WorldWideScience

Sample records for room acoustics computer

  1. Investigations of incorporating source directivity into room acoustics computer models to improve auralizations

    Science.gov (United States)

    Vigeant, Michelle C.

    Room acoustics computer modeling and auralizations are useful tools when designing or modifying acoustically sensitive spaces. In this dissertation, the input parameter of source directivity has been studied in great detail to determine first its effect in room acoustics computer models and secondly how to better incorporate the directional source characteristics into these models to improve auralizations. To increase the accuracy of room acoustics computer models, the source directivity of real sources, such as musical instruments, must be included in the models. The traditional method for incorporating source directivity into room acoustics computer models involves inputting the measured static directivity data taken every 10° in a sphere-shaped pattern around the source. This data can be entered into the room acoustics software to create a directivity balloon, which is used in the ray tracing algorithm to simulate the room impulse response. The first study in this dissertation shows that using directional sources over an omni-directional source in room acoustics computer models produces significant differences both in terms of calculated room acoustics parameters and auralizations. The room acoustics computer model was also validated in terms of accurately incorporating the input source directivity. A recently proposed technique for creating auralizations using a multi-channel source representation has been investigated with numerous subjective studies, applied to both solo instruments and an orchestra. The method of multi-channel auralizations involves obtaining multi-channel anechoic recordings of short melodies from various instruments and creating individual channel auralizations. These auralizations are then combined to create a total multi-channel auralization. Through many subjective studies, this process was shown to be effective in terms of improving the realism and source width of the auralizations in a number of cases, and also modeling different

  2. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  3. Treatment of early and late reflections in a hybrid computer model for room acoustics

    DEFF Research Database (Denmark)

    Naylor, Graham

    1992-01-01

    The ODEON computer model for acoustics in large rooms is intended for use both in design (by predicting room acoustical indices quickly and easily) and in research (by forming the basis of an auralization system and allowing study of various room acoustical phenomena). These conflicting demands...... preclude the use of both ``pure'' image source and ``pure'' particle tracing methods. A hybrid model has been developed, in which rays discover potential image sources up to a specified order. Thereafter, the same ray tracing process is used in a different way to rapidly generate a dense reverberant decay...

  4. A room acoustical computer model for industrial environments - the model and its verification

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Foged, Hans Torben

    1998-01-01

    This paper presents an extension to the traditional room acoustic modelling methods allowing computer modelling of huge machinery in industrial spaces. The program in question is Odeon 3.0 Industrial and Odeon 3.0 Combined which allows the modelling of point sources, surface sources and line...... of an omnidirectional sound source and a microphone. This allows the comparison of simulated results with the ones measured in real rooms. However when simulating the acoustic environment in industrial rooms, the sound sources are often far from being point like, as they can be distributed over a large space...

  5. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  6. Electroacoustical simulation of listening room acoustics for project ARCHIMEDES

    DEFF Research Database (Denmark)

    Bech, Søren

    1989-01-01

    ARCHIMEDES is a psychoacoustics research project, funded under the European EUREKA scheme. Three partners share the work involved: The Acoustics Laboratory of The Technical University of Denmark; Bang and Olufsen of Denmark; and KEF Electronics of England. Its primary object is to quantify...... the influence of listening room acoustics on the timbre of reproduced sound. For simulation of the acoustics of a standard listening room, an electroacoustic setup has been built in an anechoic chamber. The setup is based on a computer model of the listening room, and it consists of a number of loudspeakers...

  7. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  8. Evaluation of room acoustic qualities and defects by use of auralization

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2004-01-01

    Auralizations generated by room acoustic computer modeling programs may be used as a tool for evaluation of acoustic qualities and defects, some of which are not easily detected by objective measures. Examples include reverberance, flutter echoes, perceived room size and distance, apparent source...... that the modeling of source directivity and the late room reflections (the reverberation tail) need careful consideration in order to achieve reliable and realistic sounding results. However, when implemented in the software the application for practical use can be simple and quick....... width, listener envelopment, and sound propagation in coupled rooms. In order to reach a sufficiently high level of realism in auralizations for such room acoustic applications it is necessary that all parts of the simulation chain are modeled with sufficient accuracy. In particular it is found...

  9. Auditory modelling for assessing room acoustics

    NARCIS (Netherlands)

    Van Dorp Schuitman, J.

    2011-01-01

    The acoustics of a concert hall, or any other room, are generally assessed by measuring room impulse responses for one or multiple source and receiver location(s). From these responses, objective parameters can be determined that should be related to various perceptual attributes of room acoustics.

  10. Analysis of room acoustics in Danish Hospitals

    DEFF Research Database (Denmark)

    Hoffmann, Ida Ørduk; Zapata Rodriguez, Valentina; Jeong, Cheol-Ho

    2018-01-01

    time (EDT) and T20, and the sound pressure level metrics, namely the equivalent level and peak level. In addition, the staff at the hospitals is asked about their personal perception of the acoustic and noise conditions and the correlation between their subjective disturbances......This project aims to compare room acoustic parameters and noise levels in various Danish hospitals: Odense, Gentofte, Bispebjerg, Hillerød and Aarhus Hospitals. Room acoustic conditions are measured in audiometric rooms at Odense, Gentofte, Bispebjerg and Aarhus hospitals. The noise levels...

  11. An Optimisation Approach for Room Acoustics Design

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Kirkegaard, Poul Henning; Andersen, Lars

    2005-01-01

    This paper discuss on a conceptual level the value of optimisation techniques in architectural acoustics room design from a practical point of view. It is chosen to optimise one objective room acoustics design criterium estimated from the sound field inside the room. The sound field is modeled...... using the boundary element method where absorption is incorporated. An example is given where the geometry of a room is defined by four design modes. The room geometry is optimised to get a uniform sound pressure....

  12. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    Science.gov (United States)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  13. Three-dimensional point-cloud room model in room acoustics simulations

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte

    2013-01-01

    acquisition and its representation with a 3D point-cloud model, as well as utilization of such a model for the room acoustics simulations. A room is scanned with a commercially available input device (Kinect for Xbox360) in two different ways; the first one involves the device placed in the middle of the room...... and rotated around the vertical axis while for the second one the device is moved within the room. Benefits of both approaches were analyzed. The device's depth sensor provides a set of points in a three-dimensional coordinate system which represents scanned surfaces of the room interior. These data are used...... to build a 3D point-cloud model of the room. Several models are created to meet requirements of different room acoustics simulation algorithms: plane fitting and uniform voxel grid for geometric methods and triangulation mesh for the numerical methods. Advantages of the proposed method over the traditional...

  14. Three-dimensional point-cloud room model for room acoustics simulations

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte

    2013-01-01

    acquisition and its representation with a 3D point-cloud model, as well as utilization of such a model for the room acoustics simulations. A room is scanned with a commercially available input device (Kinect for Xbox360) in two different ways; the first one involves the device placed in the middle of the room...... and rotated around the vertical axis while for the second one the device is moved within the room. Benefits of both approaches were analyzed. The device's depth sensor provides a set of points in a three-dimensional coordinate system which represents scanned surfaces of the room interior. These data are used...... to build a 3D point-cloud model of the room. Several models are created to meet requirements of different room acoustics simulation algorithms: plane fitting and uniform voxel grid for geometric methods and triangulation mesh for the numerical methods. Advantages of the proposed method over the traditional...

  15. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity-a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

  16. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    Science.gov (United States)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide

  17. Estimation of acoustic resonances for room transfer function equalization

    DEFF Research Database (Denmark)

    Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc

    2010-01-01

    Strong acoustic resonances create long room impulse responses (RIRs) which may harm the speech transmission in an acoustic space and hence reduce speech intelligibility. Equalization is performed by cancelling the main acoustic resonances common to multiple room transfer functions (RTFs), i...

  18. Room acoustics modeling using a point-cloud representation of the room geometry

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte

    2013-01-01

    Room acoustics modeling is usually based on the room geometry that is parametrically described prior to a sound transmission calculation. This is a highly room-specific task and rather time consuming if a complex geometry is to be described. Here, a run time generic method for an arbitrary room...... geometry acquisition is presented. The method exploits a depth sensor of the Kinect device that provides a point based information of a scanned room interior. After post-processing of the Kinect output data, a 3D point-cloud model of the room is obtained. Sound transmission between two selected points...... level of user immersion by a real time acoustical simulation of a dynamic scenes....

  19. Uncertainty of input data for room acoustic simulations

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Marbjerg, Gerd; Brunskog, Jonas

    2016-01-01

    Although many room acoustic simulation models have been well established, simulation results will never be accurate with inaccurate and uncertain input data. This study addresses inappropriateness and uncertainty of input data for room acoustic simulations. Firstly, the random incidence absorption...... and scattering coefficients are insufficient when simulating highly non-diffuse rooms. More detailed information, such as the phase and angle dependence, can greatly improve the simulation results of pressure-based geometrical and wave-based models at frequencies well below the Schroeder frequency. Phase...... summarizes potential advanced absorption measurement techniques that can improve the quality of input data for room acoustic simulations. Lastly, plenty of uncertain input data are copied from unreliable sources. Software developers and users should be careful when spreading such uncertain input data. More...

  20. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  1. Room acoustic properties of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    A large database of values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of concert halls are influenced by their size, shape, and absorption area (as deduced from measured reverberation time). The data have been...

  2. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    CERN Document Server

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  3. Acoustic radiosity for computation of sound fields in diffuse environments

    Science.gov (United States)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2002-05-01

    The use of image and ray tracing methods (and variations thereof) for the computation of sound fields in rooms is relatively well developed. In their regime of validity, both methods work well for prediction in rooms with small amounts of diffraction and mostly specular reflection at the walls. While extensions to the method to include diffuse reflections and diffraction have been made, they are limited at best. In the fields of illumination and computer graphics the ray tracing and image methods are joined by another method called luminous radiative transfer or radiosity. In radiosity, an energy balance between surfaces is computed assuming diffuse reflection at the reflective surfaces. Because the interaction between surfaces is constant, much of the computation required for sound field prediction with multiple or moving source and receiver positions can be reduced. In acoustics the radiosity method has had little attention because of the problems of diffraction and specular reflection. The utility of radiosity in acoustics and an approach to a useful development of the method for acoustics will be presented. The method looks especially useful for sound level prediction in industrial and office environments. [Work supported by NSF.

  4. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  5. Predicting and auralizing acoustics in classrooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    2005-01-01

    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  6. Noise and room acoustic conditions in a tertiary referral hospital in Seoul, Korea

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Cho, Wan-Ho; Chang, Ji-ho

    2018-01-01

    Noise levels and room acoustic parameters at a tertiary referral hospital, Seoul National University Hospital in Korea, are investigated. Through a questionnaire, acoustically problematic rooms are identified. Noise levels in emergency rooms (ERs) and intensive care units (ICUs) are measured over...... level for the first night was 66 dBA, which came down to 56 dBA for the next day. The reason for the higher noise level for the first night in the ICU was frequent alarm sound and treatment noise related to a critical patient. The noise level in the measured ERs is about 10 dB lower than those measured...... about three days. Acoustically critical and problematic rooms in the otolaryngology department are measured: examination rooms, operating rooms, nurse stations, patient rooms, and audiometric rooms. The equivalent A-weighted noise level, LAeq, ranges from 54 to 56 dBA in two ERs. In an ICU, the noise...

  7. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, M. C.; Wang, L. M.; Rindel, Jens Holger

    2004-01-01

    time. However, for the three other parameters evaluated (sound-pressure level, clarity index, and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity when using computer......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  8. Acoustical Design Guidelines for Living Rooms for Adults with intellectual Disabilities

    NARCIS (Netherlands)

    Saher, K.

    2013-01-01

    The aim of this thesis is to investigate the effects of building design tools on acoustical quality parameters in living rooms for adults with intellectual disabilities (ID) and develop acoustical design guidelines for architects. This study is specifically concerned with the validation of

  9. Factors Affecting Acoustics and Speech Intelligibility in the Operating Room: Size Matters.

    Science.gov (United States)

    McNeer, Richard R; Bennett, Christopher L; Horn, Danielle Bodzin; Dudaryk, Roman

    2017-06-01

    Noise in health care settings has increased since 1960 and represents a significant source of dissatisfaction among staff and patients and risk to patient safety. Operating rooms (ORs) in which effective communication is crucial are particularly noisy. Speech intelligibility is impacted by noise, room architecture, and acoustics. For example, sound reverberation time (RT60) increases with room size, which can negatively impact intelligibility, while room objects are hypothesized to have the opposite effect. We explored these relationships by investigating room construction and acoustics of the surgical suites at our institution. We studied our ORs during times of nonuse. Room dimensions were measured to calculate room volumes (VR). Room content was assessed by estimating size and assigning items into 5 volume categories to arrive at an adjusted room content volume (VC) metric. Psychoacoustic analyses were performed by playing sweep tones from a speaker and recording the impulse responses (ie, resulting sound fields) from 3 locations in each room. The recordings were used to calculate 6 psychoacoustic indices of intelligibility. Multiple linear regression was performed using VR and VC as predictor variables and each intelligibility index as an outcome variable. A total of 40 ORs were studied. The surgical suites were characterized by a large degree of construction and surface finish heterogeneity and varied in size from 71.2 to 196.4 m (average VR = 131.1 [34.2] m). An insignificant correlation was observed between VR and VC (Pearson correlation = 0.223, P = .166). Multiple linear regression model fits and β coefficients for VR were highly significant for each of the intelligibility indices and were best for RT60 (R = 0.666, F(2, 37) = 39.9, P the size and contents of an OR can predict a range of psychoacoustic indices of speech intelligibility. Specifically, increasing OR size correlated with worse speech intelligibility, while increasing amounts of OR contents

  10. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2004-01-01

    considering reverberation time. However, for the three other parameters evaluated (sound pressure level, clarity index and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  11. Evaluating the auralization of a small room in a virtual sound environment using objective room acoustic measures

    DEFF Research Database (Denmark)

    Ahrens, Axel; Marschall, Marton; Dau, Torsten

    2016-01-01

    To study human auditory perception in realistic environments, loudspeaker-based reproduction techniques have recently become state-of-the-art. To evaluate the accuracy of a simulation-based room auralization of a small room, objective measures, such as early-decay-time (EDT), reverberation time...... of the room. The auralizations were generated using the loudspeaker-based room auralization toolbox (LoRA; Favrot and Buchholz, 2010) and reproduced in a 64-channel loudspeaker array, set up in an anechoic chamber. Differences between the objective measures evaluated in the real and the virtual room were......, clarity, interaural cross-correlation (IACC), and the speech transmission index were measured in an IEC listening room for 28 source-receiver combinations. The room was then modeled in the room acoustics software ODEON, and the same objective measures were also evaluated for the auralized version...

  12. Integrating Real-Time Room Acoustics Simulation into a CAD Modeling Software to Enhance the Architectural Design Process

    Directory of Open Access Journals (Sweden)

    Sönke Pelzer

    2014-04-01

    Full Text Available For architects, real-time 3D visual rendering of CAD-models is a valuable tool. The architect usually perceives the visual appearance of the building interior in a natural and realistic way during the design process. Unfortunately this only emphasizes the role of the visual appearance of a building, while the acoustics often remain disregarded. Controlling the room acoustics is not integrated into most architects’ workflows—due to a lack of tools. The present contribution describes a newly developed plug-in for adding an adequate 3D-acoustics feedback to the architect. To present intuitively the acoustical effect of the current design project, the plug-in uses real-time audio rendering and 3D-reproduction. The room acoustics of the design can be varied by modifying structural shapes as well as by changing the material selection. In addition to the audio feedback, also a visualization of important room acoustics qualities is provided by displaying color-coded maps inside the CAD software.

  13. Room acoustic enhancement in a small hall with very low natural reverberation time

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    natural combinations of room acoustic properties. Consequently, the natural reverberation time in a newly opened 350 seat multipurpose hall in Denmark was designed as low as 0.7 sec. Two different reverberation enhancement systems were considered and tested in the hall. The objective and subjective...... testing results are reported and compared with previous results obtained in another small hall supplied with a similar enhancement system. The results concerning 'realism' are also compared with acoustic properties found in 'natural' halls of different sizes and reverberation times.......In small multipurpose halls to be equipped with electronic reverberation enhancement systems, selecting a very low natural reverberation time is advantageous for several reasons. It will 1) reduce the risk of feedback, 2) increase the possible range of room acoustic variation and 3) allow for more...

  14. Challenges and solutions for realistic room simulation

    Science.gov (United States)

    Begault, Durand R.

    2002-05-01

    Virtual room acoustic simulation (auralization) techniques have traditionally focused on answering questions related to speech intelligibility or musical quality, typically in large volumetric spaces. More recently, auralization techniques have been found to be important for the externalization of headphone-reproduced virtual acoustic images. Although externalization can be accomplished using a minimal simulation, data indicate that realistic auralizations need to be responsive to head motion cues for accurate localization. Computational demands increase when providing for the simulation of coupled spaces, small rooms lacking meaningful reverberant decays, or reflective surfaces in outdoor environments. Auditory threshold data for both early reflections and late reverberant energy levels indicate that much of the information captured in acoustical measurements is inaudible, minimizing the intensive computational requirements of real-time auralization systems. Results are presented for early reflection thresholds as a function of azimuth angle, arrival time, and sound-source type, and reverberation thresholds as a function of reverberation time and level within 250-Hz-2-kHz octave bands. Good agreement is found between data obtained in virtual room simulations and those obtained in real rooms, allowing a strategy for minimizing computational requirements of real-time auralization systems.

  15. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    Science.gov (United States)

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  16. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...... this information is discussed. The conclusion of the paper is that the application of acoustical simulation programs is most beneficial in the last of three phases but that an application of the program to the two first phases would be preferable and possible with an improvement of the interface of the program....

  17. Acoustic parameters of sound insulating materials investigation in small reverberation rooms on rubber plates

    Directory of Open Access Journals (Sweden)

    О.О. Козлітін

    2005-01-01

    Full Text Available  The new method of sound insulating materials acoustic characteristics investigation in small reverberation rooms was elaborated. The research of sound insulating materials on rubber plates was done. The analysis of obtained results of acoustic parameters of materials being a part of the composite real structures of airplane was carried out.

  18. [Acoustic conditions in open plan office - Application of technical measures in a typical room].

    Science.gov (United States)

    Mikulski, Witold

    2018-03-09

    Noise in open plan offices should not exceed acceptable levels for the hearing protection. Its major negative effects on employees are nuisance and impediment in execution of work. Specific technical solutions should be introduced to provide proper acoustic conditions for work performance. Acoustic evaluation of a typical open plan office was presented in the article published in "Medycyna Pracy" 5/2016. None of the rooms meets all the criteria, therefore, in this article one of the rooms was chosen to apply different technical solutions to check the possibility of reaching proper acoustic conditions. Acoustic effectiveness of those solutions was verified by means of digital simulation. The model was checked by comparing the results of measurements and calculations before using simulation. The analyzis revealed that open plan offices supplemented with signals for masking speech signals can meet all the required criteria. It is relatively easy to reach proper reverberation time (i.e., sound absorption). It is more difficult to reach proper values of evaluation parameters determined from A-weighted sound pressure level (SPLA) of speech. The most difficult is to provide proper values of evaluation parameters determined from speech transmission index (STI). Finally, it is necessary (besides acoustic treatment) to use devices for speech masking. The study proved that it is technically possible to reach proper acoustic condition. Main causes of employees complaints in open plan office are inadequate acoustic work conditions. Therefore, it is necessary to apply specific technical solutions - not only sound absorbing suspended ceiling and high acoustic barriers, but also devices for speech masking. Med Pr 2018;69(2):153-165. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Binaural room simulation

    Science.gov (United States)

    Lehnert, H.; Blauert, Jens; Pompetzki, W.

    1991-01-01

    In every-day listening the auditory event perceived by a listener is determined not only by the sound signal that a sound emits but also by a variety of environmental parameters. These parameters are the position, orientation and directional characteristics of the sound source, the listener's position and orientation, the geometrical and acoustical properties of surfaces which affect the sound field and the sound propagation properties of the surrounding fluid. A complete set of these parameters can be called an Acoustic Environment. If the auditory event perceived by a listener is manipulated in such a way that the listener is shifted acoustically into a different acoustic environment without moving himself physically, a Virtual Acoustic Environment has been created. Here, we deal with a special technique to set up nearly arbitrary Virtual Acoustic Environments, the Binaural Room Simulation. The purpose of the Binaural Room Simulation is to compute the binaural impulse response related to a virtual acoustic environment taking into account all parameters mentioned above. One possible way to describe a Virtual Acoustic Environment is the concept of the virtual sound sources. Each of the virtual sources emits a certain signal which is correlated but not necessarily identical with the signal emitted by the direct sound source. If source and receiver are non moving, the acoustic environment becomes a linear time-invariant system. Then, the Binaural Impulse Response from the source to a listener' s eardrums contains all relevant auditory information related to the Virtual Acoustic Environment. Listening into the simulated environment can easily be achieved by convolving the Binaural Impulse Response with dry signals and representing the results via headphones.

  20. Importance of Including the Acoustic Medium in Rooms on the Transmission Path between Source and Receiver Rooms within a Building

    DEFF Research Database (Denmark)

    Andersen, Lars; Kirkegaard, Poul Henning; Dickow, Kristoffer Ahrens

    2011-01-01

    Low-frequency noise is a potential nuisance to inhabitants in lightweight building structures. Hence, development of efficient and accurat methods for prediction of noice in such buildings is important. The aim of this paper is to assess the necessity of including the acoustic medium in rooms along...

  1. Speech intelligibility for normal hearing and hearing-impaired listeners in simulated room acoustic conditions

    DEFF Research Database (Denmark)

    Arweiler, Iris; Dau, Torsten; Poulsen, Torben

    Speech intelligibility depends on many factors such as room acoustics, the acoustical properties and location of the signal and the interferers, and the ability of the (normal and impaired) auditory system to process monaural and binaural sounds. In the present study, the effect of reverberation...... on spatial release from masking was investigated in normal hearing and hearing impaired listeners using three types of interferers: speech shaped noise, an interfering female talker and speech-modulated noise. Speech reception thresholds (SRT) were obtained in three simulated environments: a listening room......, a classroom and a church. The data from the study provide constraints for existing models of speech intelligibility prediction (based on the speech intelligibility index, SII, or the speech transmission index, STI) which have shortcomings when reverberation and/or fluctuating noise affect speech...

  2. Reliability of estimating the room volume from a single room impulse response

    OpenAIRE

    Kuster, M.

    2008-01-01

    The methods investigated for the room volume estimation are based on geometrical acoustics, eigenmode, and diffuse field models and no data other than the room impulse response are available. The measurements include several receiver positions in a total of 12 rooms of vastly different sizes and acoustic characteristics. The limitations in identifying the pivotal specular reflections of the geometrical acoustics model in measured room impulse responses are examined both theoretically and expe...

  3. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  4. Finite volume method room acoustic simulations integrated into the architectural design process

    DEFF Research Database (Denmark)

    Pind Jörgensson, Finnur Kári; Jeong, Cheol-Ho; Engsig-Karup, Allan Peter

    2017-01-01

    with the architectural design from the earliest design stage, as a part of a holistic design process. A new procedure to integrate room acoustics into architectural design is being developed in a Ph.D. project, with the aim of promoting this early stage holistic design process. This project aims to develop a new hybrid...

  5. Assessment of vocal intensity in lecturers depending on acoustic properties of lecture rooms

    Directory of Open Access Journals (Sweden)

    Witold Mikulski

    2015-08-01

    Full Text Available Background: Lombard’s effect increases the level of vocal intensity in the environment, in which noise occurs. This article presents the results of the author’s own study of vocal intensity level and A-weighted sound pressure level of background noise during normal lectures. The aim of the study was to define whether above-mentioned parameters depend on acoustic properties of rooms (classrooms or lecture rooms and to define how many lectors speak with raised voice. Material and Methods: The study was performed in a group of 50 teachers and lecturers in 10 classrooms with cubature of 160–430 m3 and reverberation time of 0.37–1.3 s (group A consisted of 3 rooms which fulfilled, group B consisted of 3 rooms which almost fulfilled and group C consisted of 4 rooms which did not fulfill criteria based on reverberation time (maximum permissible value is 0.6–0.8 s according to PN-B-02151-4:2015. Criteria of raising voice were based on vocal intensity level (maximum value: 65 dB according to EN ISO 9921:2003. The values of above-mentioned parameters were determined from modes of A-weighted sound pressure level distributions during lectures. Results: Great differentiation of vocal intensity level between lectors was found. In classrooms of group A lectors were not using raised voice, in group B – 21%, and in group C – 60% of lectors were using raised voice. Conclusions: It was observed that acoustic properties of classrooms (defined by reverberation time exert their effect on lecturer’s vocal intensity level (i.e., raising voice, which may contribute to the increased risk of vocal tract illnesses. The occurrence of Lombard’s effect in groups of teachers and lecturers, conducting lectures in rooms, was evidenced. Med Pr 2015;66(4:487–496

  6. Computational simulation of acoustic fatigue for hot composite structures

    Science.gov (United States)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  7. Microenvironments in swine farrowing rooms: the thermal, lighting, and acoustic environments of sows and piglets

    Directory of Open Access Journals (Sweden)

    Gabriela Munhoz Morello

    Full Text Available ABSTRACT: The present research hypothesized that the thermal, lighting and acoustic environments in commercial swine farrowing rooms vary over time and from crate to crate. This study was conducted on 27 replicates in two commercial farrowing rooms in North Central Indiana, each equipped with 60 farrowing crates. Temperature, relative humidity, light intensity, sound intensity, and air velocity were continuously monitored and estimated for each crate at the sow level, for 48 h post-farrowing, which is usually a critical period for piglet survivability. Average daily temperature for all the crates in Room 1 was 24.1 ± 2.0 °C, 1.0 °C lower (p < 0.05 than in Room 2. Although the overall mean temperature was similar between rooms and seasons, frequency distribution diagrams revealed that the proportion of time spent within distinct limits of mean daily temperature ranged from 15.0 °C to 28.0 °C and varied substantially between rooms and seasons. Similar results were found for all variables measured in this study. Differences in temperature, relative humidity, light intensity, air velocity, and sound intensity in crates were as high as 9.6 °C, 57 %, 3,847.3 Lx, 0.87 m s–1, and 38.7 dBC, respectively, in the same farrowing room when measured at the same instant. The results of the present research indicate that aspects that go beyond the physical environment of the sows, such as thermal, lighting, and acoustic environment can vary substantially over time and between crates of automatically climate controlled farrowing rooms. These differences should be taken into consideration in production setting and research.

  8. Noise disturbance in open-plan study environments: a field study on noise sources, student tasks and room acoustic parameters.

    Science.gov (United States)

    Braat-Eggen, P Ella; van Heijst, Anne; Hornikx, Maarten; Kohlrausch, Armin

    2017-09-01

    The aim of this study is to gain more insight in the assessment of noise in open-plan study environments and to reveal correlations between noise disturbance experienced by students and the noise sources they perceive, the tasks they perform and the acoustic parameters of the open-plan study environment they work in. Data were collected in five open-plan study environments at universities in the Netherlands. A questionnaire was used to investigate student tasks, perceived sound sources and their perceived disturbance, and sound measurements were performed to determine the room acoustic parameters. This study shows that 38% of the surveyed students are disturbed by background noise in an open-plan study environment. Students are mostly disturbed by speech when performing complex cognitive tasks like studying for an exam, reading and writing. Significant but weak correlations were found between the room acoustic parameters and noise disturbance of students. Practitioner Summary: A field study was conducted to gain more insight in the assessment of noise in open-plan study environments at universities in the Netherlands. More than one third of the students was disturbed by noise. An interaction effect was found for task type, source type and room acoustic parameters.

  9. Low frequency sound field control in rectangular listening rooms using CABS (Controlled Acoustic Bass System) will also reduce sound transmission to neighbor rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2011-01-01

    Sound reproduction is often taking place in small and medium sized rectangular rooms. As rectangular rooms have 3 pairs of parallel walls the reflections at especially low frequencies will cause up to 30 dB spatial variations of the sound pressure level in the room. This will take place not only...... at resonance frequencies, but more or less at all frequencies. A time based room correction system named CABS (Controlled Acoustic Bass System) has been developed and is able to create a homogeneous sound field in the whole room at low frequencies by proper placement of multiple loudspeakers. A normal setup...... from the rear wall, and thereby leaving only the plane wave in the room. With a room size of (7.8 x 4.1 x 2.8) m. it is possible to prevent modal frequencies up to 100 Hz. An investigation has shown that the sound transmitted to a neighbour room also will be reduced if CABS is used. The principle...

  10. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...... in polar coordinates. The developed algorithm is combined with a so-called actuator-line technique in which the loading is distributed along lines representing the blade forces. Computations are carried out for the 500kW Nordtank wind turbine equipped with three LM19 blades. ©2001 The American Institute...

  11. Computer vision based room interior design

    Science.gov (United States)

    Ahmad, Nasir; Hussain, Saddam; Ahmad, Kashif; Conci, Nicola

    2015-12-01

    This paper introduces a new application of computer vision. To the best of the author's knowledge, it is the first attempt to incorporate computer vision techniques into room interior designing. The computer vision based interior designing is achieved in two steps: object identification and color assignment. The image segmentation approach is used for the identification of the objects in the room and different color schemes are used for color assignment to these objects. The proposed approach is applied to simple as well as complex images from online sources. The proposed approach not only accelerated the process of interior designing but also made it very efficient by giving multiple alternatives.

  12. The Effect of Objective Room Acoustic Parameters on Auditory Steady-State Responses

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; M. Harte, James; Jeong, Cheol-Ho

    2016-01-01

    -state responses (ASSR), recorded in a sound field is a promising technology to verify the hearing aid fitting. The test involves the presentation of the auditory stimuli via a loudspeaker, unlike the usual procedure of delivering via insert earphones. Room reverberation clearly may significantly affect...... the features of the stimulus important for eliciting a strong electrophysiological response, and thus complicate its detection. This study investigates the effect of different room acoustic conditions on recorded ASSRs via an auralisation approach using insert earphones. Fifteen normal-hearing listeners were...... tested using narrow-band (NB) CE-Chirps centered at the octave-bands of 0.5, 1.0, 2.0 and 4.0 kHz. These stimuli were convolved with impulse responses of three rooms simulated using a Green’s function approach to recreate different sound-field conditions. Comparisons with the unmodified stimuli...

  13. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  14. On Computations of Duct Acoustics with Near Cut-Off Frequency

    Science.gov (United States)

    Dong, Thomas Z.; Povinelli, Louis A.

    1997-01-01

    The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. A study of this cut-off effect on the computations of duct acoustics is performed in the present work. The results show that the computation of duct acoustic modes near cut-off requires higher numerical resolutions than others to avoid being numerically cut off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme with the selective artificial damping method and results are presented and compared to reference solutions.

  15. Listeners' expectation of room acoustical parameters based on visual cues

    Science.gov (United States)

    Valente, Daniel L.

    Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audio-visual study, in which participants are instructed to make spatial congruency and quantity judgments in dynamic cross-modal environments. The results of these psychophysical tests suggest the importance of consilient audio-visual presentation to the legibility of an auditory scene. Several studies have looked into audio-visual interaction in room perception in recent years, but these studies rely on static images, speech signals, or photographs alone to represent the visual scene. Building on these studies, the aim is to propose a testing method that uses monochromatic compositing (blue-screen technique) to position a studio recording of a musical performance in a number of virtual acoustical environments and ask subjects to assess these environments. In the first experiment of the study, video footage was taken from five rooms varying in physical size from a small studio to a small performance hall. Participants were asked to perceptually align two distinct acoustical parameters---early-to-late reverberant energy ratio and reverberation time---of two solo musical performances in five contrasting visual environments according to their expectations of how the room should sound given its visual appearance. In the second experiment in the study, video footage shot from four different listening positions within a general-purpose space was coupled with sounds derived from measured binaural impulse responses (IRs). The relationship between the presented image, sound, and virtual receiver position was examined. It was found that many visual cues caused different perceived events of the acoustic environment. This included the visual attributes of the space in which the performance was located as well as the visual attributes of the performer

  16. Computer fan performance enhancement via acoustic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, David, E-mail: davidg@technion.ac.il [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel); Avraham, Tzahi; Golan, Maayan [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Computer fan effectiveness was increased by introducing acoustic perturbations. Black-Right-Pointing-Pointer Acoustic perturbations controlled blade boundary layer separation. Black-Right-Pointing-Pointer Optimum frequencies corresponded with airfoils studies. Black-Right-Pointing-Pointer Exploitation of flow instabilities was responsible for performance improvements. Black-Right-Pointing-Pointer Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin-Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.

  17. Computer fan performance enhancement via acoustic perturbations

    International Nuclear Information System (INIS)

    Greenblatt, David; Avraham, Tzahi; Golan, Maayan

    2012-01-01

    Highlights: ► Computer fan effectiveness was increased by introducing acoustic perturbations. ► Acoustic perturbations controlled blade boundary layer separation. ► Optimum frequencies corresponded with airfoils studies. ► Exploitation of flow instabilities was responsible for performance improvements. ► Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin–Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.

  18. Controlled Acoustic Bass System (CABS) A Method to Achieve Uniform Sound Field Distribution at Low Frequencies in Rectangular Rooms

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2008-01-01

    The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CA......-frequency range. CABS has been simulated and measured in two different standard listening rooms with satisfactory results....

  19. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  20. HOSPITAL SOUNDSCAPE: ACOUSTICS EVALUATION IN NEONATAL INTENSIVE CARE UNIT (NICU ROOM OF A NATIONAL HOSPITAL IN JAKARTA, INDONESIA

    Directory of Open Access Journals (Sweden)

    SARWONO R. Sugeng Joko

    2016-12-01

    Full Text Available Acoustics comfort in a room is one of the most important building physics aspect that should be observed. in public spaces like hospital, especially in an intensive care unit such as NICU. Researches on the acoustic conditions of NICU in Indonesia are still limited. The acoustical study conducted in this research is using objective, subjective, and simulation methods based on soundscape concept with the concern on the nurse’s perception. This research was conducted at a national hospital in Jakarta. According to National Standardization Agency of Indonesia (SNI and World Health Organization (WHO, the suitable sound pressure level (SPL for noise in patient’s room is 35 dBA. From the study, it was found that the equivalent SPL value exceeded the standard. Soundscape in NICU can be improve with the addition of curtain on the incubator’s side, installation of glass partition, and ceiling absorber in the nurse station area. The result of simulation showed that the SPL in the room decreased with average value 8.9 dBA for sound source alarm ventilator and 8.2 dBA for sound source medical officer conversations. And the speech transmission index (STI increased from “bad” to “good” range became “fair” to “excellent” range.

  1. Low frequency sound field control for loudspeakers in rectangular rooms using CABS (Controlled Acoustical Bass System)

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2010-01-01

    Rectangular rooms are the most common shape for sound reproduction, but at low frequencies the reflections from the boundaries of the room cause large spatial variations in the sound pressure level.  Variations up to 30 dB are normal, not only at the room modes, but basically at all frequencies....... As sound propagates in time, it seems natural that the problems can best be analyzed and solved in the time domain. A time based room correction system named CABS (Controlled Acoustical Bass System) has been developed for sound reproduction in rectangular listening rooms. It can control the sound...... sound field in the whole room, and short impulse response.  In a standard listening room (180 m3) only 4 loudspeakers are needed, 2 more than a traditional stereo setup. CABS is controlled by a developed DSP system. The time based approached might help with the understanding of sound field control...

  2. Computer programs supporting instruction in acoustics

    OpenAIRE

    Melody, Kevin Andrew

    1998-01-01

    Approved for public release, distribution is unlimited Traditionally, the study of mechanical vibration and sound wave propagation has been presented through textbooks, classroom discussion and laboratory experiments. However, in today's academic environment, students have access to high performance computing facilities which can greatly augment the learning process. This thesis provides computer algorithms for examining selected topics drawn from the text, Fundamentals of Acoustics, Third...

  3. Computational model of gamma irradiation room at ININ

    Science.gov (United States)

    Rodríguez-Romo, Suemi; Patlan-Cardoso, Fernando; Ibáñez-Orozco, Oscar; Vergara Martínez, Francisco Javier

    2018-03-01

    In this paper, we present a model of the gamma irradiation room at the National Institute of Nuclear Research (ININ is its acronym in Spanish) in Mexico to improve the use of physics in dosimetry for human protection. We deal with air-filled ionization chambers and scientific computing made in house and framed in both the GEANT4 scheme and our analytical approach to characterize the irradiation room. This room is the only secondary dosimetry facility in Mexico. Our aim is to optimize its experimental designs, facilities, and industrial applications of physical radiation. The computational results provided by our model are supported by all the known experimental data regarding the performance of the ININ gamma irradiation room and allow us to predict the values of the main variables related to this fully enclosed space to within an acceptable margin of error.

