WorldWideScience

Sample records for room temperature x

  1. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J.; Glatzel, Pieter; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; McQueen, Trevor A.; DiFiore, Dörte; Fry, Alan R.; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W.; Seibert, M. Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Messinger, Johannes; Sauter, Nicholas K.; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2012-01-01

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation. PMID:22665786

  2. Performance of room temperature mercuric iodide (HgI2) detectors in the ultra low energy x-ray region

    International Nuclear Information System (INIS)

    Dabrowski, A.J.; Iwanczyk, J.S.; Barton, J.B.; Huth, G.C.; Whited, R.; Ortale, C.; Economou, T.E.; Turkevich, A.L.

    1980-01-01

    Performance of room temperature mercuric iodide x-ray spectrometers has been recently improved through new fabrication techniques and further development of low noise associated electronic systems. This progress has extended the range of measurements to the ultra low energy x-ray region at room temperature. This paper reports the study of the effect of contact material on the performance of HgI 2 detectors in the low energy x-ray region

  3. Heavy metal ternary halides for room-temperature x-ray and gamma-ray detection

    Science.gov (United States)

    Liu, Zhifu; Peters, John A.; Stoumpos, Constantinos C.; Sebastian, Maria; Wessels, Bruce W.; Im, Jino; Freeman, Arthur J.; Kanatzidis, Mercouri G.

    2013-09-01

    We report our recent progress on wide bandgap ternary halide compounds CsPbBr3 and CsPbCl3 for room temperature x-ray and gamma-ray detectors. Their bandgaps are measured to be 2.24 eV and 2.86 eV, respectively. The measured mobility-lifetime products of CsPbBr3 are 1.7×10-3, 1.3×10-3 cm2/V, for electron and hole carriers, respectively, comparable to those of CdTe. We measured the room temperature spectral response of CsPbBr3 sample to Ag x-ray radiation. It has a well-resolved spectral response to the 22.4 keV Kα radiation peak and detector efficiency comparable to that of CdZnTe detector at 295 K.

  4. Evidence of Room Temperature Ferromagnetism Due to Oxygen Vacancies in (In1- x Fe x )2O3 Thin Films

    Science.gov (United States)

    Chakraborty, Deepannita; Munuswamy, Kuppan; Shaik, Kaleemulla; Nasina, Madhusudhana Rao; Dugasani, Sreekantha Reddy; Inturu, Omkaram

    2018-03-01

    Iron substituted indium oxide (In1- x Fe x )2O3 thin films at x = 0.00, 0.03, 0.05 and 0.07 were coated onto Corning 7059 glass substrates using the electron beam evaporation technique followed by annealing at different temperatures. The prepared thin films were subjected to different characterization techniques to study their structural, optical and magnetic properties. The structural properties of the thin films were studied using x-ray diffractometry (XRD). From the XRD results it was found that the films were crystallized in cubic structure, and no change in crystal structure was observed with annealing temperature. No secondary phases related to iron were observed from the XRD profiles. The chemical composition and surface morphology of the films were examined by field emission scanning electron microscope (FE-SEM) attached with energy dispersive analysis of x-ray (EDAX). The valence state of the elements were studied by x-ray photoelectron spectroscopy (XPS) and found that the indium, iron and oxygen were in In+3, Fe+3 and O-2 states. From the data, the band gap of the (In1- x Fe x )2O3 thin films were calculated and it increased with increase of annealing temperature. The magnetic properties of the films were studied at room temperature by vibrating sample magnetometer (VSM). The films exhibited ferromagnetism at room temperature.

  5. Room temperature ferromagnetism in Zn{sub 1-x}Co{sub x}S thin films with wurtzite structure

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shiv P., E-mail: shivpoojanbhola@gmail.com [Physics Department, University of Allahabad, Allahabad 211002 (India); Pivin, J.C. [CSNSM, IN2P3-CNRS, Batiment 108, F-91405 Orsay Campus (France); Chawla, A.K.; Chandra, Ramesh [Nanoscience Laboratory, IIC, Indian Institute of Technology, Roorkee 247667 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Lokendra, E-mail: lkumarau@gmail.com [Physics Department, University of Allahabad, Allahabad 211002 (India)

    2011-11-15

    The magnetic properties of Zn{sub 1-x}Co{sub x}S (x=0.025 and 0.05) thin films grown on {alpha}-quartz substrates at different temperatures (T{sub S}) of 200, 400 and 600 deg. C by means of pulsed laser deposition are presented. The films are crystallized with wurtzite structure. Optical absorption and transmission electron microscopy measurements indicate that Co ions are substituted to Zn on tetrahedral sites. Their magnetic response is composed of ferromagnetic and paramagnetic components of which respective strengths depend on T{sub S} and Co concentration. This behavior is interpreted as due to fluctuations in the magnetic ordering, depending on grain size and site location in grain boundaries or in crystal cores. - Highlights: > Co doped ZnS thin films have been fabricated at different substrate temperatures. > Magnetization in the films changes with changing substrate temperature. > Substitution of Co on Zn sites gives room temperature intrinsic ferromagnetism. > Magnetization in the films is composed of ferromagnetic and paramagnetic components.

  6. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  7. Room temperature magneto-electric coupling in La-Zn doped Ba{sub 1-x}La{sub x}Fe{sub 12-x}Zn{sub x}O{sub 19} (x = 0.0-0.4) hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pawan; Gaur, Anurag [National Institute of Technology, Department of Physics, Kurukshetra (India)

    2017-12-15

    Barium hexaferrite powder samples with substitution of La{sup +3} at Ba{sup +2} and Zn{sup +2} at Fe{sup +3} site, according to the series formula Ba{sub 1-x}La{sub x}Fe{sub 12-x}Zn{sub x}O{sub 19} (x = 0.0, 0.1, 0.2, 0.3, 0.4) have been prepared by the co-precipitation method. These samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy, Polarization versus electric field loop tracer and vibrating sample magnetometer techniques. XRD patterns and Rietveld refinement indicate the single-phase formation of the magneto-plumbite barium hexaferrite for all the samples. Significant changes in dielectric properties are obtained by the different doping concentration of La and Zn. Ferroelectric loop for all the samples shows the lossy ferroelectric behaviour. Large spontaneous polarization is observed for x = 0.2 sample at room temperature. With increasing La and Zn doping content, the value of saturation magnetization and retentivity increases, and reaches a maximum value of 40.0 emu/gm and 24.0 emu/gm, respectively, for x = 0.2 sample and then decreases. To confirm the magneto-electric coupling, the second-order magneto-electric coupling coefficient β is measured through the dynamic method with the maximum value of ∝ 1.69 x 10{sup -6} mV/cm.Oe{sup 2} for x = 0.2 sample at room temperature. The observations of room temperature magneto-electric coupling in these samples are useful for evolution of new multifunctional devices. (orig.)

  8. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    OpenAIRE

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  9. Growth of room temperature ferromagnetic Ge1-xMnx quantum dots on hydrogen passivated Si (100) surfaces

    Science.gov (United States)

    Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo

    2018-05-01

    A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.

  10. Study of dielectric liquids at room temperature for high energy x ray Tomography

    International Nuclear Information System (INIS)

    Lepert, S.

    1989-09-01

    The detection of X rays by means of a dielectric liquid detector system, at room temperature, is discussed. The physico-chemical properties of a dielectric liquid, the construction of a cleaning device and of two electrode configurations, and the utilization of different amplifier models are studied. The results allowed the analysis and characterization of the behavior of the dielectric liquid under X ray irradiation. Data obtained is confirmed by computerized simulation. The choice of Tetramethyl-germanium for the X ray tomography, applied in nondestructive analysis, is explained. The investigation of the system parameters allowed the setting of the basis of a prototype project for a multi-detector [fr

  11. Above room-temperature ferromagnetism in La1-xCaxMnO3 epitaxial thin films on SrTiO3(001) substrates

    Science.gov (United States)

    Kou, Yunfang; Wang, Hui; Miao, Tian; Wang, Yanmei; Xie, Lin; Wang, Shasha; Liu, Hao; Lin, Hanxuan; Zhu, Yinyan; Wang, Wenbin; Du, Haifeng; Pan, Xiaoqing; Wu, Ruqian; Yin, Lifeng; Shen, Jian

    The colossal magnetoresistive (CMR) manganites are popular materials for spintronics applications due to their high spin polarization. Only a couple of manganites like La1-xSrxMnO3 have a Curie temperature (Tc) that is higher than room temperature. Finding methods to raise the Tc of manganites over room temperature is useful but challenging. In this work, we use the most intensively studied La1-xCaxMnO3 (LCMO) as the prototype system to demonstrate that Tc can be greatly enhanced by carefully tuning the electronic structure using doping and strain. Specifically, we grow LCMO films on SrTiO3 (001) substrates using pulsed laser deposition. Magnetic and transport measurements indicate a great enhancement of Tc over room temperature at x =0.2 doping. Theoretical calculations indicate that the combined effects from doping and strain give rise to a new electronic structure favoring ferromagnetism in LCMO system. Furthermore, using the La0.8Ca0.2MnO3 as ferromagnetic electrodes, we achieve finite tunneling magnetoresistance (TMR) above room temperature.

  12. Paramagnetic behavior at room temperature of Zn{sub 1−x}Mn{sub x}Te nanocrystals grown in a phosphate glass matrix by the fusion method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandra S., E-mail: alessandra@mestrado.ufu.br [Universidade Federal de Uberlândia, Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Uberlândia CEP: 38400-902 (Brazil); Franco, Adolfo; Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, C. P. 131, 74001-970 Goiânia, GO (Brazil); Dantas, Noelio O. [Universidade Federal de Uberlândia, Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Uberlândia CEP: 38400-902 (Brazil)

    2015-10-25

    This work reports on the synthesis and characterization of Zn{sub 1−x}Mn{sub x}Te nanocrystals (NCs) with Mn doping concentration x varying from 0.000 to 0.800. Physical properties of samples were studied by transmission electron microscopy, magnetic force microscopy, vibrating sample magnetometry and electron paramagnetic resonance spectroscopy. Room temperature experiments revealed the size of NCs, the growth of magnetization and non-linear dependence of magnetic susceptibility on the concentration of Mn{sup 2+} ions; samples with low concentrations revealed the presence of ions in the interior and near the surface of the NCs. The results obtained confirm the paramagnetic behavior of Zn{sub 1−x}Mn{sub x}Te NCs at room temperature.

  13. Room temperature photoluminescence from In{sub x}Al{sub (1−x)}N films deposited by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Mohanta, A. [Oak Ridge Institute for Science and Education, Research Participation Program, U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Roberts, A. T. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [Plasma Chemistry Research Center-CNR, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 10–12 nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1−x)}N were comparatively investigated for indium compositions ranging from x = 0.092 to 0.235, including x = 0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  14. Room temperature superconductors

    International Nuclear Information System (INIS)

    Sleight, A.W.

    1995-01-01

    If the Holy Grail of room temperature superconductivity could be achieved, the impact on could be enormous. However, a useful room temperature superconductor for most applications must possess a T c somewhat above room temperature and must be capable of sustaining superconductivity in the presence of magnetic fields while carrying a significant current load. The authors will return to the subject of just what characteristics one might seek for a compound to be a room temperature superconductor. 30 refs., 3 figs., 1 tab

  15. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  16. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68 eV) and high X- and gamma-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and gamma-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation gamma-ray (511 keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56 keV FWHM (11%) for 511 keV gamma-rays. Energy resolution of 1.81 keV FWHM for 5.9 keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and 1/f noise were dominant noise sources in the detector...

  17. Room temperature multiferroic properties of (Fe{sub x}, Sr{sub 1−x})TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung-Tae; Kim, Cheolbok; Fang, Sheng-Po; Yoon, Yong-Kyu, E-mail: ykyoon@ece.ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-09-08

    This letter reports the structural, dielectric, ferroelectric, and magnetic properties of Fe substituted SrTiO{sub 3} thin films in room temperature. The structural data obtained from x-ray diffraction indicates that (Fe{sub x},Sr{sub 1−x})TiO{sub 3}, the so called FST, transforms from pseudocubic to tetragonal structures with increase of the Fe content in SrTiO{sub 3} thin films, featuring the ferroelectricity, while vibrating sample magnetometer measurements show magnetic hysteresis loops for the samples with low iron contents indicating their ferromagnetism. The characterized ferroelectricity and ferromagnetism confirms strong multiferroitism of the single phase FST thin films in room temperature. Also, an FST thin film metal-insulator-metal multiferroic capacitor has been fabricated and characterized in microwave frequencies between 10 MHz and 5 GHz. A capacitor based on Fe{sub 0.1}Sr{sub 0.9}TiO{sub 3} with a thickness of 260 nm shows a high electric tunability of 18.6% at 10 V and a maximum magnetodielectric value of 1.37% at 0.4 mT with a loss tangent of 0.021 at 1 GHz. This high tuning and low loss makes this material as a good candidate for frequency agile microwave devices such as tunable filters, phase shifters, and antennas.

  18. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  19. Hydrogen absorption/desorption characteristics of room temperature ZrMn2-xNix system (x = 1.25-1.50)

    International Nuclear Information System (INIS)

    Kumar, Vinod; Pukazhselvan, D.; Singh, S.K.; Tyagi, A.K.

    2014-01-01

    The present communication deals with the hydrogen storage characteristics of C15 laves phase ZrMn 2-x Ni x system tailored within the x values of 1.25 to 1.50. Drastic variations in thermodynamics of the hydride phase is observed for any little changes of concentration x within this narrow range. The most promising room temperature hydrogen storage materials are found to be formed within the range of 1.35 to 1.45 where ∼ 2.5 to 2.9 H/F.U. can be reversibly stored under the ideal operating conditions. The heat of the reaction is found to be ∼ 17 kJ/mol, which means these are promising candidates for stationary and short range mobile applications. The phase structural features and the thermodynamic aspects of all the materials are discussed in detail. (author)

  20. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Layek, Samar, E-mail: samarlayek@gmail.com; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni{sub 1−x}Mn{sub x}O (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  1. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    International Nuclear Information System (INIS)

    Layek, Samar; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni_1_−_xMn_xO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  2. Study of low noise preamplifier systems for use with room temperature mercuric iodide (HgI2) x-ray detectors

    International Nuclear Information System (INIS)

    Iwanczyk, J.S.; Dabrowski, A.J.; Huth, G.C.; Del Duca, A.; Schenpple, W.

    1980-01-01

    An analysis of different preamplification systems for use with room temperature mercuric iodide x-ray detectors has been performed. Resistor-, drain-, and light-feedback preamplifiers have been studied. Energy resolution of 295 eV (FWHM) for Fe-55 source (5.9 keV) and 225 eV (FWHM) for the pulser have been obtained with both the detector and the input FET at room temperature using the pulsed-light feedback preamplifier. It has been shown that cooling the input FET using a small Peltier element allows the energy resolution to be improved up to 25%

  3. Microstructure stability of silver electrodeposits at room temperature

    International Nuclear Information System (INIS)

    Hansen, Karsten; Pantleon, Karen

    2008-01-01

    In situ quantitative X-ray diffraction analysis was used to investigate the kinetics of microstructure evolution at room temperature (self-annealing) in an electrodeposited silver layer. As a function of time at room temperature the as-deposited nanocrystalline microstructure evolved considerably: orientation-dependent grain growth and changes of the preferred grain orientation occurred. It is demonstrated for the first time that self-annealing occurs for electrodeposited silver layers and, hence, is not a unique feature of copper as often suggested

  4. Continuous room-temperature operation of GaAs-Al/sub x/Ga1/sub -//sub x/As double-heterostructure lasers prepared by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Cho, A.Y.; Dixon, R.W.; Casey, H.C. Jr.; Hartman, R.L.

    1976-01-01

    The continuous (cw) operation at temperatures as high as 100 0 C of stripe-geometry GaAs-Al/sub x/Ga/sub 1-x/As double-heterostructure lasers fabricated by molecular-beam epitaxial (MBE) techniques has been achieved. Improved MBE laser performance was the result of the extensive efforts to eliminate hydrocarbon and water vapor from the growth apparatus. For 12-μm-wide stripe-geometry lasers with 380-μm-long cavities, the cw threshold currents varied between 163 and 297 mA at room temperature

  5. Photoluminescent enhancement of CdSe/Cd(1-x) Zn(x)S quantum dots by hexadecylamine at room temperature.

    Science.gov (United States)

    Yang, Jie; Yang, Ping

    2012-09-01

    CdSe/Cd(1-x) Zn(x)S core/shell quantum dots (QDs) were fabricated in 1-octadecene via a two step synthesis. CdSe cores were first prepared using CdO, trioctylphosphine (TOP) selenium, and stearic acid. Subsquently, a Cd(1-x) Zn(x)S shell coating was carried out using zinc acetate dihydrate, cadmium acetate dihydrate, TOPS, and hexadecylamine (HDA) starting materials in the friendly organic system under relatively low temperature. The absorption and photoluminescence (PL) spectra have a significant red shift after the coverage of Cd(1-x)Zn(x)S shell on CdSe cores. The X-ray diffraction analysis of samples confirmed the formation of core/shell structure. The PL quantum yields (QYs) of CdSe/Cd(1-x)Zn(x)S QDs were improved gradually with time at room temperature. This is ascribed to the surface passivation of HDA to the QDs during store. This phenomenon was confirmed by the Fourier transform infrared spectrum of samples. Namely, HDA does not capped on the surface of as-prepared QDs, in which a low PL QYs was observed (less than 10%). Being storing for certain time, HDA attached to the surface of the QDs, in which the PL QYs increased (up to 31%) and the full width at half maximum of PL spectra decreased. Moreover, the fluorescence decay curve of the core/shell QDs is closer to a biexponential decay profile and has a longer average PL lifetime. The variation of average PL lifetime also indicated the influence of HDA during store.

  6. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Science.gov (United States)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  7. Room-temperature synthesis of ultraviolet-emitting nanocrystalline GaN films using photochemical vapor deposition

    International Nuclear Information System (INIS)

    Yamazaki, Shunsuke; Yatsui, Takashi; Ohtsu, Motoichi; Kim, Taw-Won; Fujioka, Hiroshi

    2004-01-01

    We fabricated UV-emitting nanocrystalline gallium nitride (GaN) films at room temperature using photochemical vapor deposition (PCVD). For the samples synthesized at room temperature with V/III ratios exceeding 5.0x10 4 , strong photoluminescence peaks at 3.365 and 3.310 eV, which can be ascribed to transitions in a mixed phase of cubic and hexagonal GaN, were observed at 5 K. A UV emission spectrum with a full width at half-maximum of 100 meV was observed, even at room temperature. In addition, x-ray photoelectron spectroscopy measurement revealed that the film deposited by PCVD at room temperature was well nitridized

  8. Room temperature ferromagnetism in Th{sub 1-x}Fe{sub x}O{sub 2-{delta}} (x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, O.D. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gopalakrishnan, I.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: ikgopal@barc.gov.in; Vinu, A. [Nano-Ionics Materials Group, Fuel Cell Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Asthana, A. [Advanced Electron Microscopy Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2008-08-11

    Nanocrystalline (Th{sub 1-x}Fe{sub x})O{sub 2-{delta}} particles with different Fe concentrations (x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25) have been prepared by a gel combustion method. Rietveld refinement analyses of X-ray diffraction data revealed the formation of an impurity free cubic type Th{sub 1-x}Fe{sub x}O{sub 2-{delta}} structure up to x = 0.20. This observation is further confirmed from the detailed studies conducted on 10 at.% Fe doped ThO{sub 2} using high-resolution transmission electron microscopy (HRTEM) imaging and indexing of the selected-area electron diffraction (SAED) patterns. DC magnetization studies as a function field indicate that they are ferromagnetic with Curie temperature (T{sub c}) well above room temperature.

  9. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  10. Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In(1-x)Fe(x))2O3.

    Science.gov (United States)

    Green, R J; Regier, T Z; Leedahl, B; McLeod, J A; Xu, X H; Chang, G S; Kurmaev, E Z; Moewes, A

    2015-10-16

    Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

  11. Room-temperature heteroepitaxy of single-phase Al1−xInxN films with full composition range on isostructural wurtzite templates

    International Nuclear Information System (INIS)

    Hsiao, Ching-Lien; Palisaitis, Justinas; Junaid, Muhammad; Persson, Per O.Å.; Jensen, Jens; Zhao, Qing-Xiang; Hultman, Lars; Chen, Li-Chyong; Chen, Kuei-Hsien; Birch, Jens

    2012-01-01

    Al 1−x In x N heteroepitaxial layers covering the full composition range have been realized by magnetron sputter epitaxy on basal-plane AlN, GaN, and ZnO templates at room temperature (RT). Both Al 1−x In x N single layers and multilayers grown on these isostructural templates show single phase, single crystal wurtzite structure. Even at large lattice mismatch between the film and the template, for instance InN/AlN (∼ 13% mismatch), heteroepitaxy is achieved. However, RT-grown Al 1−x In x N films directly deposited on non-isostructural c-plane sapphire substrate exhibit a polycrystalline structure for all compositions, suggesting that substrate surface structure is important for guiding the initial nucleation. Degradation of Al 1−x In x N structural quality with increasing indium content is attributed to the formation of more point- and structural defects. The defects result in a prominent hydrostatic tensile stress component, in addition to the biaxial stress component introduced by lattice mismatch, in all RT-grown Al 1−x In x N films. These effects are reflected in the measured in-plane and out-of-plane strains. The effect of hydrostatic stress is negligible compared to the effects of lattice mismatch in high-temperature grown AlN layers thanks to their low amount of defects. We found that Vegard’s rule is applicable to determine x in the RT-grown Al 1−x In x N epilayers if the lattice constants of RT-sputtered AlN and InN films are used instead of those of the strain-free bulk materials. - Highlights: ► Magnetron sputter epitaxy of single-phase Al 1−x In x N(0001) at room temperature ► Growing Al 1−x In x N onto temperature sensitive substrates is desirable. ► Substrate surface structure plays a vital role at nucleation stage. ► Point and extended defects produce hydrostatic tensile stress. ► The applicability of Vegard's rule for these compounds is confirmed.

  12. Outrunning free radicals in room-temperature macromolecular crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A 2A adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography

  13. Outrunning free radicals in room-temperature macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Robinson, James I.; Morgan, Ann W. [University of Leeds, Leeds LS9 7FT (United Kingdom); Doré, Andrew S. [Heptares Therapeutics Ltd, BioPark, Welwyn Garden City AL7 3AX (United Kingdom); Lebon, Guillaume; Tate, Christopher G. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Fry, Elizabeth E.; Ren, Jingshan [The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2012-06-15

    A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector. A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A{sub 2A} adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.

  14. Tunable Curie temperature around room temperature and magnetocaloric effect in ternary Ce–Fe–B amorphous ribbons

    International Nuclear Information System (INIS)

    Li, Zhu-bai; Zhang, Le-le; Zhang, Xue-feng; Li, Yong-feng; Zhao, Qian; Zhao, Tong-yun; Shen, Bao-gen

    2017-01-01

    Ce 13−x Fe 81+x B 6 ( x   =  0, 0.5, 1, 1.5, and 2) amorphous magnets were prepared by melt-spinning method. These magnets are magnetically soft at low temperature, and undergo a second-order phase transition from ferromagnetic to paramagnetic state near room temperature with a broad temperature span. The phase-transition temperature is tunable by the variation of the Ce/Fe atomic ratio, which is mainly due to the change of the coordination number of Fe atoms in these ternary Ce–Fe–B amorphous magnets. Though the entropy change is low, the refrigeration capacities are in the ranges of 116–150 J kg −1 and 319–420 J kg −1 , respectively, for the magnetic field changes of 0–2 T and 0–5 T, which is comparable with those of conventional magnetic materials for room-temperature refrigeration. Given the low cost of Fe and Ce, Ce–Fe–B amorphous magnets are attractive magnetic refrigerant candidates. (paper)

  15. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  16. Room-Temperature Multiferroics and Thermal Conductivity of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 Epitaxial Thin Films (x = 0.1 and 0.2).

    Science.gov (United States)

    Zhang, Ji; Sun, Wei; Zhao, Jiangtao; Sun, Lei; Li, Lei; Yan, Xue-Jun; Wang, Ke; Gu, Zheng-Bin; Luo, Zhen-Lin; Chen, Yanbin; Yuan, Guo-Liang; Lu, Ming-Hui; Zhang, Shan-Tao

    2017-08-02

    Thin films of 0.85BiFe 1-2x Ti x Mg x O 3 -0.15CaTiO 3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO 3 substrate with and without a conductive La 0.7 Sr 0.3 MnO 3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm 3 , respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO 3 -based materials with unusual multifunctional properties.

  17. Structure determination of an integral membrane protein at room temperature from crystals in situ

    International Nuclear Information System (INIS)

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-01-01

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines

  18. Structure determination of an integral membrane protein at room temperature from crystals in situ

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Hu, Nien-Jen; Choudhury, Hassanul Ghani [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Kyoto University, Kyoto 606-8501 (Japan); Beis, Konstantinos [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom)

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  19. Room-temperature annealing of Si implantation damage in InP

    International Nuclear Information System (INIS)

    Akano, U.G.; Mitchell, I.V.

    1991-01-01

    Spontaneous recovery at 295 K of Si implant damage in InP is reported. InP(Zn) and InP(S) wafers of (100) orientation have been implanted at room temperature with 600 keV Si + ions to doses ranging from 3.6x10 11 to 2x10 14 cm -2 . Room-temperature annealing of the resultant damage has been monitored by the Rutherford backscattering/channeling technique. For Si doses ≤4x10 13 cm -2 , up to 70% of the initial damage (displaced atoms) annealed out over a period of ∼85 days. The degree of recovery was found to depend on the initial level of damage. Recovery is characterized by at least two time constants t 1 2 ∼100 days. Anneal rates observed between 295 and 375 K are consistent with an activation energy of 1.2 eV, suggesting that the migration of implant-induced vacancies is associated with the reordering of the InP lattice

  20. Preparation of Ba1-xSrxWO4 and Ba1-xCaxWO4 films on tungsten plate by mechanically assisted solution reaction at room temperature

    International Nuclear Information System (INIS)

    Rangappa, Dinesh; Fujiwara, Takeshi; Watanabe, Tomoaki; Yoshimura, Masahiro

    2008-01-01

    Preparation of the alkaline earth tungstate films such as Ba 1-x Sr x WO 4 and Ba 1-x Ca x WO 4 on the tungsten substrate was studied with a simple solution process assisted with the ball rotation at room temperature. The solid solution formation and limitations, the effect of oxidizing agent H 2 O 2 and alkaline earth ions concentration on the dissolution of W substrate and the growth of Ba 1-x Sr x WO 4 and Ba 1-x Ca x WO 4 films were studied in detail. The ball rotation assistance plays a very important role to enhance the dissolution of the W substrate and mass transport of the reactant species such as alkaline earth ions and WO 4 2- ions onto the solid/solution interface region, where precipitation occurs. Therefore, the rate of film formation was accelerated by the ball rotation assistance to the reaction system. Ba-rich Ba 1-x Sr x WO 4 and Ba 1-x Ca x WO 4 films were formed without high energy or high temperature treatment

  1. Room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders prepared by combustion reaction method

    International Nuclear Information System (INIS)

    Franco, A.; Pessoni, H.V.S.; Soares, M.P.

    2014-01-01

    Nanoparticulate powders of Eu-doped ZnO with 1.0, 1.5, 2.0 and 3.0 at% Eu were synthesized by combustion reaction method using zinc nitrate, europium nitrate and urea as fuel without subsequent heat treatments. X-ray diffraction patterns (XRD) of all samples showed broad peaks consistent with the ZnO wurtzite structure. The absence of extra reflections in the diffraction patterns ensures the phase purity, except for x=0.03 that exhibits small reflection corresponding to Eu 2 O 3 phase. The average crystallite size determined from the most prominent (1 0 1) peak of the diffraction using Scherrer's equation was in good agreement with those determined by transmission electron microscopy (TEM); being ∼26 nm. The magnetic properties measurements were performed using a vibrating sample magnetometer (VSM) in magnetic fields up to 2.0 kOe at room temperature. The hysteresis loops, typical of magnetic behaviors, indicating that the presence of an ordered magnetic structure can exist in the Eu-doped ZnO wurtzite structure at room temperature. The room temperature ferromagnetism behavior increases with the Eu 3+ doping concentration. All samples exhibited the same Curie temperature (T C ) around ∼726 K, except for x=0.01; T C ∼643 K. High resolution transmission electron microscopy (HRTEM) images revealed defects/strain in the lattice and grain boundaries of Eu-doped ZnO nanoparticulate powders. The origin of room temperature ferromagnetism in Eu-doped ZnO nanoparticulate powders was discussed in terms of these defects, which increase with the Eu 3+ doping concentration. - Highlights: • Room-temperature ferromagnetism. • Structural and magnetic properties of nanoparticulate powders of Zn 1−x Eu x O. • Combustion reaction method

  2. Cadmium Manganese Telluride (Cd1-xMnxTe): A potential material for room-temperature radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A.; Cui, Y.; Bolotnikov, A.; Camarda, G.; Yang, G.; Kim, K-H.; Gul, R.; Xu, L.; Li, L.; Mycielski, A.; and James, R.B.

    2010-07-11

    Cadmium Manganese Telluride (CdMnTe) recently emerged as a promising material for room-temperature X- and gamma-ray detectors. It offers several potential advantages over CdZnTe. Among them is its optimal tunable band gap ranging from 1.7-2.2 eV, and its relatively low (< 50%) content of Mn compared to that of Zn in CdZnTe that assures this favorable band-gap range. Another important asset is the segregation coefficient of Mn in CdTe that is approximately unity compared to 1.35 for Zn in CdZnTe, so ensuring the homogenous distribution of Mn throughout the ingot; hence, a large-volume stoichiometric yield is attained. However, some materials issues primarily related to the growth process impede the production of large, defect-free single crystals. The high bond-ionicity of CdMnTe entails a higher propensity to crystallize into a hexagonal structure rather than to adopt the expected zinc-blend structure, which is likely to generate twins in the crystals. In addition, bulk defects generate in the as-grown crystals due to the dearth of high-purity Mn, which yields a low-resistivity material. In this presentation, we report on our observations of such material defects in current CdMnTe materials, and our evaluation of its potential as an alternative detector material to the well-known CdZnTe detectors. We characterized the bulk defects of several indium- and vanadium-doped Cd1-xMnxTe crystals by using several advanced techniques, viz., micro-scale mapping, white-beam x-ray diffraction/reflection topography, and chemical etching. Thereafter, we fabricated some detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results indicate that CdMnTe materials could well prove to become a viable alternative in the near future.

  3. Room temperature ferromagnetism in Co doped ZnO within an optimal doping level of 5%

    International Nuclear Information System (INIS)

    Mohapatra, J.; Mishra, D.K.; Mishra, Debabrata; Perumal, A.; Medicherla, V.R.R.; Phase, D.M.; Singh, S.K.

    2012-01-01

    Highlights: ► Zn 1−x Co x O ((0 ≤ x ≤ 0.1)) system synthesized by solid state reaction technique. ► Observation of room temperature ferromagnetism for 3 and 5% Co doped ZnO. ► XPS and EPMA studies predict the occurrence of segregated CoO clusters. ► Suppresses ferromagnetic ordering in higher doping percentage of Co (>5%). -- Abstract: We report on the structural, micro-structural and magnetic properties of Zn 1−x Co x O (0 ≤ x ≤ 0.1) system. Electron probe micro-structural analysis on 5% Co doped ZnO indicates the presence of segregated cobalt oxide which is also confirmed from the Co 2p core level X-ray photoelectron spectrum. The presence of oxygen defects in lower percentage of Co doped ZnO (≤5%) enhances the carrier mediated exchange interaction and thereby enhancing the room-temperature ferromagnetic behaviour. Higher doping percentage of cobalt (>5%) creates weak link between the grains and suppresses the carrier mediated exchange interaction. This is the reason why room temperature ferromagnetism is not observed in 7% and 10% Co doped ZnO.

  4. Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

    OpenAIRE

    Ahmed, Ejaz

    2011-01-01

    Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 i...

  5. Ionothermal synthesis of β-NH4AlF4 and the determination by single crystal X-ray diffraction of its room temperature and low temperature phases

    International Nuclear Information System (INIS)

    Parnham, Emily R.; Slawin, Alex M.Z.; Morris, Russell E.

    2007-01-01

    β-NH 4 AlF 4 has been synthesised ionothermally using 1-ethyl-3-methylimidazolium hexafluorophosphate as solvent and template provider. β-NH 4 AlF 4 crystals were produced which were suitable for single crystal X-ray diffraction analysis. A phase transition occurs between room temperature (298 K) and low temperature (93 K) data collections. At 298 K the space group=I4/mcm (no. 140), α=11.642(5), c=12.661(5) A, Z=2 (10NH 4 AlF 4 ), wR(F 2 )=0.1278, R(F)=0.0453. At 93 K the space group=P4 2 /ncm (no. 138), α=11.616(3), c=12.677(3) A, Z=2 (10NH 4 AlF 4 ), wR(F 2 )=0.1387, R(F)=0.0443. The single crystal X-ray diffraction study of β-NH 4 AlF 4 shows the presence of two different polymorphs at low and room temperature, indicative of a phase transition. The [AlF 4/2 F 2 ] - layers are undisturbed except for a small tilting of the AlF 6 octahedra in the c-axis direction. -Ionothermal synthesis, the use of an ionic liquid as the solvent in materials preparation, has been used to prepare β-NH 4 AlF 4 , and structural characterisation indicates that there are two versions of the structure, a low temperature primitive phase at 93 K and a high temperature body-centered phase at 298 K

  6. Evolution of the microstructure in electrochemically deposited copper films at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The room temperature evolution of the microstructure in copper electrodeposits (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time with an unprecedented time resolution. Independent of the copper...... the crystallographic texture changes by a multiple twinning mechanism. The kinetics of self-annealing is strongly affected by the thickness of the deposit. Storage of the copper films at sub-zero temperatures effectively hinders self-annealing and does not affect the kinetics of self-annealing upon reheating to room...... temperature....

  7. Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition

    KAUST Repository

    Otelaja, Obafemi O.; Ha, Don-Hyung; Ly, Tiffany; Zhang, Haitao; Robinson, Richard D.

    2014-01-01

    © 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles

  8. Functional relationship of room temperature and setting time of alginate impression material

    Directory of Open Access Journals (Sweden)

    Dyah Irnawati

    2009-09-01

    Full Text Available Background: Indonesia is a tropical country with temperature variation. A lot of dental clinics do not use air conditioner. The room temperature influences water temperature for mixing alginate impression materials. Purpose: The aim of this study was to investigate the functional relationship of room temperature and initial setting time of alginate impression materials. Methods: The New Kromopan® alginate (normal and fast sets were used. The initial setting time were tested at 23 (control, 24, 25, 26, 27, 28, 29, 30 and 31 degrees Celcius room temperatures (n = 5. The initial setting time was tested based on ANSI/ADA Specification no. 18 (ISO 1563. The alginate powder was mixed with distilled water (23/50 ratio, put in the metal ring mould, and the initial setting time was measured by test rod. Data were statistically analyzed by linear regression (α = 0.05. result: The initial setting times were 149.60 ± 0.55 (control and 96.40 ± 0.89 (31° C seconds for normal set, and 122.00 ± 1.00 (control and 69.60 ± 0.55 (31° C seconds for fast set. The coefficient of determination of room temperature to initial setting time of alginate were R2 = 0.74 (normal set and R2 = 0.88 (fast set. The regression equation for normal set was Y = 257.6 – 5.5 X (p < 0.01 and fast set was Y = 237.7 – 5.6 X (p < 0.01. Conclusions: The room temperature gave high contribution and became a strength predictor for initial setting time of alginates. The share contribution to the setting time was 0.74% for normal set and 0.88% for fast set alginates.

  9. Evidence of interstitial oxygen in room temperature oxidized La2-xSrxCuO4+y (0-LESS-THAN-X-LESS-THAN-0.1)

    DEFF Research Database (Denmark)

    Rial, C.; Amador, U.; Morán, E.

    1994-01-01

    The crystal structure, superconducting properties and oxygen stoichiometry of room temperature chemically oxidized La2-xSrxCuO4+y (x = 0.05, 0.09) have been studied by means of powder neutron diffraction, magnetic susceptibility and thermogravimetric analysis. The presence in these materials...

  10. Structural and superconducting properties of La2−xNdxCuO4+y (0≤x≤0.5) prepared by room temperature chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Morán, E.; Alario-Franco, M.A.

    1997-01-01

    The systematic characterization of the structural and superconducting properties of room temperature chemically oxidized T/O La2-xNdxCuO4+y (0 less than or equal to x less than or equal to 0.5) has been performed by neutron powder diffraction and magnetic susceptibility measurements. Similarities...

  11. Magnetic-field-induced irreversible antiferromagnetic–ferromagnetic phase transition around room temperature in as-cast Sm–Co based SmCo{sub 7−x}Si{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, D.Y.; Zhao, L.Z.; Liu, Z.W., E-mail: zwliu@scut.edu.cn

    2016-04-15

    A magnetic-field-induced irreversible metamagnetic phase transition from antiferro- to ferromagnetism, which leads to an anomalous initial-magnetization curve lying outside the magnetic hysteresis loop, is reported in arc-melted SmCo{sub 7−x}Si{sub x} alloys. The transition temperatures are near room temperature, much higher than other compounds with similar initial curves. Detailed investigation shows that this phenomenon is dependent on temperature, magnetic field and Si content and shows some interesting characteristics. It is suggested that varying interactions between the Sm and Co layers in the crystal are responsible for the formation of a metastable AFM structure, which induces the anomalous phenomenon in as-cast alloys. The random occupation of 3g sites by Si and Co atoms also has an effect on this phenomenon.

  12. Evolution of the microstructure in nanocrystalline copper electrodeposits during room temperature storage

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time. In-situ studies were started immediately after electrodeposition......, crystallographic texture changes by multiple twinning and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer the slower is the microstructure evolution and self-annealing...

  13. Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals

    International Nuclear Information System (INIS)

    Ray, Sugata; Kolen'ko, Yury V; Watanabe, Tomoaki; Yoshimura, Masahiro; Itoh, Mitsuru; Kovnir, Kirill A; Lebedev, Oleg I; Turner, Stuart; Erni, Rolf; Tendeloo, Gustaaf Van; Chakraborty, Tanushree

    2012-01-01

    Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO 3 . The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site and oxygen vacancies and their relative concentrations at the surface and the core of the nanocrystal, which could be controlled by post-synthesis drying and thermal treatments.

  14. On the structural properties and superconductivity of room-temperature chemically oxidized La2-xBaxCuO4+y (0<=x<=0.15)

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario-Franco, M.A.

    1996-01-01

    The insertion of oxygen within the structure of La2-xBaxCuO4+y (x less than or equal to 0.15), by means of room-temperature chemical oxidation, modifies both the physical and the structural features of these materials, Concerning the superconducting properties, the extra oxygen gives rise to an i...

  15. Room temperature inverse magnetocaloric effect in Pd substituted Ni{sub 50}Mn{sub 37}Sn{sub 13} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Ritwik, E-mail: ritwik.saha@tifr.res.in; Nigam, A.K.

    2014-09-01

    The structural, magnetic and magnetocaloric effects for Ni{sub 50−x}Pd{sub x}Mn{sub 37}Sn{sub 13} Heusler alloys have been investigated around both structural and magnetic transitions. The room temperature X-ray diffraction indicates 10 M modulated martensitic structure with an orthorhombic unit cell for x=0 and 1. However, the superstructure reflections for x=2 alloy imply that the pattern is related to the L2{sub 1} phase. The maximum entropy change occurring at the martensitic transition is found to be 21 J kg{sup −1} K{sup −1} for Ni{sub 50}Mn{sub 37}Sn{sub 13} alloy around room temperature. Despite the smaller change in entropy around room temperature, 3.8 times larger value of refrigerant capacity (184.6 J/kg) is achieved for 2% substitution of Pd, due to occurrence of magnetic entropy change in a broader temperature region.

  16. Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application

    International Nuclear Information System (INIS)

    Gurav, K.V.; Patil, U.M.; Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S.; Lokhande, C.D.; Kim, J.H.

    2013-01-01

    Highlights: •Cu(OH) 2 is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH) 2 . •The hydrous, nanograined Cu(OH) 2 shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH) 2 ] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH) 2 thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH) 2 thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH) 2 thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance

  17. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    Science.gov (United States)

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  18. Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In1 -xFex )2O3

    Science.gov (United States)

    Green, R. J.; Regier, T. Z.; Leedahl, B.; McLeod, J. A.; Xu, X. H.; Chang, G. S.; Kurmaev, E. Z.; Moewes, A.

    2015-10-01

    Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2 O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

  19. Room temperature ferromagnetism in Cu doped ZnO

    Science.gov (United States)

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  20. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  1. Flake like V_2O_5 nanoparticles for ethanol sensing at room temperature

    International Nuclear Information System (INIS)

    Chitra, M.; Uthayarani, K.; Rajasekaran, N.; Neelakandeswari, N.; Girija, E. K.; Padiyan, D. Pathinettam

    2016-01-01

    The versatile redox property of vanadium oxide explores it in various applications like catalysis, electrochromism, electrochemistry, energy storage, sensors, microelectronics, batteries etc., In this present work, vanadium oxide was prepared via hydrothermal route followed by calcination. The structural and lattice parameters were analysed from the powder X-ray diffraction (XRD) pattern. The morphology and the composition of the sample were obtained from Field emission Scanning electron microscopic (FeSEM) and Energy Dispersive X-ray (EDAX) Spectrometric analysis respectively. The sensitivity, response – recovery time of the sample towards ethanol (0 ppm – 300 ppm) sensing at room temperature was measured and the present investigation on vanadium oxide nanoparticles over the flakes shows better sensitivity (30%) at room temperature.

  2. Room-temperature antiferromagnetic memory resistor.

    Science.gov (United States)

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  3. Room temperature chemical synthesis of Cu(OH){sub 2} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Gurav, K.V. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Patil, U.M. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Kim, J.H., E-mail: jinhyeok@chonnam.ac.kr [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of)

    2013-10-05

    Highlights: •Cu(OH){sub 2} is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH){sub 2}. •The hydrous, nanograined Cu(OH){sub 2} shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH){sub 2}] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH){sub 2} thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH){sub 2} thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH){sub 2} thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance.

