WorldWideScience

Sample records for rolling hinge model

  1. Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine

    International Nuclear Information System (INIS)

    Okur, Melih; Akmandor, Ibrahim Sinan

    2011-01-01

    Hinged rolling piston compressor of a new thermodynamic cycle Pars engine promises high performance figures such as single stage high compression levels and higher volume flow discharge with competitively low input power and torque. The pumping characteristic of the present engine compressor unit has been increased by the implementation of a spring less vane configuration. The reciprocating vane which is usually operated by spring compression in air conditioning and refrigeration unit has been replaced by a hinge vane mechanism. At high speeds, the conventional spring loaded vane which is forced against the eccentrically moving rotor periphery does disconnect and starts rocking. With the new configuration, this mishap has been eliminated and subsequently resulting compressor pressure leaks have been avoided. Compressor experiments have been carried out at predetermined rotor speeds and compressed volume flow amounts and required shaft powers have been measured and derived accordingly. Experimentally determined pressure-volume relations have been compared with isentropic, isothermal, isochoric compressions as well as isobaric process. It is seen that at lower speeds, hinged vane compression is half way between isentropic and isochoric compressions whereas at high speed the compression process approaches further isochoric compression behavior. The isentropic compression efficiency of the hinged vane compressor is around 85% for pressures reaching 9 atm. - Research highlights: → Volume flow rate of rotary vane compressor unit has been increased by a hinged vane mechanism. → Hinged compressor pressure output is almost twice the performance of a spring loaded compressor. → The slipping and rocking of the spring loaded vane against the rolling piston have been eliminated.

  2. Meteoric water circulation and rolling-hinge detachment faulting: Example of the Northern Snake Range core complex, Nevada

    Science.gov (United States)

    Gébelin, Aude; Teyssier, Christian; Heizler, Matthew T.; Andreas, Mulch

    2014-05-01

    The Northern Snake Range metamorphic core complex developed as a consequence of Oligo-Miocene extension of the Basin and Range Province and is bounded by an arched detachment that separates the cold, brittle upper crust from the ductile middle crust. On the western and eastern limbs of the arch, the detachment footwall displays continuous sections of muscovite-bearing quartzite and schist from which we report new microfabrics, δD values, and 40Ar/39Ar ages. Results indicate that the two limbs record distinct stages of the metamorphic and kinematic Cenozoic events, including Eocene collapse of previously overthickned crust in the west, and one main Oligo-Miocene extensional event in the east. Quartzite from the western part of the range preserves Eocene fabrics (~49-45 Ma) that developed during coaxial deformation in the presence of metamorphic fluids. In contrast, those from the east reveal a large component of non coaxial strain, Oligo-Miocene ages (27-21 Ma) and contain recrystallized muscovite grains indicating that meteoric fluids sourced at high elevation (low-δD) infiltrated the brittle-ductile transition zone during deformation. Percolation of meteoric fluids down to the mylonitic detachment footwall was made possible by the development of an east-dipping rolling-hinge detachment system that controlled the timing and location of active faulting in the brittle upper crust and therefore the pathway of fluids from the surface to the brittle-ductile transition. Oligo-Miocene upper crustal extension was accommodated by a fan-shaped fault pattern that generated shear and tension fractures and channelized surface fluids, while top-to-the-east ductile shearing and advection of hot material in the lower plate allowed the system to be progressively exhumed. As extension proceeded, brittle normal faults active in the wedge of the hanging wall gradually rotated and translated above the detachment fault where, became inactive and precluded the circulation of fluids

  3. Rolling Resistance Measurement and Model Development

    DEFF Research Database (Denmark)

    Andersen, Lasse Grinderslev; Larsen, Jesper; Fraser, Elsje Sophia

    2015-01-01

    There is an increased focus worldwide on understanding and modeling rolling resistance because reducing the rolling resistance by just a few percent will lead to substantial energy savings. This paper reviews the state of the art of rolling resistance research, focusing on measuring techniques, s......, surface and texture modeling, contact models, tire models, and macro-modeling of rolling resistance...

  4. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  5. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...

  6. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  7. Modeling and design of a two-axis elliptical notch flexure hinge

    Science.gov (United States)

    Wu, Jianwei; Zhang, Yin; Lu, Yunfeng; Wen, Zhongpu; Bin, Deer; Tan, Jiubin

    2018-04-01

    As an important part of the joule balance system, the two-axis elliptical notch flexure hinge (TENFH) which typically consists of two single-axis elliptical notch flexure hinges was studied. First, a 6 degrees of freedom (6-DOF) compliance model was established based on the coordinate transformation method. In addition, the maximum stress of the TENFH was derived. The compliance and maximum stress model was verified using finite element analysis simulation. To decouple the attitude of the suspended coil system and reduce the offset between the centroid of the suspended coil mechanism and the mass comparator in the joule balance system, a new mechanical structure of TENFH was designed based on the compliance model and stress model proposed in this paper. The maximum rotation range is up to 10°, and the axial load is more than 5 kg, which meets the requirements of the system. The compliance model was also verified by deformation experimentation with the designed TENFH.

  8. Geomorphic and Structural Evidence for Rolling Hinge Style Deformation in the Footwall of an Active Low Angle Normal Fault, Mai'iu Fault, Woodlark Rift, SE Papua New Guinea

    Science.gov (United States)

    Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.

    2016-12-01

    While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge

  9. Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft

    Science.gov (United States)

    Boroughs, R. R.; Padmanabhan, V.

    1983-01-01

    The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.

  10. A Study on the Modeling of the Oil Damper in an Auto-Door Hinge

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Jong Tae; Kim, Hwan Yeol

    2009-11-15

    An auto-door hinge, which is one of the automatic door-closing apparatuses, has been widely used to prevent fire propagations in living or commercial buildings. The auto-door hinge consists of a spring to accumulate power for closing a door and an oil damper to control door-closing velocity. To predict and optimize the temporal door behavior during the door-closing period, the auto-door closing system was modeled as a second order-damping system. And a damping coefficient of the oil damper was also theoretically modeled by analyzing Newtonian, incompressible, viscous flow through an oil passage between a oil control rod and a oil piston body. The temporal door behaviors during the door-closing period were predicted with respect to the gap distance of the oil passage, oil viscosity, and pre-compressing of the spring. Temporal door behavior measurement method using an encoder system was also developed to validate the modelling on the oil damping system. As using the developed test apparatus, the temporal door position, velocity, and rotational torque were measured, and the modelling method was evaluated.

  11. A Study on the Modeling of the Oil Damper in an Auto-Door Hinge

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Kim, Jong Tae; Kim, Hwan Yeol

    2009-11-01

    An auto-door hinge, which is one of the automatic door-closing apparatuses, has been widely used to prevent fire propagations in living or commercial buildings. The auto-door hinge consists of a spring to accumulate power for closing a door and an oil damper to control door-closing velocity. To predict and optimize the temporal door behavior during the door-closing period, the auto-door closing system was modeled as a second order-damping system. And a damping coefficient of the oil damper was also theoretically modeled by analyzing Newtonian, incompressible, viscous flow through an oil passage between a oil control rod and a oil piston body. The temporal door behaviors during the door-closing period were predicted with respect to the gap distance of the oil passage, oil viscosity, and pre-compressing of the spring. Temporal door behavior measurement method using an encoder system was also developed to validate the modelling on the oil damping system. As using the developed test apparatus, the temporal door position, velocity, and rotational torque were measured, and the modelling method was evaluated

  12. Numerical modeling of cold room's hinged door opening and closing processes

    Science.gov (United States)

    Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.

    2016-06-01

    The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.

  13. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    Science.gov (United States)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  14. A Model of Active Roll Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    I. Čech

    2010-01-01

    Full Text Available This paper describes active suspension with active roll for four-wheel vehicle (bus by means of an in-series pump actuator with doubled hydropneumatic springs. It also gives full control law with no sky-craping. Lateral stiffness and solid axle geometry in the mechanical model are not neglected. Responses to lateral input as well as responses to statistical unevennesses show considerable improvement of passengers comfort and safety when cornering.

  15. Effect of Rolling Resistance in Dem Models With Spherical Bodies

    Directory of Open Access Journals (Sweden)

    Dubina Radek

    2016-12-01

    Full Text Available The rolling resistance is an artificial moment arising on the contact of two discrete elements which mimics resistance of two grains of complex shape in contact rolling relatively to each other. The paper investigates the influence of rolling resistance on behaviour of an assembly of spherical discrete elements. Besides the resistance to rolling, the contacts between spherical particles obey the Hertzian law in normal straining and Coulomb model of friction in shear.

  16. A Coupled Model for Work Roll Thermal Contour with Subsectional Cooling in Aluminum Strip Cold Rolling

    Directory of Open Access Journals (Sweden)

    Shao Jian

    2014-10-01

    Full Text Available Little attention had been given to the evaluation of subsectional cooling control ability under complicated working conditions. In this paper, heat generation was calculated by using finite difference method. Strip hardening, work roll elastic deformation and elastic recovery of strip were taken into account. The mean coefficient of convective heat transfer on work roll surface was simulated by FLUENT. Calculation model had used the alternative finite difference scheme, which improved the model stability and computing speed. The simulation result shows that subsectional cooling control ability is different between different rolling passes. Positive and negative control abilities are roughly the same in the same pass. The increase of rolled length, working pressure of header and friction coefficient has positive effect on subsectional cooling control ability, and the rolling speed is on the contrary. On the beginning of the pass, when work roll surface has not reached the stable temperature, control ability of subsectional cooling is mainly affected by rolled length. The effect of mean coefficient of convective heat transfer and coefficient of friction is linear. When rolling speed is over 500 m/min, control ability of subsectional cooling becomes stable.

  17. Geometric modeling of controlled third-class hinged mechanisms with a stand in one extreme position for cyclic automatic machines

    Science.gov (United States)

    Khomchenko, V. G.; Varepo, L. G.; Glukhov, V. I.; Krivokhatko, E. A.

    2017-06-01

    The geometric model for the synthesis of third-class lever mechanisms is proposed, which allows, by changing the length of the auxiliary link and the position of its fixed hinge, to rearrange the movement of the working organ onto the cyclograms with different predetermined dwell times. It is noted that with the help of the proposed model, at the expense of the corresponding geometric constructions, the best uniform Chebyshev approximation can be achieved at the interval of the standstill.

  18. An advanced dissymmetric rolling model for online regulation

    Science.gov (United States)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  19. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Science.gov (United States)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  20. Mathematical modeling of a process the rolling delivery

    Science.gov (United States)

    Stepanov, Mikhail A.; Korolev, Andrey A.