  4. Room acoustic analysis of blower unit and noise control plan in the typical steel industry

    Directory of Open Access Journals (Sweden)

    2013-02-01

    Full Text Available Introduction: In the steel industry,air blowers used to supply compressed air are considered as sources of annoying noise. This study aims to acoustics analysis of theairblower workroomand sound source characteristics in order to present noise controlmeasuresinthe steel industry. .Material and Method: Measurement of noiselevel and its frequency analysis was performed usingsound levelmetermodelof CASELLA-Cell.450. Distribution of noise level in the investigated workroom in form of noise map was provided using Surfer software. In addition, acoustic analysis of workroom and control room was performed in view point of soundabsorption andinsulation. Redesignofdoor and window of controlroom and installation of soundabsorbing materialson theceiling of the workroom were proposed and the efficiency of these interventionswasestimated. .Result: The totalsound pressurelevelin the blower workroom was 95.4 dB(L and the dominant frequency was 2000Hz. Sound pressure level inside the room control was 80.1dB(A. The average absorption coefficient and reverberation time in the blower workroom was estimated equal to 0.082 Sab.m2 and 3.9 seconds respectively. These value in control room was 0.04 Sab.m2 and 3/4 seconds respectively. In control room, sound transmission loss between the two parts of the wall dividing was 13.7 dB(A. The average of noise dose in blower operators was 230%. With the installation of sound absorber on ceiling of workroom, average of absorption coefficient can increase to 0.33 Sab.m2 and sound transmission loss of the new designed door and window was estimated equal to 20dB. . Conclusion: The main cause of noise leakage in the control room was insufficient insulation properties of door and windows. By replacing the door and window and installation of sound absorbing on ceiling of workroom, the noise dose can reduce to 49.6%. New Improved door and window of control room can reduce noise dose to 69.65% solely.

  5. HuRECA: Human Reliability Evaluator for Computer-based Control Room Actions

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Lee, Seung Jun; Jang, Seung Cheol

    2011-01-01

    As computer-based design features such as computer-based procedures (CBP), soft controls (SCs), and integrated information systems are being adopted in main control rooms (MCR) of nuclear power plants, a human reliability analysis (HRA) method capable of dealing with the effects of these design features on human reliability is needed. From the observations of human factors engineering verification and validation experiments, we have drawn some major important characteristics on operator behaviors and design-related influencing factors (DIFs) from the perspective of human reliability. Firstly, there are new DIFs that should be considered in developing an HRA method for computer-based control rooms including especially CBP and SCs. In the case of the computer-based procedure rather than the paper-based procedure, the structural and managerial elements should be considered as important PSFs in addition to the procedural contents. In the case of the soft controllers, the so-called interface management tasks (or secondary tasks) should be reflected in the assessment of human error probability. Secondly, computer-based control rooms can provide more effective error recovery features than conventional control rooms. Major error recovery features for computer-based control rooms include the automatic logic checking function of the computer-based procedure and the information sharing feature of the general computer-based designs

  6. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    OpenAIRE

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  7. Room design for high-performance electron microscopy

    International Nuclear Information System (INIS)

    Muller, David A.; Kirkland, Earl J.; Thomas, Malcolm G.; Grazul, John L.; Fitting, Lena; Weyland, Matthew

    2006-01-01

    Aberration correctors correct aberrations, not instabilities. Rather, as spatial resolution improves, a microscope's sensitivity to room environment becomes more noticeable, not less. Room design is now an essential part of the microscope installation process. Previously ignorable annoyances like computer fans, desk lamps and that chiller in the service corridor now may become the limiting factors in the microscopes performance. We discuss methods to quantitatively characterize the instrument's response to magnetic, mechanical, acoustical and thermal disturbances and thus predict the limits that the environment places on imaging and spectroscopy

  8. Time Delay Estimation in Room Acoustic Environments: An Overview

    Directory of Open Access Journals (Sweden)

    Benesty Jacob

    2006-01-01

    Full Text Available Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.. It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.

  9. Computer codes for evaluation of control room habitability (HABIT)

    International Nuclear Information System (INIS)

    Stage, S.A.

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs

  10. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control.

    Science.gov (United States)

    Passero, Carolina Reich Marcon; Zannin, Paulo Henrique Trombetta

    2012-11-01

    Arranging office space into a single open room offers advantages in terms of easy exchange of information and interaction among coworkers, but reduces privacy and acoustic comfort. Thus, the purpose of this work was to evaluate the acoustic quality of a real open-plan office and to propose changes in the room to improve the acoustic conditioning of this office. The computational model of the office under study was calibrated based on RT and STI measurements. Predictions were made of the RT and STI, which generated the radius of distraction r(D), and the rate of spatial decay of sound pressure levels per distance doubling DL(2) in the real conditions of the office and after modifications of the room. The insertion of dividers between work stations and an increase in the ceiling's sound absorption improved the acoustic conditions in the office under study. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Consideration of Wall Reflection and Diffraction in the Room Acoustic Prediction Using the Phased Beam Tracing Method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2007-01-01

    of the applicability of the geometrical methods to mid frequency. Several studies on this method have demonstrated a good possibility to analyze the sound field in an enclosure at mid frequency. In this study, further considerations on wall reflection and diffraction have been investigated. The main suggestions...... of representing the negative real part was discussed. The PBTM result shows a good agreement with the measurement especially in the early part of impulse response and at mid frequency. The new method of ii binaural simulation for the PBTM was suggested. The peculiar feature of frequency domain calculation......The geometrical acoustics methods have been used to simulate the acoustics of rooms at high frequencies whereas the wave based methods have been devoted to calculate the low frequency response. The modified method, so called phased geometrical acoustics technique, was suggested for the extension...

  12. Perceptual effects in auralization of virtual rooms

    Science.gov (United States)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  13. Research on OpenStack of open source cloud computing in colleges and universities’ computer room

    Science.gov (United States)

    Wang, Lei; Zhang, Dandan

    2017-06-01

    In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.

  14. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2015-01-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse...... radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber...

  15. The sound power emitted by a source of low acoustic impedance

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Verholt, Lars M.

    1998-01-01

    Several authors have maintained that a source of low acoustic impedance (which includes standardised reference sources of the aerodynamic type) would radiate less than the free field power in a reverberation room. However, neither computer simulations nor experiments have confirmed this assertion....

  16. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  17. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude

    Science.gov (United States)

    Zuo, Shu-Yu; Tian, Ye; Wei, Qi; Cheng, Ying; Liu, Xiao-Jun

    2018-03-01

    The use of metasurfaces has allowed the provision of a variety of functionalities by ultrathin structures, paving the way toward novel highly compact analog computing devices. Here, we conceptually realize analog computing using an acoustic reflective computational metasurface (RCM) that can independently manipulate the reflection phase and amplitude of an incident acoustic signal. This RCM is composed of coating unit cells and perforated panels, where the first can tune the transmission phase within the full range of 2π and the second can adjust the reflection amplitude in the range of 0-1. We show that this RCM can achieve arbitrary reflection phase and amplitude and can be used to realize a unique linear spatially invariant transfer function. Using the spatial Fourier transform (FT), an acoustic analog computing (AAC) system is proposed based on the RCM together with a focusing lens. Based on numerical simulations, we demonstrate that this AAC system can perform mathematical operations such as spatial differentiation, integration, and convolution on an incident acoustic signal. The proposed system has low complexity and reduced size because the RCM is able to individually adjust the reflection phase and amplitude and because only one block is involved in performing the spatial FT. Our work may offer a practical, efficient, and flexible approach to the design of compact devices for acoustic computing applications, signal processing, equation solving, and acoustic wave manipulations.

  18. Virtual environment display for a 3D audio room simulation

    Science.gov (United States)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  19. The acoustical history of Hagia Sophia revived through computer simulations

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Weitze, C.A.; Christensen, Claus Lynge

    2002-01-01

    The present paper deals with acoustic computer simulations of Hagia Sophia, which is characterized not only by being one of the largest worship buildings in the world, but also by – in its 1500 year history – having served three purposes: as a church, as a mosque and today as a museum. The invest......The present paper deals with acoustic computer simulations of Hagia Sophia, which is characterized not only by being one of the largest worship buildings in the world, but also by – in its 1500 year history – having served three purposes: as a church, as a mosque and today as a museum....... The investigation is done as a part of the EU project - CAHRISMA....

  20. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.

    Science.gov (United States)

    Ma, Ping; Lien, Fue-Sang; Yee, Eugene

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.

  1. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich

    2006-01-01

    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  2. Auralization fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality

    CERN Document Server

    Vorlander, Michael

    2007-01-01

    "Auralization" is the technique of creation and reproduction of sound on the basis of computer data. With this tool is it possible to predict the character of sound signals which are generated at the source and modified by reinforcement, propagation and transmission in systems such as rooms, buildings, vehicles or other technical devices. This book is organized as a comprehensive collection of the basics of sound and vibration, acoustic modelling, simulation, signal processing and audio reproduction. Implementations of the auralization technique are described using examples drawn from various fields in acoustic’s research and engineering, architecture, sound design and virtual reality.

  3. Virtual reflections in electronic acoustic architecture

    Science.gov (United States)

    van Munster, Bjorn

    2005-09-01

    In the era of the ancient Greeks and Byzantines, the first attempts for increasing reverberation time are noted. In the 1950s, the Ambiophonic system accomplished this by means of an electronic device, for the first time. The early systems only increased the reverberation time by delaying the picked-up reverberation. With the introduction of multichannel feedback-based systems, the reverberation level also could be increased. Later, it was understood that it was important to also fill in the missing reflections, address reflection density, frequency dependence, etc. This resulted in the development of the SIAP concept. Current DSP technology led to the development of a processor whereby density, length, level, and the frequency content can be controlled for different areas in the same room or different rooms, leading to the concept of the acoustic server. electronic acoustic architecture has become the current state-of-the-art approach for solving acoustic deficiencies in, among others, rehearsal rooms, theaters, churches, and multipurpose venues. Incorporation of complementary passive acoustic solutions provides an optimum solution for all room problems. This paper discusses the utilization of virtual reflections in the new approach of electronic acoustic architecture for different environments. Measurements performed in the Sejong Performing Arts Centre, Seoul, South Korea, show the power of this approach.

  4. Navier-Stokes Simulation of Airconditioning Facility of a Large Modem Computer Room

    Science.gov (United States)

    2005-01-01

    NASA recently assembled one of the world's fastest operational supercomputers to meet the agency's new high performance computing needs. This large-scale system, named Columbia, consists of 20 interconnected SGI Altix 512-processor systems, for a total of 10,240 Intel Itanium-2 processors. High-fidelity CFD simulations were performed for the NASA Advanced Supercomputing (NAS) computer room at Ames Research Center. The purpose of the simulations was to assess the adequacy of the existing air handling and conditioning system and make recommendations for changes in the design of the system if needed. The simulations were performed with NASA's OVERFLOW-2 CFD code which utilizes overset structured grids. A new set of boundary conditions were developed and added to the flow solver for modeling the roomls air-conditioning and proper cooling of the equipment. Boundary condition parameters for the flow solver are based on cooler CFM (flow rate) ratings and some reasonable assumptions of flow and heat transfer data for the floor and central processing units (CPU) . The geometry modeling from blue prints and grid generation were handled by the NASA Ames software package Chimera Grid Tools (CGT). This geometric model was developed as a CGT-scripted template, which can be easily modified to accommodate any changes in shape and size of the room, locations and dimensions of the CPU racks, disk racks, coolers, power distribution units, and mass-storage system. The compute nodes are grouped in pairs of racks with an aisle in the middle. High-speed connection cables connect the racks with overhead cable trays. The cool air from the cooling units is pumped into the computer room from a sub-floor through perforated floor tiles. The CPU cooling fans draw cool air from the floor tiles, which run along the outside length of each rack, and eject warm air into the center isle between the racks. This warm air is eventually drawn into the cooling units located near the walls of the room. One

  5. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    Science.gov (United States)

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Suspended-sediment characteristics can be computed using acoustic indices derived from acoustic Doppler velocity meter (ADVM) backscatter data. The sediment acoustic index method applied in these types of studies can be used to more accurately and cost-effectively provide time-series estimates of suspended-sediment concentration and load, which is essential for informed solutions to many sediment-related environmental, engineering, and agricultural concerns. Advantages of this approach over other sediment surrogate methods include: (1) better representation of cross-sectional conditions from large measurement volumes, compared to other surrogate instruments that measure data at a single point; (2) high temporal resolution of collected data; (3) data integrity when biofouling is present; and (4) less rating curve hysteresis compared to streamflow as a surrogate. An additional advantage of this technique is the potential expansion of monitoring suspended-sediment concentrations at sites with existing ADVMs used in streamflow velocity monitoring. This report provides much-needed standard techniques for sediment acoustic index methods to help ensure accurate and comparable documented results.

  6. Spatial Processing of Urban Acoustic Wave Fields from High-Performance Computations

    National Research Council Canada - National Science Library

    Ketcham, Stephen A; Wilson, D. K; Cudney, Harley H; Parker, Michael W

    2007-01-01

    .... The objective of this work is to develop spatial processing techniques for acoustic wave propagation data from three-dimensional high-performance computations to quantify scattering due to urban...

  7. Subjective rating and objective evaluation of the acoustic and indoor climate conditions in video conferencing rooms

    DEFF Research Database (Denmark)

    Hauervig-Jørgensen, Charlotte; Jeong, Cheol-Ho; Toftum, Jørn

    2017-01-01

    Today, face-to-face meetings are frequently replaced by video conferences in order to reduce costs and carbon footprint related to travels and to increase the company efficiency. Yet, complaints about the difficulty of understanding the speech of the participants in both rooms of the video...... conference occur. The aim of this study is to find out the main causes of difficulties in speech communication. Correlation studies between subjective perceptions were conducted through questionnaires and objective acoustic and indoor climate parameters related to video conferencing. Based on four single...

  8. Computer code for shielding calculations of x-rays rooms

    International Nuclear Information System (INIS)

    Affonso, R.R.W.; Borges, D. da S.; Lava, D.D.; Moreira, M. de L.; Guimarães, A.C.F.

    2015-01-01

    The building an effective barrier against ionizing radiation present in radiographic rooms requires consideration of many variables. The methodology used for thickness specification of primary and secondary, barrier of a traditional radiographic room, considers the following factors: Use Factor, Occupational Factor, distance between the source and the wall, Workload, Kerma in the air and distance between the patient and the source. With these data it was possible to develop a computer code, which aims to identify and use variables in functions obtained through graphics regressions provided by NCRP-147 (Structural Shielding Design for Medical X-Ray Imaging Facilities) report, for shielding calculation of room walls, and the walls of the dark room and adjacent areas. With the implemented methodology, it was made a code validation by comparison of results with a study case provided by the report. The obtained values for thickness comprise different materials such as concrete, lead and glass. After validation it was made a case study of an arbitrary radiographic room.The development of the code resulted in a user-friendly tool for planning radiographic rooms to comply with the limits established by CNEN-NN-3:01 published in september/2011. (authors)

  9. Experimental and numerical comparison of absorption optimization in small rooms

    DEFF Research Database (Denmark)

    Wincentz, Jakob Nygård; Garcia, Julian Martinez-Villalba; Jeong, Cheol-Ho

    2016-01-01

    the Schroeder frequency. This project investigates experimentally changes in the room acoustic parameters by altering the positioning and orientation of porous materials in a small room, which are compared with finite element method (FEM) simulations. FEM is able to take into account the exact room geometry......, boundary conditions, and phase information providing accuracy at low frequencies. Good agreements are found between measurements and simulations, confirming that FEM can be used as a design tool for optimizing absorption and acoustic parameters in small rooms...

  10. A consideration on physical tuning for acoustical coloration in recording studio

    Science.gov (United States)

    Shimizu, Yasushi

    2003-04-01

    Coloration due to particular architectural shapes and dimension or less surface absorption has been mentioned as an acoustical defect in recording studio. Generally interference among early reflected sounds arriving within 10 ms in delay after the direct sound produces coloration by comb filter effect over mid- and high-frequency sounds. In addition, less absorbed room resonance modes also have been well known as a major component for coloration in low-frequency sounds. Small size in dimension with recording studio, however, creates difficulty in characterization associated with wave acoustics behavior, that make acoustical optimization more difficult than that of concert hall acoustics. There still remains difficulty in evaluating amount of coloration as well as predicting its acoustical characteristics in acoustical modeling and in other words acoustical tuning technique during construction is regarded as important to optimize acoustics appropriately to the function of recording studio. This paper presents a example of coloration by comb filtering effect and less damped room modes in typical post-processing recording studio. And acoustical design and measurement technique will be presented for adjusting timbre due to coloration based on psycho-acoustical performance with binaural hearing and room resonance control with line array resonator adjusted to the particular room modes considered.

  11. Prediction of room acoustical parameters (A)

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1991-01-01

    -averaged acoustical data. The results are presented in the form of linear, multiple regression formulas that may be used to predict the values of the newer measures of level, clarity, spaciousness, and musicians' conditions on the orchestra platform in halls with given RT and geometry....

  12. Modelling of a thermally activated building system (TABS) combined with free-hanging acoustic ceiling units using computational fluid dynamics (CFD)

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Fan, Jianhua

    2017-01-01

    . The active surfaces of TABS need to be as exposed as possible, but exposing bare concrete surfaces has a negative impact on the acoustic quality in the premises. Acoustic solutions capable of providing optimal acoustic comfort while allowing the heat exchange between the TABS and the room are desirable...... of the heat exchange between the TABS and the room and the occupants. The simulations are validated by comparison with full scale measurements in laboratory conditions. The study shows that for equivalent sound absorption levels, free-hanging vertical sound absorbers have a lower impact on the heat exchange......Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to achieve optimal indoor thermal environment in buildings. This solution uses the building mass to store heat and by means of water pipes embedded in the concrete slabs adjust the temperature in the premises...

  13. Virtual Acoustics: Evaluation of Psychoacoustic Parameters

    Science.gov (United States)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    Current virtual acoustic displays for teleconferencing and virtual reality are usually limited to very simple or non-existent renderings of reverberation, a fundamental part of the acoustic environmental context that is encountered in day-to-day hearing. Several research efforts have produced results that suggest that environmental cues dramatically improve perceptual performance within virtual acoustic displays, and that is possible to manipulate signal processing parameters to effectively reproduce important aspects of virtual acoustic perception in real-time. However, the computational resources for rendering reverberation remain formidable. Our efforts at NASA Ames have been focused using a several perceptual threshold metrics, to determine how various "trade-offs" might be made in real-time acoustic rendering. This includes both original work and confirmation of existing data that was obtained in real rather than virtual environments. The talk will consider the importance of using individualized versus generalized pinnae cues (the "Head-Related Transfer Function"); the use of head movement cues; threshold data for early reflections and late reverberation; and consideration of the necessary accuracy for measuring and rendering octave-band absorption characteristics of various wall surfaces. In addition, a consideration of the analysis-synthesis of the reverberation within "everyday spaces" (offices, conference rooms) will be contrasted to the commonly used paradigm of concert hall spaces.

  14. Room acoustic transition time based on reflection overlap

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Brunskog, Jonas; Jacobsen, Finn

    2010-01-01

    A transition time is defined based on the temporal overlap of reflected pulses in room impulse responses. Assuming specular reflections only, the temporal distance between adjacent reflections, which is proportional to the volume of a room, is compared with the characteristic width of a pulse at ...... in a room with nonuniform absorption and furniture than in a room that satisfies the underlying assumptions....

  15. Room acoustic transition time based on reflection overlap

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Brunskog, Jonas; Jacobsen, Finn

    2013-01-01

    A transition time is defined based on the temporal overlap of reflected pulses in room impulse responses. Assuming specular reflections only, the temporal distance between adjacent reflections, which is proportional to the volume of a room, is compared with the characteristic width of a pulse at ...... in a room with nonuniform absorption and furniture than in a room that satisfies the underlying assumptions....

  16. Computational reduction techniques for numerical vibro-acoustic analysis of hearing aids

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester

    . In this thesis, several challenges encountered in the process of modelling and optimizing hearing aids are addressed. Firstly, a strategy for modelling the contacts between plastic parts for harmonic analysis is developed. Irregularities in the contact surfaces, inherent to the manufacturing process of the parts....... Secondly, the applicability of Model Order Reduction (MOR) techniques to lower the computational complexity of hearing aid vibro-acoustic models is studied. For fine frequency response calculation and optimization, which require solving the numerical model repeatedly, a computational challenge...... is encountered due to the large number of Degrees of Freedom (DOFs) needed to represent the complexity of the hearing aid system accurately. In this context, several MOR techniques are discussed, and an adaptive reduction method for vibro-acoustic optimization problems is developed as a main contribution. Lastly...

  17. Computational Fluid Dynamics and Room Air Movement

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2004-01-01

    on the mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...

  18. Auralization of airborne sound insulation including the influence of source room

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2006-01-01

    The paper describes a simple and acoustically accurate method for the auralization of airborne sound insulation between two rooms by means of a room acoustic simulation software (ODEON). The method makes use of a frequency independent transparency of the transmitting surface combined...... with a frequency dependent power setting of the source in the source room. The acoustic properties in terms of volume and reverberation time as well as the area of the transmitting surface are all included in the simulation. The user only has to select the position of the source in the source room and the receiver...... of the transmitting surface is used for the simulation of sound transmission. Also the reduced clarity of the auralization due to the reverberance of the source room is inherent in the method. Currently the method is restricted to transmission loss data in octave bands....

  19. Computation of periods of acoustical oscillations of the sun

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Zharkov, V.N.

    1977-01-01

    It is stated that regular pulsations of the Sun were first reported in 1975-76 by several investigators (see Nature 259:87 and 92 (1976)), and that these oscillations were difficult to identify. It was decided to compute the periods of some acoustical modes using experience gained in calculations of free oscillations of Jupiter and Saturn, employing some complete solar models for the interior, the convective zone and the solar atmosphere. The equations employed and the methods of computations are described, and the results are given. (U.K.)

  20. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  1. Evaluation of Sound Quality, Boominess and Boxiness in Small Rooms

    DEFF Research Database (Denmark)

    Weisser, Adam; Rindel, Jens Holger

    2006-01-01

    ratings. The classical bass ratio definitions showed poor correlation with all subjective ratings. The overall sound quality ratings gave different results for speech and music. For speech the preferred mean RT should be as low as possible, whereas for music there was found a preferred range between 0......The acoustics of small rooms has been studied with emphasis on sound quality, boominess and boxiness when the rooms are used for speech or music. Seven rooms with very different characteristics have been used for the study. Subjective listening tests were made using binaural recordings...... of reproduced speech and music. The test results were compared with a large number of objective acoustic parameters based on the frequency-dependent reverberation times measured in the rooms. This has led to the proposal of three new acoustic parameters, which have shown high correlation with the subjective...

  2. The influence of the directivity of musical instruments in a room

    DEFF Research Database (Denmark)

    Otondo, Felipe; Rindel, Jens Holger

    2004-01-01

    Measurements of the directivity of musical instruments are presented as part of the study of the influence of their representation in room acoustic simulations and auralizations. Pairs of measured and averaged directivities have been used both for room simulation comparisons and as a basis...... for listening experiments with auralizations. Room simulation results show a clear influence of the changes in the representation directivity on the distribution of acoustical parameters in the room. The results of the listening experiments with auralizations show that some changes produced by directivity...

  3. A non-local computational boundary condition for duct acoustics

    Science.gov (United States)

    Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.

    1994-01-01

    A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.

  4. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...

  5. X-ray-induced acoustic computed tomography of concrete infrastructure

    Science.gov (United States)

    Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong

    2018-02-01

    X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.

  6. Estimating surface acoustic impedance with the inverse method.

    Science.gov (United States)

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  7. Fast rendering of scanned room geometries

    DEFF Research Database (Denmark)

    Olesen, Søren Krarup; Markovic, Milos; Hammershøi, Dorte

    2014-01-01

    Room acoustics are rendered in Virtual Realities based on models of the real world. These are typically rather coarse representations of the true geometry resulting in room impulse responses with a lack of natural detail. This problem can be overcome by using data scanned by sensors, such as e...

  8. Investigation of the validity of radiosity for sound-field prediction in cubic rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-12-01

    This paper explores acoustical (or time-dependent) radiosity using predictions made in four cubic enclosures. The methods and algorithms used are those presented in a previous paper by the same authors [Nosal, Hodgson, and Ashdown, J. Acoust. Soc. Am. 116(2), 970-980 (2004)]. First, the algorithm, methods, and conditions for convergence are investigated by comparison of numerous predictions for the four cubic enclosures. Here, variables and parameters used in the predictions are varied to explore the effect of absorption distribution, the necessary conditions for convergence of the numerical solution to the analytical solution, form-factor prediction methods, and the computational requirements. The predictions are also used to investigate the effect of absorption distribution on sound fields in cubic enclosures with diffusely reflecting boundaries. Acoustical radiosity is then compared to predictions made in the four enclosures by a ray-tracing model that can account for diffuse reflection. Comparisons are made of echograms, room-acoustical parameters, and discretized echograms. .

  9. The research and application of green computer room environmental monitoring system based on internet of things technology

    Science.gov (United States)

    Wei, Wang; Chongchao, Pan; Yikai, Liang; Gang, Li

    2017-11-01

    With the rapid development of information technology, the scale of data center increases quickly, and the energy consumption of computer room also increases rapidly, among which, energy consumption of air conditioning cooling makes up a large proportion. How to apply new technology to reduce the energy consumption of the computer room becomes an important topic of energy saving in the current research. This paper study internet of things technology, and design a kind of green computer room environmental monitoring system. In the system, we can get the real-time environment data from the application of wireless sensor network technology, which will be showed in a creative way of three-dimensional effect. In the environment monitor, we can get the computer room assets view, temperature cloud view, humidity cloud view, microenvironment view and so on. Thus according to the condition of the microenvironment, we can adjust the air volume, temperature and humidity parameters of the air conditioning for the individual equipment cabinet to realize the precise air conditioning refrigeration. And this can reduce the energy consumption of air conditioning, as a result, the overall energy consumption of the green computer room will reduce greatly. At the same time, we apply this project in the computer center of Weihai, and after a year of test and running, we find that it took a good energy saving effect, which fully verified the effectiveness of this project on the energy conservation of the computer room.

  10. Using Approximate Bayesian Computation to infer sex ratios from acoustic data.

    Science.gov (United States)

    Lehnen, Lisa; Schorcht, Wigbert; Karst, Inken; Biedermann, Martin; Kerth, Gerald; Puechmaille, Sebastien J

    2018-01-01

    Population sex ratios are of high ecological relevance, but are challenging to determine in species lacking conspicuous external cues indicating their sex. Acoustic sexing is an option if vocalizations differ between sexes, but is precluded by overlapping distributions of the values of male and female vocalizations in many species. A method allowing the inference of sex ratios despite such an overlap will therefore greatly increase the information extractable from acoustic data. To meet this demand, we developed a novel approach using Approximate Bayesian Computation (ABC) to infer the sex ratio of populations from acoustic data. Additionally, parameters characterizing the male and female distribution of acoustic values (mean and standard deviation) are inferred. This information is then used to probabilistically assign a sex to a single acoustic signal. We furthermore develop a simpler means of sex ratio estimation based on the exclusion of calls from the overlap zone. Applying our methods to simulated data demonstrates that sex ratio and acoustic parameter characteristics of males and females are reliably inferred by the ABC approach. Applying both the ABC and the exclusion method to empirical datasets (echolocation calls recorded in colonies of lesser horseshoe bats, Rhinolophus hipposideros) provides similar sex ratios as molecular sexing. Our methods aim to facilitate evidence-based conservation, and to benefit scientists investigating ecological or conservation questions related to sex- or group specific behaviour across a wide range of organisms emitting acoustic signals. The developed methodology is non-invasive, low-cost and time-efficient, thus allowing the study of many sites and individuals. We provide an R-script for the easy application of the method and discuss potential future extensions and fields of applications. The script can be easily adapted to account for numerous biological systems by adjusting the type and number of groups to be

  11. The PAC-MAN model: Benchmark case for linear acoustics in computational physics

    Science.gov (United States)

    Ziegelwanger, Harald; Reiter, Paul

    2017-10-01

    Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.

  12. Baffling or Baffled: Improve Your Acoustics.

    Science.gov (United States)

    Abdoo, Frank B.

    1981-01-01

    Presents techniques for evaluating the acoustics (reverberation time, and standing waves and resonance phenomena) of a band performance room. Gives instructions for building and placing inexpensive baffles (free-standing, portable sound barriers) to correct room defects. (SJL)

  13. Acoustic design by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Jensen, Jakob Søndergaard; Sigmund, Ole

    2008-01-01

    To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions...... in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling...

  14. Topology optimization applied to room acoustic problems and surface acoustic wave devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard

    can be minimized either by distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along all the walls for both 2D and 3D problems. It is also shown how the method can be used to design sound barriers. The main part...... in order to optimize more complicated SAW structures such as acoustic horns which focus the SAWs to a small area. [1] M. P. Bendsøe, O. Sigmund, “Topology optimization, theory, methods and applications”, Springer Verlag Berlin Heidelberg New York, 2nd edition, (2003). ISBN 3-540-42992-1. [2] J. S. Jensen......, Berlin, (2000). ISBN 3-540-67232-X. [5] M. M. de Lima Jr and P. V. Santos, “Modulation of photonic structures by surface acoustic waves”, Rep. Prog. Phys., 68 1639-1701 (2005)...

  15. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  16. Auralisations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....

  17. Experimental and numerical comparison of absorption optimization in small rooms

    DEFF Research Database (Denmark)

    Wincentz, Jakob Nygård; Garcia, Julian Martinez-Villalba; Jeong, Cheol-Ho

    2016-01-01

    A vast majority of modern music is recorded and produced in small control room environments of volumes of around 50 m3 . Several problems occur when controlling the room acoustics of such small spaces. First, the room modes will produce strong peaks and dips particularly at lower frequencies......, and even in the sweet spot position the listening experience can be easily deteriorated. Second, when designing or refurbishing small rooms it is hard to adequately predict the reverberation time by using Sabine’s formula due to highly non-diffuse conditions and using a statistical approach below......, boundary conditions, and phase information providing accuracy at low frequencies. Good agreements are found between measurements and simulations, confirming that FEM can be used as a design tool for optimizing absorption and acoustic parameters in small rooms...

  18. Room escape at class: escape games activities to facilitate the motivation and learning in computer science

    OpenAIRE

    Borrego, Carlos; Fernández, Cristina; Blanes, Ian; Robles, Sergi

    2017-01-01

    Real-life room-escape games are ludic activities in which participants enter a room in order to get out of it only after solving some riddles. In this paper, we explain a Room Escape teaching experience developed in the Engineering School at Universitat Autònoma de Barcelona. The goal of this activity is to increase student’s motivation and to improve their learning on two courses of the second year in the Computer Engineering degree: Computer Networksand Information and Security Peer Revi...

  19. Auralizations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... of the PARISM impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....

  20. Odeon, a design tool for auditorium acoustics, noise control and loudspeaker systems

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    2001-01-01

    The ODEON software was originally developed for prediction of auditorium acoustics. However current editions of the software are not limited to these fields, but also allow prediction in rooms such as churches and mosques, interior noise control, design of room acoustics and sound distribution...

  1. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms.

    Science.gov (United States)

    Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling

    2015-09-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered.

  2. Room escape at class: Escape games activities to facilitate the motivation and learning in computer science

    Directory of Open Access Journals (Sweden)

    Carlos Borrego

    2017-06-01

    Full Text Available Real-life room-escape games are ludic activities in which participants enter a room in order to get out of it only after solving some riddles. In this paper, we explain a Room Escape teaching experience developed in the Engineering School at Universitat Autònoma de Barcelona. The goal of this activity is to increase student’s motivation and to improve their learning on two courses of the second year in the Computer Engineering degree: Computer Networksand Information and Security.

  3. Acoustics of a Music Venue/Bar—A Case Study

    Directory of Open Access Journals (Sweden)

    Ramani Ramakrishnan

    2016-03-01

    Full Text Available A vacant unit, once used by a Portuguese Deli, was converted to a bar/music room in Toronto. The unit was divided into two spaces along its north-south axis. The western portion was designed as a music room that would provide a performance space from a solo artist to a Jazz combo to a small rock band. The eastern part was designed as a regular bar/dining area. The plan also called for a microbrewery unit at the back of the unit. The bar music can be loud, while the music room can be pianissimo to forte depending on the type of performance. The acoustical design aspects are critical for the music room. In addition, the acoustical separation between the two spaces is equally important. The music room/bar is currently in use. The design results are compared to actual field measurements. The results showed that the music venue performed satisfactorily. The acoustical separation between the music venue and the bar/restaurant was better than expected other than an installation deficiency of the south side sound lock doors. The background sound along the northern portion was NC-35 or less. However, the southern portion’s background sound exceeded NC-35 due to the hissing of the return air grille. The acoustical design and the performance results of the music venue-bar/restaurant are presented in this paper.

  4. Acoustic conditions in open plan offices – Pilot test results

    Directory of Open Access Journals (Sweden)

    Witold Mikulski

    2016-10-01

    Full Text Available Background: The main source of noise in open plan office are conversations. Office work standards in such premises are attained by applying specific acoustic adaptation. This article presents the results of pilot tests and acoustic evaluation of open space rooms. Material and Methods: Acoustic properties of 6 open plan office rooms were the subject of the tests. Evaluation parameters, measurement methods and criterial values were adopted according to the following standards: PN-EN ISO 3382- 3:2012, PN-EN ISO 3382-2:2010, PN-B-02151-4:2015-06 and PN-B-02151-3:2015-10. Results: The reverberation time was 0.33– 0.55 s (maximum permissible value in offices – 0.6 s; the criterion was met, sound absorption coefficient in relation to 1 m2 of the room’s plan was 0.77–1.58 m2 (minimum permissible value – 1.1 m2; 2 out of 6 rooms met the criterion, distraction distance was 8.5–14 m (maximum permissible value – 5 m; none of the rooms met the criterion, A-weighted sound pressure level of speech at a distance of 4 m was 43.8–54.7 dB (maximum permissible value – 48 dB; 2 out of 6 rooms met the criterion, spatial decay rate of the speech was 1.8–6.3 dB (minimum permissible value – 7 dB; none of the rooms met the criterion. Conclusions: Standard acoustic treatment, containing sound absorbing suspended ceiling, sound absorbing materials on the walls, carpet flooring and sound absorbing workplace barriers, is not sufficient. These rooms require specific advanced acoustic solutions. Med Pr 2016;67(5:653–662

  5. Classroom acoustics in public schools: A case study

    Science.gov (United States)

    Loro, Carmen P.; Zannin, Paulo T.

    2004-05-01

    The acoustic quality of a standard classroom (Standard 23) of the public school system in the city of Curitiba has been evaluated. This standard has a central circulation aisle with two classrooms in each side. Each room has windows to the outside and to the internal aisle. Additionally, the aisle has a 6-m-high zenithal skylight, together composing the building's main lighting and ventilation system. But, Standard 23 lacks acoustic quality of the classrooms. In order to assay this, measurements have been performed under several conditions, using the Building Acoustics System of Bruel & Kjaer. The measured reverberation time (RT) of the four classrooms for a frequency of 500 Hz was: 1.65 s (empty classroom), 1.15 s (20 students in the room), and 0.76 s (40 students). According to WHO recommendations, the ideal RT in classrooms should be around 0.6 s. DIN 18041 establishes an RT between 0.8 and 1.0 s, to allow for adequate intelligibility. Background noise in an empty room was 63.3 dB (A), above the limit established by the Brazilian standard of acoustic comfort: 40 dB (A). The reaction of students and teachers has indicated that the main source of acoustic discomfort is the noise generated by the neighboring classrooms.

  6. Some Sound Advice or a Short Course in School Acoustics

    Science.gov (United States)

    McCandless, David

    1977-01-01

    The two major areas of acoustical problems are room acoustics and noise control. Some parameters of these areas are identified to illustrate that the best acoustical solutions occur in comprehensive planning at the very beginning of a project. (Author/MLF)

  7. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films

    Science.gov (United States)

    Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.