  4. Room temperature ferromagnetism in Mg-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Singh, Jaspal; Vashihth, A.; Gill, Pritampal Singh; Verma, N. K.

    2015-01-01

    Zn 1-x Mg x O (x = 0, 0,10) nanoparticles were successfully synthesized using sol-gel method. X-ray diffraction (XRD) confirms that the synthesized nanoparticles possess wurtzite phase having hexagonal structure. Morphological analysis was carried out using transmission electron microscopy (TEM) which depicts the spherical morphology of ZnO nanoparticles. Energy dispersive spectroscopy (EDS) showed the presence of Mg in ZnO nanoparticles. Electron spin resonance (ESR) signal was found to be decreasing with increasing of Mg-doping concentration. The room temperature ferromagnetism was observed in undoped and Mg-doped ZnO nanoparticles. The increase of Mg-doping concentration resulted in decrease of saturation magnetization value which could be attributed to decrease of oxygen vacancies present in host nanoparticles

  5. Lateral spin transfer torque induced magnetic switching at room temperature demonstrated by x-ray microscopy

    Science.gov (United States)

    Buhl, M.; Erbe, A.; Grebing, J.; Wintz, S.; Raabe, J.; Fassbender, J.

    2013-10-01

    Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nanoelectronic components. Therefore, new concepts for controlling the state of nanomagnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar. In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM).

  6. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...

  7. Room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride induced by milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Bolokang, Amogelang S., E-mail: Sylvester.Bolokang@transnet.net [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark, 0127 (South Africa); Tshabalala, Zamaswazi P. [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Malgas, Gerald F. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville, 7535 (South Africa); Kortidis, Ioannis [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); West Virginia University, Department of Mechanical & Aerospace Engineering, Evansdale Campus, Morgantown, WV, 26506 (United States); Swart, Hendrik C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300 (South Africa); Motaung, David E., E-mail: dmotaung@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa)

    2017-06-01

    We report on the room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride prepared by milling and annealing at 1100 °C in a nitrogen gas environment. Structural analyses revealed a metastable orthorhombic TiO{sub 2} phase after milling for 120 h. The 120 h milled TiO{sub 2} particles and subsequently annealed in nitrogen gas at 1100 °C showed the formation of titanium oxynitride (TiO{sub x}N{sub y}) with a tetragonal crystal structure. An FCC metastable TiO{sub x}N{sub y} phase was also observed with a lattice parameter a = 4.235 Å. The vibrating sample magnetometer and electron paramagnetic analyses showed that the milled and TiO{sub x}N{sub y} samples possess room temperature ferromagnetism. Gas sensing measurements were carried out toward CH{sub 4} and H{sub 2} gases. The TiO{sub x}N{sub y} nanostructures demonstrated higher sensing response and selectivity to CH{sub 4} gas at room temperature. The enhanced response of 1010 and sensitivity of 50.12 ppm{sup -1} at a concentration of 20 ppm CH{sub 4} are associated with higher surface area, pore diameter and surface defects such as oxygen vacancies and Ti{sup 3+}, as evidenced from the Brunauer–Emmet–Teller, photoluminescence, electron paramagnetic resonance and x-ray photoelectron analyses. - Highlights: • Ball milled of TiO{sub 2} structure revealed metastable orthorhombic phase. • Upon nitridation tetragonal and FCC TiO{sub x}N{sub y} crystal structures were induced. • The magnetic properties of TiO{sub 2} nanoparticles was transformed by milling. • TiO{sub x}N{sub y} sensing response for CH{sub 4} gas at room temperature was high.

  8. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  9. Reversible temper brittleness on tensile tests at room temperature

    International Nuclear Information System (INIS)

    Quadros, N.F. de; Cabral, U.Q.

    1976-01-01

    Tensile tests were carried out on unnotched test pieces at room temperature and three strain rates: 2,5x10 -4 , 2,5x10 -3 and 1,0x10 -2 s -1 in a low alloy No-Cr-Mo steel to observe the variation in its mechanical properties with the occurrence of reversible temper brittleness. The brittle samples showed a sensitivity of 50 0 C in a 48 hour heat treatment at 500 0 C. The tests showed that at the strain rate of 2,5x10 -4 s -1 there are statistically significant differences between the elongations of the material in the brittle and the nonbrittle and regenerated states. A short review of reversible temper brittleness is given and a theory suggested for the mechanism [pt

  10. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Michael Heymann

    2014-09-01

    Full Text Available An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.

  11. Control console for the X-ray room

    International Nuclear Information System (INIS)

    Garcia H, J.M.; Aguilar B, M.A.; Torres B, M.A.

    1998-01-01

    It is presented the design and construction of Control console for the X-ray room of Metrology Center for ionizing radiations at National Institute of Nuclear Research (ININ). This system controls the positioning of 6 different filters for an X-ray beam. Also it controls a shutter which blockades the beam during periods established by user, these periods can be fixed from hours until tenth of second. The shutter opening periods, as well as the X-ray beam filter are establish and monitoring from a Personal computer outside of room. (Author)

  12. Device quality InO{sub x}:Sn and InO{sub x} thin films deposited at room temperature with different rf-power densities

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, A., E-mail: ana.de.amaral@ist.utl.pt [Dept. de Fisica and ICEMS, Instituto Superior Tecnico/Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Brogueira, P. [Dept. de Fisica and ICEMS, Instituto Superior Tecnico/Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Conde, O. [Universidade de Lisboa, Dept. de Fisica and ICEMS, Campo Grande, 1749-016 Lisboa (Portugal); Lavareda, G. [Dept. de Ciencia dos Materiais and CTS, FCT-UNL, 2829-516 Caparica (Portugal); Nunes de Carvalho, C. [Dept. de Ciencia dos Materiais, FCT-UNL and ICEMS, 2829-516 Caparica (Portugal)

    2012-12-30

    The influence of tin doping on the electrical, optical, structural and morphological properties of indium oxide films produced by radio-frequency plasma enhanced reactive thermal evaporation is studied, as transport properties are expected to improve with doping. Undoped and tin doped indium oxide thin films are deposited at room temperature using both pure In rods and (95-80) % In:(5-20) % Sn alloys as evaporation sources and 19.5 mW/cm{sup 2} and 58.6 mW/cm{sup 2} as rf-power densities. The two most important macroscopic properties - visible transparency and electrical resistivity - are relatively independent of tin content (0-20%). Visible transmittance of about 75% and electrical resistivity around 5 Multiplication-Sign 10{sup -4} {Omega}{center_dot}cm can be observed in the films. The structural features are similar for all samples. Nevertheless, the surface morphology characterization shows that the homogeneity of the films varies according to the tin content. Moreover this variation is a balance between the rf-power and the tin content in the alloy: i) films with small and compact grains are produced at 58.6 mW/cm{sup 2} from a 5% Sn alloy or at 19.5 mW/cm{sup 2} from a 15% Sn alloy and consequently, smooth surfaces with reduced roughness and similar grain size and shape are obtained; ii) films showing the presence of aggregates randomly distributed above a tissue formed of thinner grains and higher roughness are produced at the other deposition conditions. - Highlights: Black-Right-Pointing-Pointer InO{sub x}:Sn and InO{sub x} thin films were deposited at room temperature. Black-Right-Pointing-Pointer Transparency and electrical resistivity are relatively independent of Sn content. Black-Right-Pointing-Pointer Device quality material was obtained. Black-Right-Pointing-Pointer The surface morphology homogeneity of the films varies with tin content.

  13. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  14. Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods

    Energy Technology Data Exchange (ETDEWEB)

    Sakthiraj, K.; Hema, M. [Department of Physics, Kamaraj College of Engineering and Technology, Virudhunagar 626001, Tamil Nadu (India); Balachandrakumar, K. [Department of Physics, Raja Doraisingam Government Arts College, Sivagangai 630561, Tamil Nadu (India)

    2016-04-15

    The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol–gel, microwave assisted sol–gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6–12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M–H curve of all the samples. But the sol–gel derived sample shows the higher values of saturation magnetization (M{sub s}) and remanence (M{sub r}) than other two samples. This study reveals that the sol–gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.

  15. Possible mechanism for the room-temperature stabilization of the Ge(111) T > 300 deg.C phase by Ga

    DEFF Research Database (Denmark)

    Böhringer, M.; Molinás-Mata, P.; Zegenhagen, J.

    1995-01-01

    At low coverages, Ga on Ge(111) induces a hexagonal, domain wall modulated (2 x 2) adatom phase, stable at room temperature, that is characterized in low energy electron diffraction (LEED) by split 1/2-order reflections. This pattern closely resembles the one observed for a phase of clean Ge(111......) appearing at temperatures above 300 degrees C (T > 300 degrees C phase). We report scanning tunneling microscopy, LEED, as well. as surface x-ray diffraction measurements on the Ga-induced room-temperature (RT) phase and compare it with a model for the T > 300 OC phase of clean Ge(111). RT deposition of Ga...... yields a metastable c(2 x 8) structure which upon annealing transforms to the hexagonal (2 x 2) one. The transition occurs at considerably lower temperatures compared to clean Ge(111) and is irreversible due to pinning of adatom domains at Ga-induced defects, preventing the reordering of the adatoms...

  16. Room-temperature X-ray diffraction studies of cisplatin and carboplatin binding to His15 of HEWL after prolonged chemical exposure

    International Nuclear Information System (INIS)

    Tanley, Simon W. M.; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Helliwell, John R.

    2012-01-01

    Binding of cisplatin to His15 in hen egg-white lysozyme in aqueous media is observed after prolonged chemical exposure for 15 months, in contrast to the lack of binding that was observed after 4 d in a previous study. Binding of carboplatin is seen in greater detail in the case of room-temperature data collection compared with cryo data collection. The anticancer complexes cisplatin and carboplatin are known to bind to both the N δ and the N ∊ atoms of His15 of hen egg-white lysozyme (HEWL) in the presence of dimethyl sulfoxide (DMSO). However, neither binds in aqueous media after 4 d of crystallization and crystal growth, suggesting that DMSO facilitates cisplatin/carboplatin binding to the N atoms of His15 by an unknown mechanism. Crystals of HEWL cocrystallized with cisplatin in both aqueous and DMSO media, of HEWL cocrystallized with carboplatin in DMSO medium and of HEWL cocrystallized with cisplatin and N-acetylglucosamine (NAG) in DMSO medium were stored for between seven and 15 months. X-ray diffraction studies of these crystals were carried out on a Bruker APEX II home-source diffractometer at room temperature. Room-temperature X-ray diffraction data collection removed the need for cryoprotectants to be used, ruling out any effect that the cryoprotectants might have had on binding to the protein. Both cisplatin and carboplatin still bind to both the N δ and N ∊ atoms of His15 in DMSO media as expected, but more detail for the cyclobutanedicarboxylate (CBDC) moiety of carboplatin was observed at the N ∊ binding site. However, two molecules of cisplatin were now observed to be bound to His15 in aqueous conditions. The platinum peak positions were identified using anomalous difference electron-density maps as a cross-check with F o − F c OMIT electron-density maps. The occupancies of each binding site were calculated using SHELXTL. These results show that over time cisplatin binds to both N atoms of His15 of HEWL in aqueous media, whereas this

  17. The effect of reaction temperature on the room temperature ferromagnetic property of sol-gel derived tin oxide nanocrystal

    Science.gov (United States)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2018-06-01

    In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.

  18. P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor

    Science.gov (United States)

    Yao, Yao; Yin, Mingli; Yan, Junqing; Liu, Shengzhong (Frank)

    2018-05-01

    Nanowires assembled sub-WO3 urchin-like nanostructures have been fabricated via a solvothermal method. The detailed structure and morphology features were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results reveal that the individual nanowires are grown along the [0 0 1] direction, and assembled together to form an urchin-like nanostructure. Sensing performance of the sub-WO3 was investigated toward alcohol vapor. At room temperature, the sensor devices based on the WO3-x exhibit significantly higher sensitivity comparing to that of the stoichiometric WO3. The superior sensing performance of this WO3-x sensor is ascribed to the large specific surface area and abundant oxygen vacancies. The obvious enhancement of the gas sensing property can be very useful for the future design and development of room temperature gas sensors for other volatile organic compounds.

  19. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    Science.gov (United States)

    Li, Dong-Xiang; Qin, Xiu-Bo; Zheng, Li-Rong; Li, Yu-Xiao; Cao, Xing-Zhong; Li, Zhuo-Xin; Yang, Jing; Wang, Bao-Yi

    2013-03-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti3+—VO defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.

  20. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    International Nuclear Information System (INIS)

    Li Dong-Xiang; Cao Xing-Zhong; Li Zhuo-Xin; Yang Jing; Wang Bao-Yi; Qin Xiu-Bo; Zheng Li-Rong; Li Yu-Xiao

    2013-01-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO 2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti 3+ —V O defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti 3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO 2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments

  1. Room-temperature ductile inorganic semiconductor

    Science.gov (United States)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  2. Tunable metal-insulator transition in Nd{sub 1−x}Y{sub x}NiO{sub 3} (x = 0.3, 0.4) perovskites thin film at near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Tao; Qi, Zeming, E-mail: zmqi@ustc.edu.cn; Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Zhang, Guobin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Wang, Yu [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204 (China); Liu, Miao [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-07-13

    Metal-insulator transition (MIT) occurs due to the charge disproportionation and lattice distortions in rare-earth nickelates. Existing studies revealed that the MIT behavior of rare-earth nickelates is fairly sensitive to external stress/pressure, suggesting a viable route for MIT strain engineering. Unlike applying extrinsic strain, the MIT can also be modulated by through rare-earth cation mixing, which can be viewed as intrinsic quantum stress. We choose Nd{sub 1−X}Y{sub X}NiO{sub 3} (x = 0.3, 0.4) perovskites thin films as a prototype system to exhibit the tunable sharp MIT at near room temperature. By adjusting Y concentration, the transition temperature of the thin films can be changed within the range of 340–360 K. X-ray diffraction, X-ray absorption fine structure (XAFS), and in situ infrared spectroscopy are employed to probe the structural and optical property variation affected by composition and temperature. The infrared transmission intensity decreases with temperature across the MIT, indicating a pronounced thermochromic effect. Meanwhile, the XAFS result exhibits that the crystal atomistic structure changes accompanying with the Y atoms incorporation and MIT phase transition. The heavily doped Y atoms result in the pre-edge peak descent and Ni-O bond elongation, suggesting an enhanced charge disproportionation effect and the weakening of hybridization between Ni-3d and O-2p orbits.

  3. Room temperature ferromagnetism in a phthalocyanine based carbon material

    International Nuclear Information System (INIS)

    Honda, Z.; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-01-01

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T c  = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material

  4. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  5. Electro-caloric effect in lead-free Sn doped BaTiO3 ceramics at room temperature and low applied fields

    International Nuclear Information System (INIS)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra; Bag, Pallab; Rawat, R.; Gupta, S. M.; Gupta, Ajay

    2014-01-01

    Structural, dielectric, ferroelectric (FE), 119 Sn Mössbauer, and specific heat measurements of polycrystalline BaTi 1–x Sn x O 3 (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and 119 Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phase transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.

  6. BF3/nano-γ-Al2O3 Promoted Knoevenagel Condensation at Room Temperature

    Directory of Open Access Journals (Sweden)

    B. F. Mirjalili

    2015-10-01

    Full Text Available The Knoevenagel condensation of aromatic aldehydes with barbituric acid, dimedone and malononitrile occurred in the presence of BF3/nano-γ-Al2O3 at room temperature in ethanol. This catalyst is characterized by powder X-ray diffraction (XRD, fourier transform infrared spectroscopy (FT-IR, thermal gravimetric analysis (TGA, field emission scanning electron microscopy (FESEM and energy-dispersive X-ray spectroscopy (EDS.

  7. Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires

    Science.gov (United States)

    Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.

    2018-06-01

    The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  8. Spectroscopic evidence for 5f bands at room temperature in uranium-based heavy fermions

    International Nuclear Information System (INIS)

    Arko, A.J.; Koelling, D.D.; Dunlap, B.D.; Capasso, C.; del Giudice, M.

    1988-01-01

    We present data on the alloy system UPd/sub 3-x/Pt/sub x/ and show that in the double hexagonal phase (x 2.4) as well, except that the low-binding energy feature is locked in at E/sub F/ and shows evidence of energy dispersion at room temperature/endash/consistent with well-defined bands. Conversely, we show that even in well-behaved narrow band systems (USn 3 there is evidence for satellite formation. 44 refs., 8 figs

  9. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    Science.gov (United States)

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  10. Chemical synthesis of Cu2Se nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Rong, Fengxia; Bai, Yan; Chen, Tianfeng; Zheng, Wenjie

    2012-01-01

    Graphical abstract: The Cu 2 Se nanoparticles were synthesized by a simple and rapid method at room temperature. The TEM and SEM images show that the Cu 2 Se nanoparticles were spherical. Highlights: ► Cu 2 Se nanoparticles were synthesized by the reaction of nanoSe 0 sol with Cu + ions. ► The Cu 2 Se nanoparticles were spherical with cubic structure and well crystallized. ► Optical and electrochemical properties of Cu 2 Se nanoparticles were observed. ► The formation mechanism of Cu 2 Se nanoparticles was proposed. -- Abstract: A simple and rapid method has been developed to synthesize cuprous selenide (Cu 2 Se) nanoparticles by the reaction of selenium nanoparticles sol with copper sulfate solution containing ascorbic acid at room temperature. Cu 2 Se nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray analysis (EDX). The results indicated that Cu 2 Se nanoparticles were cubic crystal structure and spherical with the diameter about 75 nm. The ultraviolet–visible absorption spectrum (UV–vis) and cyclic voltammetry of Cu 2 Se nanoparticles were also investigated. The optical band gap energy of Cu 2 Se nanoparticles was 1.94 eV. On the basis of a series of experiments and characterizations, the formation mechanism of Cu 2 Se nanoparticles was discussed.

  11. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature

    International Nuclear Information System (INIS)

    Fortunato, Elvira M.C.; Barquinha, Pedro M.C.; Pimentel, Ana C.M.B.G.; Goncalves, Alexandra M.F.; Marques, Antonio J.S.; Martins, Rodrigo F.P.; Pereira, Luis M.N.

    2004-01-01

    We report high-performance ZnO thin-film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a saturation mobility of 27 cm 2 /V s, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3x10 5 . The ZnO-TFT presents an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high mobility, and room-temperature processing makes the ZnO-TFT a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics

  12. Preparation and characterization of Cu{sub x}O{sub 1-y}@ZnO{sub 1-α} nanocomposites for enhanced room-temperature NO{sub 2} sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons 7000 (Belgium); Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Luo, Yifan [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Debliquy, Marc [Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons 7000 (Belgium)

    2017-04-15

    Highlights: • Cu{sub x}O{sub 1-y}@ZnO{sub 1-(*)α} coatings with rich donor defects were successfully prepared. • Many p-n heterojunctions were formed in the as-sprayed Cu{sub x}O{sub 1-y}@ZnO{sub 1-α} coatings. • Light absorption of the coatings was extended to whole visible light region. • Cu{sub x}O{sub 1-y}@ZnO{sub 1-α} coatings showed an excellent response to NO{sub 2} at room temperature. - Abstract: In order to solve the problem that pristine ZnO show little response to NO{sub 2} gas at room temperature, some methods have been used, e.g., introducing narrow-bandgap semiconductors and donor defects into ZnO. In this work, we adopt solution precursor plasma spray to deposit Cu{sub x}O{sub 1-y}@ZnO{sub 1-α} hybrid coatings. Rapid heating and cooling as well as the reducing atmosphere provided by solution precursor plasma spray (SPPS) produce highly concentrated donor defects such as zinc interstitials and oxygen vacancies. X-ray photoelectron spectroscopy, photoluminescence spectroscopy and electron paramagnetic resonance confirmed that rich donor defects were present in the SPPS Cu{sub x}O{sub 1-y}@ZnO{sub 1-α} coatings. Field emission-scanning electron microscopy images exhibited a highly porous nanostructure, and high resolution-transmission electron microscopy showed that there were large amounts of p-n heterojunctions in the nanocomposites. The light absorption of the SPPS Cu{sub x}O{sub 1-y}@ZnO{sub 1-α} hybrids was extended up to the whole visible light region. With assistance of visible light illumination, the nanocomposites exhibited significant response to NO{sub 2} for concentrations below 1 ppm. A sensing mechanism of the Cu{sub x}O{sub 1-y}@ZnO{sub 1-α} sensors was proposed.

  13. Manipulation of polyatomic molecules with the scanning tunnelling microscope at room temperature: chlorobenzene adsorption and desorption from Si(111)-(7 x 7)

    International Nuclear Information System (INIS)

    Sloan, P A; Palmer, R E

    2006-01-01

    We report the imaging of chlorobenzene molecules chemisorbed on the Si(111)-(7 x 7) surface at room temperature with the scanning tunnelling microscope, and the desorption of the molecules by the tunnelling current. Detailed voltage-dependent imaging (at positive bias) allows the elucidation of the number and orientation of all the adsorbate configurations in the 7 x 7 unit cell. At negative bias the adsorbate was observed to affect the imaging properties of neighbouring half unit cells. The threshold voltage required for desorption of the chlorobenzene molecules was invariant to small changes in the tip-state, the adsorption site (corner adatom, middle adatom, faulted or unfaulted half of the unit cell) and the kind of doping of the substrate (n or p type)

  14. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature

    Science.gov (United States)

    Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.

    2016-09-01

    A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.

  15. Room temperature large self-biased magnetoelectric effect in non-lead based piezoelectric and magnetostrictive (0−3) particulate composite system

    International Nuclear Information System (INIS)

    Kumari, Mukesh; Prakash, Chandra; Chatterjee, Ratnamala

    2017-01-01

    In this work, room temperature magnetoelectric properties of (0−3) particulate composites of non lead based piezoelectric BNTKNNLTS [0.97(Bi 0.5 Na 0.5 TiO 3 )–0.03(K 0.47 Na 0.47 Li 0.06 Nb 0.74 Sb 0.06 Ta 0.2 O 3 ) and magnetostrictive CZFMO (Co 0.6 Zn 0.4 Fe 1.7 Mn 0.3 O 4 ) are presented. Composite samples of (1-x)(BNTKNNLTS)-x(CZFMO) , with x=0.1 and 0.5, are synthesized by solid state reaction route. X-ray diffraction confirms the single phase formation of parent phases and the presence of two phases in the composites. Similar sintering conditions of the two individual components lead to optimal ferroelectric and ferromagnetic properties in the composites. A large self-biased magnetoelectric (ME) coupling ~74 mV/cm.Oe for the sample with x=0.1 (measured in longitudinally magnetized-transversely polarized configuration) is observed at room temperature. - Highlights: • Modified BNT-CFO based (0−3) particulate composites have been synthesized. • Similar sintering conditions of two components lead to optimal multiferroicity. • A large self-biased ME coupling ~74 mV/cm. Oe is obtained at room temperature.

  16. Continuous-wave room-temperature diamond maser

    Science.gov (United States)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.

    2018-03-01

    The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  17. Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor

    International Nuclear Information System (INIS)

    Yu, Ming-Ru; Suyambrakasam, Gobalakrishnan; Wu, Ren-Jang; Chavali, Murthy

    2012-01-01

    Graphical abstract: Sensor response (resistance) curves of time were changed from 150 ppm to 250 ppm alcohol concentration of ZnO–CuO 1:1. The response and recovery times were measured to be 62 and 83 s, respectively. The sensing material ZnO–CuO is a high potential alcohol sensor which provides a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature. Highlights: ► The main advantages of the ethanol sensor are as followings. ► Novel materials ZnO–CuO ethanol sensor. ► The optimized ZnO–CuO hetero contact system. ► A good sensor response and room working temperature (save energy). -- Abstract: A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = R air /R alcohol ) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R 2 of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.

  18. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  19. Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition

    KAUST Repository

    Otelaja, Obafemi O.

    2014-11-12

    © 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼1019 cm-3, Hall mobilities of ∼3 to 4 cm2 V-1 s-1, and electrical conductivities of ∼5 to 6 S·cm-1. Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼75 S·cm-1) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu1.94S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.

  20. Morphological Study on Room-Temperature-Cured PMMA-Grafted Natural Rubber-Toughened Epoxy/Layered Silicate Nanocomposite

    OpenAIRE

    Yuhana, N. Y.; Ahmad, S.; Kamal, M. R.; Jana, S. C.; Bahri, A. R. Shamsul

    2012-01-01

    A morphological study was conducted on ternary systems containing epoxy, PMMA-grafted natural rubber, and organic chemically modified montmorillonite (Cloisite 30B). Optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and wide-angle X-ray diffraction (WAXD) analysis were used. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 3...

  1. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    International Nuclear Information System (INIS)

    Singh, Archana; Singh, Ajendra; Singh, Satyendra; Tandon, Poonam; Yadav, B.C.; Yadav, R.R.

    2015-01-01

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO 2 gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe 2 O 4 shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO 2 ) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO 2 gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature

  2. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Archana; Singh, Ajendra [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Singh, Satyendra, E-mail: satyendra_nano84@rediffmail.com [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Tandon, Poonam [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C. [Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Yadav, R.R. [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India)

    2015-01-05

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO{sub 2} gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe{sub 2}O{sub 4} shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO{sub 2}) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO{sub 2} gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature.

  3. Room temperature luminescence and ferromagnetism of AlN:Fe

    Energy Technology Data Exchange (ETDEWEB)

    Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn [The Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cai, G. M. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn [Research and Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-06-15

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  4. Lead palladium titanate: A room-temperature multiferroic

    Science.gov (United States)

    Gradauskaite, Elzbieta; Gardner, Jonathan; Smith, Rebecca M.; Morrison, Finlay D.; Lee, Stephen L.; Katiyar, Ram S.; Scott, James F.

    2017-09-01

    There have been a large number of papers on bismuth ferrite (BiFe O3 ) over the past few years, trying to exploit its room-temperature magnetoelectric multiferroic properties. Although these are attractive, BiFe O3 is not the ideal multiferroic due to weak magnetization and the difficulty in limiting leakage currents. Thus there is an ongoing search for alternatives, including such materials as gallium ferrite (GaFe O3 ). In the present work we report a comprehensive study of the perovskite PbT i1 -xP dxO3 with 0 <x <0.3 . Our study includes dielectric, impedance, and magnetization measurements, conductivity analysis, and study of crystallographic phases present in the samples, with special attention paid to minor phases identified as PdO, PbPd O2 , and P d3Pb . The work is remarkable in two ways: Pd is difficult to substitute into A B O3 perovskite oxides (where it might be useful for catalysis), and Pd is magnetic under only unusual conditions (under strain or internal electric fields).

  5. Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite

    Science.gov (United States)

    Jyoti, Kanaujiya, Neha; Varma, G. D.

    2018-05-01

    Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.

  6. Silicon drift detectors for high resolution room temperature X-ray spectroscopy

    International Nuclear Information System (INIS)

    Lechner, P.; Eckbauer, S.; Hauff, D.; Strueder, L.; Gatti, E.; Longoni, A.; Sampietro, M.

    1996-01-01

    New cylindrical silicon drift detectors have been designed, fabricated and tested. They comprise an integrated on-chip amplifier system with continuous reset, on-chip voltage divider, electron accumulation layer stabilizer, large area, homogeneous radiation entrance window and a drain for surface generated leakage current. The test of the 3.5 mm 2 large individual devices, which have also been grouped together to form a sensitive area up to 21 mm 2 have shown the following spectroscopic results: at room temperature (300 K) the devices have shown a full width at half maximum at the Mn Kα line of a radioactive 55 Fe source of 225 eV with shaping times of 250 to 500 ns. At -20 C the resolution improves to 152 eV at 2 μs Gaussian shaping. At temperatures below 200 K the energy resolution is below 140 eV. With the implementation of a digital filtering system the resolution approaches 130 eV. The system was operated with count rates up to 800 000 counts per second and per readout node, still conserving the spectroscopic qualities of the detector system. (orig.)

  7. A Designed Room Temperature Multilayered Magnetic Semiconductor

    Science.gov (United States)

    Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team

    2015-03-01

    A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.

  8. In-situ investigation of the microstructure evolution in nanocrystalline copper electrodeposits at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2006-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of x-ray diffraction analysis and simultaneous measurements of the electrical resistivity as a function of time. In situ studies were started immediately after deposition...... growth, crystallographic texture changes by multiple twinning, and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer, the slower the microstructure evolution is......, and self-annealing is suppressed completely for a thin layer with 0.4 µm. The preferred crystallographic orientation of the as-deposited crystallites is suggested to cause the observed thickness dependence of the self-annealing kinetics. ©2006 American Institute of Physics...

  9. Room temperature large self-biased magnetoelectric effect in non-lead based piezoelectric and magnetostrictive (0−3) particulate composite system

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Mukesh [Magnetics & Advanced Ceramics Laboratory, Indian Institute of Technology, Delhi-110016 India (India); Prakash, Chandra [Solid State Physics Laboratory Timarpur, Delhi-110054 India (India); Chatterjee, Ratnamala, E-mail: rmala@physics.iitd.ac.in [Magnetics & Advanced Ceramics Laboratory, Indian Institute of Technology, Delhi-110016 India (India)

    2017-05-01

    In this work, room temperature magnetoelectric properties of (0−3) particulate composites of non lead based piezoelectric BNTKNNLTS [0.97(Bi{sub 0.5}Na{sub 0.5}TiO{sub 3})–0.03(K{sub 0.47}Na{sub 0.47}Li{sub 0.06}Nb{sub 0.74}Sb{sub 0.06}Ta{sub 0.2}O{sub 3}) and magnetostrictive CZFMO (Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4}) are presented. Composite samples of (1-x)(BNTKNNLTS)-x(CZFMO){sub ,} with x=0.1 and 0.5, are synthesized by solid state reaction route. X-ray diffraction confirms the single phase formation of parent phases and the presence of two phases in the composites. Similar sintering conditions of the two individual components lead to optimal ferroelectric and ferromagnetic properties in the composites. A large self-biased magnetoelectric (ME) coupling ~74 mV/cm.Oe for the sample with x=0.1 (measured in longitudinally magnetized-transversely polarized configuration) is observed at room temperature. - Highlights: • Modified BNT-CFO based (0−3) particulate composites have been synthesized. • Similar sintering conditions of two components lead to optimal multiferroicity. • A large self-biased ME coupling ~74 mV/cm. Oe is obtained at room temperature.

  10. Room temperature exchange bias in SmFeO_3 single crystal

    International Nuclear Information System (INIS)

    Wang, Xiaoxiong; Cheng, Xiangyi; Gao, Shang; Song, Junda; Ruan, Keqing; Li, Xiaoguang

    2016-01-01

    Exchange bias phenomenon is generally ascribed to the unidirectional magnetic shift along the field axes at interface of two magnetic materials. Room temperature exchange bias is found in SmFeO_3 single crystal. The behavior after different cooling procedure is regular, and the training behavior is attributed to the athermal training and its pinning origin is attributed to the antiferromagnetic clusters. Its being single phase and occurring at room temperature make it an appropriate candidate for application. - Graphical abstract: Room temperature exchange bias was found in oxide single crystal. Highlights: • Room temperature exchange bias has been discovered in single-crystalline SmFeO_3. • Its pinning origin is attributed to the antiferromagnetic clusters. • Its being single phase and occurring at room temperature make it an appropriate candidate for application.

  11. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution

    International Nuclear Information System (INIS)

    Zhao Yan; Li Yunling; Wang Zichen; Zhao Jingzhe; Ma Dechong; Hou Shengnan; Li Linzhi; Hao Xinli

    2011-01-01

    A simple room temperature method was reported for the synthesis of CuO nanocrystals in aqueous solution through the sequence of Cu 2+ → Cu(OA) 2 → Cu(OH) 2 → Cu(OH) 4 2- → CuO. Sodium oleate (SOA) was used as the surfactant and shape controller. The as-prepared samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy (UV-vis) and differential thermal analysis (DTA). It can be seen that 1D Cu(OH) 2 nanowires were first obtained from Cu(OA) 2 and, at room temperature, converted into 2D CuO nanoleaves (CuO NLs) in a short time under a weakly basic environment. On prolonging the reaction time, the top part of these 2D nanoleaves branched and separated along the long axis to form 1D rod-like nano-CuO because of the assistance of SOA. A possible transformation mechanism of Cu(OH) 2 to CuO nanostructures at room temperature in aqueous solution is discussed. The transformation velocity can be controlled by changing the pH value of the system. The prepared CuO NLs were used to construct an enzyme-free glucose sensor. The detecting results showed that the designed sensor exhibited good amperometric responses towards glucose with good anti-interferent ability.

  12. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation

    Science.gov (United States)

    Borowiec, Joanna; Gillin, William P.; Willis, Maureen A. C.; Boi, Filippo S.; He, Y.; Wen, J. Q.; Wang, S. L.; Schulz, Leander

    2018-02-01

    In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1Tʹ) ReS2 with a low degree of layer stacking.

  13. Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (MX4 (M=Pb, Sn, Hg; X=I-, Br-)

    Science.gov (United States)

    Ahmad, Shahab; Prakash, G. Vijaya

    2014-01-01

    Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.

  14. Titanium nitride room-temperature ferromagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Iu.G., E-mail: morozov@ism.ac.ru [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belyakov, O.A. [Ogarev Mordovia State University, Saransk, 68 Bol' shevistskaya Street, 430005 (Russian Federation); Parkin, I.P., E-mail: i.p.parkin@ucl.ac.uk [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Sathasivam, S. [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia (EMERCOM), 7 Davidkovskaya Street, Moscow, 121352 (Russian Federation)

    2016-08-05

    Cubic and near-spherical TiN nanoparticles ranging in average size from 20 to 125 nm were prepared by levitation-jet aerosol synthesis through condensation of titanium vapor in an inert gas flow with gaseous nitrogen injection. The nanoparticles were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET measurements, UV–Vis, FT-IR, Raman spectroscopy, XPS, and vibrating-sample magnetometry. Room-temperature ferromagnetism with maximum magnetization up to 2.5 emu/g was recorded for the nanoparticles. The results indicate that the observed ferromagnetic ordering was related to the defect Ti–N structures on the surface of nanoparticles. This suggestion is in good correlation with the measured spectroscopical data. - Highlights: • Levitation-jet aerosol synthesis of TiN nanoparticles (NPs). • SEM, XRD, BET, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between optical and XPS measurements data and maximum magnetization of the NPs.

  15. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    International Nuclear Information System (INIS)

    Zoch, H.L.

    1979-01-01

    A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims

  16. Large low-field magnetoresistance of Fe3O4 nanocrystal at room temperature

    International Nuclear Information System (INIS)

    Mi, Shu; Liu, Rui; Li, Yuanyuan; Xie, Yong; Chen, Ziyu

    2017-01-01

    Superparamagnetic magnetite (Fe 3 O 4 ) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is −3.5%, and when the field increases to 6000 Oe, the LFMR is up to −5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance. - Highlights: • Superparamagnetic Fe3O4 nanoparticles with small size were synthesized. • A quite high LFMR has been observed at room temperature. • The more grain boundaries increase the tunneling probability and enlarge the MR. • The fast response of the sample increase the MR at a low field.

  17. Room temperature luminescence and ferromagnetism of AlN:Fe

    Directory of Open Access Journals (Sweden)

    H. Li

    2016-06-01

    Full Text Available AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV and 598 nm (2.07 eV are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  18. CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism by time-lapse X-ray microtomography

    Science.gov (United States)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Geindreau, C.; Panel, J.-M.; Roscoat, S. Rolland; Charrier, P.

    2015-05-01

    Monitoring the time evolution of snow microstructure in 3-D is crucial for a better understanding of snow metamorphism. We, therefore, designed a cryogenic cell that precisely controls the experimental conditions of a sample while it is scanned by X-ray tomography. Based on a thermoelectrical regulation and a vacuum insulation, the cell operates at room temperature. It is, thus, adaptable to diverse scanners, offering advantages in terms of imaging techniques, resolution, and speed. Three-dimensional time-lapse series were obtained under equitemperature and temperature gradient conditions at a 7.8 μm precision. The typical features of each metamorphism and the anisotropic faceting behavior between the basal and prismatic planes, known to occur close to -2°C, were observed in less than 30 h. These results are consistent with the temperature fields expected from heat conduction simulations through the cell. They confirm the cell's accuracy and the interest of relatively short periods to study snow metamorphism.

  19. Accompanying growth and room-temperature ferromagnetism of η-Mn3N2 thin films by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yu, Fengmei; Liu, Yajing; Yang, Mei; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2013-01-01

    η-phase manganese nitride films have been grown on LaAlO 3 (100) and LaSrAlO 4 (001) substrates by using plasma-assisted molecular beam epitaxy. On the basis of reflective high energy electron diffraction, X-ray diffraction, and X-ray photoemission spectroscopy, it is confirmed that two types of η-Mn 3 N 2 with different lattice constants coexist in the films due to the lattice mismatches between the Mn 3 N 2 films and the substrates. Magnetic properties of the films were characterized by a superconducting quantum interference device magnetometer at room temperature. The Mn 3 N 2 films on LaAlO 3 substrate were found to have room-temperature ferromagnetism. Two potential interaction mechanisms are proposed regarding the origin of the observed ferromagnetism. - Highlights: ► The films of two types of η-Mn 3 N 2 have been grown by molecular beam epitaxy. ► Mn 3 N 2 A and Mn 3 N 2 B coexisted in the films on LaAlO 3 and LaSrAlO 4 . ► The room-temperature ferromagnetism of the Mn 3 N 2 films on LaAlO 3 was obtained

  20. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    Science.gov (United States)

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  1. Room temperature ferromagnetism and absorption red-shift in nitrogen-doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Gómez-Polo, C.; Larumbe, S.; Monge, M.

    2014-01-01

    Highlights: • N-doped TiO 2 anatase nanoparticles were obtained by sol–gel. • The nanoparticle size, controlled by the N doping, determines lattice parameters. • Correlation between room temperature ferromagnetism and absorption red-shift. • Oxygen vacancies reinforce both phenomena. • Metal transition impurities contribute to the room temperature ferromagnetism. - Abstract: In this work, room-temperature ferromagnetism and the red-shift of the optical absorption is analyzed in nitrogen doped TiO 2 semiconductor nanoparticles. The nanoparticles were synthesized by the sol–gel method using urea as the nitrogen source. Titanium Tetraisopropoxide (TTIP) was employed as the alkoxyde precursor and dissolved in ethanol. The as prepared gels were dried and calcined in air at 300 °C. Additionally, post-annealing treatments under vacuum atmosphere were performed to modify the oxygen stoichiometry of the samples. The anatase lattice parameters, analyzed by means of powder X-ray diffractometry, depend on the nanometer grain size of the nanoparticles (increase and decrease, respectively, of the tetragonal a and c lattice parameters with respect to the bulk values). The diffuse reflectance ultraviolet–visible (UV–Vis) absorbance spectra show a clear red-shift as consequence of the nitrogen and the occurrence of intragap energy levels. The samples display ferromagnetic features at room temperature that are reinforced with the nitrogen content and after the post annealings in vacuum. The results indicate a clear correlation between the room temperature ferromagnetism and the shift of the absorbance spectrum. In both phenomena, oxygen vacancies (either induced by the nitrogen doping or by the post vacuum annealings) play a dominant role. However, we conclude the existence of very low concentration of diluted transition metal impurities that determine the room ferromagnetic response (bound magnetic polaron BMP model). The contraction of the c soft axis of the

  2. Room Temperature Memory for Few Photon Polarization Qubits

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden

    2014-05-01

    We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

  3. Materials for room temperature magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl Hansen, B.

    2010-07-15

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 - 310 K. A magnetic refrigerant should fulfill a number of criteria, among these a large magnetic entropy change, a large adiabatic temperature change, preferably little to no thermal or magnetic hysteresis and the material should have the stability required for long term use. As the temperature range required for room temperature cooling is some 40 - 50 K, the magnetic refrigerant should also be able to cover this temperature span either by exhibiting a very broad peak in magnetocaloric effect or by providing the opportunity for creating a materials series with varying transition temperatures. (Author)

  4. Activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Gopalakrishnan, N.; Balasubramanian, T.

    2013-01-01

    Highlights: ► Room temperature ferromagnetism (RTFM) is observed in surface functionalized ZnO films. ► Surface functionalization is a new approach to make ZnO as ferromagnetic. ► The RTFM is attributed to the interaction between the adsorbates and the surface of ZnO. ► The oxygen vacancies are passivated upon surface functionalization. - Abstract: In this paper, we report the activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine. The pure and surface functionalized ZnO films have been examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements. XRD measurements show that all the films have single phase and (0 0 2) preferred orientation. The chemical bonding of ZnO with thiol and amine molecules has been confirmed by XPS measurements. The quenching of visible emission in PL spectra indicates that the surface defects are passivated by functionalization with thiol and amine. Surface functionalization of ZnO films with thiol and amine induces robust room temperature ferromagnetism in ZnO films as evidenced from VSM measurements. It is concluded that the observed ferromagnetic behavior in functionalized ZnO films is attributed to the different electronegativity of the atom in the thiol (or amine) and the surface of ZnO.

  5. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  6. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  7. Low temperature and high pressure crystals of room temperature ionic liquid: N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Imai, Yusuke; Takekiyo, Takahiro; Yoshimura, Yukihiro; Hamaya, Nozomu

    2014-01-01

    Crystals of room temperature ionic liquid (RTIL) are obtained separately at low temperature or under high pressure. The RTIL is N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF 4 ]. At ambient pressure, low-temperature (LT) crystals appeared on slow cooling. By simultaneous X-ray diffraction and differential scanning calorimetry (DSC) measurements, metastable monoclinic and stable orthorhombic phases coexist in pure [DEME][BF 4 ]. Furthermore, the DSC thermal trace indicates that the metastable monoclinic phase was stabilized by adding water. In contrast, on compression process up to 7.6 GPa, crystallization is completely suppressed even upon slow compression. Direct observations using optical microscopy also support no crystal domain growth on compression process. High-pressure (HP) crystals at room temperature were seen only on decompression process, where two different kinds of crystals appeared subsequently. By crystal structure analysis, the LT crystal structures have no relation with the HP ones. Moreover, both metastable monoclinic phase at low temperature and higher pressure crystal has a folding molecular conformation and anti-parallel pairing of the [DEME] cation as the instability factors

  8. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    Science.gov (United States)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  9. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    International Nuclear Information System (INIS)

    Kale, R.B.; Sartale, S.D.; Ganesan, V.; Lokhande, C.D.; Lin, Y.-F.; Lu, S.-Y.