    2018-03-01

    An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.

  1. MODELING OF THE TRACK AND ROLLING STOCK INTERACTION

    Directory of Open Access Journals (Sweden)

    N. V. Khalipova

    2013-09-01

    Full Text Available Purpose. Interaction of system’s elements of "carriage–track" modelling requires consideration of various criteria, it also requires analysis of many uncertainty and randomness factors’ influence on the basic parameters to ensure optimal or rational parameters of the system. The researching of interactions’ process requires new theoretical approaches to formulation of objectives, based on a generalization of existing modeling approaches. The purpose of this work is development of interaction models between track and rolling stock based on multiple structures of objects. Methodology. Dedicated and formed the main evaluation criteria of dynamic interaction between track and rolling stock optimization - quality assurance and safety of transportation process, improving of their efficiency and reducing of prime cost’s. Based on vector optimization methods, proposed model of rolling stock and track’s elements interaction. For the synthesis of the model used mathematical machine of multiple objects structures. Findings. Generalized approaches to modeling in the interaction of rolling stock and track for different structural elements of the system under different exploitation conditions. This theoretical approach demonstrated on the examples of modeling of passenger and freight cars with track under different exploitation conditions. Originality. Proposed theoretical approach to the problem of track and rolling stock interaction, based on a synthesis of existing models by using of multiple objects structures. Practical value. Using of proposed model allows to structure key data and rational parameters of rolling stock and track interaction’s modeling and to formulate optimal and rational parameters of the system, to determine the effective exploitation parameters and measurement system for rational use of infrastructure.

  2. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  3. Finite-element modeling of soft tissue rolling indentation.

    Science.gov (United States)

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  4. Modelling of drawing and rolling of high carbon flat wires

    International Nuclear Information System (INIS)

    Bobadilla, C.; Persem, N.; Foissey, S.

    2007-01-01

    In order to meet customer requirements, it is necessary to develop new flat wires with a high tensile strength and a high width/thickness ratio. These products are manufactured from wire rod. The first step is to draw the wire until we have the required mechanical properties and required surface area of the section. After this, the wire is rolled from a round to a rectangular section. During the flat rolling process it can be reduced by more than 50%. Then the wire is exposed to a high level of stress during this process. Modelling allows us to predetermine this stress level, taking into account the final dimensions and the mechanical properties, thus optimising both rolling and drawing process. Forge2005 was used in order to simulate these processes. The aim of this study is to determine the value of residual stresses after drawing and so to optimise rolling. Indeed, the highest stress values are reached at this step of the process by changing the section of the wire from a round to a rectangular one. In order to evaluate the stress value accuracy for high strain levels, a behaviour law has been identified. This is a result of tensile tests carried out at each step of the drawing process. Finally, a multi-axial damage criterion was implemented using Forge2005. The optimisation of the rolling is directly linked to the minimisation of this criterion

  5. Enhanced friction modeling for steady-state rolling tires

    NARCIS (Netherlands)

    Steen, van der R.

    2010-01-01

    Tire modeling is nowadays a necessary tool in the tire industry. Car manufacturers, governments and consumers demand better traction under all circumstances, less wear and more recently less noise and a lower rolling resistance. Therefore finite element analysis is adopted in the design process of

  6. 3-dimensional numerical modelling of rolling of superconducting Ag/BSCCO tape

    DEFF Research Database (Denmark)

    Eriksen, Morten; Bech, Jakob Ilsted; Seifi, Behrouz

    2000-01-01

    and Ø126 mm) have been investigated. It is found that it is possible to perform numerical simulation with 3D models of flat rolling of multifilament wire. Two 3D models have been used; 3D pressing with rolls and 3D rolling. 3D pressing with rolls have the advance that the simulation time is lower than...... in the 3D rolling. The 3D models have the advantage compared to 2D pressing that they can predict the 3 dimensional flow in the flat rolling, which has been showed to be very imported for the super conduction properties......Numerical simulation of the deformation process during flat rolling of multifilament HTS tapes has been investigated using a commercial FEM program, ELFEN. The numerical models were built up in 2D and 3D using a Drucker-Prager/Cap model for the powder. Three different roll diameters (Ø24 mm, Ø85 mm...

  7. A particle model of rolling grain ripples under waves

    DEFF Research Database (Denmark)

    Andersen, Ken Haste

    2001-01-01

    A simple model for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow generated by a surface wave is presented. An equation of motion is derived for the individual ripples, seen as "particles," on the otherwise flat bed. The model accounts for the initial appearance...... of the ripples, the subsequent coarsening of the ripples, and the final equilibrium state. The model is related to the physical parameters of the problem, and an analytical approximation for the equilibrium spacing of the ripples is developed. It is found that the spacing between the ripples scales...

  8. Computational stress and damage modelling for rolling contact fatigue

    DEFF Research Database (Denmark)

    Cerullo, Michele

    Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate...... and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...

  9. Impact evaluation of rolling contact fatigue life models

    International Nuclear Information System (INIS)

    Choi, Young Sik; Yang, Xiaoping

    2012-01-01

    Since the accurate prediction of fatigue life has a significant value, many researchers have attempted to develop a reliable fatigue life model. Recently, rolling contact fatigue life models incorporating machining impact were developed. These models have contributed to a significant improvement in prediction accuracy as compared with earlier models, thus representing a major step forward in the modeling effort. This paper compares the prediction accuracy of these models with that of the prediction method in International Standards. When α is set to 0.25, the observed improvement of prediction accuracy as measured by variance of prediction errors due to these models over that due to prediction method in International Standards is statistically significant. Impact analyses of such improvement are conducted to illustrate its value. It is further noted that while difference was observed between the variance of prediction errors due to the crack initiation life model based on a dislocation model and that due to the crack initiation life model based on a local stress-life curve, the observed difference is not statistically significant

  10. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  11. Modeling of rotary movement of the articulating crane with increased gaps in the hinge joints of the links

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-06-01

    Full Text Available The article made computer simulation of dynamics of hydraulic articulating cranes with fully rotary motion for the case when the cylindrical hinges have an increased gap. Considered the use of special damping devices to reduce shock loads due to the presence of increased gaps. In previously developed software package KBCrane performed a series of calcu-lations made it possible to establish the relationship between the stiffness and damping devices the effectiveness of their use in varying the magnitude of the gap. In the case of the rotary movement of the articulating crane, a comparative analysis of work of joints of the connection node of the boom and lifting device with no gap and with high gaps. The features of the damping devices work joints and cushioning. Conclusions on positive and negative sides of the use of elastic damping devices.

  12. An Integrated Rolling Stock Planning Model for the Copenhagen Suburban Passenger Railway

    DEFF Research Database (Denmark)

    Thorlacius, Per; Larsen, Jesper; Laumanns, Marco

    A central issue for operators of passenger railways is providing sufficient number of seats for passengers while at the same time minimising operating costs. This is the task of rolling stock planning. Due to the large number of practical, railway specific requirements that a rolling stock plan has...... to take into account, rolling stock plans are often constructed in a step-by-step manner, taking some requirements into consideration in each step. This may make it difficult in the final step to produce a plan that is feasible with regard to all of the requirements and at the same time economically...... attractive. This paper proposes an integrated rolling stock planning model that simultaneously takes into account all practical requirements for rolling stock planning at DSB S-tog, the suburban passenger train operator of the City of Copenhagen. The model is then used to improve existing rolling stock plans...

  13. An integrated rolling stock planning model for the Copenhagen suburban passenger railway

    DEFF Research Database (Denmark)

    Thorlacius, Per; Larsen, Jesper; Laumanns, Marco

    2015-01-01

    A central issue for operators of passenger railways is providing sufficient number of seats for passengers while at the same time minimising operating costs. This is the task of rolling stock planning. Due to the large number of practical, railway specific requirements that a rolling stock plan has...... to take into account, rolling stock plans are often constructed in a step-by-step manner, taking some requirements into consideration in each step. This may make it difficult in the final step to produce a plan that is feasible with regard to all of the requirements and at the same time economically...... attractive. This paper proposes an integrated rolling stock planning model that simultaneously takes into account all practical requirements for rolling stock planning at DSB S-tog, the suburban passenger train operator of the City of Copenhagen. The model is then used to improve existing rolling stock plans...

  14. Hinged roof timber

    Energy Technology Data Exchange (ETDEWEB)

    Shestov, P I; Golub, A G; Yefremov, V I

    1980-08-07

    A hinged roof timer is suggested which includes a beam with prong and loop on the end which have openings in the form of ring slits for the distance wedges and round for the pins. In this case the opening of the distance wedge in the ring is arranged in relation to the opening for the pin closer to the end of the beam, and in the prong, in the opposite order. In order to improve the operating quality by guaranteeing active support of the cantilever roof timber without increasing its overall dimensions for the height of the opening for the distance wedge in the prong and the ring, beams are arranged axisymmetrically to the longitudinal axis.

  15. Investigation of the hydrodynamic model test of forced rolling for a barge using PIV

    Directory of Open Access Journals (Sweden)

    WANG Xiaoqiang

    2017-03-01

    Full Text Available In order to study the physical details of viscous flow in ship roll motions and improve the accuracy of ship roll damping numerical simulation, the application of the Particle Image Velocimetry (PIV technique is investigated in model tests of forced ship rolling in calm water. The hydrodynamic force and flow field at the bilge region are simultaneously measured for barges at different amplitudes and frequencies in which the self-made forced rolling facility was used. In the model test, the viscous flow variation with the time around the bilge region was studied during ship rolling motion. The changes in ship roll damping coefficients with the rolling amplitude and period were also investigated. A comparison of the model test results with the Computational Fluid Dynamics(CFDresults shows that the numerical ship roll damping coefficients agree well with the model test results, while the differences in the local flow details exist between the CFD results and model test results. Further research into the model test technique and CFD application is required.

  16. Cyclic plastic hinges with degradation effects for frame structures

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex...... shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level, ultimate stress capacity, elastic...... and stiffness parameters. The cyclic plastic hinges are introduced into a six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model...

  17. Crystal plasticity modeling of through-thickness texture heterogeneity in heavily rolled aluminum

    DEFF Research Database (Denmark)

    Delannay, Laurent; Mishin, Oleg V.

    2013-01-01

    from hot rolling producing shear near the surface and conditions approaching plane strain compression in the center layer. Model predictions confirm experimental observations that such a gradient strengthens significantly during further heavy cold rolling. Copyright © 2013 Trans Tech Publications Ltd....