  8. Acoustical Properties of Contemporary Mosques

    OpenAIRE

    Karaman Özgül Yılmaz; Güzel Neslihan Onat

    2017-01-01

    Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  9. Merging Computer Writing & Collaborative Learning: The Role of Space in Room N779.

    Science.gov (United States)

    Moberg, Goran

    At Borough of Manhattan Community College in New York City about a dozen teachers teach English composition in a special room (N779): 25 computers along the 4 walls frame the large arena in the center which holds several work tables, each one surrounded by 6 chairs. The room is an eco-system designed for learning about text production. The most…

  10. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)

    2007-07-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes.

  11. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N.

    2007-01-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes

  12. Topology optimization for acoustic problems

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2006-01-01

    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 designs...

  13. Experimental Acoustic Evaluation of an Auditorium

    Directory of Open Access Journals (Sweden)

    Marina Dana Ţopa

    2012-01-01

    Full Text Available The paper presents a case history: the acoustical analysis of a rectangular auditorium. The following acoustical parameters were evaluated: early decay time, reverberation time, clarity, definition, and center time. The excitation signal was linear sweep sine and additional analysis was carried out: peak-to-noise ratio, reverberation time for empty and occupied room, standard deviation of acoustical parameters, diffusion, and just noticeable differences analysis. Conclusions about room’s destination and modeling were drawn in the end.

  14. Agorá Acoustics - Effects of arcades on the acoustics of public squares

    DEFF Research Database (Denmark)

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger

    2005-01-01

    This paper is part of a PhD work, dealing with the acoustics of the public squares (‘Agorá Acoustics’), especially when music (amplified or not) is played. Consequently, our approach will be to evaluate public squares using the same set of acoustics concepts for subjective evaluation and objective...... measurements as applied for concert halls and theatres. In this paper the acoustical effects of arcades will be studied, in terms of reverberation (EDT and T30), clarity (C80), intelligibility (STI) and other acoustical parameters. For this purpose, also the theory of coupled rooms is applied and compared...... with results. An acoustic modelling program, ODEON 7.0, was used for this investigation. Three different sizes of public squares were considered. In order to evaluate the ‘real’ effects of the arcades on the open square, models of all three squares were designed both with and without arcades. The sound source...

  15. Influence of Diffusivity in Room on its Acoustic Response

    Directory of Open Access Journals (Sweden)

    D. Šumarac Pavlović

    2010-11-01

    Full Text Available Diffusivity is a geometrical feature of the room which is proportional to the dimension of relief on its interior surfaces. This paper presents the results of analysis which investigates the correlation between diffusivity in a room and parameters calculated from a recorded impulse response. The analysis was performed using a specially prepared physical model of a parallelepipedic room with different combinations of flat and diffusive interior surfaces.

  16. A comparison of partially specular radiosity and ray tracing for room acoustics modeling

    Science.gov (United States)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2005-04-01

    Partially specular (PS) radiosity is an extended form of the general radiosity method. Acoustic radiosity is a form of bulk transfer of radiant acoustic energy. This bulk transfer is accomplished through a system of energy balance equations that relate the bulk energy transfer of each surface in the system to all other surfaces in the system. Until now acoustic radiosity has been limited to modeling only diffuse surface reflection. The new PS acoustic radiosity method can model all real surface types, diffuse, specular and everything in between. PS acoustic radiosity also models all real source types and distributions, not just point sources. The results of the PS acoustic radiosity method are compared to those of well known ray tracing programs. [Work supported by NSF.

  17. Acoustical Properties of Contemporary Mosques

    Directory of Open Access Journals (Sweden)

    Karaman Özgül Yılmaz

    2017-04-01

    Full Text Available Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  18. Acoustics in Halls for Speech and Music

    Science.gov (United States)

    Gade, Anders C.

    This chapter deals specifically with concepts, tools, and architectural variables of importance when designing auditoria for speech and music. The focus will be on cultivating the useful components of the sound in the room rather than on avoiding noise from outside or from installations, which is dealt with in Chap. 11. The chapter starts by presenting the subjective aspects of the room acoustic experience according to consensus at the time of writing. Then follows a description of their objective counterparts, the objective room acoustic parameters, among which the classical reverberation time measure is only one of many, but still of fundamental value. After explanations on how these parameters can be measured and predicted during the design phase, the remainder of the chapter deals with how the acoustic properties can be controlled by the architectural design of auditoria. This is done by presenting the influence of individual design elements as well as brief descriptions of halls designed for specific purposes, such as drama, opera, and symphonic concerts. Finally, some important aspects of loudspeaker installations in auditoria are briefly touched upon.

  19. The role of classroom acoustics on vocal intensity regulation and speakers’ comfort

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David

    Teachers are one of the professional groups with the highest risk of suffering from voice disorders. Teachers point out classroom acoustics among the potential hazards affecting their vocal health, together with air dryness, background noise, and other environmental factors. The present project has...... investigated the relationships between the classroom acoustic condition and teachers’ voice, focusing on their vocal intensity, and between the classroom acoustic condition and the sensation of acoustic comfort for a speaker. In the presence of low background noise levels, teachers were found to adjust...... their vocal intensity according to the room gain or voice support of the classroom, which are equivalent objective measures that quantify the amplification of one’s own voice in a room due to the reflections at the room boundaries. Most of the vocal intensity variation among classrooms was due to differences...

  20. Computational Acoustics: Computational PDEs, Pseudodifferential Equations, Path Integrals, and All That Jazz

    Science.gov (United States)

    Fishman, Louis

    2000-11-01

    The role of mathematical modeling in the physical sciences will be briefly addressed. Examples will focus on computational acoustics, with applications to underwater sound propagation, electromagnetic modeling, optics, and seismic inversion. Direct and inverse wave propagation problems in both the time and frequency domains will be considered. Focusing on fixed-frequency (elliptic) wave propagation problems, the usual, two-way, partial differential equation formulation will be exactly reformulated, in a well-posed manner, as a one-way (marching) problem. This is advantageous for both direct and inverse considerations, as well as stochastic modeling problems. The reformulation will require the introduction of pseudodifferential operators and their accompanying phase space analysis (calculus), in addition to path integral representations for the fundamental solutions and their subsequent computational algorithms. Unlike the more traditional, purely numerical applications of, for example, finite-difference and finite-element methods, this approach, in effect, writes the exact, or, more generally, the asymptotically correct, answer as a functional integral and, subsequently, computes it directly. The overall computational philosophy is to combine analysis, asymptotics, and numerical methods to attack complicated, real-world problems. Exact and asymptotic analysis will stress the complementary nature of the direct and inverse formulations, as well as indicating the explicit structural connections between the time- and frequency-domain solutions.

  1. Optimization of Virtual Loudspeakers for Spatial Room Acoustics Reproduction with Headphones

    Directory of Open Access Journals (Sweden)

    Otto Puomio

    2017-12-01

    Full Text Available The use of headphones in reproducing spatial sound is becoming more and more popular. For instance, virtual reality applications often use head-tracking to keep the binaurally reproduced auditory environment stable and to improve externalization. Here, we study one spatial sound reproduction method over headphones, in particular the positioning of the virtual loudspeakers. The paper presents an algorithm that optimizes the positioning of virtual reproduction loudspeakers to reduce the computational cost in head-tracked real-time rendering. The listening test results suggest that listeners could discriminate the optimized loudspeaker arrays for renderings that reproduced a relatively simple acoustic conditions, but optimized array was not significantly different from equally spaced array for a reproduction of a more complex case. Moreover, the optimization seems to change the perceived openness and timbre, according to the verbal feedback of the test subjects.

  2. On architectural acoustic design using computer simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper...... discusses the advantages and disadvantages of the programme in each phase compared to the works of architects not using acoustic simulation programmes. The conclusion of the paper is that the application of acoustic simulation programs is most beneficial in the last of three phases but an application...

  3. Outdoor Acoustics as a General Discipline

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    A tutorial paper exploring the characteristics of sound outdoors. Outdoor acoustics is contrasted to room acoustics. A number of important aspects of outdoor acoustics are exemplified and theoretical approaches are outlined. These are influence of ground impedance, influence of weather, screening...... to the application in question. In this way results providing a certain level of accuracy are obtained using methods which are balanced with the accuracy of the input data. Advanced measurement techniques are looked into and suggestions for future research are made...

  4. Acoustical case studies of three green buildings

    Science.gov (United States)

    Siebein, Gary; Lilkendey, Robert; Skorski, Stephen

    2005-04-01

    Case studies of 3 green buildings with LEED certifications that required extensive acoustical retrofit work to become satisfactory work environments for their intended user groups will be used to define areas where green building design concepts and acoustical design concepts require reconciliation. Case study 1 is an office and conference center for a city environmental education agency. Large open spaces intended to collect daylight through clerestory windows provided large, reverberant volumes with few acoustic finishes that rendered them unsuitable as open office space and a conference room/auditorium. Case Study 2 describes one of the first gold LEED buildings in the southeast whose primary design concepts were so narrowly focused on thermal and lighting issues that they often worked directly against basic acoustical requirements resulting in sound levels of NC 50-55 in classrooms and faculty offices, crosstalk between classrooms and poor room acoustics. Case study 3 is an environmental education and conference center with open public areas, very high ceilings, and all reflective surfaces made from wood and other environmentally friendly materials that result in excessive loudness when the building is used by the numbers of people which it was intended to serve.

  5. Creating Innovative Solutions for Future Hotel Rooms with Intelligent Multimedia and Pervasive Computing

    Science.gov (United States)

    Sharda, Nalin K.

    Pervasive computing and intelligent multimedia technologies are becoming increasingly important to the modern way of living. However, many of their potential applications have not been fully realized yet. This chapter explores how innovative applications can be developed to meet the needs of the next generation hotels. Futuristic hotel rooms aim to be more than “home-away-from-home,” and as a consequence, offer tremendous opportunities for developing innovative applications of pervasive computing and intelligent multimedia. Next generation hotels will make increased use of technology products to attract new customers. High end TV screens, changeable room ambiance, biometric guest recognition, and electronic check-in facilities are some of the features already being implemented by some hotels. Entirely futuristic hotels in the sea, the stratosphere or the outer space, are also being proposed. All of these provide many novel opportunities for developing innovative solutions using intelligent multimedia and ubiquitous computing.

  6. Acoustical qualification of Teatro Nuovo in Spoleto before refurbishing works

    Science.gov (United States)

    Cocchi, Alessandro; Cesare Consumi, Marco; Shimokura, Ryota

    2004-05-01

    To qualify the acoustical quality of an opera house two different approaches are now available: one is based on responses of qualified listeners (subjective judgments) compared with objective values of selected parameters, the other on comparison tests conducted in suited rooms and on a model of the auditory brain system (preference). In the occasion of the refurbishment of an opera house known for the Two Worlds Festival edited yearly by the Italian Composer G. C. Menotti, a large number of measurements were taken with different techniques, so it is possible to compare the different methods and also the results with some geometrical criterion, based on the most simple rules of musical harmony, now neglected as our attention is attracted to computer simulations, computer aided measurement techniques and similar modern methods. From this work some link between well known acoustical parameters (not known at the time when architects sketched the shape of ancient opera houses) and geometrical criteria (well known at the time when ancient opera houses were built) will be shown.

  7. Building Acoustics

    Science.gov (United States)

    Cowan, James

    This chapter summarizes and explains key concepts of building acoustics. These issues include the behavior of sound waves in rooms, the most commonly used rating systems for sound and sound control in buildings, the most common noise sources found in buildings, practical noise control methods for these sources, and the specific topic of office acoustics. Common noise issues for multi-dwelling units can be derived from most of the sections of this chapter. Books can be and have been written on each of these topics, so the purpose of this chapter is to summarize this information and provide appropriate resources for further exploration of each topic.

  8. EXTRAN: A computer code for estimating concentrations of toxic substances at control room air intakes

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1991-03-01

    This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions. The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files. 25 refs., 8 figs., 4 tabs

  9. Spatial Hearing with Incongruent Visual or Auditory Room Cues

    Science.gov (United States)

    Gil-Carvajal, Juan C.; Cubick, Jens; Santurette, Sébastien; Dau, Torsten

    2016-11-01

    In day-to-day life, humans usually perceive the location of sound sources as outside their heads. This externalized auditory spatial perception can be reproduced through headphones by recreating the sound pressure generated by the source at the listener’s eardrums. This requires the acoustical features of the recording environment and listener’s anatomy to be recorded at the listener’s ear canals. Although the resulting auditory images can be indistinguishable from real-world sources, their externalization may be less robust when the playback and recording environments differ. Here we tested whether a mismatch between playback and recording room reduces perceived distance, azimuthal direction, and compactness of the auditory image, and whether this is mostly due to incongruent auditory cues or to expectations generated from the visual impression of the room. Perceived distance ratings decreased significantly when collected in a more reverberant environment than the recording room, whereas azimuthal direction and compactness remained room independent. Moreover, modifying visual room-related cues had no effect on these three attributes, while incongruent auditory room-related cues between the recording and playback room did affect distance perception. Consequently, the external perception of virtual sounds depends on the degree of congruency between the acoustical features of the environment and the stimuli.

  10. Combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part...

  11. Development of ion-acoustic double layers through ion-acoustic fluctuations

    International Nuclear Information System (INIS)

    Sekar, A.N.; Saxena, Y.C.

    1985-01-01

    Experimental results on the formation of ion acoustic double layers resembling asymmetric ion-holes are presented. In a double plasma device, modified suitably to inject electron beam into the target plasma, modulation of the beam through step potential leads to excitation of ion-acoustic fluctuation. The ion-acoustic fluctuation, growing away from the grids separating source and target plasmas, developed into weak asymmetric ion-acoustic double layer. The observations are in qualitative agreement with theoretical models and computer simulations. (author)

  12. Acoustic phonons in the hexagonal perovskite CsNiCl3 around the Gamma-point

    DEFF Research Database (Denmark)

    Visser, D.; Monteith, A.R.; Rønnow, H.M.

    2000-01-01

    The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared with the ......The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared...

  13. Acoustic and Perceptual Effects of Left-Right Laryngeal Asymmetries Based on Computational Modeling

    Science.gov (United States)

    Samlan, Robin A.; Story, Brad H.; Lotto, Andrew J.; Bunton, Kate

    2014-01-01

    Purpose: Computational modeling was used to examine the consequences of 5 different laryngeal asymmetries on acoustic and perceptual measures of vocal function. Method: A kinematic vocal fold model was used to impose 5 laryngeal asymmetries: adduction, edge bulging, nodal point ratio, amplitude of vibration, and starting phase. Thirty /a/ and /?/…

  14. A computed room temperature line list for phosphine

    Science.gov (United States)

    Sousa-Silva, Clara; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    An accurate and comprehensive room temperature rotation-vibration transition line list for phosphine (31PH3) is computed using a newly refined potential energy surface and a previously constructed ab initio electric dipole moment surface. Energy levels, Einstein A coefficients and transition intensities are computed using these surfaces and a variational approach to the nuclear motion problem as implemented in the program TROVE. A ro-vibrational spectrum is computed, covering the wavenumber range 0-8000 cm-1. The resulting line list, which is appropriate for temperatures up to 300 K, consists of a total of 137 million transitions between 5.6 million energy levels. Several of the band centres are shifted to better match experimental transition frequencies. The line list is compared to the most recent HITRAN database and other laboratorial sources. Transition wavelengths and intensities are generally found to be in good agreement with the existing experimental data, with particularly close agreement for the rotational spectrum. An analysis of the comparison between the theoretical data created and the existing experimental data is performed, and suggestions for future improvements and assignments to the HITRAN database are made.

  15. Signal validation with control-room information-processing computers

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Carlson, R.W.; Russell, J.L. Jr.

    1985-01-01

    One of the 'lessons learned' from the Three Mile Island accident focuses upon the need for a validated source of plant-status information in the control room. The utilization of computer-generated graphics to display the readings of the major plant instrumentation has introduced the capability of validating signals prior to their presentation to the reactor operations staff. The current operations philosophies allow the operator a quick look at the gauges to form an impression of the fraction of full scale as the basis for knowledge of the current plant conditions. After the introduction of a computer-based information-display system such as the Safety Parameter Display System (SPDS), operational decisions can be based upon precise knowledge of the parameters that define the operation of the reactor and auxiliary systems. The principal impact of this system on the operator will be to remove the continuing concern for the validity of the instruments which provide the information that governs the operator's decisions. (author)

  16. Acoustic comfort in high-school classrooms for students and teachers

    NARCIS (Netherlands)

    G.E. Puglisi; L.C. Cantor Cutiva (Lady Catherine); L. Pavese; A. Castellana; M. Bona; S. Fasolis; V. Lorenzatti; A. Carullo; A. Burdor; F. Bronuzzi; A. Astolfi

    2015-01-01

    textabstractThis work focuses on the evaluation of acoustical quality in high-school classrooms through in-field measurements and self-reports. Two school buildings that differ in location and typology, were considered. In-field measurements included sound insulation, room acoustics and

  17. Perception of Reverberation in Small Rooms

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Jensen, Søren Holdt

    summarises the current literature following a top-down approach. It identifies the perceptual aspects of reverberation and attempts to establish links to physical measures, focussing on small rooms. Results indicate that the current acoustical metrics often have limited correlation to the perceptual...

  18. Sub-sampling-based 2D localization of an impulsive acoustic source in reverberant environments

    KAUST Repository

    Omer, Muhammad

    2014-07-01

    This paper presents a robust method for two-dimensional (2D) impulsive acoustic source localization in a room environment using low sampling rates. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. We consider the RIR as a sparse phenomenon and apply a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) for its estimation from the sub-sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR, and their difference yields the desired time delay estimate (TDE). Low sampling rates reduces the hardware and computational complexity and decreases the communication between the microphones and the centralized location. Simulation and experimental results of an actual hardware setup are presented to demonstrate the performance of the proposed technique.

  19. Sub-sampling-based 2D localization of an impulsive acoustic source in reverberant environments

    KAUST Repository

    Omer, Muhammad; Quadeer, Ahmed A; Sharawi, Mohammad S; Al-Naffouri, Tareq Y.

    2014-01-01

    This paper presents a robust method for two-dimensional (2D) impulsive acoustic source localization in a room environment using low sampling rates. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. We consider the RIR as a sparse phenomenon and apply a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) for its estimation from the sub-sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR, and their difference yields the desired time delay estimate (TDE). Low sampling rates reduces the hardware and computational complexity and decreases the communication between the microphones and the centralized location. Simulation and experimental results of an actual hardware setup are presented to demonstrate the performance of the proposed technique.

  20. Scattering from objects and surfaces in room acoustical simulations

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    been implemented in the simulation tool PARISM (Phased Acoustical Radiosity and Image Source Method). Scattering from objects and surfaces is likely to be strongly frequency dependent and the frequency dependence can depend on their sizes, shapes and structure. The importance of the frequency...

  1. Speaker comfort and increase of voice level in lecture rooms

    DEFF Research Database (Denmark)

    Brunskog, Jonas; Gade, Anders Christian; Bellester, G P

    2008-01-01

    Teachers often suffer health problems or tension related to their voice. These problems may be related to there working environment, including room acoustics of the lecture rooms which forces them to stress their voices. The present paper describes a first effort in finding relationships between...... were also measured in the rooms and subjective impressions from about 20 persons who had experience talking in these rooms were collected as well. Analysis of the data revealed significant differences in the sound power produced by the speaker in the different rooms. It was also found...

  2. Coronary Computed Tomography Angiography in the Assessment of Acute Chest Pain in the Emergency Room

    Energy Technology Data Exchange (ETDEWEB)

    Prazeres, Carlos Eduardo Elias dos; Cury, Roberto Caldeira; Carneiro, Adriano Camargo de Castro [Hospital do Coração - HCor, Associação do Sanatório Sírio, São Paulo, SP (Brazil); Rochitte, Carlos Eduardo, E-mail: rochitte@cardiol.br [Hospital do Coração - HCor, Associação do Sanatório Sírio, São Paulo, SP (Brazil); Instituto do Coração - InCor - HCFMUSP, São Paulo, SP (Brazil)

    2013-12-15

    The coronary computed tomography angiography has recently emerged as an accurate diagnostic tool in the evaluation of coronary artery disease, providing diagnostic and prognostic data that correlate directly with the data provided by invasive coronary angiography. The association of recent technological developments has allowed improved temporal resolution and better spatial coverage of the cardiac volume with significant reduction in radiation dose, and with the crucial need for more effective protocols of risk stratification of patients with chest pain in the emergency room, recent evaluation of the computed tomography coronary angiography has been performed in the setting of acute chest pain, as about two thirds of invasive coronary angiographies show no significantly obstructive coronary artery disease. In daily practice, without the use of more efficient technologies, such as coronary angiography by computed tomography, safe and efficient stratification of patients with acute chest pain remains a challenge to the medical team in the emergency room. Recently, several studies, including three randomized trials, showed favorable results with the use of this technology in the emergency department for patients with low to intermediate likelihood of coronary artery disease. In this review, we show data resulting from coronary angiography by computed tomography in risk stratification of patients with chest pain in the emergency room, its diagnostic value, prognosis and cost-effectiveness and a critical analysis of recently published multicenter studies.

  3. Coronary Computed Tomography Angiography in the Assessment of Acute Chest Pain in the Emergency Room

    International Nuclear Information System (INIS)

    Prazeres, Carlos Eduardo Elias dos; Cury, Roberto Caldeira; Carneiro, Adriano Camargo de Castro; Rochitte, Carlos Eduardo

    2013-01-01

    The coronary computed tomography angiography has recently emerged as an accurate diagnostic tool in the evaluation of coronary artery disease, providing diagnostic and prognostic data that correlate directly with the data provided by invasive coronary angiography. The association of recent technological developments has allowed improved temporal resolution and better spatial coverage of the cardiac volume with significant reduction in radiation dose, and with the crucial need for more effective protocols of risk stratification of patients with chest pain in the emergency room, recent evaluation of the computed tomography coronary angiography has been performed in the setting of acute chest pain, as about two thirds of invasive coronary angiographies show no significantly obstructive coronary artery disease. In daily practice, without the use of more efficient technologies, such as coronary angiography by computed tomography, safe and efficient stratification of patients with acute chest pain remains a challenge to the medical team in the emergency room. Recently, several studies, including three randomized trials, showed favorable results with the use of this technology in the emergency department for patients with low to intermediate likelihood of coronary artery disease. In this review, we show data resulting from coronary angiography by computed tomography in risk stratification of patients with chest pain in the emergency room, its diagnostic value, prognosis and cost-effectiveness and a critical analysis of recently published multicenter studies

  4. A Review of Acoustic Consideration in Public and Multifunctional ...

    African Journals Online (AJOL)

    It has been shown that acoustics in buildings depend mainly on the type and use of the buildings, therefore acoustic criteria and design parameters in public and multifunctional buildings should be such that it takes into consideration the room reverberation time, background noise and sound isolation to enhance speech ...

  5. Validation of a loudspeaker-based room auralization system using speech intelligibility measures

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2009-01-01

    A novel loudspeaker-based room auralization (LoRA) system has been proposed to generate versatile and realistic virtual auditory environments (VAEs) for investigating human auditory perception. This system efficiently combines modern room acoustic models with loudspeaker auralization using either...

  6. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  7. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  8. Room acoustics for the aged.

    Science.gov (United States)

    Plomp, R; Duquesnoy, A J

    1980-12-01

    This article deals with the combined effects of noise and reverberation on the speech-reception threshold for sentences. It is based on a series of current investigations on: (1) the modulation-transfer function as a measure of speech intelligibility in rooms, (2) the applicability of this concept to hearing-impaired persons, and (3) hearing loss for speech in quiet and in noise as a function of age. It is shown that, generally, in auditoria, classrooms, etc. the reverberation time T, acceptable for normal-hearing listeners, has to be reduced to (0.75)DT in order to be acceptable for elderly subjects with a hearing loss of D dB for speech in noise; for listening conditions as in lounges, restaurants, etc. the corresponding value is (0.82)DT.

  9. Time delay estimation in a reverberant environment by low rate sampling of impulsive acoustic sources

    KAUST Repository

    Omer, Muhammad

    2012-07-01

    This paper presents a new method of time delay estimation (TDE) using low sample rates of an impulsive acoustic source in a room environment. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. The RIR is considered a sparse phenomenon and a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) is utilized for its estimation from the low rate sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR and their difference yields the desired time delay. Low sampling rates reduce the hardware and computational complexity and decrease the communication between the microphones and the centralized location. The performance of the proposed technique is demonstrated by numerical simulations and experimental results. © 2012 IEEE.

  10. A combination of the acoustic radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I.; Brunskog, Jonas; Jeong, Cheol-Ho

    2012-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part...

  11. The acoustic design of the Centro Nacional de las Artes in Mexico City

    Science.gov (United States)

    Cooper, Rusell

    2002-11-01

    In this paper the acoustic design of the separate buildings housing the school of music, school of drama, and school of dance that opened in 1996 will be described. Spaces that JHA designed included practice rooms, studios, rehearsal rooms, black box, and concert hall. Details of room acoustic treatments, sound isolation measures, and venturi air flow will be illustrated. An overview of the entire project will also include the 500 seat multipurpose theater (with variable absorption systems) and the Alla Magna. Differences between the American and Mexican styles of consulting, importing of materials, installation, and commissioning will also be discussed.

  12. Determination of acoustical transfer functions using an impulse method

    Science.gov (United States)

    MacPherson, J.

    1985-02-01

    The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.

  13. Computational Aero-Acoustic Using High-order Finite-Difference Schemes

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    are solved using the in-house flow solver EllipSys2D/3D which is a second-order finite volume code. The acoustic solution is found by solving the acoustic equations using high-order finite difference schemes. The incompressible flow equations and the acoustic equations are solved at the same time levels......In this paper, a high-order technique to accurately predict flow-generated noise is introduced. The technique consists of solving the viscous incompressible flow equations and inviscid acoustic equations using a incompressible/compressible splitting technique. The incompressible flow equations...

  14. On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor

    International Nuclear Information System (INIS)

    Solovchuk, Maxim A.; Sheu, Tony W.H.; Thiriet, Marc; Lin, Win-Li

    2013-01-01

    The influences of blood vessels and focused location on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors are studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field in the hepatic cancerous region. The model construction is based on the linear Westervelt and bioheat equations as well as the nonlinear Navier–Stokes equations for the liver parenchyma and blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. Different blood vessel diameters and focal point locations were investigated. We found from this three-dimensional numerical study that in large blood vessels both the convective cooling and acoustic streaming can considerably change the temperature field and the thermal lesion near blood vessels. If the blood vessel is located within the beam width, both acoustic streaming and blood flow cooling effects should be addressed. The temperature rise on the blood vessel wall generated by a 1.0 MHz focused ultrasound transducer with the focal intensity 327 W/cm 2 was 54% lower when acoustic streaming effect was taken into account. Subject to the applied acoustic power the streaming velocity in a 3 mm blood vessel is 12 cm/s. Thirty percent of the necrosed volume can be reduced, when taking into account the acoustic streaming effect. -- Highlights: • 3D three-field coupling physical model for focused ultrasound tumor ablation is presented. • Acoustic streaming and blood flow cooling effects on ultrasound heating are investigated. • Acoustic streaming can considerably affect the temperature distribution. • The lesion can be reduced by 30% due to the acoustic streaming effect. • Temperature on the blood vessel wall is reduced by 54% due to the acoustic streaming effect

  15. A flexible dialogue with the computer in the control room of the Saclay's linac

    International Nuclear Information System (INIS)

    Bianchi, G.; Gourcy, G.; Gournay, J.F.; Jablonka, M.

    1976-01-01

    In the Control Room of the 600 MeV Electron Linac of Saclay (ALS) the use of a powerful visual display (including its own computer) allows to make very simple and flexible the dialogue of the operators with the main computer. As an example we describe a program permitting to select every number of parameters among 320 in order to assign them to one of the functions of the system. (author)

  16. Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

    CERN Document Server

    Marburg, Steffen

    2008-01-01

    Among numerical methods applied in acoustics, the Finite Element Method (FEM) is normally favored for interior problems whereas the Boundary Element Method (BEM) is quite popular for exterior ones. That is why this valuable reference provides a complete survey of methods for computational acoustics, namely FEM and BEM. It demonstrates that both methods can be effectively used in the complementary cases. The chapters by well-known authors are evenly balanced: 10 chapters on FEM and 10 on BEM. An initial conceptual chapter describes the derivation of the wave equation and supplies a unified approach to FEM and BEM for the harmonic case. A categorization of the remaining chapters and a personal outlook complete this introduction. In what follows, both FEM and BEM are discussed in the context of very different problems. Firstly, this comprises numerical issues, e.g. convergence, multi-frequency solutions and highly efficient methods; and secondly, solutions techniques for the particular difficulties that arise wi...

  17. Optimizing acoustical conditions for speech intelligibility in classrooms

    Science.gov (United States)

    Yang, Wonyoung

    High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with

  18. Computational analysis of acoustic transmission through periodically perforated interfaces

    Directory of Open Access Journals (Sweden)

    Rohan E.

    2009-06-01

    Full Text Available The objective of the paper is to demonstrate the homogenization approach applied to modelling the acoustic transmission on perforated interfaces embedded in the acoustic fluid. We assume a layer, with periodically perforated obstacles, separating two half-spaces filled with the fluid. The homogenization method provides limit transmission conditions which can be prescribed at the homogenized surface representing the "limit" interface. The conditions describe relationship between jump of the acoustic pressures and the transversal acoustic velocity, on introducing the "in-layer pressure" which describes wave propagation in the tangent directions with respect to the interface.This approach may serve as a relevant tool for optimal design of devices aimed at attenuation of the acoustic waves, such as the engine exhaust mufflers or other structures fitted with sieves and grillages. We present numerical examples of wave propagation in a muffler-like structure illustrating viability of the approach when complex 3D geometries of the interface perforation are considered.

  19. Spatial Hearing with Incongruent Visual or Auditory Room Cues

    DEFF Research Database (Denmark)

    Gil Carvajal, Juan Camilo; Cubick, Jens; Santurette, Sébastien

    2016-01-01

    In day-to-day life, humans usually perceive the location of sound sources as outside their heads. This externalized auditory spatial perception can be reproduced through headphones by recreating the sound pressure generated by the source at the listener’s eardrums. This requires the acoustical...... the recording and playback room did affect distance perception. Consequently, the external perception of virtual sounds depends on the degree of congruency between the acoustical features of the environment and the stimuli....

  20. Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.

    Science.gov (United States)

    Maryn, Youri; Ysenbaert, Femke; Zarowski, Andrzej; Vanspauwen, Robby

    2017-03-01

    The ability to move with mobile communication devices (MCDs; ie, smartphones and tablet computers) may induce differences in microphone-to-mouth positioning and use in noise-packed environments, and thus influence reliability of acoustic voice measurements. This study investigated differences in various acoustic voice measures between six recording equipments in backgrounds with low and increasing noise levels. One chain of continuous speech and sustained vowel from 50 subjects with voice disorders (all separated by silence intervals) was radiated and re-recorded in an anechoic chamber with five MCDs and one high-quality recording system. These recordings were acquired in one condition without ambient noise and in four conditions with increased ambient noise. A total of 10 acoustic voice markers were obtained in the program Praat. Differences between MCDs and noise condition were assessed with Friedman repeated-measures test and posthoc Wilcoxon signed-rank tests, both for related samples, after Bonferroni correction. (1) Except median fundamental frequency and seven nonsignificant differences, MCD samples have significantly higher acoustic markers than clinical reference samples in minimal environmental noise. (2) Except median fundamental frequency, jitter local, and jitter rap, all acoustic measures on samples recorded with the reference system experienced significant influence from room noise levels. Fundamental frequency is resistant to recording system, environmental noise, and their combination. All other measures, however, were impacted by both recording system and noise condition, and especially by their combination, often already in the reference/baseline condition without added ambient noise. Caution is therefore warranted regarding implementation of MCDs as clinical recording tools, particularly when applied for treatment outcomes assessments. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Studying Room Acoustics using a Monopole-Dipole Microphone Array

    Science.gov (United States)

    Begault, Durand R.; Abel, Jonathan S.; Gills, Stephen R. (Technical Monitor)

    1997-01-01

    The use of a soundfield microphone for examining the directional nature of a room impulse response was reported recently. By cross-correlating monopole and co-located dipole microphone signals aligned with left-right, up-down, and front-back axes, a sense of signal direction of arrival is revealed. The current study is concerned with the array's ability to detect individual reflections and directions of arrival, as a function of the cross-correlation window duration. If is window is too long, weak reflections are overlooked; if too short, spurious detections result. Guidelines are presented for setting the window width according to perceptual criteria. Formulas are presented describing the accuracy with which direction of arrival can be estimated as a function of room specifics and measurement noise. The direction of arrival of early reflections is more accurately determined than that of later reflections which are quieter and more numerous. The transition from a fairly directional sound field at the beginning of the room impulse response to a uni-directional diffuse field is examined. Finally, it is shown that measurements from additional dipole orientations can significantly improve the ability to detect reflections and estimate their directions of arrival.

  2. Diversity of acoustic streaming in a rectangular acoustofluidic field.

    Science.gov (United States)

    Tang, Qiang; Hu, Junhui

    2015-04-01

    Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. NFL Films music scoring stage and control room space

    Science.gov (United States)

    Berger, Russ; Schrag, Richard C.; Ridings, Jason J.

    2003-04-01

    NFL Films' new 200,000 sq. ft. corporate headquarters is home to an orchestral scoring stage used to record custom music scores to support and enhance their video productions. Part of the 90,000 sq. ft. of sound critical technical space, the music scoring stage and its associated control room are at the heart of the audio facilities. Driving the design were the owner's mandate for natural light, wood textures, and an acoustical environment that would support small rhythm sections, soloists, and a full orchestra. Being an industry leader in cutting-edge video and audio formats, the NFLF required that the technical spaces allow the latest in technology to be continually integrated into the infrastructure. Never was it more important for a project to hold true to the adage of ``designing from the inside out.'' Each audio and video space within the facility had to stand on its own with regard to user functionality, acoustical accuracy, sound isolation, noise control, and monitor presentation. A detailed look at the architectural and acoustical design challenges encountered and the solutions developed for the performance studio and the associated control room space will be discussed.

  4. Man and room climate. The importance of thermal comfort; Der Mensch und das Raumklima. Zur Bedeutung der thermischen Behaglichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Hoefte, Klaus [Uponor Academy, Ochtrup (Germany)

    2009-07-01

    Room climate has become increasingly important during the past few decades as humans spend about 90 percent of their time inside rooms. Influencing factors are acoustics, lighting, air quality and thermal room climate. The contribution focuses on thermal room climate and room air quality which are the most important of these factors. (orig.)

  5. Application of process computers and colour CRT displays in the plant control room of a BWR

    International Nuclear Information System (INIS)

    Itoh, M.; Hayakawa, H.; Kawahara, H.; Neda, T.; Wakabayashi, Y.

    1983-01-01

    The recent application of a CRT display system in an 1100-MW(e) BWR plant control room and the design features of a new control room whose installation is planned for the next generation are discussed. As reactor unit capacity and the need for plant safety and reliability continue to increase, instrumentation and control equipment is growing in number and complexity. In consequence, control and supervision of plant operations require improvement. Thus, because of recent progress in the field of process computers and display equipment (colour CRTs), efficient improvements of the control room are under way in the Japanese BWR plant. In the recently constructed BWR plant (1100 MW(e)), five CRTs on the bench board and two process computers were additionally installed in the control room during the construction stage to improve plant control and supervisory functions by implementing the lessons learned from the Three Mile Island incident. The major functions of the new computers and display systems are to show integrated graphic displays of the plant status, to monitor the standby condition of the safety system, to show the condition of the integrated alarm system, etc. In practice, in the actual plant, this newly installed system performs well. On the basis of the experience gained in these activities, a new computerized control and monitoring system is now being designed for subsequent domestic BWR plants. This advanced system will incorporate not only the functions already mentioned, but also a surveillance guide system and plant automation. For future plants, a diagnostic system and an instructional system that can analyse a disturbance and give operational guidance to the plant operator are being developed in a government-sponsored programme. (author)

  6. Acoustic Levitation Containerless Processing

    Science.gov (United States)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  7. Low frequency sound reproduction in irregular rooms using CABS (Control Acoustic Bass System)

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2011-01-01

    of an irregular room model using the FDTD (Finite Difference Time Domain) method has been presented. CABS has been simulated in the irregular room model. Measurements of CABS in a real irregular room have been performed. The performance of CABS was affected by the irregular shape of the room due to the corner...