    2006-01-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH 3 COO) 2 as Pb 2+ and Na 2 SeSO 3 as Se 2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV

  10. Room temperature ferromagnetic and photoluminescence ...

    Indian Academy of Sciences (India)

    32

    electrode, photo electronic devices, photo sensors, liquid crystal displays, electrochromic windows, solar panels and transparent coatings for solar-energy heat mirrors [11-13]. Here we report on magnetic properties of ITO nanoparticles at room temperature and at 100 K. 2. Experimental. The In1.9Sn0.1O3 powder samples ...

  11. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    International Nuclear Information System (INIS)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-01-01

    Graphical abstract: - Highlights: • The MnO x particles assembled with nanosheets were uniformly coated on PET fibers. • The growth process of MnO x layer on PET is clearly clarified. • MnO x /PET showed good activity for HCHO decomposition at room temperature. • MnO x /PET material is promising for indoor air purification due to its light, flexible and low air-resistant properties. - Abstract: Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnO x ) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnO x /PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnO x layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO 4 and then surface-deposition of MnO x particles from the bulk phase. The MnO x particles assembled with nanosheets were uniformly coated on the PET fibers. MnO x /PET showed good activity for HCHO decomposition at room temperature which followed the Mars–van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m 3 , space velocity ∼17,000 h −1 and relative humidity∼50%. This research provides a facile method to deposit active MnO x onto polymers with low air resistance, and composite MnO x /PET material is promising for indoor air purification.

  12. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinlong [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Yunus, Rizwangul [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Xinjiang Zhongtai Chemical Company, Xinjiang 831511 (China); Li, Jinge; Li, Peilin [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Zhang, Pengyi, E-mail: zpy@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Kim, Jeonghyun [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China)

    2015-12-01

    Graphical abstract: - Highlights: • The MnO{sub x} particles assembled with nanosheets were uniformly coated on PET fibers. • The growth process of MnO{sub x} layer on PET is clearly clarified. • MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature. • MnO{sub x}/PET material is promising for indoor air purification due to its light, flexible and low air-resistant properties. - Abstract: Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnO{sub x}) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnO{sub x}/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnO{sub x} layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO{sub 4} and then surface-deposition of MnO{sub x} particles from the bulk phase. The MnO{sub x} particles assembled with nanosheets were uniformly coated on the PET fibers. MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature which followed the Mars–van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m{sup 3}, space velocity ∼17,000 h{sup −1} and relative humidity∼50%. This research provides a facile method to deposit active MnO{sub x} onto polymers with low air resistance, and composite MnO{sub x}/PET material is promising for indoor air purification.

  13. Low Temperature Synthesis, Chemical and Electrochemical Characterization of LiNi(x)Co(1-x)O2 (0 less than x less than 1)

    Science.gov (United States)

    Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.

    1997-01-01

    A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.

  14. Characterization of room temperature recrystallization kinetics in electroplated copper thin films with concurrent x-ray diffraction and electrical resistivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Treger, Mikhail; Noyan, I. C. [Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027 (United States); Witt, Christian [GlobalFoundries, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Cabral, Cyril; Murray, Conal; Jordan-Sweet, Jean [IBM, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Rosenberg, Robert [State University of New York, the University at Albany, Albany, NY 12203 (United States); Eisenbraun, Eric [College of Nanoscale Science and Engineering, University at Albany, Albany, NY 12203 (United States)

    2013-06-07

    Concurrent in-situ four-point probe resistivity and high resolution synchrotron x-ray diffraction measurements were used to characterize room temperature recrystallization in electroplated Cu thin films. The x-ray data were used to obtain the variation with time of the integrated intensities and the peak-breadth from the Cu 111 and 200 reflections of the transforming grains. The variation of the integrated intensity and resistivity data with time was analyzed using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. For both 111-textured and non-textured electroplated Cu films, four-point probe resistivity measurements yielded shorter transformation times than the values obtained from the integrated intensities of the corresponding Cu 111 reflections. In addition, the JMAK exponents fitted to the resistivity data were significantly smaller. These discrepancies could be explained by considering the different material volumes from which resistivity and diffraction signals originated, and the physical processes which linked these signals to the changes in the evolving microstructure. Based on these issues, calibration of the resistivity analysis with direct structural characterization techniques is recommended.

  15. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  16. Room temperature Q-band electron magnetic resonance study of radicals in X-ray-irradiated L-threonine single crystals

    International Nuclear Information System (INIS)

    Vanhaelewyn, Gauthier; Vrielinck, Henk; Callens, Freddy

    2014-01-01

    In the past, decennia radiation-induced radicals were successfully identified by electron magnetic resonance (EMR) in several solid-state amino acids and sugars. The authors present a room temperature (RT) EMR study of the stable radicals produced by X-ray-irradiation in the amino acid L-threonine (CH 3 CH(OH)CH(NH3 + )COO - ). Its chemical structure is similar to that of the well-known dosimetric material L-alanine (CH 3 CH(NH3 + )COO - ), and radiation defects in L-threonine may straightforwardly be compared with the extensively studied L-alanine radicals. The hyperfine coupling tensors of three different radicals were determined at RT using electron nuclear double resonance. These results indicate that the two most abundant radicals share the same basic structure CH 3 .C(OH)CH(NH3 + )COO - , obtained by H-abstraction, but are stabilised in slightly different conformations. The third radical is most probably obtained by deamination (CH 3 CH(OH).CHCOO - ), similar in structure to the stable alanine radical. (authors)

  17. Enhanced room temperature ferromagnetism in Cr-doped ZnO nanoparticles prepared by auto-combustion method

    Science.gov (United States)

    Haq, Khizar-ul; Irfan, M.; Masood, Muhammad; Saleem, Murtaza; Iqbal, Tahir; Ahmad, Ishaq; Khan, M. A.; Zaffar, M.; Irfan, Muhammad

    2018-04-01

    Zn1‑x Cr x O (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) nanoparticles were synthesized, by an auto-combustion method. Structural, optical, and magnetic characteristics of Cr-doped ZnO samples calcined at 600 °C have been analyzed by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV–Vis spectroscopy and vibrating sample magnetometer (VSM). The XRD data confirmed the hexagonal wurtzite structure of pure and Cr-doped ZnO nanoparticles. The calculated values of grain size using Scherrer's formula are in the range of 30.7–9.2 nm. The morphology of nanopowders has been observed by FESEM, and EDS results confirmed a systematic increase of Cr content in the samples and clearly indicate with no impurity element. The band gaps, computed by UV–Vis spectroscopy, are in the range of 2.83–2.35 eV for different doping concentrations. By analyzing VSM data, significantly enhanced room temperature ferromagnetism is identified in Cr-doped ZnO samples. The value of magnetization is a 12 times increased of the value reported by Daunet al. (2010). Room temperature ferromagnetism of the nanoparticles is of vital prominence for spintronics applications. Project supported by the Office of Research, Innovation, and Commercialization (ORIC), MUST Mirpur (AJK).

  18. Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods

    International Nuclear Information System (INIS)

    Lin, Y. T.; Wadekar, P. V.; Kao, H. S.; Chen, T. H.; Chen, Q. Y.; Tu, L. W.; Huang, H. C.; Ho, N. J.

    2014-01-01

    One-dimensional nitride based diluted magnetic semiconductors were grown by plasma-assisted molecular beam epitaxy. Delta-doping technique was adopted to dope GaN nanorods with Mn. The structural and magnetic properties were investigated. The GaMnN nanorods with a single crystalline structure and with Ga sites substituted by Mn atoms were verified by high-resolution x-ray diffraction and Raman scattering, respectively. Secondary phases were not observed by high-resolution x-ray diffraction and high-resolution transmission electron microscopy. In addition, the magnetic hysteresis curves show that the Mn delta-doped GaN nanorods are ferromagnetic above room temperature. The magnetization with magnetic field perpendicular to GaN c-axis saturates easier than the one with field parallel to GaN c-axis

  19. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    Science.gov (United States)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  20. Structural and room temperature ferromagnetic properties of Ni doped ZnO nanoparticles via low-temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kun; Liu, Changzhen, E-mail: liuchangzhen94@163.com; Chen, Rui; Fang, Xiaoxiang; Wu, Xiuling; Liu, Jie

    2016-12-01

    A series of Zn{sub 1−x}Ni{sub x}O (x=0, 1%, 3%, 5%) nanoparticles have been synthesized via a low-temperature hydrothermal method. Influence of Ni doping concentration on the structure, morphology, optical properties and magnetism of the samples was investigated by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectrophotometer and vibrating sample magnetometer instruments. The results show that the undoped and doped ZnO nanoparticles are both hexagonal wurtzite structures. The surface analysis was performed using X-ray photoelectron spectroscopic studies. The images of SEM reveal that the structure of pure ZnO and Ni doped samples are nanoparticles which intended to form flakes with thickness of few nanometers, being overlain with each one to develop the network with some pores and voids. Based on the ultraviolet–visible (UV–vis) spectroscopy analysis, it indicates that the band gap energy decreases with the increasing concentration of Ni. Furthermore, The Ni doped ZnO samples didn't exhibit higher ultraviolet-light-driven photocatalytic activity compared to the undoped ZnO sample. Vibrating sample magnetometer was used for the magnetic property investigations, and the result indicates that room temperature ferromagnetism property of 3% Ni doped sample is attributed to oxygen vacancy and interaction between doped ions.

  1. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Gharib, Maniya; Najafi, Mahnaz [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Janczak, Jan [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław (Poland)

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.

  2. Response of a Zn2TiO4 Gas Sensor to Propanol at Room Temperature

    Directory of Open Access Journals (Sweden)

    Ibrahim Gaidan

    2017-08-01

    Full Text Available In this study, three different compositions of ZnO and TiO2 powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM and X-Ray Diffraction (XRD. The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.

  3. Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics

    Science.gov (United States)

    Sinha, Raju

    The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and

  4. Modification of embedded Cu nanoparticles: Ion irradiation at room temperature

    International Nuclear Information System (INIS)

    Johannessen, B.; Kluth, P.; Giulian, R.; Araujo, L.L.; Llewellyn, D.J.; Foran, G.J.; Cookson, D.J.; Ridgway, M.C.

    2007-01-01

    Cu nanoparticles (NPs) with an average diameter of ∼25 A were synthesized in SiO 2 by ion implantation and thermal annealing. Subsequently, the NPs were exposed to ion irradiation at room temperature simultaneously with a bulk Cu reference film. The ion species/energy was varied to achieve different values for the nuclear energy loss. The short-range atomic structure and average NP diameter were measured by means of extended X-ray absorption fine structure spectroscopy and small angle X-ray scattering, respectively. Transmission electron microscopy yielded complementary results. The short-range order of the Cu films remained unchanged consistent with the high regeneration rate of bulk elemental metals. For the NP samples it was found that increasing nuclear energy loss yielded gradual dissolution of NPs. Furthermore, an increased structural disorder was observed for the residual NPs

  5. Room-temperature effects of UV radiation in KBr:Eu{sup 2+} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Salas, R; Melendrez, R [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada - IFUNAM, Ensenada, Apartado Postal 2732 Ensenada, BC, 22800 (Mexico); Aceves, R; Rodriguez, R; Barboza-Flores, M [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088 Hermosillo, Sonora, 83190 (Mexico)

    1996-07-01

    Thermoluminescence and optical absorption measurements have been carried out in KBr:Eu{sup 2+} crystals irradiated with monochromatic UV light (200-300 nm) and x-rays at room temperature. For UV- and x-irradiated crystals strong similarities between the thermoluminescence glow curves have been found, suggesting that the low-energy UV radiation produces the same defects as produced by x-irradiation in this material. The thermoluminescence glow curves are composed of six glow peaks located at 337, 383, 403, 435, 475 and 509 K. Thermal annealing experiments in previously irradiated crystals show clearly a correlation between the glow peak located at 383 K and the F-centre thermal bleaching process. Also, the excitation spectrum for each thermoluminescence glow peak has been investigated, showing that the low-energy radiation induces the formation of F centres. (author)

  6. [The Relationship Study between Expressions of P2X5 Receptor and Deficiency-cold Syndrome/Deficiency-heat Syndrome at Various Ambient Temperatures].

    Science.gov (United States)

    Yang, Li-ping; Yu, Hong-jie; Huang, Rui; Li, Xin-min; Zhan, Xiang-hong; Hou, Jun-lin

    2015-05-01

    To detect the expression of the peripheral blood P2X5 receptor at various ambient temperatures, and to explore its relationship with deficiency-cold syndrome and deficiency-heat syndrome. Subjects were selected by questionnaire and expert diagnosis, and assigned to the normal control group, the deficiency-cold syndrome group, and the deficiency-heat syndrome group, 20 in each group. 5 mL venous blood was collected at room temperature (25 °C) and cold temperature (-4-5 °C) respectively. Then the expression of P2X5 receptor was relatively quantified by real-time fluorescence quantitative PCR, and compared at room temperature and cold temperature respectively. The expression of P2X5 receptor in deficiency-cold syndrome and deficiency-heat syndrome groups was lower than that in the normal control group at room temperature (P cold temperature in the deficiency-cold syndrome group than in the normal control group (P receptor showed no difference in all groups at two different temperatures (P > 0.05). The expression of P2X5 receptor was different in different syndrome groups at various ambient temperatures. Ambient temperatures had insignificant effect on the expression of P2X5 receptor of the population with the same syndrome.

  7. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    Science.gov (United States)

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  8. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  9. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  10. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    Science.gov (United States)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  11. Room temperature ferromagnetism and absorption red-shift in nitrogen-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Polo, C., E-mail: gpolo@unavarra.es [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Larumbe, S. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Monge, M. [Departamento de Química, Universidad de la Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26006 Logroño (Spain)

    2014-11-05

    Highlights: • N-doped TiO{sub 2} anatase nanoparticles were obtained by sol–gel. • The nanoparticle size, controlled by the N doping, determines lattice parameters. • Correlation between room temperature ferromagnetism and absorption red-shift. • Oxygen vacancies reinforce both phenomena. • Metal transition impurities contribute to the room temperature ferromagnetism. - Abstract: In this work, room-temperature ferromagnetism and the red-shift of the optical absorption is analyzed in nitrogen doped TiO{sub 2} semiconductor nanoparticles. The nanoparticles were synthesized by the sol–gel method using urea as the nitrogen source. Titanium Tetraisopropoxide (TTIP) was employed as the alkoxyde precursor and dissolved in ethanol. The as prepared gels were dried and calcined in air at 300 °C. Additionally, post-annealing treatments under vacuum atmosphere were performed to modify the oxygen stoichiometry of the samples. The anatase lattice parameters, analyzed by means of powder X-ray diffractometry, depend on the nanometer grain size of the nanoparticles (increase and decrease, respectively, of the tetragonal a and c lattice parameters with respect to the bulk values). The diffuse reflectance ultraviolet–visible (UV–Vis) absorbance spectra show a clear red-shift as consequence of the nitrogen and the occurrence of intragap energy levels. The samples display ferromagnetic features at room temperature that are reinforced with the nitrogen content and after the post annealings in vacuum. The results indicate a clear correlation between the room temperature ferromagnetism and the shift of the absorbance spectrum. In both phenomena, oxygen vacancies (either induced by the nitrogen doping or by the post vacuum annealings) play a dominant role. However, we conclude the existence of very low concentration of diluted transition metal impurities that determine the room ferromagnetic response (bound magnetic polaron BMP model). The contraction of the c soft axis

  12. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kale, R.B. [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043 (China)]. E-mail: rb_kale@yahoo.co.in; Sartale, S.D. [Hahn Meitner Institute, Glienicker Strasse-100, D-14109 Berlin (Germany); Ganesan, V. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Lin, Y.-F. [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043 (China); Lu, S.-Y. [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043 (China)]. E-mail: sylu@mx.nthu.edu.tw

    2006-11-15

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH{sub 3}COO){sub 2} as Pb{sup 2+} and Na{sub 2}SeSO{sub 3} as Se{sup 2-} ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  13. Airflow and Temperature Distribution in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Jacobsen, T. V.

    This thesis deals with air flow and temperature distribution in a room ventilated by the displacement principle. The characteristic features of the ventilation system are treated in the whole room but main emphasis is laid on the analysis of the stratified flow region in front of the inlet device....... After a prefatory description of the background and the fundamentals of displacement ventilation the objectives of the current study are specified. The subsequent sections describe the measurements of velocity and temperature profiles carried out in a full scale test room. Based on experimental data...... of measured data is of crucial importance. Qualitatively satisfactory results do not ensure quantitative agreement....

  14. Composition dependence of glow peak temperature in KCl1-xBrx doped with divalent cations

    International Nuclear Information System (INIS)

    Perez-Salas, R; Aceves, R; RodrIguez-Mijangos, R; Riveros, H G; Duarte, C

    2004-01-01

    Thermoluminescence measurements of β-irradiated Eu 2+ - and Ca 2+ - doped KCl 1-x KBr x solid solutions excited at room temperature have been carried out to identify the effect of composition on the glow peaks. A typical glow peak has been distinguished for each composition. A linear dependence of its temperature on the composition x has been found. These results indicate that for divalent impurity-doped alkali halide solid solutions these glow peak temperatures are mostly dependent on the lattice constant of the host than on the size of the anion or impurity cation

  15. Above Room Temperature Lead Salt VECSELs

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Chappuis, D.; Zogg, H.

    2010-01-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSEL) were developed for the wavelength range 4 to 5 μm. The devices are based on lead salt materials grown by MBE on BaF2 or Si substrate. The VECSELs are optically pumped with a 1.55 μm wavelength laser. They are operating up to above room temperature. An output power 6 mWp was reached at a temperature of +27°C. The VECSELs are temperature tunable and lasing is observed from ˜4.8 μm at -60°C down to ˜4.2 μm at +40°C heat sink temperature.

  16. High temperature X-ray diffraction studies on HfO2-Gd2O3 system

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Ananthasivan, K.; Joseph, M.

    2016-01-01

    High temperature X-ray diffraction (HTXRD) technique is an important experimental tool for measuring thermal expansion of materials of interest. A series of solid solutions containing GdO 1.5 in HfO 2 ,Hf 1-y Gd y )O 2 (y = 0.15, 0.2, 0.3, 0.41 and 0.505) were prepared by solid state method. Structural characterization and computation of lattice parameter was carried out by using room temperature X-ray diffraction measurements. The room temperature lattice parameter estimated for (Hf 1-y Gd y )O 2 (y=0.15, 0.2, 0.3, 0.41 and 0.505) are 0.51714 nm, 0.51929 nm, 0.52359nm, 0.52789nm and 0.53241 nm, respectively. Thermal expansion coefficients and percentage linear thermal expansion of the HfO 2 -Gd 2 O 3 solid solutions containing 20 and 41 mol% GdO 1.5 were determined using HTXRD in the temperature range 298 to 1673K. The mean linear thermal expansion coefficients of the solid solutions containing 20 and 41 mol. %Gd are 11.65 x 10 -6 K -1 and 12.07 x 10 -6 K -1 , respectively. (author)

  17. Magnetic refrigeration--towards room-temperature applications

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Li, X.W.; Boer, F.R. de; Buschow, K.H.J.

    2003-01-01

    Modern society relies very much on readily available cooling. Magnetic refrigeration based on the magneto-caloric effect (MCE) has become a promising competitive technology for the conventional gas-compression/expansion technique in use today. Recently, there have been two breakthroughs in magnetic-refrigeration research: one is that American scientists demonstrated the world's first room-temperature, permanent-magnet, magnetic refrigerator; the other one is that we discovered a new class of magnetic refrigerant materials for room-temperature applications. The new materials are manganese-iron-phosphorus-arsenic (MnFe(P,As)) compounds. This new material has important advantages over existing magnetic coolants: it exhibits a huge MCE, which is larger than that of Gd metal; and its operating temperature can be tuned from about 150 to about 335 K by adjusting the P/As ratio. Here we report on further improvement of the materials by increasing the Mn content. The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field. Addition of Mn reduces the thermal hysteresis, which is intrinsic to the first-order transition. This implies that already moderate applied magnetic fields of below 2 T may suffice

  18. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  19. Room temperature atomic layer deposited Al2O3 on CH3NH3PbI3 characterized by synchrotron-based X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kot, Małgorzata; Das, Chittaranjan; Henkel, Karsten; Wojciechowski, Konrad; Snaith, Henry J.; Schmeisser, Dieter

    2017-11-01

    An ultrathin Al2O3 film deposited on methylammonium lead triiodide (CH3NH3PbI3) perovskite has the capability to suppress the carrier recombination process and improve the perovskite solar cells efficiency and stability. However, annealing at temperatures higher than 85 °C degrades the CH3NH3PbI3 perovskite film. The X-ray photoelectron spectroscopy study performed in this work indicates that it is possible to grow Al2O3 by atomic layer deposition on the perovskite at room temperature, however, besides pure Al2O3 some OH groups are found and the creation of lead and iodine oxides at the Al2O3/CH3NH3PbI3 interface takes place.

  20. Control console for the X-ray room; Consola de control para la sala de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Garcia H, J.M.; Aguilar B, M.A.; Torres B, M.A

    1998-07-01

    It is presented the design and construction of Control console for the X-ray room of Metrology Center for ionizing radiations at National Institute of Nuclear Research (ININ). This system controls the positioning of 6 different filters for an X-ray beam. Also it controls a shutter which blockades the beam during periods established by user, these periods can be fixed from hours until tenth of second. The shutter opening periods, as well as the X-ray beam filter are establish and monitoring from a Personal computer outside of room. (Author)

  1. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Science.gov (United States)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  2. Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3-δ

    Science.gov (United States)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Chakrabarti, P. K.

    2018-05-01

    Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3-δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region ( 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature ( M- T) curve in the entire temperature range (300-5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie-Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

  3. CFD analysis of the temperature field in emergency pump room in Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Rämä, Tommi, E-mail: tommi.rama@fortum.com [Fortum Power and Heat, P.O.B. 100, FI-00048 Fortum (Finland); Toppila, Timo, E-mail: timo.toppila@fortum.com [Fortum Power and Heat, P.O.B. 100, FI-00048 Fortum (Finland); Kelavirta, Teemu, E-mail: teemu.kelavirta@fortum.com [Fortum Power and Heat, Loviisa Power Plant, P.O.B. 23, FI-07901 Loviisa (Finland); Martin, Pasi, E-mail: pasi.martin@fortum.com [Fortum Power and Heat, Loviisa Power Plant, P.O.B. 23, FI-07901 Loviisa (Finland)

    2014-11-15

    Highlights: • Laser scanned room geometry from Loviisa NPP was utilized for CFD simulation. • Uncertainty of CFD simulation was estimated using the Grid Convergence Index. • Measured temperature field of pump room was reproduced with CFD simulation. - Abstract: In the Loviisa Nuclear Power Plant (NPP) six emergency pumps belonging to the same redundancy are located in the same room. During a postulated accident the cooling of the room is needed as the engines of the emergency pumps generate heat. Cooling is performed with fans blowing air to the upper part of the room. Temperature limits have been given to the operating conditions of the main components in order to ensure their reliable operation. Therefore the temperature field of the room is important to know. Temperature measurements were made close to the most important components of the pump room to get a better understanding of the temperature field. For these measurements emergency pumps and cooling fan units were activated. To simulate conditions during a postulated accident additional warm-air heaters were used. Computational fluid dynamic (CFD) simulations were made to support plant measurements. For the CFD study one of the pump rooms of Loviisa NPP was scanned with a laser and this data converted to detailed 3-D geometry. Tetrahedral computation grid was created inside the geometry. Grid sensitivity studies were made, and the model was then validated against the power plant tests. With CFD the detailed temperature and flow fields of the whole room were produced. The used CFD model was able to reproduce the temperature field of the measurements. Two postulated accident cases were simulated. In the cases the operating cooling units were varied. The temperature profile of the room changes significantly depending on which units are cooling and which only circulating the air. The room average temperature stays approximately the same. The simulation results were used to ensure the acceptable operating

  4. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.

    Science.gov (United States)

    Borowiec, Joanna; Gillin, William P; Willis, Maureen; Boi, Filippo; He, Yi; Wen, Jiqiu; Wang, Shanling; Schulz, Leander

    2017-12-29

    In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These finding reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scannig calorimetry (DSC). The results indicated the formation of a lower symmetry (1Td) ReS2 with a low degree of layer stacking. © 2017 IOP Publishing Ltd.

  5. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Youroukov, S; Kitova, S; Danev, G [Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 113 Sofia (Bulgaria)], E-mail: skitova@clf.bas.bg

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO{sub 2} together with concurrent bombardment with low energy N{sub 2}{sup +} ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N{sub 2}{sup +} ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV)

  6. Mechanistic insights into the room temperature transitions of polytetrafluoroethylene during electron-beam irradiation

    Science.gov (United States)

    Fu, Congli; Yu, Xianwei; Zhao, Xiaofeng; Wang, Xiuli; Gu, Aiqun; Xie, Meiju; Chen, Chen; Yu, Zili

    2017-11-01

    In order to recognize the characteristic thermal transitions of polytetrafluoroethylene (PTFE) occurring at 19 °C and 30 °C, PTFE is irradiated on electron beam accelerator at room temperature and analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results suggest that the two transition temperatures decrease considerably with increasing irradiation doses. Based on the results of structural analysis, the decrease of the two transition temperatures is supposed to be highly relevant to the structural changes. In particular, the content and structure of the side groups generated in PTFE are responsible for the variations of the two thermal transitions after irradiation, offering fundamental insights into the reaction mechanisms of PTFE during irradiation.

  7. Strain induced room temperature ferromagnetism in epitaxial magnesium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenghe; Kim, Ki Wook [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nori, Sudhakar; Lee, Yi-Fang; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kumar, D. [Department of Mechanical Engineering, North Carolina A & T State University, Greensboro, North Carolina 27411 (United States); Wu, Fan [Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08540 (United States); Prater, J. T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States)

    2015-10-28

    We report on the epitaxial growth and room-temperature ferromagnetic properties of MgO thin films deposited on hexagonal c-sapphire substrates by pulsed laser deposition. The epitaxial nature of the films has been confirmed by both θ-2θ and φ-scans of X-ray diffraction pattern. Even though bulk MgO is a nonmagnetic insulator, we have found that the MgO films exhibit ferromagnetism and hysteresis loops yielding a maximum saturation magnetization up to 17 emu/cc and large coercivity, H{sub c} = 1200 Oe. We have also found that the saturation magnetization gets enhanced and that the crystallization degraded with decreased growth temperature, suggesting that the origin of our magnetic coupling could be point defects manifested by the strain in the films. X-ray (θ-2θ) diffraction peak shift and strain analysis clearly support the presence of strain in films resulting from the presence of point defects. Based on careful investigations using secondary ion mass spectrometer and X-ray photoelectron spectroscopy studies, we have ruled out the possibility of the presence of any external magnetic impurities. We discuss the critical role of microstructural characteristics and associated strain on the physical properties of the MgO films and establish a correlation between defects and magnetic properties.

  8. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  9. Protocols for dry DNA storage and shipment at room temperature.

    Science.gov (United States)

    Ivanova, Natalia V; Kuzmina, Masha L

    2013-09-01

    The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica(®) DNAstable(®) plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at -20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica(®) provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica(®) at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at -20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  10. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia

    2012-04-06

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  11. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia; Wang, Lei; Chen, Yao; Wang, Dongliang; Yao, Yingbang; Ma, Yanwei

    2012-01-01

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  12. Hydrogen-induced room-temperature plasticity in TC4 and TC21 alloys

    DEFF Research Database (Denmark)

    Yuan, Baoguo; Jin, Yongyue; Hong, Chuanshi

    2017-01-01

    In order to reveal the effect of hydrogen on the room-temperature plasticity of the titanium alloys TC4 and TC21, compression tests have been carried out at room temperature. Results show that an appropriate amount of hydrogen can improve the room-temperature plasticity of both the TC4 and TC21...... alloys. The ultimate compression strain of the TC4 alloy containing a hydrogen concentration of 0.5 wt.% increases by 39% compared to the untreated material. For the TC21 alloy the ultimate compression strain is increased by 33% at a hydrogen concentration of 0.6 wt.%. The main reason for the improvement...... of hydrogen-induced room-temperature plasticity of the TC4 and TC21 alloys is discussed....

  13. Large low-field magnetoresistance of Fe{sub 3}O{sub 4} nanocrystal at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shu, E-mail: mishu@buaa.edu.cn; Liu, Rui, E-mail: liurui1987@buaa.edu.cn; Li, Yuanyuan, E-mail: buaaliyuan@163.com; Xie, Yong, E-mail: xiey@buaa.edu.cn; Chen, Ziyu, E-mail: chenzy@buaa.edu.cn

    2017-04-15

    Superparamagnetic magnetite (Fe{sub 3}O{sub 4}) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is −3.5%, and when the field increases to 6000 Oe, the LFMR is up to −5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance. - Highlights: • Superparamagnetic Fe3O4 nanoparticles with small size were synthesized. • A quite high LFMR has been observed at room temperature. • The more grain boundaries increase the tunneling probability and enlarge the MR. • The fast response of the sample increase the MR at a low field.

  14. A room temperature light source based on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lo Faro, M.J. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Andrea, C. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Messina, E.; Fazio, B. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); Musumeci, P. [Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Franzò, G. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Gucciardi, P.G.; Vasi, C. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); Priolo, F. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Via Valdisavoia 9, 95123 Catania (Italy); Iacona, F. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Irrera, A., E-mail: irrera@me.cnr.it [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy)

    2016-08-31

    We synthesized ultrathin Si nanowires (NWs) by metal assisted chemical wet etching, using a very thin discontinuous Au layer as precursor for the process. A bright room temperature emission in the visible range due to electron–hole recombination in quantum confined Si NWs is reported. A single walled carbon nanotube (CNT) suspension was prepared and dispersed in Si NW samples. The hybrid Si NW/CNT system exhibits a double emission at room temperature, both in the visible (due to Si NWs) and the IR (due to CNTs) range, thus demonstrating the realization of a low-cost material with promising perspectives for applications in Si-based photonics. - Highlights: • Synthesis of ultrathin Si nanowires (NWs) by metal-assisted chemical etching • Synthesis of NW/carbon nanotube (CNT) hybrid systems • Structural characterization of Si NWs and Si NW/CNT • Room temperature photoluminescence (PL) properties of Si NWs and of Si NW/CNT • Tuning of the PL properties of the Si NW/CNT hybrid system.

  15. Significant enhancement of room temperature ferromagnetism in surfactant coated polycrystalline Mn doped ZnO particles

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, O.D. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gopalakrishnan, I.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: ikgopal@barc.gov.in; Sudakar, C. [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Kadam, R.M. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kulshreshtha, S.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2007-07-12

    We report a surfactant assisted synthesis of Mn doped ZnO polycrystalline samples showing robust room temperature ferromagnetism as characterized by X-ray diffraction analysis, transmission electron microscopy, electron paramagnetic resonance and DC magnetization measurements. This surfactant assisted synthesis method, developed by us, is found to be highly reproducible. Further, it can also be extended to the synthesis of other transition metal doped ZnO.

  16. Thermophysical and spectroscopic studies of room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate in Tritons

    International Nuclear Information System (INIS)

    Chaudhary, Ganga Ram; Bansal, Shafila; Mehta, S.K.; Ahluwalia, A.S.

    2012-01-01

    Highlights: ► Thermophysical studies of new formulations of [BMIM][PF 6 ]+TX(45,100) have been made. ► Strong intermolecular interactions between [BMIM][PF 6 ] and TX (45, 100) is observed. ► Magnitude of interactions increases with the addition of oxyethylene groups in TX. ► With rise in temperature, intermolecular interactions increases. ► Spectroscopic studies show that interactions are via aromatic rings of RTIL and TX. - Abstract: The thermophysical properties viz. density ρ, speed of sound u, and specific conductivity κ of pure room temperature ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and its binary formulations with Triton X-45 and Triton X-100 have been studied over the entire composition range at different temperatures (293.15 to 323.15) K. Excess molar volume V E , deviation in isentropic compressibility ΔK S , partial molar excess volume V i E , deviation in partial molar isentropic compressibility ΔK S,i , deviation in specific conductivity Δκ have also been estimated and analysed. Spectroscopic properties (IR, 1 H and 13 C NMR) of these mixtures have been investigated in order to understand the structural and interactional behaviour of formulations studied. The magnitude of interactions between the two components increases with addition of number of oxyethylene groups in Tritons and with rise in temperature. Spectroscopic measurements indicate that interactions are mainly taking place through the five member ring of room temperature ionic liquid and six member ring of Tritons.

  17. Designing switchable near room-temperature multiferroics via the discovery of a novel magnetoelectric coupling

    Science.gov (United States)

    Feng, J. S.; Xu, Ke; Bellaiche, Laurent; Xiang, H. J.

    2018-05-01

    Magnetoelectric (ME) coupling is the key ingredient for realizing the cross-control of magnetism and ferroelectricity in multiferroics. However, multiferroics are not only rare, especially at room-temperature, in nature but also the overwhelming majority of known multiferroics do not exhibit highly-desired switching of the direction of magnetization when the polarization is reversed by an electric field. Here, we report group theory analysis and ab initio calculations demonstrating, and revealing the origin of, the existence of a novel form of ME coupling term in a specific class of materials that does allow such switching. This term naturally explains the previously observed electric field control of magnetism in the first known multiferroics, i.e., the Ni–X boracite family. It is also presently used to design a switchable near room-temperature multiferroic (namely, LaSrMnOsO6 perovskite) having rather large ferroelectric polarization and spontaneous magnetization, as well as strong ME coupling.

  18. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    Science.gov (United States)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  19. In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature

    Science.gov (United States)

    Hada, Masaki; Hasegawa, Yoichi; Nagaoka, Ryota; Miyake, Tomoya; Abdullaev, Ulugbek; Ota, Hiromi; Nishikawa, Takeshi; Yamashita, Yoshifumi; Hayashi, Yasuhiko

    2018-02-01

    We have developed a vacuum-compatible chamber for in-situ X-ray diffraction (XRD) studies and have used it to characterize the changing crystal structure of an inorganic-organic hybrid perovskite material, CH3NH3PbI3 (MAPbI3), during interactions with water vapor at room temperature. In the XRD spectra, we have observed the degradation of MAPbI3 and the creation of MAPbI3 hydrates, which follow simple rate equations. The time constant for the degradation of MAPbI3 during accelerated aging suggests that multiple collisions of water molecules with the MAPbI3 crystal trigger the degradation of the crystal.

  20. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  1. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    Science.gov (United States)

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  2. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  3. Correlation of point defects in CdZnTe with charge transport:application to room-temperature x-ray and gamma-ray. Final Technical Report

    International Nuclear Information System (INIS)

    Giles, Nancy C.

    2003-01-01

    The primary goal of this project has been to characterize and identify point defects in CdZnTe. There are two experimental focus areas: (1) photoluminescence and EPR. Results are compared with radiation detector performance. Applications requiring room-temperature x-ray and gamma-ray detectors are rapidly increasing and now include nuclear medicine, space sciences, national security, environmental remediation, nonproliferation inspections, etc. To meet these needs, a new generation of detectors based on single crystals of cadmium zinc telluride (Cd 1-x Zn x Te) is being developed. This semiconductor material possesses many desirable detector properties, such as constituent atoms with high atomic number (Z), a sufficiently large band gap to minimize leakage currents at room temperature, and high intrinsic mobility-lifetime (p) products for electrons and holes. However, despite the tremendous promise of this material, problems clearly exist. CdZnTe crystals are difficult to grow in large sizes and with ultra-high purity. There is a need to further lower the leakage currents in detector-grade material and also to increase the efficiency of charge collection. In general, all aspects of carrier trapping in this material must be understood and minimized. Point defects are a primary reason CdZnTe crystals have not yet reached their expected levels of performance. Thus, a better understanding of the role of point defects and the larger microstructure defects on the transport of electrons and holes will lead to improved detector-grade CdZnTe. The primary goal of this project has been to characterize and identify point defects (e.g., impurities, vacancies, vacancy-impurity complexes, etc.) in CdZnTe and determine the mechanisms by which these defects influence the carrier μτ products. Special attention is given to the role of shallow donors, shallow acceptors, and deeper acceptors. There are two experimental focus areas in the project: (1) liquid-helium photoluminescence

  4. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    International Nuclear Information System (INIS)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H 2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V Zn  + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V Zn  + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ B . The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism

  5. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  6. Room temperature CO and H2 sensing with carbon nanoparticles

    International Nuclear Information System (INIS)

    Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo

    2011-01-01

    We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H 2 at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H 2 at room temperature even without Pd or Pt catalysts commonly used for splitting H 2 molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H 2 molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.

  7. Strain rate effects in nuclear steels at room and higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, G. E-mail: george.solomos@jrc.it; Albertini, C.; Labibes, K.; Pizzinato, V.; Viaccoz, B

    2004-04-01

    An investigation of strain rate, temperature and size effects in three nuclear steels has been conducted. The materials are: ferritic steel 20MnMoNi55 (vessel head), austenitic steel X6CrNiNb1810 (upper internal structure), and ferritic steel 26NiCrMo146 (bolting). Smooth cylindrical tensile specimens of three sizes have been tested at strain rates from 0.001 to 300 s{sup -1}, at room and elevated temperatures (400-600 deg. C). Full stress-strain diagrams have been obtained, and additional parameters have been calculated based on them. The results demonstrate a clear influence of temperature, which amounts into reducing substantially mechanical strengths with respect to RT conditions. The effect of strain rate is also shown. It is observed that at RT the strain rate effect causes up shifting of the flow stress curves, whereas at the higher temperatures a mild downshifting of the flow curves is manifested. Size effect tendencies have also been observed. Some implications when assessing the pressure vessel structural integrity under severe accident conditions are considered.

  8. Coexistence of room temperature ferroelectricity and ferrimagnetism in multiferroic BiFeO3-Bi0.5Na0.5TiO3 solid solution

    International Nuclear Information System (INIS)

    Tian, Z.M.; Wang, C.H.; Yuan, S.L.; Wu, M.S.; Ma, Z.Z.; Duan, H.N.; Chen, L.

    2011-01-01

    Highlights: → In this study, the coexistence of ferroelectrics and ferrimagnetism have been observed at room temperature for the (1 - x)BiFeO 3 -xBi 0.5 Na 0.5 TiO 3 (x = 0.37) solid solutions. → X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. → A magnetic transition from paramagnetic (PM) to ferrimagnetic (Ferri) ordering is observed for the solution with Curie temperature T C ∼ 330 K. - Abstract: The structure, ferroelectric and magnetic properties of (1 - x)BiFeO 3 -xBi 0.5 Na 0.5 TiO 3 (x = 0.37) solid solution fabricated by a sol-gel method have been investigated. X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. Compared with pure BiFeO 3 , the coexistence of ferroelectricity and ferrimagnetism have been observed at room temperature for the solution with remnant polarization P r = 1.41 μC/cm 2 and remnant magnetization M r = 0.054 emu/g. Importantly, a magnetic transition from ferrimagnetic (FM) ordering to paramagnetic (PM) state is observed, with Curie temperature T C ∼ 330 K, being explained in terms of the suppression of cycloid spin configuration by the structural distortion.

  9. Driving Curie temperature towards room temperature in the half-metallic ferromagnet K2Cr8O16 by soft redox chemistry.

    Science.gov (United States)

    Pirrotta, I; Fernández-Sanjulián, J; Moran, E; Alario-Franco, M A; Gonzalo, E; Kuhn, A; García-Alvarado, F

    2012-02-14

    The half-metallic ferromagnet K(2)Cr(8)O(16) with the hollandite structure has been chemically modified using soft chemistry methods to increase the average oxidation state of chromium. The synthesis of the parent material has been performed under high pressure/high temperature conditions. Following this, different redox reactions have been carried out on K(2)Cr(8)O(16). Oxidation to obtain potassium-de-inserted derivatives, K(2-x)Cr(8)O(16) (0 ≤x≤ 1), has been investigated with electrochemical methods, while the synthesis of sizeable amounts was achieved chemically by using nitrosonium tetrafluoroborate as a highly oxidizing agent. The maximum amount of extracted K ions corresponds to x = 0.8. Upon oxidation the hollandite structure is maintained and the products keep high crystallinity. The de-insertion of potassium changes the Cr(3+)/Cr(4+) ratio, and therefore the magnetic properties. Interestingly, the Curie temperature increases from ca. 175 K to 250 K, getting therefore closer to room temperature.

  10. Room-temperature macromolecular serial crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Francesco Stellato

    2014-07-01

    Full Text Available A new approach for collecting data from many hundreds of thousands of microcrystals using X-ray pulses from a free-electron laser has recently been developed. Referred to as serial crystallography, diffraction patterns are recorded at a constant rate as a suspension of protein crystals flows across the path of an X-ray beam. Events that by chance contain single-crystal diffraction patterns are retained, then indexed and merged to form a three-dimensional set of reflection intensities for structure determination. This approach relies upon several innovations: an intense X-ray beam; a fast detector system; a means to rapidly flow a suspension of crystals across the X-ray beam; and the computational infrastructure to process the large volume of data. Originally conceived for radiation-damage-free measurements with ultrafast X-ray pulses, the same methods can be employed with synchrotron radiation. As in powder diffraction, the averaging of thousands of observations per Bragg peak may improve the ratio of signal to noise of low-dose exposures. Here, it is shown that this paradigm can be implemented for room-temperature data collection using synchrotron radiation and exposure times of less than 3 ms. Using lysozyme microcrystals as a model system, over 40 000 single-crystal diffraction patterns were obtained and merged to produce a structural model that could be refined to 2.1 Å resolution. The resulting electron density is in excellent agreement with that obtained using standard X-ray data collection techniques. With further improvements the method is well suited for even shorter exposures at future and upgraded synchrotron radiation facilities that may deliver beams with 1000 times higher brightness than they currently produce.

