wide band gap materials. In the present paper we report the synthesis of Co doped ThO 2 nano powders by urea combustion method. The XRD characterization of 300℃ annealed samples confirmed formation of ThO 2 in the cubic phase and the average crystallite size obtained using Scherrer's formula was around 6 nm

  19. Room Temperature Silicene Field-Effect Transistors

    Science.gov (United States)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  20. A new sensor for ammonia based on cyanidin-sensitized titanium dioxide film operating at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-wei, Huang [School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu (China); Xiao-bo, Zou, E-mail: zou_xiaobo@ujs.edu.cn [School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu (China); Key Laboratory of Modern Agricultural Equipment and Technology, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu (China); Ji-yong, Shi; Jie-wen, Zhao; Yanxiao, Li [School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu (China); Limin, Hao; Jianchun, Zhang [The Research Center of China Hemp Materials, Beijing (China)

    2013-07-17

    Graphical abstract: -- Highlights: •TiO{sub 2} was prepared by sol–gel method film and then functionalized with the cyanidin dye. •The morphology and the absorption spectra of films were examined. •The hybrid organic–inorganic formed film here can detect ammonia reversibly at room temperature. •The low humidity could promote the sensitivity of the sensors. -- Abstract: Design and fabrication of an ammonia sensor operating at room temperature based on pigment-sensitized TiO{sub 2} films was described. TiO{sub 2} was prepared by sol–gel method and deposited on glass slides containing gold electrodes. Then, the film immersed in a 2.5 × 10{sup −4} M ethanol solution of cyanidin to absorb the pigment. The hybrid organic–inorganic formed film here can detect ammonia reversibly at room temperature. The relative change resistance of the films at a potential difference of 1.5 V is determined when the films are exposed to atmospheres containing ammonia vapors with concentrations over the range 10–50 ppm. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of ammonia (r = 0.92). The response time to increasing concentrations of the ammonia is about 180–220 s, and the corresponding values for decreasing concentrations 240–270 s. At low humidity, ammonia could be ionized by the cyanidin on the TiO{sub 2} film and thereby decrease in the proton concentration at the surface. Consequently, more positively charged holes at the surface of the TiO{sub 2} have to be extracted to neutralize the adsorbed cyanidin and water film. The resistance response to ammonia of the sensors was nearly independent on temperature from 10 to 50 °C. These results are not actually as good as those reported in the literature, but this preliminary work proposes simpler and cheaper processes to realize NH{sub 3} sensor for room temperature applications.

  1. Estimation of acoustic resonances for room transfer function equalization

    DEFF Research Database (Denmark)

    Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc

    2010-01-01

    Strong acoustic resonances create long room impulse responses (RIRs) which may harm the speech transmission in an acoustic space and hence reduce speech intelligibility. Equalization is performed by cancelling the main acoustic resonances common to multiple room transfer functions (RTFs), i...

  2. Stability of 2-Alkylcyclobutanones in irradiated retort pouch Gyudon topping during room temperature storage

    International Nuclear Information System (INIS)

    Kitagawa, Yoko; Okihashi, Masahiro; Takatori, Satoshi; Fukui, Naoki; Kajimura, Keiji; Obana, Hirotaka; Furuta, Masakazu

    2014-01-01

    2-Alkylcyclobutanones (ACBs), such as 2-dodecylcyclobutanone (DCB) and 2-tetradecylcylobutanone (TCB) are specific products from irradiated lipid. Thus, DCB and TCB are suitable for indicators of the irradiation history of food. The purpose of this study was to clarify the stability of ACBs in food, kept at room temperature for a long period. We evaluated DCB and TCB in irradiated retort pouch Gyudon topping (instant Gyudon mixes which were made from a beef, onion and soy sauce), which could be preserved for a long term at room temperature, after storage for one year. DCB and TCB were detected at doses of 0.6-4.5 kGy in irradiated retort pouch Gyudon topping. The peaks of DCB and TCB were separated from other peaks on the chromatogram with GC-MS. The concentration of DCB and TCB were periodically determined till 12 months later of irradiation. The dose-response curves of DCB and TCB were almost identical with those obtained from the samples after the 12 months storage at room temperature. These results concluded that DCB and TCB formed in retort pouch would stable at room temperature at least 12 months. (author)

  3. Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C

    Energy Technology Data Exchange (ETDEWEB)

    Georgiadis, Argyrios; Fuentes, Gonzalo G., E-mail: gfuentes@ain.es; Almandoz, Eluxka; Medrano, Angel; Palacio, José F.; Miguel, Adrián

    2017-04-01

    In this work, cathodic arc evaporation CrTiAlN coatings have been deposited on H13 hot work steel and the tribological behavior investigated at room temperature and at 400 °C. The microstructure, composition, roughness, indentation hardness and lattice parameter have been measured as a function of the deposition conditions, mainly given by the different Cr and TiAl vapour fluxes coming from the cathode arrangement in the vacuum reactor. The coating microstructures showed dense, compact columnar growth and a good film adhesion. The lattice parameter measured over the (002) diffraction peaks exhibited a quasi lineal correlation with the Ti/Cr+Al atomic ratio of the samples. In addition, the indentation hardness also increased as the lattice parameter increased. The coefficients of friction unveiled the different tribological behavior of the samples depending on the stoichiomentry and the temperature. At 400 °C, the coefficients of friction showed high dispersion, in contrast to the coherent evolution observed at room temperature. The wear damage at 400 °C was more intense than that observed at room temperature in agreement with the friction evolution observed. The coating with a stoichiometry of Cr{sub 0.23}Ti{sub 0.13}Al{sub 0.22}N{sub 0.42} showed a good wear performance at 400 °C. - Highlights: • CrTiAlN arc coatings deposited on hot work steel using different Cr and TiAl vapour fluxes. • Found correlation between Ti/Cr+Al atomic ratio, hardness and lattice parameters. • COF and wear show coherent evolution and low damage level at room temperature. • COF and wear at 400 °C exhibit higher level of damage than at room temperature. • Cr{sub 0.23}Ti{sub 0.13}Al{sub 0.22}N{sub 0.42} showed a good wear performance at 400 °C.

  4. Room temperature d (0) ferromagnetism in hole doped Y2O3: widening the choice of host to tailor DMS.

    Science.gov (United States)

    Chakraborty, Brahmananda; Ramaniah, Lavanya M

    2016-08-24

    Transition metal-free-ferromagnetism in diluted magnetic semiconductors (DMS) is of much current interest in view of the search for more efficient DMS materials for spintronics applications. Our DFT results predict for the first time, that impurities from group1A (Li(+), Na(+), K(+)) doped on Y2O3 can induce a magnetic signature with a magnetic moment around 2.0 μ B per defect at hole concentrations around 1.63  ×  10(21) cm(-3), which is one order less than the critical hole density of ZnO with ferromagnetic coupling large enough to promote room temperature ferromagnetism. The induction of room temperature ferromagnetism by hole doping with an impurity atom from group 1A, which injects two holes per defect in the system, implies that the recommendation of three holes per defect given in the literature, which puts a restriction on the choice of host material and the impurity, is not a necessary criterion for hole induced room temperature ferromagnetism. DFT simulations with the generalized gradient approximation (GGA), confirmed by the more sophisticated hybrid functional, Heyd-Scuseria-Ernzerhof (HSE06), predict that the magnetic moment is mostly contributed by O atoms surrounding the impurity atom and the magnetic moment scale up with impurity concentration which is a positive indicator for practical applications. We quantitatively and extensively demonstrate through the analysis of the density of states and ferromagnetic coupling that the Stoner criterion is satisfied by pushing the Fermi level inside the valence band to activate room temperature ferromagnetism. The stability of the structure and the persistence of ferromagnetism at room temperature were demonstrated by ab initio MD simulations and computation of Curie temperature through the mean field approximation. This study widens the choice of host oxides to tailor DMS for spintronics applications.

  5. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  6. Three-dimensional scanning force/tunneling spectroscopy at room temperature

    International Nuclear Information System (INIS)

    Sugimoto, Yoshiaki; Ueda, Keiichi; Abe, Masayuki; Morita, Seizo

    2012-01-01

    We simultaneously measured the force and tunneling current in three-dimensional (3D) space on the Si(111)-(7 × 7) surface using scanning force/tunneling microscopy at room temperature. The observables, the frequency shift and the time-averaged tunneling current were converted to the physical quantities of interest, i.e. the interaction force and the instantaneous tunneling current. Using the same tip, the local density of states (LDOS) was mapped on the same surface area at constant height by measuring the time-averaged tunneling current as a function of the bias voltage at every lateral position. LDOS images at negative sample voltages indicate that the tip apex is covered with Si atoms, which is consistent with the Si-Si covalent bonding mechanism for AFM imaging. A measurement technique for 3D force/current mapping and LDOS imaging on the equivalent surface area using the same tip was thus demonstrated. (paper)

  7. Quantitative mid-infrared spectra of allene and propyne from room to high temperatures

    KAUST Repository

    Es-sebbar, Et-touhami; Jolly, A.; Benilan, Y.; Farooq, Aamir

    2014-01-01

    Allene (a-C3H4; CH2CCH2) and propyne (p-C3H4; CH3C2H) have attracted much interest because of their relevance to the photochemistry in astrophysical environments as well as in combustion processes. Both allene and propyne have strong absorption in the infrared region. In the present work, infrared spectra of a-C3H4 and p-C3H4 are measured in the gas phase at temperatures ranging from 296 to 510 K. The spectra are measured over the 580-3400 cm-1 spectral region at resolutions of 0.08 and 0.25 cm-1 using Fourier Transform Infrared spectroscopy. Absolute integrated intensities of the main infrared bands are determined at room temperature and compared with values derived from literature for both molecules. Integrated band intensities are also determined as a function of temperature in various spectral regions.

  8. Quantitative mid-infrared spectra of allene and propyne from room to high temperatures

    KAUST Repository

    Es-sebbar, Et-touhami

    2014-11-01

    Allene (a-C3H4; CH2CCH2) and propyne (p-C3H4; CH3C2H) have attracted much interest because of their relevance to the photochemistry in astrophysical environments as well as in combustion processes. Both allene and propyne have strong absorption in the infrared region. In the present work, infrared spectra of a-C3H4 and p-C3H4 are measured in the gas phase at temperatures ranging from 296 to 510 K. The spectra are measured over the 580-3400 cm-1 spectral region at resolutions of 0.08 and 0.25 cm-1 using Fourier Transform Infrared spectroscopy. Absolute integrated intensities of the main infrared bands are determined at room temperature and compared with values derived from literature for both molecules. Integrated band intensities are also determined as a function of temperature in various spectral regions.

  9. The changing sensory room

    DEFF Research Database (Denmark)

    2018-01-01

    In 2017 the kindergarten The Milky Way in the city Vejle in Denmark made a sensory room that has the special ability change whenever wanted by the children and social educators. Kjetil Sandvik (to the right) from Copenhagen University and Klaus Thestrup from Aarhus University reflects upon what...... they saw, took part in and talked with the social educators about. Jacob Knudsen from VIFIN filmed the two gentlemen and organised the project. it is a room composed around common experiments, many self-made objects, open narrative structures. and a combination of digital and analogue elements....

  10. CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 at room temperature

    International Nuclear Information System (INIS)

    Yu, B.; Yang, Z.Z.; Zhao, Y.F.; Zhang, H.Y.; Yang, P.; Gao, X.; Liu, Z.M.

    2017-01-01

    A CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 in the presence of trimethylsilylacetylene was developed to give functionalized propiolic acid products at room temperature. A wide range of propiolic acids bearing functional groups was successfully obtained in good to excellent yields. Mechanistic studies demonstrate that in the carboxylation process the alkynyl-silane intermediate was first in situ generated, which was then trapped by CO_2, giving rise to the corresponding functionalized propiolic acids after acidification. The advantages of this approach include avoiding use of transition-metal catalysts, wide substrate scope together with excellent functional group tolerance, ambient conditions and a facile work-up procedure. (authors)

  11. Magnetic properties of nanocrystalline CoFe{sub 2}O{sub 4} powders prepared at room temperature: variation with crystallite size

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, M.; Pullar, R.C.; Bhattacharya, A.K. E-mail: ashokbhattacharya@warwick.ac.uk; Das, D.; Chintalapudi, S.N.; Majumdar, C.K

    2001-06-01

    The magnetic properties of nanocrystalline CoFe{sub 2}O{sub 4} powders prepared by a redox process at room temperature have been studied by vibrating sample magnetometer (VSM). The average crystallite size of the powders varied from 6 to 20 nm by changing the synthesis conditions and the corresponding saturation magnetisation (M{sub s}) value ranged from 9 to 38 emu g{sup -1}. On heating, the crystallite size increased with corresponding increase in M{sub s} values. At 1073 K all samples achieved M{sub s} values close to 73 emu g{sup -1}. On increasing the crystallite size, the coercivity (H{sub c}) increased passed through a maximum and dropped. Cobalt ferrite powder with an average crystallite size of 6 nm prepared at room temperature achieved desirable values of M{sub s}=60 emu g{sup -1} and H{sub c}=1.42 kOe after thermal annealing at 973 K. The Moessbauer spectra were recorded for CoFe{sub 2}O{sub 4} having a range of crystallite sizes at room temperature and at low temperatures down to 40 K. The magnetic and Moessbauer results are provided for nanocrystalline CoFe{sub 2}O{sub 4} as a function of crystallite size and measurement temperature.

  12. The effect of reaction temperature on the room temperature ferromagnetic property of sol-gel derived tin oxide nanocrystal

    Science.gov (United States)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2018-06-01

    In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.

  13. Studies on room temperature electrochemical oxidation and its effect on the transport properties of TBCCO films

    International Nuclear Information System (INIS)

    Shirage, P M; Shivagan, D D; Pawar, S H

    2004-01-01

    A novel room temperature electrochemical process for the synthesis of single-phase Tl 2 Ba 2 Ca 2 Cu 3 O 10 (TBCCO/Tl-2223) superconducting films has been developed. Electrochemical parameters were optimized by studying linear sweep voltammetry (LSV), cyclic voltammetry (CV) and chronoamperometry (CA) for the deposition of Tl-Ba-Ca-Cu alloy at room temperature. The superconducting films of the TBCCO were obtained by two oxidation techniques. In the first technique, the electrodeposited Tl-Ba-Ca-Cu alloyed films were oxidized at various temperatures in flowing oxygen atmosphere. In the second technique, stoichiometric electrocrystallization to get Tl 2 Ba 2 Ca 2 Cu 3 O 10 (Tl-2223) was completed by electrochemically intercalating oxygen species into Tl-Ba-Ca-Cu alloy at room temperature for various lengths of time. The oxygen content in the samples was varied by varying the electrochemical oxidation period, and the changes in the crystal structure, superconducting transition temperature (T c ) and critical current density (J c ) were recorded. The high temperature furnace oxidation technique was replaced by the room temperature electrochemical oxidation technique. The dependence of superconducting parameters on oxygen content is correlated with structure-property relations

  14. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  15. Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, S., E-mail: sakaguchi@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Uesaka, T. [RIKEN Nishina Center, Saitama 351-0198 (Japan); Kawahara, T. [Department of Physics, Toho University, Chiba 274-8510 (Japan); Ogawa, T. [RIKEN Advanced Science Institute, Saitama 351-0198 (Japan); Tang, L. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0001 (Japan); Teranishi, T. [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Urata, Y.; Wada, S. [RIKEN Advanced Science Institute, Saitama 351-0198 (Japan); Wakui, T. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Miyagi 980-8578 (Japan)

    2013-12-15

    Highlights: • Proton polarization in p-terphenyl at room-temperature is enhanced by a factor of 3. • Intense laser and temperature control are critically important for high polarization. • Optimization of time structure of laser pulse is effective for further improvement. -- Abstract: Proton polarization at room temperature, produced in a p-terphenyl crystal by using electron population difference in a photo-excited triplet state of pentacene, was enhanced by utilizing an intense laser with an average power of 1.5 W. It was shown that keeping the sample temperature below 300 K is critically important to prevent the rise of the spin–lattice relaxation rate caused by the laser heating. It is also reported that the magnitude of proton polarization strongly depends on the time structure of the laser pulse such as its width and the time interval between them.

  16. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  17. Heavy atom enhanced room-temperature phosphorimetry for ultratrace determination of harmane

    Directory of Open Access Journals (Sweden)

    Flávia F. de Carvalho Marques

    2008-01-01

    Full Text Available Harmane has been proposed for the treatment of epilepsy, AIDS and leshmaniosis. Its room-temperature phosphorescence was induced using either AgNO3 or TlNO3, enabling absolute limits of detection of 0.12 and 2.4 ng respectively, with linear dynamic ranges extending up to 456 ng (AgNO3 and 911 ng (TlNO3. Relative standard deviations around 3% were observed for substrates containing 46 ng of harmane. Such sensitivity and precision are needed because harmane intake must be strictly controlled to achieve proper therapeutic response. Interference studies were performed using thalidomide, reserpine and yohimbine. Recovery of 104±6% was achieved using solid surface room-temperature phosphorimetry. The result was comparable to the one obtained by micellar electrokinetic chromatography.

  18. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents.

    Science.gov (United States)

    Gayam, Venkatareddy; Ravi, Subban

    2017-07-28

    A novel series of cinnamoylated chloroquine hybrid analogues were synthesized and evaluated as antimalarial agents. The trans cinnamic acid derivatives (3-8) were synthesized by utilizing substituted aldehydes and malanoic acid in DMF catalysed by DABCO. The final cinnamoylated chloroquine analogues (9-14) were synthesized by utilizing DCC coupling reagent. The amido chloroquine (17) was prepared from acid (16) and compound 2 in benzene using SOCl 2 as chlorinating agent. The corresponding ester (15) was prepared from 2-hydroxy acetophenone and 2-bromoacetates in actonitrile in presence of K 2 CO 3  as base followed by basic hydrolysis. The preparation of amide based chloroquine-chalcone analogues (18-22), were obtained by the combination of amido chloroquine (17) and aldehydes in 10% aq. KOH in methanol at room temperature. Further we prepared epichlorohydrin based chloroquine-chalcone analogues (25-28), by reacting the epoxide (24a, 24b and 24c) with 2 and methelenedioxy aniline. In vitro antimalarial activity against chloroquine sensitive strain 3D7, chloroquine resistant strain K1 of P. falciparum and in vitro cytotoxicity of compounds using VERO cell line was carried out. The synthesized molecules showed significant in vitro antimalarial activity especially against CQ resistant strain (K1). Among tested compounds, 13, 9 and 10 were found to be the most potent compounds of the series with IC 50 value of 44.06, 48.04 and 59.37 nM against chloroquine resistant K1 strain. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  20. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  1. CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, N.B. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); K.A.M.P. & N.K.P. Science College, Pimpalner, Sakri, Dhule, M.S. (India); Baviskar, P.K. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); Ahire, R.R. [S.G. Patil Science, Sakri, Dhule, M.S. (India); Sankapal, B.R., E-mail: brsankapal@gmail.com [Nano Materials and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S. (India)

    2017-04-15

    Simple chemical route has been employed to grow interconnected nanobeads of CdO having necklace like structure through air annealing of cadmium hydroxide nanowires. This nanobeads of n-CdO with high surface area has been decorated with p-PbS nanoparticles resulting in the formation of nano-heterojunction which has been utilized effectively as room temperature liquefied petroleum gas (LPG) sensor. The room temperature gas response towards C{sub 2}H{sub 5}OH, Cl{sub 2}, NH{sub 3}, CO{sub 2} and LPG was investigated, among which LPG exhibits significant response. The maximum gas response of 51.10% is achieved with 94.54% stability upon exposure of 1176 ppm concentration of LPG at room temperature (27 °C). The resulting parameters like gas response, response and recovery time along with stability studies has been studied and results are discussed herein. - Highlights: • Conversion of Cd(OH){sub 2} nanowires to CdO nanonecklace by air annealing at 290 °C. • Decoration of PbS nanoparticles over CdO nanobeads by SILAR method. • Formation of n-CdO/p-PbS nano-heterojunction as room temperature LPG sensor. • Maximum gas response of 51.10% with 94.54% stability.

  2. Room air temperature affects occupants' physiology, perceptions and mental alertness

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Kwok Wai; Willem, Henry Cahyadi [Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566 (Singapore)

    2010-01-15

    Thermal environment that causes thermal discomfort may affect office work performance. However, the mechanisms through which occupants are affected are not well understood. This study explores the plausible mechanism linking room air temperature and mental alertness through perceptual and physiological responses in the tropics. Ninety-six young adults participated as voluntary subjects in a series of experiment conducted in the simulated office settings. Three room air temperatures, i.e. 20.0, 23.0 and 26.0 C were selected as the experimental conditions. Both thermal comfort and thermal sensation changed significantly with time under all exposures (P < 0.0001). Longer exposure at 20.0 C led to cooling sensations due to lower skin temperatures (P < 0.0001) and was perceived as the least comfortable. Nevertheless, this moderate cold exposure induced nervous system activation as demonstrated by the increase of {alpha}-Amylase level (P < 0.0001) and the Tsai-partington test (P < 0.0001). A mechanism linking thermal environment, occupants' responses and performance is proposed. (author)

  3. Cellulose gels produced in room temperature ionic liquids by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Nagasawa, Naotsugu; Taguchi, Mitsumasa

    2014-01-01

    Cellulose-based gels were produced in room temperature ionic liquids (RTILs) by ionizing radiation. Cellulose was dissolved at the initial concentration of 20 wt% in 1-ethyl-3-methylimidazolium (EMI)-acetate or N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEMA)-formate with a water content of 18 wt%, and irradiated with γ-rays under aerated condition to produce new cellulose gels. The gel fractions of the cellulose gels obtained in EMI-acetate and DEMA-formate at a dose of 10 kGy were 13% and 19%, respectively. The formation of gel fractions was found to depend on the initial concentration of cellulose, water content, and irradiation temperature. The obtained gel readily absorbed water, methanol, ethanol, dichloromethane, N,N-dimethylacetamide, and RTILs. - Highlights: • Cellulose gels were produced in room temperature ionic liquids (RTILs). • Water plays a crucial role in the cross-linking reaction. • Cellulose gels swollen with RTILs show good electronic conductivity (3.0 mS cm −1 )

  4. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  5. p-PEDOT:PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ladhe, R.D. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (M.S.) (India); Gurav, K.V. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Pawar, S.M. [Solar Cell Laboratory, LG Components R and D Center, 1271, Sa-Dong, Sanggrok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (M.S.) (India)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Formation of heterojunction n-ZnO and p-PEDOT:PSS at room temperature (27 Degree-Sign C). Black-Right-Pointing-Pointer Use of this heterojunction as room temperature LPG sensor. Black-Right-Pointing-Pointer Remarkable gas response with good stability of the sensing device. Black-Right-Pointing-Pointer Use of heterojunction could offer cost-effective LPG sensor that is ecological-friendly. Black-Right-Pointing-Pointer The mass production using scalable room temperature chemical deposition process. - Abstract: Investigation towards the performance of room temperature (27 Degree-Sign C) liquefied petroleum gas (LPG) sensor based on the heterojunction between p-PEDOT:PSS and n-type ZnO is reported. The junction was developed by using chemically deposited ZnO film on to fluorine doped tin oxide (FTO) coated glass substrate followed by coating of thin slurry layer of PEDOT:PSS by using spin coating technique. Both these methods are simple, inexpensive and suitable for large area applications. Different characterization techniques were used to characterize structural, surface morphological and compositional of the material deposited. LPG sensing behavior of the heterojunction was studied at room temperature along with the stability studies. At room temperature, the heterojunction showed 58.8% sensitivity upon exposure to 1000 ppm of LPG with good response and recovery time like 225 s and 190 s, respectively. Furthermore, the LPG sensor reported is cost-effective, user friendly, and easy to fabricate using low cost chemical methods at room temperature.

  6. Origin of room temperature ferromagnetism in SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Bai, Guohua; Jiang, Yinzhu [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Du, Youwei [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, Chen, E-mail: chen_wu@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2017-03-15

    SnO{sub 2} films exhibiting room temperature ferromagnetism (RTFM) have been prepared on Si (001) by pulsed laser deposition. The saturation magnetization (M{sub s}) of the films experiences a decreasing trend followed by increasing with the growth temperature increased from RT to 400 ℃. The growth temperature affects both the concentration and the location of the oxygen vacancies as the origin of the RTFM. With lower growth temperatures (<300 ℃), more oxygen vacancies exist in the inner film for the samples with less crystallinity, resulting in enhanced magnetism. Higher deposition temperature leads to less oxygen vacancies in the inner film but more oxygen defects at the film surface, which is also beneficial to achieve greater magnetism. Various oxygen pressures during growth and post-annealing have also been used to confirm the role of oxygen vacancies. The study demonstrates that the surface oxygen defects and the positively charged monovalent O vacancies (V{sub O}{sup +}) in the inner film are the origin of the magnetism in SnO{sub 2} films. - Highlights: • SnO{sub 2} films exhibiting room temperature ferromagnetism (RTFM) have been prepared on Si (001) by pulsed laser deposition. • Growth temperature, oxygen pressure and annealing affect the growth of SnO{sub 2} films. • Both the concentration and location of the oxygen vacancies play critical roles in the magnetization.

  7. Nickel in silicon: Room-temperature in-diffusion and interaction with radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)

    2017-07-15

    Nickel is incorporated into silicon wafers during chemomechanical polishing in an alkaline Ni-contaminated slurry at room temperature. The nickel in-diffusion is detected by DLTS depth profiles of a novel Ni{sub 183} level, which is formed due to a reaction between the diffusing nickel and the VO centers introduced before the polishing. The Ni{sub 183} profile extends up to 10 μm after a 2 min polishing. The available data provide a lower estimate for the room-temperature nickel diffusivity D{sub Ni} > 10{sup -9} cm{sup 2} s{sup -1}. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases

    International Nuclear Information System (INIS)

    Prades, J. D.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A.; Hernandez-Ramirez, F.; Morante, J. R.

    2009-01-01

    Illuminating metal oxide semiconductors with ultra-violet light is a feasible alternative to activate chemical reactions at their surface and thus, using them as gas sensors without the necessity of heating them. Here, the response at room temperature of individual single-crystalline SnO 2 nanowires towards NO 2 is studied in detail. The results reveal that similar responses to those obtained with thermally activated sensors can be achieved by choosing the optimal illumination conditions. This finding paves the way to the development of conductometric gas sensors operated at room temperature. The power consumption in these devices is in range with conventional micromachined sensors.