  8. Locality of Area Coverage on Digital Acoustic Communication in Air using Differential Phase Shift Keying

    Science.gov (United States)

    Mizutani, Keiichi; Ebihara, Tadashi; Wakatsuki, Naoto; Mizutani, Koichi

    2009-07-01

    We experimentally evaluate the locality of digital acoustic communication in air. Digital acoustic communication in air is suitable for a small cell system, because acoustic waves have a short propagation distance in air. In this study, optimal cell size is experimentally evaluated. Each base station (BS) transmits different commands. In our experiment, differential phase shift keying (DPSK), especially binary DPSK (DBPSK), is adopted as a modulation and demodulation scheme. The evaluated system consists of a personal computer (PC), a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), a loud speaker (SP), a microphone (MIC), and transceiver software. All experiments are performed in an anechoic room. The cell size of the transmitter can be limited under low signal-to-noise ratio (SNR) condition. If another transmitter works, cell size is limited by the effect of the interference from that transmitter. The cell size-to-distance ratio of transmitter A to transmitter B is 37.5%, if cell edge bit-error-rate (BER) is taken as 10-3.

  9. Cognitive models and computer aids for nuclear plant control room operators

    International Nuclear Information System (INIS)

    Sheridan, T.B.

    1982-01-01

    This paper reviews what is usually meant by a cognitive model of a control room operator in a nuclear power plant. It emphasizes the idea of internal (that is, mental) representation of external events and the use of such representation for the cognitive steps of attending, recognizing or learning, assessing and deciding. As computers play an increasingly important role in nuclear power plants, especially as cognitive aids to human supervisors of highly automated control systems, it is important that the software and computer interface characteristics be compatible with the operator's internal model. Specific examples discussed in this paper are in the monitoring and prediction of the plant state and in the detection and diagnosis of failures. Current trends in SPDS (safety parameter display system) and failure detection/location systems will be discussed in this regard

  10. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  11. Aperture size, materiality of the secondary room and listener location: Impact on the simulated impulse response of a coupled-volume concert hall

    Science.gov (United States)

    Ermann, Michael; Johnson, Marty E.; Harrison, Byron W.

    2003-04-01

    By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume concert hall based on an existing performing arts center is conceived and computer-modeled. It has a fixed geometric volume, form and primary-room sound absorption. Ray-tracing software simulates impulse responses, varying both aperture size and secondary-room sound absorption level, across a grid of receiver (listener) locations. The results are compared with statistical analysis that suggests a highly sensitive relationship between the double-sloped condition and the architecture of the space. This line of study aims to quantitatively and spatially correlate the double-sloped condition with (1) aperture size exposing the chamber, (2) sound absorptance in the coupled volume, and (3) listener location.

  12. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography

    International Nuclear Information System (INIS)

    Zhang, Shiping; Shen, Guoqing; An, Liansuo; Niu, Yuguang

    2015-01-01

    Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler

  13. Acoustic perturbation equations and Lighthill's acoustic analogy for the human phonation

    Czech Academy of Sciences Publication Activity Database

    Zoerner, S.; Šidlof, Petr; Huppe, A.; Kaltenbacher, M.

    2013-01-01

    Roč. 19, 060309 (2013), s. 1-8 ISSN 1939-800X. [ICA 2013 - Meetings on Acoustics. Montreal, 02.06.2013-07.06.2013] R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : vocal folds * CFD * computational aeroacoustics Subject RIV: BI - Acoustics http://asadl.org/poma/ resource /1/pmarcw/v19/i1/p060309_s1? view =print

  14. Efficient Multichannel NLMS Implementation for Acoustic Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Schüldt Christian

    2007-01-01

    Full Text Available An acoustic echo cancellation structure with a single loudspeaker and multiple microphones is, from a system identification perspective, generally modelled as a single-input multiple-output system. Such a system thus implies specific echo-path models (adaptive filter for every loudspeaker to microphone path. Due to the often large dimensionality of the filters, which is required to model rooms with standard reverberation time, the adaptation process can be computationally demanding. This paper presents a selective updating normalized least mean square (NLMS-based method which reduces complexity to nearly half in practical situations, while showing superior convergence speed performance as compared to conventional complexity reduction schemes. Moreover, the method concentrates the filter adaptation to the filter which is most misadjusted, which is a typically desired feature.

  15. Efficient Multichannel NLMS Implementation for Acoustic Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Fredric Lindstrom

    2007-02-01

    Full Text Available An acoustic echo cancellation structure with a single loudspeaker and multiple microphones is, from a system identification perspective, generally modelled as a single-input multiple-output system. Such a system thus implies specific echo-path models (adaptive filter for every loudspeaker to microphone path. Due to the often large dimensionality of the filters, which is required to model rooms with standard reverberation time, the adaptation process can be computationally demanding. This paper presents a selective updating normalized least mean square (NLMS-based method which reduces complexity to nearly half in practical situations, while showing superior convergence speed performance as compared to conventional complexity reduction schemes. Moreover, the method concentrates the filter adaptation to the filter which is most misadjusted, which is a typically desired feature.

  16. Synthesis of Room Impulse Responses for Variable Source Characteristics

    Directory of Open Access Journals (Sweden)

    M. Kunkemoeller

    2011-01-01

    Full Text Available Every acoustic source, e.g. a speaker, a musical instrument or a loudspeaker, generally has a frequency dependent characteristic radiation pattern, which is preeminent at higher frequencies. Room acoustic measurements nowadays only account for omnidirectional source characteristics. This motivates a measurement method that is capable of obtaining room impulse responses for these specific radiation patterns by using a superposition approach of several measurements with technically well-defined sound sources. We propose a method based on measurements with a 12-channel independentlydriven dodecahedron loudspeaker array rotated by an automatically controlled turntable.Radiation patterns can be efficiently described with the use of spherical harmonics representation. We propose a method that uses this representation for the spherical loudspeaker array used for the measurements and the target radiation pattern to be used for the synthesis.We show validating results for a deterministic test sound source inside in a small lecture hall.

  17. Exposure and materiality of the secondary room and its impact on the impulse response of coupled-volume concert halls

    Science.gov (United States)

    Ermann, Michael; Johnson, Marty

    2005-06-01

    How does sound decay when one room is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact sound fields in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study a coupled-volume shoebox concert hall is conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound absorption levels are established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) architectural composition, as defined by the aperture size exposing the chamber and (2) materiality, as defined by the sound absorptance in the coupled volume. The theoretical, mathematical predictions are compared with coupled-volume concert hall field measurements and guidelines are suggested for future designs of coupled-volume concert halls.

  18. Criteria of choosing building structures for rooftop boiler rooms

    Directory of Open Access Journals (Sweden)

    Plotnikov Artyom

    2018-01-01

    Full Text Available The paper investigates parameters of noise and vibration distribution in the territory of residential area depending on the structural materials and power of independent heat supply systems. Rooftop boiler rooms are decentralized heat supply systems in buildings. Today, residential areas are strongly affected by noise and vibrations. Adverse effects are isolated by buildings materials, protective shields and floating floors. Rooftop boiler rooms located in Tyumen city were investigated within this research. Structures of rooftop boiler rooms were analyzed. Acoustic analysis results and the parameters of equivalent continuous sound level are presented. An option for improvement of rooftop boiler rooms structures is suggested. Comparison of capital investments in construction and installation activities is carried out. Conclusion on capital investments required for noise protection is made.

  19. A survey of acoustic conditions and noise levels in secondary school classrooms in England.

    Science.gov (United States)

    Shield, Bridget; Conetta, Robert; Dockrell, Julie; Connolly, Daniel; Cox, Trevor; Mydlarz, Charles

    2015-01-01

    An acoustic survey of secondary schools in England has been undertaken. Room acoustic parameters and background noise levels were measured in 185 unoccupied spaces in 13 schools to provide information on the typical acoustic environment of secondary schools. The unoccupied acoustic and noise data were correlated with various physical characteristics of the spaces. Room height and the amount of glazing were related to the unoccupied reverberation time and therefore need to be controlled to reduce reverberation to suitable levels for teaching and learning. Further analysis of the unoccupied data showed that the introduction of legislation relating to school acoustics in England and Wales in 2003 approximately doubled the number of school spaces complying with current standards. Noise levels were also measured during 274 lessons to examine typical levels generated during teaching activities in secondary schools and to investigate the influence of acoustic design on working noise levels in the classroom. Comparison of unoccupied and occupied data showed that unoccupied acoustic conditions affect the noise levels occurring during lessons. They were also related to the time spent in disruption to the lessons (e.g., students talking or shouting) and so may also have an impact upon student behavior in the classroom.

  20. Aero-Acoustic Modelling using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Shen, W Z; Soerensen, J N

    2007-01-01

    The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar flow past a NACA 0015 airfoil at a Reynolds number of 800, a Mach number of 0.2 and an angle of attack of 20 deg. The model is then applied to compute turbulent flow past a NACA 0015 airfoil at a Reynolds number of 100 000, a Mach number of 0.2 and an angle of attack of 20 deg. The predicted noise spectrum is compared to experimental data

  1. Evaluation of a Loudspeaker-Based Virtual Acoustic Environment for Investigating sound-field auditory steady-state responses

    DEFF Research Database (Denmark)

    Zapata-Rodriguez, Valentina; Marbjerg, Gerd Høy; Brunskog, Jonas

    2017-01-01

    Measuring sound-field auditory steady-state responses (ASSR) is a promising new objective clinical procedure for hearing aid fitting validation, particularly for infants who cannot respond to behavioral tests. In practice, room acoustics of non-anechoic test rooms can heavily influence the audito...... tool PARISM (Phased Acoustical Radiosity and Image Source Method) and validated through measurements. This study discusses the limitations of the system and the potential improvements needed for a more realistic sound-field ASSR simulation....

  2. Dry sand as a specialized layer to improve the acoustic insulation between rooms one above another

    Directory of Open Access Journals (Sweden)

    Díaz, C.

    2013-09-01

    Full Text Available This work presents and analyses the experimental field results of the sound insulation from airborne and impact noise of the horizontal separating elements commonly used in the past, in which a uniform layer of sand was placed on top of the floor construction to serve as a base for the ceramic tiling. The results of the acoustic measurements show that when there is an intermediate layer of sand in the horizontal separating element between rooms, the sound insulation is greater than would be obtained with other construction systems with equal mass per unit area, where the floor is joined rigidly to the floor construction. The effect on the sound insulation between the rooms produced by this layer of sand placed between the floor construction and the tiling is that of a cushioning layer, and demonstrates that this type of structure acts as a floating floor.En este trabajo se exponen y se analizan los resultados experimentales in situ del aislamiento acústico a ruido aéreo y a ruido de impactos de elementos de separación horizontales, habituales hace años, en los que sobre el forjado se coloca una capa uniforme de arena que sirve de asiento al suelo cerámico. Los resultados de las mediciones acústicas muestran que, cuando en el elemento de separación horizontal entre los recintos hay una capa intermedia de arena, el aislamiento acústico es mejor que el que se obtendría con otros sistemas constructivos de igual masa por unidad de superficie, con el suelo unido rígidamente al forjado. El efecto de la capa de arena colocada entre el forjado y el suelo, en el aislamiento acústico entre los recintos, es el de una capa amortiguadora, que hace que este tipo de suelo pueda considerarse como flotante.

  3. Natural variations of vocal effort and comfort in simulated acoustic environments

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David; Brunskog, Jonas

    2010-01-01

    acoustic conditions, artificially generated by electroacoustic means. The vocal intensity decreased with the objective parameter support, which quantifies the amount of sound reflections provided by the room at the talker‟s ears,relative to the direct sound, at a rate of -0.21 dB/dB. The reading pace......Many teachers suffer from voice problems related to the use of their voices in the working environment. The noise generated by students and external sound sources (like traffic noise or neighboring classrooms) is a major problem, as it leads to an increased vocal effort. In the absence of high...... levels of background noise, the room has also an effect on the talker‟s voice. In order to quantify the relative importance of the acoustic environment on the vocal demands for teachers, a laboratory investigation was carried out. Thirteen teachers had to read a text aloud under ten different room...

  4. Subjective evaluation of restaurant acoustics in a virtual sound environment

    DEFF Research Database (Denmark)

    Nielsen, Nicolaj Østergaard; Marschall, Marton; Santurette, Sébastien

    2016-01-01

    Many restaurants have smooth rigid surfaces made of wood, steel, glass, and concrete. This often results in a lack of sound absorption. Such restaurants are notorious for high sound noise levels during service that most owners actually desire for representing vibrant eating environments, although...... surveys report that noise complaints are on par with poor service. This study investigated the relation between objective acoustic parameters and subjective evaluation of acoustic comfort at five restaurants in terms of three parameters: noise annoyance, speech intelligibility, and privacy. At each...... location, customers filled out questionnaire surveys, acoustic parameters were measured, and recordings of restaurant acoustic scenes were obtained with a 64-channel spherical array. The acoustic scenes were reproduced in a virtual sound environment (VSE) with 64 loudspeakers placed in an anechoic room...

  5. Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2007-01-01

    In this Letter, for the dust-ion-acoustic waves with azimuthal perturbation in a dusty plasma, a cylindrical modified Kadomtsev-Petviashvili (CMKP) model is constructed by virtue of symbolic computation, with three families of exact analytic solutions obtained as well. Dark and bright CMKP nebulons are investigated with pictures and related to such dusty-plasma environments as the supernova shells and Saturn's F-ring. Difference of the CMKP nebulons from other known nebulons is also analyzed, and possibly-observable CMKP-nebulonic effects for the future plasma experiments are proposed, especially those on the possible notch/slot and dark-bright bi-existence

  6. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, L; Tang, S [University of Oklahoma, Norman, OK (United States); Ahmad, M [Stanford University, Palo Alto, CA (United States); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprised of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.

  7. Computer Music

    Science.gov (United States)

    Cook, Perry R.

    This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and the study of perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.).

  8. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections...... and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection...

  9. The method of fundamental solutions for computing acoustic interior transmission eigenvalues

    Science.gov (United States)

    Kleefeld, Andreas; Pieronek, Lukas

    2018-03-01

    We analyze the method of fundamental solutions (MFS) in two different versions with focus on the computation of approximate acoustic interior transmission eigenvalues in 2D for homogeneous media. Our approach is mesh- and integration free, but suffers in general from the ill-conditioning effects of the discretized eigenoperator, which we could then successfully balance using an approved stabilization scheme. Our numerical examples cover many of the common scattering objects and prove to be very competitive in accuracy with the standard methods for PDE-related eigenvalue problems. We finally give an approximation analysis for our framework and provide error estimates, which bound interior transmission eigenvalue deviations in terms of some generalized MFS output.

  10. Aero-Acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun

    2008-01-01

    both for laminar and turbulent flows. Results have shown that sound generation is due to the unsteadiness of the flow field and the spectrum of sound has a strong relation with fluctuating forces on the solid body. Flow and acoustic simulation were also carried out for a wind turbine where general...

  11. Multi-objective room acoustic optimization of timber folded plate structure

    DEFF Research Database (Denmark)

    Skov, Rasmus; Parigi, Dario; Damkilde, Lars

    2017-01-01

    This paper investigates the application of multi-objective optimization in the design of timber folded plate structures in the scope of the architectural design process. Considering contrasting objectives of structural displacement, early decay time (EDT), clarity (C50) and sound strength (G......), the methodology applied in two benchmarks tests, encompasses both structural and acoustic performance when determining folding characteristics and directionality of surfaces in a timber folded plate structure....

  12. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  13. Thermal comfort assessment of a surgical room through computational fluid dynamics using local PMV index.

    Science.gov (United States)

    Rodrigues, Nelson J O; Oliveira, Ricardo F; Teixeira, Senhorinha F C F; Miguel, Alberto Sérgio; Teixeira, José Carlos; Baptista, João S

    2015-01-01

    Studies concerning indoor thermal conditions are very important in defining the satisfactory comfort range in health care facilities. This study focuses on the evaluation of the thermal comfort sensation felt by surgeons and nurses, in an orthopaedic surgical room of a Portuguese hospital. Two cases are assessed, with and without the presence of a person. Computational fluid dynamic (CFD) tools were applied for evaluating the predicted mean vote (PMV) index locally. Using average ventilation values to calculate the PMV index does not provide a correct and enough descriptive evaluation of the surgical room thermal environment. As studied for both cases, surgeons feel the environment slightly hotter than nurses. The nurses feel a slightly cold sensation under the air supply diffuser and their neutral comfort zone is located in the air stagnation zones close to the walls, while the surgeons feel the opposite. It was observed that the presence of a person in the room leads to an increase of the PMV index for surgeons and nurses. That goes in line with the empirical knowledge that more persons in a room lead to an increased heat sensation. The clothing used by both classes, as well as the ventilation conditions, should be revised accordingly to the amount of persons in the room and the type of activity performed.

  14. Speaker-Oriented Classroom Acoustics Design Guidelines in the Context of Current Regulations in European Countries

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David; Brunskog, Jonas; Rasmussen, Birgit

    2014-01-01

    Most European countries have regulatory requirements or guidelines for reverberation time in classrooms which have the goal of enhancing speech intelligibility and reducing noise levels in schools. At the same time, school teachers suffer frequently from voice problems due to high vocal load...... experienced at work. With the aim of improving working conditions for teachers, this article presents guidelines for classroom acoustics design that meet simultaneously criteria of vocal comfort and speech intelligibility, which may be of use in future discussions for updating regulatory requirements...... in classroom acoustics. Two room acoustic parameters are shown relevant for a speaker: the voice support, linked to vocal effort, and the decay time derived from an oral-binaural impulse response, linked to vocal comfort. Theoretical prediction models for room-averaged values of these parameters are combined...

  15. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  16. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—User’s manual for version 2.8

    Science.gov (United States)

    Mueller, David S.

    2016-05-12

    The software program, QRev computes the discharge from moving-boat acoustic Doppler current profiler measurements using data collected with any of the Teledyne RD Instrument or SonTek bottom tracking acoustic Doppler current profilers. The computation of discharge is independent of the manufacturer of the acoustic Doppler current profiler because QRev applies consistent algorithms independent of the data source. In addition, QRev automates filtering and quality checking of the collected data and provides feedback to the user of potential quality issues with the measurement. Various statistics and characteristics of the measurement, in addition to a simple uncertainty assessment are provided to the user to assist them in properly rating the measurement. QRev saves an extensible markup language file that can be imported into databases or electronic field notes software. The user interacts with QRev through a tablet-friendly graphical user interface. This report is the manual for version 2.8 of QRev.

  17. Simulation study on the operating characteristics of the heat pipe for combined evaporative cooling of computer room air-conditioning system

    International Nuclear Information System (INIS)

    Han, Zongwei; Zhang, Yanqing; Meng, Xin; Liu, Qiankun; Li, Weiliang; Han, Yu; Zhang, Yanhong

    2016-01-01

    In order to improve the energy efficiency of air conditioning systems in computer rooms, this paper proposed a new concept of integrating evaporative cooling air-conditioning system with heat pipes. Based on a computer room in Shenyang, China, a mathematical model was built to perform transient simulations of the new system. The annual dynamical performance of the new system was then compared with a typical conventional computer room air-conditioning system. The result showed that the new integrated air-conditioning system had better energy efficiency, i.e. 31.31% reduction in energy consumption and 29.49% increase in COP (coefficient of performance), due to the adoption of evaporative condenser and the separate type heat pipe technology. Further study also revealed that the incorporated heat pipes enabled a 36.88% of decrease in the operation duration of the vapor compressor, and a 53.86% of reduction for the activation times of the compressor, which could lead to a longer lifespan of the compressor. The new integrated evaporative cooling air-conditioning system was also tested in different climate regions. It showed that the energy saving of the new system was greatly affected by climate, and it had the best effect in cold and dry regions like Shenyang with up to 31.31% energy saving. In some warm and humid climate regions like Guangzhou, the energy saving could be achieved up to 13.66%. - Highlights: • A novel combined air-conditioning system of computer room is constructed. • The performance of the system and conventional system is simulated and compared. • The applicability of the system in different climate regions is investigated.

  18. Acoustic assessment of speech privacy curtains in two nursing units

    Science.gov (United States)

    Pope, Diana S.; Miller-Klein, Erik T.

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s’ standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959

  19. Acoustic assessment of speech privacy curtains in two nursing units.

    Science.gov (United States)

    Pope, Diana S; Miller-Klein, Erik T

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.

  20. Acoustic assessment of speech privacy curtains in two nursing units

    Directory of Open Access Journals (Sweden)

    Diana S Pope

    2016-01-01

    Full Text Available Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient′s bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s′ standard hospital construction and the other was newly refurbished (2013 with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.

  1. Enhanced sources of acoustic power surrounding AR 11429

    International Nuclear Information System (INIS)

    Donea, Alina; Hanson, Christopher

    2013-01-01

    Multi-frequency power maps of the local acoustic oscillations show acoustic enhancements (''acoustic-power halos'') at high frequencies surrounding large active region. Computational seismic holography reveals a high-frequency ''acoustic-emission halo'', or ''seismic glory'' surrounding large active regions. In this study, we have applied computational seismic holography to map the seismic seismic source density surrounding AR 11429. Studies of HMI/SDO Doppler data, shows that the ''acoustic halos'' and the ''seismic glories'' are prominent at high frequencies 5–8 mHz. We investigate morphological properties of acoustic-power and acoustic emission halos around an active region to see if they are spatially correlated. Details about the local magnetic field from vectormagnetograms of AR 11429 are included. We identify a 15'' region of seismic deficit power (dark moat) shielding the white-light boundary of the active region. The size of the seismic moat is related to region of intermediate magnetic field strength. The acoustic moat is circled by the halo of enhanced seismic amplitude as well as enhanced seismic emission. Overall, the results suggest that features are related. However, if we narrow the frequency band to 5.5 – 6.5 mHz, we find that the seismic source density dominates over the local acoustic power, suggesting the existence of sources that emit more energy downward into the solar interior than upward toward the solar surface.

  2. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  3. Low frequency sound field enhancement system for rectangular rooms, using multiple loudspeakers

    DEFF Research Database (Denmark)

    Celestinos, Adrian

    2007-01-01

    The scope of this PhD dissertation is within the performance of loudspeakers in rooms at low frequencies. The research concentrates on the improvement of the sound level distribution in rooms produced by loudspeakers at low frequencies. The work focuses on seeing the problem acoustically...... and solving it in the time domain. Loudspeakers are the last link in the sound reproduction chain, and they are typically placed in small or medium size rooms. When low frequency sound is radiated by a loudspeaker the sound level distribution along the room presents large deviations. This is due...... to the multiple reflection of sound at the rigid walls of the room. This may cause level differences of up to 20 dB in the room. Some of these deviations are associated with the standing waves, resonances or anti resonances of the room. The understanding of the problem is accomplished by analyzing the behavior...

  4. Pilot study: Exposure and materiality of the secondary room and its impact in the impulse response of coupled-volume concert halls

    Science.gov (United States)

    Ermann, Michael; Johnson, Marty E.

    2002-05-01

    What does one room sound like when it is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact aural impressions in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume shoebox concert hall was conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound-absorption levels were established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) Architectural composition, as defined by the aperture size exposing the chamber and (2) Materiality, as defined by the sound absorbance in the coupled volume. Preliminary calculations indicate that the double-sloped sound decay condition only appears when the total aperture area is less than 1.5% of the total shoebox surface area and the average absorption coefficient of the coupled volume is less than 0.07.

  5. An objective measure for the sensitivity of room impulse response and its link to a diffuse sound field

    DEFF Research Database (Denmark)

    Prislan, Rok; Brunskog, Jonas; Jacobsen, Finn

    2014-01-01

    This study is relevant to acoustic measurements in reverberation rooms such as measurements of sound transmission, sound absorption, and sound power levels of noise sources. The study presents a quantitative measure for the diffuseness in a room, which is first introduced theoretically and sub...

  6. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    International Nuclear Information System (INIS)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying; Liu, Xiao-jun; Guo, Jian-zhong

    2015-01-01

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations

  7. Measurement and prediction of voice support and room gain

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David; Brunskog, Jonas; Lyberg-Åhlander, Viveka

    2012-01-01

    and good acoustical quality lies in the range between 14 and 9 dB, whereas the room gain is in the range between 0.2 and 0.5 dB. The prediction model for voice support describes the measurements in the classrooms with a coefficient of determination of 0.84 and a standard deviation of 1.2 dB....

  8. Acoustic levitation: recent developments and emerging opportunities in biomaterials research.

    Science.gov (United States)

    Weber, Richard J K; Benmore, Chris J; Tumber, Sonia K; Tailor, Amit N; Rey, Charles A; Taylor, Lynne S; Byrn, Stephen R

    2012-04-01

    Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.

  9. Hybrid control rooms: the effects of introducing new technology into existing control rooms

    International Nuclear Information System (INIS)

    Morisseau, Dolores S.

    2001-02-01

    The goal of this part of the Hybrid Control Room Project is to gain a perspective on the issues and problems that are an integral part of introducing new technology, automated systems, or support systems into nuclear power plant (NPP) control rooms, particularly when they are introduced on a system-by-system basis. For purposes of this project, hybrid control rooms are defined as those into which new technology, such as digital and computer-based controls are gradually incorporated as opposed to those that are completely, or nearly completely, refitted with new technology. Although the focus of this project is the introduction of computer based, digital systems into NPP control rooms, it is not possible to exclude the effects throughout the process that are inevitable when new technology is introduced anywhere in complex process control systems. Thus, this document examines the effects of such changes within the context of the organisation in which they occur, including the management of change, work procedures and work methods, communications and crew interaction, training, and the interdependent functions in the operational context. (Author)

  10. Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics

    International Nuclear Information System (INIS)

    Tselios, Kostas; Simos, T.E.

    2007-01-01

    In this Letter a new explicit fourth-order seven-stage Runge-Kutta method with a combination of minimal dispersion and dissipation error and maximal accuracy and stability limit along the imaginary axes, is developed. This method was produced by a general function that was constructed to satisfy all the above requirements and, from which, all the existing fourth-order six-stage RK methods can be produced. The new method is more efficient than the other optimized methods, for acoustic computations

  11. Acoustic design of open plan schools and comparison of requirements

    DEFF Research Database (Denmark)

    Møller Petersen, Claus; Rasmussen, Birgit

    2012-01-01

    between groups and satisfac¬tory speech intelligibility internally in groups. This paper describes the newest Danish requirements and recommendations for such open plan areas and presents the design, measurements and subjective evaluation of two newer Danish schools. According to the users, the general...... conditions at both schools are satisfactory due to both optimized acoustical conditions and teaching methods adapted to the special open environment. The results from room acoustical modelling, verification measurements and questionnaire survey are presented and evaluated in relation to the newest Danish...

  12. Evaluation of Acoustic Propagation Paths into the Human Head

    National Research Council Canada - National Science Library

    O'Brien, William D., Jr; Liu, Yuhui

    2005-01-01

    The overall goal of this research was to develop an acoustic wave propagation model using well-understood and documented computational techniques that track and quantify an air-borne incident acoustic...

  13. Carbon nanotubes/ceria composite layers deposited on surface acoustic wave devices for gas detection at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    David, M., E-mail: marjorie.david@univ-tln.fr [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Arab, M.; Martino, C. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Delmas, L. [SENSeOR, Sophia Antipolis, 06250 Mougins (France); Guinneton, F.; Gavarri, J.-R. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France)

    2012-05-01

    Surface acoustic wave (SAW) sensor on ATquartz piezoelectric substrate has been designed and fabricated. Test devices were based on asynchronous single-port resonators operating near the 434-MHz-centered industrial, scientific, and medical band. Multi-Walled Carbon Nanotubes/Ceria (MWNTs/CeO{sub 2}) nanocomposites were used as sensitive layers. The MWNTs were synthesized by catalytic chemical vapor deposition method and coated with nanosized ceria oxide. The composites were deposited on SAW quartz resonator using air-brush technique. MWNTs/CeO{sub 2} nanocomposites were characterized using X-ray diffraction, transmission electron and atomic force microscopy. The sensor responses were tested under acetone (C{sub 3}H{sub 5}OH) and ethanol (C{sub 2}H{sub 5}OH) gases. The output signal was done by S{sub 11} parameter of the SAW device and was monitored using a network analyzer. Frequency changes were observed under acetone and ethanol vapors. These changes depended on the surface conductivity of the nanocomposites deposited on the sensor. The single-port SAW gas sensor coated with the MWNTs/CeO{sub 2} presented the highest sensitivity in the case of acetone vapor interacting with these layers, with a frequency shift of 200 kHz at room temperature.

  14. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    Science.gov (United States)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  15. Integrating acoustic analysis in the architectural design process using parametric modelling

    DEFF Research Database (Denmark)

    Peters, Brady

    2011-01-01

    This paper discusses how parametric modeling techniques can be used to provide architectural designers with a better understanding of the acoustic performance of their designs and provide acoustic engineers with models that can be analyzed using computational acoustic analysis software. Architects......, acoustic performance can inform the geometry and material logic of the design. In this way, the architectural design and the acoustic analysis model become linked....

  16. Multichannel active control of random noise in a small reverberant room

    DEFF Research Database (Denmark)

    Laugesen, Søren; Elliott, Stephen J.

    1993-01-01

    An algorithm for multichannel adaptive IIR (infinite impulse response) filtering is presented and applied to the active control of broadband random noise in a small reverberant room. Assuming complete knowledge of the primary noise, the theoretically optimal reductions of acoustic energy are init...... with the primary noise field generated by a panel excited by a loudspeaker in an adjoining room. These results show that far better performances are provided by IIR and FIR filters when the primary source has a lightly damped dynamic behavior which the active controller must model...

  17. Semi-analytical computation of the acoustic field of a segment of a cylindrically concave transducer in lossless and attenuating media.

    Science.gov (United States)

    Karbeyaz, Başak Ulker; Miller, Eric L; Cleveland, Robin O

    2007-02-01

    Conventional ultrasound transducers used for medical diagnosis generally consist of linearly aligned rectangular apertures with elements that are focused in one plane. While traditional beamforming is easily accomplished with such transducers, the development of quantitative, physics-based imaging methods, such as tomography, requires an accurate, and computationally efficient, model of the field radiated by the transducer. The field can be expressed in terms of the Helmholtz-Kirchhoff integral; however, its direct numerical evaluation is a computationally intensive task. Here, a fast semianalytical method based on Stepanishen's spatial impulse response formulation [J. Acoust. Soc. Am. 49, 1627-1638 (1971)] is developed to compute the acoustic field of a rectangular element of cylindrically concave transducers in a homogeneous medium. The pressure field, for, lossless and attenuating media, is expressed as a superposition of Bessel functions, which can be evaluated rapidly. In particular, the coefficients of the Bessel series are frequency independent and need only be evaluated once for a given transducer. A speed up of two orders of magnitude is obtained compared to an optimized direct numerical integration. The numerical results are compared with Field II and the Fresnel approximation.

  18. Active low frequency sound field control in a listening room using CABS (Controlled Acoustic Bass System) will also reduce the sound transmitted to neighbour rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2012-01-01

    Sound in rooms and transmission of sound between rooms gives the biggest problems at low frequencies. Rooms with rectangular boundaries have strong resonance frequencies and will give big spatial variations in sound pressure level (SPL) in the source room, and an increase in SPL of 20 dB at a wall...... Bass System) is a time based room correction system for reproduced sound using loudspeakers. The system can remove room modes at low frequencies, by active cancelling the reflection from at the rear wall to a normal stereo setup. Measurements in a source room using CABS and in two neighbour rooms have...... shown a reduction in sound transmission of up to 10 dB at resonance frequencies and a reduction at broadband noise of 3 – 5 dB at frequencies up to 100 Hz. The ideas and understanding of the CABS system will also be given....

  19. Project Ancient Acoustics Part 1 of 4 : a method for accurate impulse response measurements in large open air theatres

    NARCIS (Netherlands)

    Hak, C.C.J.M.; Hoekstra, N.; Nicolai, B.; Wenmaekers, R.H.C.

    2016-01-01

    Selecting an appropriate method for measuring ‘normal’ indoor concert hall acoustics is always a trade-off between time, stimulus type, number of measurements and measurement quality. For ISO 3382 room acoustic parameters to be derived accurately from impulse responses, this tradeoff aims at a

  20. Assessment of reverberation time by two measurement systems for room electromagnetics analysis

    DEFF Research Database (Denmark)

    Bamba, Aliou; Joseph, Wout; Plets, David

    2011-01-01

    A closed room environment is viewed as a lossy cavity, characterized by possibly a line of sight (LOS) component and diffuse scattering parts from walls and internal obstacles. A theory used in acoustics and reverberation chambers is applied for the electromagnetics case, and main issues related...

  1. A computational study for investigating acoustic streaming and tissue heating during high intensity focused ultrasound through blood vessel with an obstacle

    Science.gov (United States)

    Parvin, Salma; Sultana, Aysha

    2017-06-01

    The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.

  2. A mean flow acoustic engine capable of wind energy harvesting

    International Nuclear Information System (INIS)

    Sun Daming; Xu Ya; Chen Haijun; Wu, Ke; Liu Kaikai; Yu Yan

    2012-01-01

    Highlights: ► A mean flow acoustic engine for wind energy harvesting is designed and manufactured. ► Stable standing wave acoustic field is established at specific flow velocity. ► Experimental and computational results reveal the acoustic field characteristics. ► Acoustic field has monofrequency characteristic and remarkable energy density. - Abstract: Based on the mean flow induced acoustic oscillation effect, a mean flow acoustic engine (MFAE) converts wind energy and fluid energy in pipeline into acoustic energy which can be used to drive thermoacoustic refrigerators and generators without any mechanical moving parts. With natural wind simulated by a centrifugal air fan, a MFAE with a cross-junction configuration was designed and manufactured for experimental study. Stable standing wave acoustic fields were established in specific ranges of air flow velocity. Experimental and computational results reveal the acoustic field distribution in the engine and show the effect of the mean flow velocity and the Strouhal number on the acoustic field characteristics. With a mean flow velocity of 50.52 m/s and a mean pressure of 106.19 kPa, the maximum pressure amplitude of 6.20 kPa was achieved, which was about 5.8% of the mean pressure. It has laid a good foundation for driving power generation devices and thermoacoustic refrigerators by a MFAE.

  3. Systems and methods for biometric identification using the acoustic properties of the ear canal

    International Nuclear Information System (INIS)

    Bouchard, A.M.; Osbourn, G.C.

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs

  4. Systems and methods for biometric identification using the acoustic properties of the ear canal

    Science.gov (United States)

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  5. A pilot study on acoustic regulations for schools – Comparison between selected countries in Europe

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Guigou-Carter, Catherine

    2016-01-01

    of descriptors and limit values for acoustic requirements. The paper includes examples of acoustic regulations for schools, including specific sound insulation requirements on airborne and impact sound insulation, limit values for noise from traffic and from service equipment and in addition on reverberation......Acoustic regulations for schools exist in most countries in Europe, the main reasons being improving learning conditions for pupils and work conditions for teachers. As a pilot study, comparison between requirements in selected countries in Europe has been carried out. The findings show a diversity...... time for class rooms. Furthermore, the discrepancies between countries are being discussed and some priorities for adjusting acoustic regulations in some countries indicated....

  6. Interaction of Acoustic Waves with a Cryogenic Nitrogen Jet at Sub- and Supercritical Pressures

    National Research Council Canada - National Science Library

    Chehroudi, B

    2001-01-01

    To better understand the nature of the interaction between acoustic waves and liquid fuel jets in rocket engines, cryogenic liquid nitrogen is injected into a room temperature high-pressure chamber...

  7. Wiener variable step size and gradient spectral variance smoothing for double-talk-robust acoustic echo cancellation and acoustic feedback cancellation

    DEFF Research Database (Denmark)

    Gil-Cacho, Jose M.; Van Waterschoot, Toon; Moonen, Marc

    2014-01-01

    Double-talk (DT)-robust acoustic echo cancellation (AEC) and acoustic feedback cancellation (AFC) are needed in speech communication systems, e.g., in hands-free communication systems and hearing aids. In this paper, we derive a practical and computationally efficient algorithm based...... model and in colored non-stationary noise....