  11. Electrochemical applications of room temperature ionic liquids in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2008-01-01

    Applications of room temperature ionic liquids (RTILs) have invaded all branches of science. They are also receiving an upsurge, in recent years, for possible applications in various stages of nuclear fuel cycle. Ionic liquids are compounds composed entirely of ions existing in liquid state and RTILs are ionic liquids molten at temperatures lower than 373 K. RTILs are generally made up of an organic cation and an inorganic or an organic anion. Room temperature ionic liquids have several fascinating properties, which are unique to a particular combination of cation and anion. The properties such as insignificant vapor pressure, amazing ability to dissolve organic and inorganic compounds, wide electrochemical window are the specific advantages when dealing with application of RTILs for reprocessing of spent nuclear fuel. The ionic liquids are regarded as designer or tailor-made solvents as their properties can be tuned for desired application by appropriate cation-anion combinations. An excellent review by Wilkes describes about the historical perspectives of room temperature ionic liquids, pioneers in that area, events and the products delivered till 2001. Furthermore, several comprehensive reviews have been made on room temperature ionic liquids by various authors

  12. An environment-friendly microemulsion approach to α-FeOOH nanorods at room temperature

    International Nuclear Information System (INIS)

    Geng Fengxia; Zhao Zhigang; Cong Hongtao; Geng Jianxin; Cheng Huiming

    2006-01-01

    α-FeOOH nanorods have been prepared at room temperature by an environment-friendly microemulsion approach. X-ray diffraction and transmission electron microscopy revealed that the single-crystalline orthorhombic α-FeOOH nanorods are 8.2 ± 1.5 nm in diameter and 106 ± 16 nm in length. Furthermore, the mechanism for the formation of α-FeOOH nanorods is preliminarily presented. This method may be widely used for reference to fabricate other inorganic one-dimensional nanostructured materials and easily realized in industrial-scale synthesis

  13. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  14. Glass Transitions and Low-Frequency Dynamics of Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Yamamuro, O.; Inamura, Y.; Hayashi, S.; Hamaguchi, H.

    2006-01-01

    We have measured the heat capacity and neutrion quasi- and inelastic scattering spectra of some salts of 1-butyl-3-methylimidazolium ion bmim+, which is a typical cation of room-temperature ionic liquids, and its derivatives. The heat capacity measurements revealed that the room-temperature ionic liquids have glass transitions as molecular liquids. The temperature dependence of configurational entropy demonstrated that the room-temperature ionic liquids are 'fragile liquids'. Both heat capacity and inelastic neutron scattering data revealed that the glassy phases exhibit large low-energy excitations usually called 'boson peak'. The quasielastic neutron scattering data showed that so-called 'fast process' appears around Tg as in molecular and polymer glasses. The temperature dependence of the self-diffusion coefficient derived from the neutron scattering data indicated that the orientation of bmim+ ions and/or butyl-groups of bmim+ ions is highly disordered and very flexible in an ionic liquid phase

  15. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    Science.gov (United States)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  16. Influence of argon and oxygen pressure ratio on bipolar-resistive switching characteristics of CeO2- x thin films deposited at room temperature

    Science.gov (United States)

    Ismail, Muhammad; Ullah, Rehmat; Hussain, Riaz; Talib, Ijaz; Rana, Anwar Manzoor; Hussain, Muhammad; Mahmood, Khalid; Hussain, Fayyaz; Ahmed, Ejaz; Bao, Dinghua

    2018-02-01

    Cerium oxide (CeO2-x) film was deposited on Pt/Ti/SiO2/Si substrate by rf magnetron sputtering at room temperature. Resistive switching characteristics of these ceria films have been improved by increasing oxygen content during deposition process. Endurance and statistical analyses indicate that the operating stability of CeO2-x-based memory is highly dependent on the oxygen content. Results indicate that CeO2-x film-based RRAM devices exhibit optimum performance when fabricated at an argon/oxygen ratio of 6:24. An increase in the oxygen content introduced during CeO2-x film deposition not only stabilizes the conventional bipolar RS but also improves excellent switching uniformity such as large ON/OFF ratio (102), excellent switching device-to-device uniformity and good sweep endurance over 500 repeated RS cycles. Conduction in the low-resistance state (LRS) as well as in the low bias field region in the high-resistance state (HRS) is found to be Ohmic and thus supports the conductive filament (CF) theory. In the high voltage region of HRS, space charge limited conduction (SCLC) and Schottky emission are found to be the dominant conduction mechanisms. A feasible filamentary RS mechanism based on the movement of oxygen ions/vacancies under the bias voltage has been discussed.

  17. Surface characterization of U(AlxSi1-x)3 alloy and its interaction with O2 and H2O, at room temperature

    Science.gov (United States)

    Matmor, M.; Cohen, S.; Rafailov, G.; Vaknin, M.; Shamir, N.; Gouder, T.; Zalkind, S.

    2018-02-01

    Surface characterization and the interactions of U(AlxSi1-x)3 alloy (x = 0.57) with oxygen and water vapor were studied, utilizing X-Ray Photoelectron Spectroscopy and Direct Recoil Spectrometry, at room temperature. The U 4f spectrum of U(AlxSi1-x)3 alloy exhibits weak correlation satellites, suggesting an itinerant description of the U 5f states for this compound. The Al and Si 2p lines are chemically shifted to lower binding energies. Exposing the alloy to oxygen and water vapor results in oxidation of mainly the uranium and aluminum components, while silicon is only slightly oxidized. Oxygen was found to be a stronger oxidizer than water vapor and the trend is consistent with the more negative enthalpies of formation of metal oxides produced by the O2 reaction, as compared to H2O. During oxygen exposure, fast oxidation occurs by oxide islands nucleation and lateral growth, followed by oxidation of the sub-surface, up to ∼4 nm, at 1000 L exposure. Water initially reacts with the surface by full dissociation and oxide islands formation, which is then covered by hydroxides. Only a minor increase in the oxide thickness of up to ∼2.5 nm, was observed after coalescence.

  18. Defect states and room temperature ferromagnetism in cerium oxide nanopowders prepared by decomposition of Ce-propionate

    DEFF Research Database (Denmark)

    Mihalache, V.; Grivel, J. C.; Secu, M.

    2018-01-01

    . An improvement of ferromagnetism and intensity of defect-related PL emission was observed when annealing the products in which nanocrystalline cerium oxide coexists with Ce - oxicarbonate traces, Ce2O2CO3. The experimental results were explained based on the following considerations: room temperature......Four batches of cerium oxide powders (with nanocrystallite size of 6.9 nm–572 nm) were prepared from four precursor nanopowders by thermal decomposition of Ce-propionate and annealing in air between 250 °C–1200 °C for 10 min–240 min. Ceria formation reactions, structure, vibrational, luminescence...... and magnetic properties were investigated by differential scanning calorimetry, x-ray diffraction, electron microscopy, infrared spectroscopy, photoluminescence and SQUID. All the samples exhibit room temperature ferromagnetism, RTFM, (with coercivity, Hc, of 8 Oe - 121 Oe and saturation magnetization, Ms...

  19. The effects of nanoscale geometry and spillover on room temperature storage of hydrogen on silica nanosprings

    International Nuclear Information System (INIS)

    Corti, Giancarlo; Zhan, Yingqian; Wang, Lidong; Hare, Brian; Cantrell, Timothy; II, Miles Beaux; Prakash, Tej; Ytreberg, F Marty; McIlroy, David N; Miller, Michael A

    2013-01-01

    Silica nanosprings (NSs) consisting of multiple nanowires intertwined were demonstrated to reversibly store 0.85 wt% hydrogen at 20 bar and room temperature. X-ray photoelectron spectroscopy indicates a mixed 3 + –4 + ionization state of the silicon atoms and partially explains the enhanced surface adsorption of H 2 relative to other forms of silica. Theoretical modeling and simulation using a Lennard-Jones potential demonstrated that interstitial sites between the silica nanowires forming the NS are energetically more favorable adsorption sites relative to single nanowires. The addition of Pd nanoparticles to the surface of the silica NSs was demonstrated to increase the hydrogen storage capacity to ≈3.5 wt% at 66 bar and room temperature. Palladium-nanoparticle-induced hydrogen spillover is attributed to the enhanced storage capacity relative to bare silica NSs. (paper)

  20. Influence of sequential room-temperature compressive creep on flow stress of TA2

    Science.gov (United States)

    Mengyuan, Zhang; Boqin, Gu; Jiahui, Tao

    2018-03-01

    This paper studied the sequential room temperature compressive creep and its effects on compressive properties of TA2 with stress-control loading pattern by using cylindrical compressive test specimen. The significant time-dependent deformation under constant load was observed in the TA2 at room temperature, and the deformation was dependent on the loading process under the same loading stress rate. It was also found that the occurrence of room temperature compressive creep obviously enhanced the subsequent yielding strength and flow stress of TA2 due to the increase of network dislocation density. And the effects of room temperature creep on the strain rate-stress behavior could be explained by the local mobile dislocation density model.

  1. Room-temperature ferromagnetism in Co and Nb co-doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Hachisu, M.; Mori, K.; Hyodo, K.; Morimoto, S.; Yamazaki, T.; Ichiyanagi, Y.

    2015-01-01

    Co- and Nb-doped TiO 2 nanoparticles encapsulated with amorphous SiO 2 were synthesized by our novel preparation method. An anatase TiO 2 single-phase structure was confirmed using X-ray diffraction. The particle size could be controlled to be about 5 nm. The composition of these nanoparticles was investigated by X-ray fluorescence analysis. X-ray absorption near-edge structure spectra showed that the Ti 4+ and Co 2+ states were dominant in our prepared samples. A reduction in the coordination number was also confirmed. The dependence of the electrical conductivity on the frequency was measured by an LCR meter, and the carrier concentration was determined. The magnetization curves for the nanoparticles indicated ferromagnetic behavior at room temperature. We concluded that the ferromagnetism originated in oxygen vacancies around the transition metal ions

  2. Positron annihilation studies in the high-temperature superconductors YBa2Cu3Osub(7-x) and HoBa2Cu3Osub(7-x)

    International Nuclear Information System (INIS)

    Mandal, P.; Poddar, A.; Nambissan, P.M.G.; Choudhury, P.; Ghosh, B.; Sen, P.; Majumdar, C.K.

    1988-01-01

    In the high-Tsub(c) superconductors YBa 2 Cu 3 Osub(7-x) and HoBa 2 Cu 3 Osub(7-x) the Doppler-broadened positron annihilation lineshape parameter is studied as a function of temperature. Anomalies are detected around the transition temperature found by resistance measurements, giving indirect support for an electronic mechanism for superconductivity. The positron lifetimes in these compounds are measured at room temperature and are found to be similar. The origins of the several lifetimes found and their intensities are discussed. (author)

  3. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    Science.gov (United States)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data

  4. Magnetic heat pumping near room temperature

    Science.gov (United States)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  5. A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films

    International Nuclear Information System (INIS)

    Pathan, Habib M.; Kim, Woo Young; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    A lot of methods are developed for the deposition of TiO 2 thin films; however, in each of these methods as-deposited films are amorphous and need further heat treatment at high temperature. In the present article, a chemical bath deposition (CBD) method was used for the preparation of TiO 2 thin films. We investigated nanocrystalline TiO 2 thin films using CBD at room temperature onto glass and ITO coated glass substrate. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The chemically synthesized films were nanocrystalline and composed of crystal grains of 2-3 nm

  6. Electrical characterization of MIM capacitor comprises an adamantane film at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Rajanish N., E-mail: rajanisht@gmail.com [Department of Physics and Astronomical Sciences, Central University of Himachal Pradesh, Dharmshala 176206 Kangra, H.P. India (India); Toyota Technological Institute, 2-12-1Hisakata, Tempaku-Ku, Nagoya 468-8511 (Japan); Yoshimura, Masamichi [Department of Physics and Astronomical Sciences, Central University of Himachal Pradesh, Dharmshala 176206 Kangra, H.P. India (India)

    2016-06-15

    We fabricated a new metal-insulator-metal capacitor at room temperature, comprising a ∼90 nm thin low–k adamantane film on a Si substrate. The surface morphology of deposited organic film was investigated by using scanning electron microscopy and Raman spectroscopy, which is confirmed that the adamantane thin film was uniformly distributed on the Si surface. The adamantane film exhibits a low leakage current density of 7.4 x 10{sup −7} A/cm{sup 2} at 13.5 V, better capacitance density of 2.14 fF/μm{sup 2} at 100 KHz.

  7. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.; Stolojan, Vlad; Zeze, Dagou A.; Forrest, Roy D.; Silva, S. Ravi P.; Haq, Sajad

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperature. This method would allow room-temperature direct synthesized nanofiber networks over relatively large areas, for a range of temperature sensitive substrates, such as organic materials, plastics, and other polymers of interest for nanoelectronic two-dimensional networks, nanoelectromechanical devices, nanoactuators, and composite materials

  8. Effect of temperature on the elastic-plastic fracture toughness behavior of Inconel X-750

    International Nuclear Information System (INIS)

    Mills, W.J.

    1977-09-01

    The elastic-plastic J/sub Ic/ fracture toughness response of precipitation heat treated Inconel X-750 has been evaluated by the multi-specimen resistance curve (R-curve) technique at room temperature, 800 0 F (427 0 C), and 1000 0 F (538 0 C). The value of J/sub Ic/ for this nickel-base superalloy was found to be relatively independent of temperature over the test temperature range. On the other hand, the slopes of the fracture toughness R-curves were steeper at 800 and 1000 0 F (427 and 538 0 C) than at 75 0 F (24 0 C), thereby indicating that the resistance to crack extension was considerably greater at elevated temperatures, Metallographic and electron fractographic examination of the Inconel X-750 fracture surfaces revealed that this slope change phenomenon was associated with an intergranular to transgranular fracture mechanism transition. Under room temperature conditions, crack extension occurred primarily by an intergranular dimple rupture mechanism attributed to microvoid coalescence along a grain boundary denuded region. In the 800 to 1000 0 F (427 to 538 0 C) regime, the fracture surface was dominated by a faceted transgranular morphology

  9. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  10. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.

    2006-01-01

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  11. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan 430072 (China)

    2014-01-21

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H{sub 2} in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V{sub Zn} + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V{sub Zn} + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ{sub B}. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  12. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun; Qian, Yitai

    2012-01-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  13. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun

    2012-10-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  14. Metal nanoparticle film-based room temperature Coulomb transistor.

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  15. Substitution of conventional high-temperature syntheses of inorganic compounds by near-room-temperature syntheses in ionic liquids

    KAUST Repository

    Groh, Matthias Friedrich

    2013-01-01

    The high-temperature syntheses of the low-valent halogenides P2I4, Te2Br, α-Te4I4, Te4(Al2Cl7)2, Te4(Bi6Cl20), Te8(Bi4Cl14),Bi8(AlCl4)2, Bi6Cl7,and Bi6Br7, as well as of WSCl4 andWOCl4 have been replaced by resource-efficient low-temperature syntheses in room temperature ionic liquids (RTILs). The simple one-pot syntheses generally do not require elaborate equipment such as twozone furnaces or evacuated silica ampoules. Compared to the published conventional approaches, reduction of reaction time (up to 80%) and temperature (up to 500 K) and, simultaneously, an increase in yield were achieved. In the majority of cases, the solid products were phase-pure. X-Ray diffraction on single crystals (redetermination of 11 crystal structures) has demonstrated that the quality of the crystals from RTILs is comparable to that of products obtained by chemical transport reactions. © 2013 Verlag der Zeitschrift für Naturforschung, Tübingen.

  16. X-ray diffraction and dielectric studies across morphotropic phase boundary in (1 - x) [Pb(Mg0.5W0.5)O3]-xPbTiO3 ceramics

    International Nuclear Information System (INIS)

    Singh, A.K.; Singh, Akhilesh Kumar

    2011-01-01

    Research highlights: → Structural studies reveal pseudocubic structure of PMW-xPT for the x ≤ 0.42, tetragonal for the x ≥ 0.72 and the coexistences of the two phases for intermediate compositions (0.46 ≤ x 0.68). → Temperature dependent dielectric constant for compositions in the two phase region shows two dielectric anomalies above room temperature and not just one as reported by earlier workers. → Rietveld structural analysis of PMW-xPT ceramics is presented for the first time to determine the fraction of the coexisting phases in MPB region. - Abstract: We present here the results of comprehensive X-ray diffraction and dielectric studies on several compositions of (1 - x)[Pb(Mg 0.5 W 0.5 )O 3 ]-xPbTiO 3 (PMW-xPT) solid solution across the morphotropic phase boundary. Rietveld analysis of the powder X-ray diffraction data reveals cubic (space group Fm3m) structure of PMW-xPT ceramics for the compositions with x ≤ 0.42, tetragonal (space group P4mm) structure for the compositions with x ≥ 0.72 and coexistence of the tetragonal and cubic phases for the intermediate compositions (0.46 ≤ x ≤ 0.68). Temperature dependence of the dielectric permittivity above room temperature exhibits diffuse nature of phase transitions for the compositions in the cubic and two phase region while the compositions with tetragonal structure at room temperature exhibit sharp ferroelectric to paraelectric phase transition. The PMW-xPT compositions with coexistence of tetragonal and cubic phases at room temperature exhibit two anomalies in the temperature dependence of the dielectric permittivity above room temperature. Using results of structural and dielectric studies a partial phase diagram of PMW-xPT ceramics is also presented.

  17. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  18. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-07-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron.

  19. Evaluation of radiation protection in x rays room design in diagnostic radiography department in Omdurman locality

    International Nuclear Information System (INIS)

    Adam, Ahmed yusif Abdelrahman

    2013-03-01

    The purpose of this study is conducted in order to evaluate the application of radiation protection in x-ray rooms design in diagnosis radiology department, evaluate personal monitoring devices, to assess primary scatter and leakage radiation dose, to assess monitoring devices if available, in period from March 2013 to August 2013. The design data included room size, control room size, manufacture of equipment, room surrounding areas, workload of all equipment rooms, type of x-ray equipment, radiation worker's in all hospital, number of patient in each shift, structural material and shielding, K vp and m As used in x-ray room department during examination testing. The results of this study show that there is x-ray room design, the design of x-ray equipment is accepted according to the radiation safety institute team of quality control. Also the study shows that the radiation protection devices are available and in a good condition and enough in number. The study shows that there are not personal monitoring devices and services. the radiological technologist are well trained. Also the study investigation the radiation protection in x-ray room in diagnostic department in Omdurman locality. Finally the study shows that there is compact able to ICRP recommended and National quality control in Sudan Atomic Energy Council exception, Alwedad, Abusied and Blue Nile there are have not control room concludes that there is only in relationship hospital have a window without shield.(Author)

  20. Oxygen vacancy induced room temperature ferromagnetism in (In1-xNix)2O3 thin films

    Science.gov (United States)

    Chakraborty, Deepannita; Kaleemulla, S.; Kuppan, M.; Rao, N. Madhusudhana; Krishnamoorthi, C.; Omkaram, I.; Reddy, D. Sreekantha; Rao, G. Venugopal

    2018-05-01

    Nickel doped indium oxide thin films (In1-xNix)2O3 at x = 0.00, 0.03, 0.05 and 0.07 were deposited onto glass substrates by electron beam evaporation technique. The deposited thin films were subjected to annealing in air at 250 °C, 350 °C and 450 °C for 2 h using high temperature furnace. A set of films were vacuum annealed at 450 °C to study the role of oxygen on magnetic properties of the (In1-xNix)2O3 thin films. The thin films were subjected to different characterization techniques to study their structural, chemical, surface, optical and magnetic properties. All the synthesized air annealed and vacuum annealed films exhibit body centered cubic structure without any secondary phases. No significant change in the diffraction peak position, either to lower or higher diffraction angles has been observed. The band gap of the films decreased from 3.73 eV to 3.63 eV with increase of annealing temperature from 250 °C to 450 °C, in the presence of air. From a slight decrease in strength of magnetization to a complete disappearance of hysteresis loop has been observed in pure In2O3 thin films with increasing the annealing temperature from 250 °C to 450 °C, in the presence of air. The (In1-xNix)2O3 thin films annealed under vacuum follow a trend of enhancement in the strength of magnetization to increase in temperature from 250 °C to 450 °C. The hysteresis loop does not disappear at 450 °C in (In1-xNix)2O3 thin films, as observed in the case of pure In2O3 thin films.

  1. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  2. In-situ X-ray residual stress measurement on a peened alloy 600 weld metal at elevated temperature under tensile load

    International Nuclear Information System (INIS)

    Yunomura, Tomoaki; Maeguchi, Takaharu; Kurimura, Takayuki

    2014-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) on surface of alloy 600 weld metal (alloy 132) was investigated by in-situ X-ray residual stress measurement under thermal aging and stress condition considered for actual plant operation. Surface residual stress change was observed at the early stage of thermal aging at 360°C, but no significant further stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. For the X-ray residual stress measurement, X-ray stress constant at room temperature for alloy 600 was determined experimentally with several surface treatment and existence of applied strain. The X-ray stress constant at elevated temperatures were extrapolated theoretically based on the X-ray stress constant at room temperature for alloy 600. (author)

  3. Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity

    Science.gov (United States)

    Zeng, Rongjin; Chen, Guoliang; Xiong, Chungang; Li, Gengxian; Zheng, Yinzhi; Chen, Jian; Long, Yunfei; Chen, Shu

    2018-03-01

    A stable zincporphyrin functionalized graphene nanocomposite was prepared by using positively charged cationic porphyrin (5,10,15,20-tetra(4-propyl pyridinio) porphyrin, TPPyP) and successive reduced graphene oxide (rGO) with tuned negative charge. The nanocomposite preparation was accompanied first by distinct electrostatic interactions and π-π stacking between TPPyP and rGO, and followed by fast Zinc-metallation at room temperature. In contrast to free TPPyP with Zn2+, the incorporation reaction is very slow at room temperature and heating or reflux conditions are required to increase the metallation rate. While at the surface of rGO nanosheet, the Zinc-metallation of TPPyP was greatly accelerated to 30 min at 25 °C in aqueous solution. The interaction process and composites formation were fully revealed by significant variations in UV-vis absorption spectra, X-ray photoelectron spectra (XPS) measurements, atomic force microscope (AFM) images, and fluorescence spectra. Furthermore, photoelectrochemical activity of resultant rGO/TPPyP-Zn nanocomposites was evaluated under visible-light irradiation, and enhancement of the photoelectrocatalytic reduction of CO2 was achieved.

  4. Synthesis and characterization of strontium carboxylates at room temperature and at high temperature in autoclave vessels

    DEFF Research Database (Denmark)

    Christgau, Stephan; Ståhl, Kenny; Andersen, Jens Enevold Thaulov

    2006-01-01

    A novel method was developed for synthesis of strontium coordination compounds in high yields. The synthesis proceeded along three pathways that provided strontium salts in high purity and high yields, close to 100%, as confirmed by flame atomic absorption spectroscopy (FAAS) and powder x......-ray crystallography. Optimum conditions were found at T = 120-1400C, a base-to-acid ratio of 1.2 and 15 min. of reaction-time in an autoclave vessel. Large crystals were readily obtained within a time period of hours. The crystal structures of strontium D-glutamate hexahydrate (I) and strontium di-(hydrogen L......-glutamate) pentahydrate (II) were confirmed by X-ray powder diffraction at 295 K and Rietveld refinements (I: Space group P212121, Z=4, a=7.3519(2), b=8.7616(2), c=20.2627(5) Å, and II: Space group P21, Z=2, a=8.7243(1), b=7.2635(1), c=14.6840(2) Å, β=100.5414(7) °). Synthesis at room temperature provided four additional...

  5. Electrically Injected Twin Photon Emitting Lasers at Room Temperature

    Directory of Open Access Journals (Sweden)

    Claire Autebert

    2016-08-01

    Full Text Available On-chip generation, manipulation and detection of nonclassical states of light are some of the major issues for quantum information technologies. In this context, the maturity and versatility of semiconductor platforms are important assets towards the realization of ultra-compact devices. In this paper we present our work on the design and study of an electrically injected AlGaAs photon pair source working at room temperature. The device is characterized through its performances as a function of temperature and injected current. Finally we discuss the impact of the device’s properties on the generated quantum state. These results are very promising for the demonstration of electrically injected entangled photon sources at room temperature and let us envision the use of III-V semiconductors for a widespread diffusion of quantum communication technologies.

  6. 'Green' synthesis of starch capped CdSe nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Li Jinhua; Ren Cuiling; Liu Xiaoyan; Hu Zhide; Xue Desheng

    2007-01-01

    The nearly monodisperse starch capped CdSe nanoparticles were successfully synthesized by a simple and 'green' route at room temperature. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis absorption and photoluminescence (PL) spectra. The XRD analysis showed that the starch capped CdSe nanoparticles were of the cubic structure, the average particle size was calculated to be about 3 nm according to the Debye-Scherrer equation. TEM micrographs exhibited that the starch capped CdSe nanoparticles were well dispersed than the uncapped CdSe nanoparticles, the mean particles size of the capped CdSe was about 3 nm in the TEM image, which was in good agreement with the XRD

  7. Conditions giving rise to intense visible room temperature photoluminescence in SrWO4 thin films: the role of disorder

    International Nuclear Information System (INIS)

    Orhan, E.; Anicete-Santos, M.; Maurera, M.A.M.A.; Pontes, F.M.; Paiva-Santos, C.O.; Souza, A.G.; Varela, J.A.; Pizani, P.S.; Longo, E.

    2005-01-01

    The nature of intense visible photoluminescence at room temperature of SrWO 4 (SWO) non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The SWO thin films were synthesized by the polymeric precursors method. Their structural properties have been obtained by X-ray diffraction data and the corresponding photoluminescence (PL) spectra have been measured. The UV-vis optical spectra measurements suggest the creation of localized states in the disordered structure. The photoluminescence measurements reveal that the PL changes with the degree of disorder in the SWO thin film. To understand the origin of visible PL at room temperature in disordered SWO, we performed quantum-mechanical calculations on crystalline and disordered SWO periodic models. Their electronic structures are analyzed in terms of DOS, band dispersion and charge densities. We used DFT method with the hybrid non-local B3LYP approximation. The polarization induced by the symmetry break and the existence of localized levels favors the creation of trapped holes and electrons, giving origin to the room temperature photoluminescence phenomenon in the SWO thin films

  8. The High Temperature Resistivity of Ba2YCu3O7-x

    Science.gov (United States)

    Xingkui, Zhang; Shining, Zhu; Hao, Wang; Shiyuan, Zhang; Su, Ye; Ningshen, Zhou; Ziran, Xu

    The high temperature resistivity (ρ), thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to characterize superconductor Ba2YCu3O7-x (BYCO) in O2, air and N2. The resistivity is linear from room temperature to 350°C and then deviate from linearity with oxygen evolution, the derivative of resistivity dρ/dT increases abruptly near orthorhombic to tetragonal phase transition. These phenomena can give good explanations for a two-band Drude model.

  9. Metal nanoparticle film–based room temperature Coulomb transistor

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  10. Room temperature excitation spectroscopy of single quantum dots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2011-08-01

    Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

  11. Computer code for shielding calculations of x-rays rooms

    International Nuclear Information System (INIS)

    Affonso, R.R.W.; Borges, D. da S.; Lava, D.D.; Moreira, M. de L.; Guimarães, A.C.F.

    2015-01-01

    The building an effective barrier against ionizing radiation present in radiographic rooms requires consideration of many variables. The methodology used for thickness specification of primary and secondary, barrier of a traditional radiographic room, considers the following factors: Use Factor, Occupational Factor, distance between the source and the wall, Workload, Kerma in the air and distance between the patient and the source. With these data it was possible to develop a computer code, which aims to identify and use variables in functions obtained through graphics regressions provided by NCRP-147 (Structural Shielding Design for Medical X-Ray Imaging Facilities) report, for shielding calculation of room walls, and the walls of the dark room and adjacent areas. With the implemented methodology, it was made a code validation by comparison of results with a study case provided by the report. The obtained values for thickness comprise different materials such as concrete, lead and glass. After validation it was made a case study of an arbitrary radiographic room.The development of the code resulted in a user-friendly tool for planning radiographic rooms to comply with the limits established by CNEN-NN-3:01 published in september/2011. (authors)

  12. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Yajie Jiang

    2015-06-01

    Full Text Available The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1].

  13. On the initial corrosion mechanism of zirconium alloy: Interaction of oxygen and water with Zircaloy at room temperature and 450 C evaluated by x-ray absorption spectroscopy and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Doebler, U.; Knop, A.

    1994-01-01

    The initial stages of zirconium oxide formation on Zircaloy after water (H 2 O) and oxygen (O 2 ) exposures have been investigated in situ using photoelectron spectroscopy and X-ray-absorption spectroscopy. The reactivity of the zirconium alloy with O 2 at room temperature is about 1,000 times higher than for H 2 O. Up to 100 L (1 L = 1 Langmuir unit = 1 · 10 -6 mbar · s) H 2 O exposure, the reactivity of the zirconium alloy at 450 C is comparable to the room temperature reaction. At higher H 2 O exposure, a sharp increase in the reaction rate for the high-temperature oxidation is observed. From the energy position of the Zr 3d photo emission line and their oxygen-induced chemical shifts, one can really follow the formation of the oxide films. Two different substoichiometric oxides were found during reaction with water. Suboxide (1) is located at the zirconium/zirconium-oxide interface. Subsequently, a Suboxide (2) is concluded from the chemical shift of the zirconium photoelectrons. After an oxide thickness of 2 nm, the stoichiometric ZrO 2 phase is not yet developed

  14. Room Temperature Monoclinic Phase in BaTiO3 Single Crystals

    Science.gov (United States)

    Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman

    2010-03-01

    BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.

  15. Temperature dependence of magnetotransport behavior and its correlation with inter-particle interaction in Cu100−xCox granular films

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2013-01-01

    Granular Cu 100−x Co x (x=15.1-30.9) films were deposited by magnetron co-sputtering and their magnetotransport properties were investigated as a function of temperature. We observed that with increasing cobalt content the room temperature magnetoresistance (MR) shows a maximum at x=20.9. With decreasing temperature, it is observed that the cobalt concentration at which the maximum MR occurs shifts progressively towards lower Co concentration. This behavior has been discussed in terms of the inter-particle magnetic interactions.

  16. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    OpenAIRE

    Boskovic, BO; Stolojan, V; Zeze, DA; Forrest, RD; Silva, SRP; Haq, S

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperatur...

  17. La0.7Sr0.3MnO3 Thin Films for Magnetic and Temperature Sensors at Room Temperature

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2012-03-01

    Full Text Available In this paper, the potentialities of the manganese oxide La0.7Sr0.3MnO3 (LSMO for the realization of sensitive room temperature thermometers and magnetic sensors are discussed. LSMO exhibits both a large change of the resistance versus temperature at its metal-to-insulator transition (about 330 K and low field magnetoresistive effects at room temperature. The sensor performances are described in terms of signal-to-noise ratio in the 1 Hz - 100 kHz frequency range. It is shown that due to the very low 1/f noise level, LSMO based sensors can exhibit competitive performances at room temperature.

  18. Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Chitra, E-mail: chitra.rajendran@psi.ch; Dworkowski, Florian S. N.; Wang, Meitian; Schulze-Briese, Clemens [Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2011-05-01

    Observations of the dose-rate effect in continuous X-ray diffraction data acquisition at room temperature are presented. The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼1320 Gy s{sup −1} and ∼8420 Gy s{sup −1} with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D{sub 1/2} at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.

  19. Proton conducting hydrocarbon membranes: Performance evaluation for room temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Krivobokov, Ivan M.; Gribov, Evgeniy N.; Okunev, Alexey G.

    2011-01-01

    The methanol permeability, proton conductivity, water uptake and power densities of direct methanol fuel cells (DMFCs) at room temperature are reported for sulfonated hydrocarbon (sHC) and perfluorinated (PFSA) membranes from Fumatech, and compared to Nafion membranes. The sHC membranes exhibit lower proton conductivity (25-40 mS cm -1 vs. ∼95-40 mS cm -1 for Nafion) as well as lower methanol permeability (1.8-3.9 x 10 -7 cm 2 s -1 vs. 2.4-3.4 x 10 -6 cm 2 s -1 for Nafion). Water uptake was similar for all membranes (18-25 wt%), except for the PFSA membrane (14 wt%). Methanol uptake varied from 67 wt% for Nafion to 17 wt% for PFSA. The power density of Nafion in DMFCs at room temperature decreases with membrane thickness from 26 mW cm -2 for Nafion 117 to 12.5 mW cm -2 for Nafion 112. The maximum power density of the Fumatech membranes ranges from 4 to 13 mW cm -1 . Conventional transport parameters such as membrane selectivity fail to predict membrane performance in DMFCs. Reliable and easily interpretable results are obtained when the power density is plotted as a function of the transport factor (TF), which is the product of proton concentration in the swollen membrane and the methanol flux. At low TF values, cell performance is limited by low proton conductivity, whereas at high TF values it decreases due to methanol crossover. The highest maximum power density corresponds to intermediate values of TF.

  20. Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature.

    Science.gov (United States)

    Norte, R A; Moura, J P; Gröblacher, S

    2016-04-08

    All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.

  1. Forced volume magnetostriction in Mn3.3Sn0.7C compound at room temperature

    International Nuclear Information System (INIS)

    Wen Yongchun; Wang Cong; Sun Ying; Nie Man; Chu Lihua

    2010-01-01

    The negative volume magnetostriction in the external magnetic field for antiperovskite Mn 3.3 Sn 0.7 C compound is discovered. Its magnetic transition temperature from paramagnetism to ferrimagnetism is 348 K. The linear and volume magnetostrictions were investigated by measuring the change in length along the three-dimensional directions of the square samples at room temperature. Volume contraction was observed along all of the three directions throughout the whole magnetization. The value of volume magnetostriction is -44x10 -6 at 1.5 T. The magnetization saturates basically at 1.5 T, however the volume magnetostriction should be higher with further increase in magnetic field.

  2. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona

    2016-01-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer...... solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does...... not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both...

  3. Temperature effect on X-ray photoelectron spectra of 3d transition metal ions

    International Nuclear Information System (INIS)

    Kochur, A.G.; Kozakov, A.T.; Yavna, V.A.; Daniel, Ph.

    2014-01-01

    Highlights: • 2p XPS of 3d metal ions are calculated in an isolated ion approximation. • 2p XPS of Ti, V, Cr, Mn, Fe ions are temperature dependent even at room temperature. • Temperature effect on 3p XPS is slight. • No temperature effect on 3s XPS is discovered. - Abstract: Temperature effect on 2p- 3s- and 3p X-ray photoelectron spectra (XPS) of various ions of Ti, V, Cr, Mn and Fe is studied theoretically within an isolated ion approximation. It is shown that the 2p XPS of those ions are temperature dependent even at room temperature due to a very slight energy splitting between the ground-state-term total-momentum J-components which can be thermally populated. Most significant temperature effect is expected in the 2p-spectra of Ti 2+ (3d 2 ), V 2+ (3d 3 ), Cr 2+ (3d 4 ), Mn 3+ (3d 4 ), and Mn 3+ (3d 4 ) ions. The temperature effect on 3p XPS is slight. No temperature effect on 3s XPS is expected

  4. Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling

    Directory of Open Access Journals (Sweden)

    Daqiang Gao

    2011-12-01

    Full Text Available In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu1+-VO in CuO.

  5. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    Science.gov (United States)

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  6. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.

    2015-06-23

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  7. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.; Rodrigues, J. N B; Su, Chenliang; Milletari, M.; Loh, Kian Ping; Wu, Tao; Chen, Wei; Neto, A. H Castro; Adam, Shaffique; Wee, Andrew T S

    2015-01-01

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  8. Tunable magnetostructural coupling and large magnetocaloric effect in Mn{sub 1−x}Ni{sub 1−x}Fe{sub 2x}Si{sub 1−x}Ga{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.L., E-mail: zhangcl@jiangnan.edu.cn [School of Science, Jiangnan University, WuXi 214122 (China); Nie, Y.G.; Shi, H.F.; Ye, E.J.; Zhao, J.Q. [School of Science, Jiangnan University, WuXi 214122 (China); Han, Z.D. [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Xuan, H.C. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, D.H. [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China)

    2017-06-15

    Highlights: • Realizing FM/PM-type magnetostructural transition by co-substitution at both three atomic sites of MnNiSi. • Magnetostructural transition temperature is tunable in a broad temperature window of 285 K spanning room temperature. • Relatively high M{sub S} for the orthorhombic phase and large ΔM across the magnetostructural transition. • Relatively large magnetic entropy changes and broad working temperature span. - Abstract: A common method of realizing a magnetostructural coupling for MnNiSi is chemically alloying it with a ternary compound possessing a stable Ni{sub 2}In-type structure. In this way, the substituting elements and levels are determined by the stoichiometry of counterpart compounds. In this work, chemical co-substitutions of Fe and Ga at three different atomic sites of MnNiSi were performed. The selections of substitution elements and levels were based on the site occupation rule and an analysis of the site-dependent substitutional effects on structural stability, Curie temperatures, and magnetic moment of MnNiSi. A broad Curie temperatures window of 285 K spanning room temperature was established in Mn{sub 1−x}Ni{sub 1−x}Fe{sub 2x}Si{sub 1−x}Ga{sub x}. Strong magnetostructural transformations with large magnetization difference were realized in this window. A relatively large magnetic entropy change of −38.1 J/kg K was observed for a field change of 5 T near room temperature in the alloy with x = 0.15.

  9. FAST TRACK COMMUNICATION: Reproducible room temperature giant magnetocaloric effect in Fe-Rh

    Science.gov (United States)

    Manekar, Meghmalhar; Roy, S. B.

    2008-10-01

    We present the results of magnetocaloric effect (MCE) studies in polycrystalline Fe-Rh alloy over a temperature range of 250-345 K across the first order antiferromagnetic to ferromagnetic transition. By measuring the MCE under various thermomagnetic histories, contrary to the long held belief, we show here explicitly that the giant MCE in Fe-Rh near room temperature does not vanish after the first field cycle. In spite of the fact that the virgin magnetization curve is lost after the first field cycle near room temperature, reproducibility in the MCE under multiple field cycles can be achieved by properly choosing a combination of isothermal and adiabatic field variation cycles in the field-temperature phase space. This reproducible MCE leads to a large effective refrigerant capacity of 324.42 J kg-1, which is larger than that of the well-known magnetocaloric material Gd5Si2Ge2. This information could be important as Fe-Rh has the advantage of having a working temperature of around 300 K, which can be used for room temperature magnetic refrigeration.

  10. Room temperature electrodeposition of actinides from ionic solutions

    Science.gov (United States)

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  11. Room Temperature Tunable Multiferroic Properties in Sol-Gel-Derived Nanocrystalline Sr(Ti1−xFexO3−δ Thin Films

    Directory of Open Access Journals (Sweden)

    Yi-Guang Wang

    2017-09-01

    Full Text Available Sr(Ti1−xFexO3−δ (0 ≤ x ≤ 0.2 thin films were grown on Si(100 substrates with LaNiO3 buffer-layer by a sol-gel process. Influence of Fe substitution concentration on the structural, ferroelectric, and magnetic properties, as well as the leakage current behaviors of the Sr(Ti1−xFexO3−δ thin films, were investigated by using the X-ray diffractometer (XRD, atomic force microscopy (AFM, the ferroelectric test system, and the vibrating sample magnetometer (VSM. After substituting a small amount of Ti ion with Fe, highly enhanced ferroelectric properties were obtained successfully in SrTi0.9Ti0.1O3−δ thin films, with a double remanent polarization (2Pr of 1.56, 1.95, and 9.14 μC·cm−2, respectively, for the samples were annealed in air, oxygen, and nitrogen atmospheres. The leakage current densities of the Fe-doped SrTiO3 thin films are about 10−6–10−5 A·cm−2 at an applied electric field of 100 kV·cm−1, and the conduction mechanism of the thin film capacitors with various Fe concentrations has been analyzed. The ferromagnetic properties of the Sr(Ti1−xFexO3−δ thin films have been investigated, which can be correlated to the mixed valence ions and the effects of the grain boundary. The present results revealed the multiferroic nature of the Sr(Ti1−xFexO3−δ thin films. The effect of the annealing environment on the room temperature magnetic and ferroelectric properties of Sr(Ti0.9Fe0.1O3−δ thin films were also discussed in detail.

  12. Characteristics of ZnO Wafers Implanted with 60 keV Sn+ Ions at Room Temperature and at 110 K

    International Nuclear Information System (INIS)

    Dang, Giang T.; Taniwaki, Masafumi; Kawaharamura, Toshiyuki; Hirao, Takashi; Nitta, Noriko

    2011-01-01

    ZnO wafers implanted with 60 keV Sn + ions at room temperature (RT) and at 110 K are investigated by means of X-ray diffraction (XRD) and photoluminescence (PL) techniques. The effect of implantation temperature is evident in the XRD and PL data. A yellow-orange (YO) band near 600 nm appears in the PL spectra of the ZnO wafers implanted to the doses of 4x10 14 and 8x10 14 ions/cm 2 at RT. The intensity of this band increases and the peak position blue-shifts after illumination of the samples with the 325 nm line of a He-Cd laser. The PL data suggests that the CB (conduction band)→V O + and Zn i + →V Zn - transitions contribute to the photoemission of the YO band.

  13. Fluorescence from gaseous UF/sub 6/ excited by a near-UV dye laser. [Decay time,quenching rate,room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, P [Pavia Univ. (Italy); Cubeddu, R; Sacchi, C A; Svelto, O; Zaraga, F [Politecnico di Milano (Italy)

    1976-06-01

    Preliminary data are reported on the visible fluorescence of gaseous UF/sub 6/ excited by a dye laser at 374 nm. A decay time of 500 ns at p = 0 and a quenching rate of 5.7 x 10/sup -12/cm/sup 3/molec/sup -1/s/sup -1/ have been measured at room temperature.