  18. Finite element modelling of process-integrated powder coating by radial axial rolling of rings

    International Nuclear Information System (INIS)

    Frischkorn, J.; Kebriaei, R.; Reese, S.; Moll, H.; Theisen, W.; Husmann, T.; Meier, H.

    2011-01-01

    The process-integrated powder coating by radial axial rolling of rings represents a new hybrid production technique applied in the manufacturing of large ring-shaped work pieces with functional layers. It is thought to break some limitations that come along with the hot isostatic pressing (HIP) which is used nowadays to apply the powdery layer material onto the rolled substrate ring. Within the new process the compaction of the layer material is integrated into the ring rolling and HIP becomes dispensable. Following this approach the rolling of such compound rings brings up some new challenges. The volume of a solid ring stays nearly constant during the rolling. This behaviour can be exploited to determine the infeed of the rollers needed to reach the desired ring shape. Since volume consistency cannot be guaranteed for the rolling of a compound ring the choice of appropriate infeed of the rollers is still an open question. This paper deals with the finite element (FE) simulation of this new process. First, the material model that is used to describe the compaction of the layer material is shortly reviewed. The main focus of the paper is then put on a parameterized FE ring rolling model that incorporates a control system in order to stabilize the process. Also the differences in the behaviour during the rolling stage between a compound and a solid ring will be discussed by means of simulation results.

  19. Continuum Mechanical Modelling of Skin-pass Rolling

    DEFF Research Database (Denmark)

    Kijima, Hideo; Bay, Niels

    2007-01-01

    The special contact conditions in skin-pass rolling of steel strip is analyzed by studying plane strain upsetting of thin sheet with low reduction applying long narrow tools and dry friction conditions. An extended sticking region is estimated by an elasto-plastic FEM analysis of the plane strain...

  20. A model for prediction of profile and flatness of hot and cold rolled flat products in four-high mills

    Science.gov (United States)

    Overhagen, Christian; Mauk, Paul Josef

    2018-05-01

    For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.

  1. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance

    Directory of Open Access Journals (Sweden)

    Christian Holden

    2007-10-01

    Full Text Available Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to +-40 degrees, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head seas. A Matlab/Simulink parametric roll benchmark model for a large container ship has been implemented and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox (MSS, 2007. The benchmark implements a 3rd-order nonlinear model where the dynamics of roll is strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric roll has been reproduced for all the data sets in which it happened, and the model provides realistic results which are in good agreement with the model tank experiments.

  2. Dynamics Modeling and Analysis of Local Fault of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2015-01-01

    Full Text Available This paper presents a nonlinear vibration model of rolling element bearings with 5 degrees of freedom based on Hertz contact theory and relevant bearing knowledge of kinematics and dynamics. The slipping of ball, oil film stiffness, and the nonlinear time-varying stiffness of the bearing are taken into consideration in the model proposed here. The single-point local fault model of rolling element bearing is introduced into the nonlinear model with 5 degrees of freedom according to the loss of the contact deformation of ball when it rolls into and out of the local fault location. The functions of spall depth corresponding to defects of different shapes are discussed separately in this paper. Then the ode solver in Matlab is adopted to perform a numerical solution on the nonlinear vibration model to simulate the vibration response of the rolling elements bearings with local fault. The simulation signals analysis results show a similar behavior and pattern to that observed in the processed experimental signals of rolling element bearings in both time domain and frequency domain which validated the nonlinear vibration model proposed here to generate typical rolling element bearings local fault signals for possible and effective fault diagnostic algorithms research.

  3. General cracked-hinge model for simulation of low-cycle damage in cemented beams on soil

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    The need for mechanistic constitutive models to evaluate the complex interaction between concrete crack propagation, geometry and soil foundation in concrete- and composite pavement systems has been recognized. Several models developed are either too complex or designed to solve relatively simple...

  4. The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation.

    Science.gov (United States)

    Soultan, Alaaeldin; Safi, Kamran

    2017-01-01

    Digitized species occurrence data provide an unprecedented source of information for ecologists and conservationists. Species distribution model (SDM) has become a popular method to utilise these data for understanding the spatial and temporal distribution of species, and for modelling biodiversity patterns. Our objective is to study the impact of noise in species occurrence data (namely sample size and positional accuracy) on the performance and reliability of SDM, considering the multiplicative impact of SDM algorithms, species specialisation, and grid resolution. We created a set of four 'virtual' species characterized by different specialisation levels. For each of these species, we built the suitable habitat models using five algorithms at two grid resolutions, with varying sample sizes and different levels of positional accuracy. We assessed the performance and reliability of the SDM according to classic model evaluation metrics (Area Under the Curve and True Skill Statistic) and model agreement metrics (Overall Concordance Correlation Coefficient and geographic niche overlap) respectively. Our study revealed that species specialisation had by far the most dominant impact on the SDM. In contrast to previous studies, we found that for widespread species, low sample size and low positional accuracy were acceptable, and useful distribution ranges could be predicted with as few as 10 species occurrences. Range predictions for narrow-ranged species, however, were sensitive to sample size and positional accuracy, such that useful distribution ranges required at least 20 species occurrences. Against expectations, the MAXENT algorithm poorly predicted the distribution of specialist species at low sample size.

  5. Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis

    Science.gov (United States)

    Xu, Guangzhong; Zhang, Nong; Roser, Holger M.

    2015-12-01

    In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.

  6. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    Science.gov (United States)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  7. Inhibition of RM-1 prostate carcinoma and eliciting robust immune responses in the mouse model by using VEGF-M2-GnRH3-hinge-MVP vaccine.

    Science.gov (United States)

    Wang, Yiqin; Alahdal, Murad; Ye, Jia; Jing, Liangliang; Liu, Xiaoxin; Chen, Huan; Jin, Liang; Cao, Rongyue

    2018-01-23

    GnRH and VEGF have been investigated as prostate carcinoma enhancers that support tumor spread and progression. Although both have documented roles in prostate carcinoma and many cancer types, the weak immunogenicity of these peptides has remained a major challenge for use in immunotherapy. Here, we describe a novel strategy to inhibit GnRH and VEGF production and assess the effect on the immune responses against these hormones using the RM-1 prostate cancer model. We designed a novel recombinant fusion protein which combined GnRH and VEGF as a vaccine against this tumor. The newly constructed fusion protein hVEGF121-M2-GnRH3-hinge-MVP contains the human vascular endothelial growth factor (hVEGF121) and three copies of GnRH in sequential linear alignment and T helper epitope MVP as an immunogenic vaccine. The effectiveness of the vaccine in eliciting an immune response and attenuating the prostate tumor growth was evaluated. Results showed that administration of a new vaccine effectively elicited humoral and cellular immune responses. We found that, a novel fusion protein, hVEGF121-M2-GnRH3-hinge-MVP, effectively inhibited growth of RM-1 prostate model and effectively promoted immune response. In conclusion, hVEGF121-M2-GnRH3-hinge-MVP is an effective dual mechanism tumor vaccine that limits RM-1 prostate growth. This vaccine may be a promising strategy for the treatment of hormone refractory prostate malignancies.

  8. TEST OF THE CHEN-ROLL-ROSS MACROECONOMIC FACTOR MODEL: EVIDENCE FROM CROATIAN STOCK MARKET

    Directory of Open Access Journals (Sweden)

    Denis Dolinar

    2015-12-01

    Full Text Available This paper empirically examines the well-known Chen-Roll-Ross model on the Croatian stock market. Modifications of definitions of the Chen-Roll-Ross model variables showed as necessary because of doubtful availability and quality of input data needed. Namely, some macroeconomic and market variables are not available in the originally defined form or do not exist. In that sense this paper gives some alternative definitions for some model variables. Also, in order to improve statistical analysis, in this paper we have modified Fama-MacBeth technique in the way that second-pass regression was substituted with panel regression analysis. Based on the two-pass regression analysis of returns of 34 Croatian stocks on 4 macroeconomic variables during the seven-and-half-year observation period the following conclusion is made. In contrast to the results of Chen, Roll and Ross (1986 for the U.S. stock market, their model is not successful when describing a risk-return relation of Croatian stocks. Nevertheless, one observed version of the Chen-RollRoss model showed certain statistical significance. Namely, two risk factors in that version of the model were statistically significant: default premium, measured as risk premium for the corporate short-term bank loan financing, and term structure premium, measured on short-run basis.

  9. A model for investigating the influence of road surface texture and tyre tread pattern on rolling resistance

    Science.gov (United States)

    Hoever, Carsten; Kropp, Wolfgang

    2015-09-01

    The reduction of rolling resistance is essential for a more environmentally friendly road transportation sector. Both tyre and road design can be utilised to reduce rolling resistance. In both cases a reliable simulation tool is needed which is able to quantify the influence of design parameters on the rolling resistance of a tyre rolling on a specific road surface. In this work a previously developed tyre/road interaction model is extended to account for different tread patterns and for losses due to small-scale tread deformation. Calculated contact forces and tyre vibrations for tyre/road interaction under steady-state rolling are used to predict rolling losses in the tyre. Rolling resistance is calculated for a series of different tyre/road combinations. Results are compared with rolling resistance measurements. The agreement between simulations and measurements is generally very good. It is found that both the tyre structure and small-scale tread deformations contribute to the rolling losses. The small-scale contribution depends mainly on the road roughness profile. The mean profile depth of the road surface is identified to correlate very well with the rolling resistance. Additional calculations are performed for non-traditional rubberised road surfaces, however, with mixed results. This possibly indicates the existence of additional loss mechanisms for these surfaces.

  10. Impact of Plastic Hinge Properties on Capacity Curve of Reinforced Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Nasim Shatarat

    2017-01-01

    Full Text Available Pushover analysis is becoming recently the most practical tool for nonlinear analysis of regular and irregular highway bridges. The nonlinear behaviour of structural elements in this type of analysis can be modeled through automated-hinge or user-defined hinge models. The nonlinear properties of the user-defined hinge model for existing highway bridges can be determined in accordance with the recommendations of the Seismic Retrofit Manual by the Federal Highway Administration (FHWA-SRM. Finite element software such as the software SAP2000 offers a simpler and easier approach to determine the nonlinear hinge properties through the automated-hinge model which are determined automatically from the member material and cross section properties. However, the uncertainties in using the automated-hinge model in place of user-defined hinge model have never been addressed, especially for existing and widened bridges. In response to this need, pushover analysis was carried out for four old highway bridges, of which two were widened using the same superstructure but with more attention to seismic detailing requirements. The results of the analyses showed noticeable differences in the capacity curves obtained utilizing the user-defined and automated-hinge models. The study recommends that bridge design manuals clearly ask bridge designers to evaluate the deformation capacities of existing bridges and widened bridges using user-defined hinge model that is determined in accordance with the provisions of the FHWA-SRM.