  9. Room temperature ferromagnetism in Cu doped ZnO

    Science.gov (United States)

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  10. Micelle-stabilized room-temperature phosphorescence with synchronous scanning

    International Nuclear Information System (INIS)

    Femia, R.A.; Love, L.J.C.

    1984-01-01

    The experimental requirements for synchronous wavelength scanning micelle-stabilized room temperature phosphorescence and the factors affecting peak resolution are presented and compared with those for synchronous wavelength scanning fluorescence. Identification of individual compounds in a four-component mixture is illustrated, and criteria to identify and minimize triplet state energy transfer are given. Considerable improvement in resolution of the synchronous peaks is obtained via second derivative spectra. 20 references, 7 figures, 2 tables

  11. Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures

    Science.gov (United States)

    De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.

  12. Room temperature ferromagnetism and absorption red-shift in nitrogen-doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Gómez-Polo, C.; Larumbe, S.; Monge, M.

    2014-01-01

    Highlights: • N-doped TiO 2 anatase nanoparticles were obtained by sol–gel. • The nanoparticle size, controlled by the N doping, determines lattice parameters. • Correlation between room temperature ferromagnetism and absorption red-shift. • Oxygen vacancies reinforce both phenomena. • Metal transition impurities contribute to the room temperature ferromagnetism. - Abstract: In this work, room-temperature ferromagnetism and the red-shift of the optical absorption is analyzed in nitrogen doped TiO 2 semiconductor nanoparticles. The nanoparticles were synthesized by the sol–gel method using urea as the nitrogen source. Titanium Tetraisopropoxide (TTIP) was employed as the alkoxyde precursor and dissolved in ethanol. The as prepared gels were dried and calcined in air at 300 °C. Additionally, post-annealing treatments under vacuum atmosphere were performed to modify the oxygen stoichiometry of the samples. The anatase lattice parameters, analyzed by means of powder X-ray diffractometry, depend on the nanometer grain size of the nanoparticles (increase and decrease, respectively, of the tetragonal a and c lattice parameters with respect to the bulk values). The diffuse reflectance ultraviolet–visible (UV–Vis) absorbance spectra show a clear red-shift as consequence of the nitrogen and the occurrence of intragap energy levels. The samples display ferromagnetic features at room temperature that are reinforced with the nitrogen content and after the post annealings in vacuum. The results indicate a clear correlation between the room temperature ferromagnetism and the shift of the absorbance spectrum. In both phenomena, oxygen vacancies (either induced by the nitrogen doping or by the post vacuum annealings) play a dominant role. However, we conclude the existence of very low concentration of diluted transition metal impurities that determine the room ferromagnetic response (bound magnetic polaron BMP model). The contraction of the c soft axis of the

  13. Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature

    International Nuclear Information System (INIS)

    Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu

    2014-01-01

    Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T 2 scales as n γ . The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging

  14. Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn

    2014-01-01

    Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T{sub 2} scales as n{sup γ}. The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging.

  15. Design and Development of a Relative Humidity and Room Temperature Measurement System with On Line Data Logging Feature for Monitoring the Fermentation Room of Tea Factory

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2011-12-01

    Full Text Available The design and development of a Relative Humidity (RH and Room Temperature (RT monitoring system with on line data logging feature for monitoring fermentation room of a tea factory is presented in this paper. A capacitive RH sensor with on chip signal conditioner is taken as RH sensor and a temperature to digital converter (TDC is used for ambient temperature monitoring. An 8051 core microcontroller is the heart of the whole system which reads the digital equivalent of RH data with the help of a 12-bit Analog to Digital (A/D converter and synchronize TDC to get the ambient temperature. The online data logging is achieved with the help of RS-232C communication. Field performance is also studied by installing it in the fermentation room of a tea factory.

  16. Screening Criteria for Loss of Room Cooling Failure

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mee Jeong; Yang, Joon Eon; Yoon, Churl

    2007-01-15

    In this report, we estimated the temperature of the pump rooms and reviewed the operability of the components under the loss of the HVAC (Heating, Ventilation, and Air Condition) system. The issues relevant to the HVAC system in the PSA (Probabilistic Safety Assessment) FT (Fault Tree) model are as follows: (1) Does the loss of the HVAC system bring about a function failure of other components? (2) Can the operator take action to reduce the temperature of the room in case of a HVAC function failure? At present, we do not know whether a component will lose its function or not under the loss of the HVAC. ASME Standard describes that a recovery action can be credited if the related recovery action is included in the procedure or there are similar recovery experiences in the plant. However, there is no description about the recovery action of the HVAC in the EOP (Emergency Operation Procedure) of the UCN3, 4 under the situation of a loss of the HVAC. Even though we consider this assumption positively, it would be limited to the rooms such as the Switchgear Room, Inverter Room, and Main Control Room etc. where a real recovery action can be performed easily. However, if we consider the HVAC failure in the PSA FT model according to the above background, the problem is that the unavailability induced from the loss of a HVAC is highly unrealistically. From a viewpoint of the PSA, it is not true that the related system always fails even though the HVAC system fails. Therefore, we reviewed the necessity of the HVAC model through the identification of the operable temperature of the components' within the pump room and the change of the temperature of the pump room under the situation of a loss of the HVAC system. In this paper, we performed a heat up calculation for the Auxiliary Feedwater Motor Operated Pump (AFW MDP) room, PAB-077-11A with CFX 10 and RATT when the HVAC system is failed. We also reviewed the operability of the components under a loss of the HVAC. Room

  17. Screening Criteria for Loss of Room Cooling Failure

    International Nuclear Information System (INIS)

    Hwang, Mee Jeong; Yang, Joon Eon; Yoon, Churl

    2007-01-01

    In this report, we estimated the temperature of the pump rooms and reviewed the operability of the components under the loss of the HVAC (Heating, Ventilation, and Air Condition) system. The issues relevant to the HVAC system in the PSA (Probabilistic Safety Assessment) FT (Fault Tree) model are as follows: (1) Does the loss of the HVAC system bring about a function failure of other components? (2) Can the operator take action to reduce the temperature of the room in case of a HVAC function failure? At present, we do not know whether a component will lose its function or not under the loss of the HVAC. ASME Standard describes that a recovery action can be credited if the related recovery action is included in the procedure or there are similar recovery experiences in the plant. However, there is no description about the recovery action of the HVAC in the EOP (Emergency Operation Procedure) of the UCN3, 4 under the situation of a loss of the HVAC. Even though we consider this assumption positively, it would be limited to the rooms such as the Switchgear Room, Inverter Room, and Main Control Room etc. where a real recovery action can be performed easily. However, if we consider the HVAC failure in the PSA FT model according to the above background, the problem is that the unavailability induced from the loss of a HVAC is highly unrealistically. From a viewpoint of the PSA, it is not true that the related system always fails even though the HVAC system fails. Therefore, we reviewed the necessity of the HVAC model through the identification of the operable temperature of the components' within the pump room and the change of the temperature of the pump room under the situation of a loss of the HVAC system. In this paper, we performed a heat up calculation for the Auxiliary Feedwater Motor Operated Pump (AFW MDP) room, PAB-077-11A with CFX 10 and RATT when the HVAC system is failed. We also reviewed the operability of the components under a loss of the HVAC. Room

  18. Does nanocrystalline Cu deform by Coble creep near room temperature?

    International Nuclear Information System (INIS)

    Li, Y.J.; Blum, W.; Breutinger, F.

    2004-01-01

    The proposal that nanocrystalline Cu produced by electro deposition (ED) creeps at temperatures slightly above room temperature by diffusive flow via grain boundaries (Coble creep) has been checked by compression tests. It was found that the minimum creep rates obtained in tension are significantly larger than those in compression, probably due to interference of tensile fracture. Scanning electron microscopic investigation showed that the spacing between large-angle grain boundaries is about 10 μm rather than the reported value of 30 nm. Comparison with coarse grained and ultrafine grained Cu produced by equal channel angular pressing showed that the ED-Cu work hardens similarly to coarse grained Cu in contrast to ultrafine grained Cu which reaches its maximum deformation resistance within a small strain interval of 0.04 and has distinctly higher strain rate sensitivity of flow stress. The present results are consistent with the established knowledge that there is no softening by grain boundaries, e.g. due to Coble creep, near room temperature in Cu with grain sizes above 1 μm. The grain boundary effect observed in ultrafine grained Cu is interpreted in terms of modification of dislocation generation and dislocation annihilation by grain boundaries

  19. Stabilized sulfur as cathodes for room temperature sodium-ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yunhua [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Zhu, Yujie [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Zheng, Shiyou [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yihang [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Luo, Chao [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Gaskell, Karen [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Eichhorn, Bryan [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wang, Chunsheng [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering

    2013-05-01

    Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.

  20. Nanostructured ‘Anastacia’ flowers for Zn coating by electrodepositing ZnO at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marta M., E-mail: martamalves@tecnico.ulisboa.pt [ICEMS Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa (Portugal); Santos, Catarina F.; Carmezim, Maria J. [ICEMS Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa (Portugal); EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal (Portugal); Montemor, Maria F. [ICEMS Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa (Portugal)

    2015-03-30

    Graphical abstract: - Highlights: • Functional coating of Zn with ZnO ‘Anastacia’ flowers. • Flowers are composed by nano-hexagonal units of single-crystal wurtzite ZnO. • The growth mechanism of these flowers is discussed. • Room temperature yield cost-effective electrodeposited ZnO ‘Anastacia’ flowers. - Abstract: Functional coatings composed of ZnO, a new flowered structured denominated as ‘Anastacia’ flowers, were successfully obtained through a facile and green one-step electrodeposition approach on Zn substrate. Electrodeposition was performed at constant cathodic potential, in Zn(NO{sub 3}){sub 2} aqueous solution, at pH 6 and at room temperature. The resulting ZnO thin uniform layer, with an average thickness of 300 nm, bearing top 3D hierarchical nanostructures that compose ‘Anastacia’ flowers, was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman. The results reveal a nano-architecture structure composed by nano-hexagonal units of single-crystal wurtzite ZnO structure with a [0 0 0 1] growth direction along the longitudinal particles axis. Other morphological features, sphere-like, rod-like and random distributed hexagons were also obtained by varying the electrodeposition time as observed by SEM. The Raman spectroscopy revealed the typical peak of ZnO wurtzite for all the obtained morphologies. Coatings wettability was studied and the different morphologies display distinct water contact angles with the ‘Anastacia’ flowers coating showing a wettability of 110°. These results pave the way for simple and low-cost routes for the production of novel functionalized coatings of ZnO over Zn, with potential for biomedical devices.

  1. Nanostructured ‘Anastacia’ flowers for Zn coating by electrodepositing ZnO at room temperature

    International Nuclear Information System (INIS)

    Alves, Marta M.; Santos, Catarina F.; Carmezim, Maria J.; Montemor, Maria F.

    2015-01-01

    Graphical abstract: - Highlights: • Functional coating of Zn with ZnO ‘Anastacia’ flowers. • Flowers are composed by nano-hexagonal units of single-crystal wurtzite ZnO. • The growth mechanism of these flowers is discussed. • Room temperature yield cost-effective electrodeposited ZnO ‘Anastacia’ flowers. - Abstract: Functional coatings composed of ZnO, a new flowered structured denominated as ‘Anastacia’ flowers, were successfully obtained through a facile and green one-step electrodeposition approach on Zn substrate. Electrodeposition was performed at constant cathodic potential, in Zn(NO 3 ) 2 aqueous solution, at pH 6 and at room temperature. The resulting ZnO thin uniform layer, with an average thickness of 300 nm, bearing top 3D hierarchical nanostructures that compose ‘Anastacia’ flowers, was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman. The results reveal a nano-architecture structure composed by nano-hexagonal units of single-crystal wurtzite ZnO structure with a [0 0 0 1] growth direction along the longitudinal particles axis. Other morphological features, sphere-like, rod-like and random distributed hexagons were also obtained by varying the electrodeposition time as observed by SEM. The Raman spectroscopy revealed the typical peak of ZnO wurtzite for all the obtained morphologies. Coatings wettability was studied and the different morphologies display distinct water contact angles with the ‘Anastacia’ flowers coating showing a wettability of 110°. These results pave the way for simple and low-cost routes for the production of novel functionalized coatings of ZnO over Zn, with potential for biomedical devices

  2. On q-analogues of the Mangontarum transform for certain q-Bessel functions and some application

    Directory of Open Access Journals (Sweden)

    S.K.Q. Al-Omari

    2016-10-01

    Full Text Available Several q-analogues of certain integral transforms have been recently investigated by many authors in the recent past. In this paper, we introduce certain analogues of the so-called q-Mangontarum transform and implement the proposed variants to given classes of q-Bessel functions. The results of this paper are new and complement the previously known results of Mangontarum (2014. Some results related to q-Laplace transforms are also obtained.

  3. Room-temperature near-field reflection spectroscopy of single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Marcher; Madsen, Steen

    1997-01-01

    . This technique suppresses efficiently the otherwise dominating far-field background and reduces topographic artifacts. We demonstrate its performance on a thin, strained near-surface CdS/ZnS single quantum well at room temperature. The optical structure of these topographically flat samples is due to Cd...

  4. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    B P PANDA and N C MOHAPATRA*. Department of Physics, Chikiti Mahavidyalaya, Chikiti 761 010, India. £Department of Physics, Berhampur University, Berhampur 760 007, India. Email: ncmphy123@hotmail.com. MS received 18 January 2003; accepted 21 June 2003. Abstract. Room temperature Compton profiles of ...

  5. Room temperature current injection polariton light emitting diode with a hybrid microcavity.

    Science.gov (United States)

    Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2011-07-13

    The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra.

  6. Room-temperature annealing of Si implantation damage in InP

    International Nuclear Information System (INIS)

    Akano, U.G.; Mitchell, I.V.

    1991-01-01

    Spontaneous recovery at 295 K of Si implant damage in InP is reported. InP(Zn) and InP(S) wafers of (100) orientation have been implanted at room temperature with 600 keV Si + ions to doses ranging from 3.6x10 11 to 2x10 14 cm -2 . Room-temperature annealing of the resultant damage has been monitored by the Rutherford backscattering/channeling technique. For Si doses ≤4x10 13 cm -2 , up to 70% of the initial damage (displaced atoms) annealed out over a period of ∼85 days. The degree of recovery was found to depend on the initial level of damage. Recovery is characterized by at least two time constants t 1 2 ∼100 days. Anneal rates observed between 295 and 375 K are consistent with an activation energy of 1.2 eV, suggesting that the migration of implant-induced vacancies is associated with the reordering of the InP lattice

  7. A room-temperature non-volatile CNT-based molecular memory cell

    Science.gov (United States)

    Ye, Senbin; Jing, Qingshen; Han, Ray P. S.

    2013-04-01

    Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.

  8. Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application

    International Nuclear Information System (INIS)

    Gurav, K.V.; Patil, U.M.; Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S.; Lokhande, C.D.; Kim, J.H.

    2013-01-01

    Highlights: •Cu(OH) 2 is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH) 2 . •The hydrous, nanograined Cu(OH) 2 shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH) 2 ] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH) 2 thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH) 2 thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH) 2 thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance

  9. A Room Temperature Low-Threshold Ultraviolet Plasmonic Nanolaser

    Science.gov (United States)

    2014-09-23

    samples were pasted to the cold finger of the cryostat with silver paste to ensure good thermal conduction. The time-resolve photoluminescence (TRPL...laser by total internal reflection. Nat. Mater. 10, 110–113 (2011). 13. Lu, Y. J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science...1129 (1973). 30. Wang, Y. G. et al. Room temperature lasing with high group index in metal- coated GaN nanoring . Appl. Phys. Lett. 99, 251111 (2011

  10. Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues.

    Science.gov (United States)

    Yamagami, Mao; Kamitakahara, Hiroshi; Yoshinaga, Arata; Takano, Toshiyuki

    2018-03-01

    This paper describes the design and synthesis of new trehalose-type diblock methylcellulose analogues with nonionic, cationic, and anionic cellobiosyl segments, namely 1-(tri-O-methyl-cellulosyl)-4-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (1), 1-(tri-O-methyl-cellulosyl)-4-[(6-amino-6-deoxy-β-d-glucopyranosyl)-(1→4)- 6-amino-6-deoxy-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (2), and 4-(tri-O-methyl-cellulosyloxymethyl)-1-[β-d-glucopyranuronosyl-(1→4)-β-d-glucopyranuronosyl]-1H-1,2,3-triazole (3), respectively. Aqueous solutions of all of the 1,2,3-triazole-linked diblock methylcellulose analogues possessed higher surface activities than that of industrially produced methylcellulose and exhibited lower critical solution temperatures, that allowed the formation of thermoresponsive supramolecular hydrogels at close to human body temperature. Supramolecular structures of thermo-reversible hydrogels based on compounds 1, 2, and 3 were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Detailed structure-property-function relationships of compounds 1, 2, and 3 were discussed. Not only nonionic hydrophilic segment but also ionic hydrophilic segments of diblock methylcellulose analogues were valid for the formation of thermo-reversible supramolecular hydrogels based on end-functionalized methylcellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics

    Science.gov (United States)

    Sinha, Raju

    The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and

  12. A Fiber Bragg grating based tilt sensor suitable for constant temperature room

    International Nuclear Information System (INIS)

    Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng

    2015-01-01

    Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10 −5 ° (that is, 0.08% of the measuring range). (paper)

  13. Synthesis, characterization and magnetic properties of room-temperature nanofluid ferromagnetic graphite

    OpenAIRE

    Souza, N. S.; Sergeenkov, S.; Speglich, C.; Rivera, V. A. G.; Cardoso, C. A.; Pardo, H.; Mombru, A. W.; Rodrigues, A. D.; de Lima, O. F.; Araujo-Moreira, F. M.

    2009-01-01

    We report the chemical synthesis route, structural characterization, and physical properties of nanofluid magnetic graphite (NFMG) obtained from the previously synthesized bulk organic magnetic graphite (MG) by stabilizing the aqueous ferrofluid suspension with an addition of active cationic surfactant. The measured magnetization-field hysteresis curves along with the temperature dependence of magnetization confirmed room-temperature ferromagnetism in both MG and NFMG samples. (C) 2009 Americ...

  14. New insights into designing metallacarborane based room temperature hydrogen storage media.

    Science.gov (United States)

    Bora, Pankaj Lochan; Singh, Abhishek K

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  15. Fracture toughness of China low activation martensitic (CLAM) steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunfeng [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, Gang; Jiang, Siben [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-15

    Highlights: • The fracture toughness of CLAM steel at room temperature is 417.9 kJ/m{sup 2} measured by unloading compliance method according to the ASTM E1820-11. • The fracture toughness of CLAM steel at room temperature can be calculated on the basis of the fractal dimensions measured under plane strain conditions. The calculated result and relative error for this experiment are 454.6 kJ/m{sup 2} and 8.78% respectively. • The calculation method could be used to estimate the fracture toughness of materials with analysis of the fracture surface. - Abstract: The fracture toughness (J{sub IC}) of China low activation martensitic (CLAM) steel was tested at room temperature through the compact tension specimen, the result is 417.9 kJ/m{sup 2}, which is similar to the JLF-1 at same experimental conditions. The microstructural observation of the fracture surface shows that the fracture mode is a typical ductile fracture. Meanwhile, the fracture toughness is also calculated on the basis of the fractal dimension and the calculated result is 454.6 kJ/m{sup 2}, which is consistent well with the experimental result. This method could be used to estimate the fracture toughness of materials by analyzing of the fracture surface.

  16. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    Science.gov (United States)

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  17. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  18. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    Science.gov (United States)

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  19. CuInP₂S₆ Room Temperature Layered Ferroelectric.

    Science.gov (United States)

    Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V

    2015-06-10

    We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family".

  20. Electrorecovery of actinides at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Michael E [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  1. The Formation of Nucleobases from the Ultraviolet Photoirradiation of Purine in Simple Astrophysical Ice Analogues.

    Science.gov (United States)

    Materese, Christopher K; Nuevo, Michel; Sandford, Scott A

    2017-08-01

    Nucleobases are the informational subunits of RNA and DNA and are essential to all known forms of life. The nucleobases can be divided into two groups of molecules: the pyrimidine-based compounds that include uracil, cytosine, and thymine, and the purine-based compounds that include adenine and guanine. Previous work in our laboratory has demonstrated that uracil, cytosine, thymine, and other nonbiological, less common nucleobases can form abiotically from the UV photoirradiation of pyrimidine in simple astrophysical ice analogues containing combinations of H 2 O, NH 3 , and CH 4 . In this work, we focused on the UV photoirradiation of purine mixed with combinations of H 2 O and NH 3 ices to determine whether or not the full complement of biological nucleobases can be formed abiotically under astrophysical conditions. Room-temperature analyses of the resulting photoproducts resulted in the detection of adenine, guanine, and numerous other functionalized purine derivatives. Key Words: Pyrimidine-Nucleobases-Interstellar; Ices-Cometary; Ices-Molecular processes-Prebiotic chemistry. Astrobiology 17, 761-770.

  2. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    Science.gov (United States)

    Wang, Dawei; Li, Zhiwei; Zhou, Jian; Fang, Hong; He, Xiang; Jena, Puru; Zeng, Jing-Bin; Wang, Wei-Ning

    2018-03-01

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. This study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from 0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences. In addition, HCHO was also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature. [Figure not available: see fulltext.

  3. Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite

    Science.gov (United States)

    Jyoti, Kanaujiya, Neha; Varma, G. D.

    2018-05-01

    Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.

  4. Analysis of room transfer function and reverberant signal statistics

    DEFF Research Database (Denmark)

    Georganti, Eleftheria; Mourjopoulos, John; Jacobsen, Finn

    2008-01-01

    For some time now, statistical analysis has been a valuable tool in analyzing room transfer functions (RTFs). This work examines existing statistical time-frequency models and techniques for RTF analysis (e.g., Schroeder's stochastic model and the standard deviation over frequency bands for the RTF...... magnitude and phase). RTF fractional octave smoothing, as with 1-slash 3 octave analysis, may lead to RTF simplifications that can be useful for several audio applications, like room compensation, room modeling, auralisation purposes. The aim of this work is to identify the relationship of optimal response...... and the corresponding ratio of the direct and reverberant signal. In addition, this work examines the statistical quantities for speech and audio signals prior to their reproduction within rooms and when recorded in rooms. Histograms and other statistical distributions are used to compare RTF minima of typical...

  5. Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method

    International Nuclear Information System (INIS)

    Franco, A.; Pessoni, H.V.S.; Soares, M.P.

    2014-01-01

    Nanoparticulate powders of Eu-doped ZnO with 1.0, 1.5, 2.0 and 3.0 at% Eu were synthesized by combustion reaction method using zinc nitrate, europium nitrate and urea as fuel without subsequent heat treatments. X-ray diffraction patterns (XRD) of all samples showed broad peaks consistent with the ZnO wurtzite structure. The absence of extra reflections in the diffraction patterns ensures the phase purity, except for x=0.03 that exhibits small reflection corresponding to Eu 2 O 3 phase. The average crystallite size determined from the most prominent (1 0 1) peak of the diffraction using Scherrer's equation was in good agreement with those determined by transmission electron microscopy (TEM); being ∼26 nm. The magnetic properties measurements were performed using a vibrating sample magnetometer (VSM) in magnetic fields up to 2.0 kOe at room temperature. The hysteresis loops, typical of magnetic behaviors, indicating that the presence of an ordered magnetic structure can exist in the Eu-doped ZnO wurtzite structure at room temperature. The room temperature ferromagnetism behavior increases with the Eu 3+ doping concentration. All samples exhibited the same Curie temperature (T C ) around ∼726 K, except for x=0.01; T C ∼643 K. High resolution transmission electron microscopy (HRTEM) images revealed defects/strain in the lattice and grain boundaries of Eu-doped ZnO nanoparticulate powders. The origin of room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders was discussed in terms of these defects, which increase with the Eu 3+ doping concentration. - Highlights: • Room-temperature ferromagnetism. • Structural and magnetic properties of nanoparticulate powders of Zn 1−x Eu x O. • Combustion reaction method

  6. Pressure and Temperature of the Room 1 for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R

    2005-08-15

    This report deals with the prediction of the pressure and temperature of the room 1 for the pipe break accidents of the 3-pin fuel test loop. The 3-pin fuel test loop is an experimental facility for nuclear fuel tests at the operation conditions similar to those of PWR and CANDU power plants. Because the most processing systems of the 3-pin fuel test loop are placed in the room 1. The structural integrity of the room 1 should be evaluated for the postulated accident conditions. Therefore the pressures and temperatures of the room 1 needed for the structural integrity evaluation have been calculated by using MARS code. The pressures and temperatures of the room 1 have been calculated in various conditions such as the thermal hydraulic operation parameters, the locations of pipe break, and the thermal properties of the room 1 wall. It is assumed that the pipe break accident occurs in the letdown operation without regeneration, because the mass and energy release to the room 1 is expected to be the largest. As a result of the calculations the maximum pressure and temperature are predicted to be 208kPa and 369.2K(96.0 .deg. C) in case the heat transfer is considered in the room 1 wall. However the pressure and temperature are asymptotically 243kPa and 378.1K(104.9 .deg. C) assuming that the heat transfer does not occur in the room 1 wall.

  7. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab

    2012-01-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non

  8. Biomimetic and Aggregation-Driven Crystallization Route for Room-Temperature Material Synthesis: Growth of β-Ga2O3 Nanoparticles Using Peptide Assemblies as Nanoreactors

    Science.gov (United States)

    Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi

    2008-01-01

    The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413

  9. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.

    Science.gov (United States)

    Tang, Linzhi; Lee, Nae Yoon

    2010-05-21

    Plastic materials do not generally form irreversible bonds with poly(dimethylsiloxane) (PDMS) regardless of oxygen plasma treatment and a subsequent thermal process. In this paper, we perform plastic-PDMS bonding at room temperature, mediated by the formation of a chemically robust amine-epoxy bond at the interfaces. Various plastic materials, such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polyimide (PI), and poly(ethylene terephthalate) (PET) were adopted as choices for plastic materials. Irrespective of the plastic materials used, the surfaces were successfully modified with amine and epoxy functionalities, confirmed by the surface characterizations such as water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and chemically robust and irreversible bonding was successfully achieved within 1 h at room temperature. The bonding strengths of PDMS with PMMA and PC sheets were measured to be 180 and 178 kPa, respectively, and their assemblies containing microchannel structures endured up to 74 and 84 psi (510 and 579 kPa) of introduced compressed air, respectively, without destroying the microdevices, representing a robust and highly stable interfacial bonding. In addition to microchannel-molded PDMS bonded with flat plastic substrates, microchannel-embossed plastics were also bonded with a flat PDMS sheet, and both types of bonded assemblies displayed sufficiently robust bonding, tolerating an intense influx of liquid whose per-minute injection volume was nearly 1000 to 2000 times higher than the total internal volume of the microchannel used. In addition to observing the bonding performance, we also investigated the potential of surface amine and epoxy functionalities as durable chemical adhesives by observing their storage-time-dependent bonding performances.