  8. Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Greenberg, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Vita, Corinne [Vigilent, Oakland, CA (United States)

    2012-11-30

    This report documents a demonstration of the energy-efficiency improvement provided by a new control system for computer room air handling devices. It also analyzes measured and reported air handling device fan power associated with changing the fan type. A 135,000 square foot commercial data center was used for the demonstration. All air handling units were upgraded with improved efficiency fans, and a control system that automatically adjusts the fan speed for the air handling units was added. Power measurements were collected for a baseline and for a period with the fan speed control system active. Changing the fan type resulted in a savings of 47 percent of energy used by the air handling equipment and associated chiller plant energy needed to cool the air handlers themselves. The addition of the fan speed control resulted in an additional 37 percent savings in the same two categories. The combined savings for the two improvements for the same categories was 66 percent compared to the data center fitted with the original fans without a control system. The energy use reduction provided by the complete air handling device improvement program for the whole data center site is estimated to be 2.9 million kilowatt hours per year—an overall data center site savings of 8.0 percent. The reduced electrical energy use at the site provides a 1.9 million pound yearly reduction of carbon dioxide emissions. This demonstration showed that fan upgrades and a control system addition provide cost-effective improvements for data centers, with a payback reported to be under two years without utility incentives. In addition to the control system providing energy savings, the data collection and visual analysis capabilities provided immediate and long-term benefits. It is recommended that data center operators consider investing in fan upgrades and/or adding fan speed control for computer room air handlers.

  9. Acoustic absorption of natural gas compression facility enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, P.; Wong, G. [Noise Management Ltd., Calgary, AB (Canada)

    2009-07-01

    Noise sources at gas compressor facilities include the enclosure/building housing a gas engine and compressor, the ventilation openings, doors and windows for the enclosure, the engine air intake and exhaust, and a cooler. Accurate predictions of the noise levels inside the enclosure, the breakout noise from open windows and doors and ventilation, as well as the transmission through the walls, is necessary in order to determine cost effective noise mitigation for the facility. In order to accurately predict the sound breakout from these facilities it is necessary to know the acoustic absorption of the interior of these equipment enclosures. Although the acoustic absorption data of the wall systems may be available, the absorption attributable to the non-enclosure surfaces, the equipment and fittings, is not usually known and is difficult to predict. Since piping, instrumentation and mechanical equipment often take on a typical arrangement, shape, volumetric density and material composition, it is useful to know the typical acoustic absorption attributable to these items. In this study, reverberation time (RT) measurements were taken at 2 decommissioned gas compressor facilities in order to determine the absorption characteristics of the enclosure. The RT was measured according to ASTM C423-02a. The overall absorption coefficient of a compressor enclosure with a solid liner was found to be similar to that of steel decking. Fittings within the enclosure did not increase the high frequency absorption of the enclosure. It was concluded that room modes, structural vibrations, and fittings may serve to increase the effective absorption at frequencies below 630 Hz. Because of the small dimensions of the enclosure, low-frequency response of the room affected the reliability of the data below 160Hz. Structural vibration of the enclosure was investigated, and may considerably influence the noise breakout from the enclosure apart from the interior acoustical considerations. 4

  10. Acoustic absorption of natural gas compression facility enclosures

    International Nuclear Information System (INIS)

    Lassen, P.; Wong, G.

    2009-01-01

    Noise sources at gas compressor facilities include the enclosure/building housing a gas engine and compressor, the ventilation openings, doors and windows for the enclosure, the engine air intake and exhaust, and a cooler. Accurate predictions of the noise levels inside the enclosure, the breakout noise from open windows and doors and ventilation, as well as the transmission through the walls, is necessary in order to determine cost effective noise mitigation for the facility. In order to accurately predict the sound breakout from these facilities it is necessary to know the acoustic absorption of the interior of these equipment enclosures. Although the acoustic absorption data of the wall systems may be available, the absorption attributable to the non-enclosure surfaces, the equipment and fittings, is not usually known and is difficult to predict. Since piping, instrumentation and mechanical equipment often take on a typical arrangement, shape, volumetric density and material composition, it is useful to know the typical acoustic absorption attributable to these items. In this study, reverberation time (RT) measurements were taken at 2 decommissioned gas compressor facilities in order to determine the absorption characteristics of the enclosure. The RT was measured according to ASTM C423-02a. The overall absorption coefficient of a compressor enclosure with a solid liner was found to be similar to that of steel decking. Fittings within the enclosure did not increase the high frequency absorption of the enclosure. It was concluded that room modes, structural vibrations, and fittings may serve to increase the effective absorption at frequencies below 630 Hz. Because of the small dimensions of the enclosure, low-frequency response of the room affected the reliability of the data below 160Hz. Structural vibration of the enclosure was investigated, and may considerably influence the noise breakout from the enclosure apart from the interior acoustical considerations. 4

  11. International Conference on Acoustics and Vibration

    CERN Document Server

    Chaari, Fakher; Walha, Lasaad; Abdennadher, Moez; Abbes, Mohamed; Haddar, Mohamed

    2017-01-01

    The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theori...

  12. Aero-acoustics noise assessment for Wind-Lens turbine

    International Nuclear Information System (INIS)

    Hashem, I.; Mohamed, M.H.; Hafiz, A.A.

    2017-01-01

    This paper introduces an aero-acoustic computational study that investigates the noise caused by one of the most promising wind energy conversion concepts, namely the 'Wind-Lens' technology. The hybrid method - where the flow field and acoustic field are solved separately, was deemed to be an appropriate tool to compute this study. The need to investigate this phenomenon increased gradually, since the feasibility of utilizing Wind-Lens turbine within densely populated cities and urban areas depends largely on their noise generation. Ffowcs Williams-Hawkings (FW-H) equation and its integral solution are used to predict the noise radiating to the farfield. CFD Simulations of transient three-dimensional flow field using (URANS) unsteady Reynolds-averaged Navier-Stokes equations are computed to acquire the acoustic sources location and sound intensity. Then, the noise propagates from the before-mentioned sources to pre-defined virtual microphones positioned in different locations. ANSYS-FLUENT is used to calculate the flow field on and around such turbines which is required for the FW-H code. Some effective parameters are investigated such as Wind-Lens shape, brim height and tip speed ratio. Comparison of the noise emitted from the bare wind turbine and different types of Wind-Lens turbine reveals that, the Wind-Lens generates higher noise intensity. - Highlights: • Aero-acoustic noise generated by wind turbines are one of the major challenges. • Noise from wind turbine equipped with a brimmed diffuser is investigated. • A computational aero-acoustic study using the hybrid method is introduced. • Effective parameters are studied such Wind-Lens shape, brim height and speed ratio. • The optimal shape has a moderate power coefficient and the less noise generation.

  13. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    and applied to laminar flows. An aero-acoustic formulation for turbulent flows was in [15] developed for Large Eddy Simulation (LES), Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) and Detached Eddy Simulation (DES). In [16] a collocated grid / finite volume method for aero-acoustic computations...... with Computational Aero-Acoustics (CAA). With the spread of wind turbines near urban areas, there is an increasing need for accurate predictions of aerodynamically generated noise. Indeed, noise has become one of the most important issues for further development of wind power, and the ability of controlling...... and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind...

  14. Modern control room for AHWR

    International Nuclear Information System (INIS)

    Verghese, Clement C.; Joseph, Jose; Biswas, B.B.; Patil, R.K.

    2005-01-01

    Advanced Heavy Water Reactor (AHWR) is a next generation nuclear power plant being developed by Bhabha Atomic Research Centre. A modern control room has been conceived for operation and monitoring of the plant in tune with the advanced features of the reactor. A state of the art C and I architecture based on extensive use of computers and networking has been conceived for this plant. This architecture enables the implementation of a fully computerised operator friendly control room with soft HMIs. Features of the modern control room and control room and concept of soft HMI based operator interfaces have been described in the paper. (author)

  15. Acoustic phonon dispersion of CoSi2

    International Nuclear Information System (INIS)

    Weiss, L.; Rumyantsev, A.Yu.; Ivanov, A.S.

    1985-01-01

    The acoustical phonon dispersion curves of CoSi 2 are measured at room temperature along the main symmetry directions by means of coherent one-phonon scattering of thermal neutrons. The dispersion curves are compared with those of Ge, Si, and the fluorite structure types as CaF 2 and UO 2 . From the slope of the phonon dispersion curves at the GAMMA-point the elastic constants have been obtained

  16. Acoustic emission technique and its applications

    International Nuclear Information System (INIS)

    Sato, Ichiya; Sasaki, Soji

    1976-01-01

    Acoustic emission technique is described. The characteristics of acoustic emission signal, measurement techniques, and its application are explained. The acoustic signals are grouped into continuous and burst types. The continuous signal is due to plastic deformation, and the burst type is due to the generation and growth of cracks. The latter can be used for the identification of the position of cracks. The frequency of the acoustic emission is in the range from several tens of KHz to two MHz. Piezoelectric ceramics are used as the oscillators of sensors. The dynamic behavior of acoustic emission can be observed with a two-channel acoustic emission measuring apparatus. Multi-channel method was developed at Hitachi, Ltd., and is used for large structures. General computer identification method and simple zone identification method are explained. Noise elimination is important for the measurement, and the methods were studied. Examples of application are the observation of acoustic emission in the plastic deformation of steel, the tensile test of large welded material with natural defects, and others. The method will be used for the diagnosis and observation of large structures, the test and quality control of products. (Kato, T.)

  17. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    International Nuclear Information System (INIS)

    Berg, O.

    1997-01-01

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs

  18. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Berg, O [Institutt for Energiteknikk, OECD Halden Reactor Project (Netherlands)

    1997-07-01

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs.

  19. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    Science.gov (United States)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  20. Acoustics, information, and communication memorial volume in honor of Manfred R. Schroeder

    CERN Document Server

    Sessler, Gerhard

    2015-01-01

    This book explores the life and scientific legacy of Manfred Schroeder through personal reflections, scientific essays, and Schroeder’s own memoirs. Reflecting the wide range of Schroeder’s activities, the first part of the book contains thirteen articles written by his colleagues and former students. Topics discussed include his early, pioneering contributions to the understanding of statistical room acoustics and to the measurement of reverberation time; his introduction of digital signal processing methods into acoustics; his use of ray tracing methods to study sound decay in rooms; and his achievements in echo and feedback suppression and in noise reduction. Other chapters cover his seminal research in speech processing including the use of predictive coding to reduce audio bandwidth which led to various code-excited linear prediction schemes, today used extensively for speech coding. Several chapters discuss Schroeder’s work in low-peak factor signals, number theory, and maximum-length sequences wi...

  1. Human factors design of nuclear power plant control rooms including computer-based operator aids

    International Nuclear Information System (INIS)

    Bastl, W.; Felkel, L.; Becker, G.; Bohr, E.

    1983-01-01

    The scientific handling of human factors problems in control rooms began around 1970 on the basis of safety considerations. Some recent research work deals with the development of computerized systems like plant balance calculation, safety parameter display, alarm reduction and disturbance analysis. For disturbance analysis purposes it is necessary to homogenize the information presented to the operator according to the actual plant situation in order to supply the operator with the information he most urgently needs at the time. Different approaches for solving this problem are discussed, and an overview is given on what is being done. Other research projects concentrate on the detailed analysis of operators' diagnosis strategies in unexpected situations, in order to obtain a better understanding of their mental processes and the influences upon them when such situations occur. This project involves the use of a simulator and sophisticated recording and analysis methods. Control rooms are currently designed with the aid of mock-ups. They enable operators to contribute their experience to the optimization of the arrangement of displays and controls. Modern control rooms are characterized by increasing use of process computers and CRT (Cathode Ray Tube) displays. A general concept for the integration of the new computerized system and the conventional control panels is needed. The technical changes modify operators' tasks, and future ergonomic work in nuclear plants will need to consider the re-allocation of function between man and machine, the incorporation of task changes in training programmes, and the optimal design of information presentation using CRTs. Aspects of developments in control room design are detailed, typical research results are dealt with, and a brief forecast of the ergonomic contribution to be made in the Federal Republic of Germany is given

  2. Effect of non-uniform mean flow field on acoustic propagation problems in computational aeroacoustics

    DEFF Research Database (Denmark)

    Si, Haiqing; Shen, Wen Zhong; Zhu, Wei Jun

    2013-01-01

    Acoustic propagation in the presence of a non-uniform mean flow is studied numerically by using two different acoustic propagating models, which solve linearized Euler equations (LEE) and acoustic perturbation equations (APE). As noise induced by turbulent flows often propagates from near field t...

  3. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  4. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  5. The Active Listening Room Simulator: Part 2

    OpenAIRE

    Naqvi, Amber; Rumsey, Francis

    2001-01-01

    This paper presents the results of computer simulation of active reflectors in a reference listening room which are used to create artificial reflections in a two speaker, stereo listening configuration. This formulates the second phase of experiments in the active listening room project involving the analysis of computer modeling results and loudspeaker selection based on free field response. The aim of this project is to create a truly variable listening condition in a reference listening r...

  6. Objective approach for analysis of noise source characteristics and acoustic conditions in noisy computerized embroidery workrooms.

    Science.gov (United States)

    Aliabadi, Mohsen; Golmohammadi, Rostam; Mansoorizadeh, Muharram

    2014-03-01

    It is highly important to analyze the acoustic properties of workrooms in order to identify best noise control measures from the standpoint of noise exposure limits. Due to the fact that sound pressure is dependent upon environments, it cannot be a suitable parameter for determining the share of workroom acoustic characteristics in producing noise pollution. This paper aims to empirically analyze noise source characteristics and acoustic properties of noisy embroidery workrooms based on special parameters. In this regard, reverberation time as the special room acoustic parameter in 30 workrooms was measured based on ISO 3382-2. Sound power quantity of embroidery machines was also determined based on ISO 9614-3. Multiple linear regression was employed for predicting reverberation time based on acoustic features of the workrooms using MATLAB software. The results showed that the measured reverberation times in most of the workrooms were approximately within the ranges recommended by ISO 11690-1. Similarity between reverberation time values calculated by the Sabine formula and measured values was relatively poor (R (2) = 0.39). This can be due to the inaccurate estimation of the acoustic influence of furniture and formula preconditions. Therefore, this value cannot be considered representative of an actual acoustic room. However, the prediction performance of the regression method with root mean square error (RMSE) = 0.23 s and R (2) = 0.69 is relatively acceptable. Because the sound power of the embroidery machines was relatively high, these sources get the highest priority when it comes to applying noise controls. Finally, an objective approach for the determination of the share of workroom acoustic characteristics in producing noise could facilitate the identification of cost-effective noise controls.

  7. Time based room correction system for low frequencies using multiple loudspeakers

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2007-01-01

      Improving sound from loudspeakers in a room is a big issue. We are facing a rather complicated and serious problem, as one can experience very big variations in sound pressure level - up to 30 dB - in a room, especially at low frequencies. An innovative way of looking at the problem in the time......-domain by the construction of a finite-difference time-domain approximation program (FDTD) has lead to a novel and simple solution also working in the time-domain called Controlled Acoustically Bass System (CABS). Working in the time-domain CABS includes additional cancelling loudspeakers at the back wall in order to remove...

  8. Towards Predicting Room Acoustical Effects on Sound-Field ASSR from Stimulus Modulation Power

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; Laugesen, Søren; Jeong, Cheol-Ho

    ) is considered. Instead of using insert earphones to deliver the stimuli, as is customary, the auditory signals are reproduced from a loudspeaker placed in front of the subject, so as to include the hearing aid in the transmission path. Loudspeaker presentation of the stimulus can lower its effective modulation...... properties of the measurement room has not been considered. The present work explores the relation between the stimulus modulation power and the ASSR amplitude in a simulated sound-field ASSR data set with varying reverberation time. Three rooms were simulated using the Green's function approach...

  9. Dynamic tensile tests with superimposed ultrasonic oscillations for stainless steel type 321 at room temperature

    International Nuclear Information System (INIS)

    Schinke, B.; Malmberg, T.

    1987-01-01

    In recent years various containment codes for Fast Breeder Reactor accidents have been assessed by comparison with explosion tests in water-filled vessels (COVA experiments). Common to the various codes, a systematic underestimation of the circumferential vessel strains was found. In the COVA tests high frequency pressure oscillations in the ultrasonic range were observed and thus it has been conjectured that the phenomenon of ''acoustic softening'' might be relevant in explaining the discrepancies in the strains. To validate this conjecture a hydro-pneumatic tensile test apparatus was developed which allows dynamic tensile testing at room temperature with and without superimposed ultrasonic oscillations. The dynamic tensile tests on the COVA sheet material (stainless steel AISI 321) without ultrasonic insonation show a linear dependence of the flow stress on the logarithm of the strain rate. The results at low strain rates (10 -3 s -1 ) agree favourably with previous measurements but at high rates (50 s -1 ) at 20% lower flow stress is observed. The dynamic tensile tests with continuous and intermittent insonation show the phenomenon of ''acoustic softening'': The average flow stress is reduced by an amount of about half the oscillating amplitude. At high strain rates the reduction is less. A severe ''acoustic softening'' observed by several authors for various metals at low strain rates was not observed. The experimental results were compared with the theory of the superpositon mechanism assuming a rate-independent elastic-plastic and an elastic-viscoplastic constitutive model. Although the rate-independent model is capable to predict qualitatively some of the observed effects, a better description is obtained with the viscoplastic model. The conclusion is that the ''acoustic softening'' of the COVA material is far too small to explain the discrepancies between measured and computed strains found in the containment code validation studies. (orig.)

  10. Classroom acoustics and intervention strategies to enhance the learning environment

    Science.gov (United States)

    Savage, Christal

    The classroom environment can be an acoustically difficult atmosphere for students to learn effectively, sometimes due in part to poor acoustical properties. Noise and reverberation have a substantial influence on room acoustics and subsequently intelligibility of speech. The American Speech-Language-Hearing Association (ASHA, 1995) developed minimal standards for noise and reverberation in a classroom for the purpose of providing an adequate listening environment. A lack of adherence to these standards may have undesirable consequences, which may lead to poor academic performance. The purpose of this capstone project is to develop a protocol to measure the acoustical properties of reverberation time and noise levels in elementary classrooms and present the educators with strategies to improve the learning environment. Noise level and reverberation will be measured and recorded in seven, unoccupied third grade classrooms in Lincoln Parish in North Louisiana. The recordings will occur at six specific distances in the classroom to simulate teacher and student positions. The recordings will be compared to the American Speech-Language-Hearing Association standards for noise and reverberation. If discrepancies are observed, the primary investigator will serve as an auditory consultant for the school and educators to recommend remediation and intervention strategies to improve these acoustical properties. The hypothesis of the study is that the classroom acoustical properties of noise and reverberation will exceed the American Speech-Language-Hearing Association standards; therefore, the auditory consultant will provide strategies to improve those acoustical properties.

  11. Direction selective structural-acoustic coupled radiator

    Science.gov (United States)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-04-01

    This paper presents a method of designing a structural-acoustic coupled radiator that can emit sound in the desired direction. The structural-acoustic coupled system is consisted of acoustic spaces and wall. The wall composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. An equation is developed that predicts energy distribution and energy flow in the two spaces separated by the wall, and its computational examples are presented including near field acoustic characteristics. To design the directional coupled radiator, Pareto optimization method is adapted. An objective is selected to maximize radiation power on a main axis and minimize a side lobe level and a subjective is selected direction of the main axis and dimensions of the walls geometry. Pressure and intensity distribution of the designed radiator is also presented.

  12. Relation of Structural and Vibratory Kinematics of the Vocal Folds to Two Acoustic Measures of Breathy Voice Based on Computational Modeling

    Science.gov (United States)

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…

  13. Transmission characteristics of acoustic amplifier in thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong

    2008-01-01

    Thermoacoustic engines are promising in practical applications for the merits of simple configuration, reliable operation and environmentally friendly working gas. An acoustic amplifier can increase the output pressure amplitude of a thermoacoustic engine (TE) and improve the matching between the engine and its load. In order to make full use of an acoustic amplifier, the transmission characteristics are studied based on linear thermoacoustic theory. Computational and experimental results show that the amplifying ability of an acoustic amplifier is mainly determined by its geometry parameters and output resistance impedance. The amplifying ability of an acoustic amplifier with appropriate length and diameter reaches its maximum when the output resistance impedance is infinite. It is also shown that the acoustic amplifier consumes an amount of acoustic power when amplifying pressure amplitude and the acoustic power consumption increases with amplifying ratio. Furthermore, a novel cascade acoustic amplifier is proposed, which has a much stronger amplifying ability with reduced acoustic power consumption. In experiments, a two-stage cascade acoustic amplifier amplifies the pressure ratio from 1.177 to 1.62 and produces a pressure amplitude of 0.547 MPa with nitrogen of 2.20 MPa as working gas. Good agreements are obtained between the theoretical analysis and experimental results. This research is instructive for comprehensively understanding the mechanism and making full use of the acoustic amplifier

  14. A novel method for perceptual assessment of small room acoustics using rapid sensory analysis

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Lokki, Tapio

    2016-01-01

    presented with auralized sound over a loudspeaker array and followed a rapid sensory analysis protocol. The elicited attributes and ratings are analyzed and possible links to the acoustical properties of these spaces are discussed. [This study is a part of Marie Curie Network on Dereverberation...

  15. Ultrasonic superlensing jets and acoustic-fork sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2017-05-18

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on “hyper” or “super” lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical ‘snail-fork’ shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices. - Highlights: • Ultrasonic

  16. Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects

    Directory of Open Access Journals (Sweden)

    Diemer de Vries

    2007-01-01

    Full Text Available It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.

  17. Continuous acoustic emission from aluminium

    International Nuclear Information System (INIS)

    Fenici, P.; Kiesewetter, N.; Schiller, P.

    1976-01-01

    Continuous acoustic emission of aluminum single crystals and polycrystals during tensile tests at constant cross-head speed and at room temperature is measured with a Root Mean Square Level recorder. By means of the Kaiser effect it is shown that the continuous emission is related to the plastic deformation. The plot of continuous emission against strain takes different shapes for pure single crystals, pure polycrystals and impure polycrystals. The measured voltages have about the same value for pure single and polycrystals and are considerably greater than that for impure polycrystals. A method is developed to distinguish between continuous emission and burst

  18. Computer simulations on the nonlinear frequency shift and nonlinear modulation of ion-acoustic waves

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu; Kamimura, Tetsuo.

    1976-11-01

    The nonlinear behavior of ion-acoustic waves with rather short wave-length, k lambda sub(De) asymptotically equals 1, is investigated by computer sumulations. It is observed that the nonlinear frequency shift is negative and is proportional to square root of the initial wave amplitude when the amplitude is not too large. This proportionality breaks down and the frequency shift can become positive (for large Te/Ti), when (n tilde sub(i)/n 0 )sup(1/2)>0.25, where n tilde sub(i) is the ion density perturbation and n 0 the average plasma density. Nonlinear modulation of the wave-packet is clearly seen; however, modulational instability was not observed. The importance of the effects of trapped ions to these phenomena is emphasized. (auth.)

  19. Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator

    Science.gov (United States)

    Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar

    2018-06-01

    This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.

  20. Communication in Pipes Using Acoustic Modems that Provide Minimal Obstruction to Fluid Flow

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Archer, Eric D. (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor)

    2016-01-01

    A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.

  1. Control room habitability system review models

    International Nuclear Information System (INIS)

    Gilpin, H.

    1990-12-01

    This report provides a method of calculating control room operator doses from postulated reactor accidents and chemical spills as part of the resolution of TMI Action Plan III.D.3.4. The computer codes contained in this report use source concentrations calculated by either TACT5, FPFP, or EXTRAN, and transport them via user-defined flow rates to the control room envelope. The codes compute doses to six organs from up to 150 radionuclides (or 1 toxic chemical) for time steps as short as one second. Supporting codes written in Clipper assist in data entry and manipulation, and graphically display the results of the FORTRAN calculations. 7 refs., 22 figs

  2. Development of a computational model for the calculation of neutron dose equivalent in laminated primary barriers of radiotherapy rooms

    International Nuclear Information System (INIS)

    Rezende, Gabriel Fonseca da Silva

    2015-01-01

    Many radiotherapy centers acquire 15 and 18 MV linear accelerators to perform more effective treatments for deep tumors. However, the acquisition of these equipment must be accompanied by an additional care in shielding planning of the rooms that will house them. In cases where space is restricted, it is common to find primary barriers made of concrete and metal. The drawback of this type of barrier is the photoneutron emission when high energy photons (e.g. 15 and 18 MV spectra) interact with the metallic material of the barrier. The emission of these particles constitutes a problem of radiation protection inside and outside of radiotherapy rooms, which should be properly assessed. A recent work has shown that the current model underestimate the dose of neutrons outside the treatment rooms. In this work, a computational model for the aforementioned problem was created from Monte Carlo Simulations and Artificial Intelligence. The developed model was composed by three neural networks, each being formed of a pair of material and spectrum: Pb18, Pb15 and Fe18. In a direct comparison with the McGinley method, the Pb18 network exhibited the best responses for approximately 78% of the cases tested; the Pb15 network showed better results for 100% of the tested cases, while the Fe18 network produced better answers to 94% of the tested cases. Thus, the computational model composed by the three networks has shown more consistent results than McGinley method. (author)

  3. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    Science.gov (United States)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  4. The effect of human activity noise on the acoustic quality in open plan office

    DEFF Research Database (Denmark)

    Dehlbæk, Tania Stenholt; Jeong, Cheol-Ho; Brunskog, Jonas

    2016-01-01

    A disadvantage of open plan offices is the noise annoyance. Noise problems in open plan offices have been dealt with in several studies, and standards have been set up. Still, what has not been taken into account is the effect of human activity noise on acoustic conditions. In this study......, measurements of the general office noise levels and the room acoustic conditions according to ISO 3382-3 have been carried out in five open plan offices. Probability density functions of the sound pressure level have been obtained, and the human activity noise has been identified. Results showed a decrease...... in STI-values including the human activity noise compared to STI-values including only technical background noise as the standard recommends. Furthermore, at 500 Hz a regression analysis showed that the density of people in an room, absorption area, reverberation time as well as the ISO 3382-3 parameter...

  5. Acoustic Power Transmission Through a Ducted Fan

    Science.gov (United States)

    Envia, Ed

    2016-01-01

    For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.

  6. Interaction of externally-driven acoustic waves with compressible convection

    International Nuclear Information System (INIS)

    Jones, P.; Merryfield, W.

    1992-01-01

    Two-dimensional numerical simulations are used to examine the interaction of acoustic waves with a compressible convecting fluid. Acoustic waves are forced at the lower boundary of the computational domain and propagate through a three-layer system undergoing vigorous penetrative convection. Energy exchange between the wave and the fluid is analyzed using a work integral formulation

  7. Acoustic emission during tensile deformation of M250 grade maraging steel

    Science.gov (United States)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  8. Influence of impedance phase angle on sound pressures and reverberation times in a rectangular room

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Lee, Doheon; Santurette, Sébastien

    2014-01-01

    , but with an absorptive ceiling are investigated. The zero phase angle, which has commonly been assumed in practice, is regarded as reference and differences in the sound pressure level and early decay time from the reference are quantified. As expected, larger differences in the room acoustic parameters are found...

  9. Computational Search for Two-Dimensional MX2 Semiconductors with Possible High Electron Mobility at Room Temperature

    Directory of Open Access Journals (Sweden)

    Zhishuo Huang

    2016-08-01

    Full Text Available Neither of the two typical two-dimensional materials, graphene and single layer MoS 2 , are good enough for developing semiconductor logical devices. We calculated the electron mobility of 14 two-dimensional semiconductors with composition of MX 2 , where M (=Mo, W, Sn, Hf, Zr and Pt are transition metals, and Xs are S, Se and Te. We approximated the electron phonon scattering matrix by deformation potentials, within which long wave longitudinal acoustical and optical phonon scatterings were included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WS 2 , PtS 2 and PtSe 2 are promising for logical devices regarding the possible high electron mobility and finite band gap. Especially, the phonon limited electron mobility in PtSe 2 reaches about 4000 cm 2 ·V - 1 ·s - 1 at room temperature, which is the highest among the compounds with an indirect bandgap of about 1.25 eV under the local density approximation. Our results can be the first guide for experiments to synthesize better two-dimensional materials for future semiconductor devices.

  10. Holograms for acoustics.

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-09-22

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  11. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  12. The interaction between room and musical instruments studied by multi-channel auralization

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Otondo, Felipe

    2005-01-01

    in the anechoic recording. With this technique the variations in sound radiation from the musical instrument during the performance e.g. due to changes in level or movements can be reproduced with the influence of the surrounding room surfaces. Examples include a grand piano and a clarinet.......The directivity of musical instruments is very complicated and typically changes from one tone to the next. So, instead of measuring the average directivity, a multi-channel auralization method has been developed, which allows a highly accurate and realistic sounding auralization of musical...... instruments in rooms. Anechoic recordings have been made with 5 and 13 evenly distributed microphones around the musical instrument. The reproduction is made with a room acoustics simulation software using a compound source, which is in fact a number of highly directive sources, one for each of the channels...

  13. Acoustic levitation with self-adaptive flexible reflectors.

    Science.gov (United States)

    Hong, Z Y; Xie, W J; Wei, B

    2011-07-01

    Two kinds of flexible reflectors are proposed and examined in this paper to improve the stability of single-axis acoustic levitator, especially in the case of levitating high-density and high-temperature samples. One kind is those with a deformable reflecting surface, and the other kind is those with an elastic support, both of which are self-adaptive to the change of acoustic radiation pressure. High-density materials such as iridium (density 22.6 gcm(-3)) are stably levitated at room temperature with a soft reflector made of colloid as well as a rigid reflector supported by a spring. In addition, the containerless melting and solidification of binary In-Bi eutectic alloy (melting point 345.8 K) and ternary Ag-Cu-Ge eutectic alloy (melting point 812 K) are successfully achieved by applying the elastically supported reflector with the assistance of a laser beam.

  14. Cultural differences in room size perception.

    Science.gov (United States)

    Saulton, Aurelie; Bülthoff, Heinrich H; de la Rosa, Stephan; Dodds, Trevor J

    2017-01-01

    Cultural differences in spatial perception have been little investigated, which gives rise to the impression that spatial cognitive processes might be universal. Contrary to this idea, we demonstrate cultural differences in spatial volume perception of computer generated rooms between Germans and South Koreans. We used a psychophysical task in which participants had to judge whether a rectangular room was larger or smaller than a square room of reference. We systematically varied the room rectangularity (depth to width aspect ratio) and the viewpoint (middle of the short wall vs. long wall) from which the room was viewed. South Koreans were significantly less biased by room rectangularity and viewpoint than their German counterparts. These results are in line with previous notions of general cognitive processing strategies being more context dependent in East Asian societies than Western ones. We point to the necessity of considering culturally-specific cognitive processing strategies in visual spatial cognition research.

  15. Cultural differences in room size perception.

    Directory of Open Access Journals (Sweden)

    Aurelie Saulton

    Full Text Available Cultural differences in spatial perception have been little investigated, which gives rise to the impression that spatial cognitive processes might be universal. Contrary to this idea, we demonstrate cultural differences in spatial volume perception of computer generated rooms between Germans and South Koreans. We used a psychophysical task in which participants had to judge whether a rectangular room was larger or smaller than a square room of reference. We systematically varied the room rectangularity (depth to width aspect ratio and the viewpoint (middle of the short wall vs. long wall from which the room was viewed. South Koreans were significantly less biased by room rectangularity and viewpoint than their German counterparts. These results are in line with previous notions of general cognitive processing strategies being more context dependent in East Asian societies than Western ones. We point to the necessity of considering culturally-specific cognitive processing strategies in visual spatial cognition research.

  16. Homotopy Based Reconstruction from Acoustic Images

    DEFF Research Database (Denmark)

    Sharma, Ojaswa

    of the inherent arrangement. The problem of reconstruction from arbitrary cross sections is a generic problem and is also shown to be solved here using the mathematical tool of continuous deformations. As part of a complete processing, segmentation using level set methods is explored for acoustic images and fast...... GPU (Graphics Processing Unit) based methods are suggested for a streaming computation on large volumes of data. Validation of results for acoustic images is not straightforward due to unavailability of ground truth. Accuracy figures for the suggested methods are provided using phantom object...

  17. Examples and applications in long-range ocean acoustics

    International Nuclear Information System (INIS)

    Vera, M D

    2007-01-01

    Acoustic energy propagates effectively to long ranges in the ocean interior because of the physical properties of the marine environment. Sound propagation in the ocean is relevant to a variety of studies in communication, climatology and marine biology. Examples drawn from ocean acoustics, therefore, are compelling to students with a variety of interests. The dependence of sound speed on depth results in a waveguide that permits the detection of acoustic energy at ranges, in some experiments, of thousands of kilometres. This effect serves as an illustration of Snell's law with a continuously variable index of refraction. Acoustic tomography also offers a means for imaging the ocean's thermal structure, because of the dependence of sound speed on temperature. The ability to perform acoustic thermometry for large transects of the ocean provides an effective means of studying climate change. This application in an area of substantial popular attention allows for an effective introduction to concepts in ray propagation. Aspects of computational ocean acoustics can be productive classroom examples in courses ranging from introductory physics to upper-division mathematical methods courses

  18. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between

  19. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    Science.gov (United States)

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  20. Matrix method for acoustic levitation simulation.

    Science.gov (United States)

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  1. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  2. Acoustical topology optimization of Zwicker's loudness with Padé approximation

    DEFF Research Database (Denmark)

    Kook, Junghwan; Jensen, Jakob Søndergaard; Wang, Semyung

    2013-01-01

    Zwicker's loudness is a conventional standard index for measuring human hearing annoyance and has been widely considered in many industrial fields for noise evaluations. The calculation of Zwicker's loudness, which is needed for a wide range of frequency responses with a fine frequency resolution......, this approach imposes prohibitively high computational costs. In this research, we propose a computationally-efficient approach to resolve the computational issue in the computation and optimization of Zwicker's loudness. We present an efficient approach which combines the finite element method (FEM......) with the Padé approximation (PA) procedure for obtaining Zwicker's loudness and for applying it in a gradient-based acoustical topology optimization procedure applied to the design of acoustic devices to minimize Zwicker's loudness. In this respect, the calculation of Zwicker's loudness is represented by the PA...

  3. Estimation methods for sound levels and reverberation time in a room with irregular shape or absorption distribution

    NARCIS (Netherlands)

    Gerretsen, E.

    2006-01-01

    The reverberation time of an enclosed space is an important parameter to describe the acoustic quality in enclosed spaces. Mainly due to its simplicity Sabine’s equation is normally used even though the considered situations seldom comply with its preconditions: regular room shape, regular

  4. First installation of a dual-room IVR-CT system in the emergency room.

    Science.gov (United States)

    Wada, Daiki; Nakamori, Yasushi; Kanayama, Shuji; Maruyama, Shuhei; Kawada, Masahiro; Iwamura, Hiromu; Hayakawa, Koichi; Saito, Fukuki; Kuwagata, Yasuyuki

    2018-03-05

    Computed tomography (CT) embedded in the emergency room has gained importance in the early diagnostic phase of trauma care. In 2011, we implemented a new trauma workflow concept with a sliding CT scanner system with interventional radiology features (IVR-CT) that allows CT examination and emergency therapeutic intervention without relocating the patient, which we call the Hybrid emergency room (Hybrid ER). In the Hybrid ER, all life-saving procedures, CT examination, damage control surgery, and transcatheter arterial embolisation can be performed on the same table. Although the trauma workflow realized in the Hybrid ER may improve mortality in severe trauma, the Hybrid ER can potentially affect the efficacy of other in/outpatient diagnostic workflow because one room is occupied by one severely injured patient undergoing both emergency trauma care and CT scanning for long periods. In July 2017, we implemented a new trauma workflow concept with a dual-room sliding CT scanner system with interventional radiology features (dual-room IVR-CT) to increase patient throughput. When we perform emergency surgery or interventional radiology for a severely injured or ill patient in the Hybrid ER, the sliding CT scanner moves to the adjacent CT suite, and we can perform CT scanning of another in/outpatient. We believe that dual-room IVR-CT can contribute to the improvement of both the survival of severely injured or ill patients and patient throughput.

  5. Numerical Algorithms for Acoustic Integrals - The Devil is in the Details

    Science.gov (United States)

    Brentner, Kenneth S.