  11. Threshold voltage roll-off modelling of bilayer graphene field-effect transistors

    International Nuclear Information System (INIS)

    Saeidmanesh, M; Ismail, Razali; Khaledian, M; Karimi, H; Akbari, E

    2013-01-01

    An analytical model is presented for threshold voltage roll-off of double gate bilayer graphene field-effect transistors. To this end, threshold voltage models of short- and long-channel states have been developed. In the short-channel case, front and back gate potential distributions have been modelled and used. In addition, the tunnelling probability is modelled and its effect is taken into consideration in the potential distribution model. To evaluate the accuracy of the potential model, FlexPDE software is employed with proper boundary conditions and a good agreement is observed. Using the proposed models, the effect of several structural parameters on the threshold voltage and its roll-off are studied at room temperature. (paper)

  12. A model for prediction of the transient rolling resistance of tyres based on inner-liner temperatures

    Science.gov (United States)

    Greiner, Matthias; Unrau, Hans-Joachim; Gauterin, Frank

    2018-01-01

    Measurements of rolling resistance in thermal equilibrium of a tyre, like measurements according to ISO 28580, do not allow statements about rolling resistances under other driving conditions. Such statements, however, are necessary to determine the energy consumption in driving cycles. Especially for the proper calculation of electric-vehicle remaining ranges and the selection of the respective driving strategies, the real amount of energy consumption is required. This paper presents a model approach, which by means of only one standardised rolling resistance measurement can be parameterised and, considering the present driving speed and tyre temperature, can predict the respective current rolling resistance.

  13. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  14. Establishing Approaches to Modeling the Ares I-X and Ares I Roll Control System with Free-stream Interaction

    Science.gov (United States)

    Pao, S. Paul; Deere, Karen A.; Abdol-Hamid, Khales S.

    2011-01-01

    Approaches were established for modeling the roll control system and analyzing the jet interactions of the activated roll control system on Ares-type configurations using the USM3D Navier-Stokes solver. Components of the modeling approach for the roll control system include a choice of turbulence models, basis for computing a dynamic equivalence of the real gas rocket exhaust flow in terms of an ideal gas, and techniques to evaluate roll control system performance for wind tunnel and flight conditions. A simplified Ares I-X configuration was used during the development phase of the roll control system modeling approach. A limited set of Navier-Stokes solutions was obtained for the purposes of this investigation and highlights of the results are included in this paper. The USM3D solutions were compared to equivalent solutions at select flow conditions from a real gas Navier- Stokes solver (Loci-CHEM) and a structured overset grid Navier-Stokes solver (OVERFLOW).

  15. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings.

    Science.gov (United States)

    Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun

    2017-05-18

    The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features' information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.

  16. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-05-01

    Full Text Available The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD. Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.

  17. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system

    Science.gov (United States)

    Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil

    2018-06-01

    Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.

  18. A simplified model for dynamics of cell rolling and cell-surface adhesion

    International Nuclear Information System (INIS)

    Cimrák, Ivan

    2015-01-01

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells

  19. Rolling force prediction for strip casting using theoretical model and artificial intelligence

    Institute of Scientific and Technical Information of China (English)

    CAO Guang-ming; LI Cheng-gang; ZHOU Guo-ping; LIU Zhen-yu; WU Di; WANG Guo-dong; LIU Xiang-hua

    2010-01-01

    Rolling force for strip casting of 1Cr17 ferritic stainless steel was predicted using theoretical model and artificial intelligence.Solution zone was classified into two parts by kiss point position during casting strip.Navier-Stokes equation in fluid mechanics and stream function were introduced to analyze the rheological property of liquid zone and mushy zone,and deduce the analytic equation of unit compression stress distribution.The traditional hot rolling model was still used in the solid zone.Neural networks based on feedforward training algorithm in Bayesian regularization were introduced to build model for kiss point position.The results show that calculation accuracy for verification data of 94.67% is in the range of+7.0%,which indicates that the predicting accuracy of this model is very high.

  20. THE MATHEMATICAL MODEL OF SELECTING THE ROLLING STOCK FOR PASSENGER BUS TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    M. Kostikova

    2017-06-01

    Full Text Available The problem of choosing buses of different carrying capacity while simultaneously using them on regular urban routes is considered. The indicators that affect the selection of the rolling stock are analyzed. Methods for constructing models, which allow calculating the number of buses of different classes for one city route are proposed. The implementation of the constructed models will make it possible to obtain the savings in capital expenditures, as well as reduce the operational costs of an enterprise.

  1. Roll force prediction of high strength steel using foil rolling theory in cold skin pass rolling

    International Nuclear Information System (INIS)

    Song, Gil Ho; Jung, Jae Chook

    2013-01-01

    Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high strength steel below TS 980 MPa in skin pass rolling

  2. Comparisons of Different Models on Dynamic Recrystallization of Plate during Asymmetrical Shear Rolling

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2018-01-01

    Full Text Available Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX plays a vital role in grain refinement during hot deformation. Finite element models (FEM coupled with microstructure evolution models and cellular automata models (CA are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation.

  3. Comparisons of Different Models on Dynamic Recrystallization of Plate during Asymmetrical Shear Rolling

    Science.gov (United States)

    Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin

    2018-01-01

    Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation. PMID:29342080

  4. A hybrid feature selection and health indicator construction scheme for delay-time-based degradation modelling of rolling element bearings

    Science.gov (United States)

    Zhang, Bin; Deng, Congying; Zhang, Yi

    2018-03-01

    Rolling element bearings are mechanical components used frequently in most rotating machinery and they are also vulnerable links representing the main source of failures in such systems. Thus, health condition monitoring and fault diagnosis of rolling element bearings have long been studied to improve operational reliability and maintenance efficiency of rotatory machines. Over the past decade, prognosis that enables forewarning of failure and estimation of residual life attracted increasing attention. To accurately and efficiently predict failure of the rolling element bearing, the degradation requires to be well represented and modelled. For this purpose, degradation of the rolling element bearing is analysed with the delay-time-based model in this paper. Also, a hybrid feature selection and health indicator construction scheme is proposed for extraction of the bearing health relevant information from condition monitoring sensor data. Effectiveness of the presented approach is validated through case studies on rolling element bearing run-to-failure experiments.

  5. Seismic response analysis for hinged-leg type port crane

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwazaki, A.; Kanayama, T.; Arai, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2000-04-01

    Container cranes and unloaders in Kobe Pont were severely damaged during the Southern Hyogo Prefecture Earthquake in 1995. Notably, some of the hinged-leg type of cranes with hinges at the end of sea-or land-side of legs were overturned. These damages were derived from the uplifting of their legs. To explain the uplifting and overturning behavior, we carried out nonlinear analyses and shaking table tests using a 1/8-scale model of the container crane. The results of nonlinear response analyses of hinged-leg type of crane, which are in an agreement with the state of damages in the Southern Hyogo Prefecture Earthquake and the result of shaking table tests, are described. (author)

  6. A Dynamic Model for Roll Motion of Ships Due to Flooding

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    1997-01-01

    A dynamic model is presented of the roll motion of damaged RoRo vessels which couples the internal cross-flooding flow and the air action in the equalizing compartment. The cross flooding flow and the air motion are modelled by a modified Bernoulli equation, where artificial damping is introduced...... to avoid modal instability based on the original Bernoulli equation. The fluid action of the flooded water on the ship is expressed by its influence on the moment of inertia of the ship and the heeling moment, which is a couple created by the gravitational force of the flooded water and the change...... of buoyancy of the ship.Two limiting flooding cases are examined in the present analysis: The sudden ingress of a certain amount of water to the damaged compartment with no further water exchange between the sea and the flooded compartment during the roll motion, and the continuous ingress of water through...

  7. Modeling the characteristics of wheel/rail rolling noise

    Science.gov (United States)

    Lui, Wai Keung; Li, Kai Ming; Frommer, Glenn H.

    2005-04-01

    To study the sound radiation characteristics of a passing train, four sets of noise measurements for different train operational conditions have been conducted at three different sites, including ballast tracks at grade and railway on a concrete viaduct. The time histories computed by the horizontal radiation models were compared with the measured noise profiles. The measured sound exposure levels are used to deduce the vertical directivity pattern for different railway systems. It is found that the vertical directivity of different railway systems shows a rather similar pattern. The vertical directivity of train noise is shown to increase up to about 30× before reducing to a minimum at 90×. A multipole expansion model is proposed to account for the vertical radiation directivity of the train noise. An empirical formula, which has been derived, compares well with the experimental data. The empirical model is found to be applicable to different train/rail systems at train speeds ranging up to 120 km/h in this study. [Work supported by MTR Corporation Ltd., Innovation Technology Commission of the HKSAR Government and The Hong Kong Polytechnic University.

  8. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.

    Science.gov (United States)

    Huang, Wen; Koric, Seid; Yu, Xin; Hsia, K Jimmy; Li, Xiuling

    2014-11-12

    Micro- and nanoscale tubular structures can be formed by strain-induced self-rolled-up nanomembranes. Precision engineering of the shape and dimension determines the performance of devices based on this platform for electronic, optical, and biological applications. A transient quasi-static finite element method (FEM) with moving boundary conditions is proposed as a general approach to design diverse types of three-dimensional (3D) rolled-up geometries. This method captures the dynamic release process of membranes through etching driven by mismatch strain and accurately predicts the final dimensions of rolled-up structures. Guided by the FEM modeling, experimental demonstration using silicon nitride membranes was achieved with unprecedented precision including controlling fractional turns of a rolled-up membrane, anisotropic rolling to form helical structures, and local stress control for 3D hierarchical architectures.

  9. Mechanical model development of rolling bearing-rotor systems: A review

    Science.gov (United States)

    Cao, Hongrui; Niu, Linkai; Xi, Songtao; Chen, Xuefeng

    2018-03-01

    The rolling bearing rotor (RBR) system is the kernel of many rotating machines, which affects the performance of the whole machine. Over the past decades, extensive research work has been carried out to investigate the dynamic behavior of RBR systems. However, to the best of the authors' knowledge, no comprehensive review on RBR modelling has been reported yet. To address this gap in the literature, this paper reviews and critically discusses the current progress of mechanical model development of RBR systems, and identifies future trends for research. Firstly, five kinds of rolling bearing models, i.e., the lumped-parameter model, the quasi-static model, the quasi-dynamic model, the dynamic model, and the finite element (FE) model are summarized. Then, the coupled modelling between bearing models and various rotor models including De Laval/Jeffcott rotor, rigid rotor, transfer matrix method (TMM) models and FE models are presented. Finally, the paper discusses the key challenges of previous works and provides new insights into understanding of RBR systems for their advanced future engineering applications.