  10. On the robustness of entanglement in analogue gravity systems

    International Nuclear Information System (INIS)

    Bruschi, D E; Friis, N; Fuentes, I; Weinfurtner, S

    2013-01-01

    We investigate the possibility of generating quantum-correlated quasi-particles utilizing analogue gravity systems. The quantumness of these correlations is a key aspect of analogue gravity effects and their presence allows for a clear separation between classical and quantum analogue gravity effects. However, experiments in analogue systems, such as Bose–Einstein condensates (BECs) and shallow water waves, are always conducted at non-ideal conditions, in particular, one is dealing with dispersive media at non-zero temperatures. We analyse the influence of the initial temperature on the entanglement generation in analogue gravity phenomena. We lay out all the necessary steps to calculate the entanglement generated between quasi-particle modes and we analytically derive an upper bound on the maximal temperature at which given modes can still be entangled. We further investigate a mechanism to enhance the quantum correlations. As a particular example, we analyse the robustness of the entanglement creation against thermal noise in a sudden quench of an ideally homogeneous BEC, taking into account the super-sonic dispersion relations. (paper)

  11. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    Science.gov (United States)

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  12. Gene analogue finder: a GRID solution for finding functionally analogous gene products

    Directory of Open Access Journals (Sweden)

    Licciulli Flavio

    2007-09-01

    Full Text Available Abstract Background To date more than 2,1 million gene products from more than 100000 different species have been described specifying their function, the processes they are involved in and their cellular localization using a very well defined and structured vocabulary, the gene ontology (GO. Such vast, well defined knowledge opens the possibility of compare gene products at the level of functionality, finding gene products which have a similar function or are involved in similar biological processes without relying on the conventional sequence similarity approach. Comparisons within such a large space of knowledge are highly data and computing intensive. For this reason this project was based upon the use of the computational GRID, a technology offering large computing and storage resources. Results We have developed a tool, GENe AnaloGue FINdEr (ENGINE that parallelizes the search process and distributes the calculation and data over the computational GRID, splitting the process into many sub-processes and joining the calculation and the data on the same machine and therefore completing the whole search in about 3 days instead of occupying one single machine for more than 5 CPU years. The results of the functional comparison contain potential functional analogues for more than 79000 gene products from the most important species. 46% of the analyzed gene products are well enough described for such an analysis to individuate functional analogues, such as well-known members of the same gene family, or gene products with similar functions which would never have been associated by standard methods. Conclusion ENGINE has produced a list of potential functionally analogous relations between gene products within and between species using, in place of the sequence, the gene description of the GO, thus demonstrating the potential of the GO. However, the current limiting factor is the quality of the associations of many gene products from non

  13. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    Science.gov (United States)

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  14. “A Long March to Room Temperature Superconductivity”

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In the last 29 years, great progress has been made in all areas of high temperature superconductivity (HTS) research from raising the transition temperature Tc and discovering new HTS compounds to developing theoretical models of HTS and fabricating and testing HTS prototype devices. For example, the Tc has been increased to 164 K in cuprate HgBa2Ca2Cu3Ox under 30 GPa in 1993 at Houston, more than 200 HTS compounds have been found, numerous theoretical models have been developed, and many HTS prototype devices have been tested to display superior performance to that of their non-superconducting counterparts. The strong electron-phonon interaction required for the high Tc observed has been considered to be able to induce catastrophic structure collapse before high Tc can be realized, and a novel magnetism-based interaction in different forms has thus been proposed for high Tc. However, room temperature superconductivity is still elusive and a comprehensive microscopic theory of HTS remains to be achieved. The...

  15. Mechanical properties of polymer matrix composites at 77 K and at room temperature after irradiation with 60Co γ-rays

    International Nuclear Information System (INIS)

    Egusa, S.; Hagiwara, M.

    1986-01-01

    Ten different polymer matrix composites were irradiated with 60 Co γ-rays at room temperature, and were examined with regard to the mechanical properties at 77 K and at room temperature. The radiation resistance of these composites depends primarily on the radiation resistance of matrix resins, which increases in the order diglycidyl ether of bisphenol A < tetraglycidyl diaminodiphenyl methane < Kerimid 601. Comparison of the mechanical properties tested at 77 K and at room temperature demonstrates that the extent of radiation-induced decrease in the composite strength is appreciably greater in the 77 K test than in the room temperature test. (author)

  16. Room temperature ferromagnetism in ZnO prepared by microemulsion

    Directory of Open Access Journals (Sweden)

    Qingyu Xu

    2011-09-01

    Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

  17. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  18. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity

    Directory of Open Access Journals (Sweden)

    Danielle A. Wagner-Muñiz

    2018-03-01

    Full Text Available Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA, a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles. Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.

  19. Experimental study on the double barrier structure at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H Y; Chua, S J [Centre for Optoelectronics, Dept. of Electrical Engineering, National Univ. of Singapore (Singapore)

    1994-06-15

    An experimental study of AlAs / GaAs / AlAs double barrier structure is carried out. The double barrier and quantum well structure are grown by MBE. The peak-to-valley ratio 2.6 : 1 with peak current density of 1.6 kA/cm/sup 2 at room temperature have been achieved. (authors)

  20. Red-light-emitting laser diodes operating CW at room temperature

    Science.gov (United States)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  1. Effect of combination of chitosan coating and irradiation on physicochemical and functional properties of chicken egg during room-temperature storage

    International Nuclear Information System (INIS)

    Liu Xianxe; Jang, Aera; Kim, Dong Hun; Lee, Bong Duk; Lee, Mooha; Jo, Cheorun

    2009-01-01

    The effect of combination of chitosan coating and irradiation on quality and storage stability of shell egg was investigated. Salmonella typhimurium inoculated on eggshell was not detected by irradiation of 2.0 kGy at day 0 and/or chitosan coating (1%, pH 5.0) after 3 days of storage. One-day-old fresh chicken egg was chitosan coated and irradiated at 0, 0.5, 1.0, 1.5 and 2.0 kGy by gamma ray. The egg samples were stored at room temperature for 14 days and the effects of the combination treatment on internal physicochemical and functional properties were investigated. The Haugh unit of egg was decreased by irradiation even at 0.5 kGy. Irradiation increased the lipid oxidation in egg yolk at 2 kGy but the egg with chitosan coating reduced the level of lipid oxidation. Irradiation increased the foaming ability of egg white and decreased viscosity of egg yolk and white. Results suggested that combination of irradiation and chitosan coating can improve safety of shell egg but irradiation treatment may reduce the egg quality for direct consumption. However, an improved functional property for further processing and efficient separation of egg white and yolk can be expected for egg processing industry using irradiation.

  2. Room temperature ferromagnetism and absorption red-shift in nitrogen-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Polo, C., E-mail: gpolo@unavarra.es [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Larumbe, S. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Monge, M. [Departamento de Química, Universidad de la Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26006 Logroño (Spain)

    2014-11-05

    Highlights: • N-doped TiO{sub 2} anatase nanoparticles were obtained by sol–gel. • The nanoparticle size, controlled by the N doping, determines lattice parameters. • Correlation between room temperature ferromagnetism and absorption red-shift. • Oxygen vacancies reinforce both phenomena. • Metal transition impurities contribute to the room temperature ferromagnetism. - Abstract: In this work, room-temperature ferromagnetism and the red-shift of the optical absorption is analyzed in nitrogen doped TiO{sub 2} semiconductor nanoparticles. The nanoparticles were synthesized by the sol–gel method using urea as the nitrogen source. Titanium Tetraisopropoxide (TTIP) was employed as the alkoxyde precursor and dissolved in ethanol. The as prepared gels were dried and calcined in air at 300 °C. Additionally, post-annealing treatments under vacuum atmosphere were performed to modify the oxygen stoichiometry of the samples. The anatase lattice parameters, analyzed by means of powder X-ray diffractometry, depend on the nanometer grain size of the nanoparticles (increase and decrease, respectively, of the tetragonal a and c lattice parameters with respect to the bulk values). The diffuse reflectance ultraviolet–visible (UV–Vis) absorbance spectra show a clear red-shift as consequence of the nitrogen and the occurrence of intragap energy levels. The samples display ferromagnetic features at room temperature that are reinforced with the nitrogen content and after the post annealings in vacuum. The results indicate a clear correlation between the room temperature ferromagnetism and the shift of the absorbance spectrum. In both phenomena, oxygen vacancies (either induced by the nitrogen doping or by the post vacuum annealings) play a dominant role. However, we conclude the existence of very low concentration of diluted transition metal impurities that determine the room ferromagnetic response (bound magnetic polaron BMP model). The contraction of the c soft axis

  3. Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential

    Science.gov (United States)

    Haber, E.; Badea, R.; Berezovsky, J.

    2018-05-01

    The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.

  4. Etching characteristics of a CR-39 track detector at room temperature in different etching solutions

    International Nuclear Information System (INIS)

    Dajko, G.

    1991-01-01

    Investigations were carried out to discover how the etching characteristics of CR-39 detectors change with varying conditions of the etching process. Measurements were made at room temperature in pure NaOH and KOH solutions; in different alcoholic KOH solutions (PEW solution, i.e. potassium hydroxide, ethyl alcohol, water); and in NaOH and KOH solutions containing different additives. The bulk etching rate of the detector (V B ) and the V (= V T /V B ) function, i.e. track to bulk etch rates ratio, for 6.1 MeV α-particles, were measured systematically. (author)

  5. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  6. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution

    International Nuclear Information System (INIS)

    Zhao Yan; Li Yunling; Wang Zichen; Zhao Jingzhe; Ma Dechong; Hou Shengnan; Li Linzhi; Hao Xinli

    2011-01-01

    A simple room temperature method was reported for the synthesis of CuO nanocrystals in aqueous solution through the sequence of Cu 2+ → Cu(OA) 2 → Cu(OH) 2 → Cu(OH) 4 2- → CuO. Sodium oleate (SOA) was used as the surfactant and shape controller. The as-prepared samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy (UV-vis) and differential thermal analysis (DTA). It can be seen that 1D Cu(OH) 2 nanowires were first obtained from Cu(OA) 2 and, at room temperature, converted into 2D CuO nanoleaves (CuO NLs) in a short time under a weakly basic environment. On prolonging the reaction time, the top part of these 2D nanoleaves branched and separated along the long axis to form 1D rod-like nano-CuO because of the assistance of SOA. A possible transformation mechanism of Cu(OH) 2 to CuO nanostructures at room temperature in aqueous solution is discussed. The transformation velocity can be controlled by changing the pH value of the system. The prepared CuO NLs were used to construct an enzyme-free glucose sensor. The detecting results showed that the designed sensor exhibited good amperometric responses towards glucose with good anti-interferent ability.

  7. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  8. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    Science.gov (United States)

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  9. Red-light-emitting laser diodes operating cw at room temperature

    International Nuclear Information System (INIS)

    Kressel, H.; Hawrylo, F.Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200 to 8000-A spectral range. These devices operate cw with simple oxide-isolated stripe contacts to 7400 A, which extends cw operation for the first time into the visible (red) portion of the spectrum

  10. Influence of pre-measurement thermal treatment on OSL of synthetic quartz measured at room temperature

    International Nuclear Information System (INIS)

    Kale, Y.D.; Gandhi, Y.H.

    2008-01-01

    Much effort has been made to study the influence of pre-measurement thermal treatment and ionizing radiation on quartz specimens owing to its use in a large number of applications. Optically stimulated luminescence (OSL) being a structured and sensitive phenomenon promises to correlate the responsible color center and luminescence emission. OSL studies on quartz with such conditions can reveal many significant results. The aim of the present investigation is to understand the effect of annealing temperature on OSL characteristics of synthetic quartz recorded at room temperature. At identical annealing duration and β-dose, the shape of OSL decay curve remains non-exponential; when specimens annealed at lower temperature (∼400 deg. C). The shape of decay curve changes to exponential in nature along with rise in OSL intensity when the specimen was given higher temperature of annealing (>400 deg. C). The effects of such protocol on pattern of OSL sensitivity as well as area under the OSL decay curve are also presented here. The presence of shallow traps, when OSL decay curve was recorded at room temperature seems to be responsible for the changes in OSL pattern. The influence of shallow traps is attributed to non-exponential decay of OSL recorded at room temperature

  11. Nuclear power station main control room habitability

    International Nuclear Information System (INIS)

    Paschal, W.B.; Knous, W.S.

    1989-01-01

    The main control room at a nuclear power station must remain habitable during a variety of plant conditions and postulated events. The control room habitability requirement and the function of the heating, ventilating, air-conditioning, and air treatment system are to control environmental factors, such as temperature, pressure, humidity, radiation, and toxic gas. Habitability requirements provide for the safety of personnel and enable operation of equipment required to function in the main control room. Habitability as an issue has been gaining prominence with the Advisor Committee of Reactor Safeguards and the Nuclear Regulatory Commission since the incident at Three Mile Island. Their concern is the ability of the presently installed habitability systems to control the main control room environment after an accident. This paper discusses main control room HVAC systems; the concern, requirements, and results of NRC surveys and notices; and an approach to control room habitability reviews

  12. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Wang, Jiaqi; Shin, Seungha

    2017-01-01

    Room temperature (T room , 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room . The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room , compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  13. Room temperature chemical synthesis of Cu(OH){sub 2} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Gurav, K.V. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Patil, U.M. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Kim, J.H., E-mail: jinhyeok@chonnam.ac.kr [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of)

    2013-10-05

    Highlights: •Cu(OH){sub 2} is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH){sub 2}. •The hydrous, nanograined Cu(OH){sub 2} shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH){sub 2}] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH){sub 2} thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH){sub 2} thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH){sub 2} thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance.

  14. Room-Temperature Dephasing in InAs Quantum Dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    2000-01-01

    The room temperature dephasing in InAs/InGaAs/GaAs self-assembled quantum dots, embedded in a waveguide for laser applications, is measured using two independent methods: spectral hole burning and four-wave mixing. Without the application of bias current for electrical carrier injection......, a dephasing time of ~260 fs, weakly dependent on the optical excitation density, is found and attributed to phonon interaction. The application of bias current, leading to population inversion in the dot ground state and optical gain, strongly decreases the dephasing time to less than 50 fs, likely due...

  15. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser

    KAUST Repository

    Das, Ayan

    2011-08-01

    We report ultralow threshold polariton lasing from a single GaN nanowire strongly coupled to a large-area dielectric microcavity. The threshold carrier density is 3 orders of magnitude lower than that of photon lasing observed in the same device, and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing. © 2011 American Physical Society.

  16. Room-temperature electroluminescence of Er-doped hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, Oleg; Bresler, Mikhail; Kuznetsov, Alexey; Kudoyarova, Vera; Pak, Petr; Terukov, Evgenii; Tsendin, Konstantin; Yassievich, Irina [A F Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Fuhs, Walther [Hahn-Meitner Institut, Abteilung Photovoltaik, Rudower Chaussee 5, D-12489 Berlin (Germany); Weiser, Gerhard [Phillips-Universitat Marburg, Fachbereich Physik, D-35032 Marburg (Germany)

    1998-05-11

    We have observed room-temperature erbium-ion electroluminescence in erbium-doped amorphous silicon. Electrical conduction through the structure is controlled by thermally activated ionization of deep D{sup -} defects in an electric field and the reverse process of capture of mobile electrons by D{sup 0} states. Defect-related Auger excitation (DRAE) is responsible for excitation of erbium ions located close to dangling-bond defects. Our experimental data are consistent with the mechanisms proposed

  17. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in [Department of Physics, Indian institute of Technology Guwahati, Guwahati 781 039 (India)

    2015-08-15

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  18. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    Directory of Open Access Journals (Sweden)

    Patta Ravikumar

    2015-08-01

    Full Text Available We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μB/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (TC around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high TC and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  19. Controlled laser biochemistry in room-temperature polar liquids by ultrashort laser pulses

    DEFF Research Database (Denmark)

    Gruzdev, Vitaly; Korkin, Dmitry; Mooney, Brian P.

    2018-01-01

    Traditional laser methods to control chemical modifications of biomolecules are not applicable under biologically relevant conditions. We report controlled modifications of peptides and insulin by femtosecond laser in water, methanol, and acetonitrile at room temperature...

  20. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  1. Controllable synthesis of Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH{sub 3} gas sensing at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yufei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Kan, Kan [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150000 (China); Song, Wanzhen; Zhang, Guo; Dang, Lifang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Xie, Yu [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Shen, Peikang [Department of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Li, E-mail: llwjjhlju@sina.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Shi, Keying, E-mail: shikeying2008@163.com [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)

    2015-08-05

    Graphical abstract: Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH{sub 3} gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co{sub 3}O{sub 4} and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co{sub 3}O{sub 4} nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co{sub 3}O{sub 4} nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH{sub 3}) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH{sub 3} gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors.

  2. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Room temperature ferromagnetism in a phthalocyanine based carbon material

    International Nuclear Information System (INIS)

    Honda, Z.; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-01-01

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T c  = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material

  4. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  5. Optical detection of symmetric and antisymmetric states in double quantum wells at room temperature

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Marcelli, A.; Piccinini, M.; Cebulski, J.

    2009-09-01

    We studied the optical reflectivity of a specially grown double quantum well (DQW) structure characterized by a rectangular shape and a high electron density at room temperature. Assuming that the QWs depth is known, reflectivity spectra in the mid-IR range allow to carry out the precise measurements of the SAS-gap values (the energy gap between the symmetric and anti-symmetric states) and the absolute energies of both symmetric and antisymmetric electron states. The results of our experiments are in favor of the existence of the SAS splitting in the DQWs at room temperature. Here we have shown that the SAS gap increases proportionally to the subband quantum number and the optical electron transitions between symmetric and antisymmetric states belonging to different subbands are allowed. These results were used for interpretation of the beating effect in the Shubnikov-de Haas (SdH) oscillations at low temperatures (0.6 and 4.2 K). The approach to the calculation of the Landau-levels energies for DQW structures developed earlier [D. Ploch , Phys. Rev. B 79, 195434 (2009)] is used for the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to explain the beating effect in the SdH oscillations, one should introduce two different quasi-Fermi levels characterizing the two electron subsystems regarding symmetry properties of their wave functions, symmetric and antisymmetric ones. These states are not mixed neither by electron-electron interaction nor probably by electron-phonon interaction.

  6. Toward hydrogen detection at room temperature with printed ZnO nanoceramics films activated with halogen lighting

    Science.gov (United States)

    Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène

    2015-12-01

    Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.

  7. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    Science.gov (United States)

    Li, Dong-Xiang; Qin, Xiu-Bo; Zheng, Li-Rong; Li, Yu-Xiao; Cao, Xing-Zhong; Li, Zhuo-Xin; Yang, Jing; Wang, Bao-Yi

    2013-03-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti3+—VO defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.

  8. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    International Nuclear Information System (INIS)

    Li Dong-Xiang; Cao Xing-Zhong; Li Zhuo-Xin; Yang Jing; Wang Bao-Yi; Qin Xiu-Bo; Zheng Li-Rong; Li Yu-Xiao

    2013-01-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO 2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti 3+ —V O defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti 3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO 2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments

  9. Large low-field magnetoresistance of Fe3O4 nanocrystal at room temperature

    International Nuclear Information System (INIS)

    Mi, Shu; Liu, Rui; Li, Yuanyuan; Xie, Yong; Chen, Ziyu

    2017-01-01

    Superparamagnetic magnetite (Fe 3 O 4 ) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is −3.5%, and when the field increases to 6000 Oe, the LFMR is up to −5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance. - Highlights: • Superparamagnetic Fe3O4 nanoparticles with small size were synthesized. • A quite high LFMR has been observed at room temperature. • The more grain boundaries increase the tunneling probability and enlarge the MR. • The fast response of the sample increase the MR at a low field.

  10. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    Science.gov (United States)

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  11. Towards Molecular Dynamics Simulations of Chiral Room-Temperature Ionic Liquids

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Chval, Z.; Storch, Jan; Izák, Pavel

    2014-01-01

    Roč. 189, SI (2014), s. 85-94 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GAP106/12/0569; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : chiral room-temperature ionic liquid * molecular dynamics simulation * non-polarizable fully flexible all-atom force field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.515, year: 2014

  12. Room-temperature ferromagnetism in cerium dioxide powders

    Energy Technology Data Exchange (ETDEWEB)

    Rakhmatullin, R. M., E-mail: rrakhmat@kpfu.ru; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L. [Kazan Federal University, Institute of Physics (Russian Federation)

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  13. Short communication: Stability and integrity of classical swine fever virus RNA stored at room temperature

    Directory of Open Access Journals (Sweden)

    Damarys Relova

    2017-12-01

    Full Text Available Worldwide cooperation between laboratories working with classical swine fever virus (CSFV requires exchange of virus isolates. For this purpose, shipment of CSFV RNA is a safe alternative to the exchange of infectious material. New techniques using desiccation have been developed to store RNA at room temperature and are reported as effective means of preserving RNA integrity. In this study, we evaluated the stability and integrity of dried CSFV RNA stored at room temperature. First, we determined the stability of CSFV RNA covering CSFV genome regions used typically for the detection of viral RNA in diagnostic samples by reverse transcription-polymerase chain reaction (RT-PCR. To this end, different concentrations of in vitro-transcribed RNAs of the 5’-untranslated region and of the NS5B gene were stored as dried RNA at 4, 20, and 37oC for two months. Aliquots were analyzed every week by CSFV-specific quantitative real-time RT-PCR. Neither the RNA concentration nor the storage temperature did affect CSFV RNA yields at any of the time evaluated until the end of the experiment. Furthermore, it was possible to recover infectious CSFV after transfection of SK-6 cells with dried viral RNA stored at room temperature for one week. The full-length E2 of CSFV was amplified from all the recovered viruses, and nucleotide sequence analysis revealed 100% identity with the corresponding sequence obtained from RNA of the original material. These results show that CSFV RNA stored as dried RNA at room temperature is stable, maintaining its integrity for downstream analyses and applications.

  14. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  15. State selective reactions of cosmic dust analogues at cryogenic temperatures

    International Nuclear Information System (INIS)

    Perry, James Samuel Anthony

    2001-01-01

    Molecular hydrogen (H 2 ) is the most abundant molecule in interstellar space. It is crucial for initiating all of the chemistry in the Interstellar Medium (ISM) and consequently plays an important role in star formation. However, the amount of H 2 believed to exist in the ISM cannot be accounted for by formation through gas-phase reactions alone. The current, widely accepted theory, is that H 2 forms on the surface of cosmic dust grains. These grains are thought to be composed of amorphous forms of carbon or silicates with temperatures of around 10 K. This thesis describes a new experiment that has been constructed to study H 2 formation on the surface of cosmic dust analogues and presents the initial experimental results. The experiment simulates, through ultra-high vacuum and the use of cryogenics, the conditions of the ISM where cosmic dust grains and H 2 molecules exist. During the experiment, a beam of atomic hydrogen is aimed at a cosmic dust analogue target. H 2 formed on the target's surface is ionised using a laser spectroscopy technique known as Resonance Enhanced Multiphoton lonisation (REMPI) and detected using time-of-flight mass spectrometry. The sensitivity of REMPI is such that H 2 molecules can be ionised in selective internal energy states. This allows the rovibrational populations of the H 2 molecules desorbing from the cosmic dust targets to be determined, providing information on the energy budget of the H 2 formation process in the ISM. Preliminary results from the experiment show that H 2 molecules formed on a diamond-like-carbon surface have a significant non-thermal population of excited vibrational and rotational energy states. (author)

  16. Adaptive Beam Loading Compensation in Room Temperature Bunching Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Chase, B. E. [Fermilab; Cullerton, E. [Fermilab; Varghese, P. [Fermilab

    2017-10-01

    In this paper we present the design, simulation, and proof of principle results of an optimization based adaptive feedforward algorithm for beam-loading compensation in a high impedance room temperature cavity. We begin with an overview of prior developments in beam loading compensation. Then we discuss different techniques for adaptive beam loading compensation and why the use of Newton?s Method is of interest for this application. This is followed by simulation and initial experimental results of this method.

  17. Control of room-temperature defect-mediated ferromagnetism in VO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tsung-Han, E-mail: tyang3@ncsu.edu [NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States); Nori, Sudhakar; Mal, Siddhartha; Narayan, Jagdish [NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States)

    2011-09-15

    We report interesting ferromagnetic properties and their control in a vanadium-based oxide system driven by stoichiometric defects. Vanadium oxide (VO{sub 2}) thin films were grown on c-plane sapphire substrates by a pulsed laser deposition technique under different ambient conditions. The ferromagnetism of the epitaxial VO{sub 2} films can be switched on and off by altering the cooling ambient parameters. In addition, the saturated magnetic moments and coercivity of the VO{sub 2} films were found to be a function of the oxygen partial pressure during the growth process. The room-temperature ferromagnetic properties of VO{sub 2} films were correlated with the nature of the microstructure and the growth parameters. The origin of the induced magnetic properties are qualitatively understood to stem from intrinsic structural and stoichiometric defects.

  18. Mechanical Behaviour of 304 Austenitic Stainless Steel Processed by Room Temperature Rolling

    Science.gov (United States)

    Singh, Rahul; Goel, Sunkulp; Verma, Raviraj; Jayaganthan, R.; Kumar, Abhishek

    2018-03-01

    To study the effect of room temperature rolling on mechanical properties of 304 Austenitic Stainless Steel, the as received 304 ASS was rolled at room temperature for different percentage of plastic deformation (i.e. 30, 50, 70 and 90 %). Microstructural study, tensile and hardness tests were performed in accordance with ASTM standards to study the effect of rolling. The ultimate tensile strength (UTS) and hardness of a rolled specimen have enhanced with rolling. The UTS has increased from 693 MPa (as received) to 1700 MPa (after 90% deformation). The improvement in UTS of processed samples is due to combined effect of grain refinement and stress induced martensitic phase transformation. The hardness values also increases from 206 VHN (as received) to 499 VHN (after 90% deformation). Magnetic measurements were also conducted to confirm the formation of martensitic phase.