    1996-01-01

    The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.

  6. CEBAF Control Room Renovation

    International Nuclear Information System (INIS)

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-01-01

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations

  7. Reconstruction of the forehead acoustic properties in an Indo-Pacific humpback dolphin (Sousa chinensis), with investigation on the responses of soft tissue sound velocity to temperature.

    Science.gov (United States)

    Song, Zhongchang; Zhang, Yu; Berggren, Per; Wei, Chong

    2017-02-01

    Computed tomography (CT) imaging and ultrasound experimental measurements were combined to reconstruct the acoustic properties (density, velocity, and impedance) of the head from a deceased Indo-Pacific humpback dolphin (Sousa chinensis). The authors extracted 42 soft forehead tissue samples to estimate the sound velocity and density properties at room temperature, 25.0  °C. Hounsfield Units (HUs) of the samples were read from CT scans. Linear relationships between the tissues' HUs and velocity, and HUs and density were revealed through regression analyses. The distributions of the head acoustic properties at axial, coronal, and sagittal cross sections were reconstructed, suggesting that the forehead soft tissues were characterized by low-velocity in the melon, high-velocity in the muscle and connective tissues. Further, the sound velocities of melon, muscle, and connective tissue pieces were measured under different temperatures to investigate tissues' velocity response to temperature. The results demonstrated nonlinear relationships between tissues' sound velocity and temperature. This study represents a first attempt to provide general information on acoustic properties of this species. The results could provide meaningful information for understanding the species' bioacoustic characteristics and for further investigation on sound beam formation of the dolphin.

  8. Using Data Communication to Give Ease in Hotel Room Services

    Directory of Open Access Journals (Sweden)

    Rudi Tjiptadi

    2011-06-01

    Full Text Available Gaining extra comfort in a trip is an important factor. Staying in a hotel needs food, laundry, and other activities that can make guests comfortable. The guesses’ requests are usually ordered to the Room Service. Sometimes problems occur in serving the guests’ requests due to human error, such as overdue orders, misunderstandings, etc. Computers are used to prevent those problems by typing requests directly from a computer in the room. The method is done by collecting data from the direct interview at a hotel related to guests’ requests, analyzing the current system, doing literature study, creating a Room Service system draft, as well as implementing the new system in a form of prototype. A Room Service system prototype is created with the abilities to order food, drinks, laundry and ironing. This prototype designed meets the guests’ satisfaction towards the hotel room services. 

  9. Influence of sensory interactions between vision and audition on the perceptual characterisation of room acoustics

    DEFF Research Database (Denmark)

    Nathanail, Crysantie; Lavandier, Catherine; Polack, Jean-Dominique

    1999-01-01

    Visual information available to listeners-spectators in concert hall interferes in the evaluation process of the acoustical quality. The influence of the stage visual distance on the auditory apparent distance was studied in four magnitude estimation paradigms. The main result is that the same...

  10. Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fraction of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.

  11. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    Science.gov (United States)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  12. Creys-Malville control room and data processing

    International Nuclear Information System (INIS)

    Decuyper, J.

    1984-01-01

    After a brief definition of the control of a plant, this article presents the Creys-Malville control room: control means display and considerations on ergonomy and specific features in respect of the PWR control room. The Creys-Malville data processing is then rapidly presented with a brief description, the different data treatments and the specificity of the centralised data computer [fr

  13. Mathematical Models for Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1982-01-01

    A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat...... removed from the room at constant penetration length is proportional to the cube of the velocities in the occupied zone. It is also shown that a large number of diffusers increases the amount of heat which may be removed without affecting the thermal conditions. Control strategies for dual duct and single...... duct systems are given and the paper is concluded by mentioning a computer-based prediction method which gives the velocity and temperature distribution in the whole room....

  14. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    International Nuclear Information System (INIS)

    Cheng, H; Li, H B; Zhang, W; Wu, Z Q; Liu, B R

    2016-01-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure (paper)

  15. Classroom acoustics and hearing ability as determinants for perceived social climate and intentions to stay at work

    Directory of Open Access Journals (Sweden)

    Roger Persson

    2013-01-01

    Full Text Available Background noise and room acoustics may impede social interactions by interfering with oral communication and other cognitive processes. Accordingly, recent research in school environments has showed that social relationships with peers and teachers are described more negatively in rooms with long reverberation times (RT. The purpose of this study was to investigate how RT and hearing ability (i.e., hearing thresholds [HT] and distortion product oto-acoustic emissions were associated with schoolteachers′ perceptions of the social climate at work and their intentions to stay on the job. Schoolteachers (n = 107 from 10 schools that worked in classrooms classified by acoustical experts as "short RT" (3 schools, mean RT 0.41-0.47 s, "medium RT" (3 schools, mean RT 0.50-0.53 s, and "long RT" (4 schools, mean RT 0.59-0.73 s were examined. Teachers who worked in classrooms with long RT perceived their social climate to be more competitive, conflict laden, and less relaxed and comfortable. They were more doubtful about staying on the job. Even if the teachers were generally satisfied with their work the results suggest that the comfort at work may have been further improved by acoustical interventions that focus on reducing sound reflections in the classrooms. Yet, due the study design and the novelty of the findings the potential practical significance of our observations remains to be evaluated.

  16. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications.

    Science.gov (United States)

    Segura-Garcia, Jaume; Navarro-Ruiz, Juan Miguel; Perez-Solano, Juan J; Montoya-Belmonte, Jose; Felici-Castell, Santiago; Cobos, Maximo; Torres-Aranda, Ana M

    2018-02-26

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  17. Estimating RASATI scores using acoustical parameters

    International Nuclear Information System (INIS)

    Agüero, P D; Tulli, J C; Moscardi, G; Gonzalez, E L; Uriz, A J

    2011-01-01

    Acoustical analysis of speech using computers has reached an important development in the latest years. The subjective evaluation of a clinician is complemented with an objective measure of relevant parameters of voice. Praat, MDVP (Multi Dimensional Voice Program) and SAV (Software for Voice Analysis) are some examples of software for speech analysis. This paper describes an approach to estimate the subjective characteristics of RASATI scale given objective acoustical parameters. Two approaches were used: linear regression with non-negativity constraints, and neural networks. The experiments show that such approach gives correct evaluations with ±1 error in 80% of the cases.

  18. Acoustic power balance in lined ducts

    Science.gov (United States)

    Eversman, W.

    1979-01-01

    It is shown that the two common definitions of acoustic energy density and intensity in uniform unlined ducts carrying uniform flow are compatible to the extent that both energy densities can be used in an appropriate variational principle to derive the convected wave equation. When the duct walls are lined both energy densities must be modified to account for the wall energy density. This results in a new energy conservation equation which utilizes a modified definition of axial power and accounts for wall dissipation. Computations in specific cases demonstrate the validity of the modified acoustic energy relation.

  19. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  20. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  1. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A

    2008-01-01

    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  2. Geological formation characterisation by acoustic waves

    International Nuclear Information System (INIS)

    Mari, J.L.; Gaudiani, P.; Delay, J.

    2010-01-01

    Document available in extended abstract form only. For many years, the transmission of a sonic wave through formations has been used for drilling measurements. The tools used are of monopole or dipole type. Monopole-type tools are the most commonly used. Sources and receivers are multidirectional. In the fluid, sources generate a compression wave which creates in the formation a compression wave (P wave) and a shear wave (S wave) at the refraction limit angles. In a vertical well, such tools permit the recording of five propagation modes: the refracted compression wave, the refracted shear wave (only in fast formations), the fluid wave, two dispersive guided modes which are the pseudo Rayleigh waves (only in fast formations) and the Stoneley waves. Full waveform acoustic measurements are represented as constant-offset sections or as common source point gathers, similar to those used in seismic operations. For the different modes, the acoustic parameters which are usually measured are: picked time, amplitude and frequency. The acoustic parameters allow one to determine the propagation velocities of the various modes and some petro-physical parameters and to obtain lithologic and mechanical information if the shear velocity of the formation has been measured. Usually the picking of the refracted S wave is difficult due to the interferences of different wave trains such as leaky modes associated with the refracted P waves and the pseudo Rayleigh. To compute a continuous log of shear velocity, we propose an hybrid method based on the local measurement of the shear velocity (picking of the arrival time of the refracted S wave) and on the analysis of the dispersion curve of the Stoneley modes ( Biot 1956, White 1965). We also show the benefit of using a shape index parameter named Ic, computed from the amplitudes (A1, A2 and A3) of the first refracted P wave to detect acoustic anomalies specially in fractured formation. The Ic parameter is independent of the energy of

  3. Vocal effort with changing talker-to-listener distance in different acoustic environments

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David; Smits, Bertrand; Brunskog, Jonas

    2011-01-01

    Talkers adjust their vocal effort to communicate at different distances, aiming to compensate for the sound propagation losses. The present paper studies the influence of four acoustically different rooms on the speech produced by 13 male talkers addressing a listener at four distances. Talkers...... raised their vocal intensity by between 1.3 and 2.2 dB per double distance to the listener and lowered it as a linear function of the quantity “room gain” at a rate of 3.6 dB/dB. There were also significant variations in the mean fundamental frequency, both across distance (3.8 Hz per double distance......) and among environments (4.3 Hz), and in the long-term standard deviation of the fundamental frequency among rooms (4 Hz). In the most uncomfortable rooms to speak in, talkers prolonged the voiced segments of the speech they produced, either as a side-effect of increased vocal intensity or in order...

  4. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  5. Acoustical conditions for speech communication in active elementary school classrooms

    Science.gov (United States)

    Sato, Hiroshi; Bradley, John

    2005-04-01

    Detailed acoustical measurements were made in 34 active elementary school classrooms with typical rectangular room shape in schools near Ottawa, Canada. There was an average of 21 students in classrooms. The measurements were made to obtain accurate indications of the acoustical quality of conditions for speech communication during actual teaching activities. Mean speech and noise levels were determined from the distribution of recorded sound levels and the average speech-to-noise ratio was 11 dBA. Measured mid-frequency reverberation times (RT) during the same occupied conditions varied from 0.3 to 0.6 s, and were a little less than for the unoccupied rooms. RT values were not related to noise levels. Octave band speech and noise levels, useful-to-detrimental ratios, and Speech Transmission Index values were also determined. Key results included: (1) The average vocal effort of teachers corresponded to louder than Pearsons Raised voice level; (2) teachers increase their voice level to overcome ambient noise; (3) effective speech levels can be enhanced by up to 5 dB by early reflection energy; and (4) student activity is seen to be the dominant noise source, increasing average noise levels by up to 10 dBA during teaching activities. [Work supported by CLLRnet.

  6. Nonlinear self-modulation of ion-acoustic waves

    International Nuclear Information System (INIS)

    Ikezi, H.; Schwarzenegger, K.; Simons, A.L.; Ohsawa, Y.; Kamimura, T.

    1978-01-01

    The nonlinear evolution of an ion-acoustic wave packet is studied. Experimentally, it is found that (i) nonlinear phase modulation develops in the wave packet; (ii) the phase modulation, together with the dispersion effect, causes expansion and breaking of the wave packet; (iii) the ions trapped in the troughs of the wave potential introduce self-phase modulation; and (iv) the ion-acoustic wave is stable with respect to the modulational instability. Computer simulations have reproduced the experimental results. The physical picture and the model equation describing the wave evolution are discussed

  7. Optimization of a Biometric System Based on Acoustic Images

    Directory of Open Access Journals (Sweden)

    Alberto Izquierdo Fuente

    2014-01-01

    Full Text Available On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced.

  8. Optimization of a Biometric System Based on Acoustic Images

    Science.gov (United States)

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  9. Acoustic waves in M dwarfs: Maintaining a corona

    Science.gov (United States)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  10. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use

    Directory of Open Access Journals (Sweden)

    Ali A. Rostami

    2016-08-01

    Full Text Available Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate, device specifications (aerosol mass delivery, e-liquid composition, and use behavior (number of users and usage frequency. Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time.

  11. Brief report: pulmonary auscultation in the operating room: a prospective randomized blinded trial comparing electronic and conventional stethoscopes.

    Science.gov (United States)

    Hoffmann, Clement; Falzone, Elisabeth; Verret, Catherine; Pasquier, Pierre; Leclerc, Thomas; Donat, Nicolas; Jost, Daniel; Mérat, Stephane; Maurice, Guillaume de Saint; Lenoir, Bernard; Auroy, Yves; Tourtier, Jean-Pierre

    2013-09-01

    We compared the subjective quality of pulmonary auscultation between 2 acoustic stethoscopes (Holtex Ideal® and Littmann Cardiology III®) and an electronic stethoscope (Littmann 3200®) in the operating room. A prospective double-blind randomized study with an evaluation during mechanical ventilation was performed in 100 patients. After each examination, the listeners using a numeric scale (0-10) rated the quality of auscultation. Auscultation quality was compared in patients among stethoscopes with a multilevel mixed-effects linear regression with random intercept (operator effect), adjusted on significant factors in univariate analysis. A significant difference was defined as P auscultation were performed. The quality of auscultation was rated 8.2 ± 1.6 for the electronic stethoscope, 7.4 ± 1.8 for the Littmann Cardiology III, and 4.6 ± 1.8 for the Holtex Ideal. Compared with Holtex Ideal, auscultation quality was significantly higher with other stethoscopes (P auscultation quality was significantly higher with Littmann 3200 electronic stethoscope (β = 0.9 [95% confidence interval, 0.5-1.3]). An electronic stethoscope can provide a better quality of pulmonary auscultation than acoustic stethoscopes in the operating room, yet with a magnitude of improvement marginally higher than that provided with a high performance acoustic stethoscope. Whether this can translate into a clinically relevant benefit requires further studies.

  12. A new remote control room for tokamak operations

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.P., E-mail: schissel@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA (United States); Abla, G.; Flanagan, S.; Kim, E.N. [General Atomics, P.O. Box 85608, San Diego, CA (United States)

    2012-12-15

    This paper presents a summary of a new remote tokamak control room constructed near the offices of DIII-D's scientific staff. This integrated system combines hardware, software, data, and control of the room (R-232) into a unified package that has been designed and constructed in a generic fashion so that it can be used with any tokamak operating worldwide. The room is approximately 300 ft{sup 2} and can accommodate up to 12 seated participants. Mounted on the wall facing each scientist are five 52 Double-Prime LCD televisions and mounted to the wall on their right are six 24 Double-Prime LCD monitors. Each seat has associated with it a 24 Double-Prime monitor, network connection, and power and the scientist is either provided with a computer or they can use their own. The room has been used for operation of DIII-D, EAST, and KSTAR. Due to the long distances, data from EAST and KSTAR was brought back to local DIII-D computers in one large parallel network transfer and subsequently served to scientists in the remote control room to other US collaborators. This parallel data transfer allowed the data to be available to US participants between pulses making remote experimental participation highly effective.

  13. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  14. Usage of measured reverberation tail in a binaural room impulse response synthesis

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Madsen, Esben

    2011-01-01

    The aim of the modern communication technologies is an immersive experience. One of the applications that should provide the feeling of being together and sharing the same environment during the communication process is BEAMING. The goal of this paper is to improve audible spatial impression...... density of reflections. That can lead to metallic and unnatural sound. Also, room-specific sound envelopment feeling is lost. This paper investigates the possibility of using measured reverberation tail instead of the modeled one in BRIRs synthesis. Three cases are observed. In the first one, BRIRs...... case and measured late reverberation from the first one. All three cases are evaluated and compared objectively based on the obtained room acoustic parameters as well as subjectively by listening tests....

  15. New theory on the reverberation of rooms. [considering sound wave travel time

    Science.gov (United States)

    Pujolle, J.

    1974-01-01

    The inadequacy of the various theories which have been proposed for finding the reverberation time of rooms can be explained by an attempt to examine what might occur at a listening point when image sources of determined acoustic power are added to the actual source. The number and locations of the image sources are stipulated. The intensity of sound at the listening point can be calculated by means of approximations whose conditions for validity are given. This leads to the proposal of a new expression for the reverberation time, yielding results which fall between those obtained through use of the Eyring and Millington formulae; these results are made to depend on the shape of the room by means of a new definition of the mean free path.

  16. Characterization of the Scale Model Acoustic Test Overpressure Environment using Computational Fluid Dynamics

    Science.gov (United States)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.

  17. Headphone-To-Ear Transfer Function Estimation Using Measured Acoustic Parameters

    Directory of Open Access Journals (Sweden)

    Jinlin Liu

    2018-06-01

    Full Text Available This paper proposes to use an optimal five-microphone array method to measure the headphone acoustic reflectance and equivalent sound sources needed in the estimation of headphone-to-ear transfer functions (HpTFs. The performance of this method is theoretically analyzed and experimentally investigated. With the measured acoustic parameters HpTFs for different headphones and ear canal area functions are estimated based on a computational acoustic model. The estimation results show that HpTFs vary considerably with headphones and ear canals, which suggests that individualized compensations for HpTFs are necessary for headphones to reproduce desired sounds for different listeners.

  18. Magnetic resonance imaging in 38 cases of acoustic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Masafumi; Ohtsuka, Takashi; Seiki, Yoshikatsu; Matsumoto, Mikiro; Shibata, Iekado; Terao, Hideo [Toho Univ., Tokyo (Japan). School of Medicine; Kohno, Takeshi; Sanpei, Kenji; Mano, Isamu

    1989-08-01

    The value of magnetic resonance imaging (MRI) in the diagnosis of acoustic tumors was retrospectively assessed in 38 cases. A 0.15 Tesla permanent magnet and a 1.5 Tesla superconducting magnet were employed in 24 and 14 cases, respectively. Gadolinium diethlene triamine pentaacetic acid (Gd-DTPA), a paramagnetic contrast agent, was used in 10 cases. Acoustic tumors were identified in all cases. Small, medium, and large tumors were depicted with equal clarity by MRI and computed tomography (CT). However, tumor contour and extension, accompanying cysts, and brainstem displacement were more clarly visualized on MRI. The use of Gd-DTPA improved the quality of the MR images by markedly enhancing the acoustic tumors in all cases. In particular, detection of small acoustic tumors and intra- or paratumoral cysts was facilitated by the use of Gd-DTPA. The possibility of a correlation between acoustic tumor histology and MRI features was studied by calculation of the contrast to noise (C/N) ratio in 10 cases of acoustic tumor and 7 cases of meningioma. No definite correlation was demonstrated, but there appeared to be some difference in the C/N ratio between acoustic tumors and meningiomas. In three volunteers, MRI demonstrated intracanalicular nerves, separately. Because of its higher resolution, MRI can be expected to replace CT and air CT in the diagnosis of acoustic tumors. (author).

  19. Transmission Characteristics of Primate Vocalizations: Implications for Acoustic Analyses

    Science.gov (United States)

    Maciej, Peter; Fischer, Julia; Hammerschmidt, Kurt

    2011-01-01

    Acoustic analyses have become a staple method in field studies of animal vocal communication, with nearly all investigations using computer-based approaches to extract specific features from sounds. Various algorithms can be used to extract acoustic variables that may then be related to variables such as individual identity, context or reproductive state. Habitat structure and recording conditions, however, have strong effects on the acoustic structure of sound signals. The purpose of this study was to identify which acoustic parameters reliably describe features of propagated sounds. We conducted broadcast experiments and examined the influence of habitat type, transmission height, and re-recording distance on the validity (deviation from the original sound) and reliability (variation within identical recording conditions) of acoustic features of different primate call types. Validity and reliability varied independently of each other in relation to habitat, transmission height, and re-recording distance, and depended strongly on the call type. The smallest deviations from the original sounds were obtained by a visually-controlled calculation of the fundamental frequency. Start- and end parameters of a sound were most susceptible to degradation in the environment. Because the recording conditions can have appreciable effects on acoustic parameters, it is advisable to validate the extraction method of acoustic variables from recordings over longer distances before using them in acoustic analyses. PMID:21829682

  20. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications

    Directory of Open Access Journals (Sweden)

    Jaume Segura-Garcia

    2018-02-01

    Full Text Available Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  1. Misure in laboratorio di acustica edilizia a bassa frequenza: un approccio modale - Laboratory measurements of building acoustics at low frequency: a modal approach

    Directory of Open Access Journals (Sweden)

    Andrea Prato

    2016-07-01

    Full Text Available Nei tipici ambienti ordinari e di laboratorio (40-80 m3 e a bassa frequenza (50-100 Hz, il campo acustico risulta non diffuso a causa della presenza dei modi. In tali condizioni, le misure classiche di acustica edilizia (isolamento acustico per via aerea e da impatto, tempi di riverbera-zione sono inadeguate per caratterizzare correttamente le proprietà acustiche di partizioni, si-stemi di pavimentazioni e spazi chiusi. L’approccio modale permette di valutare tali proprietà studiando il comportamento dei modi. Sulla base di ciò, appropriate procedure di misura e nuovi descrittori sono proposti e discussi in modo da fornire possibili soluzioni per tali problematiche. ------ In typical laboratory and ordinary rooms (40-80 m3 and at low frequencies (50-100 Hz, the acoustic field is non-diffuse due to the presence of room modes. Under such conditions, standard building acoustics measurements (airborne and impact sound insulation, reverberation time and descriptors are not adequate to correctly characterize the acoustic property of partitions, flooring systems and rooms. The modal approach allows to evaluate such properties by studying the behavior of modes. On the basis of this, proper measurement procedures and new descriptors are proposed and discussed in order to provide possible solutions for such issues.

  2. Radiation-acoustic system for solid state research

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Kalinichenko, A.I.; Kresnin, Yu.; Popov, G.F.

    1998-01-01

    The radiation-acoustic system (RAS) is designed for comprehensive investigation of thermoelastic (TE), thermophysical (TP) and thermodynamic (TD) characteristics of structural materials. It operation is based on radiation-acoustic method, which includes probing of investigated materials by pulsed electron beam and registration the exited thermo acoustic stress. The hardware includes a CAMAC crate, an IBM PC computer, a set of sensors, a strobe analog-digital converter, a commutators of analog signals, and drivers of physical parameters. The system allows to process thermo acoustic signals generated in beam-target interaction and to extract information about phase state, TE-, TP-, and TD characteristics of the target materials. The system was used for simultaneous measuring of phase state, TE-, TP-, and TD characteristics and for investigation of kinetics of structural phase transitions in multifunctional materials such as materials with the shape memory effect (CuAlNi, TiNi, TiNiFe, TiNiCu), rare-earth metals (Dy, Gd), high-temperature superconductors YBaCuO, piezoelectric crystals (TiBa, ZrTiPb-ceramics), polymers (PMMA, PTFE, PE) etc

  3. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    Science.gov (United States)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  4. Mathematical Models for Room Air Distribution - Addendum

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1982-01-01

    A number of different models on the air distribution in rooms are introduced. This includes the throw model, a model on penetration length of a cold wall jet and a model for maximum velocity in the dimensioning of an air distribution system in highly loaded rooms and shows that the amount of heat...... removed from the room at constant penetration length is proportional to the cube of the velocities in the occupied zone. It is also shown that a large number of diffusers increases the amount of heat which may be removed without affecting the thermal conditions. Control strategies for dual duct and single...... duct systems are given and the paper is concluded by mentioning a computer-based prediction method which gives the velocity and temperature distribution in the whole room....

  5. Using Data Communication to Give Ease in Hotel Room Services

    OpenAIRE

    Tjiptadi, Rudi

    2011-01-01

    Gaining extra comfort in a trip is an important factor. Staying in a hotel needs food, laundry, and other activities that can make guests comfortable. The guesses’ requests are usually ordered to the Room Service. Sometimes problems occur in serving the guests’ requests due to human error, such as overdue orders, misunderstandings, etc. Computers are used to prevent those problems by typing requests directly from a computer in the room. The method is done by collecting data from the direct in...

  6. Room temperature linelists for CO2 asymmetric isotopologues with ab initio computed intensities

    Science.gov (United States)

    Zak, Emil J.; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergei A.; Perevalov, Valery I.

    2017-12-01

    The present paper reports room temperature line lists for six asymmetric isotopologues of carbon dioxide: 16O12C18O (628), 16O12C17O (627), 16O13C18O (638),16O13C17O (637), 17O12C18O (728) and 17O13C18O (738), covering the range 0-8000 cm-1. Variational rotation-vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). A theoretical procedure for quantifying sensitivity of line intensities to minor distortions of the PES/DMS renders our theoretical model as critically evaluated. Several recent high quality measurements and theoretical approaches are discussed to provide a benchmark of our results against the most accurate available data. Indeed, the thesis of transferability of accuracy among different isotopologues with the use of mass-independent PES is supported by several examples. Thereby, we conclude that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian, constructed from the latest experiments. This study completes the list of relevant isotopologues of carbon dioxide; these line lists are available to remote sensing studies and inclusion in databases.

  7. Acoustic pollution in hospital environments

    International Nuclear Information System (INIS)

    Olivera, J M; Rocha, L A; Rotger, V I; Herrera, M C

    2011-01-01

    There are many different services within a hospital. This means different types of noise which can be considered as acoustic pollution. Knowing that preterm infants exposed to high amounts of noise in the NICU are at a much higher risk because of their neurologic immaturity and physiologic instability, that excessive levels of noise also affect the persons and it can also impede some studies on patients, it was proposed to evaluate the Sound Pressure Level in some services of the Instituto de Maternidad, Tucumán, Argentina. There were evaluated the Level III NICU, the laundry service, a physical space destined for a service of evoked potential and a neonatal incubator under working conditions. The measurements were performed with a type II sonometer (CENTER 322) and it was also used an incubator analyzer (FLUKE INCU) for the incubator. The average values obtained were of 63.6 dBA for the NICU, 82.5dBA for the laundry room, 52.7 dBA for the evoked potential room and 62.8 dBA in the inside of the incubator under 64 dBA in the outside. The reports were documented in compliance with the appropriate standards.

  8. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    Science.gov (United States)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  9. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  10. Acoustic wave simulation using an overset grid for the global monitoring system

    Science.gov (United States)

    Kushida, N.; Le Bras, R.

    2017-12-01

    The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.

  11. Calculation of the acoustical properties of triadic harmonies.

    Science.gov (United States)

    Cook, Norman D

    2017-12-01

    The author reports that the harmonic "tension" and major/minor "valence" of pitch combinations can be calculated directly from acoustical properties without relying on concepts from traditional harmony theory. The capability to compute the well-known types of harmonic triads means that their perception is not simply a consequence of learning an arbitrary cultural "idiom" handed down from the Italian Renaissance. On the contrary, for typical listeners familiar with diatonic music, attention to certain, definable, acoustical features underlies the perception of the valence (modality) and the inherent tension (instability) of three-tone harmonies.

  12. Room acoustic simulation system considered wave motion chacteristic; Hadosei wo koryoshita shitsunai onba simulation system

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, M.; Watanabe, M.; Hirano, S. [Obayashi Corp., Osaka (Japan). Technical Research Inst.

    1996-03-20

    A practical calculating method is developed, which includes data of all audible frequencies used as the basic data for visible and audible acoustic evaluation of the sound field for supporting acoustic designing, and can calculate long term impulse responses covering those of reverberation. By the face integration method which performs calculation by dividing the responses from the face elements, at each sound input to the boundary surface, into geometrical wave components and scattered wave components, it is shown that long time impulse response can be calculated with no need for drastic increase in the calculating time. No extreme deterioration of the accuracy is observed even when the face elements are divided roughly, and the method can be applied to response calculation even in a limited time with less divided number of the wave face elements for certain items to be investigated. Sound field is visualized by three dimensional image sound source distribution in which the frequency characteristics of the initial reflected sound are displayed in color, and a series of systems are developed which enable virtual experience of estimated sound field with three dimensional spread by binaural hearing based on OSS (orthostereophonic system). 9 refs., 8 figs.

  13. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  14. Human annoyance and reactions to hotel room specific noises

    Science.gov (United States)

    Everhard, Ian L.

    2004-05-01

    A new formula is presented where multiple annoyance sources and transmission loss values of any partition are combined to produce a new single number rating of annoyance. The explanation of the formula is based on theoretical psychoacoustics and survey testing used to create variables used to weight the results. An imaginary hotel room is processed through the new formula and is rated based on theoretical survey results that would be taken by guests of the hotel. The new single number rating compares the multiple sources of annoyance to a single imaginary unbiased source where absolute level is the only factor in stimulating a linear rise in annoyance [Fidell et al., J. Acoust. Soc. Am. 66, 1427 (1979); D. M. Jones and D. E. Broadbent, ``Human performance and noise,'' in Handbook of Noise Control, 3rd ed., edited by C. M. Harris (ASA, New York, 1998), Chap. 24; J. P. Conroy and J. S. Roland, ``STC Field Testing and Results,'' in Sound and Vibration Magazine, Acoustical Publications, pp. 10-15 (July 2003)].

  15. Acoustic characteristics of urban streets in relation to scattering caused by building facades

    DEFF Research Database (Denmark)

    Onaga, Hiroshi; Rindel, Jens Holger

    2007-01-01

    The relationship between scattering and the acoustic characteristics of urban streets is examined by computer simulation. The simulation method is a combination of the image method for specular reflection and the radiosity method for scattering reflection. The findings are as follows: (1) the eff......The relationship between scattering and the acoustic characteristics of urban streets is examined by computer simulation. The simulation method is a combination of the image method for specular reflection and the radiosity method for scattering reflection. The findings are as follows: (1...

  16. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  17. Magneto acoustical emission in nanocrystalline Mn–Zn ferrites

    International Nuclear Information System (INIS)

    Praveena, K.; Murthty, S.R.

    2013-01-01

    Graphical abstract: Mn 0.4 Zn 0.6 Fe 2 O 4 powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. - Highlights: • The AE been measured along the hysteresis loops from 80 K to Curie temperature. • The MAE activity along hysteresis loop is proportional to P h during the same loop. • It is found that the domain wall creation/or annihilation processes are the origin of the MAE. - Abstract: Mn 0.4 Zn 0.6 Fe 2 O 4 powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic

  18. Real-time adaptive concepts in acoustics blind signal separation and multichannel echo cancellation

    CERN Document Server

    Schobben, Daniel W E

    2001-01-01

    Blind Signal Separation (BSS) deals with recovering (filtered versions of) source signals from an observed mixture thereof. The term `blind' relates to the fact that there are no reference signals for the source signals and also that the mixing system is unknown. This book presents a new method for blind signal separation, which is developed to work on microphone signals. Acoustic Echo Cancellation (AEC) is a well-known technique to suppress the echo that a microphone picks up from a loudspeaker in the same room. Such acoustic feedback occurs for example in hands-free telephony and can lead to a perceived loud tone. For an application such as a voice-controlled television, a stereo AEC is required to suppress the contribution of the stereo loudspeaker setup. A generalized AEC is presented that is suited for multi-channel operation. New algorithms for Blind Signal Separation and multi-channel Acoustic Echo Cancellation are presented. A background is given in array signal processing methods, adaptive filter the...

  19. Upwind scheme for acoustic disturbances generated by low-speed flows

    DEFF Research Database (Denmark)

    Ekaterinaris, J.A.

    1997-01-01

    , compressible how equations, A numerical method for the solution of the equations governing the acoustic field is presented. The primitive variable form of the governing equations is used for the numerical solution. Time integration is performed with a fourth-order, Runge-Kutta method, Discretization...... of the primitive variables space derivatives is obtained with a high-order, upwind-biased numerical scheme. Upwinding of these convective fluxes is performed according to the eigenvalue sign of the coefficient matrices. Nonreflecting boundary conditions are applied to properly convect outgoing waves away from...... the computational domain. Solutions are obtained for the acoustic field generated by a pair of corotating point vortices. Computed results are compared with the existing analytic solution for the sound field....

  20. Aero-acoustic noise of wind turbines. Noise prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    Semi-empirical and CAA (Computational AeroAcoustics) noise prediction techniques are the subject of this expert meeting. The meeting presents and discusses models and methods. The meeting may provide answers to the following questions: What Noise sources are the most important? How are the sources best modeled? What needs to be done to do better predictions? Does it boil down to correct prediction of the unsteady aerodynamics around the rotor? Or is the difficult part to convert the aerodynamics into acoustics? (LN)

  1. Assessment of impact of acoustic and nonacoustic parameters on performance and well-being

    Science.gov (United States)

    Mellert, Volker; Weber, Reinhard; Nocke, Christian

    2004-05-01

    It is of interest to estimate the influence of the environment in a specific work place area on the performance and well-being of people. Investigations have been carried out for the cabin environment of an airplane and for class rooms. Acoustics is only one issue of a variety of environmental factors, therefore the combined impact of temperature, humidity, air quality, lighting, vibration, etc. on human perception is the subject of psychophysical research. Methods for the objective assessment of subjective impressions have been developed for applications in acoustics for a long time, e.g., for concert hall acoustics, noise evaluation, and sound design. The methodology relies on questionnaires, measurement of acoustic parameters, ear-related signal processing and analysis, and on correlation of the physical input with subjective output. Methodology and results are presented from measurements of noise and vibration, temperature and humidity in aircraft simulators, and of reverberation, coloring, and lighting in a primary school, and of the environmental perception. [The work includes research with M. Klatte, A. Schick from the Psychology Department of Oldenburg University, and M. Meis from Hoerzentrum Oldenburg GmbH and with the European Project HEACE (for partners see www.heace.org).

  2. Clinical and acoustical variability in hypokinetic dysarthria

    International Nuclear Information System (INIS)

    Metter, E.J.; Hanson, W.R.

    1986-01-01

    Ten male patients with parkinsonism secondary to Parkinson's disease or progressive supranuclear palsy had clinical neurological, speech, and acoustical speech evaluations. In addition, seven of the patients were evaluated by x-ray computed tomography (CT) and (F-18)-fluorodeoxyglucose (FDG) positron emission tomography (PET). Extensive variability of speech features, both clinical and acoustical, were found and seemed to be independent of the severity of any parkinsonian sign, CT, or FDG PET. In addition, little relationship existed between the variability across each measured speech feature. What appeared to be important for the appearance of abnormal acoustic measures was the degree of overall severity of the dysarthria. These observations suggest that a better understanding of hypokinetic dysarthria may result from more extensive examination of the variability between patients. Emphasizing a specific feature such as rapid speaking rate in characterizing hypokinetic dysarthria focuses on a single and inconstant finding in a complex speech pattern

  3. Acoustic emission linear pulse holography

    International Nuclear Information System (INIS)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-01-01

    This paper describes the emission linear pulse holography which produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. A thirty two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The concept behind the AE linear pulse holography is illustrated, and a block diagram of a data acquisition system to implement the concept is given. Array element spacing, synthetic frequency criteria, and lateral depth resolution are specified. A reference timing transducer positioned between the array and the inspection zone and which inititates the time-of-flight measurements is described. The results graphically illustrate the technique using a one-dimensional FFT computer algorithm (ie. linear backward wave) for an AE image reconstruction

  4. A transparency model and its applications for simulation of reflector arrays and sound transmission (A)

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2006-01-01

    The paper describes a new method for simulating the frequency-dependent reflection and transmission of reflector arrays, and the frequency-dependent airborne sound insulation between rooms by means of a room acoustic computer model. The method makes use of a transparency method in the ray...... of the partition, and this is useful for the auralization of sound transmission through different building constructions. The acoustic properties like volume, reverberation time, and the area of the transmitting surfaces are included in the simulation....

  5. Computation of Acoustic Waves Through Sliding-Zone Interfaces Using an Euler/Navier-Stokes Code

    Science.gov (United States)

    Rumsey, Christopher L.

    1996-01-01

    The effect of a patched sliding-zone interface on the transmission of acoustic waves is examined for two- and three-dimensional model problems. A simple but general interpolation scheme at the patched boundary passes acoustic waves without distortion, provided that a sufficiently small time step is taken. A guideline is provided for the maximum permissible time step or zone speed that gives an acceptable error introduced by the sliding-zone interface.

  6. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  7. Compact Acoustic Models for Embedded Speech Recognition

    Directory of Open Access Journals (Sweden)

    Lévy Christophe

    2009-01-01

    Full Text Available Speech recognition applications are known to require a significant amount of resources. However, embedded speech recognition only authorizes few KB of memory, few MIPS, and small amount of training data. In order to fit the resource constraints of embedded applications, an approach based on a semicontinuous HMM system using state-independent acoustic modelling is proposed. A transformation is computed and applied to the global model in order to obtain each HMM state-dependent probability density functions, authorizing to store only the transformation parameters. This approach is evaluated on two tasks: digit and voice-command recognition. A fast adaptation technique of acoustic models is also proposed. In order to significantly reduce computational costs, the adaptation is performed only on the global model (using related speaker recognition adaptation techniques with no need for state-dependent data. The whole approach results in a relative gain of more than 20% compared to a basic HMM-based system fitting the constraints.