  10. Dynamic modeling of moment wheel assemblies with nonlinear rolling bearing supports

    Science.gov (United States)

    Wang, Hong; Han, Qinkai; Luo, Ruizhi; Qing, Tao

    2017-10-01

    Moment wheel assemblies (MWA) have been widely used in spacecraft attitude control and large angle slewing maneuvers over the years. Understanding and controlling vibration of MWAs is a crucial factor to achieving the desired level of payload performance. Dynamic modeling of a MWA with nonlinear rolling bearing supports is conducted. An improved load distribution analysis is proposed to more accurately obtain the contact deformations and angles between the rolling balls and raceways. Then, the bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. The effects of preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication could all be reflected in the nonlinear bearing forces. Considering the mass imbalances of the flywheel, flexibility of supporting structures and rolling bearing nonlinearity, the dynamic model of a typical MWA is established based upon the energy theorem. Dynamic tests are conducted to verify the nonlinear dynamic model. The influences of flywheel mass eccentricity and inner/outer waviness amplitudes on the dynamic responses are discussed in detail. The obtained results would be useful for the design and vibration control of the MWA system.

  11. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J. S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J. P. K.; Geertzen, J. H. B.

    2004-01-01

    This paper describes a new automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients, fitted

  12. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J.S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J.P.K.; Geertzen, J.H.B.

    This paper describes a new, automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients,

  13. Using an Autonomous Scale Ship Model for Resistance and Parametric Roll Tests

    Directory of Open Access Journals (Sweden)

    Fernando LOPEZ PEŇA

    2015-04-01

    Full Text Available This work presents the developing of a self-propelled scale ship model aimed to perform resistance and parametric roll tests in towing tanks. The main characteristic of the proposed system is that it doesn’t have any material link to a towing device to carry out the tests. This ship model has been fully instrumented in order to acquire all the significant raw data, process them onboard and communicate with an inshore station. This works presents a description of the proposed model as well as some results obtained by its use during a towing tank testing campaign.

  14. Model of mechanical properties change of steel during rolling with use of hightemperature thermomechanical treatment

    International Nuclear Information System (INIS)

    Zhadan, V.T.; Gubenko, V.T.; Bernshtejn, M.L.; Binarskij, M.S.

    1975-01-01

    A mathematical model is proposed of changes in the mechanical properties of the steel-50KHGA in the process of rolling with application of a high-temperature thermomechanical treatment (HTTMT). The model accounts for all the main particularities of the structure formation processes during a high temperature deformation of metals and alloys. The nonmonotonic dependence of the steel mechanical properties on the deformation velocity can be presented as a result of a summary effect of three parallel processes on the formation of these properties: hot working, softening and substructural hardening. The mathematical model has been constructed by the iteration method

  15. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    Science.gov (United States)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  16. Fuzzy Control of Yaw and Roll Angles of a Simulated Helicopter Model Includes Articulated Manipulators

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2015-09-01

    Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.

  17. NUMERICAL EVALUATION OF TEMPERATURE DISTRIBUTION IN THE ROLLING MILL ROLLS

    Directory of Open Access Journals (Sweden)

    José Claudino de Lira Júnior

    2013-06-01

    Full Text Available In hot rolling processes occur changes in the profile of the rolling mill rolls (expansion and contraction and constant wear due to mechanical stress and continuous thermal cycles of heating/cooling caused by contact rolled material- working roll and the cooling system by water jets in their surface, decreasing their lifetime. This paper presents a computational model to simulate the thermal performance of rolling mill rolls. The model was developed using the finite volume method for a transient two-dimensional system and allows calculating the temperature distribution of the rolling mill rolls under various conditions of service. Here it is investigated the influence of flow rate and temperature of the cooling water on the temperature distribution. The results show that the water temperature has greater influence than the water flow to control the surface temperature of the cylinders.

  18. Multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge

    Directory of Open Access Journals (Sweden)

    Z. Du

    2016-05-01

    Full Text Available Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.

  19. Enhanced multimaterial 4D printing with active hinges

    Science.gov (United States)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  20. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products

    DEFF Research Database (Denmark)

    Bertram, M.; Ramkumar, S.; Rechberger, H.

    2017-01-01

    A global aluminium flow modelling tool, comprising nine trade linked regions, namely China, Europe, Japan, Middle East, North America, Other Asia, Other Producing Countries, South America and Rest of World, has been developed. The purpose of the Microsoft Excel-based tool is the quantification...... of regional stocks and flows of rolled, extruded and casting alloys across space and over time, giving the industry the ability to evaluate the potential to recycle aluminium scrap most efficiently. The International Aluminium Institute will update the tool annually and publish a visualisation of results...

  1. Phenomenological Model Describing the Formation of Peeling Defects on Hot-Rolled Duplex Stainless Steel 2205

    Science.gov (United States)

    Yong-jun, Zhang; Hui, Zhang; Jing-tao, Han

    2017-05-01

    The chemical composition, morphology, and microstructure of peeling defects formed on the surface of sheets from steel 2205 under hot rolling are studied. The microstructure of the surface is analyzed using scanning electron and light microscopy. The zones affected are shown to contain nonmetallic inclusions of types Al2O3 and CaO - SiO2 - Al2O3 - MgO in the form of streak precipitates and to have an unfavorable content of austenite, which causes decrease in the ductility of the area. The results obtained are used to derive a five-stage phenomenological model of formation of such defects.

  2. Sellers’ Pricing Policy in Spatial Competition Models (a case study of the Russian rolled product market

    Directory of Open Access Journals (Sweden)

    Torbenko A. M.

    2011-12-01

    Full Text Available The article views competition in the rolled section market. The hypotheses about price discrimination, competition according to Cournot or Hotelling being present at this market, have been tested. The dependence of rolled section prices in the region on the distance between the region and rolled section producers’ location, as well as on other factors, has been tested. It is concluded that the Russian rolled section market is characterized by Hotelling competition without using price discrimination

  3. Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2016-01-01

    Full Text Available Asymmetrical sheet rolling is a method of severe plastic deformation (SPD for production of aluminium alloys with UFG structure. Prediction of sheet temperature during SPD is important. The temperature of sheet is changed due to the conversion of mechanical work into heat through sliding on contact surfaces and high shear strain. Paper presents the results of FEM simulation of the effect of contact friction, rolling speed and rolls speed ratio on the heating of aluminium sheets during asymmetrical rolling.

  4. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance

    DEFF Research Database (Denmark)

    Holden, Christian; Galeazzi, Roberto; Rodríguez, Claudio

    2007-01-01

    Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to 40, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head ...

  5. Geometrical Comparison of Numerical Models Used in the Design and Validation of Mechanically Rolled Tube-Tubesheet Joints

    DEFF Research Database (Denmark)

    Madsen, Søren Bøgelund; Ibsen, Claus Hessler; Gervang, Bo

    2015-01-01

    The focus of this paper is the validation and comparison of simplified numerical models of the mechanical rolling process used in tube to tubesheet joints. The investigated models is an axisymmetric model and planar models with plane strain and stress. There are different pros and cons...

  6. Setup of a Parameterized FE Model for the Die Roll Prediction in Fine Blanking using Artificial Neural Networks

    Science.gov (United States)

    Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.

    2017-09-01

    Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.

  7. A theoretical model of speed-dependent steering torque for rolling tyres

    Science.gov (United States)

    Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing

    2016-04-01

    It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.

  8. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  9. Cyclic plastic hinges with degradation effects for frame structures

    OpenAIRE

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each gen...

  10. Mathematical model of rolling an elastic wheel over deformable support base

    Science.gov (United States)

    Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.

    2018-02-01

    One of the main direction of economic growth in Russia remains to be a speedy development of north and northeast regions that are the constituents of the 60 percent of the country territory. The further development of these territories requires new methods and technologies for solving transport and technological problems when off-road transportation of cargoes and people is conducting. One of the fundamental methods of patency prediction is imitation modeling of wheeled vehicles movement in different operating conditions. Both deformable properties of tires and physical and mechanical properties of the ground: normal tire deflection and gauge depth; variation of contact patch area depending on the load and pressure of air in the tire; existence of hysteresis losses in the tire material which are influencing on the rolling resistance due to friction processes between tire and ground in the contact patch; existence of the tangential reaction from the ground by entire contact area influence on the tractive patency. Nowadays there are two main trends in theoretical research of interaction wheeled propulsion device with ground: analytical method involving mathematical description of explored process and finite element method based on computational modeling. Mathematical models of interaction tire with the ground are used both in processes of interaction individual wheeled propulsion device with ground and researches of mobile vehicle dynamical models operated in specific road and climate conditions. One of the most significant imperfection of these models is the description of interaction wheel with flat deformable support base whereas profile of real support base surface has essential height of unevenness which is commensurate with radius of the wheel. The description of processes taking place in the ground under influence of the wheeled propulsion device using the finite element method is relatively new but most applicable lately. The application of this method allows

  11. Nonlinear analysis for a ship with a general roll-damping model

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassiouny, A F [Mathematics Department, Faculty of Science, Benha University, Benha 13518 (Egypt)

    2007-05-15

    The qualitative behaviour of the response of a ship rolling in longitudinal waves whose amplitude or frequency (parameters) are slowly varied is presented. An analytical and numerical technique is used to predict the qualitative change taking place in the stable solutions of a ship model as one of the parameters is slowly changed. The analysis took into consideration linear, cubic and quantic terms in the polynomial expansion of the relative roll angle. The damping moment consists of the linear term associated with radiation and viscous damping and a cubic term due to frictional resistance and eddies behind bilge keels and hard bilge corners. Two methods (the averaging and the multiple time scales) are used to investigate a first-order approximate analytical solution. The modulation equations of the amplitudes and phases are obtained. These equations are used to determine steady state solutions. Numerical calculations are presented which illustrate the behaviour of the steady state response amplitude as a function of the detuning parameter. The stability of the proposed solution is determined applying Liapunov's first method. The effects of different parameters on the system behaviour are investigated numerically. The results obtained by the two methods are in excellent agreement.