  19. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature

    Science.gov (United States)

    Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.

    2016-09-01

    A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.

  20. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    Science.gov (United States)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  1. Electrochemical characterization of Uranyl-TODGA complex in a room temperature ionic liquid

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Murali, M.S.; Mohapatra, P.K.

    2014-01-01

    Room temperature ionic liquids are new materials finding extensive use in many applications such as syntheses, catalysis, electrochemistry etc. including separation science. Some of them are known as green solvents set to be environment-friendly. With a view to apply the favourable properties of these neoteric solvents to separation science in nuclear related fields such as reprocessing and waste remediation, electrochemical characterization of the metal ions encountered in above fields e.g. U(VI), Pu(IV), Np(IV), Am(III) etc. their complexes with the ligands often becomes necessary and useful. In the present piece of work, electrochemical characterization has been carried out by cyclic voltammetry of uranyl complex with one of the most promising trivalent actinide extractants, namely, tetraoctyldiglycolamide (TODGA) dissolved/extracted into a room temperature ionic liquid, 1-methyl-3-octyl imidazolium bis(trifluoro methylsulphonyl) imide (C 8 mimNTf 2 )

  2. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  3. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-04-26

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  4. Synthesis of manganese spinel nanoparticles at room temperature by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Autret-Lambert, C.; Mathieu, C.; Chartier, T.; Delorme, F. [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Seron, A [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS Cedex 2 (France)

    2012-08-15

    This paper is focused on a new route to synthesize Mn{sub 3}O{sub 4} nanoparticles by alkalisation by sodium hydroxide on a manganeous solution at room temperature. The precipitates obtained at different pH values have been characterized by XRD and TEM. Since the first addition of sodium hydroxide, a white Mn(OH){sub 2} precipitate appears. At pH=7, {gamma}-MnOOH phase is predominant with needle like shaped particles. At pH=10, hausmanite nanoparticles, which exhibits well defined cubic shape in the range 50-120 nm are obtained. This new precipitation route is a fast and easy environmentally friendly process to obtain well crystallized hausmanite nanoparticles. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particles after a precipitation at pH=10. Highlights: Black-Right-Pointing-Pointer A new route to synthesize Mn{sub 3}O{sub 4} nanoparticles has been demonstrated. Black-Right-Pointing-Pointer Synthesis has been performed by precipitation at room temperature. Black-Right-Pointing-Pointer The size of the Mn{sub 3}O{sub 4} nanoparticles is between 50 and 120 nm.

  5. Stable room-temperature thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, A.; Fiala, J.; Becla, P.; Motakef, Shariar

    2017-10-01

    Thallium bromide (TlBr) is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br- species, with an estimated electro-diffusion velocity of 10-8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br- ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation) for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  6. Stable room-temperature thallium bromide semiconductor radiation detectors

    Directory of Open Access Journals (Sweden)

    A. Datta

    2017-10-01

    Full Text Available Thallium bromide (TlBr is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br− species, with an estimated electro-diffusion velocity of 10−8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br− ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  7. The physics and chemistry of room-temperature liquid-filled ionization chambers

    International Nuclear Information System (INIS)

    Holroyd, R.A.

    1985-01-01

    The properties of excess electrons in non-polar liquids, such as tetramethylsilane and 2,2,4,4-tetramethylpentane, which are suitable for room-temperature liquid-filled ionization chambers are reviewed. Such properties as mobility, ionization yield, conduction band energy, trapping, and the influence of the electric field are considered. (orig.)

  8. On an Iteration Leading to a q-Analogue of the Digamma Function

    DEFF Research Database (Denmark)

    Berg, Christian; Petersen, Helle Bjerg

    2013-01-01

    We show that the q-Digamma function ψq for 0 < q < 1 appears in an iteration studied by Berg and Durán. This is connected with the determination of the probability measure νq on the unit interval with moments 1/n+1 k=1(1 − q)/(1 − qk), which are q-analogues of the reciprocals of the harmonic numb...

  9. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiaqi; Shin, Seungha, E-mail: sshin@utk.edu [The University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2017-02-15

    Room temperature (T{sub room}, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T{sub room}. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T{sub room}, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  10. Red photoluminescence of living systems at the room temperature: measurements and results

    International Nuclear Information System (INIS)

    Kudryashova, I S; Rud, V Yu; Shpunt, V Ch; Rud, Yu V; Glinushkin, A P

    2016-01-01

    Presents results of a study of the red luminescence of living plants at room temperature. The analysis of obtained results allows to conclude that the photoluminescence spectra for green leaves in all cases represent the two closely spaced bands. (paper)

  11. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature

    International Nuclear Information System (INIS)

    Fortunato, Elvira M.C.; Barquinha, Pedro M.C.; Pimentel, Ana C.M.B.G.; Goncalves, Alexandra M.F.; Marques, Antonio J.S.; Martins, Rodrigo F.P.; Pereira, Luis M.N.

    2004-01-01

    We report high-performance ZnO thin-film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a saturation mobility of 27 cm 2 /V s, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3x10 5 . The ZnO-TFT presents an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high mobility, and room-temperature processing makes the ZnO-TFT a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics

  12. Flake like V_2O_5 nanoparticles for ethanol sensing at room temperature

    International Nuclear Information System (INIS)

    Chitra, M.; Uthayarani, K.; Rajasekaran, N.; Neelakandeswari, N.; Girija, E. K.; Padiyan, D. Pathinettam

    2016-01-01

    The versatile redox property of vanadium oxide explores it in various applications like catalysis, electrochromism, electrochemistry, energy storage, sensors, microelectronics, batteries etc., In this present work, vanadium oxide was prepared via hydrothermal route followed by calcination. The structural and lattice parameters were analysed from the powder X-ray diffraction (XRD) pattern. The morphology and the composition of the sample were obtained from Field emission Scanning electron microscopic (FeSEM) and Energy Dispersive X-ray (EDAX) Spectrometric analysis respectively. The sensitivity, response – recovery time of the sample towards ethanol (0 ppm – 300 ppm) sensing at room temperature was measured and the present investigation on vanadium oxide nanoparticles over the flakes shows better sensitivity (30%) at room temperature.

  13. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  14. Correlation between room temperature luminescence and energy-transfer in Er–Au co-implanted silica

    Energy Technology Data Exchange (ETDEWEB)

    Cesca, T., E-mail: tiziana.cesca@unipd.it [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy); Kalinic, B.; Maurizio, C.; Scian, C. [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy); Trave, E.; Battaglin, G. [Department of Molecular Sciences and Nanosystems, Dorsoduro 2137, I-30123 Venice, Ca’ Foscari University of Venice (Italy); Mazzoldi, P.; Mattei, G. [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy)

    2015-11-01

    We report on the room temperature photoluminescence characterization in the visible and near-infrared range of Er–Au co-implanted silica systems as a function of the annealing temperature. Besides the characteristic Er{sup 3+} emission at 1540 nm, the samples exhibit luminescence bands in the wavelength region 600–1400 nm related to the formation of ultra-small Au{sub N} aggregates with a number of atoms N less than 50 atoms. In particular, the correlation between such Au{sub N}-related luminescence and the enhancement of the Er{sup 3+} emission was investigated and an anti-correlation between the Er{sup 3+} luminescence at 1540 nm and an Au{sub N}-related band at 980 nm was revealed that represents a possible path for the energy-transfer from Au{sub N} nanoclusters to Er{sup 3+} ions, giving rise to the Er{sup 3+} sensitized emission.

  15. Magnetocaloric refrigeration near room temperature (invited)

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Thanh, D.T.C.; Buschow, K.H.J.

    2007-01-01

    Modern society relies on readily available refrigeration. The ideal cooling machine would be a compact, solid state, silent and energy-efficient heat pump that does not require maintenance. Magnetic refrigeration has three prominent advantages compared to compressor-based refrigeration. First, there are no harmful gases involved, second it may be built more compact as the working material is a solid and third magnetic refrigerators generate much less noise. Recently, a new class of magnetic refrigerant materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: They exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase transition of first order. This MCE is, larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review, we compare the different materials considering both scientific aspects and industrial applicability

  16. Room temperature deposition of crystalline indium tin oxide films by cesium-assisted magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Deuk Yeon; Baik, Hong-Koo

    2008-01-01

    Indium tin oxide (ITO) films were deposited on a Si (1 0 0) substrate at room temperature by cesium-assisted magnetron sputtering. Including plasma characteristics, the structural, electrical, and optical properties of deposited films were investigated as a function of cesium partial vapor pressure controlled by cesium reservoir temperature. We calculated the cesium coverage on the target surface showing maximum formation efficiency of negative ions by means of the theoretical model. Cesium addition promotes the formation efficiency of negative ions, which plays important role in enhancing the crystallinity of ITO films. In particular, the plasma density was linearly increased with cesium concentrations. The resultant decrease in specific resistivity and increase in transmittance (82% in the visible region) at optimum cesium concentration (4.24 x 10 -4 Ω cm at 80 deg. C of reservoir temperature) may be due to enhanced crystallinity of ITO films. Excess cesium incorporation into ITO films resulted in amorphization of its microstructure leading to degradation of ITO crystallinity. We discuss the cesium effects based on the growth mechanism of ITO films and the plasma density

  17. Rhodium(III)-Catalyzed Activation of C(sp3)-H Bonds and Subsequent Intermolecular Amidation at Room Temperature.

    Science.gov (United States)

    Huang, Xiaolei; Wang, Yan; Lan, Jingbo; You, Jingsong

    2015-08-03

    Disclosed herein is a Rh(III)-catalyzed chelation-assisted activation of unreactive C(sp3)-H bonds, thus enabling an intermolecular amidation to provide a practical and step-economic route to 2-(pyridin-2-yl)ethanamine derivatives. Substrates with other N-donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional-group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C(sp3)-H bonds. A rhodacycle having a SbF6(-) counterion was identified as a plausible intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition

    OpenAIRE

    Barranco Quero, Ángel; Cotrino Bautista, José; Yubero Valencia, Francisco; Espinós, J. P.; Rodríguez González-Elipe, Agustín

    2004-01-01

    Synthesis of porous SiO2 thin films in room temperature was carried out using plasma enhanced chemical vapor deposition (CVD) in an electron cyclotron resonance microwave reactor with a downstream configuration.The gas adsorption properties and the type of porosity of the SiO2 thin films were assessed by adsorption isotherms of toluene at room temperature.The method could also permit the tailoring synthesis of thin films when both composition and porosity can be simultaneously and independent...

  19. A Novel Lipid Extraction Method from Wet Microalga Picochlorum sp. at Room Temperature

    Directory of Open Access Journals (Sweden)

    Fangfang Yang

    2014-03-01

    Full Text Available A novel method using ethanol was proposed for extracting lipids from wet microalga Picochlorum sp. at room temperature and pressure. In this study, Central Composite design (CCD was applied to investigate the optimum conditions of lipid extraction. The results revealed that the solvent to biomass ratio had the largest effect on lipid extraction efficiency, followed by extraction time and temperature. A high lipid extraction yield (33.04% of the dry weight was obtained under the following extraction conditions: 5 mL solvents per gram of wet biomass for 37 min with gentle stirring at room temperature. The extraction yield was comparable to that obtained by the widely used Bligh-Dyer method. Furthermore, no significant differences in the distribution of lipid classes and fatty acid composition were observed according to different extraction methods. In conclusion, these results indicated that the proposed procedure using ethanol could extract lipids from wet biomass efficiently and had giant potential for lipid extraction at large scale.

  20. Deposition of silicon oxynitride at room temperature by Inductively Coupled Plasma-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Zambom, Luis da Silva [MPCE-Faculdade de Tecnologia de Sao Paulo - CEETEPS, Pca Coronel Fernando Prestes, 30, Sao Paulo - CEP 01124-060 (Brazil)]. E-mail: zambom@lsi.usp.br; Verdonck, Patrick [PSI-LSI-Escola Politecnica da Universidade de Sao Paulo (Brazil)]. E-mail: patrick@lsi.usp.br

    2006-10-25

    Oxynitride thin films are used in important optical applications and as gate dielectric for MOS devices. Their traditional deposition processes have the drawbacks that high temperatures are needed, high mechanical stresses are induced and the deposition rate is low. Plasma assisted processes may alleviate these problems. In this study, oxynitride films were deposited at room temperature through the chemical reaction of silane, nitrogen and nitrous oxide (N{sub 2}O), in a conventional LPCVD furnace, which was modified into a high density Inductively Coupled Plasma (ICP) reactor. Deposition rates increased with applied coil power and were never lower than 10 nm/min, quite high for room temperature depositions. The films' refractive indexes and FTIR spectra indicate that for processes with low N{sub 2}O gas concentrations, when mixed together with N{sub 2} and SiH{sub 4}, nitrogen was incorporated in the film. This incorporation increased the resistivity, which was up to 70 G{omega} cm, increased the refractive index, from approximately 1.47 to approximately 1.50, and decreased the dielectric constant of these films, which varied in the 4-14 range. These characteristics are adequate for electric applications e.g. for TFT fabrication on glass or polymers which can not stand high temperature steps.

  1. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  2. Liquid–liquid extraction of Pu(IV), U(VI) and Am(III) using malonamide in room temperature ionic liquid as diluent

    International Nuclear Information System (INIS)

    Rout, Alok; Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2012-01-01

    Highlights: ► Extraction of actinides using malonamide in room temperature ionic liquid. ► High distribution ratios of actinides in room temperature ionic liquid. ► Ion exchange mechanism. ► Stoichiometry of extraction. ► High separation factors of U(VI) and Pu(IV) over Am(III) and fission products. - Abstract: The extraction behavior of U(VI), Pu(IV) and Am(III) from nitric acid medium by a solution of N,N-dimethyl-N,N-dioctyl-2-(2-hexyloxyethyl)malonamide (DMDOHEMA) in the room temperature ionic liquid, 1–butyl–3–methylimidazolium bis(trifluoromethanesulfonyl)imide (C 4 mimNTf 2 ), was studied. The distribution ratio of these actinides in DMDOHEMA/C 4 mimNTf 2 was measured as a function of various parameters such as the concentration of nitric acid, DMDOHEMA, NTf 2 − , alkyl chain length of ionic liquid. The extraction of actinides in the absence of DMDOHEMA was insignificant and the distribution ratio achieved in conjunction with C 4 mimNTf 2 , was remarkable. The separation factor of U(VI) and Pu(IV) achieved with the use of DMDOHEMA, ionic liquid was compared with Am(III) and other fission products. The stoichiometry of the metal-solvate was determined to be 1:2 for U(VI) and Pu(IV) and 1:3 for Am(III).

  3. Droplet-fused microreactors for room temperature synthesis of nanoscale needle-like hydroxyapatite

    International Nuclear Information System (INIS)

    Liu Kaiying; Qin Jianhua

    2013-01-01

    A microfluidic device using droplet-fused microreactors is introduced for room temperature synthesis of nanoscale needle-shaped hydroxyapatite (HAp, Ca 10 (PO 4 ) 6 (OH) 2 ). The device is integrated with multifunctional units, e.g., T-junctions for droplet generation and fusion, winding channels for rapid mixing, and a delay line for simple visualization of the HAp formation process. The necessary conditions such as surfactant and fluid flow rate for an aqueous stream to merge with water-in-oil droplets are investigated. The nanoscale morphologies of the HAp produced by this method are also compared with HAp prepared by conventional bulk mixing. This paper shows that further reaction could be initiated by flowing additional reagent streams directly into the droplets of the initial reaction mixture, which is a novel approach for synthesizing a needle-like morphology of the HAp with a high aspect ratio under room temperature. (paper)

  4. Proton conducting hydrocarbon membranes: Performance evaluation for room temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Krivobokov, Ivan M.; Gribov, Evgeniy N.; Okunev, Alexey G.

    2011-01-01

    The methanol permeability, proton conductivity, water uptake and power densities of direct methanol fuel cells (DMFCs) at room temperature are reported for sulfonated hydrocarbon (sHC) and perfluorinated (PFSA) membranes from Fumatech, and compared to Nafion membranes. The sHC membranes exhibit lower proton conductivity (25-40 mS cm -1 vs. ∼95-40 mS cm -1 for Nafion) as well as lower methanol permeability (1.8-3.9 x 10 -7 cm 2 s -1 vs. 2.4-3.4 x 10 -6 cm 2 s -1 for Nafion). Water uptake was similar for all membranes (18-25 wt%), except for the PFSA membrane (14 wt%). Methanol uptake varied from 67 wt% for Nafion to 17 wt% for PFSA. The power density of Nafion in DMFCs at room temperature decreases with membrane thickness from 26 mW cm -2 for Nafion 117 to 12.5 mW cm -2 for Nafion 112. The maximum power density of the Fumatech membranes ranges from 4 to 13 mW cm -1 . Conventional transport parameters such as membrane selectivity fail to predict membrane performance in DMFCs. Reliable and easily interpretable results are obtained when the power density is plotted as a function of the transport factor (TF), which is the product of proton concentration in the swollen membrane and the methanol flux. At low TF values, cell performance is limited by low proton conductivity, whereas at high TF values it decreases due to methanol crossover. The highest maximum power density corresponds to intermediate values of TF.

  5. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  6. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  7. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  8. 18F-labelled N,N-dimethylamphetamine analogues for brain imaging studies

    International Nuclear Information System (INIS)

    Mathis, C.A.; Shulgin, A.T.; Yano, Y.; Sargent, T. III

    1986-01-01

    The radiochemical yields of nine N,N-dimethyl-2-(substituted phenyl)-isopropylamines (amphetamine analogues) were determined following reaction with [ 18 F]acetyl hypofluorite in a 0.1 M HCl solution at room temperature. The meta-dimethoxy substituted amphetamines gave the highest radiofluorination yields (24-32%, at EOB). Purification of the 18 F-labelled amphetamines was achieved in 10-20 min. 5- 18 F-2,4-Dimethoxy-N,N-dimethylamphetamine (5- 18 F-2,4-DNNA) was utilized to determine brain and lung uptake in rats. Positron emission tomography studies were conducted in a dog to determine the dynamic brain uptake and retention of this agent. The 5- 18 F-2,4-DNNA exhibited decreased initial uptake and more rapid loss of radioactivity in cerebral tissue compared to the iodinated homologue. (author)

  9. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a "molecular welding" effect.

    Science.gov (United States)

    Taniguchi, Shohei; Green, Mark; Lim, Teck

    2011-03-16

    The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.

  10. Cumulative damage fatigue tests on nuclear reactor Zircaloy-2 fuel tubes at room temperature and 3000C

    International Nuclear Information System (INIS)

    Pandarinathan, P.R.; Vasudevan, P.

    1980-01-01

    Cumulative damage fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature and 300 0 C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The cumulative cycle ratio at fracture for the Zircaloy-2 fuel tubes was found to depend on the sequence of loading, stress history, number of cycles of application of the pre-stress and the test temperature. A Hi-Lo type fatigue loading was found to be very much damaging at room temperature and this feature was not observed in the tests at 300 0 C. Results indicate significant differences in damage interaction and damage propagation under cumulative damage tests at room temperature and at 300 0 C. Block-loading fatigue tests are suggested as the best method to determine the life-time of Zircaloy-2 fuel tubes under random fatigue loading during their service in the reactor. (orig.)

  11. Stress relaxation in 'aged high-purity aluminium at room temperature

    International Nuclear Information System (INIS)

    Butt, M.Z.; Haq, I.U.

    1993-01-01

    Stress relaxation in 99.996% Al polycrystals of average grain diameter 0.30, 0.42 and 0.51 mm, annealed at 500 deg. C and 'aged' for six months at room temperature, have been studied as a function of initial stress level from which relaxation at constant strain was allowed to start. The results obtained were compared with those for 'un-aged' Al specimens of the same purity and grain size. The intrinsic height of the thermally activable energy barrier (1.6 eV) evaluated for 'aged' Al is comparable with that (1.9 eV) for 'un-aged' Al, and is of the order of magnitude for recovery processes. In 'aged' specimens, the relaxation rate at a given stress level is larger and associated activation volume is smaller than that in 'un-aged' specimens. This is probably due to the diffusion of vacancies and/or residual impurity atoms to the cores to edge dislocations in 'aged' specimens; the length of dislocation segment involved in unit activation process therefore gets shortened compared with that in 'un-aged' specimens. (author)

  12. Heavy metal ternary halides for room-temperature x-ray and gamma-ray detection

    Science.gov (United States)

    Liu, Zhifu; Peters, John A.; Stoumpos, Constantinos C.; Sebastian, Maria; Wessels, Bruce W.; Im, Jino; Freeman, Arthur J.; Kanatzidis, Mercouri G.

    2013-09-01

    We report our recent progress on wide bandgap ternary halide compounds CsPbBr3 and CsPbCl3 for room temperature x-ray and gamma-ray detectors. Their bandgaps are measured to be 2.24 eV and 2.86 eV, respectively. The measured mobility-lifetime products of CsPbBr3 are 1.7×10-3, 1.3×10-3 cm2/V, for electron and hole carriers, respectively, comparable to those of CdTe. We measured the room temperature spectral response of CsPbBr3 sample to Ag x-ray radiation. It has a well-resolved spectral response to the 22.4 keV Kα radiation peak and detector efficiency comparable to that of CdZnTe detector at 295 K.

  13. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-01-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  14. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu

    2018-03-29

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  15. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    Science.gov (United States)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  16. Room-temperature luminescence decay of colloidal semiconductor quantum dots: Nonexponentiality revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bodunov, Evgeny N. [Department of Physics, Petersburg State Transport University, St. Petersburg (Russian Federation); Danilov, Vladimir V. [Department of Physics, Petersburg State Transport University, St. Petersburg (Russian Federation); Vavilov State Optical Institute, St. Petersburg (Russian Federation); Panfutova, Anastasia S. [Vavilov State Optical Institute, St. Petersburg (Russian Federation); Simoes Gamboa, A.L. [Center of Information Optical Technologies, ITMO University, St. Petersburg (Russian Federation)

    2016-04-15

    While time-resolved luminescence spectroscopy is commonly used as a quantitative tool for the analysis of the dynamics of photoexcitation in colloidal semiconductor quantum dots, the interpretation of the virtually ubiquitous nonexponential decay profiles is frequently ambiguous, because the assumption of multiple discrete exponential components with distinct lifetimes for resolving the decays is often arbitrary. Here, an interpretation of the room-temperature luminescence decay of CdSe/ZnS semiconductor quantum dots in colloidal solutions is presented based on the Kohlrausch relaxation function. It is proposed that the decay can be understood by using the concept of Foerster resonance energy transfer (FRET) assuming that the role of acceptors of photoexcitation energy is played by high-frequency anharmonic molecular vibrations in the environment of the quantum dots. The term EVFRET (Electronic - Vibrational Foerster Resonance Energy Transfer) is introduced in order to unequivocally refer to this energy transfer process. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Convection From a Slender Cylender in a Ventilated Room

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Sandberg, M.

    1990-01-01

    with measurements in the boundary layer flow around a heated vertical slender cylinder in a full-scale test room with displacement ventilation. Both velocity and temperature profiles in the boundary layer flow were recorded. The room was ventilated by a low velocity diffuser, standing on the floor, from which air......The equations, based on an integral formulation, for turbulent natural boundary layer flow are solved in both the constant temperature case and in the constant heat flux case. Solutions are found. for convection along both flat plates and cylinders. Theoretical predictions are compared...... with a negative buoyancy was supplied. The vertical distribution of both temperature and contamination in the room was measured as a function of the heat load and the air flow rate. The contaminant distribution showed a clear stratification between clean and contaminated air, while the temperature was increasing...

  18. Response of a Zn2TiO4 Gas Sensor to Propanol at Room Temperature

    Directory of Open Access Journals (Sweden)

    Ibrahim Gaidan

    2017-08-01

    Full Text Available In this study, three different compositions of ZnO and TiO2 powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM and X-Ray Diffraction (XRD. The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.

  19. Titanium nitride room-temperature ferromagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Iu.G., E-mail: morozov@ism.ac.ru [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belyakov, O.A. [Ogarev Mordovia State University, Saransk, 68 Bol' shevistskaya Street, 430005 (Russian Federation); Parkin, I.P., E-mail: i.p.parkin@ucl.ac.uk [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Sathasivam, S. [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia (EMERCOM), 7 Davidkovskaya Street, Moscow, 121352 (Russian Federation)

    2016-08-05

    Cubic and near-spherical TiN nanoparticles ranging in average size from 20 to 125 nm were prepared by levitation-jet aerosol synthesis through condensation of titanium vapor in an inert gas flow with gaseous nitrogen injection. The nanoparticles were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET measurements, UV–Vis, FT-IR, Raman spectroscopy, XPS, and vibrating-sample magnetometry. Room-temperature ferromagnetism with maximum magnetization up to 2.5 emu/g was recorded for the nanoparticles. The results indicate that the observed ferromagnetic ordering was related to the defect Ti–N structures on the surface of nanoparticles. This suggestion is in good correlation with the measured spectroscopical data. - Highlights: • Levitation-jet aerosol synthesis of TiN nanoparticles (NPs). • SEM, XRD, BET, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between optical and XPS measurements data and maximum magnetization of the NPs.

  20. Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator

    Science.gov (United States)

    Sudhir, V.; Schilling, R.; Fedorov, S. A.; Schütz, H.; Wilson, D. J.; Kippenberg, T. J.

    2017-07-01

    When an optical field is reflected from a compliant mirror, its intensity and phase become quantum-correlated due to radiation pressure. These correlations form a valuable resource: the mirror may be viewed as an effective Kerr medium generating squeezed states of light, or the correlations may be used to erase backaction from an interferometric measurement of the mirror's position. To date, optomechanical quantum correlations have been observed in only a handful of cryogenic experiments, owing to the challenge of distilling them from thermomechanical noise. Accessing them at room temperature, however, would significantly extend their practical impact, with applications ranging from gravitational wave detection to chip-scale accelerometry. Here, we observe broadband quantum correlations developed in an optical field due to its interaction with a room-temperature nanomechanical oscillator, taking advantage of its high-cooperativity near-field coupling to an optical microcavity. The correlations manifest as a reduction in the fluctuations of a rotated quadrature of the field, in a frequency window spanning more than an octave below mechanical resonance. This is due to coherent cancellation of the two sources of quantum noise contaminating the measured quadrature—backaction and imprecision. Supplanting the backaction force with an off-resonant test force, we demonstrate the working principle behind a quantum-enhanced "variational" force measurement.

  1. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.