  14. Room temperature ferromagnetism of iron-doped rutile TiO{sub 2} nanorods synthesized by a low temperature method

    Energy Technology Data Exchange (ETDEWEB)

    Melghit, Khaled [Chemistry Department, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman)], E-mail: melghit@squ.edu.om; Bouziane, Khalid [Physics Department, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman)

    2008-04-03

    Nanorods of Fe-TiO{sub 2} were synthesized at 100 deg. C and room pressure by mixing titanium oxide wet gel TiO{sub 2}.xH{sub 2}O with a boiling solution of iron nitrate. The results of EDAX, performed on different selected area of the sample, revealed a homogeneous composition of about 3 at% Fe. Electron diffraction and XRD measurements show that the as-prepared Fe-TiO{sub 2} and annealed one at 550 deg. C have both a single rutile structure with no indication about the presence of a secondary phase. The transmission electron microscopy (TEM) micrographs show that both as-prepared Fe-TiO{sub 2} and annealed one at 550 deg. C have nanorod-shape with dimensions length by diameter of about 60 x 5 nm and 52 x 12 nm, respectively. Magnetization measurements show that both samples present a nonzero remanence and a coercivity of 108 and 120 Oe, respectively. At higher temperature, 850 deg. C, Fe-TiO{sub 2} decomposes to rutile TiO{sub 2} and new iron-titanate phase.

  15. S-N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low Temperatures

    Science.gov (United States)

    Jung, Dae-Ho; Kwon, Jae-Ki; Woo, Nam-Sub; Kim, Young-Ju; Goto, Masahiro; Kim, Sangshik

    2014-02-01

    In the present study, the S-N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, -50 °C, and -80 °C). The resistance to S-N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to -80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to -50 °C) over the entire ∆ K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (-50 °C to -80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ∆K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.

  16. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  17. Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors.

    Science.gov (United States)

    Karimi, Mohammad; Jain, Vishal; Heurlin, Magnus; Nowzari, Ali; Hussain, Laiq; Lindgren, David; Stehr, Jan Eric; Buyanova, Irina A; Gustafsson, Anders; Samuelson, Lars; Borgström, Magnus T; Pettersson, Håkan

    2017-06-14

    The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n + -i-n + InP nanowires periodically ordered in arrays. The nanowires were grown by metal-organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 μm and a bias-tunable responsivity reaching 7 A/W@1.38 μm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiO x /ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors.

  18. Conformational variation of proteins at room temperature is not dominated by radiation damage

    International Nuclear Information System (INIS)

    Russi, Silvia; González, Ana; Kenner, Lillian R.; Keedy, Daniel A.; Fraser, James S.; Bedem, Henry van den

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation

  19. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  20. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-03-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  1. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  2. Enhanced room temperature multiferroicity in Gd doped BFO

    CSIR Research Space (South Africa)

    Pradhan, SK

    2009-01-01

    Full Text Available deficient Gd doped multiferroic BFO system. At particular doping level of Gd, this bulk ceramics showed spectacular M~H behavior at room temperature which is likely to open a new avenue for the potential applications in information storing technology as well...

  3. Are routine repeat chest x-rays before leaving the trauma room useful?

    NARCIS (Netherlands)

    Lemmers, M.; Saltzherr, T. P.; Beenen, L. F. M.; Ponsen, K. J.; Goslings, J. C.

    2010-01-01

    Several guidelines advocate multiple chest x-rays during primary resuscitation of trauma patients. Some local hospital protocols include a repeat x-ray before leaving the trauma resuscitation room (TR). The purpose of this study was to determine the value of routine repeat x-rays. One-year data of

  4. Room-temperature ferromagnetism observed in C-/N-/O-implanted MgO single crystals

    Science.gov (United States)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Zhang, Jie; Zhang, Lijuan; Kong, Wei; Weng, Huimin; Ye, Bangjiao

    2013-01-01

    MgO single crystals were implanted with 70 keV C/N/O ions at room temperature with respective doses of 2 × 1016 and 2 × 1017 ions/cm2. All samples with high-dose implantation showed room temperature hysteresis in magnetization loops. Magnetization and slow positron annihilation measurements confirmed that room temperature ferromagnetism in O-implanted samples was attributed to the presence of Mg vacancies. Furthermore, the introduction of C or N played more effective role in ferromagnetic performance than Mg vacancies. Moreover, the magnetic moment possibly occurred from the localized wave function of unpaired electrons and the exchange interaction formed a long-range magnetic order.

  5. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  6. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  7. Materials for Room Temperature Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered...... candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material...... to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 – 310 K. A magnetic refrigerant...

  8. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  9. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser

    KAUST Repository

    Das, Ayan; Heo, Junseok; Jankowski, Marc; Guo, Wei; Zhang, Lei; Deng, Hui; Bhattacharya, Pallab

    2011-01-01

    , and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing. © 2011 American Physical Society.

  10. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    International Nuclear Information System (INIS)

    Strizak, J.P.; Brinkman, C.R.; Booker, M.K.; Rittenhouse, P.L.

    1982-04-01

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 871 0 C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 538 0 C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 427 0 C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development

  11. Structure of C60: Partial orientational order in the room-temperature modification of C60

    International Nuclear Information System (INIS)

    Buergi, H.B.; Restori, R.; Schwarzenbach, D.

    1993-01-01

    Using published synchrotron X-ray data, the room-temperature scattering density distribution of pure C 60 has been parametrized in terms of a combination of eight oriented symmetry-related images of the molecule, and of a freely spinning molecule. Corresponding populations are 61 and 39%. The oriented part of the model is obtained, in good approximation, by imposing m anti 3m symmetry on the energetically more favourable major orientation in the low-temperature structure of C 60 . The model was refined using angle restraints to impose the icosahedral molecular symmetry and displacement-factor restraints to restrict thermal movements to rigid-body translations and librations. Translational displacement factors are in the range 0.017-0.023 A 2 . The orientational probability density distribution obtained from the model shows maxima for C 60 orientations possessing anti 3m crystallographic site symmetry. It is also relatively large for the C 60 orientations with cubic site symmetry m anti 3. The smallest energy barrier for reorientation between different anti 3m orientations via an m anti 3 orientation appears to be less than 2 kJ mol -1 . On average, 75% of the intermolecular contacts of the oriented molecules are longer than those observed in the low-temperature structure, the other 25% are less favourable. The second orientation of C 60 found in the low-temperature structure could not be identified at room temperature. (orig.)

  12. Room-Temperature Single-Photon Source for Secure Quantum Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — We are asking for four years of support for PhD student Justin Winkler's work on a research project entitled "Room temperature single photon source for secure...

  13. Ratchetting behavior of type 304 stainless steel at room and elevated temperatures

    International Nuclear Information System (INIS)

    Ruggles, M.; Krempl, E.

    1988-01-01

    The zero-to-tension ratchetting behavior was investigated under uniaxial loading at room temperature and at 550, 600 and 650/degree/ C. In History I the maximum stress level of ratchetting was equal to the stress reached in a tensile test at one percent strain. For History II the maximum stress level was established as the stress reached after a 2100 s relaxation at one percent strain. Significant ratchetting was observed for History I at room temperature but not at the elevated temperatures. The accumulated ratchet strain increases with decreasing stress rate. Independent of the stress rates used insignificant ratchet strain was observed at room temperature for History II. This observation is explained in the context of the viscoplasticity theory based on overstress by the exhaustion of the viscous contribution to the stress during relaxation. The viscous part of the stress is the driving force for the ratchetting in History I. Strain aging is presumably responsible for the lack of short-time inelastic deformation resulting in a nearly rate-independent behavior at the elevated temperatures. 26 refs., 7 figs., 1 tab

  14. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Science.gov (United States)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  15. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Polák, Jaroslav, E-mail: polak@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Petráš, Roman; Heczko, Milan; Kuběna, Ivo [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Kruml, Tomáš [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Chai, Guocai [Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Linköping University, Engineering Materials, SE-581 83 Linköping (Sweden)

    2014-10-06

    Austenitic heat resistant Sanicro 25 steel developed for high temperature applications in power generation industry has been subjected to strain controlled low cycle fatigue tests at ambient and at elevated temperature in a wide interval of strain amplitudes. Fatigue hardening/softening curves, cyclic stress–strain curves and fatigue life curves were evaluated at room temperature and at 700 °C. The internal dislocation structures of the material at room and at elevated temperature were studied using transmission electron microscopy. High resolution surface observations and FIB cuts revealed early damage at room temperature in the form of persistent slip bands and at elevated temperature as oxidized grain boundary cracks. Dislocation arrangement study and surface observations were used to identify the cyclic slip localization and to discuss the fatigue softening/hardening behavior and the temperature dependence of the fatigue life.

  16. Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO2 nanoparticles

    Science.gov (United States)

    Naseem, Swaleha; Khan, Wasi; Khan, Shakeel; Husain, Shahid; Ahmad, Abid

    2018-02-01

    In the present work, nanocrystalline samples of Ti1-xCrxO2 (x = 0, 0.02, 0.04, 0.06 and 0.08) were synthesized in anatase phase through simple and cost effective acid modified sol gel method. The influence of Cr doping on thermal, microstructural, electrical and magnetic properties was investigated in TiO2 host matrix. The surface morphology has revealed less agglomeration and considerable reduction in particle size in case of Cr doped TiO2 as compared to undoped TiO2 nanoparticles (NPs). Energy dispersive x-ray spectroscopy (EDS), Raman and X-ray photoelectron spectroscopy (XPS) established high purity, appropriate stoichiometry and oxidation states of the compositions. The dielectric properties of the nanoparticles were altered by the doping concentration, applied frequency as well as temperature variation. The variation in dielectric constant (ε‧), dielectric loss (δ) and ac conductivity as a function of frequency and temperature at different doping concentration of Cr were interpreted in the light of Maxwell Wagner theory, space charge polarization mechanism and drift mobility of charge carriers. Both undoped and Cr doped TiO2 samples exhibit room temperature ferromagnetism (RTFM) that remarkably influenced by means of the Cr content. The significant enhancement in the magnetization was observed at 4% Cr doping. However, decrease in magnetization for higher doping signify antiferromagnetic interactions between Cr ions or superexchange mechanism. These results reveal that the oxygen vacancies play a crucial role to initiate the RTFM. Therefore, the present investigation suggests the potential applications of Cr doped TiO2 nanoparticles for spintronics application.

  17. Theoretical and experimental study of disordered Ba0.45Sr0.55 TiO3 photoluminescence at room temperature

    International Nuclear Information System (INIS)

    Souza, I.A.; Gurgel, M.F.C.; Santos, L.P.S.; Goes, M.S.; Cava, S.; Cilense, M.; Rosa, I.L.V.; Paiva-Santos, C.O.; Longo, E.

    2006-01-01

    Disordered and crystalline Ba 0.45 Sr 0.55 TiO 3 (BST) powder processed at low temperature was synthesized by the polymeric precursor method. The single-phase perovskite structure of the ceramics was identified by the Raman and X-ray diffraction techniques. Photoluminescence at room temperature was observed only in a disordered BST sample. Increasing the calcination time intensified the photoluminescence (PL), which reached its maximum value in the sample heat treated at 300 deg. C for 30 h. This emission may be correlated with the structural disorder. Periodic ab initio quantum-mechanical calculations using the CRYSTAL98 program can yield important information regarding the electronic and structural properties of crystalline and disordered solids. The experimental and theoretical results indicate the presence of intermediary energy levels in the band gap. This is ascribed to the break in symmetry, which is responsible for visible photoluminescence in the material's disordered state at room temperature

  18. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    Room temperature Compton profiles of momentum distribution of conduction electrons in -Ga metal are calculated in band model. For this purpose, the conduction electron wave functions are determined in a temperature-dependent non-local model potential. The profiles calculated along the crystallographic directions, ...

  19. Thermoluminescence in KBr:D electron irradiated at room temperature

    International Nuclear Information System (INIS)

    Paredes Campoy, J.C.; Lopez Carranza, E.

    1991-07-01

    The thermoluminescence of KBr:D samples electron irradiated at room temperature after thermal annealing at 673 K for 1 hour have been studied in the temperature range 360-730 K. The experimental TL-curve was discomposed by computer analysis in seven overlapping TL peaks, giving for them the order of the kinetics of thermal stimulation, the activation energy, the frequency factor, the relative values of the electronic concentration in traps at the initial heating temperature and the temperature at the maximum of the peak. (author). 18 refs, 1 fig., 3 tabs

  20. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  1. Low Temperature X-Ray Diffraction Study on CaFe2As2

    Science.gov (United States)

    Huyan, Shuyuan; Deng, Liangzi; Wu, Zheng; Zhao, Kui; Lv, Bing; Xue, Yiyu; Chu, Ching-Wu; B. Lv Collaboration; HPLT (Paul C. W. Chu) Team

    For undoped CaFe2As2 single crystals, we observed that utilizing thermal treatments could stabilize two pure tetragonal phases PI and PII. Both phases are non-superconducting, while the superconductivity with a Tc up to 25 K can be induced through proper thermal treatment. Room temperature X-ray studies suggest that the origin of superconductivity arises from the interface of the mesoscopically stacked layers of PI and PII. To further investigate, a systematic low temperature X-ray study was conducted over a series of thermal treated CaFe2As2 single crystals. From which, we observed the phase aggregation of PI and PII upon cooling, more importantly, an ordered stacking structure exists at low temperature, which closely related to superconducting volume fraction and the ratio of PI and PII. These results further support the proposal of interface-enhanced superconductivity in undoped CaFe2As2. UT Dallas

  2. Structure of photosystem II and substrate binding at room temperature.

    Science.gov (United States)

    Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira; Gul, Sheraz; Fuller, Franklin; Koroidov, Sergey; Brewster, Aaron S; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G; Stan, Claudiu A; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Long Vo, Pham; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T; Andi, Babak; Orville, Allen M; Glownia, James M; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S; Lane, Thomas J; Aquila, Andy; Koglin, Jason E; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Moriarty, Nigel W; Liebschner, Dorothee; Afonine, Pavel V; Waterman, David G; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I; Brunger, Axel T; Zwart, Petrus H; Adams, Paul D; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2016-12-15

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn 4 CaO 5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S 0 to S 4 ), in which S 1 is the dark-stable state and S 3 is the last semi-stable state before O-O bond formation and O 2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S 1 ), two-flash illuminated (2F; S 3 -enriched), and ammonia-bound two-flash illuminated (2F-NH 3 ; S 3 -enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S 1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn 4 CaO 5 cluster in the S 2 and S 3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.

  3. Room temperature zeolitization of boiler slag from a Bulgarian thermal power plant

    Directory of Open Access Journals (Sweden)

    Pascova Radost D.

    2017-01-01

    Full Text Available A simple and cost-effective method was applied for the synthesis of zeolite composites utilising wet bottom boiler slag from the Bulgarian coal-fired thermal power plant “Sviloza”, near the town of Svishtov. The method consisted of a prolonged alkali treatment at room temperature of this waste. Experimental techniques, such as scanning electron microscopy, energy-dispersive X-ray and X-ray diffraction analyses, are employed to characterize the initial slag and the final products with respect to their morphology, and elemental and mineral compositions. The composites synthesized in this way contained two Na-type zeolite phases: zeolite X (type FAU and zeolite Linde F (type EDI. The zeolited products and the starting slag were tested as adsorbents for a textile dye (Malachite Green from aqueous solutions. In comparison with the initial slag, the zeolite composite possessed substantially better adsorption properties: it almost completely adsorbs the dye in much shorter times. The results of this investigations revealed a new, easy and low cost route for recycling boiler slag into a material with good adsorption characteristics, which could find different applications, e.g., for purifying polluted waters, including those from the textile industry.

  4. Room temperature growth of ZnO nanorods by hydrothermal synthesis

    Science.gov (United States)

    Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo

    2018-05-01

    The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.

  5. Stability of 2-Alkylcyclobutanones in irradiated retort pouch Gyudon topping during room temperature storage

    International Nuclear Information System (INIS)

    Kitagawa, Yoko; Okihashi, Masahiro; Takatori, Satoshi; Fukui, Naoki; Kajimura, Keiji; Obana, Hirotaka; Furuta, Masakazu

    2016-01-01

    2-Alkylcyclobutanones (ACBs), such as 2-dodecylcyclobutanone (DCB) and 2-tetradecylcylobutanone (TCB) are specific products in the irradiated liquid. Thus, DCB and TCB are suitable for indicators of the irradiation history of food. We previously reported DCB and TCB concentrations in irradiated retort pouch Gyudon topping (instant Gyudon mixes which were made from a beef, onion and soy sauce and could be preserved for a long term at room temperature) after storage for one year. Here, we have evaluated the stability of ACBs preserved in irradiated retort pouch Gyudon topping at room temperature for three years. Although interfering peaks were detected frequently after the storage at room temperature, it was possible for the detection of the irradiation history and there was no apparent decrease of ACBs concentrations in comparison with the one year storage after irradiation. These results concluded that DCB and TCB formed in retort pouch would be stable at room temperature for three years. (author)

  6. Characterization of silver colloids formed in LiBbO3 by Ag and O implantation at room and elevated temperatures

    International Nuclear Information System (INIS)

    Williams, E.K.; Ila, D.; Darwish, A.; Poker, D.B.; Sarkisov, S.S.; Curley, M.J.; Wang, J.-C.; Svetchnikov, V.L.; Zandbergen, H.W.

    1999-01-01

    To address the issue of dispersion of Ag colloids in LiNbO 3 at heat treatment temperatures of 400-500 deg. C, Ag and O were implanted at energies of 160 and 35 keV, respectively, at room temperature (Rt) and at 500 deg. C. Fluences were 4x10 16 and 8x10 16 /cm 2 and the order of the Ag and O implants was varied. Electron paramagnetic resonance spectra indicated that only O followed by Ag implantation of 500 deg. C produced silver oxide. Optical absorption spectrometry and RBS showed significant differences in the dispersion of the colloids with implant temperature and implant order. Implantation of Ag at 1.5 MeV to a fluence of 2x10 16 /cm 2 followed by heat treatment at 500 deg. C for 1 h produced nonlinear optical waveguides with a nonlinear index of the order of 10 -10 cm 2 /W at 532 nm

  7. Room-temperature ferromagnetism in Dy films doped with Ni

    International Nuclear Information System (INIS)

    Edelman, I.; Ovchinnikov, S.; Markov, V.; Kosyrev, N.; Seredkin, V.; Khudjakov, A.; Bondarenko, G.; Kesler, V.

    2008-01-01

    Temperature, magnetic field and spectral dependences of magneto-optical effects (MOEs) in bi-layer films Dy (1-x) Ni x -Ni and Dy (1-x) (NiFe) x -NiFe were investigated, x changes from 0 to 0.06. Peculiar behavior of the MOEs was revealed at temperatures essentially exceeding the Curie temperature of bulk Dy which is explained by the magnetic ordering of the Dy layer containing Ni under the action of two factors: Ni impurities distributed homogeneously over the whole Dy layer and atomic contact of this layer with continues Ni layer. The mechanism of the magnetic ordering is suggested to be associated with the change of the density of states of the alloy Dy (1-x) Ni x owing to hybridization with narrow peaks near the Fermi level character for Ni

  8. Room temperature ammonia and VOC sensing properties of CuO nanorods

    International Nuclear Information System (INIS)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2016-01-01

    Here, we report a NH 3 and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  9. Room temperature ammonia and VOC sensing properties of CuO nanorods

    Science.gov (United States)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2016-05-01

    Here, we report a NH3 and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  10. Room temperature ammonia and VOC sensing properties of CuO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu [Thin film laboratory, National Institute of Technology, Tiruchirappalli-620015 (India)

    2016-05-23

    Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  11. Facile synthesis of flower-like BiOI hierarchical spheres at room temperature with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Xiao-jing; Li, Fa-tang; Li, Dong-yan; Liu, Rui-hong; Liu, Shuang-jun

    2015-01-01

    Graphical abstract: - Highlights: • Flower-like BiOI hierarchical sphere is obtained in the presence of ethylene glycol. • A template free hydrolysis route is employed at room temperature. • Ethylene glycol plays an important role in assembling BiOI nanoflakes to form spheres. • The BiOI sphere shows high visible-light photocatalytic activity and good stability. - Abstract: Flower-like BiOI hierarchical spheres are prepared at room temperature via a template free route simply by dropping water into ethylene glycol (EG) solution containing reactants based on the hydrolysis and oriented assembly roles of water and EG, respectively. The BiOI samples are characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, emission scanning electron microscopy (SEM), UV–Vis diffuse reflectance spectra (UV–Vis DRS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The photocatalytic reaction rate constant of the as-prepared BiOI hierarchical spheres is 15.8, 13.3, and 2.0 times that of BiOI nanoflakes obtained in the absence of EG in degradation of anionic dye (methyl orange), cationic dye (methylene blue), and colorless target pollutant (phenol), respectively, under the visible-light irradiation, which can be attributed to its unique flower-like structure for utilization of light, small crystal size, and large specific surface area

  12. Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface

    Directory of Open Access Journals (Sweden)

    Yasushi Kawashima

    2013-05-01

    Full Text Available Electrical resistances of conductors obtained by bringing alkanes into contact with a graphite surface have been investigated at room temperatures. Ring current in a ring-shaped container into which n-octane-soaked thin graphite flakes were compressed did not decay for 50 days at room temperature. After two HOPG plates were immersed into n-heptane and n-octane at room temperature, changes in resistances of the two samples were measured by four terminal technique. The measurement showed that the resistances of these samples decrease to less than the smallest resistance that can be measured with a high resolution digital voltmeter (0.1μV. The observation of persistent currents in the ring-shaped container suggests that the HOPG plates immersed in n-heptane and n-octane really entered zero-resistance state at room temperature. These results suggest that room temperature superconductor may be obtained by bringing alkanes into contact with a graphite surface.

  13. Room temperature multiferroic properties of Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}–Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} composites

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Dhiren K., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Katiyar, Ram S., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Puli, Venkata S. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Narayan Tripathy, Satya; Pradhan, Dillip K. [Department of Physics, National Institute of Technology, Rourkela 769008 (India); Scott, J. F. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)

    2013-12-21

    We report the crystal structure, magnetic, ferroelectric, dielectric, and magneto-dielectric properties of [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}]{sub (1−x)}[Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}]{sub x}: (x = 0.1, 0.2, 0.3, and 0.4) composites. Rietveld refinement results of X-ray diffraction patterns confirm the formation of these composites for all x values. All the composites show well-saturated ferroelectric and ferromagnetic hysteresis (multiferroic-composite behavior) at room temperature. With increase in Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} (CZFO) content an increase in saturation magnetization, and decrease in saturation polarization, remanent polarization, and dielectric constant are observed. The ferroelectric phase transition temperature increases with increase in CZFO content. All of the compositions undergo second-order ferroelectric phase transitions, which can be explained by Landau-Devonshire theory. The recoverable energy density (∼0.20 to 0.04 J/cm{sup 3}) and charge-curve energy density (∼0.84 to 0.11 J/cm{sup 3}) decrease with increase in the CZFO content. The room-temperature magneto-dielectric measurements provide direct evidence of magneto-electric coupling via strain at room temperature.

  14. Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films

    Science.gov (United States)

    Jose, Edwin; Kumar, M. C. Santhosh

    2016-09-01

    We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.

  15. Room-temperature ferromagnetism in Dy films doped with Ni

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, I. [Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036 (Russian Federation)], E-mail: ise@iph.krasn.ru; Ovchinnikov, S. [Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, Av. Svobodnyi 71, Krasnoyarsk 660074 (Russian Federation); Markov, V.; Kosyrev, N.; Seredkin, V.; Khudjakov, A.; Bondarenko, G. [Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Kesler, V. [Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, Av. Akademika Lavrent' eva 13, Novosibirsk 630090 (Russian Federation)

    2008-09-01

    Temperature, magnetic field and spectral dependences of magneto-optical effects (MOEs) in bi-layer films Dy{sub (1-x)}Ni{sub x}-Ni and Dy{sub (1-x)}(NiFe){sub x}-NiFe were investigated, x changes from 0 to 0.06. Peculiar behavior of the MOEs was revealed at temperatures essentially exceeding the Curie temperature of bulk Dy which is explained by the magnetic ordering of the Dy layer containing Ni under the action of two factors: Ni impurities distributed homogeneously over the whole Dy layer and atomic contact of this layer with continues Ni layer. The mechanism of the magnetic ordering is suggested to be associated with the change of the density of states of the alloy Dy{sub (1-x)}Ni{sub x} owing to hybridization with narrow peaks near the Fermi level character for Ni.

  16. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  17. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    Science.gov (United States)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  18. Room and low temperature synthesis of carbon nanofibres

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.

    2002-01-01

    Carbon nanotubes and nanofibres have attracted attention in recent years as new materials with a number of very promising potential applications. Carbon nanotubes are potential candidates for field emitters in flat panel displays. Carbon nanofibres could also be used as a hydrogen storage material and as a filling material in polymer composites. Carbon nanotubes are already used as tips in scanning probe microscopy due to their remarkable mechanical and electrical properties, and could be soon used as nanotweezers. Use of carbon nanotubes in nanoelectronics will open further miniaturisation prospects. Temperatures ranging from 450 to 1000 deg C have been a required for catalytic growth of carbon nanotubes and nanofibres. Researchers have been trying to reduce the growth temperatures for decades. Low temperature growth conditions will allow the growth of carbon nanotubes on different substrates, such glass (below 650 deg C) and as plastics (below 150 deg C) over relatively large areas, which is especially suitable for fiat panel display applications. Room temperature growth conditions could open up the possibility of using different organic substrates and bio-substrates for carbon nanotubes synthesis. Carbon nanofibres have been synthesised at room temperature and low temperatures below 250 deg C using radio frequency plasma enhanced chemical vapour deposition (r.f. PECVD). Previously, the growth of carbon nanofibres has been via catalytic decomposition of hydrocarbons or carbon monoxide at temperatures above 300 deg C. To the best of our knowledge, this is the first evidence of the growth of carbon nanofibres at temperatures lower than 300 deg C by any method. The use of a transition metal catalyst and r.f.-PECVD system is required for the growth of the carbon nanofibre when a hydrocarbon flows above the catalyst. Within the semiconductor industry r.f.-PECVD is a well established technique which lends itself for the growth of carbon nanofibres for various

  19. Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties

    International Nuclear Information System (INIS)

    Yang, Yingchang; Lu, Fang; Zhou, Zhou; Song, Weixin; Chen, Qiyuan; Ji, Xiaobo

    2013-01-01

    Graphical abstract: Electrochemically cathodic exfoliation of graphite into few-layer graphene sheets in room temperature ionic liquids (RTILs) N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N). -- Highlights: • Few-layer graphene sheets were prepared through electrochemically cathodic exfoliation in room temperature ionic liquids. • The mechanism of cathodic exfoliation in ionic liquids was proposed. • The derived activated graphene sheets show enhanced electrochemical properties. -- Abstract: Electrochemically cathodic exfoliation in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N) has been developed for few-layer graphene sheets, demonstrating low levels of oxygen (2.7 at% of O) with a nearly perfect structure (I D /I G 2 N involves the intercalation of ionic liquids cation [BMP] + under highly negatively charge followed by graphite expansion. Porous activated graphene sheets were also obtained by activation of graphene sheets in KOH. Transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize these graphene materials. The electrochemical performances of the graphene sheets and porous activated graphene sheets for lithium-ion battery anode materials were evaluated using cyclic voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance spectroscopy

  20. Investigation on low room-temperature resistivity Cr/(Ba0.85Pb0.15)TiO3 positive temperature coefficient composites

    DEFF Research Database (Denmark)

    He, Zeming; Ma, J.; Qu, Yuanfang

    2009-01-01

    discussed. Using these special processes, the prepared composite with 20 wt% Cr possessed low room-temperature resistivity (2.96 Ω cm at 25 °C) and exhibited PTC effect (resistivity jump of 10), which is considered as a promising candidate for over-current protector when working at low voltage. The grain......Low room-temperature resistivity positive temperature coefficient (PTC) Cr/(Ba0.85Pb0.15)TiO3 composites were produced via a reducing sintering and a subsequent oxidation treatment. The effects of metallic content and processing conditions on materials resistivity–temperature properties were...

  1. Novel bed integrated ventilation method for hospital patient rooms

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Melikov, Arsen Krikor; Kokora, Monika

    2014-01-01

    This study presents a novel method for advanced ventilation of hospital wards leading to improved air quality at reduced ventilation rate. The idea is to evacuate the bio-effluents generated from patients’ body by local exhaustion before being spread in the room. This concept was realized by using...... a mattress having a suction opening from which bio-effluents generated from human body are exhausted. Experiments were conducted in a full-scale two-bed hospital room mock-up, 4.7 x 5.3 x 2.6 m3 (W x L x H). Only one of the patients’ beds was equipped with the ventilated mattress. The room was air...... conditioned via mixing total volume ventilation system supplying air through a ceiling mounted diffuser. All experiments were performed at room air temperature of 23ºC. A thermal manikin was used to simulate a polluting patient on the bed equipped with the ventilated mattress. Two heated dummies were used...

  2. Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2005-01-01

    Indium tin oxide (ITO) thin films have been grown simultaneously onto glass and polymer substrates at room temperature by sputtering from ceramic target. The structure, morphology and electro-optical characteristics of the ITO/glass and ITO/polymer samples have been analyzed by X-ray diffraction, atomic force microscopy, four-point electrical measurements and spectrophotometry. In the selected experimental conditions, the polycrystalline ITO coating shows higher average grain size and higher conductivity, with similar visible transmittance, onto the polymer than onto the glass substrate

  3. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  4. CuO nanostructures on copper foil by a simple wet chemical route at room temperature

    International Nuclear Information System (INIS)

    Jana, S.; Das, S.; Das, N.S.; Chattopadhyay, K.K.

    2010-01-01

    Uniform CuO nanostructures have been synthesized on copper foil substrates by oxidation of Cu in alkaline condition by a simple wet chemical route at room temperature. By controlling the alkaline condition (pH value) different CuO nanostructures like nanoneedles, self-assembled nanoflowers and staking of flake-like structures were achieved. The phase formation and the composition of the films were characterized by X-ray diffraction and energy dispersive analysis of X-ray studies. X-ray photoelectron spectroscopic studies indicated that the samples were composed of CuO. The morphologies of the films were investigated by scanning electron microscopy. A possible growth mechanism is also proposed here. Band gap energies of the nanostructures were determined from the optical reflectance spectra. The different CuO nanostructures showed good electron field emission properties with turn-on fields in the range 6-11.3 V μm -1 . The field emission current was significantly affected by the morphologies of the CuO films.

  5. One-Dimensional Vanadium Dioxide Nanostructures for Room Temperature Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Aline Simo

    2015-06-01

    Full Text Available In relation to hydrogen (H2 economy in general and gas sensing in particular, an extensive set of one dimensional (1-D nano-scaled oxide materials are being investigated as ideal candidates for potential gas sensing applications. This is correlated to their set of singular surface characteristics, shape anisotropy and readiness for integrated devices. Nanostructures of well- established gas sensing materials such as Tin Oxide (SnO2, Zinc Oxide (ZnO, Indium (III Oxide (In2O3, and Tungsten Trioxide (WO3 have shown higher sensitivity and gas selectivity, quicker response, faster time recovery, as well as an enhanced capability to detect gases at low concentrations. While the overall sensing characteristics of these so called 1-D nanomaterials are superior, they are efficient at high temperature; generally above 200 0C. This operational impediment results in device complexities in integration that limit their technological applications, specifically in their miniaturized arrangements. Unfortunately, for room temperature applications, there is a necessity to dope the above mentioned nano-scaled oxides with noble metals such as Platinum (Pt, Palladium (Pd, Gold (Au, Ruthenium (Ru. This comes at a cost. This communication reports, for the first time, on the room temperature enhanced H2 sensing properties of a specific phase of pure Vanadium Dioxide (VO2 phase A in their nanobelt form. The relatively observed large H2 room temperature sensing in this Mott type specific oxide seems to reach values as low as 14 ppm H2 which makes it an ideal gas sensing in H2 fuelled systems.

  6. Multiwalled carbon nanotubes sensor for organic liquid detection at room temperature

    Science.gov (United States)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-04-01

    We have explored the possibility of using multiwalled carbon nanotubes (MWCNTs) as room temperature chemical sensor for the detection of organic liquids such as ethanol, propanol, methanol and toluene. MWCNTs were synthesized by thermal chemical vapor deposition (TCVD) technique. The interdigitated electrodes were fabricated by conventional photolithography technique. The sensor was fabricated by drop depositing MWCNT suspension onto the interdigitated electrodes. The sensing properties of MWCNTs sensor was studied for organic liquids detection. The resistance of sensor was found to increase upon exposure to these liquids. Sensor shows good reversibility and fast response at room temperature. Charge transfer between the organic liquid and sensing element is the dominant sensing mechanism.

  7. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    Science.gov (United States)

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  8. Strong violet-blue light photoluminescence emission at room temperature in SrZrO3: Joint experimental and theoretical study

    International Nuclear Information System (INIS)

    Longo, V.M.; Cavalcante, L.S.; Erlo, R.; Mastelaro, V.R.; Figueiredo, A.T. de; Sambrano, J.R.; Lazaro, S. de; Freitas, A.Z.; Gomes, L.; Vieira, N.D.; Varela, J.A.; Longo, Elson

    2008-01-01

    Ultrafine ordered and disordered SrZrO 3 powders were prepared by the polymeric precursor method. The structural evolution from structural disorder to order was monitored by X-ray diffraction and X-ray absorption near-edge spectroscopy. Complex cluster vacancies [ZrO 5 .V O Z ]and[SrO 11 .V O Z ] (where V O Z =V O X , V O · andV O ·· ) were proposed for disordered powders. The intense violet-blue light photoluminescence emission measured at room temperature in the disordered powders was attributed to complex cluster vacancies. High-level quantum mechanical calculations within the density functional theory framework were used to interpret the experimental results

  9. Nickel-catalyzed synthesis of aryl trifluoromethyl sulfides at room temperature.

    Science.gov (United States)

    Zhang, Cheng-Pan; Vicic, David A

    2012-01-11

    Inexpensive nickel-bipyridine complexes were found to be active for the trifluoromethylthiolation of aryl iodides and aryl bromides at room temperature using the convenient [NMe(4)][SCF(3)] reagent. © 2011 American Chemical Society

  10. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    Science.gov (United States)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  11. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    International Nuclear Information System (INIS)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Han, Z.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-01-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature

  12. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  13. Room temperature photoinduced magnetism in [py.H]{sub 3}[FeCl{sub 4}]{sub 2}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Baniasadi, F. [Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Fathi, M.B. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Safari, N.; Amani, V. [Faculty of Chemistry, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-11-15

    Photoinduced magnetism in a homogeneous solution of [py.H]{sub 3}[FeCl{sub 4}]{sub 2}Cl is measured by Faraday rotation in visible light (λ∼450–750 nm) at room temperature. The physics of this phenomenon may be attributed to electronic transitions caused by absorption of light. X-ray diffraction and Debye function analysis are therefore applied to find the abundant unit of molecules dissolved in the solution which are being further utilized to investigate the electronic structure and molecular orbitals by means of hybrid density function theory (B3LYP). Faraday rotation is observed at certain wavelengths consistent with energy differences of HOMO-LUMO energy levels. Thus this work puts forward a new material with certain photomagnetic properties which may be used in fabrication of room temperature magneto-optical switches. - Highlights: • Photoinduced magnetism in (FeCl{sub 4}){sub 2}(py.H){sub 3}Cl is illustrated via Faraday rotation. • The abundant unit of molecule is characterized by Debye function analysis of XRD. • PIM in the molecule is attributed to the charge transfer between HOMO-LUMO.

  14. Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica

    International Nuclear Information System (INIS)

    Gaydhankar, T.R.; Samuel, V.; Jha, R.K.; Kumar, R.; Joshi, P.N.

    2007-01-01

    Synthesis of mesoporous MCM-41 materials at room temperature using less expensive polymeric version of ethyl silicate (40 wt% SiO 2 ) as a source of silica was established. The influence of crucial synthesis parameters such as molar ratios of H 2 O/NH 4 OH, NH 4 OH/SiO 2 and CTMABr/SiO 2 in gel on the quality of the phase formed was investigated. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and low temperature N 2 adsorption-desorption isotherms have been employed to characterize the products. The magnitude of orderness, textural properties and thermal stability of the Si-MCM-41 samples prepared under identical judiciously pre-controlled synthesis conditions using ethyl silicate and conventional tetraethyl orthosilicate (TEOS) were assessed. Even though, ethyl silicate has proved to be suitable source for the preparation of MCM-41 at room temperature, there exists an optimum value of H 2 O/NH 4 OH for different NH 4 OH/SiO 2 molar ratios in the gel. Changes in the morphology were observed when NH 4 OH/SiO 2 , H 2 O/NH 4 OH molar ratios in the gels were changed

  15. Gold catalysed synthesis of 3-alkoxyfurans at room temperature.

    Science.gov (United States)

    Pennell, Matthew N; Foster, Robert W; Turner, Peter G; Hailes, Helen C; Tame, Christopher J; Sheppard, Tom D

    2014-02-09

    Synthetically important 3-alkoxyfurans can be prepared efficiently via treatment of acetal-containing propargylic alcohols (obtained from the addition of 3,3-diethoxypropyne to aldehydes) with 2 mol% gold catalyst in an alcohol solvent at room temperature. The resulting furans show useful reactivity in a variety of subsequent transformations.

  16. Unconditional polarization qubit quantum memory at room temperature

    Science.gov (United States)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  17. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    Science.gov (United States)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  18. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing

    International Nuclear Information System (INIS)

    Fu Mingyue; Tsai, J.-H.; Yang, C.-F.; Liao, C.-H.

    2008-01-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO 2 films implanted by different doses of Si + ions. Room-temperature PL from 400-nm-thick SiO 2 films implanted to a dose of 3x10 16 cm -2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 deg. C) and duration (5-20 s). The reported approach of implanting silicon into SiO 2 films followed by RTA may be effective for tuning Si-based photonic devices.

  19. Thermoluminescence of pure LiF and Lif (TLD-100) irradiated at room temperature

    International Nuclear Information System (INIS)

    Sagastibelza Chivite, F.

    1980-01-01

    The thermoluminescence of pure LiF and LiF (TLD-100) crystals irradiated at room temperature with x - or gamma-rays has been studied up to 460 degree centigree. For most of the glow peaks found the kinetics, preexponential factors and activation energies have been determined. These parameters have been obtained by means of the isothermal method. The study of the thermal annealing of the radiation induced F and Z centres has allow to show that there is a correlation among the glow peaks and the annealing stages of these centres. It is concluded that the F and Z - centres play the role of recombination centres for halogen interstitial atom thermally released from traps. Light emission occurs in this recombination. (Author) 120 refs

  20. Hypoxia Room

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypoxia Room is a 8x8x8 ft. clear vinyl plastic and aluminum frame construction enclosure located within USAREIM laboratory 028. The Hypoxia Room (manufactured...

  1. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  2. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    Science.gov (United States)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  3. Effects of different oxyanions in solution on the precipitation of jarosite at room temperature.

    Science.gov (United States)

    Yeongkyoo, Kim

    2018-04-09

    The effects of five different oxyanions, AsO 4 , SeO 3 , SeO 4 , MoO 4 , and CrO 4 , on the precipitation of jarosite at room temperature were investigated by X-ray diffraction, scanning electron microscopy, and chemical analysis. Different amounts (2, 5, and 10 mol%) of oxyanions in the starting solution and different aging times (1 h-40 days) were used for the experiment. In the initial stage, only the amorphous phase appears for all samples. With increasing aging time, jarosite and jarosite with oxyanions start precipitating at room temperature with different precipitation rates and crystallinities. Jarosite with AsO 4 shows the lowest precipitation rate and lowest crystallinity. With increasing amounts of oxyanions, the crystallization rate decreases, especially for jarosite with AsO 4 . The jarosite samples with CrO 4 and SeO 4 show the fastest precipitation and highest crystallinities. For the jarosite samples with a low precipitation rate and low crystallinity, the amorphous phase contains high concentrations of oxyanions, probably because of the fast precipitation of the amorphous iron oxyanion phase; however, the phase with fast jarosite precipitation contains fewer oxyanions. The results show that coprecipitation of jarosite can play a more important role in controlling the behavior of CrO 4 than AsO 4 in acid mine drainage. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Thermochromic effect at room temperature of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Boileau, A.; Capon, F.; Barrat, S.; Pierson, J. F. [Universite de Lorraine, Institut Jean Lamour, Departement CP2S, UMR CNRS 7198, Nancy, F-54042 (France); Laffez, P. [Groupe de Recherche Electronique, Materiaux, Acoustique, Nanoscience (GREMAN), Universite Francois Rabelais de Tours, UMR CNRS 7347, IUT de Blois, 15 rue de la Chocolaterie, Blois, F-41000 (France)

    2012-06-01

    Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thermochromic thin films were synthesized using dc reactive magnetron co-sputtering and subsequent annealing in air. The film structure was studied by x-ray diffraction analysis. To validate the thermochromic potentiality of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3}, electrical resistivity and infrared transmittance spectra were recorded for temperatures ranging from 77 K to 420 K. The temperature dependence of the optical band gap was estimated in the near infrared range. Upon heating, the optical transmission decreases in the infrared domain showing a thermochromic effect over a wide wavelength range at room temperature.

  5. In situ room temperature tensile deformation of a 1% CrMoV bainitic steel using synchrotron and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weisser, M.A. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Materials (IMX), CH-1012 Lausanne (Switzerland); Evans, A.D.; Van Petegem, S. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Holdsworth, S.R. [EMPA Materials Science and Technology, CH-8600 Duebendorf (Switzerland); Van Swygenhoven, H., E-mail: helena.vs@psi.ch [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Materials (IMX), CH-1012 Lausanne (Switzerland)

    2011-06-15

    Neutron and synchrotron X-ray diffraction spectra have been acquired during room temperature tensile deformation of a creep-resistant bainitic 1% CrMoV steel, in order to study the evolution of internal microstresses and load-sharing mechanisms between the ferrite matrix and the various carbides. Cementite takes load from the plastifying matrix at the onset of macroscopic plasticity resulting in residual interphase stresses. Single peak fitting indicates an elastic anisotropic behaviour of cementite.

  6. Room temperature ferromagnetism in nano-crystalline Co:ThO2 powders

    International Nuclear Information System (INIS)

    Bhide, M.K.; Kadam, R.M.; Godbole, S.V.; Tyagi, A.K.; Salunke, H.G.