  12. Continuum modeling of {10Ῑ2} twinning in a Mg-3%Al-1%Zn rolled sheet

    Directory of Open Access Journals (Sweden)

    Pérez-Prado, M. T.

    2010-12-01

    Full Text Available Acrystal plasticity continuum model with differentiated self- and cross- hardeningmechanisms for twin and slip systems has been utilized to predict the slip/twin activities and texture evolution in a rolled and annealed Mg-3%Al-1%Zn sheet compressed along the rolling direction (RD and tensile tested along the normal direction (ND. The contribution of twinning is significantly larger during tension along ND, leading to a significant texture change with strain. A good correlation is found between simulations and recent experimental results.

    Un modelo continuo de plasticidad cristalina, que contempla los mecanismos de auto-endurecimiento y endurecimiento cruzado para los sistemas de maclado y deslizamiento, se ha utilizado para predecir las actividades de deslizamiento y del maclado, así como la evolución de la textura, de una chapa laminada y recocida de la aleación de magnesio Mg-3%Al-1%Zn ensayada en compresión, a lo largo de la dirección de laminación (DL y en tensión, a lo largo de la dirección normal (DN. Se encontró que la contribución del maclado es mucho más importante cuando la muestra se tensiona a lo lago de DN, lo que da lugar a un cambio fuerte de textura. Se observó una buena correspondencia entre las simulaciones y resultados experimentales recientes.

  13. A predictive model for steam generator degradation through PW SCC in roll transitions

    International Nuclear Information System (INIS)

    Hernalsteen, P.

    1989-01-01

    The tubebundle of pressurized water reactors steam generators (SG) has been affected by numerous corrosion damages, in various nuclear plants, all over the world. One of the main problems is primary water stress corrosion cracking (PWSCC) in the roll transitions of mill annealed Inconel 600 tubes mechanically expanded in the SG tubesheet. Multiple axial cracks are initiated from the primary side and grow rapidly through water; they further grow in length and propagate outside of the roll transition. In most plants, both in Europe and in the USA, short penning has been performed on the inside diameter of the expanded section of susceptible tubing. While the compressive surface layer induced by peening is considered to be efficient in preventing crack initiation, field experience showed that it did not prevent preexisting cracks from further propagation. For the usual case of SG peened after crack initiation, there is thus a remaining concern about the long term evolution of the population of cracked tubes. This paper presents a model to predict the SG degradation process in order to support both the maintenance policy and the longer term repair/replacement strategy

  14. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    Science.gov (United States)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  15. Experimental validation of the twins prediction program for rolling noise. Pt.1: description of the model and method

    NARCIS (Netherlands)

    Thompson, D.J.; Hemsworth, B.; Vincent, N.

    1996-01-01

    The C163 Expert Committee of the European Rail Research Institute (ERRI) concerned with Railway Noise, has been developing theoretical models for the generation of wheel/rail rolling noise. These models have been brought together into a software package, called TWINS ("Track-Wheel Interaction Noise

  16. Analysis of a piping system under seismic load using incremental hinge technique

    International Nuclear Information System (INIS)

    Ravi Kiran, A.; Agrawal, M.K.; Reddy, G.R.; Singh, R.K.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Ramesh Babu, R.

    2008-01-01

    ASME Boiler and Pressure Vessel Code treats piping system as a series of components but not as an overall structural system. Limit analyses and collapse tests at component level are used to establish stress allowables on seismic stresses. The code does not consider the load redistributions and structural redundancy existing in piping systems that prevent system collapse even when one or more individual components loaded beyond their collapse levels. This necessitates a simple analytical method for evaluation of inelastic seismic response at system level. The present paper presents a simplified analytical procedure for predicting inelastic response of a typical piping system subjected to seismic load. The analytical method known as incremental hinge technique is based on plastic system behavior in which the yielded components are replaced with hinge models when a critical hinge moment is reached. It also takes into account the inelastic response spectrum reduction factors and displacement ductility. The analytical method is used to obtain the inelastic response, location of hinge formation and level of base excitation needed for hinge formation. The predicted hinge locations and hinge ordering is compared with the results of a shake table test conducted on the piping system. (author)

  17. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves.

    Science.gov (United States)

    Simon, Hélène A; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit P

    2010-11-01

    Thromboembolic complications (TECs) of bileaflet mechanical heart valves (BMHVs) are believed to be due to the nonphysiologic mechanical stresses imposed on blood elements by the hinge flows. Relating hinge flow features to design features is, therefore, essential to ultimately design BMHVs with lower TEC rates. This study aims at simulating the pulsatile three-dimensional hinge flows of three BMHVs and estimating the TEC potential associated with each hinge design. Hinge geometries are constructed from micro-computed tomography scans of BMHVs. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Leaflet motion and flow boundary conditions are extracted from fluid-structure-interaction simulations of BMHV bulk flow. The numerical results are analyzed using a particle-tracking approach coupled with existing blood damage models. The gap width and, more importantly, the shape of the recess and leaflet are found to impact the flow distribution and TEC potential. Smooth, streamlined surfaces appear to be more favorable than sharp corners or sudden shape transitions. The developed framework will enable pragmatic and cost-efficient preclinical evaluation of BMHV prototypes prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design.

  18. Analysis of automotive rolling lobe air spring under alternative factors with finite element model

    International Nuclear Information System (INIS)

    Wong, Pak Kin; Xie, Zhengchao; Zhao, Jing; Xu, Tao; He, Feng

    2014-01-01

    Air springs are widely used in automotive suspensions for their superior performance in terms of low friction motion, adjustable load carrying capacity and user-friendly ride height control. However, it has posed great difficulties in constructing an accurate model as well as the analysis of the influence of alternative factors, such as cord angle, cord diameter and initial pressure. In this paper, a numerical model of the rolling lobe air spring (RLAS) is built by using finite element method and compared with an existing analytical model. An experiment with respect to the vertical stiffness of the RLAS is carried out to validate the accuracy of the proposed model. Evaluation result reveals that the existing analytical model cannot represent the performance of the RLAS very well, whereas the accuracy of the numerical model is very good. With the verified numerical model, the impacts of many alternative factors on the characteristics of the RLAS are analyzed. Numerical results show that the newly proposed model is reliable to determine the vertical characteristic and physical dimensions of the RLAS under the alternative factors.

  19. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Gevorgyan, Suren; Alstrup, Jan

    2009-01-01

    An inverted polymer solar cell geometry comprising a total of five layers was optimized using laboratory scale cells and the operational stability was studied under model atmospheres. The device geometry was substrate-ITO-ZnO-(active layer)-PEDOT:PSS-silver with P3HT-PCBM as the active layer. The...

  20. COMPUTER MODELING OF THE ROLLING TECHNOLOGICAL REGIMES INFLUENCE ON MICROSTRUCTURE OF EUTECTOID COLONIES OF ROD PEARLITE

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2010-01-01

    Full Text Available Interconnection between the parameters of the rolled wire production technology and characteristics of its microstructure is shown. The correlation interconnections between the characteristics of the rolled wire microstructure, calculated by method of image processing, and technology of its receipt in conditions of RUP «BMZ» are determined. 

  1. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    Science.gov (United States)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.

    2013-12-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.

  2. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    International Nuclear Information System (INIS)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X Q

    2013-01-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures. (paper)

  3. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    Science.gov (United States)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  4. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    NARCIS (Netherlands)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P.A.

    2016-01-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance

  5. Operational characterization of CSFH MEMS technology based hinges

    Science.gov (United States)

    Crescenzi, Rocco; Balucani, Marco; Belfiore, Nicola Pio

    2018-05-01

    Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple-field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D-RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.

  6. Dynamic modeling and mobility analysis of the transforming roving-rolling explorer (TRREx) as it Traverses Rugged Martian Terrain

    Science.gov (United States)

    Edwin, Lionel E.; Mazzoleni, Andre P.

    2016-03-01

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.

  7. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    Science.gov (United States)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  8. Reliability evaluation for hinges of folder devices using ESPI

    International Nuclear Information System (INIS)

    Lee, Tae Hun; Chang, Seok Weon; Jhang, Kyung Young

    2004-01-01

    Folder type electronic devices have hinge to support the rotational motion of folder. This hinge is stressed by the rotational inertia moment of folder at the maximum open limit position of folder. This stress is repeated whenever the folder is open, and it is a cause of hinge fracture. In this paper, the reliability evaluation for the hinge fracture in the folder type cellular phone is discussed. For this, the durability testing machine using crack-rocker mechanism is developed to evaluate the life cycle of the hinge, and the degradation after repetitions of opening and shutting is evaluated from the deformation around the hinge, where the deformation is measured by ESPI (electronic speckle pattern interferometer). Experimental results showed that ESPI was able to measure the deformation of hinge precisely, so we could monitor the change of deformation around the hinge as the repetition number of folder open is increased.

  9. A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects

    Science.gov (United States)

    Niu, Linkai; Cao, Hongrui; He, Zhengjia; Li, Yamin

    2015-11-01

    Ball passing frequencies (BPFs) are very important features for condition monitoring and fault diagnosis of rolling ball bearings. The ball passing frequency on outer raceway (BPFO) and the ball passing frequency on inner raceway (BPFI) are usually calculated by two well-known kinematics equations. In this paper, a systematic study of BPFs of rolling ball bearings is carried out. A novel method for accurately calculating BPFs based on a complete dynamic model of rolling ball bearings with localized surface defects is proposed. In the used dynamic model, three-dimensional motions, relative slippage, cage effects and localized surface defects are all considered. Moreover, localized surface defects are modeled accurately with consideration of the finite size of the ball, the additional clearance due to material absence, and changes of contact force directions. The reasonability of the proposed method for the prediction of dynamic behaviors of actual ball bearings with localized surface defects and for the calculation of BPFs is discussed by investigating the motion characteristics of a ball when it rolls through a defect. Parametric investigation shows that the shaft speed, external loads, the friction coefficient, raceway groove curvature factors, the initial contact angle, and defect sizes have great effects on BPFs. For a loaded ball bearing, the combination of rolling and sliding in contact region occurs, and the BPFs calculated by simple kinematical relationships are inaccurate, especially for high speed, low external load, and large initial contact angle conditions where severe skidding occurs. The hypothesis that the percentage variation of the spacing between impulses in a defective ball bearing was about 1-2% reported in previous investigations can be satisfied only for the conditions where the skidding effect in a bearing is slight. Finally, the proposed method is verified with two experiments.