    Science.gov (United States)

    Long, Mingsheng; Gao, Anyuan; Wang, Peng; Xia, Hui; Ott, Claudia; Pan, Chen; Fu, Yajun; Liu, Erfu; Chen, Xiaoshuang; Lu, Wei; Nilges, Tom; Xu, Jianbin; Wang, Xiaomu; Hu, Weida; Miao, Feng

    2017-06-01

    The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular "fingerprint" imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus-based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature-specific detectivity higher than 4.9 × 10 9 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/ f noise in photonic devices.

  2. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  3. Study of geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2017-01-01

    Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical and effect......Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical...... and effective way to obtain the desired cooling performance. To investigate how to choose and optimize the AMR geometry, a quantitative study is presented by simulations based on a one-dimensional (1D) numerical model. Correlations for calculating the friction factor and heat transfer coefficient are reviewed...... and chosen for modeling different geometries. Moreover, the simulated impacts of various parameters on the regenerator efficiency with a constant specific cooling capacity are presented. An analysis based on entropy production minimization reveals how those parameters affect the main losses occurring inside...

  4. Hydrogen Treatment for Superparamagnetic VO2 Nanowires with Large Room-Temperature Magnetoresistance.

    Science.gov (United States)

    Li, Zejun; Guo, Yuqiao; Hu, Zhenpeng; Su, Jihu; Zhao, Jiyin; Wu, Junchi; Wu, Jiajing; Zhao, Yingcheng; Wu, Changzheng; Xie, Yi

    2016-07-04

    One-dimensional (1D) transition metal oxide (TMO) nanostructures are actively pursued in spintronic devices owing to their nontrivial d electron magnetism and confined electron transport pathways. However, for TMOs, the realization of 1D structures with long-range magnetic order to achieve a sensitive magnetoelectric response near room temperature has been a longstanding challenge. Herein, we exploit a chemical hydric effect to regulate the spin structure of 1D V-V atomic chains in monoclinic VO2 nanowires. Hydrogen treatment introduced V(3+) (3d(2) ) ions into the 1D zigzag V-V chains, triggering the formation of ferromagnetically coupled V(3+) -V(4+) dimers to produce 1D superparamagnetic chains and achieve large room-temperature negative magnetoresistance (-23.9 %, 300 K, 0.5 T). This approach offers new opportunities to regulate the spin structure of 1D nanostructures to control the intrinsic magnetoelectric properties of spintronic materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A bio-inspired zinc finger analogue anchored in 2D hexagonal meso-porous silica for room temperature CO_2 activation via a hydrogeno-carbonate route

    International Nuclear Information System (INIS)

    Doghri, Hanene; Baranova, Elena A.; Albela, Belen; Bonneviot, Laurent; Mongia Said-Zina

    2017-01-01

    Bio-inspired diethylenetriamine-zinc(II) complexes were anchored into the nano-pores of hexagonal meso-porous MCM41-like silicas targeting a carbamate free and low temperature CO_2 recycling process. A step-by-step approach was adopted to perform an in situ synthesis in order to mimic the zinc finger of carbonic anhydrases, the fastest family of enzymes. In the presence of a surface-masking pattern of TMA"+ ions, some silanol groups were capped using grafted trimethylsilyl functions, TMSgr, (gr for grafted). After removing the masking ions, a tridentate diethylenetriamine ligand was anchored using diethylenetriamine propyl-trimethoxysilane. The so-called DETA_a_n ligands (an for anchored) were partially mono-protonated using either cyclohexane or isopropanol as a solvent. Nonetheless, up to two thirds of them were metallated by Zn(II) ions, leading to the targeted anchored zinc finger mimic [Zn(DETAan)L]+(L = Cl or OH). CO_2 is then adsorbed at room temperature and in humid ambient air by the formation of an intermediate hydrogeno-carbonate-zinc complex. Specific IR signatures at 1330 and 1400 cm"-"1 together with characteristic C 1s and Zn 2p3/2 XPS binding energies at 286.4 and 1024.6 eV advocate for a rather symmetrical bidentate [η"2-CO_3] structural unit in the anchored complex [Zn(DETA_a_n)(η"2-HCO_3"*)]"+, where the Zn(II) ion is most likely penta-coordinated. The internal pH value varied by less than 0.5 depending on the metal reacting with the DETA_a_n ligand and its ability to generate HCO_3"-, due to the buffering effect of surface silanol and amino groups according to the level of protonation of the DETA moieties measured from the N 1s XPS spectra. In contrast to nitrate ions, chloride ions were found to inhibit the formation of hydrogeno-carbonate. (authors)

  6. Low temperature and high pressure crystals of room temperature ionic liquid: N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Imai, Yusuke; Takekiyo, Takahiro; Yoshimura, Yukihiro; Hamaya, Nozomu

    2014-01-01

    Crystals of room temperature ionic liquid (RTIL) are obtained separately at low temperature or under high pressure. The RTIL is N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF 4 ]. At ambient pressure, low-temperature (LT) crystals appeared on slow cooling. By simultaneous X-ray diffraction and differential scanning calorimetry (DSC) measurements, metastable monoclinic and stable orthorhombic phases coexist in pure [DEME][BF 4 ]. Furthermore, the DSC thermal trace indicates that the metastable monoclinic phase was stabilized by adding water. In contrast, on compression process up to 7.6 GPa, crystallization is completely suppressed even upon slow compression. Direct observations using optical microscopy also support no crystal domain growth on compression process. High-pressure (HP) crystals at room temperature were seen only on decompression process, where two different kinds of crystals appeared subsequently. By crystal structure analysis, the LT crystal structures have no relation with the HP ones. Moreover, both metastable monoclinic phase at low temperature and higher pressure crystal has a folding molecular conformation and anti-parallel pairing of the [DEME] cation as the instability factors

  7. Room temperature isotherms for Mo and Ni

    International Nuclear Information System (INIS)

    Masse, J.L.

    1986-11-01

    Isotherms at room temperature for Mo and Ni are proposed. They are of three types: BIRCH, KEANE and BORN-MIE. The adjustable constants appearing in these isotherms have been determined from experimental quantities at zero pressure. An evaluation of the limit of (δB T /δP) T as P #-> # ∞, where B T is the isothermal bulk modulus, has been also used. These three isotherms obtained for Mo and Ni are compared with isotherms derived from shock-wave data according to the PRIETO's model. There is a good agreement between these and these derived from shock-wave data. The three isotherms proposed for Mo and Ni can be considered as valid until pressures of several B To , where B To is the bulk modulus B T at P = o [fr

  8. Room temperature adsorption of NH3 on Zn-terminated ZnO(0 0 0 1)

    International Nuclear Information System (INIS)

    Hasegawa, T.; Shirotori, Y.; Ozawa, K.; Edamoto, K.; Takahashi, K.

    2004-01-01

    Adsorption process of ammonia on the Zn-terminated ZnO(0 0 0 1) surface at room temperature has been studied by photoelectron spectroscopy utilizing synchrotron radiation. Coverage-dependent measurements of the N 1s core-level peak and the work function change have been carried out. It is revealed that ammonia adsorbs molecularly in the initial stages of adsorption, whereas deprotonated species are formed after some amount of molecular ammonia is accumulated on the surface. The reactivity of the K-modified ZnO(0 0 0 1) surface towards ammonia adsorption has also been investigated and found to be significantly lowered by predeposited K

  9. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    DEFF Research Database (Denmark)

    Jongh, P. E. de; Blanchard, D.; Matsuo, M.

    2016-01-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible...... electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries....

  10. Nonlinear behavior of three-terminal graphene junctions at room temperature

    International Nuclear Information System (INIS)

    Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Pasanen, Pirjo

    2012-01-01

    We demonstrate nonlinear behavior in three-terminal T-branch graphene devices at room temperature. A rectified nonlinear output at the center branch is observed when the device is biased by a push–pull configuration. Nonlinearity is assumed to arise from a difference in charge transfer through the metal–graphene contact barrier between two contacts. The sign of the rectification can be altered by changing the carrier type using the back-gate voltage. (paper)

  11. Trends in the design of front-end systems for room temperature solid state detectors

    International Nuclear Information System (INIS)

    Manfredi, Pier F.; Re, Valerio

    2003-01-01

    The paper discusses the present trends in the design of low-noise front-end systems for room temperature semiconductor detectors. The technological advancement provided by submicron CMOS and BiCMOS processes is examined from several points of view. The noise performances are a fundamental issue in most detector applications and suitable attention is devoted to them for the purpose of judging whether or not the present processes supersede the solutions featuring a field-effect transistor as a front-end element. However, other considerations are also important in judging how well a monolithic technology suits the front-end design. Among them, the way a technology lends itself to the realization of additional functions, for instance, the charge reset in a charge-sensitive loop or the time-variant filters featuring the special weighting functions that may be requested in some applications of CdTe or CZT detectors

  12. BF3.SiO2: an efficient catalyst for the synthesis of azo dyes at room temperature

    Directory of Open Access Journals (Sweden)

    Bi Bi Fatemeh Mirjalili

    2012-07-01

    Full Text Available A rapid one-pot method has been developed for the synthesis of azo dyes via ‎sequential diazotization–diazo coupling of aromatic amines with coupling agents at roomtemperature in the presence of BF3.SiO2 as acidic catalyst. The obtained aryl diazonium salts bearing silica supported boron tri-flouride counter ion‎ was sufficiently stable to be kept at roomtemperature in the dry state.‎

  13. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

    Science.gov (United States)

    Mundy, Julia A.; Brooks, Charles M.; Holtz, Megan E.; Moyer, Jarrett A.; Das, Hena; Rébola, Alejandro F.; Heron, John T.; Clarkson, James D.; Disseler, Steven M.; Liu, Zhiqi; Farhan, Alan; Held, Rainer; Hovden, Robert; Padgett, Elliot; Mao, Qingyun; Paik, Hanjong; Misra, Rajiv; Kourkoutis, Lena F.; Arenholz, Elke; Scholl, Andreas; Borchers, Julie A.; Ratcliff, William D.; Ramesh, Ramamoorthy; Fennie, Craig J.; Schiffer, Peter; Muller, David A.; Schlom, Darrell G.

    2016-09-01

    Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

  14. Effect of room temperature prestrain on creep life of austenitic 25Cr-20Ni stainless steels

    International Nuclear Information System (INIS)

    Park, In Duck; Ahn, Seok Hwan; Nam, Ki Woo

    2004-01-01

    25Cr-20Ni series strainless steels have an excellent high temperature strength, high oxidation and high corrosion resistance. However, further improvement can be expected of creep strength by work hardening prior creep. In the present study, the effect of prestraining at room temperature on the creep behavior of a Class M(STS310S) and a Class A(STS310J1TB) alloy containing precipitates have been examined. Prestraining was carried out at room temperature and range of prestrain was 0.5∼2.5 % at STS310J1TB and 2.0∼7.0 % at STS310S. Creep behavior and creep rate of pre-strained specimens were compared with that of virgin specimens. Room temperature prestraining produced the creep life that is longer than that of a virgin specimen both for STS310J1TB and STS310S when creep test was carried out at the temperature lower than recrystallization temperature. The reason for this improvement of creep life was ascribable to the interaction between dislocations and precipitates in addition to the dislocation-dislocation interaction in STS310J1TB and the dislocation-dislocation interaction in STS310S. The beneficial effect of prestraining in STS310J1TB was larger than that of STS310S

  15. Ab-initio calculation and experimental observation of room temperature ferromagnetism in 50 keV nitrogen implanted rutile TiO2

    Science.gov (United States)

    Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.

    2018-02-01

    Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.

  16. Room temperature thin foil SLIM-cut using an epoxy paste: experimental versus theoretical results

    International Nuclear Information System (INIS)

    Bellanger, Pierre; Serra, Joao; Bouchard, Pierre-Olivier; Bernacki, Marc

    2015-01-01

    The stress induced lift-off method (SLIM) -cut technique allows the detachment of thin silicon foils using a stress inducing layer. In this work, results of SLIM-cut foils obtained using an epoxy stress inducing layer at room temperature are presented. Numerical analyses were performed in order to study and ascertain the important experimental parameters. The experimental and simulation results are in good agreement. Indeed, large area (5 × 5 cm 2 ) foils were successfully detached at room temperature using an epoxy thickness of 900 μm and a curing temperature of 150 °C. Moreover, three foils (5 × 3 cm 2 ) with thickness 135, 121 and 110 μm were detached from the same monocrystalline substrate. Effective minority carrier lifetimes of 46, 25 and 20 μs were measured using quasi-steady-state photoconductance technique in these foils after iodine ethanol surface passivation. (paper)

  17. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  18. Single Photon, Spin, and Charge in Diamond Semiconductor at room temperature

    International Nuclear Information System (INIS)

    Yuki Doi

    2014-01-01

    The nitrogen-vacancy (NV) center in diamond is a promising candidate for a qubit driven at room temperature. In order to derive potential of NV center, manipulation of their charge state is a very important topic. Here we succeeded to electrically control between single NV-/NV0 by means of current injection. This method allows us to very stable charge state control. (author)

  19. Room-temperature 1.2-J Fe{sup 2+}:ZnSe laser

    Energy Technology Data Exchange (ETDEWEB)

    Velikanov, S D; Zaretsky, N A; Zotov, E A; Maneshkin, A A; Yutkin, I M [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation); Kazantsev, S Yu; Kononov, I G; Firsov, K N [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Korostelin, Yu V; Frolov, M P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-01-31

    The characteristics of a laser based on a Fe{sup 2+}:ZnSe single crystal pumped by an electric-discharge HF laser at room temperature are studied. The HF laser beam diameter on the crystal surface was 17 mm. The achieved laser energy was 1.2 J with an efficiency of ∼ 25% with respect to the pump energy. (letters)

  20. Dose-dependent optically stimulated luminescence of synthetic quartz at room temperature

    International Nuclear Information System (INIS)

    Kale, Y.D.; Gandhi, Y.H.; Gartia, R.K.

    2008-01-01

    Physical conditions such as annealing temperature, duration of annealing, ionizing radiation, etc., play a significant role in the applications of optically stimulated luminescence (OSL) dating as well as OSL dosimetry. Many efforts are made to understand the effect of these physical parameters on quartz specimens owing to its use in such applications. Such factors induce changes in OSL decay pattern. The definite correlation between color centers and luminescence sensitivity can be established on account of such pre-treatments to the specimen. The purpose of present investigations is to study the effect of ionizing radiation under identical physical conditions on OSL properties measured at room temperature. The shapes of decay curve and dose-response data are considered for this purpose. This study can reveal the changes in color centers in response to the pre-conditions to the specimen. It was found that the OSL decay remains slow and OSL properties change systematically with the rise in beta dose up to a critical dose; however, it changes the pattern when the beta exposure to the specimen was increased higher than the critical dose. This critical dose was found to be different for different temperature of annealing. The shape of decay curve up to the critical dose was also studied by considering the difference of OSL intensities between two successive durations from the observed OSL decay data. The results are explained based on the changes in available shallow traps during OSL measurement at room temperature with changes in pre-conditions to the specimens. The results also have been confirmed with the corresponding changes in ESR signals

  1. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography

    International Nuclear Information System (INIS)

    Sepulveda-Guzman, S.; Reeja-Jayan, B.; De la Rosa, E.; Ortiz-Mendez, U.; Reyes-Betanzo, C.; Cruz-Silva, R.; Jose-Yacaman, M.

    2010-01-01

    In this work patterned ZnO films were prepared at room-temperature by deposition of ∼5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation (λ = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.

  2. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S., E-mail: selene.sepulvedagz@uanl.edu.mx [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia. UANL, PIIT Monterrey, CP 66629, Apodaca NL (Mexico); Reeja-Jayan, B. [Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States); De la Rosa, E. [Centro de Investigacion en Optica, Loma del Bosque 115 Col. Lomas del Campestre C.P. 37150 Leon, Gto. Mexico (Mexico); Ortiz-Mendez, U. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia. UANL, PIIT Monterrey, CP 66629, Apodaca NL (Mexico); Reyes-Betanzo, C. [Instituto Nacional de Astrofisica Optica y Electronica, Calle Luis Enrique Erro No. 1, Santa Maria Tonanzintla, Puebla. Apdo. Postal 51 y 216, C.P. 72000 Puebla (Mexico); Cruz-Silva, R. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001, Col. Chamilpa, CP 62210 Cuernavaca, Mor. (Mexico); Jose-Yacaman, M. [Physics and Astronomy Department University of Texas at San Antonio 1604 campus San Antonio, TX 78249 (United States)

    2010-03-15

    In this work patterned ZnO films were prepared at room-temperature by deposition of {approx}5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation ({lambda} = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.

  3. A functional F analogue of AcMNPV GP64 is from the Agrotis segetum granulovirus

    NARCIS (Netherlands)

    Yin, F.; Wang, M.; Tan, Y.; Deng, F.; Vlak, J.M.; Hu, Z.H.; Wang, H.

    2008-01-01

    The envelope fusion protein F of Plutella xylostella granulovirus is a computational analogue of the GP64 envelope fusion protein of Autographa californica nucleopolyhedrovirus (AcMNPV). Granulovirus (GV) F proteins were thought to be unable to functionally replace GP64 in the AcMNPV pseudotyping

  4. Room-temperature solid phase ionic liquid (RTSPIL) coated Ω-transaminases: Development and application in organic solvents

    DEFF Research Database (Denmark)

    Grabner, B.; Nazario, M. A.; Gundersen, M. T.

    2018-01-01

    ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co‐lyophilization and ......ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co...

  5. Room temperature ferromagnetism in Co doped ZnO within an optimal doping level of 5%

    International Nuclear Information System (INIS)

    Mohapatra, J.; Mishra, D.K.; Mishra, Debabrata; Perumal, A.; Medicherla, V.R.R.; Phase, D.M.; Singh, S.K.

    2012-01-01

    Highlights: ► Zn 1−x Co x O ((0 ≤ x ≤ 0.1)) system synthesized by solid state reaction technique. ► Observation of room temperature ferromagnetism for 3 and 5% Co doped ZnO. ► XPS and EPMA studies predict the occurrence of segregated CoO clusters. ► Suppresses ferromagnetic ordering in higher doping percentage of Co (>5%). -- Abstract: We report on the structural, micro-structural and magnetic properties of Zn 1−x Co x O (0 ≤ x ≤ 0.1) system. Electron probe micro-structural analysis on 5% Co doped ZnO indicates the presence of segregated cobalt oxide which is also confirmed from the Co 2p core level X-ray photoelectron spectrum. The presence of oxygen defects in lower percentage of Co doped ZnO (≤5%) enhances the carrier mediated exchange interaction and thereby enhancing the room-temperature ferromagnetic behaviour. Higher doping percentage of cobalt (>5%) creates weak link between the grains and suppresses the carrier mediated exchange interaction. This is the reason why room temperature ferromagnetism is not observed in 7% and 10% Co doped ZnO.

  6. Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator

    Science.gov (United States)

    Han, Jiahao; Richardella, A.; Siddiqui, Saima A.; Finley, Joseph; Samarth, N.; Liu, Luqiao

    2017-08-01

    The strongly spin-momentum coupled electronic states in topological insulators (TI) have been extensively pursued to realize efficient magnetic switching. However, previous studies show a large discrepancy of the charge-spin conversion efficiency. Moreover, current-induced magnetic switching with TI can only be observed at cryogenic temperatures. We report spin-orbit torque switching in a TI-ferrimagnet heterostructure with perpendicular magnetic anisotropy at room temperature. The obtained effective spin Hall angle of TI is substantially larger than the previously studied heavy metals. Our results demonstrate robust charge-spin conversion in TI and provide a direct avenue towards applicable TI-based spintronic devices.

  7. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Poulopoulos, P., E-mail: poulop@upatras.gr [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Materials Science Department, University of Patras, 26504 Patras (Greece); Goschew, A.; Straub, A.; Fumagalli, P. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Kapaklis, V.; Wolff, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), B.P.220, 38043 Grenoble (France); Pappas, S. D. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  8. Room temperature RF characterization of Nb make super conducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Mahawar, Ashish; Mohania, Praveen; Shrivastava, Purushottam; Yadav, Anand; Puntambekar, Avinash

    2015-01-01

    In order to ensure that the final welded Nb superconducting RF cavities are at the correct frequency the cavity structures are measured at various development stages for their resonant frequency. These measurements are performed at room temperature using a cavity measurement setup developed in house and a VNA. These measurements are critical to identify the length a cavity structure needs to be trimmed before welding. Measurement of resonant frequencies of Nb made cavity structures were performed for half cell, dumb bell, single cell, long end cell and short end cell structures. These structures were then joined to develop single cell and multi-cell 650 MHz/1300 MHz cavities. The present paper describes room temperature cavity characterization being carried out at RRCAT. (author)

  9. Whole blood samples for adrenocorticotrophic hormone measurement can be stored at room temperature for 4 hours

    DEFF Research Database (Denmark)

    Christensen, Mette; Madsen, Rikke Fogt; Møller, Line Rosengreen

    2016-01-01

    INTRODUCTION: The aim of this study was to investigate and compare the stability of adrenocorticotrophic hormone (ACTH) in whole blood stored on ice and at room temperature for up to 48 hours. This study differs from previous studies by a larger data material. MATERIALS AND METHODS: EDTA-blood sa......INTRODUCTION: The aim of this study was to investigate and compare the stability of adrenocorticotrophic hormone (ACTH) in whole blood stored on ice and at room temperature for up to 48 hours. This study differs from previous studies by a larger data material. MATERIALS AND METHODS: EDTA......-blood samples from 30 patients were collected, aliquoted and stored on ice or at room temperature for 0, 2, 4, 24, or 48 h before centrifugation, and the plasma was stored frozen until analysis. All samples were analyzed using an automated electrochemiluminescence immunoassay on cobas 6000 e601. The change...

  10. Pentacene on Ni(111): room-temperature molecular packing and temperature-activated conversion to graphene.

    Science.gov (United States)

    Dinca, L E; De Marchi, F; MacLeod, J M; Lipton-Duffin, J; Gatti, R; Ma, D; Perepichka, D F; Rosei, F

    2015-02-21

    We investigate, using scanning tunnelling microscopy, the adsorption of pentacene on Ni(111) at room temperature and the behaviour of these monolayer films with annealing up to 700 °C. We observe the conversion of pentacene into graphene, which begins from as low as 220 °C with the coalescence of pentacene molecules into large planar aggregates. Then, by annealing at 350 °C for 20 minutes, these aggregates expand into irregular domains of graphene tens of nanometers in size. On surfaces where graphene and nickel carbide coexist, pentacene shows preferential adsorption on the nickel carbide phase. The same pentacene to graphene transformation was also achieved on Cu(111), but at a higher activation temperature, producing large graphene domains that exhibit a range of moiré superlattice periodicities.

  11. Characterisation of insulin analogues therapeutically available to patients

    KAUST Repository

    Adams, Gary G.

    2018-03-29

    The structure and function of clinical dosage insulin and its analogues were assessed. This included \\'native insulins\\' (human recombinant, bovine, porcine), \\'fast-acting analogues\\' (aspart, glulisine, lispro) and \\'slow-acting analogues\\' (glargine, detemir, degludec). Analytical ultracentrifugation, both sedimentation velocity and equilibrium experiments, were employed to yield distributions of both molar mass and sedimentation coefficient of all nine insulins. Size exclusion chromatography, coupled to multi-angle light scattering, was also used to explore the function of these analogues. On ultracentrifugation analysis, the insulins under investigation were found to be in numerous conformational states, however the majority of insulins were present in a primarily hexameric conformation. This was true for all native insulins and two fast-acting analogues. However, glargine was present as a dimer, detemir was a multi-hexameric system, degludec was a dodecamer (di-hexamer) and glulisine was present as a dimer-hexamer-dihexamer system. However, size-exclusion chromatography showed that the two hexameric fast-acting analogues (aspart and lispro) dissociated into monomers and dimers due to the lack of zinc in the mobile phase. This comprehensive study is the first time all nine insulins have been characterised in this way, the first time that insulin detemir have been studied using analytical ultracentrifugation and the first time that insulins aspart and glulisine have been studied using sedimentation equilibrium. The structure and function of these clinically administered insulins is of critical importance and this research adds novel data to an otherwise complex functional physiological protein.

  12. Room temperature nanoindentation creep of hot-pressed B6O

    CSIR Research Space (South Africa)

    Machaka, R

    2014-06-01

    Full Text Available of the nanoindentation creep behavior in B6O ceramics. 1 Room temperature nanoindentation creep of hot-pressed B6O Ronald Machakaa,b,* , Trevor E. Derryb,d, Iakovos Sigalasb,c aLight Metals, Materials Science and Manufacturing, Council for Scientific..., University of the Witwatersrand, Private Bag 3, Wits, Johannesburg 2050, South Africa dSchool of Physics, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg 2050, 2050 South Africa Abstract: Nanoindentation has become a widely...

  13. Microbiological viability of bovine amniotic membrane stored in glycerin 99% at room temperature for 48 months

    Directory of Open Access Journals (Sweden)

    Kelly Cristine de Sousa Pontes

    Full Text Available ABSTRACT The medium for storing biological tissues is of great importance for their optimal use in surgery. Glycerin has been proven efficient for storing diverse tissues for prolonged time, but the preservation of the bovine amniotic membrane in glycerin 99% at room temperature has never been evaluated to be used safely in surgical procedures. This study evaluated the preservation of 80 bovine amniotic membrane samples stored in glycerin 99% at room temperature. The samples were randomly divided evenly into four groups. Samples were microbiologically tested after 1, 6, 12 and 48 months of storage. The presence of bacteria and fungi in the samples was evaluated by inoculation on blood agar and incubation at 37 ºC for 48 hours and on Sabouraud agar at 25 ºC for 5 to 10 days. No fungal or bacterial growth was detected in any of the samples. It was concluded that glycerin is an efficient medium, regarding microbiology, for preserving pre-prepared bovine amniotic membrane, keeping the tissue free of microorganisms that grow in the media up to 48 months at room temperature.

  14. Room and elevated temperature Mechanical Behavior of 9-12% Cr Steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.; Hawk, Jeffrey A.; Schrems, Karol K.

    2005-02-01

    The mechanical properties of medium Cr steels used in fossil fired power plants are very good because of their excellent high temperature microstructural stability. However, as the desire to increase the operating temperature (>650C) of the plant goes up, the need for steels that maintain their strength at these temperatures also increases. The mechanical properties of three medium Cr steels (0.08C-(9-12)Cr-1.2Ni-0.7Mo-3.0Cu-3.0Co-0.5Ti) were investigated through hardness, hot hardness and tensile measurements. The strength of the 9-12%Cr steels at room temperature after long-term isothermal aging (750C; 1000 hours) compares favorably with that of other power plant steels (e.g., P91). In addition, the elevated temperature strength and hot hardness also behave similarly. The mechanical behavior will be discussed in terms of the strength, elongation and tensile fracture characteristics.