    2012-01-01

    The major interest in dilute magnetic semiconductors (DMS's) had been directed towards the synthesis of room temperature ferromagnetic (RTF) materials for their potential applications in spintronic devices. Room temperature (RT) ferromagnetism was initially reported in Co doped TiO 2 , ZnO 2 and SnO 2 thin films and in the recent past in transition metal doped wide band gap materials. In the present paper we report the synthesis of Co doped ThO 2 nano powders by urea combustion method. The XRD characterization of 300℃ annealed samples confirmed formation of ThO 2 in the cubic phase and the average crystallite size obtained using Scherrer's formula was around 6 nm

  7. Thermal expansion and phase transformation studies on some materials by high temperature x-ray powder diffractometry

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Kutty, K.V.G.; Jajoo, H.K.; Ananthakrishnan, S.K.; Asurvatharaman, R.

    1988-01-01

    A high temperature chamber based on electrical resistance heating has been integrated to an existing x-ray powder diffractometer. The system is capable of going upto 2500degC at programmed rates of heating. Temperature measurement is carried out by means by Pt/Rh or W/Re thermocouples or by optical pyrometry depending upon the temperature range. Provision exists for performing high temperature x-ray diffractometry in vacuum or in a gaseous atmosphere of low x-ray absorption. The x-ray optical alignment has been ensured by accurately measuring the unit cell lengths of x-ray diffraction standards like silicon and tungsten. The thermocouples have been calibrated within the system by monitoring the melting points of gold and silver. The well characterized transformation of zirconia from the monoclinic to tetragonal structure occuring around 1100degC has been satisfactorily reproduced . The high temperature phase transitions in some rare earth oxides have been studi ed. lattice parameter measurements on a variety of materials as a function of temperature upto 1500degC have been carried out and the data found to be in agreement with the literature values. From the measured lattice parameter values, percentage thermal expansion and coefficients of thermal expansion have been calculated for many substances from room temperature to 15000degC. (author). 20 refs., 9 figs

  8. Stability of 2-Alkylcyclobutanones in irradiated retort pouch Gyudon topping during room temperature storage

    International Nuclear Information System (INIS)

    Kitagawa, Yoko; Okihashi, Masahiro; Takatori, Satoshi; Fukui, Naoki; Kajimura, Keiji; Obana, Hirotaka; Furuta, Masakazu

    2014-01-01

    2-Alkylcyclobutanones (ACBs), such as 2-dodecylcyclobutanone (DCB) and 2-tetradecylcylobutanone (TCB) are specific products from irradiated lipid. Thus, DCB and TCB are suitable for indicators of the irradiation history of food. The purpose of this study was to clarify the stability of ACBs in food, kept at room temperature for a long period. We evaluated DCB and TCB in irradiated retort pouch Gyudon topping (instant Gyudon mixes which were made from a beef, onion and soy sauce), which could be preserved for a long term at room temperature, after storage for one year. DCB and TCB were detected at doses of 0.6-4.5 kGy in irradiated retort pouch Gyudon topping. The peaks of DCB and TCB were separated from other peaks on the chromatogram with GC-MS. The concentration of DCB and TCB were periodically determined till 12 months later of irradiation. The dose-response curves of DCB and TCB were almost identical with those obtained from the samples after the 12 months storage at room temperature. These results concluded that DCB and TCB formed in retort pouch would stable at room temperature at least 12 months. (author)

  9. Temperature dependent magnetic properties and application potential of intermetallic Fe11-xCox TiCe

    International Nuclear Information System (INIS)

    Goll, D.; Loeffler, R.; Stein, R.; Pflanz, U.; Goeb, S.; Karimi, R.; Schneider, G.

    2014-01-01

    The novel quaternary compound Fe 11-x Co x TiCe (x = 0 to 3.25) of Mn 12 Th structure has been fabricated by arc melting. The analysis is focused on temperature dependent determination of intrinsic properties from 4 K to 750 K using domain pattern analysis and magnetometry. Above room temperature RT maximum values of anisotropy constant K 1 and saturation polarization J s are observed for a Co content of 15 at% (x = 1.95) with K 1 and J s of 2.15 MJ/m 3 (1.22 MJ/m 3 ) and 1.27 T (1.05 T) at RT (200 C). At operating temperatures of 100 C for this material magnetic properties (BH) max = 282 kJ/m 3 , μ 0 H c = 0.94 T are expected. If a suitable microstructure could be processed, based on intrinsic properties of the phases the costs would be 35% per J/m 3 of the costs of Dy-free Fe-Nd-B. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO2 heterointerface probed by an in situ hard x-ray photoemission and soft x-ray absorption spectroscopies

    Directory of Open Access Journals (Sweden)

    Takashi Tsuchiya, Shogo Miyoshi, Yoshiyuki Yamashita, Hideki Yoshikawa, Kazuya Terabe, Keisuke Kobayashi and Shu Yamaguchi

    2013-01-01

    Full Text Available In situ hard x-ray photoemission spectroscopy (HX-PES and soft x-ray absorption spectroscopy (SX-XAS have been employed to investigate a local redox reaction at the carbon/Gd-doped CeO2 (GDC thin film heterointerface under applied dc bias. In HX-PES, Ce3d and O1s core levels show a parallel chemical shift as large as 3.2 eV, corresponding to the redox window where ionic conductivity is predominant. The window width is equal to the energy gap between donor and acceptor levels of the GDC electrolyte. The Ce M-edge SX-XAS spectra also show a considerable increase of Ce3+ satellite peak intensity, corresponding to electrochemical reduction by oxide ion migration. In addition to the reversible redox reaction, two distinct phenomena by the electrochemical transport of oxide ions are observed as an irreversible reduction of the entire oxide film by O2 evolution from the GDC film to the gas phase, as well as a vigorous precipitation of oxygen gas at the bottom electrode to lift off the GDC film. These in situ spectroscopic observations describe well the electrochemical polarization behavior of a metal/GDC/metal capacitor-like two-electrode cell at room temperature.

  11. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  12. Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66- x CrNiB x Si ( x = 0, 0.25, 0.50 and 0.75 Wt Pct) Advanced High-Strength Steels

    Science.gov (United States)

    Askari-Paykani, Mohsen; Shahverdi, Hamid Reza; Miresmaeili, Reza

    2016-11-01

    In this study, the Vickers hardnesses and room-temperature uniaxial tensile behaviors of four Fe66- x CrNiB x Si ( x = 0 (0B), 0.25 (25B), 0.50 (50B), and 0.75 (75B) wt pct) advanced high-strength steels (AHSSs) in the as-hot-rolled and heat-treated (1373 K (1100 °C)/2 h + 973 K (700 °C)/20 min) conditions were investigated. Microstructural evolution after solidification, hot rolling, heat treatment, and uniaxial tensile tests of 0B, 25B, 50B, and 75B AHSSs was also characterized using field emission gun scanning electron microscopy and X-ray diffraction. The tensile behaviors of the 0B, 25B, 50B, and 75B AHSSs were manifested by an excellent combination of strength and ductility over 34.7 and 47.1 GPa pct, 36.9 and 42.3 GPa pct, 45.9 and 46.4 GPa pct, and 11.9 and 47.8 GPa pct, respectively, arising from microband-induced plasticity in the 0B, 50B, and 75B AHSSs and transformation-induced plasticity in the 25B specimens. All specimens in the as-hot-rolled and heat-treated states showed an austenitic matrix grain. Adding boron to the base alloy (0B) resulted in grain refinement, M2B dispersion, precipitation hardening, and solid solution strengthening, which led to an increase in strength. The results of the present work show promise for automotive applications that require excellent properties and reduced specific weight.

  13. The growth of manganese layers on Si(1 0 0) at room temperature: A photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Nolph, C.A. [University of Virgina, Department of Materials Science and Engineering, 395 McCormick Road, Charlottesville, VA 22904 (United States); Vescovo, E. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Reinke, P., E-mail: pr6e@virginia.edu [University of Virgina, Department of Materials Science and Engineering, 395 McCormick Road, Charlottesville, VA 22904 (United States)

    2009-06-15

    The combination of spin-and charge based electronics in future devices requires the magnetic doping of group IV semiconductors, and the formation of ferromagnetic contacts. The doping of Mn with Si is one of the material systems which is discussed in this context. The present study focuses on the growth of Mn on a Si(100)(2x1) surface, and the evolution of the surface was observed as a function of Mn coverage with synchrotron-based photoelectron spectroscopy. The reaction of Mn with the Si(100) surface at room temperature leads the formation of silicide at the boundary between the Si substrate and the Mn-overlayer, presumably with MnSi stoichiometry. The residual sub-oxide reacts with the Mn and therefore incorporates a few percent of Mn-O-Si at the interface. The analysis of the sub-oxide composition indicates that the Si{sup +1} component is the most reactive oxidation state. The overlayer is dominated by Mn, either as Mn-metal or as a Mn-rich silicide phase, and the metallic layer introduces a band bending in Si. As a consequence of our observations, including information from a recent STM study, the formation of ferromagnetic contacts which require ideally a flat and compositionally homogenous overlayer, cannot be achieved through room temperature deposition of Mn on the Si(100) (2x1) surface. The influence of residual oxides and surface defects on the growth process will be further investigated.

  14. Room temperature deposition of crystalline indium tin oxide films by cesium-assisted magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Deuk Yeon; Baik, Hong-Koo

    2008-01-01

    Indium tin oxide (ITO) films were deposited on a Si (1 0 0) substrate at room temperature by cesium-assisted magnetron sputtering. Including plasma characteristics, the structural, electrical, and optical properties of deposited films were investigated as a function of cesium partial vapor pressure controlled by cesium reservoir temperature. We calculated the cesium coverage on the target surface showing maximum formation efficiency of negative ions by means of the theoretical model. Cesium addition promotes the formation efficiency of negative ions, which plays important role in enhancing the crystallinity of ITO films. In particular, the plasma density was linearly increased with cesium concentrations. The resultant decrease in specific resistivity and increase in transmittance (82% in the visible region) at optimum cesium concentration (4.24 x 10 -4 Ω cm at 80 deg. C of reservoir temperature) may be due to enhanced crystallinity of ITO films. Excess cesium incorporation into ITO films resulted in amorphization of its microstructure leading to degradation of ITO crystallinity. We discuss the cesium effects based on the growth mechanism of ITO films and the plasma density

  15. An X-ray camera for single-crystal studies at high temperatures under controlled atmosphere

    International Nuclear Information System (INIS)

    Adlhart, W.; Tzafaras, N.; Sueno, S.; Jagodzinski, H.; Huber, H.

    1982-01-01

    A vacuum heating camera has been developed for extremely low background X-ray film work between room temperature and 2000 K. It can be used with modified conventional Weissenberg goniometers and with a specially designed focusing goniometer. The temperature control is maintained by a Pt/Pt-10% Rh thermocouple, a three-term proportional, integral and derivative (PID) controller and a programmable power supply. The accuracy in the absolute temperature setting is 10 K, the stability better than 1 K and the maximum thermal gradient over the crystal 7 K mm -1 at 1330 K. A small oxygen pressure can be applied, depending on the temperature, to control oxidation or reduction reactions of the sample. (Auth.)

  16. Effects of Nano-Aluminum Nitride on the Performance of an Ultrahigh-Temperature Inorganic Phosphate Adhesive Cured at Room Temperature.

    Science.gov (United States)

    Ma, Chengkun; Chen, Hailong; Wang, Chao; Zhang, Jifeng; Qi, Hui; Zhou, Limin

    2017-11-03

    Based on the optimal proportion of resin and curing agent, an ultrahigh-temperature inorganic phosphate adhesive was prepared with aluminum dihydric phosphate, aluminium oxide ( α -Al₂O₃), etc. and cured at room temperature (RT). Then, nano-aluminum nitride (nano-AlN), nano-Cupric oxide (nano-CuO), and nano-titanium oxide (nano-TiO₂) were added into the adhesive. Differential scanning calorimetry was conducted using the inorganic phosphate adhesive to analyze the phosphate reactions during heat treatment, and it was found that 15 wt % nano-AlN could clearly decrease the curing temperature. Scanning electron microscopy was used to observe the microphenomenon of the modified adhesive at ultrahigh-temperature. The differential thermal analysis of the inorganic phosphate adhesive showed that the weight loss was approximately 6.5 wt % when the mass ratio of resin to curing agent was 1:1.5. An X-ray diffraction analysis of the adhesive with 10% nano-AlN showed that the phase structure changed from AlPO₄(11-0500) to the more stable AlPO₄(10-0423) structure after heat treatment. The shear strength of the adhesive containing 10% nano-AlN reached 7.3 MPa at RT due to the addition of nano-AlN, which promoted the formation of phosphate and increased the Al 3+ .

  17. Soft X-ray and cathodoluminescence measurement, optimisation and analysis at liquid nitrogen temperatures

    Science.gov (United States)

    MacRae, C. M.; Wilson, N. C.; Torpy, A.; Delle Piane, C.

    2018-01-01

    Advances in field emission gun electron microprobes have led to significant gains in the beam power density and when analysis at high resolution is required then low voltages are often selected. The resulting beam power can lead to damage and this can be minimised by cooling the sample down to cryogenic temperatures allowing sub-micrometre imaging using a variety of spectrometers. Recent advances in soft X-ray emission spectrometers (SXES) offer a spectral tool to measure both chemistry and bonding and when combined with spectral cathodoluminescence the complementary techniques enable new knowledge to be gained from both mineral and materials. Magnesium and aluminium metals have been examined at both room and liquid nitrogen temperatures by SXES and the L-emission Fermi-edge has been observed to sharpen at the lower temperatures directly confirming thermal broadening of the X-ray spectra. Gains in emission intensity and resolution have been observed in cathodoluminescence for liquid nitrogen cooled quartz grains compared to ambient temperature quartz. This has enabled subtle growth features at quartz to quartz-cement boundaries to be imaged for the first time.

  18. Studies on room temperature electrochemical oxidation and its effect on the transport properties of TBCCO films

    International Nuclear Information System (INIS)

    Shirage, P M; Shivagan, D D; Pawar, S H

    2004-01-01

    A novel room temperature electrochemical process for the synthesis of single-phase Tl 2 Ba 2 Ca 2 Cu 3 O 10 (TBCCO/Tl-2223) superconducting films has been developed. Electrochemical parameters were optimized by studying linear sweep voltammetry (LSV), cyclic voltammetry (CV) and chronoamperometry (CA) for the deposition of Tl-Ba-Ca-Cu alloy at room temperature. The superconducting films of the TBCCO were obtained by two oxidation techniques. In the first technique, the electrodeposited Tl-Ba-Ca-Cu alloyed films were oxidized at various temperatures in flowing oxygen atmosphere. In the second technique, stoichiometric electrocrystallization to get Tl 2 Ba 2 Ca 2 Cu 3 O 10 (Tl-2223) was completed by electrochemically intercalating oxygen species into Tl-Ba-Ca-Cu alloy at room temperature for various lengths of time. The oxygen content in the samples was varied by varying the electrochemical oxidation period, and the changes in the crystal structure, superconducting transition temperature (T c ) and critical current density (J c ) were recorded. The high temperature furnace oxidation technique was replaced by the room temperature electrochemical oxidation technique. The dependence of superconducting parameters on oxygen content is correlated with structure-property relations

  19. All-Aluminum Thin Film Transistor Fabrication at Room Temperature

    Directory of Open Access Journals (Sweden)

    Rihui Yao

    2017-02-01

    Full Text Available Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al2O3 insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO conductive layer, as one AZO/Al2O3 heterojunction unit. The measurements of transmittance electronic microscopy (TEM and X-ray reflectivity (XRR revealed the smooth interfaces between ~2.2-nm-thick Al2O3 layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd and pure Al, with Al2O3/AZO multilayered channel and AlOx:Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al2O3/AZO heterojunction units exhibited a mobility of 2.47 cm2/V·s and an Ion/Ioff ratio of 106. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials.

  20. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  1. Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, S., E-mail: sakaguchi@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Uesaka, T. [RIKEN Nishina Center, Saitama 351-0198 (Japan); Kawahara, T. [Department of Physics, Toho University, Chiba 274-8510 (Japan); Ogawa, T. [RIKEN Advanced Science Institute, Saitama 351-0198 (Japan); Tang, L. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0001 (Japan); Teranishi, T. [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Urata, Y.; Wada, S. [RIKEN Advanced Science Institute, Saitama 351-0198 (Japan); Wakui, T. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Miyagi 980-8578 (Japan)

    2013-12-15

    Highlights: • Proton polarization in p-terphenyl at room-temperature is enhanced by a factor of 3. • Intense laser and temperature control are critically important for high polarization. • Optimization of time structure of laser pulse is effective for further improvement. -- Abstract: Proton polarization at room temperature, produced in a p-terphenyl crystal by using electron population difference in a photo-excited triplet state of pentacene, was enhanced by utilizing an intense laser with an average power of 1.5 W. It was shown that keeping the sample temperature below 300 K is critically important to prevent the rise of the spin–lattice relaxation rate caused by the laser heating. It is also reported that the magnitude of proton polarization strongly depends on the time structure of the laser pulse such as its width and the time interval between them.

  2. Indium tin oxide films prepared by atmospheric plasma annealing and their semiconductor-metal conductivity transition around room temperature

    International Nuclear Information System (INIS)

    Li Yali; Li Chunyang; He Deyan; Li Junshuai

    2009-01-01

    We report the synthesis of indium tin oxide (ITO) films using the atmospheric plasma annealing (APA) technique combined with the spin-coating method. The ITO film with a low resistivity of ∼4.6 x 10 -4 Ω cm and a high visible light transmittance, above 85%, was achieved. Hall measurement indicates that compared with the optimized ITO films deposited by magnetron sputtering, the above-mentioned ITO film has a higher carrier concentration of ∼1.21 x 10 21 cm -3 and a lower mobility of ∼11.4 cm 2 V -1 s -1 . More interestingly, these electrical characteristics result in the semiconductor-metal conductivity transition around room temperature for the ITO films prepared by APA.

  3. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  4. Heavy atom enhanced room-temperature phosphorimetry for ultratrace determination of harmane

    Directory of Open Access Journals (Sweden)

    Flávia F. de Carvalho Marques

    2008-01-01

    Full Text Available Harmane has been proposed for the treatment of epilepsy, AIDS and leshmaniosis. Its room-temperature phosphorescence was induced using either AgNO3 or TlNO3, enabling absolute limits of detection of 0.12 and 2.4 ng respectively, with linear dynamic ranges extending up to 456 ng (AgNO3 and 911 ng (TlNO3. Relative standard deviations around 3% were observed for substrates containing 46 ng of harmane. Such sensitivity and precision are needed because harmane intake must be strictly controlled to achieve proper therapeutic response. Interference studies were performed using thalidomide, reserpine and yohimbine. Recovery of 104±6% was achieved using solid surface room-temperature phosphorimetry. The result was comparable to the one obtained by micellar electrokinetic chromatography.

  5. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

    Directory of Open Access Journals (Sweden)

    Alexander G. Bannov

    2017-02-01

    Full Text Available Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10–1000 ppm and under different relative humidity levels (3%–65%. It was concluded that the graphite oxide–based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100–500 ppm and 3% relative humidity with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

  6. Protective shielding parameters of diagnostic x-ray rooms in some hospitals in Benue State

    International Nuclear Information System (INIS)

    Agba, E.H.; Gemanam, S.; Sombo, T.

    2011-01-01

    Protective shielding parameters of diagnostic x-ray units at Federal Medical Centre, Makurdi, Baki Hospital, Gboko and Mkar Christian Hospital, Gboko have been determined using a radiation meter, (Inspector, Exp.S.E). The parameters determined include: Operating potential, Workload and Use factors of each diagnostic x-ray room. These parameters were used to estimate the primary and secondary protective barriers for the hospitals. The primary and secondary protective barrier values at Mkar Christian Hospital, Baki Hospital, Gboko and Federal Medical Centre, Makurdi are found to be: 11.0±0.11 x10 -1 mm and 9.0±9x10 -2 mm; 6.0±6.0x10 -1 mm and 6.0±6.0x10 -2 mm; and 7.0±7.0x10 -1 mm and 6.0±6.0x10 -2 mm respectively. The wall thicknesses around the x-ray rooms of the respective hospitals are 300±3.0x1 0 -1 mm for Mkar Christian Hospital and Federal Medical Centre, Makurdi, while that of Baki Hospital, Gboko is 270±2.7x10 -1 mm. The measured wall thicknesses are seen to be adequate protective structural shields on the basis of International NCRP Standards on Structural Shielding.

  7. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  8. CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, N.B. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); K.A.M.P. & N.K.P. Science College, Pimpalner, Sakri, Dhule, M.S. (India); Baviskar, P.K. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); Ahire, R.R. [S.G. Patil Science, Sakri, Dhule, M.S. (India); Sankapal, B.R., E-mail: brsankapal@gmail.com [Nano Materials and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S. (India)

    2017-04-15

    Simple chemical route has been employed to grow interconnected nanobeads of CdO having necklace like structure through air annealing of cadmium hydroxide nanowires. This nanobeads of n-CdO with high surface area has been decorated with p-PbS nanoparticles resulting in the formation of nano-heterojunction which has been utilized effectively as room temperature liquefied petroleum gas (LPG) sensor. The room temperature gas response towards C{sub 2}H{sub 5}OH, Cl{sub 2}, NH{sub 3}, CO{sub 2} and LPG was investigated, among which LPG exhibits significant response. The maximum gas response of 51.10% is achieved with 94.54% stability upon exposure of 1176 ppm concentration of LPG at room temperature (27 °C). The resulting parameters like gas response, response and recovery time along with stability studies has been studied and results are discussed herein. - Highlights: • Conversion of Cd(OH){sub 2} nanowires to CdO nanonecklace by air annealing at 290 °C. • Decoration of PbS nanoparticles over CdO nanobeads by SILAR method. • Formation of n-CdO/p-PbS nano-heterojunction as room temperature LPG sensor. • Maximum gas response of 51.10% with 94.54% stability.

  9. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.

    Science.gov (United States)

    Nguyen, T P O; Tran, B M; Lee, N Y

    2016-08-16

    Here, we introduce a simple and fast method for bonding a poly(dimethylsiloxane) (PDMS) silicone elastomer to different plastics. In this technique, surface modification and subsequent bonding processes are performed at room temperature. Furthermore, only one chemical is needed, and no surface oxidation step is necessary prior to bonding. This bonding method is particularly suitable for encapsulating biomolecules that are sensitive to external stimuli, such as heat or plasma treatment, and for embedding fracturable materials prior to the bonding step. Microchannel-fabricated PDMS was first oxidized by plasma treatment and reacted with aminosilane by forming strong siloxane bonds (Si-O-Si) at room temperature. Without the surface oxidation of the amine-terminated PDMS and plastic, the two heterogeneous substrates were brought into intimate physical contact and left at room temperature. Subsequently, aminolysis occurred, leading to the generation of a permanent seal via the formation of robust urethane bonds after only 5 min of assembling. Using this method, large-area (10 × 10 cm) bonding was successfully realized. The surface was characterized by contact angle measurements and X-ray photoelectron spectroscopy (XPS) analyses, and the bonding strength was analyzed by performing peel, delamination, leak, and burst tests. The bond strength of the PDMS-polycarbonate (PC) assembly was approximately 409 ± 6.6 kPa, and the assembly withstood the injection of a tremendous amount of liquid with the per-minute injection volume exceeding 2000 times its total internal volume. The thermal stability of the bonded microdevice was confirmed by performing a chamber-type multiplex polymerase chain reaction (PCR) of two major foodborne pathogens - Escherichia coli O157:H7 and Salmonella typhimurium - and assessing the possibility for on-site direct detection of PCR amplicons. This bonding method demonstrated high potential for the stable construction of closed microfluidic systems

  10. Room air temperature affects occupants' physiology, perceptions and mental alertness

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Kwok Wai; Willem, Henry Cahyadi [Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566 (Singapore)

    2010-01-15

    Thermal environment that causes thermal discomfort may affect office work performance. However, the mechanisms through which occupants are affected are not well understood. This study explores the plausible mechanism linking room air temperature and mental alertness through perceptual and physiological responses in the tropics. Ninety-six young adults participated as voluntary subjects in a series of experiment conducted in the simulated office settings. Three room air temperatures, i.e. 20.0, 23.0 and 26.0 C were selected as the experimental conditions. Both thermal comfort and thermal sensation changed significantly with time under all exposures (P < 0.0001). Longer exposure at 20.0 C led to cooling sensations due to lower skin temperatures (P < 0.0001) and was perceived as the least comfortable. Nevertheless, this moderate cold exposure induced nervous system activation as demonstrated by the increase of {alpha}-Amylase level (P < 0.0001) and the Tsai-partington test (P < 0.0001). A mechanism linking thermal environment, occupants' responses and performance is proposed. (author)

  11. Cellulose gels produced in room temperature ionic liquids by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Nagasawa, Naotsugu; Taguchi, Mitsumasa

    2014-01-01

    Cellulose-based gels were produced in room temperature ionic liquids (RTILs) by ionizing radiation. Cellulose was dissolved at the initial concentration of 20 wt% in 1-ethyl-3-methylimidazolium (EMI)-acetate or N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEMA)-formate with a water content of 18 wt%, and irradiated with γ-rays under aerated condition to produce new cellulose gels. The gel fractions of the cellulose gels obtained in EMI-acetate and DEMA-formate at a dose of 10 kGy were 13% and 19%, respectively. The formation of gel fractions was found to depend on the initial concentration of cellulose, water content, and irradiation temperature. The obtained gel readily absorbed water, methanol, ethanol, dichloromethane, N,N-dimethylacetamide, and RTILs. - Highlights: • Cellulose gels were produced in room temperature ionic liquids (RTILs). • Water plays a crucial role in the cross-linking reaction. • Cellulose gels swollen with RTILs show good electronic conductivity (3.0 mS cm −1 )

  12. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  13. p-PEDOT:PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ladhe, R.D. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (M.S.) (India); Gurav, K.V. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Pawar, S.M. [Solar Cell Laboratory, LG Components R and D Center, 1271, Sa-Dong, Sanggrok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (M.S.) (India)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Formation of heterojunction n-ZnO and p-PEDOT:PSS at room temperature (27 Degree-Sign C). Black-Right-Pointing-Pointer Use of this heterojunction as room temperature LPG sensor. Black-Right-Pointing-Pointer Remarkable gas response with good stability of the sensing device. Black-Right-Pointing-Pointer Use of heterojunction could offer cost-effective LPG sensor that is ecological-friendly. Black-Right-Pointing-Pointer The mass production using scalable room temperature chemical deposition process. - Abstract: Investigation towards the performance of room temperature (27 Degree-Sign C) liquefied petroleum gas (LPG) sensor based on the heterojunction between p-PEDOT:PSS and n-type ZnO is reported. The junction was developed by using chemically deposited ZnO film on to fluorine doped tin oxide (FTO) coated glass substrate followed by coating of thin slurry layer of PEDOT:PSS by using spin coating technique. Both these methods are simple, inexpensive and suitable for large area applications. Different characterization techniques were used to characterize structural, surface morphological and compositional of the material deposited. LPG sensing behavior of the heterojunction was studied at room temperature along with the stability studies. At room temperature, the heterojunction showed 58.8% sensitivity upon exposure to 1000 ppm of LPG with good response and recovery time like 225 s and 190 s, respectively. Furthermore, the LPG sensor reported is cost-effective, user friendly, and easy to fabricate using low cost chemical methods at room temperature.

  14. A Highly Selective Room Temperature NH3 Gas Sensor based on Nanocrystalline a-Fe2O3

    Directory of Open Access Journals (Sweden)

    Priyanka A. PATIL

    2017-05-01

    Full Text Available Nanocrystalline a-Fe2O3 powder was synthesized by simple, inexpensive sol-gel method. The obtained powder was calcined at 700 0C in air atmosphere for 2 hours. The structural and morphological properties of calcined powder were studied by X-ray diffraction (XRD and Field Emission Scanning Electron Microscopy (FESEM respectively. Thermal properties of dried gel were studied by Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC. The XRD pattern of the powder confirmed the a-Fe2O3 (hematite phase of iron oxide with average crystalline size of 30.87 nm calculated from Scherrer equation. The FESEM images showed uniform wormlike morphology of a-Fe2O3 powder. TGA result indicated that a-Fe2O3 is thermodynamically stable. Room temperature NH3 sensing characteristics of a-Fe2O3 were studied for various concentration levels (250-2500 ppm of NH3 at various humid conditions. The sensor based on a-Fe2O3 exhibited good selectivity and excellent sensitivity (S=92 towards 1000 ppm of NH3 with quick response of 4 sec and fast recovery of 9 sec. Room temperature sensing mechanism is also discussed.

  15. Origin of room temperature ferromagnetism in SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Bai, Guohua; Jiang, Yinzhu [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Du, Youwei [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, Chen, E-mail: chen_wu@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2017-03-15

    SnO{sub 2} films exhibiting room temperature ferromagnetism (RTFM) have been prepared on Si (001) by pulsed laser deposition. The saturation magnetization (M{sub s}) of the films experiences a decreasing trend followed by increasing with the growth temperature increased from RT to 400 ℃. The growth temperature affects both the concentration and the location of the oxygen vacancies as the origin of the RTFM. With lower growth temperatures (<300 ℃), more oxygen vacancies exist in the inner film for the samples with less crystallinity, resulting in enhanced magnetism. Higher deposition temperature leads to less oxygen vacancies in the inner film but more oxygen defects at the film surface, which is also beneficial to achieve greater magnetism. Various oxygen pressures during growth and post-annealing have also been used to confirm the role of oxygen vacancies. The study demonstrates that the surface oxygen defects and the positively charged monovalent O vacancies (V{sub O}{sup +}) in the inner film are the origin of the magnetism in SnO{sub 2} films. - Highlights: • SnO{sub 2} films exhibiting room temperature ferromagnetism (RTFM) have been prepared on Si (001) by pulsed laser deposition. • Growth temperature, oxygen pressure and annealing affect the growth of SnO{sub 2} films. • Both the concentration and location of the oxygen vacancies play critical roles in the magnetization.

  16. Nickel in silicon: Room-temperature in-diffusion and interaction with radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)

    2017-07-15

    Nickel is incorporated into silicon wafers during chemomechanical polishing in an alkaline Ni-contaminated slurry at room temperature. The nickel in-diffusion is detected by DLTS depth profiles of a novel Ni{sub 183} level, which is formed due to a reaction between the diffusing nickel and the VO centers introduced before the polishing. The Ni{sub 183} profile extends up to 10 μm after a 2 min polishing. The available data provide a lower estimate for the room-temperature nickel diffusivity D{sub Ni} > 10{sup -9} cm{sup 2} s{sup -1}. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Exploiting fast detectors to enter a new dimension in room-temperature crystallography

    International Nuclear Information System (INIS)

    Owen, Robin L.; Paterson, Neil; Axford, Danny; Aishima, Jun; Schulze-Briese, Clemens; Ren, Jingshan; Fry, Elizabeth E.; Stuart, David I.; Evans, Gwyndaf

    2014-01-01

    A departure from a linear or an exponential decay in the diffracting power of macromolecular crystals is observed and accounted for through consideration of a multi-state sequential model. A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first time to high frame-rate room-temperature data collection

  18. Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases

    International Nuclear Information System (INIS)

    Prades, J. D.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A.; Hernandez-Ramirez, F.; Morante, J. R.

    2009-01-01

    Illuminating metal oxide semiconductors with ultra-violet light is a feasible alternative to activate chemical reactions at their surface and thus, using them as gas sensors without the necessity of heating them. Here, the response at room temperature of individual single-crystalline SnO 2 nanowires towards NO 2 is studied in detail. The results reveal that similar responses to those obtained with thermally activated sensors can be achieved by choosing the optimal illumination conditions. This finding paves the way to the development of conductometric gas sensors operated at room temperature. The power consumption in these devices is in range with conventional micromachined sensors.

  19. Micelle-stabilized room-temperature phosphorescence with synchronous scanning

    International Nuclear Information System (INIS)

    Femia, R.A.; Love, L.J.C.

    1984-01-01

    The experimental requirements for synchronous wavelength scanning micelle-stabilized room temperature phosphorescence and the factors affecting peak resolution are presented and compared with those for synchronous wavelength scanning fluorescence. Identification of individual compounds in a four-component mixture is illustrated, and criteria to identify and minimize triplet state energy transfer are given. Considerable improvement in resolution of the synchronous peaks is obtained via second derivative spectra. 20 references, 7 figures, 2 tables

  20. Room temperature H2S gas sensing property of indium oxide thin films obtained by pulsed D.C. magnetron sputtering

    International Nuclear Information System (INIS)

    Nisha, R.; Madhusoodanan, K.N.; Karthikeyan, Sreejith; Hill, Arthur E.; Pilkington, Richard D.

    2013-01-01

    Indium oxide thin films were prepared by pulsed dc magnetron sputtering technique with no substrate heating. X-ray diffraction was used to investigate the structural properties and AFM was used to study the surface morphology gas sensing performance were conducted using a static gas sensing system. Room temperature gas sensing performance was conducted in range of 17 to 286 ppm. The sensitivity, response and recovery time of the sensor was also determined. (author)

  1. Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures

    Science.gov (United States)

    De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.

  2. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    Science.gov (United States)

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  3. Piezoelectric properties and thermal stability of (Na0.53K0.47-xAgx)Nb1-xSbxO3 ceramics

    International Nuclear Information System (INIS)

    Zheng, Limei; Wang, Jinfeng; Wang, Chunming; Gai, Zhigang; Wu, Qingzao; Zhang, Rui

    2011-01-01

    Many (K 1-x Na x )NbO 3 (KNN)-based ceramics with high piezoelectric performance exhibit undesirable strong temperature dependence due to the orthorhombic-tetragonal polymorphic phase transition near room temperature. In order to improve the temperature stability of the ceramics, many additives have been added into the KNN-based ceramics to shift T O-T down to below room temperature. Contrary to the previous approach (Na 0.53 K 0.47-x Ag x )Nb 1-x Sb x O 3 (NKANS) ceramics with T O-T well above room temperature have been prepared by a conventional solid-state reaction method. The density and the electrical properties are effectively improved by the addition of AgSbO 3 , and optimum piezoelectric properties are found in the ceramics with 0.05 ≤ x ≤ 0.07, with maximum k p ∝ 0.46 for NKANS5 and maximum d 33 ∝ 199 pC/N for NKANS7. More importantly, k p remains virtually almost unchanged up to the T O-T temperature (≥100 C), indicating that the NKANS ceramics exhibit a much improved piezoelectric thermal stability. The analyses suggest that both the high T O-T value and diffuse orthorhombic-tetragonal phase transition should be responsible for the good temperature stability. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Nanostructured ZrO2 Thick Film Resistors as H2-Gas Sensors Operable at Room Temperature

    Directory of Open Access Journals (Sweden)

    K. M. GARADKAR

    2009-11-01

    Full Text Available Nanostructured ZrO2 powder was synthesized by microwave assisted sol-gel method. The material was characterized by XRD and SEM techniques. X-Ray diffraction studies confirm that a combination of tetragonal and monoclinic zirconia nanoparticles is obtained by using microwave-assisted method. The nanopowder was calcined at an optimized temperature of 400 °C for 3 h. The prepared powder had crystalline size about 25 nm. Thick films of synthesized ZrO2 powder were prepared by screen printing technique. The gas sensing performances of these films for various gases were tested. Films showed highest response to H2 (50 ppm gas at room temperature with poor responses to others (1000 ppm. The quick response and fast recovery are the main features of this sensor. The effects of microstructure, operating temperature and gas concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of H2 gas and others were studied and discussed.

  5. Design and Development of a Relative Humidity and Room Temperature Measurement System with On Line Data Logging Feature for Monitoring the Fermentation Room of Tea Factory

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2011-12-01

    Full Text Available The design and development of a Relative Humidity (RH and Room Temperature (RT monitoring system with on line data logging feature for monitoring fermentation room of a tea factory is presented in this paper. A capacitive RH sensor with on chip signal conditioner is taken as RH sensor and a temperature to digital converter (TDC is used for ambient temperature monitoring. An 8051 core microcontroller is the heart of the whole system which reads the digital equivalent of RH data with the help of a 12-bit Analog to Digital (A/D converter and synchronize TDC to get the ambient temperature. The online data logging is achieved with the help of RS-232C communication. Field performance is also studied by installing it in the fermentation room of a tea factory.

  6. Does nanocrystalline Cu deform by Coble creep near room temperature?

    International Nuclear Information System (INIS)

    Li, Y.J.; Blum, W.; Breutinger, F.

    2004-01-01

    The proposal that nanocrystalline Cu produced by electro deposition (ED) creeps at temperatures slightly above room temperature by diffusive flow via grain boundaries (Coble creep) has been checked by compression tests. It was found that the minimum creep rates obtained in tension are significantly larger than those in compression, probably due to interference of tensile fracture. Scanning electron microscopic investigation showed that the spacing between large-angle grain boundaries is about 10 μm rather than the reported value of 30 nm. Comparison with coarse grained and ultrafine grained Cu produced by equal channel angular pressing showed that the ED-Cu work hardens similarly to coarse grained Cu in contrast to ultrafine grained Cu which reaches its maximum deformation resistance within a small strain interval of 0.04 and has distinctly higher strain rate sensitivity of flow stress. The present results are consistent with the established knowledge that there is no softening by grain boundaries, e.g. due to Coble creep, near room temperature in Cu with grain sizes above 1 μm. The grain boundary effect observed in ultrafine grained Cu is interpreted in terms of modification of dislocation generation and dislocation annihilation by grain boundaries

  7. Stabilized sulfur as cathodes for room temperature sodium-ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yunhua [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Zhu, Yujie [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Zheng, Shiyou [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yihang [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Luo, Chao [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Gaskell, Karen [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Eichhorn, Bryan [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wang, Chunsheng [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering

    2013-05-01

    Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.

  8. Near room temperature magnetocaloric properties and the universal curve of MnCoGe1-xCux

    Science.gov (United States)

    Si, Xiaodong; Liu, Yongsheng; Lu, Xiaofei; Shen, Yulong; Wang, Wenli; Yu, Wenying; Zhou, Tao; Gao, Tian

    2017-05-01

    Intermetallic compounds based on MnCoGe have drawn attention due to the coupled magnetic and structural transformations and the large magnetocaloric entropy. Here, we provide a systematic comparison of experimental data under different magnetic fields with magnetic and the magnetocaloric properties. The ferromagnetic transition temperature (TC) increases from 353.4(6) K for x = 0.01 to 363.4(4) K for x = 0.04 with increasing nominal copper content. The maximum magnetic entropy change |ΔSM| in a magnetic field change of 5 T is found to be 18.3(2) J/(kg K) with a large relative cooling power (RCP) value of 292.5(4) J/kg for x = 0.01, revealing that the present system can provide an acceptable magnetocaloric effect at a cheaper price for magnetic refrigeration materials. Making attempt to contrast a master curve for the present system, we find the experimental values of magnetic field dependence of the magnetic entropy change are consistent with a phenomenological universal curve.

  9. Room-temperature near-field reflection spectroscopy of single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Marcher; Madsen, Steen

    1997-01-01

    . This technique suppresses efficiently the otherwise dominating far-field background and reduces topographic artifacts. We demonstrate its performance on a thin, strained near-surface CdS/ZnS single quantum well at room temperature. The optical structure of these topographically flat samples is due to Cd...

  10. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    B P PANDA and N C MOHAPATRA*. Department of Physics, Chikiti Mahavidyalaya, Chikiti 761 010, India. £Department of Physics, Berhampur University, Berhampur 760 007, India. Email: ncmphy123@hotmail.com. MS received 18 January 2003; accepted 21 June 2003. Abstract. Room temperature Compton profiles of ...

  11. Seed-free synthesis of 1D silver nanowires ink using clove oil (Syzygium Aromaticum) at room temperature.

    Science.gov (United States)

    Jeevika, Alagan; Ravi Shankaran, Dhesingh

    2015-11-15

    Silver nanowires (AgNWs) have been demonstrated to be a promising next generation conducting material and an alternative to the traditional electrode (ITO) because of its high conductivity, transparency and stability. Generally, AgNWs are synthesized by chemical method (mainly polyol reduction method) at high temperature in the presence of exotic seeds. The present work aims at the green approach for preparation and characterization of 1D AgNWs ink using clove oil (Syzygium Aromaticum) at room temperature. AgNWs was prepared by green synthesis using clove oil as reducing as well as capping agent at room temperature. The obtained ink was purified, filtered and redissolved in methanol. The prepared AgNWs showed an absorption peaks at 350 and 387nm in the UV-vis spectrum due to transverse SPR mode of silver. From the HR-TEM analysis, it was observed that the AgNWs possess an average diameter and length of ∼39±0.01nm and ∼3μm, respectively. The obtained AgNWs are crystalline in nature and are arranged in a perfect crystal lattice orientation, which was confirmed from the selected area electron diffraction studies. Moreover, the X-ray diffraction analysis confirms the face centered cubic structure. The AgNWs coated glass substrate shows an electrical conductivity of ∼0.48×10(6)S/m. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Room temperature current injection polariton light emitting diode with a hybrid microcavity.

    Science.gov (United States)

    Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2011-07-13

    The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra.

  13. A room-temperature non-volatile CNT-based molecular memory cell

    Science.gov (United States)

    Ye, Senbin; Jing, Qingshen; Han, Ray P. S.

    2013-04-01

    Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.

  14. Direct Observation of Room-Temperature Stable Magnetism in LaAlO3/SrTiO3 Heterostructures.

    Science.gov (United States)

    Yang, Ming; Ariando; Zhou, Jun; Asmara, Teguh Citra; Krüger, Peter; Yu, Xiao Jiang; Wang, Xiao; Sanchez-Hanke, Cecilia; Feng, Yuan Ping; Venkatesan, T; Rusydi, Andrivo

    2018-03-21

    Along with an unexpected conducting interface between nonmagnetic insulating perovskites LaAlO 3 and SrTiO 3 (LaAlO 3 /SrTiO 3 ), striking interfacial magnetisms have been observed in LaAlO 3 /SrTiO 3 heterostructures. Interestingly, the strength of the interfacial magnetic moment is found to be dependent on oxygen partial pressures during the growth process. This raises an important, fundamental question on the origin of these remarkable interfacial magnetic orderings. Here, we report a direct evidence of room-temperature stable magnetism in a LaAlO 3 /SrTiO 3 heterostructure prepared at high oxygen partial pressure by using element-specific soft X-ray magnetic circular dichroism at both Ti L 3,2 and O K edges. By combining X-ray absorption spectroscopy at both Ti L 3,2 and O K edges and first-principles calculations, we qualitatively ascribe that this strong magnetic ordering with dominant interfacial Ti 3+ character is due to the coexistence of LaAlO 3 surface oxygen vacancies and interfacial (Ti Al -Al Ti ) antisite defects. On the basis of this new understanding, we revisit the origin of the weak magnetism in LaAlO 3 /SrTiO 3 heterostructures prepared at low oxygen partial pressures. Our calculations show that LaAlO 3 surface oxygen vacancies are responsible for the weak magnetism at the interface. Our result provides direct evidence on the presence of room-temperature stable magnetism and a novel perspective to understand magnetic and electronic reconstructions at such strategic oxide interfaces.