  10. Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis

    Directory of Open Access Journals (Sweden)

    Kazemi P

    2017-01-01

    Full Text Available Pezhman Kazemi,1 Mohammad Hassan Khalid,1 Ana Pérez Gago,2 Peter Kleinebudde,2 Renata Jachowicz,1 Jakub Szlęk,1 Aleksander Mendyk1 1Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; 2Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University, Düsseldorf, Germany Abstract: Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of

  11. Hinge(ga) Brand - tõhusaim relv mõrtsukate ja varaste vastu / Hinge Brand ; interv. Kaarel Kressa

    Index Scriptorium Estoniae

    Brand, Hinge, 1940-2007

    2006-01-01

    Intervjuu 40 aastat prokuröriametit pidanud ja pensionile siirduva Hinge Brandiga. Lisatud: Hinge Brandi CV ning Põhja ringkonnaprokuratuuri erisasjade prokuröri Jüri Kasesalu, siseministeeriumi arendusjuhi Lauri Taburi ja keskkriminaalpolitsei politseijuhtivinspektori Margus Maasepa kommentaarid

  12. Incremental-hinge piping analysis methods for inelastic seismic response prediction

    International Nuclear Information System (INIS)

    Jaquay, K.R.; Castle, W.R.; Larson, J.E.

    1989-01-01

    This paper proposes nonlinear seismic response prediction methods for nuclear piping systems based on simplified plastic hinge analyses. The simplified plastic hinge analyses utilize an incremental series of flat response spectrum loadings and replace yielded components with hinge elements when a predefined hinge moment is reached. These hinge moment values, developed by Rodabaugh, result in inelastic energy dissipation of the same magnitude as observed in seismic tests of piping components. Two definitions of design level equivalent loads are employed: one conservatively based on the peaks of the design acceleration response spectra, the other based on inelastic frequencies determined by the method of Krylov and Bogolyuboff recently extended by Lazzeri to piping. Both definitions account for piping system inelastic energy dissipation using Newmark-Hall inelastic response spectrum reduction factors and the displacement ductility results of the incremental-hinge analysis. Two ratchet-fatigue damage models are used: one developed by Rodabaugh that conservatively correlates Markl static fatigue expressions to seismic tests to failure of piping components; the other developed by Severud that uses the ratchet expression of Bree for elbows and Edmunds and Beer for straights, and defines ratchet-fatigue interaction using Coffin's ductility based fatigue equation. Comparisons of predicted behavior versus experimental results are provided for a high-level seismic test of a segment of a representative nuclear plant piping system. (orig.)

  13. Quantum-Gravitational Effects on Primordial Power Spectra in Slow-Roll Inflationary Models

    Directory of Open Access Journals (Sweden)

    David Brizuela

    2018-01-01

    Full Text Available We review the computation of the power spectra of inflationary gauge-invariant perturbations in the context of canonical quantum gravity for generic slow-roll models. A semiclassical approximation, based on an expansion in inverse powers of the Planck mass, is applied to the complete Wheeler–DeWitt equation describing a perturbed inflationary universe. This expansion leads to a hierarchy of equations at consecutive orders of the approximation and allows us to write down a corrected Schrödinger equation that encodes information about quantum-gravitational effects. The analytical dependence of the correction to the power spectrum on the wavenumber is obtained. Nonetheless, some numerical work is needed in order to obtain its precise value. Finally, it is shown that the correction turns out to be positive, which leads to an enhancement of the power spectrum especially prominent for large scales. We will also discuss whether this correction leads to a measurable effect in the cosmic microwave background anisotropies.

  14. Online Prediction under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill

    National Research Council Canada - National Science Library

    Raftery, Adrian E; Karny, Miroslav; Andrysek, Josef; Ettler, Pavel

    2007-01-01

    ... is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the (correct...

  15. Modeling of Ship Roll Dynamics and Its Coupling with Heave and Pitch

    Directory of Open Access Journals (Sweden)

    R. A. Ibrahim

    2010-01-01

    Full Text Available In order to study the dynamic behavior of ships navigating in severe environmental conditions it is imperative to develop their governing equations of motion taking into account the inherent nonlinearity of large-amplitude ship motion. The purpose of this paper is to present the coupled nonlinear equations of motion in heave, roll, and pitch based on physical grounds. The ingredients of the formulation are comprised of three main components. These are the inertia forces and moments, restoring forces and moments, and damping forces and moments with an emphasis to the roll damping moment. In the formulation of the restoring forces and moments, the influence of large-amplitude ship motions will be considered together with ocean wave loads. The special cases of coupled roll-pitch and purely roll equations of motion are obtained from the general formulation. The paper includes an assessment of roll stochastic stability and probabilistic approaches used to estimate the probability of capsizing and parameter identification.

  16. Investigation at transonic speeds of the lateral-control and hinge-moment characteristics of a flap-type spoiler aileron on a 60 degree delta wing

    Science.gov (United States)

    Wiley, Harleth G; Taylor, Robert T

    1954-01-01

    This paper present results of an investigation of the lateral-control and hinge-moment characteristics of a 0.67 semispan flap-type spoiler aileron on a semispan thin 60 degree delta wing at transonic speeds by the reflection-plane technique. The spoiler-aileron had a constant chord of 10.29 percent mean aerodynamic chord and was hinged at the 81.9-percent-wing-root-chord station. Tests were made with the spoiler aileron slot open, partially closed, and closed. Incremental rolling-moment coefficients were obtained through a Mach number range of 0.62 to 1.08. Results indicated reasonably linear variations of rolling-moment and hinge-moment coefficients with spoiler projection except at spoiler projections of less than -2 percent mean aerodynamic chord and angles of attack greater than 12 degrees with results generally independent of slot geometry.

  17. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  18. Normal-Force and Hinge-Moment Characteristics at Transonic Speeds of Flap-Type Ailerons at Three Spanwise Locations on a 4-Percent-Thick Sweptback-Wing-Body Model and Pressure-Distribution Measurements on an Inboard Aileron

    Science.gov (United States)

    Runckel, Jack F.; Hieser, Gerald

    1961-01-01

    An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.

  19. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A. [Department of Applied Physics, Technische Universiteit Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Eersel, H. van [Simbeyond B.V., P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  20. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Science.gov (United States)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P. A.

    2016-03-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  1. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    International Nuclear Information System (INIS)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A.; Eersel, H. van

    2016-01-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  2. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot

    International Nuclear Information System (INIS)

    Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun

    2014-01-01

    We report on the development of a robot’s dynamic locomotion based on a template which fits the robot’s natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order ‘template’ in a more complex ‘anchor’, the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion. (paper)

  3. Kulturens rolle

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2007-01-01

    Kulturens rolle. Herunder kulturens betydning for psykologisk teori og forskning set i lyset af den stigende globalisering og væksten i kulturmøder. Der gives eksempler fra hverdagssituationer, den pædagogiske praksis, fra indvandrerforskning, turister men også fra avisernes referater af kulturmø......Kulturens rolle. Herunder kulturens betydning for psykologisk teori og forskning set i lyset af den stigende globalisering og væksten i kulturmøder. Der gives eksempler fra hverdagssituationer, den pædagogiske praksis, fra indvandrerforskning, turister men også fra avisernes referater af...

  4. 75 FR 2434 - Special Conditions: Boeing Model 747-8/-8F Series Airplanes; Design Roll Maneuver Requirement

    Science.gov (United States)

    2010-01-15

    ... result from defined movements of the cockpit roll control as opposed to defined aileron deflections. Also... limited to the roll axis only, whereas previous special conditions also included pitch and yaw axes. A... movement of the cockpit roll control up to the limit is assumed. The position of the cockpit roll control...

  5. The effect of roll with passive segment on the planetary rolling process

    Directory of Open Access Journals (Sweden)

    Qing-Ling Zeng

    2015-03-01

    Full Text Available In three-roll planetary rolling process, there is secondary torsion phenomenon that may lead to rolling instability. This article proposed a new idea to alleviate the secondary torsion phenomenon by dividing the secondary torsion segment out of the roll as an independent and passive one. To study the performance of the roll with passive segment, the three-dimensional finite element models of planetary rolling process using actual roll or new roll with passive segment involving elastic–plastic and thermal–mechanical coupling were established by the software ABAQUS/Explicit, and a series of analysis had been done successfully. The rolling temperature and rolling force of planetary mill were in good agreement with the measured results, which indicated that the finite element method would supply important reference merit for three-dimensional thermo-mechanical simulation of the three-roll planetary rolling process. Comparing the simulation results of the two models, the results indicated that the change in the roll structure had just a little influence on the metal deformation, temperature, and rolling force, but it lessened the secondary torsion deformation effectively and improved the outside roundness of the rolled tube slightly. The research provided a new idea for the roll design of three-roll planetary mill (PSW.

  6. The rolling-circle melting-pot model for porcine circovirus DNA replication

    Science.gov (United States)

    A stem-loop structure, formed by a pair of inverted repeats during DNA replication, is a conserved feature at the origin of DNA replication (Ori) among plant and animal viruses, bacteriophages and plasmids that replicate their genomes via the rolling-circle replication (RCR) mechanism. Porcine circo...

  7. Thermoelectric generator with hinged assembly for fins

    International Nuclear Information System (INIS)

    Purdy, D.L.; Shapiro, Z.M.; Hursen, T.F.; Maurer, G.W.

    1976-01-01

    A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield

  8. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    International Nuclear Information System (INIS)

    Schmidtchen, M; Kawalla, R; Rimnac, A; Bragin, S; Linzer, B; Warczok, P; Kozeschnik, E; Bernhard, C

    2016-01-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness. (paper)

  9. Attitude Control of Nanosatellites by Paddle Motion Using Elastic Hinges Actuated by Shape Memory Alloy

    Science.gov (United States)

    Iai, Masafumi; Durali, Mohammad; Hatsuzawa, Takeshi

    Recent research has been extending the applications of small satellites called microsatellites, nanosatellites, or picosatellites. To further improve capability of those satellites, a lightweight, active attitude-control mechanism is needed. This paper proposes a concept of inertial orientation control, an attitude control method using movable solar arrays. This method is made suitable for nanosatellites by the use of shape memory alloy (SMA)-actuated elastic hinges and a simple maneuver generation algorithm. The combination of SMA and an elastic hinge allows the hinge to remain lightweight and free of frictional or rolling contacts. Changes in the shrinking and stretching speeds of the SMA were measured in a vacuum chamber. The proposed algorithm constructs a maneuver to achieve arbitrary attitude change by repeating simple maneuvers called unit maneuvers. Provided with three types of unit maneuvers, each degree of freedom of the satellite can be controlled independently. Such construction requires only simple calculations, making it a practical algorithm for a nanosatellite with limited computational capability. In addition, power generation variation caused by maneuvers was analyzed to confirm that a maneuver from any initial attitude to an attitude facing the sun was justifiable in terms of the power budget.