  15. Uniaxial ratcheting behavior of Zircaloy-4 tubes at room temperature

    International Nuclear Information System (INIS)

    Wen, Mingjian; Li, Hua; Yu, Dunji; Chen, Gang; Chen, Xu

    2013-01-01

    In this study, a series of uniaxial tensile, strain cycling and uniaxial ratcheting tests were conducted at room temperature on Zircaloy-4 (Zr-4) tubes used as nuclear fuel cladding in Pressurized Water Reactors (PWRs) for the purpose to investigate the uniaxial ratcheting behavior of Zr-4 and the factors which may influence it. The experimental results show that at room temperature this material features cyclic softening remarkably within the strain range of 1.6%, and former cycling under larger strain amplitude cannot retard cyclic softening of later cycling under lower strain amplitude. Uniaxial ratcheting strain accumulates in the direction of mean stress, and the ratcheting stain level is larger under tensile mean stress than that under compressive mean stress. Uniaxial ratcheting strain level increases with the increase of mean stress and stress amplitude, and decreases with the increase of loading rate. The sequence of loading rate appears to have no effects on the final ratcheting strain accumulation. Loading history has great influence on the uniaxial ratcheting behavior. Lower stress level after loading history with higher stress level leads to the shakedown of ratcheting. Higher loading rate after loading history with lower loading rate brings down the ratcheting strain rate. Uniaxial ratcheting behavior is sensitive to compressive pre-strain, and the decay rate of the ratcheting strain rate is slowed down by pre-compression

  16. Chemical synthesis of Cu2Se nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Rong, Fengxia; Bai, Yan; Chen, Tianfeng; Zheng, Wenjie

    2012-01-01

    Graphical abstract: The Cu 2 Se nanoparticles were synthesized by a simple and rapid method at room temperature. The TEM and SEM images show that the Cu 2 Se nanoparticles were spherical. Highlights: ► Cu 2 Se nanoparticles were synthesized by the reaction of nanoSe 0 sol with Cu + ions. ► The Cu 2 Se nanoparticles were spherical with cubic structure and well crystallized. ► Optical and electrochemical properties of Cu 2 Se nanoparticles were observed. ► The formation mechanism of Cu 2 Se nanoparticles was proposed. -- Abstract: A simple and rapid method has been developed to synthesize cuprous selenide (Cu 2 Se) nanoparticles by the reaction of selenium nanoparticles sol with copper sulfate solution containing ascorbic acid at room temperature. Cu 2 Se nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray analysis (EDX). The results indicated that Cu 2 Se nanoparticles were cubic crystal structure and spherical with the diameter about 75 nm. The ultraviolet–visible absorption spectrum (UV–vis) and cyclic voltammetry of Cu 2 Se nanoparticles were also investigated. The optical band gap energy of Cu 2 Se nanoparticles was 1.94 eV. On the basis of a series of experiments and characterizations, the formation mechanism of Cu 2 Se nanoparticles was discussed.

  17. Performance of room temperature mercuric iodide (HgI2) detectors in the ultra low energy x-ray region

    International Nuclear Information System (INIS)

    Dabrowski, A.J.; Iwanczyk, J.S.; Barton, J.B.; Huth, G.C.; Whited, R.; Ortale, C.; Economou, T.E.; Turkevich, A.L.

    1980-01-01

    Performance of room temperature mercuric iodide x-ray spectrometers has been recently improved through new fabrication techniques and further development of low noise associated electronic systems. This progress has extended the range of measurements to the ultra low energy x-ray region at room temperature. This paper reports the study of the effect of contact material on the performance of HgI 2 detectors in the low energy x-ray region

  18. [Temperature that modifies the effect of air pollution on emergency room visits for circulatory and respiratory diseases in Beijing, China].

    Science.gov (United States)

    Wang, L L; Zhang, Q; Bai, R H; Mi, B B; Yan, H

    2017-08-10

    Objective: To analyze the temperature modification effect on emergency room visits for circulatory and respiratory diseases caused by air pollution, in Beijing. Methods: Data on both circulatory and respiratory diseases in 2010 and 2011 were collected, Both meteorological and air pollutants related data were obtained from the National Scientific Data Sharing Platform for Population and Health. By using the stratified time-series models, we analyzed the effects of air pollution on emergency room visits for circulatory and respiratory diseases under different temperature zones, from 2010 to 2011, in Beijing. Results: Low temperature (daily average temperatureeffect of air pollution index (API) on emergency room visits for circulatory diseases, Under 10 units of API, the relative risks and confidence interval appeared as 1.067 (1.054-1.080). However, high (daily average temperature between 24.4 ℃ and 28.5 ℃) and extra-high temperature (daily average temperature >28.5 ℃) could enhance the effect of API on emergency room visits for respiratory diseases, Under 10 units of API, the relative risks and confidence interval were 1.021 (1.015-1.028) and 1.006 (1.003-1.008), respectively. Conclusion: Temperature seemed to have modified the association between air pollution and both circulatory and respiratory diseases.

  19. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  20. Room temperature luminescence and ferromagnetism of AlN:Fe

    Energy Technology Data Exchange (ETDEWEB)

    Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn [The Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cai, G. M. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn [Research and Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-06-15

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  1. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    International Nuclear Information System (INIS)

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  2. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    International Nuclear Information System (INIS)

    Singh, Archana; Singh, Ajendra; Singh, Satyendra; Tandon, Poonam; Yadav, B.C.; Yadav, R.R.

    2015-01-01

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO 2 gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe 2 O 4 shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO 2 ) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO 2 gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature

  3. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Archana; Singh, Ajendra [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Singh, Satyendra, E-mail: satyendra_nano84@rediffmail.com [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Tandon, Poonam [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C. [Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Yadav, R.R. [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India)

    2015-01-05

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO{sub 2} gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe{sub 2}O{sub 4} shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO{sub 2}) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO{sub 2} gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature.

  4. ACTINOMYCIN D ANALOGUES

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to new compounds being structurally and functionally similar to Actinomycin D and to combinatorial libraries of such compounds. The Actinomycin D analogues according to the present invention comprise two linear or cyclic peptide moieties constituted by $g...

  5. UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature

    Science.gov (United States)

    Zhai, Jiali; Wang, Tao; Wang, Chuang; Liu, Dechen

    2018-05-01

    A highly efficient UV-light-assisted room temperature sensor based on g-C3N4/ZnO composites were prepared by an in situ precipitation method. The thermostability, composition, structure, and morphology properties of the as-prepared g-C3N4/ZnO composites were characterized by TGA, XRD, FT-IR, TEM, and XPS, respectively. And then, we studied the ethanol (C2H5OH) sensing performance of the g-C3N4/ZnO composites at the room temperature. Compared with pure ZnO and g-C3N4, the gas sensing activity of g-C3N4/ZnO composites was greatly improved at room temperature, for example, the g-C3N4/ZnO-8% composites showed an obvious response of 121-40 ppm C2H5OH at room temperature, which was 60 times higher than the pure ZnO based on the sensors under the same condition. The great enhancement of the C2H5OH sensing properties of composites can be understood by the efficient separation of photogenerated charge carriers of g-C3N4/ZnO heterogeneous and the UV-light catalytic effect. Finally, a possible mechanism for the gas sensing activity was proposed.

  6. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    Science.gov (United States)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  7. Towards an Einstein–Podolsky–Rosen paradox between two macroscopic atomic ensembles at room temperature

    International Nuclear Information System (INIS)

    He, Q Y; Reid, M D

    2013-01-01

    Experiments have reported the entanglement of two spatially separated macroscopic atomic ensembles at room temperature (Krauter et al 2011 Phys. Rev. Lett. 107 080503; Julsgaard et al 2001 Nature 413 400). We show how an Einstein–Podolsky–Rosen (EPR) paradox is realizable with this experiment. Our proposed test involves violation of an inferred Heisenberg uncertainty principle, which is a sufficient condition for an EPR paradox. This is a stronger test of nonlocality than entanglement. Our proposal would enable the first definitive confirmation of quantum EPR paradox correlations between two macroscopic objects at room temperature. This is a necessary intermediate step towards a nonlocal experiment with causal measurement separations. As well as having fundamental significance, the realization of an atomic EPR paradox could provide a resource for novel applications in quantum technology. (paper)

  8. Towards an Einstein-Podolsky-Rosen paradox between two macroscopic atomic ensembles at room temperature

    Science.gov (United States)

    He, Q. Y.; Reid, M. D.

    2013-06-01

    Experiments have reported the entanglement of two spatially separated macroscopic atomic ensembles at room temperature (Krauter et al 2011 Phys. Rev. Lett. 107 080503; Julsgaard et al 2001 Nature 413 400). We show how an Einstein-Podolsky-Rosen (EPR) paradox is realizable with this experiment. Our proposed test involves violation of an inferred Heisenberg uncertainty principle, which is a sufficient condition for an EPR paradox. This is a stronger test of nonlocality than entanglement. Our proposal would enable the first definitive confirmation of quantum EPR paradox correlations between two macroscopic objects at room temperature. This is a necessary intermediate step towards a nonlocal experiment with causal measurement separations. As well as having fundamental significance, the realization of an atomic EPR paradox could provide a resource for novel applications in quantum technology.

  9. A chemoselective and continuous synthesis of m-sulfamoylbenzamide analogues

    Directory of Open Access Journals (Sweden)

    Arno Verlee

    2017-02-01

    Full Text Available For the synthesis of m-sulfamoylbenzamide analogues, small molecules which are known for their bioactivity, a chemoselective procedure has been developed starting from m-(chlorosulfonylbenzoyl chloride. Although a chemoselective process in batch was already reported, a continuous-flow process reveals an increased selectivity at higher temperatures and without catalysts. In total, 15 analogues were synthesized, using similar conditions, with yields ranging between 65 and 99%. This is the first automated and chemoselective synthesis of m-sulfamoylbenzamide analogues.

  10. Prediction of the equilibrium structures and photomagnetic properties of the Prussian blue analogue RbMn[Fe(CN)(6)] by density functional theory

    NARCIS (Netherlands)

    Luzon, Javier; Castro, Miguel; Vertelman, Esther J.M.; Gengler, Régis Y.N.; van Koningsbruggen, Petra J.; Molodtsova, Olga; Knupfer, Martin; Rudolf, Petra; Loosdrecht, Paul H.M. van; Broer, Ria

    2008-01-01

    A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)(6)] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related

  11. Materials for spintronic: Room temperature ferromagnetism in Zn-Mn-O interfaces

    International Nuclear Information System (INIS)

    Quesada, A.; Garcia, M.A.; Crespo, P.; Hernando, A.

    2006-01-01

    In this paper we study the room temperature ferromagnetism reported on Mn-doped ZnO and ascribed to spin polarization of conduction electrons. We experimentally show that the ferromagnetic behaviour is associated to the coexistence of Mn 3+ and Mn +4 in MnO 2 grains where diffusion of Zn promotes the Mn 4+→ Mn 3+ reduction. Potential uses of this material in spintronic devices are analysed

  12. Large low-field magnetoresistance of Fe{sub 3}O{sub 4} nanocrystal at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shu, E-mail: mishu@buaa.edu.cn; Liu, Rui, E-mail: liurui1987@buaa.edu.cn; Li, Yuanyuan, E-mail: buaaliyuan@163.com; Xie, Yong, E-mail: xiey@buaa.edu.cn; Chen, Ziyu, E-mail: chenzy@buaa.edu.cn

    2017-04-15

    Superparamagnetic magnetite (Fe{sub 3}O{sub 4}) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is −3.5%, and when the field increases to 6000 Oe, the LFMR is up to −5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance. - Highlights: • Superparamagnetic Fe3O4 nanoparticles with small size were synthesized. • A quite high LFMR has been observed at room temperature. • The more grain boundaries increase the tunneling probability and enlarge the MR. • The fast response of the sample increase the MR at a low field.

  13. Effect of irradiation on fresh-keeping of strawberry stored at room temperature

    International Nuclear Information System (INIS)

    Zhao Yongfu; Xie Zongchuan; Lu Zhaoxin

    1999-01-01

    The fresh keeping period of strawberry irradiated with 4.0 kGy dose and stored at room temperature was prolonged to 6 days. Further experiment showed that the irradiation treatment decreased the number of mold in strawberry by two orders of magnitude, inhibited the strawberry fruit respiration and water loss, therefore, improved the effect of strawberry fresh-keeping

  14. Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3-δ

    Science.gov (United States)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Chakrabarti, P. K.

    2018-05-01

    Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3-δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region ( 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature ( M- T) curve in the entire temperature range (300-5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie-Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

  15. Numerical simulation of a quantum controlled-not gate implemented on four-spin molecules at room temperature

    CERN Document Server

    López, G V; Berman, G P; Doolen, G D; Tsifrinovich, V I

    2003-01-01

    We study numerically the non-resonant effects on four-spin molecules at room temperature with the implemented quantum controlled-not gate and using the 2 pi k method. The four nuclear spins in each molecule represent a four-qubit register. The qubits interact with each other through Ising-type interaction which is characterized by the coupling constant J sub a sub , sub b. We study the errors on the reduced density matrix as a function of the Rabi frequency, OMEGA, using the 2 pi k method and when all the coupling constants are equal or when one of them is different from the others.

  16. Investigation of room-temperature wafer bonded GaInP/GaAs/InGaAsP triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wen-xian; Dai, Pan; Ji, Lian; Tan, Ming; Wu, Yuan-yuan [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Uchida, Shiro [Department of Mechanical Science and Engineering Faculty of Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016 (Japan); Lu, Shu-long, E-mail: sllu2008@sinano.ac.cn [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Yang, Hui [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China)

    2016-12-15

    Highlights: • High quality InGaAsP material with a bandgap of 1.0 eV was grown by MBE. • Room-temperature wafer-bonded GaInP/GaAs/InGaAsP SCs were fabricated. • An efficiency of 30.3% of wafer-bonded triple-junction SCs was obtained. - Abstract: We report on the fabrication of III–V compound semiconductor multi-junction solar cells using the room-temperature wafer bonding technique. GaInP/GaAs dual-junction solar cells on GaAs substrate and InGaAsP single junction solar cell on InP substrate were separately grown by all-solid state molecular beam epitaxy (MBE). The two cells were then bonded to a triple-junction solar cell at room-temperature. A conversion efficiency of 30.3% of GaInP/GaAs/InGaAsP wafer-bonded solar cell was obtained at 1-sun condition under the AM1.5G solar simulator. The result suggests that the room-temperature wafer bonding technique and MBE technique have a great potential to improve the performance of multi-junction solar cell.

  17. Room-temperature atomic layer deposition of ZrO{sub 2} using tetrakis(ethylmethylamino)zirconium and plasma-excited humidified argon

    Energy Technology Data Exchange (ETDEWEB)

    Kanomata, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Tokoro, K.; Imai, T.; Pansila, P.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirahara, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Hirose, F., E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2016-11-30

    Highlights: • RT-ALD of ZrO{sub 2} is developed using TEMAZ and plasma-excited humidified argon. • The plasma-excited humidified argon is effective in oxidizing the TEMAZ saturated ZrO{sub 2}. • We discuss the reaction mechanism of the RT-ZrO{sub 2} ALD. - Abstract: Room-temperature atomic layer deposition (ALD) of ZrO{sub 2} is developed with tetrakis(ethylmethylamino)zirconium (TEMAZ) and a plasma-excited humidified argon. A growth per cycle of 0.17 nm/cycle at room temperature is confirmed, and the TEMAZ adsorption and its oxidization on ZrO{sub 2} are characterized by IR absorption spectroscopy with a multiple internal reflection mode. TEMAZ is saturated on a ZrO{sub 2} surface with exposures exceeding ∼2.0 × 10{sup 5} Langmuir (1 Langmuir = 1.0 × 10{sup −6} Torr s) at room temperature, and the plasma-excited humidified argon is effective in oxidizing the TEMAZ-adsorbed ZrO{sub 2} surface. The IR absorption spectroscopy suggests that Zr-OH works as an adsorption site for TEMAZ. The reaction mechanism of room-temperature ZrO{sub 2} ALD is discussed in this paper.

  18. Facile fabrication of CNT-based chemical sensor operating at room temperature

    Science.gov (United States)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  19. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68 eV) and high X- and gamma-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and gamma-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation gamma-ray (511 keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56 keV FWHM (11%) for 511 keV gamma-rays. Energy resolution of 1.81 keV FWHM for 5.9 keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and 1/f noise were dominant noise sources in the detector...

  20. Room Temperature Anodization of Aluminum at Low Voltage

    International Nuclear Information System (INIS)

    Kamal, A.; Abdel-Karim, R.; El-Raghy, S.; EL-Sherif, R.M.; Wheed, A.

    2013-01-01

    Membranes with nanometer-scale features have many applications, such as in optics, electronics, catalysis, selective molecule separation, filtration and purification, bio sensing, and single-molecule detection. Anodization process was conducted using 15, 20, 30 and 35% by volume phosphoric acid. Results showed that Porous Anodized Aluminum (PAA) with ideal nano pore arrays can be fabricated at room temperature by one-step anodization on high purity aluminum foil at 5 V. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The electrochemical behavior of anodized aluminum was studied in 0.1 M Na 2 SO 4 solutions using electrochemical impedance spectroscopy (EIS). The highest resistance of the porous layer (R p ) was detected for the samples anodized in 20% phosphoric acid

  1. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    Science.gov (United States)

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  2. Biomimetic Aerobic C-H Olefination of Cyclic Enaminones at Room Temperature: Development toward the Synthesis of 1,3,5-Trisubstituted Benzenes.

    Science.gov (United States)

    Yu, Yi-Yun; Georg, Gunda I

    2014-04-14

    A green and mild protocol for the dehydrogenative olefination of cyclic enaminones was devised via palladium catalysis at room temperature using oxygen as the terminal oxidant. The synthetic utility of the olefinated cyclic enaminones afforded a series of unique 1,3,5-trisubstituted benzenes via an unanticipated Diels-Alder tandem reaction. The broad substrate scope and good yields achieved with this new protocol provide an alternative pathway for arene functionalization.

  3. Magnetic properties of CoP alloys electrodeposited at room temperature

    International Nuclear Information System (INIS)

    Lucas, I.; Perez, L.; Aroca, C.; Sanchez, P.; Lopez, E.; Sanchez, M.C.

    2005-01-01

    CoP alloys have been electrodeposited at room temperature from electrolytes with different pH values and their magnetic properties have been studied. Cracks and fractures appear when using stiff substrates, showing that high internal stresses, due to hydrogen evolution, are involved in the electrodeposition process. Samples electrodeposited onto flexible substrates do not show cracks on the surface. We also report an increment in the coercivity of the alloys when the pH of the electrolyte decreases, and therefore, the hydrogen evolution and the internal stresses increase

  4. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  5. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  6. Fabrication and Microstructure of Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process.

    Science.gov (United States)

    Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook

    2015-08-01

    Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.

  7. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  8. Room-temperature current blockade in atomically defined single-cluster junctions

    Science.gov (United States)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  9. Synthesis of ethyl [14CH3]methylmalonyl thioglycolate as a possible substrate analogue of [14CH3]methylmalonyl coenzyme-A

    International Nuclear Information System (INIS)

    Kovacs, I.; Kovacs, Z.

    1991-01-01

    Ethyl methylmalonyl thioglycolate is a potential substrate analogue of methylmalonyl-coenzyme-A (methylmalonyl-CoA) in the investigation of propionic acid metabolism. To prove this hypothesis, the tracer ethyl [ 14 CH 3 ] methylmalonyl thioglycolate was synthesized via methyl-Meldrum's acid to carry out the biochemical examinations. The method described can also be used to synthesize [ 14 CH 3 ] methylmalonyl-CoA by transesterification of active labelled methylmalonyl thiophenyl ester. This latter intermediate is chemically stable when stored at room temperature, and the unstable [ 14 CH 3 ]methylmalonyl-CoA can be prepared in one step just preceeding the biochemical experiments. (author)

  10. The nature of the [TTF]˙+···[TTF]˙+ interactions in the [TTF]2(2+) dimers embedded in charged [3]catenanes: room-temperature multicenter long bonds.

    Science.gov (United States)

    Capdevila-Cortada, Marçal; Novoa, Juan J

    2012-04-23

    The properties of tetrathiafulvalene dimers ([TTF](2)(2+)) and the functionalized ring-shaped bispropargyl (BPP)-functionalized TTF dimers, [BPP-TTF](2)(2+), found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are energetically unstable towards dissociation. When enclosed in the 4(+)-charged central cyclophane ring of charged [3]catenanes (CBPQT(4+)), [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are also energetically unstable with respect to leaving the CBPQT(4+) ring; since the barrier for the exiting process is only about 3 kcal mol(-1), that is, within the reach of thermal energies at room temperature (neutral [TTF](2)(0) dimers are stable within the CBPQT(4+) ring). However, the [BPP-TTF](2)(2+) dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP-TTF(+) macrocycle. Finally, it was shown that the [TTF](2)(2+), [BPP-TTF](2)(2+) dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation-anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP-TTF](2)(2+) dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room-temperature multicenter long bond is formed, similar to those previously found in other [TTF](2)(2+) salts and their solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Wu, Hong; Lan, Xiao-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Qiu, Jingwen [College of Electrical and Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Hu, Te [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Tang, Hui-ping [State Key Laboratory of Porous Metal Materials, Northwestern Institute of Nonferrous Metal Research, Xi' an, Shaanxi 710012 (China)

    2016-08-15

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocation mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.

  12. Function-oriented synthesis: biological evaluation of laulimalide analogues derived from a last step cross metathesis diversification strategy.

    Science.gov (United States)

    Mooberry, Susan L; Hilinski, Michael K; Clark, Erin A; Wender, Paul A

    2008-01-01

    Laulimalide is a potent microtubule stabilizing agent and a promising anticancer therapeutic lead. The identification of stable, efficacious and accessible analogues is critical to clinically exploiting this novel lead. To determine which structural features of laulimalide are required for beneficial function and thus for accessing superior clinical candidates, a series of side chain analogues were prepared through a last step cross metathesis diversification strategy and their biological activities were evaluated. Five analogues, differing in potency from 233 nM to 7.9 muM, effectively inhibit cancer cell proliferation. Like laulimalide, they retain activity against multidrug resistant cells, stabilize microtubules and cause the formation of aberrant mitotic spindles, mitotic accumulation, Bcl-2 phosphorylation and initiation of apoptosis. Structural modifications in the C 23-C 27 dihydropyran side chain can be made without changing the overall mechanism of action, but it is clear that this subunit has more than a bystander role.

  13. Large intragrain magnetoresistance above room temperature in the double perovskite Ba2FeMoO6

    International Nuclear Information System (INIS)

    Maignan, A.; Raveau, B.; Martin, C.; Hervieu, M.

    1999-01-01

    Large intragrain magnetoresistance (MR) in the ordered double perovskite, Ba 2 FeMo 6 , is shown for the first time. The latter appears near T c (340 K), i.e., above room temperature. This effect originates from a double-exchange-like mechanism, based on antiferromagnetic coupling of localized high spin 3d 5 Fe 3+ , and itinerant 4d 1 Mo 5+ species. Besides this bulk MR, low field tunneling MR at lower temperatures (T 2 FeMoO 6 . Such a coexistence of both effects, intragrain and intergrain magnetoresistance, might extend to all members of this double perovskite family, suggesting the possibility of optimizing the MR for working at room temperature in a low magnetic field, by tuning the T c of solid solutions of such perovskites

  14. Effect of layer number on recovery rate of WS{sub 2} nanosheets for ammonia detection at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ziyu [State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Zeng, Dawen, E-mail: dwzeng@mail.hust.edu.cn [State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Zhang, Jia; Wu, Congyi; Wen, Yanwei; Shan, Bin; Xie, Changsheng [State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074 (China)

    2017-08-31

    Highlights: • Reasons for room-temperature difficult recovery of WS{sub 2} sensors for NH{sub 3} detection. • The excellent recovery within 271.9 s was observed for single-layer WS{sub 2} sensor. • The recovery time of WS{sub 2} sensor has a anti-linear relation with number of layer. - Abstract: Tungsten disulfide (WS{sub 2}), as a representative layered transition metal dichalcogenides (TMDs), is expected as a promising candidate for high-performance NH{sub 3} sensor at room temperature. Unfortunately, the common WS{sub 2} based NH{sub 3} sensors are difficult to recovery at room temperature, which severely limits its application. Hence, how to improve recovery has become an urgent problem to be solved. Herein, we prepare five types of WS{sub 2} nanosheets with different layer numbers from bulk to monolayer, and find that the recovery time of NH{sub 3} gas sensor is rapidly linear shorten as the number of layers decreasing. Through the first-principles calculation of the interaction between NH{sub 3} and WS{sub 2} substance, the different binding energy between ammonia and the surface (−0.179 eV) and interlayer (−0.356 eV) of layered WS{sub 2}, as well as the different electron transfer way, should be responsible for the difficult recovery rate of various WS{sub 2} samples. Therefore, reducing the number of layer of WS{sub 2} is a promising approach to speed up recovery. Based on this conclusion, we successfully prepare a fast recoverable ammonia gas sensor based on single layer WS{sub 2}, which exhibits exciting fast recovery within 271.9 s at room temperature without any condition. Moreover, our work also can act as a reference for other gas detection of TMDs based gas sensor to improve the gas performance at room-temperature.

  15. Fast-LPG Sensors at Room Temperature by α-Fe2O3/CNT Nanocomposite Thin Films

    Directory of Open Access Journals (Sweden)

    B. Chaitongrat

    2018-01-01

    Full Text Available We present performance of a room temperature LPG sensor based on α-Fe2O3/CNT (carbon nanotube nanocomposite films. The nanocomposite film was fabricated via the metallic Fe catalyst particle on CNTs in which both the catalyst particles and the CNT were simultaneously synthesized by chemical vapor deposition (CVD synthesis and were subsequently annealed in air to create α-Fe2O3. These methods are simple, inexpensive, and suitable for large-scale production. The structure, surface morphologies, and LPG response of nanocomposite films were investigated. Raman spectroscopy and XPS analysis showed the formation of α-Fe2O3 on small CNTs (SWNTs. Morphological analysis using FE-SEM and AFM revealed the formation of the porous surface along with roughness surface. Additionally, the sensing performance of α-Fe2O3/CNTs showed that it could detect LPG concentration at lower value than 25% of LEL with response/recovery time of less than 30 seconds at room temperature. These results suggest that the α-Fe2O3/CNTs films are challenging materials for monitoring LPG operating at room temperature.