  15. A Room Temperature Low-Threshold Ultraviolet Plasmonic Nanolaser

    Science.gov (United States)

    2014-09-23

    samples were pasted to the cold finger of the cryostat with silver paste to ensure good thermal conduction. The time-resolve photoluminescence (TRPL...laser by total internal reflection. Nat. Mater. 10, 110–113 (2011). 13. Lu, Y. J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science...1129 (1973). 30. Wang, Y. G. et al. Room temperature lasing with high group index in metal- coated GaN nanoring . Appl. Phys. Lett. 99, 251111 (2011

  16. Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals

    Science.gov (United States)

    Qin, Xiu-Bo; Li, Dong-Xiang; Li, Rui-Qin; Zhang, Peng; Li, Yu-Xiao; Wang, Bao-Yi

    2014-06-01

    The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.

  17. Room temperature CVD diamond X-ray and charged particle microdetectors

    CERN Document Server

    Vittone, E; Lo Giudice, A; Polesello, P; Manfredotti, C

    1999-01-01

    Hot filament chemical vapour deposition technique is particularly suitable for the realisation of diamond tip and wire detectors working in a coaxial geometry with a built-in internal metal electrode. By using tungsten wires of different diameters and by controlling the shape of the tip by an electrochemical etch, it is possible to obtain various kinds of microdetectors, with diameters ranging from 50 to 300 mu m. The response of these diamond tip and wire detectors has been tested at low X-ray energies (50-250 keV) and at relatively high energies (6-15 MeV) both in terms of sensitivity (collected charge with respect to the absorbed dose) and of linearity as a function of X-ray fluence. Sensitivities larger than 2 nC/Gy are achieved, with a good linearity in the dose rate range used in applications. Such microprobes have been proved to be suitable as narrow X-ray beam profilers and as surface or in vivo microdosimeters for on-line monitoring of radiotherapy plans. Such detectors have also been used as nuclear...

  18. Room temperature Ultraviolet B emission from InAlGaN films synthesized by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Roberts, A. T. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [CNR-NANOTEC, Istituto di Nanotecnologia, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2015-09-28

    Thin films of the wide bandgap quaternary semiconductor In{sub x}Al{sub y}Ga{sub (1−x−y)}N with low In (x = 0.01–0.05) and high Al composition (y = 0.40–0.49) were synthesized on GaN templates by plasma-assisted molecular beam epitaxy. High-resolution X-ray diffraction was used to correlate the strain accommodation of the films to composition. Room temperature ultraviolet B (280 nm–320 nm) photoluminescence intensity increased with increasing In composition, while the Stokes shift remained relatively constant. The data suggest a competition between radiative and non-radiative recombination occurs for carriers, respectively, localized at centers produced by In incorporation and at dislocations produced by strain relaxation.

  19. Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature

    Directory of Open Access Journals (Sweden)

    G. Behzadi pour

    Full Text Available In this study, fabrication of highly sensitive PdNPs/SiO2/Si hydrogen gas sensor using experimental and theoretical methods has been investigated. Using chemical method the PdNPs are synthesized and characterized by X-ray diffraction (XRD. The average size of PdNPs is 11 nm. The thickness of the oxide film was 20 nm and the surface of oxide film analyzed using Atomic-force microscopy (AFM. The C-V curve for the PdNPs/SiO2/Si hydrogen gas sensor in 1% hydrogen concentration and at the room temperature has been reported. The response time and recovery time for 1% hydrogen concentration at room temperature were 1.2 s and 10 s respectively. The response (R% for PdNPs/SiO2/Si MOS capacitor hydrogen sensor was 96%. The PdNPs/SiO2/Si MOS capacitor hydrogen sensor showed very fast response and recovery times compared to SWCNTs/PdNPs, graphene/PdNPs, nanorod/PdNPs and nanowire/PdNPs hydrogen gas sensors. Keywords: Sensitive, Oxide film, Capacitive, Resistance

  20. Oxygen vacancy-induced room-temperature ferromagnetism in D—D neutron irradiated single-crystal TiO2 (001) rutile

    Science.gov (United States)

    Xu, Nan-Nan; Li, Gong-Ping; Pan, Xiao-Dong; Wang, Yun-Bo; Chen, Jing-Sheng; Bao, Liang-Man

    2014-10-01

    Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D—D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.

  1. A Fiber Bragg grating based tilt sensor suitable for constant temperature room

    International Nuclear Information System (INIS)

    Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng

    2015-01-01

    Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10 −5 ° (that is, 0.08% of the measuring range). (paper)

  2. Effects of Nano-Aluminum Nitride on the Performance of an Ultrahigh-Temperature Inorganic Phosphate Adhesive Cured at Room Temperature

    Directory of Open Access Journals (Sweden)

    Chengkun Ma

    2017-11-01

    Full Text Available Based on the optimal proportion of resin and curing agent, an ultrahigh-temperature inorganic phosphate adhesive was prepared with aluminum dihydric phosphate, aluminium oxide ( α -Al2O3, etc. and cured at room temperature (RT. Then, nano-aluminum nitride (nano-AlN, nano-Cupric oxide (nano-CuO, and nano-titanium oxide (nano-TiO2 were added into the adhesive. Differential scanning calorimetry was conducted using the inorganic phosphate adhesive to analyze the phosphate reactions during heat treatment, and it was found that 15 wt % nano-AlN could clearly decrease the curing temperature. Scanning electron microscopy was used to observe the microphenomenon of the modified adhesive at ultrahigh-temperature. The differential thermal analysis of the inorganic phosphate adhesive showed that the weight loss was approximately 6.5 wt % when the mass ratio of resin to curing agent was 1:1.5. An X-ray diffraction analysis of the adhesive with 10% nano-AlN showed that the phase structure changed from AlPO4(11-0500 to the more stable AlPO4(10-0423 structure after heat treatment. The shear strength of the adhesive containing 10% nano-AlN reached 7.3 MPa at RT due to the addition of nano-AlN, which promoted the formation of phosphate and increased the Al3+.

  3. Optoelectronic study and annealing stability of room temperature pulsed laser ablated ZnSe polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Taj Muhammad, E-mail: tajakashne@gmail.com; Zakria, M.; Ahmad, Mushtaq; Shakoor, Rana I.

    2014-03-15

    In principal, we described stability of the room temperature ZnSe thin films with thermal annealing deposited onto glass by pulsed laser deposition technique using third harmonic 355 nm of Nd: YAG laser beam. Optoelectronic analysis and stability with thermal annealing was described in terms of structural and optical properties. These properties were investigated via X-ray diffraction, atomic force microscope, scanning electron microscope, Raman, Fourier transform infrared and photoluminescence spectroscopies. From the strong reflection corresponding to the (1 1 1) plane (2θ=27.48°) and the longitudinal optical “LO” phonon modes at 250 cm{sup −1} and 500 cm{sup −1} in the X-ray diffraction and Raman spectra, a polycrystalline zincblende structure of the film was established. At 300 and 350 °C annealing temperatures, the film crystallites were preferentially oriented with the (1 1 1) plane parallel to the substrate and became amorphous at 400 °C. Atomic force microscopic images showed that the morphologies of ZnSe films became smooth with root mean squared roughness 9.86 nm after annealing at 300 and 350 °C while a rougher surface was observed for the amorphous film at 400 °C. Fourier transform infrared study illustrated the chemical nature and Zn–Se bonding in the deposited films. For the as-deposited and annealed samples at 300 and 350 °C, scanning electron micrographs revealed mono-dispersed indistinguishable ZnSe grains and smooth morphological structure which changed to a cracking and bumpy surface after annealing at 400 °C. The physical phenomenon of annealing induced morphological changes could be explained in terms of “structure zone model”. Excitonic emission at 456 nm was observed for both as-deposited and annealed film at 350 °C. The transmission spectrum shows oscillatory behavior because of the thin film interference and exhibited a high degree of transparency down to a wavelength ∼500 nm in the IR region. Energy band-gap was

  4. Synthesis, characterization and magnetic properties of room-temperature nanofluid ferromagnetic graphite

    OpenAIRE

    Souza, N. S.; Sergeenkov, S.; Speglich, C.; Rivera, V. A. G.; Cardoso, C. A.; Pardo, H.; Mombru, A. W.; Rodrigues, A. D.; de Lima, O. F.; Araujo-Moreira, F. M.

    2009-01-01

    We report the chemical synthesis route, structural characterization, and physical properties of nanofluid magnetic graphite (NFMG) obtained from the previously synthesized bulk organic magnetic graphite (MG) by stabilizing the aqueous ferrofluid suspension with an addition of active cationic surfactant. The measured magnetization-field hysteresis curves along with the temperature dependence of magnetization confirmed room-temperature ferromagnetism in both MG and NFMG samples. (C) 2009 Americ...

  5. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  6. Plasticity-induced martensitic transformation in austenitic stainless steels SUS 304 and SUS 316 L at room and liquid nitrogen temperatures. Quantitative measurement using X-ray diffraction method

    International Nuclear Information System (INIS)

    Iwasaki, Yoshifumi; Nakasone, Yuji; Shimizu, Tetsu; Kobayashi, Noboru

    2006-01-01

    The present study investigates plasticity-induced martensitic transformation in two types of austenitic stainless steels SUS 304 and 316 L subjected to uniform tensile stresses at room and liquid nitrogen temperatures. The X-ray diffraction method was used in order to measure volume fractions of transformed α' and ε' martensitic phases and to obtain the dependence of the volume fractions of these phases on the applied strain level ε. The difficulty in the measurement of the martensitic phases by the X-ray diffraction method caused by the preferred orientation which had been introduced during the rolling process and during the tensile tests was overcome by the help of Arnell's Method. Two types of target materials, i.e. Cu and Mo for the X-ray source were used to verify the accuracy and reproducibility of the present X-ray diffraction analyses. The results were also compared with those obtained by the saturation magnetization method using VSM, or vibrating-sample magnetometer reported elsewhere. It was revealed that α' was transformed in SUS 304 both at 297 and 77 K whereas in SUS 316L only at 77 K. Another type of martensitic phase, i.e., ε was transformed in the both steels only at 77 K. Almost the same values of the volume fractions of α' and ε' phases were obtained by the two types of target materials. The plots of α' volume fraction obtained by the X-ray diffraction methods vs. that by VSM showed a good linear correlation. (author)

  7. Fracture toughness of China low activation martensitic (CLAM) steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunfeng [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, Gang; Jiang, Siben [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-15

    Highlights: • The fracture toughness of CLAM steel at room temperature is 417.9 kJ/m{sup 2} measured by unloading compliance method according to the ASTM E1820-11. • The fracture toughness of CLAM steel at room temperature can be calculated on the basis of the fractal dimensions measured under plane strain conditions. The calculated result and relative error for this experiment are 454.6 kJ/m{sup 2} and 8.78% respectively. • The calculation method could be used to estimate the fracture toughness of materials with analysis of the fracture surface. - Abstract: The fracture toughness (J{sub IC}) of China low activation martensitic (CLAM) steel was tested at room temperature through the compact tension specimen, the result is 417.9 kJ/m{sup 2}, which is similar to the JLF-1 at same experimental conditions. The microstructural observation of the fracture surface shows that the fracture mode is a typical ductile fracture. Meanwhile, the fracture toughness is also calculated on the basis of the fractal dimension and the calculated result is 454.6 kJ/m{sup 2}, which is consistent well with the experimental result. This method could be used to estimate the fracture toughness of materials by analyzing of the fracture surface.

  8. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    Science.gov (United States)

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  9. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    Science.gov (United States)

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  10. CuInP₂S₆ Room Temperature Layered Ferroelectric.

    Science.gov (United States)

    Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V

    2015-06-10

    We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family".

  11. Electrorecovery of actinides at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Michael E [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  12. Shift in room-temperature photoluminescence of low-fluence Si{sup +}-implanted SiO{sub 2} films subjected to rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Fu [Department of Avionics Engineering, Air Force Academy, Kangshan, Kaohsiung 820, Taiwan (China); Tsai, J -H [Department of Mathematics and Physics, Air Force Academy, Kangshan, Kaohsiung 820, Taiwan (China); Yang, C -F [Department of Chemical and Materials Engineering, National Kaohsiung University, Nan-Tzu District, Kaohsiung 811, Taiwan (China); Liao, C.-H. [Department of Physics, Chinese Military Academy, Fengshan, Kaohsiung 830, Taiwan (China)], E-mail: fumy@cc.cafa.edu.tw

    2008-12-15

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO{sub 2} films implanted by different doses of Si{sup +} ions. Room-temperature PL from 400-nm-thick SiO{sub 2} films implanted to a dose of 3x10{sup 16} cm{sup -2} shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 deg. C) and duration (5-20 s). The reported approach of implanting silicon into SiO{sub 2} films followed by RTA may be effective for tuning Si-based photonic devices.

  13. Pressure and Temperature of the Room 1 for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R

    2005-08-15

    This report deals with the prediction of the pressure and temperature of the room 1 for the pipe break accidents of the 3-pin fuel test loop. The 3-pin fuel test loop is an experimental facility for nuclear fuel tests at the operation conditions similar to those of PWR and CANDU power plants. Because the most processing systems of the 3-pin fuel test loop are placed in the room 1. The structural integrity of the room 1 should be evaluated for the postulated accident conditions. Therefore the pressures and temperatures of the room 1 needed for the structural integrity evaluation have been calculated by using MARS code. The pressures and temperatures of the room 1 have been calculated in various conditions such as the thermal hydraulic operation parameters, the locations of pipe break, and the thermal properties of the room 1 wall. It is assumed that the pipe break accident occurs in the letdown operation without regeneration, because the mass and energy release to the room 1 is expected to be the largest. As a result of the calculations the maximum pressure and temperature are predicted to be 208kPa and 369.2K(96.0 .deg. C) in case the heat transfer is considered in the room 1 wall. However the pressure and temperature are asymptotically 243kPa and 378.1K(104.9 .deg. C) assuming that the heat transfer does not occur in the room 1 wall.

  14. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab

    2012-01-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non

  15. Reciprocating sliding wear of Inconel 600 tubing in room temperature air

    International Nuclear Information System (INIS)

    Kim, Hun; Choi, Jong Hyun; Kim, Jun Ki; Hong, Hyun Seon; Kim, Seon Jin

    2003-01-01

    The sliding wear behavior of the material of a steam generator in a nuclear power station (Inconel 600) was investigated at room temperature. Effects of the wear parameters such as material combination, sliding distance and contact stress were examined with various mating materials including 304 austenitic stainless steel, Inconel 600 and Al-Cu alloy 2011. In the prediction of the wear volume by Archard's wear equation, the standard error range was calculated to be ±4.04x10 -9 m 3 and the reliability to be 71.9% for the combination of Inconel 600 and 304 stainless steel. The error range was considered to be relatively broad because the wear coefficient in Archard's equation was assumed to be a constant, regardless of the changes in the mechanical properties during the wear. In the present study, the sliding wear behavior turned out to be influenced by the material combination; the wear volume of 304 stainless steel did not linearly increase with the sliding distance, while that of other material combinations exhibited linear increases. Based on the experimental results, the wear coefficient was modified as a function of the sliding distance. The calculation with the modified wear equation showed that the error range narrowed down to ±2.60x10 -9 m 3 and the reliability increased to 75.3%, compared to Archard's original equation

  16. Halogen poisoning effect of Pt-TiO{sub 2} for formaldehyde catalytic oxidation performance at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaofeng; Cheng, Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China)

    2016-02-28

    Graphical abstract: - Highlights: • The Pt-TiO{sub 2} catalyst is deactivated by adsorption of halogen ions. • The halogen poison is mainly attributed to the active site blocking of the Pt surface. • Halogen ions and Pt form Pt−X coordination bonds. • Large halogen diameter exhibits severe poisoning effect. - Abstract: Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO{sub 2} (Pt-P25) catalysts with and without adsorbed halogen ions (including F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}) were prepared through impregnation and ion modification. Pt-TiO{sub 2} samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO{sub 2} sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO{sub 2}. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  17. Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method

    Science.gov (United States)

    Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai

    2016-08-01

    A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.

  18. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    International Nuclear Information System (INIS)

    An Jing; Wang Desong; Luo Qingzhi; Yuan Xiaoyan

    2009-01-01

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF 4 ). [BMIM].BF 4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  19. Dynamics and Interactions in Room Temperature Ionic Liquids, Surfaces and Interfaces

    Science.gov (United States)

    2016-01-13

    OHD-OKE) experiments. The first 2D IR experiments on functionalized SiO2 planar surface monolayers of alkyl chains with a vibrational probe head group...alkyl groups lowers the temperature for crystallization below room temperature and can also result in supercooling and glass formation rather than...heterodyne detected optical Kerr effect (OHD-OKE) experiments. During the grant, we performed the first 2D IR experiments on functionalized SiO2

  20. Large tunnel magnetoresistance at room temperature with a Co2FeAl full-Heusler alloy electrode

    International Nuclear Information System (INIS)

    Okamura, S.; Miyazaki, A.; Sugimoto, S.; Tezuka, N.; Inomata, K.

    2005-01-01

    Magnetic tunnel junctions (MTJs) with a Co 2 FeAl Heusler alloy electrode are fabricated by the deposition of the film using an ultrahigh vacuum sputtering system followed by photolithography and Ar ion etching. A tunnel magnetoresistance (TMR) of 47% at room temperature (RT) are obtained in a stack of Co 2 FeAl/Al-O x /Co 75 Fe 25 magnetic tunnel junction (MTJ) fabricated on a thermally oxidized Si substrate despite the A2 type atomic site disorder for Co 2 FeAl. There is no increase of TMR in MTJs with the B2 type Co 2 FeAl, which is prepared by the deposition on a heated substrate. X-ray photoelectron spectroscopy (XPS) depth profiles in Co 2 FeAl single layer films reveal that Al atoms in Co 2 FeAl are oxidized preferentially at the surfaces. On the other hand, at the interfaces in Co 2 FeAl/Al-O x /Co 75 Fe 25 MTJs, the ferromagnetic layers are hardly oxidized during plasma oxidation for a formation of Al oxide barriers

  1. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    International Nuclear Information System (INIS)

    Thu, Tran Viet; Ko, Pil Ju; Phuc, Nguyen Huu Huy; Sandhu, Adarsh

    2013-01-01

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag–rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH 4 ) and trisodium citrate. The resulting products were characterized using UV–Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density (∼1,700 NPs μm −2 ) and well-defined size (3.6 ± 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag–rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed

  2. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Tran Viet, E-mail: thu@eiiris.tut.ac.jp; Ko, Pil Ju, E-mail: ko@eiiris.tut.ac.jp [Toyohashi University of Technology, Electronics-Inspired Interdisciplinary Research Institute (Japan); Phuc, Nguyen Huu Huy [Toyohashi University of Technology, Department of Electrical and Electronic Information Engineering (Japan); Sandhu, Adarsh [Toyohashi University of Technology, Electronics-Inspired Interdisciplinary Research Institute (Japan)

    2013-10-15

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag-rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH{sub 4}) and trisodium citrate. The resulting products were characterized using UV-Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density ({approx}1,700 NPs {mu}m{sup -2}) and well-defined size (3.6 {+-} 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag-rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH{sub 4} in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed.

  3. Pyridine-2,6-diyl dinitroxides as room-temperature triplet ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hinako; Tonegawa, Asato; Ishida, Takayuki, E-mail: takayuki.ishida@uec.ac.jp [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)

    2016-02-01

    We have proposed tert-butyl 2-pyridyl nitroxide radicals as a promising paramagnetic chelating ligand, where the direct radical-metal bond leads to strong magnetic interaction. We successfully synthesized and isolated PyBN derivatives (pyridine-2,6-diyl bis(tert-butyl nitroxides)). The molecular and crystal structures of the target biradicals, MesPyBN, AntPyBN and tBuOPyBN were determined from the X-ray crystal structure analysis, which possess mesityl, 9-anthryl and tert-butoxy groups at the 5-position of the pyridine ring, respectively. The ground triplet state was characterized by means of SQUID susceptometry for each compound. On heating, the χ{sub m}T values of all the PyBN derivatives increased and reached a plateau at ca. 1.0 cm{sup 3} K mol{sup −1} at 300 K. It implies that biradicals behaved as triplet molecules even at room temperature, or 2J/k{sub B} >> 300 K. From the decay monitored in solution electron-spin resonance spectroscopy, MesPyBN was the most persistent, while tBuOPyBN was the most reactive, of the three.

  4. Nanocrystalline CdSnO3 Based Room Temperature Methanol Sensor

    Directory of Open Access Journals (Sweden)

    Shanabhau BAGUL

    2017-04-01

    Full Text Available Synthesis of nanocrystalline CdSnO3 powder by ultrasonic atomizer assisted wet chemical method is reported in this paper. Synthesized CdSnO3 powder was characterized by X-Ray Diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and Transmission Electron Microscopy (TEM to examine phase and microstructure. FESEM and TEM analysis reveals that the CdSnO3 powder prepared here is porous monodisperse nanocrystalline in nature, with average particle size of approximately 17 nm or smaller. The material is also characterized by UV-Visible and Photoluminescence (PL spectroscopy. Thick films of synthesized CdSnO3 powder fired at 850 0C are made by using screen printing method. The films surface is modified by using dipping method. CuCl2 (0.005 M dipped (for 2 min thick film shows high response (R= 477 to 100 ppm methanol at room temperature (35 0C. The sensor shows good selectivity and fast response recovery time to methanol. The excellent methanol sensing performance, particularly high response values is observed to be mainly due to porous CdSnO3 surface.

  5. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    Science.gov (United States)

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  6. “A Long March to Room Temperature Superconductivity”

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In the last 29 years, great progress has been made in all areas of high temperature superconductivity (HTS) research from raising the transition temperature Tc and discovering new HTS compounds to developing theoretical models of HTS and fabricating and testing HTS prototype devices. For example, the Tc has been increased to 164 K in cuprate HgBa2Ca2Cu3Ox under 30 GPa in 1993 at Houston, more than 200 HTS compounds have been found, numerous theoretical models have been developed, and many HTS prototype devices have been tested to display superior performance to that of their non-superconducting counterparts. The strong electron-phonon interaction required for the high Tc observed has been considered to be able to induce catastrophic structure collapse before high Tc can be realized, and a novel magnetism-based interaction in different forms has thus been proposed for high Tc. However, room temperature superconductivity is still elusive and a comprehensive microscopic theory of HTS remains to be achieved. The...

  7. Mechanical properties of polymer matrix composites at 77 K and at room temperature after irradiation with 60Co γ-rays

    International Nuclear Information System (INIS)

    Egusa, S.; Hagiwara, M.

    1986-01-01

    Ten different polymer matrix composites were irradiated with 60 Co γ-rays at room temperature, and were examined with regard to the mechanical properties at 77 K and at room temperature. The radiation resistance of these composites depends primarily on the radiation resistance of matrix resins, which increases in the order diglycidyl ether of bisphenol A < tetraglycidyl diaminodiphenyl methane < Kerimid 601. Comparison of the mechanical properties tested at 77 K and at room temperature demonstrates that the extent of radiation-induced decrease in the composite strength is appreciably greater in the 77 K test than in the room temperature test. (author)

  8. Room temperature ferromagnetism in ZnO prepared by microemulsion

    Directory of Open Access Journals (Sweden)

    Qingyu Xu

    2011-09-01

    Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

  9. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  10. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity

    Directory of Open Access Journals (Sweden)

    Danielle A. Wagner-Muñiz

    2018-03-01

    Full Text Available Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA, a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles. Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.

  11. Experimental study on the double barrier structure at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H Y; Chua, S J [Centre for Optoelectronics, Dept. of Electrical Engineering, National Univ. of Singapore (Singapore)

    1994-06-15

    An experimental study of AlAs / GaAs / AlAs double barrier structure is carried out. The double barrier and quantum well structure are grown by MBE. The peak-to-valley ratio 2.6 : 1 with peak current density of 1.6 kA/cm/sup 2 at room temperature have been achieved. (authors)

  12. Red-light-emitting laser diodes operating CW at room temperature

    Science.gov (United States)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  13. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.

    Science.gov (United States)

    Tang, Linzhi; Lee, Nae Yoon

    2010-05-21

    Plastic materials do not generally form irreversible bonds with poly(dimethylsiloxane) (PDMS) regardless of oxygen plasma treatment and a subsequent thermal process. In this paper, we perform plastic-PDMS bonding at room temperature, mediated by the formation of a chemically robust amine-epoxy bond at the interfaces. Various plastic materials, such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polyimide (PI), and poly(ethylene terephthalate) (PET) were adopted as choices for plastic materials. Irrespective of the plastic materials used, the surfaces were successfully modified with amine and epoxy functionalities, confirmed by the surface characterizations such as water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and chemically robust and irreversible bonding was successfully achieved within 1 h at room temperature. The bonding strengths of PDMS with PMMA and PC sheets were measured to be 180 and 178 kPa, respectively, and their assemblies containing microchannel structures endured up to 74 and 84 psi (510 and 579 kPa) of introduced compressed air, respectively, without destroying the microdevices, representing a robust and highly stable interfacial bonding. In addition to microchannel-molded PDMS bonded with flat plastic substrates, microchannel-embossed plastics were also bonded with a flat PDMS sheet, and both types of bonded assemblies displayed sufficiently robust bonding, tolerating an intense influx of liquid whose per-minute injection volume was nearly 1000 to 2000 times higher than the total internal volume of the microchannel used. In addition to observing the bonding performance, we also investigated the potential of surface amine and epoxy functionalities as durable chemical adhesives by observing their storage-time-dependent bonding performances.

  14. CuSn(OH)6 submicrospheres: Room-temperature synthesis, growth mechanism, and weak antiferromagnetic behavior

    International Nuclear Information System (INIS)

    Zhong, Sheng-Liang; Xu, Rong; Wang, Lei; Li, Yuan; Zhang, Lin-Fei

    2011-01-01

    Highlights: ► CuSn(OH) 6 spheres have been synthesized via an aqueous solution method at room temperature. ► The diameters of the CuSn(OH) 6 spheres can be tuned by adjusting the molar ratio of SnO 3 2− to Cu 2+ . ► The as-obtained CuSn(OH) 6 spheres are antiferromagnetic and have a weak spin-Peierls transition at about 78 K -- Abstract: CuSn(OH) 6 submicrospheres with diameters of 400–900 nm have been successfully fabricated using a simple aqueous solution method at room temperature. Influencing factors such as the dosage of reactants and reaction time on the preparation were systematically investigated. The products were characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and differential thermal analysis (DTA). Results reveal that the CuSn(OH) 6 spheres are built from numerous nanoparticles. It is found that the diameter of CuSn(OH) 6 spheres can be readily tuned by adjusting the molar ratio of SnO 3 2− to Cu 2+ . A possible growth mechanism for the CuSn(OH) 6 submicrospheres has been proposed. Amorphous CuSnO 3 submicrospheres were obtained after thermal treatment of the CuSn(OH) 6 submicrospheres at 300 °C for 4 h. Standard magnetization measurements demonstrate that the CuSn(OH) 6 submicrospheres are antiferromagnetic and have a weak spin-Peierls transition at about 78 K.

  15. Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential

    Science.gov (United States)

    Haber, E.; Badea, R.; Berezovsky, J.

    2018-05-01

    The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.

  16. Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range.

    Science.gov (United States)

    Hu, Lei; Chen, Jun; Fan, Longlong; Ren, Yang; Rong, Yangchun; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2014-10-01

    The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), αl = 2.34 × 10(-7) K(-1), 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F3 adheres to the cubic system (Pm3̅m) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F3 can be functionalized to exhibit high-Tc ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.

  17. Effect of heat treatment on the temperature dependence of the fracture behavior of X-750 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, C.; Depinoy, S. [University of South Carolina (United States); Kaoumi, D. [North Carolina State University (United States)

    2016-11-20

    X-750 is a nickel-chromium based super alloy of usefulness in a wide variety of applications such as gas turbines, rocket engines, nuclear reactors, pressure vessels, tooling, and aircraft structures. Its good mechanical properties are due to the strengthening from precipitation of γ′ particles upon prior ageing heat treatment. In this work, the effect of such heat treatment on the fracture mechanisms of X-750 was studied at various temperatures by comparing it with a non-aged, solution annealed X-750. Tensile tests were conducted from room temperatures up to 900 °C; fracture surfaces were analyzed by means of SEM observations. In addition, the microstructure of both aged and solution annealed materials were studied using SEM and TEM, both on as received and on tested specimens. In terms of mechanical properties, as expected, the yield strength and the ultimate tensile strength of the aged material were better than for the solution-annealed one, and only slightly decreased with increasing temperature when tested between room temperatures and 650 °C. In this range of temperature, the fracture surface of aged material evolves from purely intergranular to purely transgranular due to the thermal activation of dislocation mobility that relieves the stress at the grain boundaries, while the rupture of the solution annealed material is due to the coalescence of voids induced by decohesion at the MC carbides/matrix interface. At higher temperatures, precipitation of γ’ particles upon testing of the solution-annealed material leads to a temperature-dependent increase in both yield strength and ultimate tensile strength, which nevertheless remain below the aged material ones with the exception of the higher temperatures. At the same time, an overall decrease of the aged material mechanical properties is observed. Minimum ductility was observed at 750 °C for both solution annealed and aged specimen, due to the oxidation of grain boundaries leading to an

  18. Optical characterization of bulk Zn1-xBexTe crystals

    International Nuclear Information System (INIS)

    Shih, Y C; Huang, Y S; Firszt, F; Legowski, S; Meczynska, H; Tiong, K K

    2008-01-01

    This paper presents an optical characterization of three bulk sphalerite Zn 1-x Be x Te crystals grown by the modified high pressure Bridgman method. The study was conducted in the near-band-edge interband transition regime using low temperature photoluminescence (PL), temperature-dependent contactless electroreflectance (CER) and/or photoreflectance (PR) in the temperature range of 15-400 K, and surface photovoltage spectroscopy (SPS) at room temperature. PL spectra at low temperatures of the samples investigated consist of an excitonic line, a band due to recombination of free electrons with holes located at shallow acceptors and a broad band related to recombination through deeper level defects. The band-edge excitonic transitions have been observed in the CER/PR spectra. The fundamental transition energies E 0 are determined via lineshape fits to the CER/PR spectra. The values of E 0 at room temperature obtained from CER/PR spectra correspond well to that determined from SPS measurements, and the Be contents x of the samples are determined using a linear equation which describes the room temperature band gap dependence on composition for the Zn 1-x Be x Te alloy system. The parameters describing the temperature dependence of the band-edge excitonic transition energies are evaluated and discussed

  19. Red-light-emitting laser diodes operating cw at room temperature

    International Nuclear Information System (INIS)

    Kressel, H.; Hawrylo, F.Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200 to 8000-A spectral range. These devices operate cw with simple oxide-isolated stripe contacts to 7400 A, which extends cw operation for the first time into the visible (red) portion of the spectrum

  20. Influence of pre-measurement thermal treatment on OSL of synthetic quartz measured at room temperature

    International Nuclear Information System (INIS)

    Kale, Y.D.; Gandhi, Y.H.

    2008-01-01

    Much effort has been made to study the influence of pre-measurement thermal treatment and ionizing radiation on quartz specimens owing to its use in a large number of applications. Optically stimulated luminescence (OSL) being a structured and sensitive phenomenon promises to correlate the responsible color center and luminescence emission. OSL studies on quartz with such conditions can reveal many significant results. The aim of the present investigation is to understand the effect of annealing temperature on OSL characteristics of synthetic quartz recorded at room temperature. At identical annealing duration and β-dose, the shape of OSL decay curve remains non-exponential; when specimens annealed at lower temperature (∼400 deg. C). The shape of decay curve changes to exponential in nature along with rise in OSL intensity when the specimen was given higher temperature of annealing (>400 deg. C). The effects of such protocol on pattern of OSL sensitivity as well as area under the OSL decay curve are also presented here. The presence of shallow traps, when OSL decay curve was recorded at room temperature seems to be responsible for the changes in OSL pattern. The influence of shallow traps is attributed to non-exponential decay of OSL recorded at room temperature

  1. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Wang, Jiaqi; Shin, Seungha

    2017-01-01

    Room temperature (T room , 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room . The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room , compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  2. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O_2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  3. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  4. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India)

    2016-05-23

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  5. Origin of Ferrimagnetism and Ferroelectricity in Room-Temperature Multiferroic ɛ -Fe2O3

    Science.gov (United States)

    Xu, K.; Feng, J. S.; Liu, Z. P.; Xiang, H. J.

    2018-04-01

    Exploring and identifying room-temperature multiferroics is critical for developing better nonvolatile random-access memory devices. Recently, ɛ -Fe2O3 was found to be a promising room-temperature multiferroic with a large polarization and magnetization. However, the origin of the multiferroicity in ɛ -Fe2O3 is still puzzling. In this work, we perform density-functional-theory calculations to reveal that the spin frustration between tetrahedral-site Fe3 + spins gives rise to the unexpected ferrimagnetism. For the ferroelectricity, we identify a low-energy polarization switching path with an energy barrier of 85 meV /f .u . by performing a stochastic surface walking simulation. The switching of the ferroelectric polarization is achieved by swapping the tetrahedral Fe ion with the octahedral Fe ion, different from the usual case (e.g., in BaTiO3 and BiFeO3 ) where the coordination number remains unchanged after the switching. Our results not only confirm that ɛ -Fe2O3 is a promising room-temperature multiferroic but also provide guiding principles to design high-performance multiferroics.

  6. Structural shielding of medical X-ray rooms for diagnostic installations

    International Nuclear Information System (INIS)

    Rabitsch, H.

    1979-06-01

    In Part I (RIG 8), the various design procedures for shielding against X-rays are discussed and compared. In particular, this comparison is carried out between the shielding obtained conforming to the Austrian Regulations for Radiation Protection and that obtained from the DIN-standard DIN 6812; this latter includes the various operating conditions of diagnostic installations up to 150 kV. Several examples for particular structural shielding components in medical radiation rooms are given. (author)

  7. An indoor radon survey of the X-ray rooms of Mexico City hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Faustino [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100. Estado de Mexico, 50000, Mexico. Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Circuito (Mexico); Reyes, Pedro G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100. Estado de Mexico, 50000 (Mexico); Espinosa, Guillermo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior Ciudad Universitaria, Mexico D.F. Cp.04510 (Mexico)

    2013-07-03

    This paper presents the results of measurements of indoor radon concentrations in the X-ray rooms of a selection of hospitals in the metropolitan area of Mexico City. The metropolitan area of Mexico City is Mexico's largest metropolitan area by population; the number of patients requiring the use of X-rays is also the highest. An understanding of indoor radon concentrations in X-ray rooms is necessary for the estimation of the radiological risk to which patients, radiologists and medical technicians are exposed. The indoor radon concentrations were monitored for a period of six months using nuclear track detectors (NTD) consisting of a closed-end cup system with CR-39 (Lantrack Registered-Sign ) polycarbonate as detector material. The indoor radon concentrations were found to be between 75 and 170 Bq m{sup -3}, below the USEPA-recommended indoor radon action level for working places of 400 Bq m{sup -3}. It is hoped that the results of this study will contribute to the establishment of recommended action levels by the Mexican regulatory authorities responsible for nuclear safety.

  8. Room-Temperature Dephasing in InAs Quantum Dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    2000-01-01

    The room temperature dephasing in InAs/InGaAs/GaAs self-assembled quantum dots, embedded in a waveguide for laser applications, is measured using two independent methods: spectral hole burning and four-wave mixing. Without the application of bias current for electrical carrier injection......, a dephasing time of ~260 fs, weakly dependent on the optical excitation density, is found and attributed to phonon interaction. The application of bias current, leading to population inversion in the dot ground state and optical gain, strongly decreases the dephasing time to less than 50 fs, likely due...

  9. Investigation of microstructure and V-defect formation inInxGa1-xN/GaN MQW grown using temperature-gradient MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.C.; Liliental-Weber, Z.; Zakharov, D.N.; McCready,D.E.; Jorgenson, R.J.; Wu, J.; Shan, W.; Bourret-Courchesne, E.D.

    2004-11-19

    Temperature-gradient Metalorganic Chemical Vapor Deposition was used to deposit In{sub x}Ga{sub 1-x}N/GaN multiple quantum well structures with a concentration gradient of indium across the wafer. These multiple quantum well structures were deposited on low defect density (2 x 10{sup 8} cm{sup -2}) GaN template layers for investigation of microstructural properties and V-defect (pinhole) formation. Room temperature photoluminescence and photomodulated transmission were used for optical characterization which show a systematic decrease in emission energy for a decrease in growth temperature. Triple-axis X-ray diffraction, scanning electron microscopy and cross-section transmission electron microscopy were used to obtain microstructural properties of different regions across the wafer. Results show that there is a decrease in crystal quality and an increase in V-defect formation with increasing indium concentration. A direct correlation was found between V-defect density and growth temperature due to increased strain and indium segregation for increasing indium concentration.

  10. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser

    KAUST Repository

    Das, Ayan

    2011-08-01

    We report ultralow threshold polariton lasing from a single GaN nanowire strongly coupled to a large-area dielectric microcavity. The threshold carrier density is 3 orders of magnitude lower than that of photon lasing observed in the same device, and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing. © 2011 American Physical Society.

  11. Room-temperature electroluminescence of Er-doped hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, Oleg; Bresler, Mikhail; Kuznetsov, Alexey; Kudoyarova, Vera; Pak, Petr; Terukov, Evgenii; Tsendin, Konstantin; Yassievich, Irina [A F Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Fuhs, Walther [Hahn-Meitner Institut, Abteilung Photovoltaik, Rudower Chaussee 5, D-12489 Berlin (Germany); Weiser, Gerhard [Phillips-Universitat Marburg, Fachbereich Physik, D-35032 Marburg (Germany)

    1998-05-11

    We have observed room-temperature erbium-ion electroluminescence in erbium-doped amorphous silicon. Electrical conduction through the structure is controlled by thermally activated ionization of deep D{sup -} defects in an electric field and the reverse process of capture of mobile electrons by D{sup 0} states. Defect-related Auger excitation (DRAE) is responsible for excitation of erbium ions located close to dangling-bond defects. Our experimental data are consistent with the mechanisms proposed

  12. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in [Department of Physics, Indian institute of Technology Guwahati, Guwahati 781 039 (India)

    2015-08-15

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  13. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    Directory of Open Access Journals (Sweden)

    Patta Ravikumar

    2015-08-01

    Full Text Available We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μB/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (TC around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high TC and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  14. Controlled laser biochemistry in room-temperature polar liquids by ultrashort laser pulses

    DEFF Research Database (Denmark)

    Gruzdev, Vitaly; Korkin, Dmitry; Mooney, Brian P.

    2018-01-01

    Traditional laser methods to control chemical modifications of biomolecules are not applicable under biologically relevant conditions. We report controlled modifications of peptides and insulin by femtosecond laser in water, methanol, and acetonitrile at room temperature...

  15. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  16. Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route

    International Nuclear Information System (INIS)

    Wang Baiqi; Iqbal, Javed; Shan Xudong; Huang Guowei; Fu Honggang; Yu Ronghai; Yu Dapeng

    2009-01-01

    The pure and Cr-doped ZnO nanomaterials were prepared by soft chemistry route. The crystallinity and morphology of as-prepared ZnO nanomaterials were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), which show that Cr-doping could influence crystal and improve the oriented growth of ZnO nanomaterials. The amount of contents and valence state of Cr ions were investigated by energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), which demonstrate that the Cr ions are uniformly doped about 2 atm% in each nanowire and are in +3 valence state in doped ZnO nanomaterials. The effect of Cr-doping on the photoluminescence (PL) and magnetic properties of as-prepared ZnO nanomaterials were principally investigated at room temperature. The Cr-doping can adjust the energy level of ZnO nanocrystal and increase the amount of defects and oxygen vacancies, which lead to shift in the emission peak position in ultraviolet (UV) region and enhance the PL performance in visible light (VL) region of ZnO nanomaterials. In addition, the presence of Cr dopant in ZnO structures establishes the room-temperature ferromagnetism, which is possibly related to the existence of defects and oxygen vacancies as well as due to exchange interaction between Cr 3d and O 2p spin moments

  17. Toward hydrogen detection at room temperature with printed ZnO nanoceramics films activated with halogen lighting

    Science.gov (United States)

    Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène

    2015-12-01

    Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.

  18. Thermal investigations of a room temperature magnetic refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Smaili, Arezki; Chiba, Younes [Ecole Nationale Polytechnique d' Alger (Algeria)], email: arezki.smaili@enp.edu.dz

    2011-07-01

    Magnetic refrigeration is a concept based on the magnetocaloric effect that some materials exhibit when the external magnetic field changes. The aim of this paper is to assess the performance of a numerical model in predicting parameters of an active magnetic regenerator refrigerator. Numerical simulations were conducted to perform a thermal analysis on an active magnetic regenerator refrigerator operating near room temperature with and without applied cooling load. Curves of temperature span, cooling capacity and thermal efficiency as functions of the operating conditions were drawn and are presented in this paper. Results showed that at fixed frequency Ql versus mf has an optimum and COP was increased with cycle frequency values. This study demonstrated that the proposed numerical model could be used to predict parameters of an active magnetic regenerator refrigerator as it provides consistent results.

  19. Electromagnon Resonance at Room Temperature with Gigantic Magnetochromism

    Science.gov (United States)

    Shishikura, H.; Tokunaga, Y.; Takahashi, Y.; Masuda, R.; Taguchi, Y.; Kaneko, Y.; Tokura, Y.