  8. Room Airflows with Low Reynolds Number Effects

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Davidson, Lars

    The behaviour of room airflows under fully turbulent conditions is well known both in terms of experiments and, numerical calculations by computational fluid dynamics (CFD). For room airflows where turbulence is not fully developed though, i.e. flows at low Reynolds numbers, the existing knowledge...... is limited. It has been the objective to investigate the behaviour of a plane isothermal wall jet in a full-scale ventilated room at low Reynolds numbers, i.e. when the flow is not fully turbulent. The results are significantly different from known theory for fully turbulent flows. It was found that the jet...... constants are a strong function of the Reynolds number up to a level of Reh≈500....

  9. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  10. On the acoustics of ancient Greek and Roman theaters.

    Science.gov (United States)

    Farnetani, Andrea; Prodi, Nicola; Pompoli, Roberto

    2008-09-01

    The interplay of architecture and acoustics is remarkable in ancient Greek and Roman theaters. Frequently they are nowadays lively performance spaces and the knowledge of the sound field inside them is still an issue of relevant importance. Even if the transition from Greek to Roman theaters can be described with a great architectural detail, a comprehensive and objective approach to the two types of spaces from the acoustical point of view is available at present only as a computer model study [P. Chourmouziadou and J. Kang, "Acoustic evolution of ancient Greek and Roman theaters," Appl. Acoust. 69, re (2007)]. This work addresses the same topic from the experimental point of view, and its aim is to provide a basis to the acoustical evolution from Greek to Roman theater design. First, by means of in situ and scale model measurements, the most important features of the sound field in ancient theaters are clarified and discussed. Then it has been possible to match quantitatively the role of some remarkable architectural design variables with acoustics, and it is seen how this criterion can be used effectively to define different groups of ancient theaters. Finally some more specific wave phenomena are addressed and discussed.

  11. 15th Anglo-French Physical Acoustics Conference (AFPAC 2016)

    International Nuclear Information System (INIS)

    2017-01-01

    The 15 th Anglo-French Physical Acoustics Conference (AFPAC) was held at Selsdon Park Hotel, near London, United Kingdom, on 13-15 January 2016. The venue was an excellent location to exchange ideas, regardless whether this took place in the conference room, over lunch, at the drinks reception, or in the bar after the conference dinner. A total of 65 papers were presented at the conference. There were over 80 delegates from institutions covering five countries. On the first day of AFPAC, the Institute of Physics joined forces with the National Physical Laboratory (UK) to host a special session on cavitation. The Cavitation User Forum, a bi-annual event specifically dedicated to applications of high power ultrasound, brought together experts from academia and from the cleaning, processing and medical industries. This session was kicked off with an invited talk by Dr David Fernandez Rivas (University of Twente, The Netherlands), on the reproducibility of sonochemistry and ultrasonic cleaning. The Cavitation User Forum was followed by a special session on biomedical ultrasound, co-sponsored by the Medical Physics Group of the Institute of Physics, which featured a keynote talk by Prof Robin Cleveland (University of Oxford) on ultrasonic surgery. The session included talks on acoustic microscopy of live cells, histotripsy, phase-insensitive ultrasound computed tomography for the diagnosis of breast cancer, high-intensity focused ultrasound and the biomedical applications of solitary wave impulses generated by granular chains The second day featured an invited presentation by Prof Tim Leighton (University of Southampton, UK) on the acoustic bubble, which discussed ocean, cetacean and extra-terrestrial acoustics, and cold water cleaning. Prof Christ Glorieux (KU Leuven, Belgium) discussed the applications of photothermal and photoacoustic methods using different spatiotemporal excitation patterns. A broad range of physical acoustics topics was reviewed that day. Work was

  12. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  13. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  14. On the sound insulation of acoustic metasurface using a sub-structuring approach

    Science.gov (United States)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-08-01

    The feasibility of using an acoustic metasurface (AMS) with acoustic stop-band property to realize sound insulation with ventilation function is investigated. An efficient numerical approach is proposed to evaluate its sound insulation performance. The AMS is excited by a reverberant sound source and the standardized sound reduction index (SRI) is numerically investigated. To facilitate the modeling, the coupling between the AMS and the adjacent acoustic fields is formulated using a sub-structuring approach. A modal based formulation is applied to both the source and receiving room, enabling an efficient calculation in the frequency range from 125 Hz to 2000 Hz. The sound pressures and the velocities at the interface are matched by using a transfer function relation based on ;patches;. For illustration purposes, numerical examples are investigated using the proposed approach. The unit cell constituting the AMS is constructed in the shape of a thin acoustic chamber with tailored inner structures, whose stop-band property is numerically analyzed and experimentally demonstrated. The AMS is shown to provide effective sound insulation of over 30 dB in the stop-band frequencies from 600 to 1600 Hz. It is also shown that the proposed approach has the potential to be applied to a broad range of AMS studies and optimization problems.

  15. Acoustics and the Performance of Music Manual for Acousticians, Audio Engineers, Musicians, Architects and Musical Instrument Makers

    CERN Document Server

    Meyer, Jürgen

    2009-01-01

    Acoustics and the Performance of Music connects scientific understandings of acoustics with practical applications to musical performance. Of central importance are the tonal characteristics of musical instruments and the singing voice including detailed representations of directional characteristics. Furthermore, room acoustical concerns related to concert halls and opera houses are considered. Based on this, suggestions are made for musical performance. Included are seating arrangements within the orchestra and adaptations of performance techniques to the performance environment. In the presentation we dispense with complicated mathematical connections and deliberately aim for conceptual explanations accessible to musicians, particularly for conductors. The graphical representations of the directional dependence of sound radiation by musical instruments and the singing voice are unique. Since the first edition was published in 1978, this book has been completely revised and rewritten to include current rese...

  16. The Classroom, Board Room, Chat Room, and Court Room: School Computers at the Crossroads.

    Science.gov (United States)

    Stewart, Michael

    2000-01-01

    In schools' efforts to maximize technology's benefits, ethical considerations have often taken a back seat. Computer misuse is growing exponentially and assuming many forms: unauthorized data access, hacking, piracy, information theft, fraud, virus creation, harassment, defamation, and discrimination. Integrated-learning activities will help…

  17. Directional radiation pattern in structural-acoustic coupled system

    Science.gov (United States)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-07-01

    In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.

  18. Investigating broadband acoustic adsorption using rapid manufacturing

    Science.gov (United States)

    Godbold, O.

    The reduction of nuisance noise and the removal of unwanted sound modes within a room or component enclosure-area can be accomplished through the use of acoustic absorbers. Sound absorption can be achieved through conversion of the kinetic energy associated with pressure waves, into heat energy via viscous dissipation. This occurs within open porous materials, or by utilising resonant effects produced using simple cavity and orifice configurations. The manufacture of traditional porous and resonant absorbers is commonly realised using basic manufacturing techniques. These techniques restrict the geometry of a given resonant construction, and limit the configuration of porous absorbers. The aim of this work is to exploit new and emerging capabilities of Rapid Manufacturing (RM) to produce components with geometrical freedom, and apply it to the development of broadband acoustic absorption. New and novel absorber geometric configurations are identified and their absorption performance is determined. The capabilities and limitations of RM processes in reproducing these configurations are demonstrated. The geometric configuration of RM resonant absorbers is investigated. Cavity modifications aimed at damping the resonant effect by restricting the motion of cavity air, and adding increased viscous resistance are explored. Modifications relating to cavity shape, the addition of internal perforations and increased cavity surface area have all been shown to add acoustic resistance, thereby increasing the bandwidth of absorption. Decreasing the hydraulic radius of the cavity cross section and reducing internal feature dimensions provide improved resistance over conventional configurations..

  19. A three dimensional children head database for acoustical research and development

    DEFF Research Database (Denmark)

    Harder, Stine; Paulsen, Rasmus Reinhold; Larsen, Martin

    2013-01-01

    Most computational-acoustic work within spatial hearing relies on head-related transfer functions from databases of measurements taken on adult humans or dummy heads. We aim to provide a set of 3D digital heads including children, from which head-related transfer functions can be computed instead...

  20. Research and Design on Trigger System Based on Acoustic Delay Correlation Filtering

    Directory of Open Access Journals (Sweden)

    Zhiyong Lei

    2014-01-01

    Full Text Available In the exterior trajectory test, there usually needs a muzzle or a gun muzzle trigger system to be used as start signal for other measuring device, the customary trigger systems include off- target, infrared and acoustic detection system. But inherent echo reflection of the acoustic detection system makes the original signal of sound trigger submerged in various echo interference for bursts and shooting in a closed room, so that it can’t produce accurate trigger. In order to solve this defect, this paper analyzed the mathematical model based on acoustic delay correlation filtering in detail, then put forward the constraint condition with minimum path for delay correlation filtering. In this constraint condition, delay correlation filtering can do de-noising operation accurately. In order to verify accuracy and actual performance of the model, a MEMS sound sensor was used to implement mathematical model onto project, experimental results show that this system can filter out the every path sound bounce echoes of muzzle shock wave signal and produce the desired trigger signal accurately.

  1. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  2. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Leskovar, B.; Turko, B.T.

    1985-01-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  3. Deep sea AUV navigation using multiple acoustic beacons

    Science.gov (United States)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  4. PC operated acoustic transient spectroscopy of deep levels in MIS structures

    International Nuclear Information System (INIS)

    Bury, P.; Jamnicky, I.

    1996-01-01

    A new version of acoustic deep-level transient spectroscopy is presented to study the traps at the insulator-semiconductor interface. The acoustic deep-level transient spectroscopy uses an acoustoelectric response signal produced by the MIS structure interface when a longitudinal acoustic wave propagates through a structure. The acoustoelectric response signal is extremely sensitive to external conditions of the structure and reflects any changes in the charge distribution, connected also with charged traps. In comparison with previous version of acoustic deep-level transient spectroscopy that closely coincides with the principle of the original deep-level transient spectroscopy technique, the present technique is based on the computer-evaluated isothermal transients and represents an improved, more efficient and time saving technique. Many tests on the software used for calculation as well as on experimental setup have been performed. The improved acoustic deep-level transient spectroscopy method has been applied for the Si(p) MIS structures. The deep-level parameters as activation energy and capture cross-section have been determined. (authors)

  5. Usage of measured reverberation tail in a binaural room impulse response synthesis

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Madsen, Esben

    2011-01-01

    The aim of the modern communication technologies is an immersive experience. One of the applications that should provide the feeling of being together and sharing the same environment during the communication process is BEAMING. The goal of this paper is to improve audible spatial impression...... utilizing correct acoustical properties of the specific environments. Binaural room impulse response (BRIR) synthesis represents one of the main tasks in the binaural auralization. When the BRIRs are simulated, high order reflections (reverberation tail) are usually modeled statistically because of the high...

  6. Sound field simulation and acoustic animation in urban squares

    Science.gov (United States)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  7. Convergent acoustic field of view in echolocating bats

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Ratcliffe, John M; Surlykke, Annemarie

    2013-01-01

    Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed on wavel......Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed...... on wavelength by preferred prey size have been used to explain this relationship. Here we propose the hypothesis that smaller bats emit higher frequencies to achieve directional sonar beams, and that variable beam width is critical for bats. Shorter wavelengths relative to the size of the emitter translate...... into more directional sound beams. Therefore, bats that emit their calls through their mouths should show a relationship between mouth size and wavelength, driving smaller bats to signals of higher frequency. We found that in a flight room mimicking a closed habitat, six aerial hawking vespertilionid...

  8. The effect of room acoustics on the measured speech privacy in two typical European open plan offices

    NARCIS (Netherlands)

    Wenmaekers, R.H.C.; Hout, van N.H.A.M.; Luxemburg, van L.C.J.; Hak, C.C.J.M.

    2009-01-01

    The reverberation time and the background noise level are often used as the most important design parameters in European open plan offices to achieve a comfortable acoustic climate and to control speech intelligibility. Good speech intelligibility is desired for people working together, but bad

  9. An approach to global equalisation in a rectangular room at low frequencies

    DEFF Research Database (Denmark)

    Orozco, Arturo

    1999-01-01

    The motivation of this study is the fact that sound reproduced in a room undergoes a spectral colouration, which is undesirable. This effect is particularly severe at low frequencies in small enclosures.A theoretical study based on computer simulations is presented. The listening area is a contin......The motivation of this study is the fact that sound reproduced in a room undergoes a spectral colouration, which is undesirable. This effect is particularly severe at low frequencies in small enclosures.A theoretical study based on computer simulations is presented. The listening area...... is a continuous region in a rectangular room that occupies almost the entire room. A travelling wave is generated by feeding a number of loudspeakes with the signal to be reproduced passed through digital filters. The problem of designing these filters is investigated both in the frequency domain and in the time...

  10. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  11. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  12. Material parameters and vector scaling in transformation acoustics

    International Nuclear Information System (INIS)

    Cummer, Steven A; Rahm, Marco; Schurig, David

    2008-01-01

    The degree to which the coordinate transformation concept first demonstrated for electromagnetic waves can be applied to other classes of waves remains an open question. In this work, we thoroughly examine the coordinate transformation invariance of acoustic waves. We employ a purely physical argument to show how the acoustic velocity vector must transform differently than the E and H fields in Maxwell's equations, which explains why acoustic coordinate transformation invariance was not found in some previous analyses. A first principles analysis of the acoustic equations under arbitrary coordinate transformations confirms that the divergence operator is preserved only if velocity transforms in this physically correct way. This analysis also yields closed-form expressions for the bulk modulus and mass density tensor of the material required to realize an arbitrary coordinate transformation on the acoustic fields, which we show are equivalent to forms presented elsewhere. We demonstrate the computation of these material parameters in two specific cases and show that the change in velocity and pressure gradient vectors under a nonorthogonal coordinate transformation is precisely how these vectors must change from purely physical arguments. This analysis confirms that all of the electromagnetic devices and materials that have been conceived using the coordinate transformation approach are also in principle realizable for acoustic waves. Together with previous work, this analysis also shows how the curl, divergence and gradient operators maintain form under arbitrary coordinate transformations, opening the door to analyzing other wave systems built on these three vector operators.

  13. Feasibility study of complex wavefield retrieval in off-axis acoustic holography employing an acousto-optic sensor.

    Science.gov (United States)

    Rodríguez, Guillermo López; Weber, Joshua; Sandhu, Jaswinder Singh; Anastasio, Mark A

    2011-12-01

    We propose and experimentally demonstrate a new method for complex-valued wavefield retrieval in off-axis acoustic holography. The method involves use of an intensity-sensitive acousto-optic (AO) sensor, optimized for use at 3.3 MHz, to record the acoustic hologram and a computational method for reconstruction of the object wavefield. The proposed method may circumvent limitations of conventional implementations of acoustic holography and may facilitate the development of acoustic-holography-based biomedical imaging methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Limitations of the acoustic approximation for seismic crosshole tomography

    Science.gov (United States)

    Marelli, Stefano; Maurer, Hansruedi

    2010-05-01

    Modelling and inversion of seismic crosshole data is a challenging task in terms of computational resources. Even with the significant increase in power of modern supercomputers, full three-dimensional elastic modelling of high-frequency waveforms generated from hundreds of source positions in several boreholes is still an intractable task. However, it has been recognised that full waveform inversion offers substantially more information compared with traditional travel time tomography. A common strategy to reduce the computational burden for tomographic inversion is to approximate the true elastic wave propagation by acoustic modelling. This approximation assumes that the solid rock units can be treated like fluids (with no shear wave propagation) and is generally considered to be satisfactory so long as only the earliest portions of the recorded seismograms are considered. The main assumption is that most of the energy in the early parts of the recorded seismograms is carried by the faster compressional (P-) waves. Although a limited number of studies exist on the effects of this approximation for surface/marine synthetic reflection seismic data, and show it to be generally acceptable for models with low to moderate impedance contrasts, to our knowledge no comparable studies have been published on the effects for cross-borehole transmission data. An obvious question is whether transmission tomography should be less affected by elastic effects than surface reflection data when only short time windows are applied to primarily capture the first arriving wavetrains. To answer this question we have performed 2D and 3D investigations on the validity of the acoustic approximation for an elastic medium and using crosshole source-receiver configurations. In order to generate consistent acoustic and elastic data sets, we ran the synthetic tests using the same finite-differences time-domain elastic modelling code for both types of simulations. The acoustic approximation was

  15. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  16. Control console for the X-ray room

    International Nuclear Information System (INIS)

    Garcia H, J.M.; Aguilar B, M.A.; Torres B, M.A.

    1998-01-01

    It is presented the design and construction of Control console for the X-ray room of Metrology Center for ionizing radiations at National Institute of Nuclear Research (ININ). This system controls the positioning of 6 different filters for an X-ray beam. Also it controls a shutter which blockades the beam during periods established by user, these periods can be fixed from hours until tenth of second. The shutter opening periods, as well as the X-ray beam filter are establish and monitoring from a Personal computer outside of room. (Author)

  17. Multi-surface Interaction in the WILD Room

    DEFF Research Database (Denmark)

    Beaudouin-Lafon, Michel; Chapuis, Olivier; Eagan, James R.

    2012-01-01

    The WILD (wall-sized interaction with large datasets) room serves as a testbed for exploring the next generation of interactive systems by distributing interaction across diverse computing devices, enabling multiple users to easily and seamlessly create, share, and manipulate digital content...

  18. Equalization of Loudspeaker and Room Responses Using Kautz Filters: Direct Least Squares Design

    Directory of Open Access Journals (Sweden)

    Karjalainen Matti

    2007-01-01

    Full Text Available DSP-based correction of loudspeaker and room responses is becoming an important part of improving sound reproduction. Such response equalization (EQ is based on using a digital filter in cascade with the reproduction channel to counteract the response errors introduced by loudspeakers and room acoustics. Several FIR and IIR filter design techniques have been proposed for equalization purposes. In this paper we investigate Kautz filters, an interesting class of IIR filters, from the point of view of direct least squares EQ design. Kautz filters can be seen as generalizations of FIR filters and their frequency-warped counterparts. They provide a flexible means to obtain desired frequency resolution behavior, which allows low filter orders even for complex corrections. Kautz filters have also the desirable property to avoid inverting dips in transfer function to sharp and long-ringing resonances in the equalizer. Furthermore, the direct least squares design is applicable to nonminimum-phase EQ design and allows using a desired target response. The proposed method is demonstrated by case examples with measured and synthetic loudspeaker and room responses.

  19. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  20. HABIT, Toxic and Radioactive Release Hazards in Reactor Control Room

    International Nuclear Information System (INIS)

    Stage, S.A.

    2005-01-01

    1 - Description of program or function: HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. 2 - Methods: Given information about the design of a nuclear power plant, a scenario for the release of toxic or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel

  1. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  2. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha; Wu, Ying

    2016-01-01

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  3. Usefulness of technetium-99m tetrofosmin single-photon emission computed tomography for short-term risk stratification in patients with acute chest pain in the emergency room

    International Nuclear Information System (INIS)

    Kawahito, Michitomo; Kondo, Makoto; Abe, Yoshiteru

    2003-01-01

    High-risk patients with acute coronary syndrome are difficult to distinguish from low-risk patients with chest pain in the emergency room. Technetium-99 m ( 99m Tc) tetrofosmin single-photon emission computed tomography (SPECT) was investigated to exclude high-risk patients with chest pain in the emergency room. 99m Tc-tetrofosmin SPECT was evaluated using a four-point scoring system in 228 patients (144 men, 84 women, mean age 68±12 years) with chest pain. Negative was defined as the myocardial segments with a defect score (DS) of 99m Tc-tetrofosmin; no significance (NS)), 84.9% (NS) and 60.4% (p 99m Tc-tetrofosmin SPECT is a useful method to exclude high-risk patients among patients with chest pain in the emergency room. (author)

  4. A modeling approach to predict acoustic nonlinear field generated by a transmitter with an aluminum lens.

    Science.gov (United States)

    Fan, Tingbo; Liu, Zhenbo; Chen, Tao; Li, Faqi; Zhang, Dong

    2011-09-01

    In this work, the authors propose a modeling approach to compute the nonlinear acoustic field generated by a flat piston transmitter with an attached aluminum lens. In this approach, the geometrical parameters (radius and focal length) of a virtual source are initially determined by Snell's refraction law and then adjusted based on the Rayleigh integral result in the linear case. Then, this virtual source is used with the nonlinear spheroidal beam equation (SBE) model to predict the nonlinear acoustic field in the focal region. To examine the validity of this approach, the calculated nonlinear result is compared with those from the Westervelt and (Khokhlov-Zabolotskaya-Kuznetsov) KZK equations for a focal intensity of 7 kW/cm(2). Results indicate that this approach could accurately describe the nonlinear acoustic field in the focal region with less computation time. The proposed modeling approach is shown to accurately describe the nonlinear acoustic field in the focal region. Compared with the Westervelt equation, the computation time of this approach is significantly reduced. It might also be applicable for the widely used concave focused transmitter with a large aperture angle.

  5. ACOUSTIC SPEECH RECOGNITION FOR MARATHI LANGUAGE USING SPHINX

    Directory of Open Access Journals (Sweden)

    Aman Ankit

    2016-09-01

    Full Text Available Speech recognition or speech to text processing, is a process of recognizing human speech by the computer and converting into text. In speech recognition, transcripts are created by taking recordings of speech as audio and their text transcriptions. Speech based applications which include Natural Language Processing (NLP techniques are popular and an active area of research. Input to such applications is in natural language and output is obtained in natural language. Speech recognition mostly revolves around three approaches namely Acoustic phonetic approach, Pattern recognition approach and Artificial intelligence approach. Creation of acoustic model requires a large database of speech and training algorithms. The output of an ASR system is recognition and translation of spoken language into text by computers and computerized devices. ASR today finds enormous application in tasks that require human machine interfaces like, voice dialing, and etc. Our key contribution in this paper is to create corpora for Marathi language and explore the use of Sphinx engine for automatic speech recognition

  6. Propeller installation effects on turboprop aircraft acoustics

    Science.gov (United States)

    Chirico, Giulia; Barakos, George N.; Bown, Nicholas

    2018-06-01

    Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout.

  7. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  8. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  9. Air Distribution in Rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The research on air distribution in rooms is often done as full-size investigations, scale-model investigations or by Computational Fluid Dynamics (CFD). New activities have taken place within all three areas and this paper draws comparisons between the different methods. The outcome of the l......EA sponsored research "Air Flow Pattern within Buildings" is used for comparisons in some parts of the paper because various types of experiments and many countries are involved....

  10. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1982-01-01

    The concept for modern plant control rooms is primary influenced by: The automation of protection, binary control and closed loop control functions; organization employing functional areas; computer based information processing; human engineered design. Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig.)

  11. Amorphization of Molecular Liquids of Pharmaceutical Drugs by Acoustic Levitation

    Directory of Open Access Journals (Sweden)

    C. J. Benmore

    2011-08-01

    Full Text Available It is demonstrated that acoustic levitation is able to produce amorphous forms from a variety of organic molecular compounds with different glass forming abilities. This can lead to enhanced solubility for pharmaceutical applications. High-energy x-ray experiments show that several viscous gels form from saturated pharmaceutical drug solutions after 10–20 min of levitation at room temperature, most of which can be frozen in solid form. Laser heating of ultrasonically levitated drugs can also result in the vitrification of molecular liquids, which is not attainable using conventional amorphization methods.

  12. Interior acoustic cloak

    OpenAIRE

    Wael Akl; A. Baz

    2014-01-01

    Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which a...

  13. Comparisons of auditorium acoustics measurements as a function of location in halls (A)

    DEFF Research Database (Denmark)

    Bradley, J. S.; Gade, Anders Christian; Siebein, G W

    1993-01-01

    In a measurement tour of nine U.S. concert halls measurements were made at 30 or more combinations of source and receiver position in each hall. Each of the three measurement teams (the University of Florida, the Danish Technical University, and the National Research Council of Canada) made paral....... The measurement results were also used to examine the influence of different measurement equipment and measurement procedures on the within hall variations of the various acoustical quantities. [Work partially supported by the Concert Hall Research Group.]...... parallel measurements of a number of modern room acoustics quantities using different equipment and measurement procedures. These results are compared on a seat-by-seat basis and the differences are explained in terms of earlier systematic studies of the effects of measurement procedure details...

  14. Computational aerodynamics and aeroacoustics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W.Z.

    2009-10-15

    The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind turbines. The main objective of the research was to develop new computational tools and techniques for analysing flows about wind turbines. A few papers deal with applications of Blade Element Momentum (BEM) theory to wind turbines. In most cases the incompressible Navier-Stokes equations in primitive variables (velocity-pressure formulation) are employed as the basic governing equations. However, since fluid mechanical problems essentially are governed by vortex dynamics, it is sometimes advantageous to use the concept of vorticity (defined as the curl of velocity). In vorticity form the Navier-Stokes equations may be formulated in different ways, using a vorticity-stream function formulation, a vorticity-velocity formulation or a vorticity-potential-stream function formulation. In [1] - [3] two different vorticity formulations were developed for 2D and 3D wind turbine flows. In [4] and [5] numerical techniques for avoiding pressure oscillations were developed when solving the velocity-pressure coupling system in the in-house EllipSys2D/3D code. In [6] - [8] different actuator disc techniques combined with CFD are presented. This includes actuator disc, actuator line and actuator surface techniques, which were developed to simulate flows past one or more wind turbines. In [9] and [10] a tip loss correction method that improves the conventional models was developed for use in combination with BEM or actuator/Navier-Stokes computations. A simple and efficient technique for determining the angle of attack for flow past a wind turbine rotor

  15. MO-A-BRD-07: Feasibility of X-Ray Acoustic Computed Tomography as a Tool for Calibration and In Vivo Dosimetry of Radiotherapy Electron and Photon Beams

    International Nuclear Information System (INIS)

    Hickling, S; Hobson, M; El Naqa, I

    2014-01-01

    Purpose: This work simulates radiation-induced acoustic waves to assess the feasibility of x-ray acoustic computed tomography (XACT) as a dosimeter. XACT exploits the phenomenon that acoustic waves with amplitude proportional to the dose deposited are induced following a radiation pulse. After detecting these acoustic waves with an ultrasound transducer, an image of the dose distribution can be reconstructed in realtime. Methods: Monte Carlo was used to simulate the dose distribution for monoenergetic 6 MeV photon and 9 MeV electron beams incident on a water tank. The dose distribution for a prostate patient planned with a photon 4-field box technique was calculated using clinical treatment planning software. All three dose distributions were converted into initial pressure distributions, and transportation of the induced acoustic waves was simulated using an open-source toolkit. Ideal transducers were placed around the circumference of the target to detect the acoustic waves, and a time reversal reconstruction algorithm was used to obtain an XACT image of the dose for each radiation pulse. Results: For the photon water tank relative dosimetry case, it was found that the normalized acoustic signal amplitude agreed with the normalized dose at depths from 0 cm to 10 cm, with an average percent difference of 0.5%. For the reconstructed in-plane dose distribution of an electron water tank irradiation, all pixels passed a 3%–3 mm 2D gamma test. The reconstructed prostate dose distribution closely resembled the plan, with 89% of pixels passing a 3%–3 mm 2D gamma test. For all situations, the amplitude of the induced acoustic waves ranged from 0.01 Pa to 1 Pa. Conclusion: Based on the amplitude of the radiation-induced acoustic waves and accuracy of the reconstructed dose distributions, XACT is a feasible technique for dosimetry in both calibration and in vivo environments for photon and electron beams and merits further investigation. Funding from NSERC, CIHR and Mc

  16. Tap-length optimization of adaptive filters used in stereophonic acoustic echo cancellation

    DEFF Research Database (Denmark)

    Kar, Asutosh; Swamy, M.N.S.

    2017-01-01

    An adaptive filter with a large number of weights or taps is necessary for stereophonic acoustic echo cancellation (SAEC), depending on the room impulse response and acoustic path where the cancellation is performed. However, a large tap-length results in slow convergence and increases...... the complexity of the tapped delay line structure for FIR adaptive filters. To overcome this problem, there is a need for an optimum tap-length-estimation algorithm that provides better convergence for the adaptive filters used in SAEC. This paper presents a solution to the problem of balancing convergence...... and steady-state performance of long length adaptive filters used for SAEC by proposing a new tap-length-optimization algorithm. The optimum tap length and step size of the adaptive filter are derived considering an impulse response with an exponentially-decaying envelope, which models a wide range...

  17. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    Science.gov (United States)

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  18. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  19. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  20. Modeling ground vehicle acoustic signatures for analysis and synthesis

    International Nuclear Information System (INIS)

    Haschke, G.; Stanfield, R.

    1995-01-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems

  1. Perception of tomorrow's nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Meyer, O.R.

    1986-01-01

    Major development programs are upgrading today's light water reactor nuclear power plant (NPP) control rooms. These programs involve displays, control panel architecture, procedures, staffing, and training, and are supported by analytical efforts to refine the definitions of the dynamics and the functional requirements of NPP operation. These programs demonstrate that the NPP control room is the visible command/control/communications center of the complex man/machine system that operates the plant. These development programs are primarily plant specific, although the owners' groups and the Institute of Nuclear Power Operations (INPO) do provide some standardization. The Idaho National Engineering Laboratory recently completed a project to categorize control room changes and estimate the degree of change. That project, plus related studies, provides the basis for this image of the next generation of NPP control rooms. The next generation of NPP control rooms is envisioned as being dominated by three current trends: (1) application of state-of-the-art computer hardware and software; (2) use of NPP dynamic analyses to provide the basis for the control room man/machine system design; and (3) application of empirical principles of human performance

  2. Panel acoustic contribution analysis.

    Science.gov (United States)

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  3. Description of the tasks of control room operators in German nuclear power plants and support possibilities by advanced computer systems

    International Nuclear Information System (INIS)

    Buettner, W.E.

    1984-01-01

    In course of the development of nuclear power plants the instrumentation and control systems and the information in the control room have been increasing substantially. With this background it is described which operator tasks might be supported by advanced computer aid systems with main emphasis to safety related information and diagnose facilities. Nevertheless, some of this systems under development may be helpful for normal operation modes too. As far as possible recommendations for the realization and test of such systems are made. (orig.) [de

  4. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

    International Nuclear Information System (INIS)

    Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio

    1995-01-01

    Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04χ-16.9, r=0.95; y=0.87χ+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author)

  5. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1995-01-01

    Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04{chi}-16.9, r=0.95; y=0.87{chi}+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author).

  6. Comparison of acoustic regulations for housing and schools in selected countries in Europe and South America – A pilot study

    DEFF Research Database (Denmark)

    Machimbarrena, Maria; Rasmussen, Birgit

    2016-01-01

    Acoustic regulations for housing and schools exist in most countries in Europe, the main reasons being protection of health of citizens in their homes and optimizing learning conditions in schools. Comparative studies in Europe have shown a high diversity of descriptors and limit values for acous......Acoustic regulations for housing and schools exist in most countries in Europe, the main reasons being protection of health of citizens in their homes and optimizing learning conditions in schools. Comparative studies in Europe have shown a high diversity of descriptors and limit values...... of requirements. As a pilot study, acoustic regulations in three countries in South America, namely Argentina, Brazil and Chile, have been considered. The findings indicate weaker requirements than typical in Europe, and at both continents there is a joint challenge to review regulatory requirements in those...... includes examples of specific acoustic requirements on airborne and impact sound insulation, noise from traffic and from service equipment for housing and schools and in addition on reverberation time for class rooms and discusses the opportunities for future cooperation on optimizing acoustic regulations....

  7. Human factors design review guidelines for advanced nuclear control room technologies

    International Nuclear Information System (INIS)

    O'Hara, J.; Brown, W.; Granda, T.; Baker, C.

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig

  8. Airborne sound insulation evaluation and flanking path prediction of coupled room

    Science.gov (United States)

    Tassia, R. D.; Asmoro, W. A.; Arifianto, D.

    2016-11-01

    One of the parameters to review the acoustic comfort is based on the value of the insulation partition in the classroom. The insulation value can be expressed by the sound transmission loss which converted into a single value as weighted sound reduction index (Rw, DnTw) and also have an additional sound correction factor in low frequency (C, Ctr) .In this study, the measurements were performed in two positions at each point using BSWA microphone and dodecahedron speaker as the sound source. The results of field measurements indicate the acoustic insulation values (DnT w + C) is 19.6 dB. It is noted that the partition wall not according to the standard which the DnTw + C> 51 dB. Hence the partition wall need to be redesign to improve acoustic insulation in the classroom. The design used gypsum board, plasterboard, cement board, and PVC as the replacement material. Based on the results, all the material is simulated in accordance with established standards. Best insulation is cement board with the insulation value is 69dB, the thickness of 12.5 mm on each side and the absorber material is 50 mm. Many factors lead to increase the value of acoustic insulation, such as the thickness of the panel, the addition of absorber material, density, and Poisson's ratio of a material. The prediction of flanking path can be estimated from noise reduction values at each measurement point in the class room. Based on data obtained, there is no significant change in noise reduction from each point so that the pathway of flanking is not affect the sound transmission in the classroom.

  9. Acoustic Reflex Screening of Conductive Hearing Loss for Third Window Disorders.

    Science.gov (United States)

    Hong, Robert S; Metz, Christopher M; Bojrab, Dennis I; Babu, Seilesh C; Zappia, John; Sargent, Eric W; Chan, Eleanor Y; Naumann, Ilka C; LaRouere, Michael J

    2016-02-01

    This study examines the effectiveness of acoustic reflexes in screening for third window disorders (eg, superior semicircular canal dehiscence) prior to middle ear exploration for conductive hearing loss. Case series with chart review. Outpatient tertiary otology center. A review was performed of 212 ears with acoustic reflexes, performed as part of the evaluation of conductive hearing loss in patients without evidence of chronic otitis media. The etiology of hearing loss was determined from intraoperative findings and computed tomography imaging. The relationship between acoustic reflexes and conductive hearing loss etiology was assessed. Eighty-eight percent of ears (166 of 189) demonstrating absence of all acoustic reflexes had an ossicular etiology of conductive hearing loss. Fifty-two percent of ears (12 of 23) with at least 1 detectable acoustic reflex had a nonossicular etiology. The positive and negative predictive values for an ossicular etiology were 89% and 57% when acoustic reflexes were used alone for screening, 89% and 39% when third window symptoms were used alone, and 94% and 71% when reflexes and symptoms were used together, respectively. Acoustic reflex testing is an effective means of screening for third window disorders in patients with a conductive hearing loss. Questioning for third window symptoms should complement screening. The detection of even 1 acoustic reflex or third window symptom (regardless of reflex status) should prompt further workup prior to middle ear exploration. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  10. Marine bioacoustics and technology: The new world of marine acoustic ecology

    Science.gov (United States)

    Hastings, Mardi C.; Au, Whitlow W. L.

    2012-11-01

    Marine animals use sound for communication, navigation, predator avoidance, and prey detection. Thus the rise in acoustic energy associated with increasing human activity in the ocean has potential to impact the lives of marine animals. Thirty years ago marine bioacoustics primarily focused on evaluating effects of human-generated sound on hearing and behavior by testing captive animals and visually observing wild animals. Since that time rapidly changing electronic and computing technologies have yielded three tools that revolutionized how bioacousticians study marine animals. These tools are (1) portable systems for measuring electrophysiological auditory evoked potentials, (2) miniaturized tags equipped with positioning sensors and acoustic recording devices for continuous short-term acoustical observation rather than intermittent visual observation, and (3) passive acoustic monitoring (PAM) systems for remote long-term acoustic observations at specific locations. The beauty of these breakthroughs is their direct applicability to wild animals in natural habitats rather than only to animals held in captivity. Hearing capabilities of many wild species including polar bears, beaked whales, and reef fishes have now been assessed by measuring their auditory evoked potentials. Miniaturized acoustic tags temporarily attached to an animal to record its movements and acoustic environment have revealed the acoustic foraging behavior of sperm and beaked whales. Now tags are being adapted to fishes in effort to understand their behavior in the presence of noise. Moving and static PAM systems automatically detect and characterize biological and physical features of an ocean area without adding any acoustic energy to the environment. PAM is becoming a powerful technique for understanding and managing marine habitats. This paper will review the influence of these transformative tools on the knowledge base of marine bioacoustics and elucidation of relationships between marine

  11. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  12. Control room inleakage testing using tracer gases at Zion Generating station

    International Nuclear Information System (INIS)

    Lagus, P.L.; Brown, J.H.; Dubois, L.J.; Fleming, K.M.