  16. Spin Squeezing and Entanglement with Room Temperature Atoms for Quantum Sensing and Communication

    DEFF Research Database (Denmark)

    Shen, Heng

    magnetometer at room temperature is reported. Furthermore, using spin-squeezing of atomic ensemble, the sensitivity of magnetometer is improved. Deterministic continuous variable teleportation between two distant atomic ensembles is demonstrated. The fidelity of teleportating dynamically changing sequence...... of spin states surpasses a classical benchmark, demonstrating the true quantum teleportation....

  17. Room temperature negative differential resistance in terahertz quantum cascade laser structures

    Energy Technology Data Exchange (ETDEWEB)

    Albo, Asaf, E-mail: asafalbo@gmail.com; Hu, Qing [Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Reno, John L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, MS 1303, Albuquerque, New Mexico 87185-1303 (United States)

    2016-08-22

    The mechanisms that limit the temperature performance of GaAs/Al{sub 0.15}GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding, we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.

  18. Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes

    Science.gov (United States)

    Narayanan, N. S. Venkata; Ashok Raj, B. V.; Sampath, S.

    Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm -1 at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg 2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries.

  19. Room temperature ferroelectricity in continuous croconic acid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Ahmadi, Zahra; Costa, Paulo S. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Zhang, Xiaozhe [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xiao; Yu, Le; Cheng, Xuemei [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 (United States); DiChiara, Anthony D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Gruverman, Alexei, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Enders, Axel, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Xu, Xiaoshan, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2016-09-05

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  20. Gas Transport Properties of PEBAX®/Room Temperature Ionic Liquid Gel Membranes

    Czech Academy of Sciences Publication Activity Database

    Bernardo, P.; Jansen, J. C.; Bazzarelli, F.; Tasselli, F.; Fuoco, A.; Friess, K.; Izák, Pavel; Jarmarová, Veronika; Kačírková, Marie; Clarizia, G.

    2012-01-01

    Roč. 97, SI (2012), s. 73-82 ISSN 1383-5866. [Conference on Ionic Liquids in Separation and Purification Technology (ILSEPT) /1./. Sitges, 04.09.2011-07.09.2011] R&D Projects: GA ČR GAP106/10/1194 Grant - others:RFCS(XE) RFCR-CT-2010-00009 Institutional support: RVO:67985858 Keywords : room temperature ionic liquid * ionic liquid * polymer gel Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.894, year: 2012

  1. Thermally-activated deformation in dispersion-hardened polycrystalline iron at room temperature

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Cotteril, P.

    1970-01-01

    The activation volume and dislocation velocity exponent have been obtained for polycrystalline iron in the extruded, extruded and annealed, and cold-rolled and annealed condition containing various amounts of alumina or zirconia particles, using the strain rate-change technique. It is found that ...... to the thermally activated flow stress contribution at room temperature. The dislocation velocity exponent also explains the yield-drop and Lüder's strain and is in a good agreement with Hahn's model....

  2. Room temperature luminescence and ferromagnetism of AlN:Fe

    Directory of Open Access Journals (Sweden)

    H. Li

    2016-06-01

    Full Text Available AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV and 598 nm (2.07 eV are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  3. Continuous-Wave Operation of GaN Based Multi-Quantum-Well Laser Diode at Room Temperature

    International Nuclear Information System (INIS)

    Li-Qun, Zhang; Shu-Ming, Zhang; Hui, Yang; Lian, Ji; Jian-Jun, Zhu; Zong-Shun, Liu; De-Gang, Zhao; De-Sheng, Jiang; Li-Hong, Duan; Hai, Wang; Yong-Sheng, Shi; Su-Ying, Liu; Jun-Wu, Liang; Qing, Cao; Liang-Hui, Chen

    2008-01-01

    Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5μm × 800μm ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110 mA and 10.5 V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12° and 32°, respectively

  4. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    Science.gov (United States)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  5. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  6. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  7. Spin-on nanostructured silicon-silica film displaying room-temperature nanosecond lifetime photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Y.; Hatton, B.; Miguez, H.; Coombs, N.; Fournier-Bidoz, S.; Ozin, G.A. [Materials Chemistry Research Group, Department of Chemistry, Lash Miller Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Canada); Grey, J.K.; Beaulac, R.; Reber, C. [Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7 (Canada)

    2003-04-17

    A yellow transparent mesoporous silica film has been achieved by the incorporation of silicon nanoclusters into its channels. The resulting nanocomposite - fabricated using a combination of evaporation induced self- assembly and chemical vapor deposition - emits light brightly at visible wavelengths and has nanosecond radiative lifetimes at room temperature when excited by ultraviolet light (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  8. Room temperature inverse magnetocaloric effect in Pd substituted Ni{sub 50}Mn{sub 37}Sn{sub 13} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Ritwik, E-mail: ritwik.saha@tifr.res.in; Nigam, A.K.

    2014-09-01

    The structural, magnetic and magnetocaloric effects for Ni{sub 50−x}Pd{sub x}Mn{sub 37}Sn{sub 13} Heusler alloys have been investigated around both structural and magnetic transitions. The room temperature X-ray diffraction indicates 10 M modulated martensitic structure with an orthorhombic unit cell for x=0 and 1. However, the superstructure reflections for x=2 alloy imply that the pattern is related to the L2{sub 1} phase. The maximum entropy change occurring at the martensitic transition is found to be 21 J kg{sup −1} K{sup −1} for Ni{sub 50}Mn{sub 37}Sn{sub 13} alloy around room temperature. Despite the smaller change in entropy around room temperature, 3.8 times larger value of refrigerant capacity (184.6 J/kg) is achieved for 2% substitution of Pd, due to occurrence of magnetic entropy change in a broader temperature region.

  9. Inhomogeneous dislocation structure in fatigued INCONEL 713 LC superalloy at room and elevated temperatures

    International Nuclear Information System (INIS)

    Petrenec, Martin; Obrtlik, Karel; Polak, Jaroslav

    2005-01-01

    The dislocations arrangement was studied using transmission electron microscopy in specimens of polycrystalline INCONEL 713 LC superalloy cyclically strained up to failure with constant total strain amplitudes at temperatures 300, 773, 973 and 1073 K. Planar dislocation arrangements in the form of bands parallel to the {1 1 1} planes were observed in specimens cycled at all the temperatures. The bands showed up as thin slabs of high dislocation density cutting both the γ channels and γ' precipitates. Ladder-like bands were observed at room temperature

  10. Apparatus to measure emissivities of metallic films between 90K and room temperature

    International Nuclear Information System (INIS)

    Bekeris, V.I.; Ramos, E.D.; Sanchez, D.H.

    1975-01-01

    The development of multilayer insulations is aerospace and cryogenic required to know the emissivity of the metallic films used as reflective layers. This work describes an emissometer that measures the total hemispherical emissivity of metallic films evaporated on polyester substrates. The apparatus works at liquid oxigen temperatures and permits to get emissivities from 90K to room temperatures within a 15% precision. The emissometer construction and operation are described in detail. Results of measurements done on Single Aluminized Mylar are presented [pt

  11. Apparatus to measure emissivities of metallic films between 90K and room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bekeris, V I [Nunez Univ. Nacional (Argentina). Faculdad de Ciencias Exactas Y Naturales; Ramos, E D [Santa Rosa Univ. Nacional (Argentina). Facultad de Ciencias Exactas Y Naturales; Sanchez, D H [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1975-09-01

    The development of multilayer insulations is aerospace and cryogenic required to know the emissivity of the metallic films used as reflective layers. This work describes an emissometer that measures the total hemispherical emissivity of metallic films evaporated on polyester substrates. The apparatus works at liquid oxigen temperatures and permits to get emissivities from 90K to room temperatures within a 15% precision. The emissometer construction and operation are described in detail. Results of measurements done on Single Aluminized Mylar are presented.

  12. Composite properties for S-2 glass in a room-temperature-curable epoxy matrix

    Science.gov (United States)

    Clements, L. L.; Moore, R. L.

    1979-01-01

    The authors have measured thermal and mechanical properties of several composites of S-2 glass fiber in a room-temperature-curable epoxy matrix. The filament-wound composites ranged from 50 to 70 vol% fiber. The composites had generally good to excellent mechanical properties, particularly in view of the moderate cost of the material. However, the composites showed rapid increases in transverse thermal expansion above 50 C, and this property must be carefully considered if any use above that temperature is contemplated.

  13. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    Science.gov (United States)

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  14. Mid-infrared coincidence measurements on twin photons at room temperature

    DEFF Research Database (Denmark)

    Mancinelli, M.; Trenti, A.; Piccione, S.

    2017-01-01

    Quantum measurements using single-photon detectors are opening interesting new perspectives in diverse fields such as remote sensing, quantum cryptography and quantum computing. A particularly demanding class of applications relies on the simultaneous detection of correlated single photons...... pave the way to quantum measurements in the MIR by the demonstration of a room temperature coincidence measurement with non-degenerate twin photons at about 3.1 mu m. The experiment is based on the spectral translation of MIR radiation into the visible region, by means of efficient up-converter modules...

  15. Room temperature deposition of magnetite thin films on organic substrate

    International Nuclear Information System (INIS)

    Arisi, E.; Bergenti, I.; Cavallini, M.; Murgia, M.; Riminucci, A.; Ruani, G.; Dediu, V.

    2007-01-01

    We report on the growth of magnetite films directly on thin layers of organic semiconductors by means of an electron beam ablation method. The deposition was performed at room temperature in a reactive plasma atmosphere. Thin films show ferromagnetic (FM) hysteresis loops and coercive fields of hundreds of Oersted. Micro Raman analysis indicates no presence of spurious phases. The morphology of the magnetite film is strongly influenced by the morphology of the underlayer of the organic semiconductor. These results open the way for the application of magnetite thin films in the field of organic spintronics

  16. An experimental study of the effect of different starting room temperatures on occupant comfort in Danish summer weather

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Simone, Angela; Olesen, Bjarne W.

    2018-01-01

    As office workers will usually have a slightly elevated metabolic rate when arriving at work, they may prefer a room temperature below the comfort range for sedentary activity in the morning. This possibility was studied in an experiment with 25 young people, male and female, exposed to four diff...... be maintained in the early office hours, and that this will lead to a lower maximum room temperature during the day, which would result in less demand for cooling during the summer period....

  17. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Saniya; Frost, Thomas; Hazari, Arnab; Bhattacharya, Pallab, E-mail: pkb@eecs.umich.edu [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109 (United States)

    2014-10-06

    We demonstrate a semiconductor quantum dot based electrically pumped single-photon source operating at room temperature. Single photons emitted in the red spectral range from single In{sub 0.4}Ga{sub 0.6}N/GaN quantum dots exhibit a second-order correlation value g{sup (2)}(0) of 0.29, and fast recombination lifetime ∼1.3 ±0.3 ns at room temperature. The single-photon source can be driven at an excitation repetition rate of 200 MHz.

  18. Synthesis and characterization of CoPt nanoparticles prepared by room temperature chemical reduction with PAMAM dendrimer as template.

    Science.gov (United States)

    Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C

    2010-08-01

    We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.

  19. Bisphenol A is released from used polycarbonate animal cages into water at room temperature

    Science.gov (United States)

    Howdeshell, Kembra L.; Peterman, Paul H.; Judy, Barbara M.; Taylor, Julia A.; Orazio, Carl E.; Ruhlen, Rachel L.; vom Saal, Frederick S.; Welshons, Wade V.

    2003-01-01

    Bisphenol A (BPA) is a monomer with estrogenic activity that is used in the production of food packaging, dental sealants, polycarbonate plastic, and many other products. The monomer has previously been reported to hydrolyze and leach from these products under high heat and alkaline conditions, and the amount of leaching increases as a function of use. We examined whether new and used polycarbonate animal cages passively release bioactive levels of BPA into water at room temperature and neutral pH. Purified water was incubated at room temperature in new polycarbonate and polysulfone cages and used (discolored) polycarbonate cages, as well as control (glass and used polypropylene) containers. The resulting water samples were characterized with gas chromatography/mass spectrometry (GC/MS) and tested for estrogenic activity using an MCF-7 human breast cancer cell proliferation assay. Significant estrogenic activity, identifiable as BPA by GC/MS (up to 310 micro g/L), was released from used polycarbonate animal cages. Detectable levels of BPA were released from new polycarbonate cages (up to 0.3 micro g/L) as well as new polysulfone cages (1.5 micro g/L), whereas no BPA was detected in water incubated in glass and used polypropylene cages. Finally, BPA exposure as a result of being housed in used polycarbonate cages produced a 16% increase in uterine weight in prepubertal female mice relative to females housed in used polypropylene cages, although the difference was not statistically significant. Our findings suggest that laboratory animals maintained in polycarbonate and polysulfone cages are exposed to BPA via leaching, with exposure reaching the highest levels in old cages.

  20. Mechanical Properties of Discontinuous Precipitated Al-Zn Alloys after Drawing at Room and Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Lee, Jehyun [Changwon National University, Changwon (Korea, Republic of); Han, Seung Zeon; Ahn, Jee Hyuk [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lim, Sung Hwan [Kangwon National University, Chuncheon (Korea, Republic of); Kim, Kwang Ho [Pusan National University, Pusan (Korea, Republic of); Kim, Sang sik [Gyeongsang National University, Jinju (Korea, Republic of)

    2017-02-15

    In order to study the effect of microstructural change on the tensile properties of discontinuous precipitated Al-Zn binary alloy, four different Al-Zn alloys(25, 30, 35, 45 wt%Zn) were aged at 160 ℃ for different aging times(0, 5, 15, 30, 60, 120, 360 min) after being solution treated at 400 ℃, and successively drawn at room and cryogenic temperatures(-197 ℃). Discontinuous precipitation was formed during aging in the Al matrix(which contained more than 30 wt%Zn) in Al alloys containing more than 30 wt%Zn. The tensile strength of continuous precipitated Al-35Zn alloy decreased with increasing drawing ratio, however, the tensile strength of discontinuous precipitated Al-35Zn alloy increased with further drawing. The strength and ductility combination, 350 MPa-36%was achieved by drawning discontinuous precipitated Al-Zn alloy at room temperature. The discontinuous precipitated Al-Zn alloy drawn at cryogenic temperature showed a higher value of tensile strength, over 500 MPa, although ductility decreased.

  1. Mechanical Properties of Discontinuous Precipitated Al-Zn Alloys after Drawing at Room and Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Kim, Min Soo; Lee, Jehyun; Han, Seung Zeon; Ahn, Jee Hyuk; Lim, Sung Hwan; Kim, Kwang Ho; Kim, Sang sik

    2017-01-01

    In order to study the effect of microstructural change on the tensile properties of discontinuous precipitated Al-Zn binary alloy, four different Al-Zn alloys(25, 30, 35, 45 wt%Zn) were aged at 160 ℃ for different aging times(0, 5, 15, 30, 60, 120, 360 min) after being solution treated at 400 ℃, and successively drawn at room and cryogenic temperatures(-197 ℃). Discontinuous precipitation was formed during aging in the Al matrix(which contained more than 30 wt%Zn) in Al alloys containing more than 30 wt%Zn. The tensile strength of continuous precipitated Al-35Zn alloy decreased with increasing drawing ratio, however, the tensile strength of discontinuous precipitated Al-35Zn alloy increased with further drawing. The strength and ductility combination, 350 MPa-36%was achieved by drawning discontinuous precipitated Al-Zn alloy at room temperature. The discontinuous precipitated Al-Zn alloy drawn at cryogenic temperature showed a higher value of tensile strength, over 500 MPa, although ductility decreased.

  2. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties

    Science.gov (United States)

    Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.

    2010-06-01

    Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.

  3. Room-temperature ballistic transport in III-nitride heterostructures.

    Science.gov (United States)

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.

  4. A computed room temperature line list for phosphine

    Science.gov (United States)

    Sousa-Silva, Clara; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    An accurate and comprehensive room temperature rotation-vibration transition line list for phosphine (31PH3) is computed using a newly refined potential energy surface and a previously constructed ab initio electric dipole moment surface. Energy levels, Einstein A coefficients and transition intensities are computed using these surfaces and a variational approach to the nuclear motion problem as implemented in the program TROVE. A ro-vibrational spectrum is computed, covering the wavenumber range 0-8000 cm-1. The resulting line list, which is appropriate for temperatures up to 300 K, consists of a total of 137 million transitions between 5.6 million energy levels. Several of the band centres are shifted to better match experimental transition frequencies. The line list is compared to the most recent HITRAN database and other laboratorial sources. Transition wavelengths and intensities are generally found to be in good agreement with the existing experimental data, with particularly close agreement for the rotational spectrum. An analysis of the comparison between the theoretical data created and the existing experimental data is performed, and suggestions for future improvements and assignments to the HITRAN database are made.

  5. Biomimetic Aerobic C–H Olefination of Cyclic Enaminones at Room Temperature: Development toward the Synthesis of 1,3,5-Trisubstituted Benzenes

    Science.gov (United States)

    Yu, Yi-Yun

    2014-01-01

    A green and mild protocol for the dehydrogenative olefination of cyclic enaminones was devised via palladium catalysis at room temperature using oxygen as the terminal oxidant. The synthetic utility of the olefinated cyclic enaminones afforded a series of unique 1,3,5-trisubstituted benzenes via an unanticipated Diels-Alder tandem reaction. The broad substrate scope and good yields achieved with this new protocol provide an alternative pathway for arene functionalization. PMID:25071423

  6. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Science.gov (United States)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  7. Dispersion and Solvation Effects on the Structure and Dynamics of N719 Adsorbed to Anatase Titania (101) Surfaces in Room-Temperature Ionic Liquids: An ab Initio Molecular Simulation Study

    KAUST Repository

    Byrne, Aaron; English, Niall J.; Schwingenschlö gl, Udo; Coker, David F.

    2015-01-01

    Ab initio, density functional theory (DFT)-based molecular dynamics (MD) has been carried out to investigate the effect of explicit solvation on the dynamical and structural properties of a [bmim][NTf2] room-temperature ionic liquid (RTIL

  8. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Pronab; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)

    2016-06-21

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2′-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN{sub 2}) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ{sup ∗} or the ππ{sup ∗} absorption band, respectively. Together with the fluorescence bands, the LN{sub 2} studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G{sup ∗∗} level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S{sub 1} and the T{sub 1} states—one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S{sub 2}) state. This is ascribed to the proximity of the minimum of the PEC of the S{sub 2} state and the hill-top of the PEC of the S{sub 1} state.

  9. Room-temperature plasma-enhanced chemical vapor deposition of SiOCH films using tetraethoxysilane

    International Nuclear Information System (INIS)

    Yamaoka, K.; Yoshizako, Y.; Kato, H.; Tsukiyama, D.; Terai, Y.; Fujiwara, Y.

    2006-01-01

    Carbon-doped silicon oxide (SiOCH) thin films were deposited by room-temperature plasma-enhanced chemical vapor deposition (PECVD) using tetraethoxysilane (TEOS). The deposition rate and composition of the films strongly depended on radio frequency (RF) power. The films deposited at low RF power contained more CH n groups. The SiOCH films showed high etch rate and low refractive index in proportion to the carbon composition. The deposition with low plasma density and low substrate temperature is effective for SiOCH growth by PECVD using TEOS

  10. Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2010-01-01

    Enzymatic acylation reactions of flavonoids (rutin, esculin) with long chain fatty acids (palmitic, oleic acids) were carried out in 14 different ionic liquid media containing a range of cation and anion structures. Classification of RTILs according to flavonoid solubility (using COSMO...... must be struck that maximized flavonoid solubility with minimum negative impact on lipase activity. The process also benefitted from an increased reaction temperature which may have helped to reduced mass transfer limitations. Keywords: Room temperature ionic liquids (RTILs); Biosynthesis; Acylation......; Flavonoids; Lipase; Long chain fatty acids...

  11. Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Ngoc-Trung Nguyen

    2014-02-01

    Full Text Available Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally.

  12. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Y.; Kitagawa, J., E-mail: j-kitagawa@fit.ac.jp [Department of Electrical Engineering, Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan); Ono, T.; Tsubota, M. [Physonit Inc., 6-10 Minami-Horikawa, Kaita Aki, Hiroshima 736-0044 (Japan)

    2015-11-15

    The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn{sub 2}O{sub 3}-type Nd{sub 2}O{sub 3}. The estimated recovery-ratio of Nd reaches to 97%.

  13. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Y. Kataoka

    2015-11-01

    Full Text Available The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn2O3-type Nd2O3. The estimated recovery-ratio of Nd reaches to 97%.

  14. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  15. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Takumi, E-mail: endou@az.appi.keio.ac.jp; Ishi-Hayase, Junko; Maki, Hideyuki, E-mail: maki@appi.keio.ac.jp [Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522 (Japan)

    2015-03-16

    We investigated the photoluminescence of individual air-suspended single-walled carbon nanotubes (SWNTs) from 6 to 300 K. Time-resolved and antibunching measurements over the telecommunication wavelength range were performed using a superconducting single-photon detector. We detected moderate temperature independent antibunching behavior over the whole temperature range studied. To investigate the exciton dynamics, which is responsible for the antibunching behavior, we measured excitation-power and temperature dependence of the photoluminescence spectra and lifetime decay curves. These measurements suggested an exciton confinement effect that is likely caused by high-dielectric amorphous carbon surrounding the SWNTs. These results indicate that SWNTs are good candidates for light sources in quantum communication technologies operating in the telecommunication wavelength range and at room temperature.

  16. Numerical modelling and analysis of a room temperature magnetic refrigeration system

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank

    This thesis presents a two-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration at room temperature. The purpose of the model is to simulate a laboratory-scale AMR constructed at Risø National Laboratory. The AMR model geometry....... The AMR performs a cyclic process, and to simulate the AMR refrigeration cycle the model starts from an initial temperature distribution in the regenerator and fluid channel and takes time steps forward in time until the cyclical steady-state is obtained. The model can therefore be used to study both...... transient and steady-state phenomena. The AMR performance can be evaluated in terms of the no-load temperature span as well as the refrigeration capacity and the COP. The AMR model was verified extensively and it was concluded that the model has energy conservation and that the solution is independent...

  17. Clean industrial room for drift tube assembling

    International Nuclear Information System (INIS)

    Glonti, G.L.; Gongadze, A.L.; Evtukhovich, P.G.

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volume (∼ 190 m 3 ), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2%). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer. (author)

  18. Clean Industrial Room for Drift Tube Assembling

    CERN Document Server

    Glonti, GL; Evtoukhovitch, P G; Kroa, G; Manz, A; Potrap, I N; Rihter, P; Stoletov, G D; Tskhadadze, E G; Chepurnov, V F; Chirkov, A V; Shelkov, G A

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has been confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volum (\\sim 190 m^3), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2 %). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer.

  19. Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure

    International Nuclear Information System (INIS)

    Teng, Z.K.; Liu, C.T.; Miller, M.K.; Ghosh, G.; Kenik, E.A.; Huang, S.; Liaw, P.K.

    2012-01-01

    Highlights: ► Effects of precipitate microstructure on the ductility were investigated. ► The NiAl precipitates can be systematically characterized by TEM, APT, and USAXS. ► Ductility is a function of the precipitate volume fraction. ► Ductility is closely related to the Al and Ni solubilities in the Fe matrix. ► Ductility is independent of precipitate size and inter-particle spacing. - Abstract: The effects of precipitate microstructure on the room temperature ductility of a series of carefully designed Fe–Al–Ni–Cr–Mo steels were investigated. Transmission electron microscopy (TEM), ultra small angle X-ray scattering (USAXS), and atom probe tomography (APT) were conducted to quantify the nano-scaled precipitates. The accuracy of the characterization results was verified by a numerical analysis. Three point bending tests results demonstrated that ductility was a function of the precipitate volume fraction and the Al and Ni concentrations in the Fe matrix, these relationships were discussed in terms of possible mechanisms. The ductility was also found to be independent of the precipitate size and inter-particle spacing in the studied range, which was validated by a theoretical model.

  20. Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS2 Flake-Based NO2 Sensor Working at Room Temperature.

    Science.gov (United States)

    Agrawal, Abhay V; Kumar, Rahul; Venkatesan, Swaminathan; Zakhidov, Alex; Yang, Guang; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh

    2018-05-25

    Toxic gases are produced during the burning of fossil fuels. Room temperature (RT) fast detection of toxic gases is still challenging. Recently, MoS 2 transition metal dichalcogenides have sparked great attention in the research community due to their performance in gas sensing applications. However, MoS 2 based gas sensors still suffer from long response and recovery times, especially at RT. Considering this challenge, here, we report photoactivated highly reversible and fast detection of NO 2 sensors at room temperature (RT) by using mixed in-plane and edge-enriched p-MoS 2 flakes (mixed MoS 2 ). The sensor showed fast response with good sensitivity of ∼10.36% for 10 ppm of NO 2 at RT without complete recovery. However, complete recovery was obtained with better sensor performance under UV light illumination at RT. The UV assisted NO 2 sensing showed improved performance in terms of fast response and recovery kinetics with enhanced sensitivity to 10 ppm NO 2 concentration. The sensor performance is also investigated under thermal energy, and a better sensor performance with reduced sensitivity and high selectivity toward NO 2 was observed. A detailed gas sensing mechanism based on the density functional theory (DFT) calculations for favorable NO 2 adsorption sites on in-plane and edge-enriched MoS 2 flakes is proposed. This study revealed the role of favorable adsorption sites in MoS 2 flakes for the enhanced interaction of target gases and developed a highly sensitive, reversible, and fast gas sensor for next-generation toxic gases at room temperature.

  1. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-07-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron.