    2018-04-01

    The elementary excitation characteristic of magnetoelectric (ME) multiferroics is a magnon endowed with electric activity, which is referred to as an electromagnon. The electromagnon resonance mediated by the bilinear exchange coupling potentially exhibits strong terahertz light-matter interaction with optical properties different from the conventional magnon excitation. Here we report the robust electromagnon resonance on helimagnetic Y -type hexaferrites in a wide temperature range including room temperature. Furthermore, the efficient magnetic field controls of the electromagnon are demonstrated on the flexible spin structure of these compounds, leading to the generation or annihilation of the resonance as well as the large resonance energy shift. These terahertz characteristics of the electromagnon exemplify the versatile magneto-optical functionality driven by the ME coupling in multiferroics, paving a way for possible terahertz applications as well as terahertz control of a magnetic state of matter.

  20. Towards Molecular Dynamics Simulations of Chiral Room-Temperature Ionic Liquids

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Chval, Z.; Storch, Jan; Izák, Pavel

    2014-01-01

    Roč. 189, SI (2014), s. 85-94 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GAP106/12/0569; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : chiral room-temperature ionic liquid * molecular dynamics simulation * non-polarizable fully flexible all-atom force field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.515, year: 2014

  1. Room-temperature ferromagnetism in cerium dioxide powders

    Energy Technology Data Exchange (ETDEWEB)

    Rakhmatullin, R. M., E-mail: rrakhmat@kpfu.ru; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L. [Kazan Federal University, Institute of Physics (Russian Federation)

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  2. Short communication: Stability and integrity of classical swine fever virus RNA stored at room temperature

    Directory of Open Access Journals (Sweden)

    Damarys Relova

    2017-12-01

    Full Text Available Worldwide cooperation between laboratories working with classical swine fever virus (CSFV requires exchange of virus isolates. For this purpose, shipment of CSFV RNA is a safe alternative to the exchange of infectious material. New techniques using desiccation have been developed to store RNA at room temperature and are reported as effective means of preserving RNA integrity. In this study, we evaluated the stability and integrity of dried CSFV RNA stored at room temperature. First, we determined the stability of CSFV RNA covering CSFV genome regions used typically for the detection of viral RNA in diagnostic samples by reverse transcription-polymerase chain reaction (RT-PCR. To this end, different concentrations of in vitro-transcribed RNAs of the 5’-untranslated region and of the NS5B gene were stored as dried RNA at 4, 20, and 37oC for two months. Aliquots were analyzed every week by CSFV-specific quantitative real-time RT-PCR. Neither the RNA concentration nor the storage temperature did affect CSFV RNA yields at any of the time evaluated until the end of the experiment. Furthermore, it was possible to recover infectious CSFV after transfection of SK-6 cells with dried viral RNA stored at room temperature for one week. The full-length E2 of CSFV was amplified from all the recovered viruses, and nucleotide sequence analysis revealed 100% identity with the corresponding sequence obtained from RNA of the original material. These results show that CSFV RNA stored as dried RNA at room temperature is stable, maintaining its integrity for downstream analyses and applications.

  3. Effect of Cr substitution on magnetic and magnetic entropy change of La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} (0.05≤x≤0.15) rhombohedral nanocrystalline near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bellouz, R., E-mail: bellouzridha@yahoo.fr [Laboratoire de Physico-chimie des Matériaux, Département de Physique, Faculté des Sciences de Monastir,Université de Monastir, 5019 (Tunisia); Oumezzine, M. [Laboratoire de Physico-chimie des Matériaux, Département de Physique, Faculté des Sciences de Monastir,Université de Monastir, 5019 (Tunisia); Hlil, E.K. [Institut Néel, National Centre for Scientific Research, Université Joseph Fourier, B.P. 166, 38042 Grenoble (France); Dhahri, E. [Laboratoire de Physique appliqué, Département de physique, Faculté des Sciences de Sfax, 3018 (Tunisia)

    2015-02-01

    We have studied the effect of Cr substitution on magnetic and magnetocaloric properties in nanocrystalline La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} (x=0.05, 0.1 and 0.15). The materials were prepared using the Pechini sol–gel method. All the studied samples were crystallized into a single phase rhombohedral structure with R−3C space group. Magnetic measurements indicate that the ferromagnetic double exchange interaction is weakened with increasing Cr concentration, resulting in a shift in T{sub C} from 338 K to 278 K as x varied between 0.05 and 0.15. Detailed analyzes in the vicinity of the ferromagnetic (FM)–paramagnetic (PM) phase-transition temperature prove the samples undergoing a second-order phase transition. The magnetocaloric effect is calculated from the measurement of initial isothermal magnetization versus magnetic field at various temperatures. The maximum magnetic entropy change |ΔS{sub M}{sup max}| is found to decrease with increasing of Cr content from 4.04 J/Kg K for x=0.05–0.78 J/KgK for x=0.15 upon 5 T applied field change. The relative cooling power (RCP) of La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} series is nearly 54% of pure Gd, which will be an interesting system for application in room temperature refrigeration. - Highlights: • Nanocrystalline materials La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} were obtained. • The Cr substitution decreases the T{sub C} from 338 K for x=0.05–278 K for x=0.15. • The relative cooling power of La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} is nearly 54% of pure Gd. • Arrott plot analyses was applied to study the order of the magnetic transition. • La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} samples show second order PM–FM transition at T=T{sub C}.

  4. Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances.

    Science.gov (United States)

    Zhu, Chuanhui; Xu, Qun; Ji, Liang; Ren, Yumei; Fang, Mingming

    2017-12-05

    Two-dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible-light region with physical or chemical methods still remains challenging. In this work, we design a simple room-temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO 3-x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near-infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light-matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan; Fang, Xin; Lin, Xiaoxi; Li, Huaifeng; He, Weiming; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2012-01-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  6. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan

    2012-12-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  7. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  8. Crystal structure and dynamics of K2-x(NH4)xSeO4 mixed crystals studied by x-ray and neutron scattering

    International Nuclear Information System (INIS)

    Smirnov, L.S.; Natkaniec, I.; Loose, A.

    2006-01-01

    The K 2-x (NH 4 ) x SeO 4 mixed crystals have been studied by powder X-ray and neutron diffraction and inelastic incoherent neutron scattering in a wide temperature range from 300 to 16 K. No phase transition is observed in (NH 4 ) 2 SeO 4 in the range from room temperature to 20 K. The reorientation potential barriers of ammonium ions in the K 2-x (NH 4 ) x SeO 4 mixed crystals increase with the increasing concentration of ammonium ions

  9. Adaptive Beam Loading Compensation in Room Temperature Bunching Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Chase, B. E. [Fermilab; Cullerton, E. [Fermilab; Varghese, P. [Fermilab

    2017-10-01

    In this paper we present the design, simulation, and proof of principle results of an optimization based adaptive feedforward algorithm for beam-loading compensation in a high impedance room temperature cavity. We begin with an overview of prior developments in beam loading compensation. Then we discuss different techniques for adaptive beam loading compensation and why the use of Newton?s Method is of interest for this application. This is followed by simulation and initial experimental results of this method.

  10. Mechanical Behaviour of 304 Austenitic Stainless Steel Processed by Room Temperature Rolling

    Science.gov (United States)

    Singh, Rahul; Goel, Sunkulp; Verma, Raviraj; Jayaganthan, R.; Kumar, Abhishek

    2018-03-01

    To study the effect of room temperature rolling on mechanical properties of 304 Austenitic Stainless Steel, the as received 304 ASS was rolled at room temperature for different percentage of plastic deformation (i.e. 30, 50, 70 and 90 %). Microstructural study, tensile and hardness tests were performed in accordance with ASTM standards to study the effect of rolling. The ultimate tensile strength (UTS) and hardness of a rolled specimen have enhanced with rolling. The UTS has increased from 693 MPa (as received) to 1700 MPa (after 90% deformation). The improvement in UTS of processed samples is due to combined effect of grain refinement and stress induced martensitic phase transformation. The hardness values also increases from 206 VHN (as received) to 499 VHN (after 90% deformation). Magnetic measurements were also conducted to confirm the formation of martensitic phase.

  11. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    Science.gov (United States)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  12. Electrochemical characterization of Uranyl-TODGA complex in a room temperature ionic liquid

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Murali, M.S.; Mohapatra, P.K.

    2014-01-01

    Room temperature ionic liquids are new materials finding extensive use in many applications such as syntheses, catalysis, electrochemistry etc. including separation science. Some of them are known as green solvents set to be environment-friendly. With a view to apply the favourable properties of these neoteric solvents to separation science in nuclear related fields such as reprocessing and waste remediation, electrochemical characterization of the metal ions encountered in above fields e.g. U(VI), Pu(IV), Np(IV), Am(III) etc. their complexes with the ligands often becomes necessary and useful. In the present piece of work, electrochemical characterization has been carried out by cyclic voltammetry of uranyl complex with one of the most promising trivalent actinide extractants, namely, tetraoctyldiglycolamide (TODGA) dissolved/extracted into a room temperature ionic liquid, 1-methyl-3-octyl imidazolium bis(trifluoro methylsulphonyl) imide (C 8 mimNTf 2 )

  13. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  14. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-04-26

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  15. Synthesis of manganese spinel nanoparticles at room temperature by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Autret-Lambert, C.; Mathieu, C.; Chartier, T.; Delorme, F. [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Seron, A [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS Cedex 2 (France)

    2012-08-15

    This paper is focused on a new route to synthesize Mn{sub 3}O{sub 4} nanoparticles by alkalisation by sodium hydroxide on a manganeous solution at room temperature. The precipitates obtained at different pH values have been characterized by XRD and TEM. Since the first addition of sodium hydroxide, a white Mn(OH){sub 2} precipitate appears. At pH=7, {gamma}-MnOOH phase is predominant with needle like shaped particles. At pH=10, hausmanite nanoparticles, which exhibits well defined cubic shape in the range 50-120 nm are obtained. This new precipitation route is a fast and easy environmentally friendly process to obtain well crystallized hausmanite nanoparticles. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particles after a precipitation at pH=10. Highlights: Black-Right-Pointing-Pointer A new route to synthesize Mn{sub 3}O{sub 4} nanoparticles has been demonstrated. Black-Right-Pointing-Pointer Synthesis has been performed by precipitation at room temperature. Black-Right-Pointing-Pointer The size of the Mn{sub 3}O{sub 4} nanoparticles is between 50 and 120 nm.

  16. Stable room-temperature thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, A.; Fiala, J.; Becla, P.; Motakef, Shariar

    2017-10-01

    Thallium bromide (TlBr) is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br- species, with an estimated electro-diffusion velocity of 10-8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br- ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation) for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  17. Stable room-temperature thallium bromide semiconductor radiation detectors

    Directory of Open Access Journals (Sweden)

    A. Datta

    2017-10-01

    Full Text Available Thallium bromide (TlBr is a highly efficient ionic semiconductor with excellent radiation detection properties. However, at room temperature, TlBr devices polarize under an applied electric field. This phenomenon not only degrades the charge collection efficiency of the detectors but also promotes chemical reaction of the metal electrodes with bromine, resulting in an unstable electric field and premature failure of the device. This drawback has been crippling the TlBr semiconductor radiation detector technology over the past few decades. In this exhaustive study, this polarization phenomenon has been counteracted using innovative bias polarity switching schemes. Here the highly mobile Br− species, with an estimated electro-diffusion velocity of 10−8 cm/s, face opposing electro-migration forces during every polarity switch. This minimizes the device polarization and availability of Br− ions near the metal electrode. Our results indicate that it is possible to achieve longer device lifetimes spanning more than 17 000 h (five years of 8 × 7 operation for planar and pixelated radiation detectors using this technique. On the other hand, at constant bias, 2500 h is the longest reported lifetime with most devices less than 1000 h. After testing several biasing switching schemes, it is concluded that the critical bias switching frequency at an applied bias of 1000 V/cm is about 17 μHz. Using this groundbreaking result, it will now be possible to deploy this highly efficient room temperature semiconductor material for field applications in homeland security, medical imaging, and physics research.

  18. The physics and chemistry of room-temperature liquid-filled ionization chambers

    International Nuclear Information System (INIS)

    Holroyd, R.A.

    1985-01-01

    The properties of excess electrons in non-polar liquids, such as tetramethylsilane and 2,2,4,4-tetramethylpentane, which are suitable for room-temperature liquid-filled ionization chambers are reviewed. Such properties as mobility, ionization yield, conduction band energy, trapping, and the influence of the electric field are considered. (orig.)

  19. A neutron survey of a 25 MV x-ray clinical linac treatment room

    International Nuclear Information System (INIS)

    Price, Kenneth W.; Holeman, George R.; Nath, Ravinder

    1978-01-01

    Neutron production in high energy x-ray radiotherapy machines results in unnecessary dose to patients and has been of recent interest to private and Federal agencies. An activation technique has been used to measure fast and thermal neutron fluxes in the high energy x-ray beam, and at radial distances of 1 and 2 meters from the beam axis of the 25 MV Sagittaire Linear Accelerator located at the Yale-New Haven Hospital's Cancer Therapy Center. Phosphorous pentoxide activation detectors were used to monitor the thermal flux and the fast neutron flux above 0.7 MeV neutron energy. Unlike other techniques for measuring neutrons, this detector has been shown to be insensitive to high energy photon interference at the photon dose rates present in the beam. Neutron spectra at various distances from the accelerator target were computed for the treatment room geometry using the Morse Monte Carlo Code (R.C. McCall, SLAC, Personal Communication). Normalization of these spectra provided the means by which the activation products measured in the phosphorous were converted to fast neutron fluxes. Dose equivalent conversion factors were applied to each energy of the calculated neutron spectra and integrated, resulting in fast neutron flux to dose equivalent conversion factors at various locations in the treatment room. Fast neutron dose equivalent was found to maximize in the photon beam, (0.005 - .007 neutron Rem/photon Rad) and decrease with distance thereafter. Thermal neutron dose equivalent was found to be essentially constant through- out the treatment room (∼ 3.35x10 -5 neutron Rem/ photon Rad). (author)

  20. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiaqi; Shin, Seungha, E-mail: sshin@utk.edu [The University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2017-02-15

    Room temperature (T{sub room}, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T{sub room}. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T{sub room}, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  1. Cationic Pd(II-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Takashi Nishikata

    2016-05-01

    Full Text Available Cationic palladium(II complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN4](BF42 or a nitrile-free cationic palladium(II complex generated in situ from the reaction of Pd(OAc2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1 C–H activation to generate a cationic palladacycle; (2 reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3 regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  2. Red photoluminescence of living systems at the room temperature: measurements and results

    International Nuclear Information System (INIS)

    Kudryashova, I S; Rud, V Yu; Shpunt, V Ch; Rud, Yu V; Glinushkin, A P

    2016-01-01

    Presents results of a study of the red luminescence of living plants at room temperature. The analysis of obtained results allows to conclude that the photoluminescence spectra for green leaves in all cases represent the two closely spaced bands. (paper)

  3. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    International Nuclear Information System (INIS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-01-01

    Oxygen vacancy (OV) controlled TiO 2 nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH 4 F and ethylene glycol with selective H 2 O content. The structural evolution of TiO 2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO 2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO 2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  4. Crystal structure and magnetoresistance of La0.7Ca0.3MnO3 perovskite at room temperature

    International Nuclear Information System (INIS)

    Engkir Sukirman; Wisnu Ari Adi; Yustinus Purwamargapratala

    2012-01-01

    A comparative study on crystal structure and magnetoresistance (MR) of La 0.7 Ca 0.3 MnO 3 (LCMO) perovskite toward LaMnO 3 (LMO) and CaMnO 3 (CMO) parent compounds have been carried out to study the change of LCMO due to magnetic fields variations at room temperature. The LCMO, LMO and CMO were synthesized using high energy milling (HEM) method. The precursors obtained were pressed into pellet and sintered at T s = 1350°C for 6 hours. The qualitative analysis were conducted by x-rays diffraction technique using Rietveld method. The MR effect on the samples were measured using four point probe (FPP) method and the surface structure of pellets were observed by scanning electron microscope (SEM). The samples have the same crystal structure, namely orthorhombic, space group: Pnma, No. 62. The lattice parameters of LCMO were successfully confirmed until four decimal precision, namely a = 5.4851(3) Å, b = 7.7601(4) Å, c = 5.5185(2) Å. The lattice parameters for LMO and CMO successively are a = 5.4405(9) Å, b = 7.717(1) Å, c = 5.537(1) Å and a = 5.2973(6) Å, b = 7.477(1) Å, c = 5.281 (1) Å. All samples have grain diameter of around 1,000 nm with a globule like form and every grain consists of 27 crystallites. The MR for LCMO, LMO and CMO samples at room temperature are -10.1; -7.3 dan -12.3%, respectively, and comparable with the one of multilayers based GMR [Cu/NiFeCo] x10 /Ta. The LCMO perovskite bulk can be used to detect the magnetic microbeads and ferrofluid. (author)

  5. Boron lattice location in room temperature ion implanted Si crystal

    International Nuclear Information System (INIS)

    Piro, A.M.; Romano, L.; Mirabella, S.; Grimaldi, M.G.

    2005-01-01

    The B lattice location in presence of a Si-self-interstitial (I Si ) supersaturation, controlled by energetic proton bombardment, has been studied by means of ion channelling and massive Monte Carlo simulations. B-doped layers of Si crystals with a B concentration of 1 x 10 2 B/cm 3 were grown by Molecular Beam Epitaxy. Point defect engineering techniques, with light energetic ion implants, have been applied to generate an I Si uniform injection in the electrically active layer. The displacement of B atoms out of substitutional lattice sites was induced by 650 keV proton irradiations at room temperature (R.T.) and the resultant defect configuration was investigated by ion channelling and Nuclear Reaction Analysis (NRA) techniques. Angular scans were measured both through and axes along the (1 0 0) plane using the 11 B(p,α) 8 Be nuclear reaction at 650 keV proton energy. Monte Carlo simulated angular scans were calculated considering a variety of theoretical defect configurations, supported by literature, and compared with experimental data. Our experimental scans can be fitted by a linear combination of small (0.3 A) and large B displacements (1.25 A) along the direction, compatible with the B-dumbbell oriented along as proposed by ab initio calculations

  6. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  7. Full characterization of polypyrrole thin films electrosynthesized in room temperature ionic liquids, water or acetonitrile

    International Nuclear Information System (INIS)

    Viau, L.; Hihn, J.Y.; Lakard, S.; Moutarlier, V.; Flaud, V.; Lakard, B.

    2014-01-01

    Highlights: • Polypyrrole films were electrodeposited from three room temperature ionic liquids. • Polymer films were characterized using many surface analysis techniques. • The incorporation of anions and/or cations inside the polymer films was evidenced. • The influence of the ionic liquid on the polymer properties was deeply studied. - Abstract: Pyrrole was electrochemically oxidized in two conventional media (water and acetonitrile) and in three room temperature ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Infrared and Raman Spectroscopies confirmed the formation of polypyrrole by electropolymerization but were unable to demonstrate the presence of anions in the polymer films. The use of ionic liquids as growth media resulted in polymer films having a good electrochemical activity. The difference of activity from one polymer film to the other was mainly attributed to the difference of viscosity between the solvents used. The morphological features of the polypyrrole films were also fully studied. Profilometric measurements demonstrated that polymer films grown, at the same potential, in ionic liquids were thinner and had a smaller roughness than those grown in other solvents. Atomic Force Microscopy showed that polypyrrole films had nearly similar micrometric nodular structure whatever the growth medium even if some differences of porosity and homogeneity were observed using Scanning Electron Microscopy. The incorporation of counter-anions at the top surface of the films was finally evidenced by X-ray Photoelectron Spectroscopy. These anions were also incorporated inside the polymer film with a uniform distribution as shown by Glow Discharge Optical Emission Spectroscopy

  8. Thermal power generation during heat cycle near room temperature

    Science.gov (United States)

    Shibata, Takayuki; Fukuzumi, Yuya; Kobayashi, Wataru; Moritomo, Yutaka

    2018-01-01

    We demonstrate that a sodium-ion secondary battery (SIB)-type thermocell consisting of two types of Prussian blue analogue (PBA) with different electrochemical thermoelectric coefficients (S EC ≡ ∂V/∂T V and T are the redox potential and temperature, respectively) produces electrical energy during heat cycles. The device produces an electrical energy of 2.3 meV/PBA per heat cycle between 295 K (= T L) and 323 K (= T H). The ideal thermal efficiency (η = 1.0%), which is evaluated using the heat capacity (C = 4.16 meV/K) of ideal Na2Co[Fe(CN)6], reaches 11% of the Carnot efficiency (ηth = 8.7%). Our SIB-type thermocell is a promising thermoelectric device that harvests waste heat near room temperature.

  9. Characterization of nanostructured Mn3O4 thin films grown by SILAR method at room temperature

    International Nuclear Information System (INIS)

    Ubale, A.U.; Belkhedkar, M.R.; Sakhare, Y.S.; Singh, Arvind; Gurada, Chetan; Kothari, D.C.

    2012-01-01

    A novel successive ionic layer adsorption and reaction method has been successfully employed to grow nanostructured conducting nearly transparent thin films of Mn 3 O 4 on to glass substrates at room temperature using MnCl 2 and NaOH as cationic and anionic precursors. The structural and morphological characterizations of the as deposited Mn 3 O 4 films have been carried out by means of X-ray diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), EDAX, Atomic Fore Microscopy (AFM) and Fourier Transform Infrared Spectrum (FTIR) analysis. The optical absorption and electrical resistivity measurements were carried out to investigate optical band gap and activation energy of Mn 3 O 4 films deposited by SILAR method. The optical band gap and activation energy of the as deposited film is found to be 2.70 and 0.14 eV respectively. The thermo-emf measurements of Mn 3 O 4 thin film confirm its p-type semiconducting nature. Highlights: ► Nanostructured Mn 3 O 4 thin film is prepared by SILAR method at room temperature. ► The film is nanocrystalline with orthorhombic structure of Mn 3 O 4 . ► The XRD, FTIR, FESEM, EDX and AFM characterization confirms nanocrystalline nature. ► Optical band gap, electrical resistivity and activation energy of film is reported. ► A thermo-emf measurement confirms p-type conductivity of Mn 3 O 4 films.

  10. Magnetocaloric refrigeration near room temperature (invited)

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Thanh, D.T.C.; Buschow, K.H.J.

    2007-01-01

    Modern society relies on readily available refrigeration. The ideal cooling machine would be a compact, solid state, silent and energy-efficient heat pump that does not require maintenance. Magnetic refrigeration has three prominent advantages compared to compressor-based refrigeration. First, there are no harmful gases involved, second it may be built more compact as the working material is a solid and third magnetic refrigerators generate much less noise. Recently, a new class of magnetic refrigerant materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: They exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase transition of first order. This MCE is, larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review, we compare the different materials considering both scientific aspects and industrial applicability

  11. Room temperature ferromagnetism in undoped and Ni doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu-603104 (India)

    2015-06-24

    Undoped and Ni (5 at.%) doped In{sub 2}O{sub 3} thin films were deposited on glass substrate using electron beam evaporation technique and Ni doped In{sub 2}O{sub 3} thin films were annealed at 450 oC. A systematic study was carried out on the structural, chemical and magnetic properties of the as deposited and annealed thin films. X-ray diffraction analysis revealed that all the films were cubic in structure and exhibied ferromagnetism at room temperature. The undoped In{sub 2}O{sub 3} thin films exhibited a saturation magnetization of 24.01 emu/cm3. Ni doped In{sub 2}O{sub 3} thin films annealed at 450 oC showed a saturation magnetization of 53.81 emu/cm3.

  12. Effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Tong Liuniu; Wang Yichao; He Xianmei; Han Huaibin; Xia Ailin; Hu Jinlian

    2012-01-01

    We explore the effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles synthesized by the sol-gel method. X-ray diffraction and x-ray photoelectron spectroscopy data show evidence that Cr has been incorporated into the wurtzite ZnO lattice as Cr 2+ ions substituting for Zn 2+ ions without any detectable secondary phase in as-synthesized Zn 0.97 Cr 0.03 O nanopowders. The room temperature magnetization measurements reveal a large enhancement of saturation magnetization M s as well as an increase of coercivity of H 2 -annealed Zn 0.97 Cr 0.03 O:H samples. It is found that the field-cooled magnetization curves as a function of temperature from 40 to 400 K can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H 2 -annealed Zn 0.97 Cr 0.03 O:H nanoparticles are almost doubled upon H 2 -annealing. Photoluminescence measurements show evidence that the shallow donor defect or/and defect complexes such as hydrogen occupying an oxygen vacancy H o may play an important role in the origin of H 2 -annealing induced enhancement of ferromagnetism in Cr-H codoped ZnO nanoparticles. - Graphical Abstract: The H 2 -annealing induced enhancement of room temperature ferromagnetism in Cr-doped ZnO nanoparticles is observed. It is found that the field-cooled M-T curves can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H 2 -annealed Zn 0.97 Cr 0.03 O:H nanoparticles are almost doubled upon H 2 -annealing. The PL data show evidence that the hydrogen related shallow donor defect or/and defect complexes may be responsible for it. Display Omitted Highlights: ► The H 2 -annealing induced a large enhancement of

  13. Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition

    OpenAIRE

    Barranco Quero, Ángel; Cotrino Bautista, José; Yubero Valencia, Francisco; Espinós, J. P.; Rodríguez González-Elipe, Agustín

    2004-01-01

    Synthesis of porous SiO2 thin films in room temperature was carried out using plasma enhanced chemical vapor deposition (CVD) in an electron cyclotron resonance microwave reactor with a downstream configuration.The gas adsorption properties and the type of porosity of the SiO2 thin films were assessed by adsorption isotherms of toluene at room temperature.The method could also permit the tailoring synthesis of thin films when both composition and porosity can be simultaneously and independent...

  14. A Novel Lipid Extraction Method from Wet Microalga Picochlorum sp. at Room Temperature

    Directory of Open Access Journals (Sweden)

    Fangfang Yang

    2014-03-01

    Full Text Available A novel method using ethanol was proposed for extracting lipids from wet microalga Picochlorum sp. at room temperature and pressure. In this study, Central Composite design (CCD was applied to investigate the optimum conditions of lipid extraction. The results revealed that the solvent to biomass ratio had the largest effect on lipid extraction efficiency, followed by extraction time and temperature. A high lipid extraction yield (33.04% of the dry weight was obtained under the following extraction conditions: 5 mL solvents per gram of wet biomass for 37 min with gentle stirring at room temperature. The extraction yield was comparable to that obtained by the widely used Bligh-Dyer method. Furthermore, no significant differences in the distribution of lipid classes and fatty acid composition were observed according to different extraction methods. In conclusion, these results indicated that the proposed procedure using ethanol could extract lipids from wet biomass efficiently and had giant potential for lipid extraction at large scale.

  15. OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature.

    Science.gov (United States)

    Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing

    2017-07-07

    In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.

  16. Deposition of silicon oxynitride at room temperature by Inductively Coupled Plasma-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Zambom, Luis da Silva [MPCE-Faculdade de Tecnologia de Sao Paulo - CEETEPS, Pca Coronel Fernando Prestes, 30, Sao Paulo - CEP 01124-060 (Brazil)]. E-mail: zambom@lsi.usp.br; Verdonck, Patrick [PSI-LSI-Escola Politecnica da Universidade de Sao Paulo (Brazil)]. E-mail: patrick@lsi.usp.br

    2006-10-25

    Oxynitride thin films are used in important optical applications and as gate dielectric for MOS devices. Their traditional deposition processes have the drawbacks that high temperatures are needed, high mechanical stresses are induced and the deposition rate is low. Plasma assisted processes may alleviate these problems. In this study, oxynitride films were deposited at room temperature through the chemical reaction of silane, nitrogen and nitrous oxide (N{sub 2}O), in a conventional LPCVD furnace, which was modified into a high density Inductively Coupled Plasma (ICP) reactor. Deposition rates increased with applied coil power and were never lower than 10 nm/min, quite high for room temperature depositions. The films' refractive indexes and FTIR spectra indicate that for processes with low N{sub 2}O gas concentrations, when mixed together with N{sub 2} and SiH{sub 4}, nitrogen was incorporated in the film. This incorporation increased the resistivity, which was up to 70 G{omega} cm, increased the refractive index, from approximately 1.47 to approximately 1.50, and decreased the dielectric constant of these films, which varied in the 4-14 range. These characteristics are adequate for electric applications e.g. for TFT fabrication on glass or polymers which can not stand high temperature steps.

  17. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  18. Droplet-fused microreactors for room temperature synthesis of nanoscale needle-like hydroxyapatite

    International Nuclear Information System (INIS)

    Liu Kaiying; Qin Jianhua

    2013-01-01

    A microfluidic device using droplet-fused microreactors is introduced for room temperature synthesis of nanoscale needle-shaped hydroxyapatite (HAp, Ca 10 (PO 4 ) 6 (OH) 2 ). The device is integrated with multifunctional units, e.g., T-junctions for droplet generation and fusion, winding channels for rapid mixing, and a delay line for simple visualization of the HAp formation process. The necessary conditions such as surfactant and fluid flow rate for an aqueous stream to merge with water-in-oil droplets are investigated. The nanoscale morphologies of the HAp produced by this method are also compared with HAp prepared by conventional bulk mixing. This paper shows that further reaction could be initiated by flowing additional reagent streams directly into the droplets of the initial reaction mixture, which is a novel approach for synthesizing a needle-like morphology of the HAp with a high aspect ratio under room temperature. (paper)

  19. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    International Nuclear Information System (INIS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-01-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO 4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  20. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    Science.gov (United States)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  1. Americium-241 use of measurement lead equivalent thickness for medical x-ray room: A review

    International Nuclear Information System (INIS)

    Mohd Khalid Matori; Husaini Saleh; Abd Aziz Mhd Ramli; Muhammad Jamal Md Isa; Mohd Firdaus Abd Rahman; Zainal Jamaluddin

    2010-01-01

    Lead equivalent thickness measurement of a shielding material in diagnostic radiology is very important to ensure that requirements for the purpose of radiation protection of patients, employees and the public are met. The Malaysian Ministry of Health (MOH) has established that the irradiation room must have sufficient shielding thickness, for example for general radiography it must be at least equal to 2.0 mm of Pb, for panoramic dental radiography at least equal to 1.5 mm of Pb and for mammography should be a minimum of 1.0 mm of Pb. This paper presents a technique using americium-241 source to test and verify the integrity of the shielding thickness in term of lead equivalent for X-ray room at health centres. Results of measurement of 30 irradiation rooms conducted from 2009 to mid 2010 were analyzed for this presentation. Technical comparison of the attenuation of gamma rays from Am-241 source through the walls of the irradiation room and pieces of lead were used to assess the lead equivalent thickness of the walls. Results showed that 96.7 % of the irradiation rooms tested meet the requirements of the Ministry of Health and is suitable for the installation of the intended diagnostic X-ray apparatus. Some specific positions such as door knobs and locks, electrical plug sockets were identified with potential to not met the required lead equivalent thickness hence may contribute to higher radiation exposure to workers and the public. (author)

  2. Structural and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ) at intermediate temperatures

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Marco de Lucas, M.C.

    2009-01-01

    The perovskite BaCe(0.9−x)ZrxY0.1O(3−δ) is prepared by solid-state reaction at 1400 °C and sintering at 1700 °C. It is characterised using X-ray diffraction, Raman spectroscopy and electrical measurements. A distortion from the cubic structure at room temperature is noticeable in the Raman spectr...

  3. The contribution of valence unstable ytterbium states into kinetic properties of YbNi2-xGe2+x and YbCu2-xSi2+x

    International Nuclear Information System (INIS)

    Kuzhel, B.C.; Shcherba, I.D.; Kravchenko, I.I.

    2006-01-01

    The intermetalic YbNi 2-x Ge 2+x (-0.25>=x>=0.25) and YbCu 2-x Si 2+x (-0.20>=x>=0.20) alloy systems (CeGa 2 Al 2 -type crystal structure) were studied by measuring X-ray absorption and diffraction at room temperatures as well as electrical resistivity and thermopower in the 4.2-300K temperature range. The temperature dependence of the contribution of valence unstable Yb ions to the total electrical resistance has been analyzed. The qualitative estimation of this contribution has been performed by utilizing the following equation:Δρ Yb (T)=ρ exp (T)-ρ YbCu 2 Ge 2 (T)-Δρ 4.2K ,where Δρ YbCu 2 Ge 2 (T) is the temperature dependence of YbCu 2 Ge 2 electrical resistance, Δρ 4.2 =ρ 4.2 (exp)-ρ 4.2 (YbCu 2 Ge 2 )

  4. Method for calculating required shielding in medical x-ray rooms

    International Nuclear Information System (INIS)

    Karppinen, J.

    1997-10-01

    The new annual radiation dose limits - 20 mSv (previously 50 mSv) for radiation workers and 1 mSv (previously 5 mSv) for other persons - implies that the adequacy of existing radiation shielding must be re-evaluated. In principle, one could assume that the thicknesses of old radiation shields should be increased by about one or two half-value layers in order to comply with the new dose limits. However, the assumptions made in the earlier shielding calculations are highly conservative; the required shielding was often determined by applying the maximum high-voltage of the x-ray tube for the whole workload. A more realistic calculation shows that increased shielding is typically not necessary if more practical x-ray tube voltages are used in the evaluation. We have developed a PC-based calculation method for calculating the x-ray shielding which is more realistic than the highly conservative method formerly used. The method may be used to evaluate an existing shield for compliance with new regulations. As examples of these calculations, typical x-ray rooms are considered. The lead and concrete thickness requirements as a function of x-ray tube voltage and workload are also given in tables. (author)

  5. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a "molecular welding" effect.

    Science.gov (United States)

    Taniguchi, Shohei; Green, Mark; Lim, Teck

    2011-03-16

    The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.

  6. Cumulative damage fatigue tests on nuclear reactor Zircaloy-2 fuel tubes at room temperature and 3000C

    International Nuclear Information System (INIS)

    Pandarinathan, P.R.; Vasudevan, P.

    1980-01-01

    Cumulative damage fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature and 300 0 C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The cumulative cycle ratio at fracture for the Zircaloy-2 fuel tubes was found to depend on the sequence of loading, stress history, number of cycles of application of the pre-stress and the test temperature. A Hi-Lo type fatigue loading was found to be very much damaging at room temperature and this feature was not observed in the tests at 300 0 C. Results indicate significant differences in damage interaction and damage propagation under cumulative damage tests at room temperature and at 300 0 C. Block-loading fatigue tests are suggested as the best method to determine the life-time of Zircaloy-2 fuel tubes under random fatigue loading during their service in the reactor. (orig.)

  7. Evidence for a temperature-induced spin-state transition of Co3+ in La2-xSrxCoO4

    Science.gov (United States)

    Hollmann, N.; Haverkort, M. W.; Benomar, M.; Cwik, M.; Braden, M.; Lorenz, T.

    2011-05-01

    We study the magnetic susceptibility of mixed-valent La2-xSrxCoO4 single crystals in the doping range of 0.5⩽x⩽0.8 for temperatures up to 1000 K. The magnetism below room temperature is described by paramagnetic Co2+ in the high-spin state and by Co3+ in the nonmagnetic low-spin state. At high temperatures, an increase in susceptibility is seen, which we attribute to a temperature-induced spin-state transition of Co3+. The susceptibility is analyzed by comparison to full-multiplet calculations for the thermal population of the high- and intermediate-spin states of Co3+.

  8. Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin

    International Nuclear Information System (INIS)

    Kovalevsky, A. Y.; Fisher, S. Zoe; Seaver, Sean; Mustyakimov, Marat; Sukumar, Narayanasami; Langan, Paul; Mueser, Timothy C.; Hanson, B. Leif

    2010-01-01

    Equine cyanomethemoglobin has been crystallized and X-ray and neutron diffraction data have been measured. Joint X-ray–neutron refinement is under way; the structural results should help to elucidate the differences between the hemoglobin R and T states. Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 Å resolution using a home source, to 1.6 Å resolution on NE-CAT at the Advanced Photon Source and to 2.0 Å resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from this site in the low-temperature structure

  9. Room-Temperature-Synthesized High-Mobility Transparent Amorphous CdO-Ga2O3 Alloys with Widely Tunable Electronic Bands.

    Science.gov (United States)

    Liu, Chao Ping; Ho, Chun Yuen; Dos Reis, Roberto; Foo, Yishu; Guo, Peng Fei; Zapien, Juan Antonio; Walukiewicz, Wladek; Yu, Kin Man

    2018-02-28

    In this work, we have synthesized Cd 1-x Ga x O 1+δ alloy thin films at room temperature over the entire composition range by radio frequency magnetron sputtering. We found that alloy films with high Ga contents of x > 0.3 are amorphous. Amorphous Cd 1-x Ga x O 1+δ alloys in the composition range of 0.3 < x < 0.5 exhibit a high electron mobility of 10-20 cm 2 V -1 s -1 with a resistivity in the range of 10 -2 to high 10 -4 Ω cm range. The resistivity of the amorphous alloys can also be controlled over 5 orders of magnitude from 7 × 10 -4 to 77 Ω cm by controlling the oxygen stoichiometry. Over the entire composition range, these crystalline and amorphous alloys have a large tunable intrinsic band gap range of 2.2-4.8 eV as well as a conduction band minimum range of 5.8-4.5 eV below the vacuum level. Our results suggest that amorphous Cd 1-x Ga x O 1+δ alloy films with 0.3 < x < 0.4 have favorable optoelectronic properties as transparent conductors on flexible and/or organic substrates, whereas the band edges and electrical conductivity of films with 0.3 < x < 0.7 can be manipulated for transparent thin-film transistors as well as electron transport layers.

  10. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.

    Science.gov (United States)

    Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J

    2017-11-03

    Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.

  11. Room temperature metathetic synthesis and characterization of α-hopeite, Zn3(PO4)2.4H2O

    International Nuclear Information System (INIS)

    Parhi, Purnendu; Manivannan, V.; Kohli, Sandeep; McCurdy, Patrick

    2008-01-01

    The synthesis of crystalline zinc phosphates (α-hopeite phase) through the metathetic pathway has been investigated. The reaction has been carried out by room-temperature grinding. High lattice energy of the by-product NaCl has driven the reaction in the forward direction, and as a result, stable phosphate phases have been synthesized. Reaction of a different phosphorus source (like Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , and K 2 HPO 4 ) with ZnCl 2 has been attempted. The structural, vibrational, thermal, optical, and chemical properties of synthesized powders are determined by powder X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and diffused reflectance spectra (DR) in the UV-vis range. The direct band gap of the title compound was determined to be 3.6 ± 0.2 eV

  12. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-01-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  13. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu

    2018-03-29

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  14. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    Science.gov (United States)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  15. Phase transformations in multiferroic Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} ceramics probed by temperature dependent Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L. P.; Zhang, X. L.; Zhang, J. Z.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Zhang, L. L.; Yu, J. [Functional Material Research Laboratory, Tongji University, Shanghai 200092 (China)

    2014-10-28

    Optical phonons and phase transitions of Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} (BLFTO, 0.02 ≤ x ≤ 0.12, 0.01 ≤ y ≤ 0.08) ceramics have been investigated by Raman scattering in the temperature range from 80 to 680 K. Four phase transitions around 140, 205, 570, and 640 K can be observed. The Raman modes are sensitive to the spin reorientation around 140 and 205 K, owing to the strong magnon-phonon coupling. The transformation around 570 K is a structural transition from rhombohedral to orthorhombic phase due to an external pressure induced by the chemical substitution. The anomalies of the phonon frequencies near Néel temperature T{sub N} have been discussed in the light of the multiferroicity. Moreover, it was found that the structural transition temperature and T{sub N} of BLFTO ceramics decrease towards room temperature with increasing doping composition as a result of size mismatch between substitution and host cations.

  16. Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator

    Science.gov (United States)

    Sudhir, V.; Schilling, R.; Fedorov, S. A.; Schütz, H.; Wilson, D. J.; Kippenberg, T. J.

    2017-07-01

    When an optical field is reflected from a compliant mirror, its intensity and phase become quantum-correlated due to radiation pressure. These correlations form a valuable resource: the mirror may be viewed as an effective Kerr medium generating squeezed states of light, or the correlations may be used to erase backaction from an interferometric measurement of the mirror's position. To date, optomechanical quantum correlations have been observed in only a handful of cryogenic experiments, owing to the challenge of distilling them from thermomechanical noise. Accessing them at room temperature, however, would significantly extend their practical impact, with applications ranging from gravitational wave detection to chip-scale accelerometry. Here, we observe broadband quantum correlations developed in an optical field due to its interaction with a room-temperature nanomechanical oscillator, taking advantage of its high-cooperativity near-field coupling to an optical microcavity. The correlations manifest as a reduction in the fluctuations of a rotated quadrature of the field, in a frequency window spanning more than an octave below mechanical resonance. This is due to coherent cancellation of the two sources of quantum noise contaminating the measured quadrature—backaction and imprecision. Supplanting the backaction force with an off-resonant test force, we demonstrate the working principle behind a quantum-enhanced "variational" force measurement.

  17. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  18. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.

    Science.gov (United States)

    Long, Mingsheng; Gao, Anyuan; Wang, Peng; Xia, Hui; Ott, Claudia; Pan, Chen; Fu, Yajun; Liu, Erfu; Chen, Xiaoshuang; Lu, Wei; Nilges, Tom; Xu, Jianbin; Wang, Xiaomu; Hu, Weida; Miao, Feng

    2017-06-01

    The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular "fingerprint" imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus-based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature-specific detectivity higher than 4.9 × 10 9 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/ f noise in photonic devices.

  19. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  20. Study of geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2017-01-01

    Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical and effect......Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical...... and effective way to obtain the desired cooling performance. To investigate how to choose and optimize the AMR geometry, a quantitative study is presented by simulations based on a one-dimensional (1D) numerical model. Correlations for calculating the friction factor and heat transfer coefficient are reviewed...... and chosen for modeling different geometries. Moreover, the simulated impacts of various parameters on the regenerator efficiency with a constant specific cooling capacity are presented. An analysis based on entropy production minimization reveals how those parameters affect the main losses occurring inside...