    1993-01-01

    In order to assess the amount of air inleakage into the Control Room Envelope at Zion Generating Station (ZGS), a series of tracer gas tests using sulfur hexafluoride (SF 6 ) were performed on the Control Room ventilation system (PV system) and the Computer Room/Miscellaneous Area ventilation system (OV system) during February, 1991. Two redundant trains, denoted A and B comprise the PV system. Inleakage was measured for each train. An OV supply duct passes through the Control Room Envelope. Leakage from this duct into the Control Room would constitute air leakage into the Control room Envelope and hence any potential leakage had to be quantified. Each test attempted to measure the contribution (if any) of a particular section of PV return duct or OV supply duct to the total air inleakage into the Control Room. This paper reviews the tracer gas tests. Described here are the control room inleakage testing, HVAC equipment room duct inleakage, purge plenum inleakage, OV duct leakage into the control room envelope, vestibule PV return inleakage, TSC duct inleakage, and cable spreading room inleakage. Conclusions from the testing are presented. 5 refs., 4 figs., 7 tabs

  13. Acoustic radiation due to gust-airfoil and blade-vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R.K. [Wichita State Univ., KS (United States). National Inst. for Aviation Research

    2001-07-01

    An accurate and efficient method for computing acoustic radiation due to gust-airfoil and blade-vortex interactions is developed. In these types of problems, sound is generated as a result of interaction between the unsteadiness in the flow and the body. The acoustic governing equations are derived by linearizing the compressible unsteady Euler equations about the steady mean flow. From these equations, the frequency domain acoustic equations are obtained assuming a single frequency disturbance. The equations are solved by employing a multi-stage Runge-Kutta finite-volume time-stepping scheme with a fourth-order compact spatial discretization. In the farfield, both the Giles' nonreflecting boundary condition and the perfectly matched layer (PML) absorbing boundary conditions are employed. This report describes the technical approach and shows the results calculated for the interactions. (orig.)

  14. Acoustic fluidization and the scale dependence of impact crater morphology

    Science.gov (United States)

    Melosh, H. J.; Gaffney, E. S.

    1983-01-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  15. Influence of Architectural Features and Styles on Various Acoustical Measures in Churches

    Science.gov (United States)

    Carvalho, Antonio Pedro Oliveira De.

    This work reports on acoustical field measurements made in a major survey of 41 Catholic churches in Portugal that were built in the last 14 centuries. A series of monaural and binaural acoustical measurements was taken at multiple source/receiver positions in each church using the impulse response with noise burst method. The acoustical measures were Reverberation Time (RT), Early Decay Time (EDT), Clarity (C80), Definition (D), Center Time (TS), Loudness (L), Bass Ratios based on the Reverberation Time and Loudness rm (BR_-RT and rm BR_-L), Rapid Speech Transmission Index (RASTI), and the binaural Coherence (COH). The scope of this research is to investigate how the acoustical performance of Catholic churches relates to their architectural features and to determine simple formulas to predict acoustical measures by the use of elementary architectural parameters. Prediction equations were defined among the acoustical measures to estimate values at individual locations within each room as well as the mean values in each church. Best fits with rm R^2~0.9 were not uncommon among many of the measures. Within and interchurch differences in the data for the acoustical measures were also analyzed. The variations of RT and EDT were identified as much smaller than the variations of the other measures. The churches tested were grouped in eight architectural styles, and the effect of their evolution through time on these acoustical measures was investigated. Statistically significant differences were found regarding some architectural styles that can be traced to historical changes in Church history, especially to the Reformation period. Prediction equations were defined to estimate mean acoustical measures by the use of fifteen simple architectural parameters. The use of the Sabine and Eyring reverberation time equations was tested. The effect of coupled spaces was analyzed, and a new algorithm for the application of the Sabine equation was developed, achieving an average of

  16. Heat treatment versus properties studies associated with the Inconel 718 PBF acoustic filters

    International Nuclear Information System (INIS)

    Smolik, G.R.; Reuter, W.G.

    1975-01-01

    PBF acoustic filter Unit No. 1 cracked when heat treatment was attempted. The effects of prior thermal cycling, solution anneal temperature, and cooling rate from solution anneals were investigated. The investigations concerned influences of the above variables upon both 1400 0 F stress rupture solution-annealed properties and room temperature age-hardened properties. 1400 0 F stress rupture properties were of interest to assist the prevention of cracking during heat treatments. Room temperature age-hardened properties were needed to ensure that design requirement would be provided. Prior thermal cycling was investigated to determine if extra thermal cycles would be detrimental to the repaired filter. Slow furnace cools were considered as a means of reducing thermal stresses. Effects of solution annealing at 2000 and 1900 0 F were also determined. Test results showed that slow cooling rates would not only reduce thermal stresses but also improve 1400 0 F ductility. A modified aging treatment was established which provided the required 145 ksi room temperature yield strength for the slowly cooled material. Prior cooling did not degrade final age-hardened room temperature tensile or impact properties

  17. Validation of Acoustical Simulations in the "Bell Labs Box"

    OpenAIRE

    Tsingos , Nicolas; Carlbom , Ingrid; Elko , Gary; Funkhouser , Thomas; Kubli , Robert

    2002-01-01

    International audience; Computer simulated sound propagation through 3D environments is important in many applications, including computer-aided de-sign, training, and virtual reality. In many cases, the accuracy of the acoustical simulation is critical to the success of the application. For example, in concert hall and factory design (where OSHA sound limits must be met), the accuracy of the simulation may save costly re-engineering after construction. In virtual environments, experiments ha...

  18. Effect of Pyramidal Dome Geometry on the Acoustical Characteristics in A Mosque

    Directory of Open Access Journals (Sweden)

    Dg. H. Kassim

    2014-12-01

    Full Text Available As an important symbol in Islam, a mosque is built with architectural grandeur. Among the characteristics is its high ceiling and it is usually constructed with a typical spherical dome shape. Some mosques, however, are influenced by the local culture and the dome can be of a different shape, such as pyramidal, as found in mosques in Malacca, Malaysia. This paper presents an assessment of the internal acoustical characteristics of a mosque having a pyramidal dome. The study is conducted by means of computer simulation using CATT indoor acoustic software. Reverberation time and clarity are taken to evaluate the intelligibility of speech. The effect of the angle and height of the dome on the acoustical parameters is discussed. It is found that a pyramidal dome with a steeper angle contributes to poor acoustic clarity.

  19. A Survey of Sound Source Localization Methods in Wireless Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Maximo Cobos

    2017-01-01

    Full Text Available Wireless acoustic sensor networks (WASNs are formed by a distributed group of acoustic-sensing devices featuring audio playing and recording capabilities. Current mobile computing platforms offer great possibilities for the design of audio-related applications involving acoustic-sensing nodes. In this context, acoustic source localization is one of the application domains that have attracted the most attention of the research community along the last decades. In general terms, the localization of acoustic sources can be achieved by studying energy and temporal and/or directional features from the incoming sound at different microphones and using a suitable model that relates those features with the spatial location of the source (or sources of interest. This paper reviews common approaches for source localization in WASNs that are focused on different types of acoustic features, namely, the energy of the incoming signals, their time of arrival (TOA or time difference of arrival (TDOA, the direction of arrival (DOA, and the steered response power (SRP resulting from combining multiple microphone signals. Additionally, we discuss methods not only aimed at localizing acoustic sources but also designed to locate the nodes themselves in the network. Finally, we discuss current challenges and frontiers in this field.

  20. Room airflow studies using sonic anemometry.

    Science.gov (United States)

    Wasiolek, P T; Whicker, J J; Gong, H; Rodgers, J C

    1999-06-01

    To ensure prompt response by real-time air monitors to an accidental release of toxic aerosols in a workplace, safety professionals should understand airflow patterns. This understanding can be achieved with validated computational fluid dynamics (CFD) computer simulations, or with experimental techniques, such as measurements with smoke, neutrally buoyant markers, trace gases, or trace aerosol particles. As a supplementary technique to quantify airflows, the use of a state-of-the art, three-dimensional sonic anemometer was explored. This instrument allows for the precise measurements of the air-velocity vector components in the range of a few centimeters per second, which is common in many indoor work environments. Measurements of air velocities and directions at selected locations were made for the purpose of providing data for characterizing fundamental aspects of indoor air movement in two ventilated rooms and for comparison to CFD model predictions. One room was a mockup of a plutonium workroom, and the other was an actual functioning plutonium workroom. In the mockup room, air-velocity vector components were measured at 19 locations at three heights (60, 120 and 180 cm) with average velocities varying from 1.4 cm s-1 to 9.7 cm s-1. There were complex flow patterns observed with turbulence intensities from 39% up to 108%. In the plutonium workroom, measurements were made at the breathing-zone height, recording average velocities ranging from 9.9 cm s-1 to 35.5 cm s-1 with turbulence intensities from 33% to 108%.

  1. Methods for Room Acoustic Analysis and Synthesis using a Monopole-Dipole Microphone Array

    Science.gov (United States)

    Abel, J. S.; Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    In recent work, a microphone array consisting of an omnidirectional microphone and colocated dipole microphones having orthogonally aligned dipole axes was used to examine the directional nature of a room impulse response. The arrival of significant reflections was indicated by peaks in the power of the omnidirectional microphone response; reflection direction of arrival was revealed by comparing zero-lag crosscorrelations between the omnidirectional response and the dipole responses to the omnidirectional response power to estimate arrival direction cosines with respect to the dipole axes.

  2. Acoustic testing and modeling: an advanced undergraduate laboratory.

    Science.gov (United States)

    Russell, Daniel A; Ludwigsen, Daniel O

    2012-03-01

    This paper describes an advanced laboratory course in acoustics, specifically targeted for students with an interest in engineering applications at a school with a strongly integrated industrial co-op program. The laboratory course is developed around a three-pronged approach to problem solving that combines and integrates theoretical models, computational models, and experimental data. The course is structured around modules that begin with fundamental concepts and build laboratory skills and expand the knowledge base toward a final project. Students keep a detailed laboratory notebook, write research papers in teams, and must pass laboratory certification exams. This paper describes the course layout and philosophy and shares personal experience from both faculty and student perspectives. © 2012 Acoustical Society of America

  3. How does Architecture Sound for Different Musical Instrument Performances?

    DEFF Research Database (Denmark)

    Saher, Konca; Rindel, Jens Holger

    2006-01-01

    This paper discusses how consideration of sound _in particular a specific musical instrument_ impacts the design of a room. Properly designed architectural acoustics is fundamental to improve the listening experience of an instrument in rooms in a conservatory. Six discrete instruments (violin, c...... different instruments and the choir experience that could fit into same category of room. For all calculations and the auralizations, a computational model is used: ODEON 7.0....

  4. Acoustic Heritage and Audio Creativity: the Creative Application of Sound in the Representation, Understanding and Experience of Past Environments

    Directory of Open Access Journals (Sweden)

    Damian Murphy

    2017-06-01

    Full Text Available Acoustic Heritage is one aspect of archaeoacoustics, and refers more specifically to the quantifiable acoustic properties of buildings, sites and landscapes from our architectural and archaeological past, forming an important aspect of our intangible cultural heritage. Auralisation, the audio equivalent of 3D visualisation, enables these acoustic properties, captured via the process of measurement and survey, or computer-based modelling, to form the basis of an audio reconstruction and presentation of the studied space. This article examines the application of auralisation and audio creativity as a means to explore our acoustic heritage, thereby diversifying and enhancing the toolset available to the digital heritage or humanities researcher. The Open Acoustic Impulse Response (OpenAIR library is an online repository for acoustic impulse response and auralisation data, with a significant part having been gathered from a broad range of heritage sites. The methodology used to gather this acoustic data is discussed, together with the processes used in generating and calibrating a comparable computer model, and how the data generated might be analysed and presented. The creative use of this acoustic data is also considered, in the context of music production, mixed media artwork and audio for gaming. More relevant to digital heritage is how these data can be used to create new experiences of past environments, as information, interpretation, guide or artwork and ultimately help to articulate new research questions and explorations of our acoustic heritage.

  5. Acoustic Neuroma Association

    Science.gov (United States)

    ... EVENTS DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Brain Freeze ? READ MORE Read More What is acoustic neuroma? Identifying an AN Learn More Get Info ...

  6. Augmenting Environmental Interaction in Audio Feedback Systems

    Directory of Open Access Journals (Sweden)

    Seunghun Kim

    2016-04-01

    Full Text Available Audio feedback is defined as a positive feedback of acoustic signals where an audio input and output form a loop, and may be utilized artistically. This article presents new context-based controls over audio feedback, leading to the generation of desired sonic behaviors by enriching the influence of existing acoustic information such as room response and ambient noise. This ecological approach to audio feedback emphasizes mutual sonic interaction between signal processing and the acoustic environment. Mappings from analyses of the received signal to signal-processing parameters are designed to emphasize this specificity as an aesthetic goal. Our feedback system presents four types of mappings: approximate analyses of room reverberation to tempo-scale characteristics, ambient noise to amplitude and two different approximations of resonances to timbre. These mappings are validated computationally and evaluated experimentally in different acoustic conditions.

  7. Computer simulation of an internally pressurized radioactive waste disposal room in a bedded salt formation

    International Nuclear Information System (INIS)

    Brown, W.T.; Weatherby, J.R.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico was created by the U.S. Department of Energy as an underground research and development facility to demonstrate the safe storage of transuranic waste generated from defense activities. This facility consists of storage rooms mined from a bedded salt formation at a depth of about 650 meters. Each room will accommodate about 6800 55-gallon drums filled with waste. After waste containers are emplaced, the storage rooms are to be backfilled with mined salt or other backfill materials. As time passes, reconsolidation of this backfill will reduce the hydraulic conductivity of the room. However, gases produced by decomposition and corrosion of waste and waste containers may cause a slow build-up of pressure which can retard consolidation of the waste and backfilled salt. The authors have developed a finite-element model of an idealized disposal room which is assumed to be perfectly sealed. The assumption that no gas escapes from the disposal room is a highly idealized and extreme condition which does not account for leakage paths, such as interbeds, that exist in the surrounding salt formation. This model has been used in a parametric study to determine how reconsolidation is influenced by various assumed gas generation rates and total amounts of gas generated. Results show that reductions in the gas generation, relative to the baseline case, can increase the degree of consolidation and reduce the peak gas pressure in disposal rooms. Even higher degrees of reconsolidation can be achieved by reducing both amounts and rates of gas generation. 8 refs., 4 figs., 1 tab

  8. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    area; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using 'statistically optimised near field acoustic holography...

  9. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  10. Improvement on main control room for Japanese PWR plants

    International Nuclear Information System (INIS)

    Matsumiya, Masayuki

    1996-01-01

    The main control room which is the information center of nuclear power plant has been continuously improved utilizing the state of the art ergonomics, a high performance computer, computer graphic technologies, etc. For the latest Japanese Pressurized Water Reactor (PWR) plant, the CRT monitoring system is applied as the major information source for facilitating operators' plant monitoring tasks. For an operating plant, enhancement of monitoring and logging functions has been made adopting a high performance computer

  11. Propagation of nonlinear ion acoustic wave with generation of long-wavelength waves

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu; Kamimura, Tetsuo

    1978-01-01

    The nonlinear propagation of the wave packet of an ion acoustic wave with wavenumber k 0 asymptotically equals k sub(De) (the electron Debye wavenumber) is investigated by computer simulations. From the wave packet of the ion acoustic wave, waves with long wavelengths are observed to be produced within a few periods for the amplitude oscillation of the original wave packet. These waves are generated in the region where the original wave packet exists. Their characteristic wavelength is of the order of the length of the wave packet, and their propagation velocity is almost equal to the ion acoustic speed. The long-wavelength waves thus produced strongly affect the nonlinear evolution of the original wave packet. (auth.)

  12. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Directory of Open Access Journals (Sweden)

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  13. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  14. Classroom acoustics design for speakers’ comfort and speech intelligibility: a European perspective

    DEFF Research Database (Denmark)

    Garcia, David Pelegrin; Rasmussen, Birgit; Brunskog, Jonas

    2014-01-01

    . The recommended values of reverberation time in fully occupied classrooms for exible teaching methods are between 0.45 s and 0.6 s (between 0.6 and 0.7 s in an unoccupied but furnished condition) for classrooms with less than 40 students and volumes below 210 m 3 . When designing larger classrooms, a dedicated......Current European regulatory requirements or guidelines for reverberation time in classrooms have the goal of enhancing speech intelligibility for students and reducing noise levels in classrooms. At the same time, school teachers suffer frequently from voice problems due to high vocal load...... intelligibility for students. Two room acoustic parameters are shown relevant for a speaker: the voice support, linked to vocal effort, and the decay time derived from an oral-binaural impulse response, linked to vocal comfort. Theoretical prediction models for room-averaged values of these parameters...

  15. Testing of Method for Assessing of Room Thermal Stability

    Directory of Open Access Journals (Sweden)

    Charvátová Hana

    2017-01-01

    Full Text Available The paper presents the interim results of our research on the developing methodological procedure which could be used for assessment of a thermal stability of buildings with regards to its thermal accumulative parameters. The principle of testing is based on a combination of computer simulation of cooled room model developed in COMSOL Multiphysics software and on theoretical calculations with respect to compliance with valid European and Czech technical standards used in building industry and architecture under conditions obtained by real measurement for the room to be tested. The presented example shows the effect of the heataccumulation properties of the outside wall insulation materials on the course of the cooling room for winter conditions.

  16. Sound insulation and energy harvesting based on acoustic metamaterial plate

    Science.gov (United States)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2015-03-01

    The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM. We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.

  17. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  18. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  19. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    Science.gov (United States)

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  20. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    Science.gov (United States)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27 by 23 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3 dimensional traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4"-microphones spaced 3" apart (36" span). An updated data acquisition system was also incorporated into the facility.

  1. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  2. Control room philosophy: Principles of control room design and control room work

    International Nuclear Information System (INIS)

    Skriver, Jan; Ramberg, Jasmine; Allwin, Pernilla

    2006-01-01

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages

  3. Novel spintronics devices for memory and logic: prospects and challenges for room temperature all spin computing

    Science.gov (United States)

    Wang, Jian-Ping

    An energy efficient memory and logic device for the post-CMOS era has been the goal of a variety of research fields. The limits of scaling, which we expect to reach by the year 2025, demand that future advances in computational power will not be realized from ever-shrinking device sizes, but rather by innovative designs and new materials and physics. Magnetoresistive based devices have been a promising candidate for future integrated magnetic computation because of its unique non-volatility and functionalities. The application of perpendicular magnetic anisotropy for potential STT-RAM application was demonstrated and later has been intensively investigated by both academia and industry groups, but there is no clear path way how scaling will eventually work for both memory and logic applications. One of main reasons is that there is no demonstrated material stack candidate that could lead to a scaling scheme down to sub 10 nm. Another challenge for the usage of magnetoresistive based devices for logic application is its available switching speed and writing energy. Although a good progress has been made to demonstrate the fast switching of a thermally stable magnetic tunnel junction (MTJ) down to 165 ps, it is still several times slower than its CMOS counterpart. In this talk, I will review the recent progress by my research group and my C-SPIN colleagues, then discuss the opportunities, challenges and some potential path ways for magnetoresitive based devices for memory and logic applications and their integration for room temperature all spin computing system.

  4. Acoustic window planning for ultrasound acquisition.

    Science.gov (United States)

    Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph

    2017-06-01

    Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.

  5. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  6. Acoustic Metamaterials in Aeronautics

    Directory of Open Access Journals (Sweden)

    Giorgio Palma

    2018-06-01

    Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.

  7. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    Science.gov (United States)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  8. BL N4: acoustical situation in the exploitation workrooms

    International Nuclear Information System (INIS)

    Lambert, C.; Lecointre, C.; Nicolas, M.; Feuermann, M.

    1993-12-01

    This report presents some aspects of the acoustical situation in the workrooms of the electricity building of the nuclear plant N4 of Chooz. It enables us to draw up a diagnosis of the present situation. This diagnosis will contribute to the choice of the technical solutions, at the conception of this type of building. A particular study is devoted to the kitchen of the building. This study shows the impact of a RRI (intermediary refrigeration circuit), which is responsible for a high noise level in this room. The fixation type of the pipe appears to be the cause of the annoyance. This study justifies the need for the uncoupling between this pipe type and the building structures, at the conception time. Noise levels measured in the different rooms are essentially induced by the ventilation networks. This levels are generally too high, compared with the objectives. This leads us to consider that the installation rules about the ventilation network are still to define. (authors). 7 figs., 2 annexes

  9. Room airflow studies using sonic anemometry

    International Nuclear Information System (INIS)

    Wasiolek, P.T.; Whicker, J.J.; Gong, H.; Rodgers, J.C.

    1999-01-01

    To ensure prompt response by real-time air monitors to an accidental release of toxic aerosols in a workplace, safety professionals should understand airflow patterns. This understanding can be achieved with validated computational fluid dynamics (CFD) computer simulations, or with experimental techniques, such as measurements with smoke, neutrally buoyant markers, trace gases, or trace aerosol particles. As a supplementary technique to quantify airflows, the use of a state-of-the-art, three-dimensional sonic anemometer was explored. This instrument allows for the precise measurements of the air-velocity vector components in the range of a few centimeters per second, which is common in many indoor work environments. Measurements of air velocities and directions at selected locations were made for the purpose of providing data for characterizing fundamental aspects of indoor air movement in two ventilated rooms and for comparison to CFD model predictions. One room was a mockup of a plutonium workroom, and the other was an actual functioning plutonium workroom. In the mockup room, air-velocity vector components were measured at 19 locations at three heights (60, 120 and 180 cm) with average velocities varying from 1.4 cm s -1 to 9.7 cm s -1 . There were complex flow patterns observed with turbulence intensities from 39% up to 108%. In the plutonium workroom, measurements were made at the breathing-zone height, recording average velocities ranging from 9.9 cm s -1 to 35.5 cm s -1 with turbulence intensities from 33% to 108%. (au)

  10. Room airflow studies using sonic anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, P.T.; Whicker, J.J.; Gong, H.; Rodgers, J.C. [Los Alamos National Lab., Health Physics Measurements Group, Los Alamos, NM (United States)

    1999-10-01

    To ensure prompt response by real-time air monitors to an accidental release of toxic aerosols in a workplace, safety professionals should understand airflow patterns. This understanding can be achieved with validated computational fluid dynamics (CFD) computer simulations, or with experimental techniques, such as measurements with smoke, neutrally buoyant markers, trace gases, or trace aerosol particles. As a supplementary technique to quantify airflows, the use of a state-of-the-art, three-dimensional sonic anemometer was explored. This instrument allows for the precise measurements of the air-velocity vector components in the range of a few centimeters per second, which is common in many indoor work environments. Measurements of air velocities and directions at selected locations were made for the purpose of providing data for characterizing fundamental aspects of indoor air movement in two ventilated rooms and for comparison to CFD model predictions. One room was a mockup of a plutonium workroom, and the other was an actual functioning plutonium workroom. In the mockup room, air-velocity vector components were measured at 19 locations at three heights (60, 120 and 180 cm) with average velocities varying from 1.4 cm s{sup -1} to 9.7 cm s{sup -1}. There were complex flow patterns observed with turbulence intensities from 39% up to 108%. In the plutonium workroom, measurements were made at the breathing-zone height, recording average velocities ranging from 9.9 cm s{sup -1} to 35.5 cm s{sup -1} with turbulence intensities from 33% to 108%. (au) 17 refs.

  11. Personal Exposure to Contaminant Sources in Ventilated Rooms

    DEFF Research Database (Denmark)

    Brohus, Henrik

    Three different tools for personal exposure assessment are presented. They are all able to consider the local influence of persons in ventilated rooms where concentration gradients prevail: A Breathing Thermal Manikin, a Computer Simulated Person, and a Trained Sensory Panel. The tools are applied...

  12. Computer modeling and design of diagnostic workstations and radiology reading rooms

    Science.gov (United States)

    Ratib, Osman M.; Amato, Carlos L.; Balbona, Joseph A.; Boots, Kevin; Valentino, Daniel J.

    2000-05-01

    We used 3D modeling techniques to design and evaluate the ergonomics of diagnostic workstation and radiology reading room in the planning phase of building a new hospital at UCLA. Given serious space limitations, the challenge was to provide more optimal working environment for radiologists in a crowded and busy environment. A particular attention was given to flexibility, lighting condition and noise reduction in rooms shared by multiple users performing diagnostic tasks as well as regular clinical conferences. Re-engineering workspace ergonomics rely on the integration of new technologies, custom designed cabinets, indirect lighting, sound-absorbent partitioning and geometric arrangement of workstations to allow better privacy while optimizing space occupation. Innovations included adjustable flat monitors, integration of videoconferencing and voice recognition, control monitor and retractable keyboard for optimal space utilization. An overhead compartment protecting the monitors from ambient light is also used as accessory lightbox and rear-view projection screen for conferences.

  13. Acoustically sticky topographic metasurfaces for underwater sound absorption.

    Science.gov (United States)

    Lee, Hunki; Jung, Myungki; Kim, Minsoo; Shin, Ryung; Kang, Shinill; Ohm, Won-Suk; Kim, Yong Tae

    2018-03-01

    A class of metasurfaces for underwater sound absorption, based on a design principle that maximizes thermoviscous loss, is presented. When a sound meets a solid surface, it leaves a footprint in the form of thermoviscous boundary layers in which energy loss takes place. Considered to be a nuisance, this acoustic to vorticity/entropy mode conversion and the subsequent loss are often ignored in the existing designs of acoustic metamaterials and metasurfaces. The metasurface created is made of a series of topographic meta-atoms, i.e., intaglios and reliefs engraved directly on the solid object to be concealed. The metasurface is acoustically sticky in that it rather facilitates the conversion of the incident sound to vorticity and entropy modes, hence the thermoviscous loss, leading to the desired anechoic property. A prototype metasurface machined on a brass object is tested for its anechoicity, and shows a multitude of absorption peaks as large as unity in the 2-5 MHz range. Computations also indicate that a topographic metasurface is robust to hydrostatic pressure variation, a quality much sought-after in underwater applications.

  14. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  15. Practical spreading laws: The snakes and ladders of shallow water acoustics

    NARCIS (Netherlands)

    Ainslie, M.A.; Dahl, P.H.; Jong, C.A.F. de; Laws, R.M.

    2014-01-01

    Geometrical spreading laws are widely used in underwater acoustics because they provide - if chosen carefully - an accuracy that is sufficient for many applications (source characterisation, impact assessment, sound mapping, regulation) for negligible computation time. The simplest and most widely

  16. Simulation of sound transmission through the porous material, determining the parameters of acoustic absorption and sound reduction

    Directory of Open Access Journals (Sweden)

    Zvolenský Peter

    2018-01-01

    Full Text Available Currently, the quality of structural design of a railway coach is evaluated by so called acoustic comfort, which is characterized by achieved levels of internal noise. Therefore, acoustic parameters of car body are being developed purposely. The paper presents the results of the computer simulation of noise transmission through the wagon walls and the use of noise tests from the train running. The acoustic properties of the original and new materials in the care body are compared.

  17. The development of an advanced computerised control room

    International Nuclear Information System (INIS)

    Haugset, K.

    1988-01-01

    Control room improvements by use of computer technology is a major activity within the OECD Halden Reactor Project. The goal is to improve operational efficiency and safety by supplying the operator with the information relevant for the specific operational situation, assisting him both in identifying plant state, plan operational strategies and implement such plans. The research activity consists of development of specific operator support systems, validation of such systems under realistic conditions and integration under the scope of an advanced control room concept. The work is carried out in close cooperation with the many member organisations. (author) 2 figs., 8 refs

  18. (3 + 1)-dimensional cylindrical Korteweg-de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions

    International Nuclear Information System (INIS)

    Guo Shimin; Wang Hongli; Mei Liquan

    2012-01-01

    By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present.

  19. Combining Semantic and Acoustic Features for Valence and Arousal Recognition in Speech

    DEFF Research Database (Denmark)

    Karadogan, Seliz; Larsen, Jan

    2012-01-01

    The recognition of affect in speech has attracted a lot of interest recently; especially in the area of cognitive and computer sciences. Most of the previous studies focused on the recognition of basic emotions (such as happiness, sadness and anger) using categorical approach. Recently, the focus...... has been shifting towards dimensional affect recognition based on the idea that emotional states are not independent from one another but related in a systematic manner. In this paper, we design a continuous dimensional speech affect recognition model that combines acoustic and semantic features. We...... show that combining semantic and acoustic information for dimensional speech recognition improves the results. Moreover, we show that valence is better estimated using semantic features while arousal is better estimated using acoustic features....

  20. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  1. The development of acoustic experiments for off-campus teaching and learning

    Science.gov (United States)

    Wild, Graham; Swan, Geoff

    2011-05-01

    In this article, we show the implementation of a computer-based digital storage oscilloscope (DSO) and function generator (FG) using the computer's soundcard for off-campus acoustic experiments. The microphone input is used for the DSO, and a speaker jack is used as the FG. In an effort to reduce the cost of implementing the experiment, we examine software available for free, online. A small number of applications were compared in terms of their interface and functionality, for both the DSO and the FG. The software was then used to investigate standing waves in pipes using the computer-based DSO. Standing wave theory taught in high school and in first year physics is based on a one-dimensional model. With the use of the DSO's fast Fourier transform function, the experimental uncertainly alone was not sufficient to account for the difference observed between the measure and the calculated frequencies. Hence the original experiment was expanded upon to include the end correction effect. The DSO was also used for other simple acoustics experiments, in areas such as the physics of music.

  2. Empirical investigation of workloads of operators in advanced control rooms

    International Nuclear Information System (INIS)

    Kim, Yochan; Jung, Wondea; Kim, Seunghwan

    2014-01-01

    This paper compares the workloads of operators in a computer-based control room of an advanced power reactor (APR 1400) nuclear power plant to investigate the effects from the changes in the interfaces in the control room. The cognitive-communicative-operative activity framework was employed to evaluate the workloads of the operator's roles during emergency operations. The related data were obtained by analyzing the tasks written in the procedures and observing the speech and behaviors of the reserved operators in a full-scope dynamic simulator for an APR 1400. The data were analyzed using an F-test and a Duncan test. It was found that the workloads of the shift supervisors (SSs) were larger than other operators and the operative activities of the SSs increased owing to the computer-based procedure. From these findings, methods to reduce the workloads of the SSs that arise from the computer-based procedure are discussed. (author)

  3. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    International Nuclear Information System (INIS)

    CAP, JEROME S.; TRACEY, BRIAN

    1999-01-01

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code[1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package[2] to study the effects of in-plane modes and to evaluate

  4. Arbitrary amplitude slow electron-acoustic solitons in three-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2015-01-01

    We examine the characteristics of large amplitude slow electron-acoustic solitons supported in a four-component unmagnetised plasma composed of cool, warm, hot electrons, and cool ions. The inertia and pressure for all the species in this plasma system are retained by assuming that they are adiabatic fluids. Our findings reveal that both positive and negative potential slow electron-acoustic solitons are supported in the four-component plasma system. The polarity switch of the slow electron-acoustic solitons is determined by the number densities of the cool and warm electrons. Negative potential solitons, which are limited by the cool and warm electron number densities becoming unreal and the occurrence of negative potential double layers, are found for low values of the cool electron density, while the positive potential solitons occurring for large values of the cool electron density are only limited by positive potential double layers. Both the lower and upper Mach numbers for the slow electron-acoustic solitons are computed and discussed

  5. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  6. Computational Aerodynamic Simulations of a 1215 ft/sec Tip Speed Transonic Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.

  7. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  8. ANS main control complex three-dimensional computer model development

    International Nuclear Information System (INIS)

    Cleaves, J.E.; Fletcher, W.M.

    1993-01-01

    A three-dimensional (3-D) computer model of the Advanced Neutron Source (ANS) main control complex is being developed. The main control complex includes the main control room, the technical support center, the materials irradiation control room, computer equipment rooms, communications equipment rooms, cable-spreading rooms, and some support offices and breakroom facilities. The model will be used to provide facility designers and operations personnel with capabilities for fit-up/interference analysis, visual ''walk-throughs'' for optimizing maintain-ability, and human factors and operability analyses. It will be used to determine performance design characteristics, to generate construction drawings, and to integrate control room layout, equipment mounting, grounding equipment, electrical cabling, and utility services into ANS building designs. This paper describes the development of the initial phase of the 3-D computer model for the ANS main control complex and plans for its development and use

  9. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  10. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  11. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    Science.gov (United States)

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  12. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  13. Application of acoustic radiosity methods to noise propagation within buildings

    Science.gov (United States)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2005-09-01

    The prediction of sound pressure levels in rooms from transmitted sound is a difficult problem. The sound energy in the source room incident on the common wall must be accurately predicted. In the receiving room, the propagation of sound from the planar wall source must also be accurately predicted. The radiosity method naturally computes the spatial distribution of sound energy incident on a wall and also naturally predicts the propagation of sound from a planar area source. In this paper, the application of the radiosity method to sound transmission problems is introduced and explained.

  14. Computational modeling of particle transport and distribution emitted from a Laserjet printer in a ventilated room with different ventilation configurations

    International Nuclear Information System (INIS)

    Ansaripour, Mehrzad; Abdolzadeh, Morteza; Sargazizadeh, Saleh

    2016-01-01

    Highlights: • The distribution of emitted particles form a laserjet printer was studied in the breathing zone. • Effects of different ventilation configurations on the breathing zone concentration were investigated. • Mixing ventilation system has a low mean particle concentration in the breathing zone. - Abstract: In the present research, computational modeling of particle transport and distribution emitted from a Laserjet printer was carried out in a ventilated room. A seated manikin was integrated into the study room and the manikin was evaluated in two cases: heated and unheated. Effects of different ventilation configurations of the room on the particle distribution were studied, including three displacement ventilation systems and a mixing ventilation system. The printer was located on different sides of the manikin and the particle concentrations in the breathing zone of the manikin due to the printer’s particles were evaluated in all the ventilation configurations. The averaged particle concentration in the breathing zone of the manikin was calculated and validated with the experimental and numerical data available in the literature. The results of the present study showed that in case of the heated manikin, the particle concentration due to the printer pollutants is significant in the breathing zone of the manikin. The results also showed that when the printer is located on the front side of the manikin, the particle concentration in the breathing zone is quite high in most of the used ventilation configurations. Furthermore, it was found that the mixing ventilation system has a lower mean particle concentration in the breathing zone compared to the most displacement ventilation systems.

  15. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    Science.gov (United States)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  16. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    Science.gov (United States)

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  17. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    International Nuclear Information System (INIS)

    George, Preetha Mary; Divya, P.; Jayakumar, S.; Subhashree, N. S.; Ahmed, M. Anees

    2015-01-01

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy

  18. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    Science.gov (United States)

    George, Preetha Mary; Jayakumar, S.; Divya, P.; Subhashree, N. S.; Ahmed, M. Anees

    2015-06-01

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy.

  19. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    Energy Technology Data Exchange (ETDEWEB)

    George, Preetha Mary, E-mail: preethageoti@gmail.com, E-mail: jayakumars030@gmail.com; Divya, P. [Department of Physics, Dr M.G.R Educational and Research Institute University Chennai- (India); Jayakumar, S., E-mail: preethageoti@gmail.com, E-mail: jayakumars030@gmail.com; Subhashree, N. S. [Department of Physics, RKM Vivekananda College, Chennai-600004 (India); Ahmed, M. Anees [Department of Physics, New College, Chennai (India)

    2015-06-24

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy.

  20. Adaptation of acoustic model experiments of STM via smartphones and tablets

    Science.gov (United States)

    Thees, Michael; Hochberg, Katrin; Kuhn, Jochen; Aeschlimann, Martin

    2017-10-01

    The importance of Scanning Tunneling Microscopy (STM) in today's research and industry leads to the question of how to include such a key technology in physics education. Manfred Euler has developed an acoustic model experiment to illustrate the fundamental measuring principles based on an analogy between quantum mechanics and acoustics. Based on earlier work we applied mobile devices such as smartphones and tablets instead of using a computer to record and display the experimental data and thus converted Euler's experimental setup into a low-cost experiment that is easy to build and handle by students themselves.