  2. Air temperature determination inside residual heat removal pump room of Angra-1 nuclear power plant after a design basic accident

    International Nuclear Information System (INIS)

    Siniscalchi, Marcio Rezende

    2005-01-01

    This work develops heat transfer theoretical models for determination of air temperature inside the Residual Heat Removal Pump Room of Angra 1 Nuclear Power Plant after a Design Basis Accident without forced ventilation. Two models had been developed. The differential equations are solved by analytical methods. A software in FORTRAN language are developed for simulations of temperature inside rooms for different geometries and materials. (author)

  3. Above room-temperature ferromagnetism in La1-xCaxMnO3 epitaxial thin films on SrTiO3(001) substrates

    Science.gov (United States)

    Kou, Yunfang; Wang, Hui; Miao, Tian; Wang, Yanmei; Xie, Lin; Wang, Shasha; Liu, Hao; Lin, Hanxuan; Zhu, Yinyan; Wang, Wenbin; Du, Haifeng; Pan, Xiaoqing; Wu, Ruqian; Yin, Lifeng; Shen, Jian

    The colossal magnetoresistive (CMR) manganites are popular materials for spintronics applications due to their high spin polarization. Only a couple of manganites like La1-xSrxMnO3 have a Curie temperature (Tc) that is higher than room temperature. Finding methods to raise the Tc of manganites over room temperature is useful but challenging. In this work, we use the most intensively studied La1-xCaxMnO3 (LCMO) as the prototype system to demonstrate that Tc can be greatly enhanced by carefully tuning the electronic structure using doping and strain. Specifically, we grow LCMO films on SrTiO3 (001) substrates using pulsed laser deposition. Magnetic and transport measurements indicate a great enhancement of Tc over room temperature at x =0.2 doping. Theoretical calculations indicate that the combined effects from doping and strain give rise to a new electronic structure favoring ferromagnetism in LCMO system. Furthermore, using the La0.8Ca0.2MnO3 as ferromagnetic electrodes, we achieve finite tunneling magnetoresistance (TMR) above room temperature.

  4. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  5. The design of high-Tc superconductors - Room-temperature superconductivity?

    International Nuclear Information System (INIS)

    Tallon, J.L.; Storey, J.G.; Mallett, B.

    2012-01-01

    This year is the centennial of the discovery of superconductivity and the 25th anniversary of the discovery of high-T c superconductors (HTS). Though we still do not fully understand how HTS work, the basic rules of design can be determined from studying their systematics. We know what to do to increase T c and, more importantly, what to do to increase critical current density J c . This in turn lays down a challenge for the chemist. Can the ideal design be synthesized? More importantly, what are the limits? Can one make a room-temperature superconductor? In fact fluctuations place strict constraints on this objective and provide important guidelines for the design of the ideal superconductor.

  6. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    Science.gov (United States)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  7. Extraction of plutonium from lean residues by room temperature fluoride volatility

    International Nuclear Information System (INIS)

    Campbell, G.M.; Foropoulos, J.; Kennedy, R.C.; Dye, B.A.; Behrens, R.G.

    1989-01-01

    The use of dioxygen difluoride (FOOF) and KrF 2 for the recovery of Pu from lean residues by conversion to gaseous PuF 6 is being investigated. The greater stability of PuF 6 at room temperature allows much more extensive removal of Pu from contaminated wastes, when compared to the high temperature fluoride volatility process. The process also requires fewer additive chemicals than aqueous processes, thus minimizing the amount of material that must be disposed of as radioactive waste. The transportability of gaseous PuF 6 allows much of the process to be automated, reducing operator exposure to radiation. Removal of PuF 6 decomposition product is easily facilitated by the use of these fluorinating agents. 9 refs., 8 figs

  8. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Rujun, E-mail: tangrj@suda.edu.cn, E-mail: yanghao@nuaa.edu.cn; Zhou, Hao; You, Wenlong [Jiangsu Key Laboratory of Thin Films, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Yang, Hao, E-mail: tangrj@suda.edu.cn, E-mail: yanghao@nuaa.edu.cn [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China)

    2016-08-22

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} have been investigated. The results show that the magnetic moments of insulating BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominant mechanism. The above results show that the hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.

  9. Steady-state room temperature fluorescence and CO/sub 2/ assimilation rates in intact leaves. [Phaseolus vulgaris; Xanthium strumarium

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, T D

    1985-01-01

    Steady-state room temperature variable fluorescence from leaves was measured as a function of CO/sub 2/ pressure in Xanthium strumarium L. and Phaseolus vulgaris L. Measurements were made in a range of light intensities, at normal and low O/sub 2/ partial pressure and over a range of temperatures. At low CO/sub 2/ pressure fluorescence increased with increasing CO/sub 2/. At higher CO/sub 2/ pressure fluorescence usually decreased with increasing CO/sub 2/ but occasionally increased slightly. The transition CO/sub 2/ pressure between the responses could be changed by changing light, O/sub 2/ pressure, or temperature. This breakpoint in the fluorescence-CO/sub 2/ curve was a reliable indicator of the transition between ribulose 1,5-bisphosphate (RuBP) saturated assimilation and RuBP regeneration limited assimilation. The fluorescence signal was not a reliable indicator of O/sub 2/-insensitive assimilation in these C/sub 3/ species. 21 references, 8 figures.

  10. Influence of nanosized inclusions on the room temperature thermoelectrical properties of a p-type bismuth–tellurium–antimony alloy

    International Nuclear Information System (INIS)

    Bernard-Granger, Guillaume; Addad, Ahmed; Navone, Christelle; Soulier, Mathieu; Simon, Julia; Szkutnik, Pierre-David

    2012-01-01

    Transmission electron microscopy observations and thermoelectrical property measurements (electrical conductivity, Seebeck coefficient and thermal conductivity) at room temperature have been completed on two fully dense polycrystalline p-type bismuth–tellurium–antimony alloy samples. It is shown that the presence of antimony oxide-based nanosized inclusions (controlled as to volume fraction and size distribution), homogeneously dispersed in the surrounding matrix leads to a dimensionless figure of merit (ZT) of ∼1.3 at room temperature. For comparison, when such inclusions are missing the ZT value is only 0.6.

  11. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    Energy Technology Data Exchange (ETDEWEB)

    Sukanto, H., E-mail: masheher@uns.ac.id; Budiana, E. P., E-mail: budiana.e@gmail.com; Putra, B. H. H., E-mail: benedictus.hendy@gmail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta, Indonesia 57126 (Indonesia)

    2016-03-29

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  12. Organic titanates: a model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives.

    Science.gov (United States)

    Fang, Shaofan; Li, Guangshe; Li, Huixia; Lu, Yantong; Li, Liping

    2018-04-12

    The application of lead halide perovskite nanocrystals is challenged by the lack of strategies in rapid room-temperature synthesis with controlled morphologies. Here, we report on an initial study of adopting organic titanates as a model activator that promotes rapid room-temperature synthesis of shape-controlled, highly luminescent CsPbBr3 nanocrystals and their derivatives.

  13. Strength evaluation test of pressureless-sintered silicon nitride at room temperature

    Science.gov (United States)

    Matsusue, K.; Takahara, K.; Hashimoto, R.

    1984-01-01

    In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.

  14. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  15. High temperature dielectric function of silicon, germanium and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Leyer, Martin; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin (Germany). Institut fuer Festkoerperphysik

    2010-07-01

    In the last few years accurate values for the optical properties of silicon, germanium and GaN at high temperatures have become important as a reference for in-situ analysis, e.g. reflectometry. Precise temperature dependent dielectric measurements are necessary for the growth of GaInP/GaInAs/Ge triple-junction solar cells and the hetero epitaxy of GaN on silicon and sapphire. We performed spectroscopic ellipsometry (SE) measurements of the dielectric function of silicon, germanium and GaN between 1.5 eV and 6.5 eV in the temperature range from 300 K to 1300 K. The Samples were deoxidized chemically or by heating. High resolution SE spectra were taken every 50 K while cooling down to room temperature. The temperature dependence of the critical energies is compared to literature. Measurements for germanium showed a shift of the E{sub 2} critical point of {proportional_to}0.1 eV toward lower energies. The reason for this behavior is a non-negligible oxide layer on the samples in the literature.

  16. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Srivastava, Ankit; Sinha, R.K.; Chakravartty, J.K.; Seshu, P.; Pawaskar, D.N.

    2011-01-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  17. Strain rate effects in nuclear steels at room and higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, G. E-mail: george.solomos@jrc.it; Albertini, C.; Labibes, K.; Pizzinato, V.; Viaccoz, B

    2004-04-01

    An investigation of strain rate, temperature and size effects in three nuclear steels has been conducted. The materials are: ferritic steel 20MnMoNi55 (vessel head), austenitic steel X6CrNiNb1810 (upper internal structure), and ferritic steel 26NiCrMo146 (bolting). Smooth cylindrical tensile specimens of three sizes have been tested at strain rates from 0.001 to 300 s{sup -1}, at room and elevated temperatures (400-600 deg. C). Full stress-strain diagrams have been obtained, and additional parameters have been calculated based on them. The results demonstrate a clear influence of temperature, which amounts into reducing substantially mechanical strengths with respect to RT conditions. The effect of strain rate is also shown. It is observed that at RT the strain rate effect causes up shifting of the flow stress curves, whereas at the higher temperatures a mild downshifting of the flow curves is manifested. Size effect tendencies have also been observed. Some implications when assessing the pressure vessel structural integrity under severe accident conditions are considered.

  18. Synthesis of an Orthogonal Topological Analogue of Helicene

    DEFF Research Database (Denmark)

    Wixe, Torbjörn; Wallentin, Carl‐Johan; Johnson, Magnus T.

    2013-01-01

    The synthesis of an orthogonal topological pentamer analogue of helicene is presented. This analogue forms a tubular structure with its aromatic systems directed parallel to the axis of propagation, which creates a cavity with the potential to function as a host molecule. The synthetic strategy r...

  19. Nuclear Fuel Fretting Mechanisms in a Room Temperature Unlubricated Condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, efforts for evaluating the fretting wear mechanism have been carried out by many researchers in various conditions. In an unlubricated condition, especially, effects of a wear debris and/or its layer on the fretting wear behavior were proposed that the formation of a well-developed glaze layer has a beneficial effect for decreasing a friction coefficient. Otherwise, a wear rate was accelerated by a third-body abrasion. At this time, it is well known that wear debris behaviors are affected by test variables such as a temperature, environment, material characteristics, etc. In a nuclear fuel fretting, however, its contact condition is quite different when compared with general fretting wear studies and could be summarized as the following; first, a fuel rod is supported by spacer grid springs and dimples that were elastically deformable. This results in a unique friction loop and a different fretting mechanism when a fuel rod is vibrated due to a flow-induced vibration (FIV). Next, it is possible that some region of the wear scar area with a specific spring shape condition could be hidden due to different wear debris behavior. So, some of the wear debris layers could be found on the worn surfaces in previous studies even though fretting wear tests were performed in a water lubricated condition. Finally, initial contact condition could be changed both an actual operating condition in power plants (i.e. high temperature and pressurized water (HTHP) under severe irradiation conditions) and the fretting wear tests for evaluating the wear resistant spring in lab conditions (i.e. from room temperature to HTHP without irradiation conditions) due to material degradations and the formation of the wear scar, respectively. In summary, the spring shape effect and the variation of the contact condition with increasing fretting cycle should be evaluated in order to improve the wear resistance of the spacer grid spring. So, in this study, fretting wear tests have been

  20. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers

    Science.gov (United States)

    Schlautmann, S.; Besselink, G. A. J.; Radhakrishna Prabhu, G.; Schasfoort, R. B. M.

    2003-07-01

    A method for the bonding of a microfluidic device at room temperature is presented. The wafer with the fluidic structures was bonded to a sensor wafer with gold pads by means of adhesive bonding, utilizing an UV-curable glue layer. To avoid filling the fluidic channels with the glue, a stamping process was developed which allows the selective application of a thin glue layer. In this way a microfluidic glass chip was fabricated that could be used for performing surface plasmon resonance measurements without signs of leakage. The advantage of this method is the possibility of integration of organic layers as well as other temperature-sensitive layers into a microfluidic glass device.

  1. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Science.gov (United States)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  2. Two-Dimensional Metrology with Flatbed Scanners at Room and Liquid Nitrogen Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A. [CIEMAT. Madrid (Spain)

    2000-07-01

    We study the capability of the commercial flatbed scanner as a measuring instrument of two-coordinate sample both at room and liquid nitrogen temperatures. We describes simple procedure to calibrate the scanner, and the most adequate standard configuration to carry out the measurements. To illustrate the procedure, we measure the relative positions of the conductors in a cross-section of a superconducting magnet of CERN. (Author) 8 refs.

  3. Two-Dimensional Metrology with Flatbed Scanners at Room and Liquid Nitrogen Temperatures

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2000-01-01

    We study the capability of the commercial flatbed scanner as a measuring instrument of two-coordinate sample both at room and liquid nitrogen temperatures. We describes simple procedure to calibrate the scanner, and the most adequate standard configuration to carry out the measurements. To illustrate the procedure, we measure the relative positions of the conductors in a cross-section of a superconducting magnet of CERN. (Author) 8 refs

  4. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  5. Designing switchable near room-temperature multiferroics via the discovery of a novel magnetoelectric coupling

    Science.gov (United States)

    Feng, J. S.; Xu, Ke; Bellaiche, Laurent; Xiang, H. J.

    2018-05-01

    Magnetoelectric (ME) coupling is the key ingredient for realizing the cross-control of magnetism and ferroelectricity in multiferroics. However, multiferroics are not only rare, especially at room-temperature, in nature but also the overwhelming majority of known multiferroics do not exhibit highly-desired switching of the direction of magnetization when the polarization is reversed by an electric field. Here, we report group theory analysis and ab initio calculations demonstrating, and revealing the origin of, the existence of a novel form of ME coupling term in a specific class of materials that does allow such switching. This term naturally explains the previously observed electric field control of magnetism in the first known multiferroics, i.e., the Ni–X boracite family. It is also presently used to design a switchable near room-temperature multiferroic (namely, LaSrMnOsO6 perovskite) having rather large ferroelectric polarization and spontaneous magnetization, as well as strong ME coupling.

  6. Room Temperature Magnetic Determination of the Current Center Line for the ITER TF Coils

    CERN Document Server

    Lerch, Philippe; Buzio, Marco; Negrazus, Marco; Baynham, Elwyn; Sanfilippo, Stephane; Foussat, Arnaud

    2014-01-01

    The ITER tokamak includes 18 superconducting D-shaped toroidal field (IT) coils. Unavoidable shape deformations as well as assembly errors will lead to field errors, which can be modeled with the knowledge of the current center line (CCL). Accurate survey during the entire manufacturing and assembly process, including transfer of survey points, is complex. In order to increase the level of confidence, a room temperature magnetic measurement of the CCL on assembled and closed winding packs is foreseen, prior to insertion into their cold case. In this contribution, we discuss the principle of the CCL determination and present a low frequency ac measurement system under development at PSI, within an ITER framework contract. The largest current allowed to flow in the TF coil at room temperature and the precision requirements for the determination of the CCL loci of the coil are hard boundaries. Eddy currents in the radial plates, the winding pack enclosures, and possibly from iron in the reinforced concrete floor...

  7. Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature

    International Nuclear Information System (INIS)

    Tu, Wenqiang; Xing, Lidan; Xia, Pan; Xu, Mengqing; Liao, Youhao; Li, Weishan

    2016-01-01

    Highlights: • Addition of 1% DMAc improves the cyclic performances of LLO at room and elevated temperature. • DMAc oxidizes previously to the STD electrolyte and generates a protective film on the LLO surface. • The protective film is thin and uniform. - Abstract: In this work, dimethylacetamide (DMAc) was investigated as an electrolyte film-forming additive to improve the cyclic stability of high voltage Lithium-rich layered nickel manganese cobalt oxide (LLO) cathode at room (25 °C) and elevated (55 °C) temperature. At 0.5C rate, addition of 1% DMAc slightly decreases the initial discharge capacity of LLO from 187 to 179 mAh g −1 at room temperature and 255 to 246 mAh g −1 at elevated temperature, while significantly improves the capacity retention of LLO from 65.8% to 80.2% after 200 cycles at room temperature and from 21.1% to 66.7% after 150 cycles at elevated temperature. The mechanism of DMAc improving the cyclic stability of LLO was investigated via theoretical calculation and experimental characterizations, which demonstrated that DMAc oxidized preferential to the STD (1.0 M LiPF 6 in a mixed solvent of ethylene carbonate/ethyl methyl carbonate/diethyl carbonate) electrolyte, generating a thin and uniform film on the LLO surface. This film effectively suppresses the subsequent decomposition of STD electrolyte and further degradation of spinel phase converted from the layered structure of LLO, resulting in improved cyclic stability of LLO at room and elevated temperature.

  8. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Youroukov, S; Kitova, S; Danev, G [Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 113 Sofia (Bulgaria)], E-mail: skitova@clf.bas.bg

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO{sub 2} together with concurrent bombardment with low energy N{sub 2}{sup +} ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N{sub 2}{sup +} ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV)

  9. Cyclic deformation of zircaloy-4 at room temperature

    International Nuclear Information System (INIS)

    Armas, A. F; Herenu, S; Bolmaro, R; Alvarez-Armas, I

    2003-01-01

    Annealed materials hardens under low cyclic fatigue tests.However, FCC metals tested with medium strain amplitudes show an initial cyclic softening.That behaviour is related with the strong interstitial atom-dislocation interactions.For HCP materials the information is scarce.Commercial purity Zirconium and Zircaloy-4 alloys show also a pronounced cyclic softening, similar to Titanium alloys.Recently the rotation texture induced softening model has been proposed according to which the crystals are placed in a more favourable deformation orientation by prismatic slip due to the cyclic strain.The purpose of the current paper is the presentation of decisive results to discuss the causes for cyclic softening of Zircaloy-4. Low cycle fatigue tests were performed on recrystallized Zircaloy-4 samples.The cyclic behaviour shows an exponential softening at room temperature independently of the deformation range.Only at high temperature a cyclic hardening is shown at low number of cycles.Friction stresses, related with dislocation movement itself, and back stresses, related with dislocation pile-ups can be calculated from the stress-strain loops.The cyclic softening is due to diminishing friction stress while the starting hardening behaviour is due to increasing back stresses.The rotation texture induced softening model is ruled out assuming instead a model based on dislocation unlocking from interstitial oxygen solute atoms

  10. Selective electrochemical extraction of REEs from NdFeB magnet waste at room temperature

    NARCIS (Netherlands)

    Venkatesan, P.; Vander Hoogerstraete, Tom; Hennebel, Tom; Binnemans, Koen; Sietsma, J.; Yang, Y.

    2018-01-01

    NdFeB magnet waste is one of the important secondary resources from which rare-earth elements (REEs) can be recovered. Herein we present an electrochemical route to selectively extract REEs from the magnet waste at room temperature. First, the magnet waste was partially leached with HCl. The

  11. Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor.

    Science.gov (United States)

    Xiao, Xiang; Zhang, Letao; Shao, Yang; Zhou, Xiaoliang; He, Hongyu; Zhang, Shengdong

    2017-12-13

    A room-temperature flexible amorphous indium-gallium-zinc oxide thin film transistor (a-IGZO TFT) technology is developed on plastic substrates, in which both the gate dielectric and passivation layers of the TFTs are formed by an anodic oxidation (anodization) technique. While the gate dielectric Al 2 O 3 is grown with a conventional anodization on an Al:Nd gate electrode, the channel passivation layer Al 2 O 3 is formed using a localized anodization technique. The anodized Al 2 O 3 passivation layer shows a superior passivation effect to that of PECVD SiO 2 . The room-temperature-processed flexible a-IGZO TFT exhibits a field-effect mobility of 7.5 cm 2 /V·s, a subthreshold swing of 0.44 V/dec, an on-off ratio of 3.1 × 10 8 , and an acceptable gate-bias stability with threshold voltage shifts of 2.65 and -1.09 V under positive gate-bias stress and negative gate-bias stress, respectively. Bending and fatigue tests confirm that the flexible a-IGZO TFT also has a good mechanical reliability, with electrical performances remaining consistent up to a strain of 0.76% as well as after 1200 cycles of fatigue testing.

  12. Fatigue behavior of alloy 600 in sodium chloride solution at room temperature

    International Nuclear Information System (INIS)

    Ho, J.-T.; Yu, G.-P.

    2004-01-01

    Fatigue crack growth (FCG) rates of mill annealed Alloy 600 in NaCI solution were studied by a fracture mechanics test method. Compact tension (CT) specimens were tested under load control with a sinusoidal wave form, in accordance with ASTM specification E647-83, to investigate the effects of environment, load frequency (f), load ratio (R=Pmin/Pmax). The FCG rates of Alloy 600, R=0.1, f=1Hz, were quite similar in air, distilled water, and NaCI (0.6 M, 0.1 M, and 0.001 M) solution at room temperature. Environmental enhancement effect on the FCG rate of Alloy 600 was not significant in NaCI solution. Variations of the load frequency (0.03Hz-3Hz) did not influence the FCG rates of Alloy 600 significantly in air and 0.1 M NaCI solution. The FCG rates of Alloy 600 in air and 0.1 M NaCI solution increased with increasing the load ratio. Compared with the corrosion effects, test results showed that the mechanical effects dominated on the FCG rates of Alloy 600 in chloride solution at room temperature. The SEM fractographs showed that significant striations and transgranular fracture modes were observed on tested specimens. (author)

  13. Tensile properties of unirradiated PCA from room temperature to 7000C

    International Nuclear Information System (INIS)

    Braski, D.N.; Maziasz, P.J.

    1983-01-01

    The tensile properties of Prime Candidate Alloy (PCA) austenitic stainless steel after three different thermomechanical treatments were determined from room temperature to 700 0 C. The solution-annealed PCA had the lowest strength and highest ductility, while the reverse was true for the 25%-cold-worked material. The PCA containing titanium-rich MC particles fell between the other two heats. The cold-worked PCA had nearly the same tensile properties as cold-worked type 316 stainless steel. Both alloys showed ductility minima at 300 0 C

  14. Heavy atom enhanced room-temperature phosphorimetry for ultratrace determination of harmane

    OpenAIRE

    Flávia F. de Carvalho Marques; Flávia da Silva Figueiredo; Ricardo Queiroz Aucelio

    2008-01-01

    Harmane has been proposed for the treatment of epilepsy, AIDS and leshmaniosis. Its room-temperature phosphorescence was induced using either AgNO3 or TlNO3, enabling absolute limits of detection of 0.12 and 2.4 ng respectively, with linear dynamic ranges extending up to 456 ng (AgNO3) and 911 ng (TlNO3). Relative standard deviations around 3% were observed for substrates containing 46 ng of harmane. Such sensitivity and precision are needed because harmane intake must be strictly controlled ...

  15. Near-infrared water vapour self-continuum at close to room temperature

    International Nuclear Information System (INIS)

    Ptashnik, I.V.; Petrova, T.M.; Ponomarev, Yu.N.; Shine, K.P.; Solodov, A.A.; Solodov, A.M.

    2013-01-01

    The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm −1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT C KD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm −1 , using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm −1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT C KD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements. -- Highlights: ► New lab measurements of the near-infrared water vapour self-continuum absorption. ► First room-temperature data on the self-continuum in the 1.6 μm window. ► In the 1.6 μm window the new data exceed MT C KD-2.5 model by 2 orders of magnitude

  16. Lead palladium titanate: A room-temperature multiferroic

    Science.gov (United States)

    Gradauskaite, Elzbieta; Gardner, Jonathan; Smith, Rebecca M.; Morrison, Finlay D.; Lee, Stephen L.; Katiyar, Ram S.; Scott, James F.

    2017-09-01

    There have been a large number of papers on bismuth ferrite (BiFe O3 ) over the past few years, trying to exploit its room-temperature magnetoelectric multiferroic properties. Although these are attractive, BiFe O3 is not the ideal multiferroic due to weak magnetization and the difficulty in limiting leakage currents. Thus there is an ongoing search for alternatives, including such materials as gallium ferrite (GaFe O3 ). In the present work we report a comprehensive study of the perovskite PbT i1 -xP dxO3 with 0

  17. Optical Diode Effect at Spin-Wave Excitations of the Room-Temperature Multiferroic BiFeO_{3}.

    Science.gov (United States)

    Kézsmárki, I; Nagel, U; Bordács, S; Fishman, R S; Lee, J H; Yi, Hee Taek; Cheong, S-W; Rõõm, T

    2015-09-18

    Multiferroics permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO_{3} over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.

  18. A phase transition close to room temperature in BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, J; Jadhav, P; Chaix-Pluchery, O [Laboratoire des Materiaux et du Genie Physique, Grenoble INP, CNRS, Minatec, 3, parvis Louis Neel, 38016 Grenoble (France); Varela, M [Departamento Fisica Aplicada i Optica, Universitat de Barcelona, Carrer MartI i Franques 1. 08028 Campus UAB, Bellaterra 08193 (Spain); Dix, N; Sanchez, F; Fontcuberta, J, E-mail: jens.kreisel@grenoble-inp.fr [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193 (Spain)

    2011-08-31

    BiFeO{sub 3} (BFO) multiferroic oxide has a complex phase diagram that can be mapped by using appropriately substrate-induced strain in epitaxial films. By using Raman spectroscopy, we conclusively show that films of the so-called supertetragonal T-BFO phase, stabilized under compressive strain, display a reversible temperature-induced phase transition at about 100 deg. C, and thus close to room temperature. (fast track communication)

  19. Experimental data of the static behavior of reinforced concrete beams at room and low temperature.

    Science.gov (United States)

    Mirzazadeh, M Mehdi; Noël, Martin; Green, Mark F

    2016-06-01

    This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well.

  20. Room Temperature Imprint Using Crack-Free Monolithic SiO2-PVA Nanocomposite for Fabricating Microhole Array on Silica Glass

    Directory of Open Access Journals (Sweden)

    Shigeru Fujino

    2015-01-01

    Full Text Available This paper aims to fabricate microhole arrays onto a silica glass via a room temperature imprint and subsequent sintering by using a monolithic SiO2-poly(vinyl alcohol (PVA nanocomposite as the silica glass precursor. The SiO2-PVA suspension was prepared from fumed silica particles and PVA, followed by drying to obtain tailored SiO2-PVA nanocomposites. The dependence of particle size of the fumed silica particles on pore size of the nanocomposite was examined. Nanocomposites prepared from 7 nm silica particles possessed suitable mesopores, whereas the corresponding nanocomposites prepared from 30 nm silica particles hardly possessed mesopores. The pore size of the nanocomposites increased as a function of decreasing pH of the SiO2-PVA suspension. As a consequence, the crack-free monolithic SiO2-PVA nanocomposite was obtained using 7 nm silica particles via the suspension at pH 3. Micropatterns were imprinted on the monolithic SiO2-PVA nanocomposite at room temperature. The imprinted nanocomposite was sintered to a transparent silica glass at 1200°C in air. The fabricated sintered glass possessed the microhole array on their surface with aspect ratios identical to the mold.