  10. A Mathematical and Numerically Integrable Modeling of 3D Object Grasping under Rolling Contacts between Smooth Surfaces

    Directory of Open Access Journals (Sweden)

    Suguru Arimoto

    2011-01-01

    Full Text Available A computable model of grasping and manipulation of a 3D rigid object with arbitrary smooth surfaces by multiple robot fingers with smooth fingertip surfaces is derived under rolling contact constraints between surfaces. Geometrical conditions of pure rolling contacts are described through the moving-frame coordinates at each rolling contact point under the postulates: (1 two surfaces share a common single contact point without any mutual penetration and a common tangent plane at the contact point and (2 each path length of running of the contact point on the robot fingertip surface and the object surface is equal. It is shown that a set of Euler-Lagrange equations of motion of the fingers-object system can be derived by introducing Lagrange multipliers corresponding to geometric conditions of contacts. A set of 1st-order differential equations governing rotational motions of each fingertip and the object and updating arc-length parameters should be accompanied with the Euler-Lagrange equations. Further more, nonholonomic constraints arising from twisting between the two normal axes to each tangent plane are rewritten into a set of Frenet-Serre equations with a geometrically given normal curvature and a motion-induced geodesic curvature.

  11. Mechanics based model for predicting structure-induced rolling resistance (SRR) of the tire-pavement system

    Science.gov (United States)

    Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.

    2016-11-01

    The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.

  12. A hinged-pad test structure for sliding friction measurement in micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Boer, M.P. de; Redmond, J.M.; Michalske, T.A.

    1998-08-01

    The authors describe the design, modeling, fabrication and initial testing of a new test structure for friction measurement in MEMS. The device consists of a cantilevered forked beam and a friction pad attached via a hinge. Compared to previous test structures, the proposed structure can measure friction over much larger pressure ranges, yet occupies one hundred times less area. The placement of the hinge is crucial to obtaining a well-known and constant pressure distribution in the device. Static deflections on the device were measured and modeled numerically, Preliminary results indicate that friction pad slip is sensitive to friction pad normal force.

  13. A Dynamic Model for Roll Motion of Ships due to Flooding

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    1999-01-01

    Because of the large undivided deck spaces, RoRo vessels are often sensitive to rapid capsizing due to sudden ingress of water. Following a high-energy damage, a rapidly increasing heeling moment is induced by the ingress of water, which generates a roll motion of the damaged vessel. If, addition......Because of the large undivided deck spaces, RoRo vessels are often sensitive to rapid capsizing due to sudden ingress of water. Following a high-energy damage, a rapidly increasing heeling moment is induced by the ingress of water, which generates a roll motion of the damaged vessel. If......, additionally, the car deck is flooded and/or the cargo is shifted, the heeling moment may exceed the residual restoring moment, which results in capsizing....

  14. Kinematics analysis on hinges of robot arm gripper for harmful chemical handling

    Science.gov (United States)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Mustafa, Nurul Fahimah; Daud, Mohd Hisam

    2017-09-01

    The development of manufacturing industry is booming the application of industrial robot, and proportional to the use of robot arm. Some of the purpose of robot arm gripper is to sort things and place to the proper place. And some of the things are harmful to human, such as harmful chemical. By using robot arm to do picking and placing, it is expected to replace human tasks, as well as to reduce human from the harmful job. The problem of the robot arm gripper, most likely the problem of hinge, thus the analysis on the hinges of robot arm gripper to prevent claw is essential. By using robot arm, instead of human, is labored to do the harmful tasks and unexpected accident happen, costs and expenses in handling injured employee due to the harmful chemicals can be minimized. Thus the objective of this project is to make a kinematics analysis on the hinges of the robot arm gripper. Suitable material such as steel structure has also been selected for the construction of this hinges. This material has properties associated with compressive strength, fire resistance, corrosion and has a shape that is easy to move. Solid Works and ANSYS software is used to create animated movement on the design model and to detect deficiencies in the hinges. Detail methodology is described in this paper.

  15. Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets

    Science.gov (United States)

    Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed

    2017-11-01

    Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.

  16. Rolling at small scales

    DEFF Research Database (Denmark)

    Nielsen, Kim L.; Niordson, Christian F.; Hutchinson, John W.

    2016-01-01

    The rolling process is widely used in the metal forming industry and has been so for many years. However, the process has attracted renewed interest as it recently has been adapted to very small scales where conventional plasticity theory cannot accurately predict the material response. It is well....... Metals are known to be stronger when large strain gradients appear over a few microns; hence, the forces involved in the rolling process are expected to increase relatively at these smaller scales. In the present numerical analysis, a steady-state modeling technique that enables convergence without...

  17. Numerical simulation of the roll levelling of third generation fortiform 1050 steel using a nonlinear combined hardening material model

    Science.gov (United States)

    Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.; Silvestre, E.

    2017-09-01

    The roll levelling is a flattening process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process, the metal sheet is subjected to cyclic tension-compression deformations leading to a flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding reliable tools for the dimensioning of the levelling facilities. Like in other metal forming fields, finite element analysis seems to be the most widely used solution to understand the occurring phenomena and to calculate the processing loads. In this paper, the roll levelling process of the third generation Fortiform 1050 steel is numerically analysed. The process has been studied using the MSC MARC software and two different material laws. A pure isotropic hardening law has been used and set as the baseline study. In the second part, tension-compression tests have been carried out to analyse the cyclic behaviour of the steel. With the obtained data, a new material model using a combined isotropic-kinematic hardening formulation has been fitted. Finally, the influence of the material model in the numerical results has been analysed by comparing a pure isotropic model and the later combined mixed hardening model.

  18. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    . This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  19. The effect of klapskate hinge position on push-off performance: a simulation study

    OpenAIRE

    Houdijk, J.H.P.; Bobbert, M.F.; de Koning, J.J.; de Groot, G.

    2003-01-01

    Purpose: The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. Method: For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this m...

  20. Modifications of Hinge Mechanisms for the Mobile Launcher

    Science.gov (United States)

    Ganzak, Jacob D.

    2018-01-01

    The further development and modifications made towards the integration of the upper and lower hinge assemblies for the Exploration Upper Stage umbilical are presented. Investigative work is included to show the process of applying updated NASA Standards within component and assembly drawings for selected manufacturers. Component modifications with the addition of drawings are created to precisely display part geometries and geometric tolerances, along with proper methods of fabrication. Comparison of newly updated components with original Apollo era components is essential to correctly model the part characteristics and parameters, i.e. mass properties, material selection, weldments, and tolerances. 3-Dimensional modeling software is used to demonstrate the necessary improvements. In order to share and corroborate these changes, a document management system is used to store the various components and associated drawings. These efforts will contribute towards the Mobile Launcher for Exploration Mission 2 to provide proper rotation of the Exploration Upper Stage umbilical, necessary for providing cryogenic fill and drain capabilities.

  1. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  2. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  3. Modal Characteristics of Novel Wind Turbine Rotors with Hinged Structures

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    The vibration problems of the wind turbine rotors have drawn public attention as the size of wind turbine has increased incredibly. Although various factors may cause the vibration problems, the flexibility is a big threat among them. Therefore, ensuring the high stiffness of the rotors by adopting novel techniques becomes a necessity. The study was a further investigation of several novel designs regarding the dynamic behaviour and the influencing mechanism. The modal testing experiments were conducted on a traditional blade and an isolated blade with the hinged rods mounted close to the root. The results showed that the rod increased both the modal frequency and the damping of the blade. More studies were done on the rods’ impact on the wind turbine rotor with a numerical model, where dimensionless parameters were defined to describe the configuration of the interveined and the bisymmetrical rods. Their influences on the modal frequencies of the rotor were analyzed and discussed.

  4. The effects of klapskate hinge position on push-off performance: a simulation study.

    Science.gov (United States)

    Houdijk, Han; Bobbert, Maarten F; De Koning, Jos J; De Groot, Gert

    2003-12-01

    The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this model performed a one-leg vertical jump, from a frictionless surface, while keeping its trunk horizontally. In this model, klapskate hinge position was varied by varying the length of the foot segment between 115 and 300 mm. With each foot length, an optimal control solution was found that resulted in the maximal amount of vertical kinetic and potential energy of the body's center of mass at take off (Weff). Foot length was shown to considerably affect push-off performance. Maximal Weff was obtained with a foot length of 185 mm and decreased by approximately 25% at either foot length of 115 mm and 300 mm. The reason for this decrease was that foot length affected the onset and control of foot rotation. This resulted in a distortion of the pattern of leg segment rotations and affected muscle work (Wmus) and the efficacy ratio (Weff/Wmus) of the entire leg system. Despite its simplicity, the model very well described and explained the effects of klapskate hinge position on push off performance that have been observed in speed-skating experiments. The simplicity of the model, however, does not allow quantitative analyses of optimal klapskate hinge position for speed-skating practice.

  5. God of the hinge: treating LGBTQIA patients.

    Science.gov (United States)

    Boland, Annie

    2017-11-01

    This paper looks at systems of gender within the context of analysis. It explores the unique challenges of individuation faced by transsexual, transgender, gender queer, gender non-conforming, cross-dressing and intersex patients. To receive patients generously we need to learn how a binary culture produces profound and chronic trauma. These patients wrestle with being who they are whilst simultaneously receiving negative projections and feeling invisible. While often presenting with the struggles of gender conforming individuals, understanding the specifically gendered aspect of their identity is imperative. An analyst's unconscious bias may lead to iatrogenic shaming. The author argues that rigorous, humble inquiry into the analyst's transphobia can be transformative for patient, analyst, and the work itself. Analysis may, then, provide gender-variant patients with their first remembered and numinous experience of authentic connection to self. Conjuring the image of a hinge, securely placed in the neutral region of a third space, creates a transpositive analytic temenos. Invoking the spirit of the Trickster in the construction of this matrix supports the full inclusion of gender-variant patients. Nuanced attunement scaffolds mirroring and the possibility of play. Being mindful that gender is sturdy and delicate as well as mercurial and defined enriches the analyst's listening. © 2017, The Society of Analytical Psychology.

  6. Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves

    Science.gov (United States)

    Hedayat, Mohammadali; Borazjani, Iman

    2017-11-01

    Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  7. INFLUENCING OF FRICTION IN HINGES FORCE SIZE OF BARS

    Directory of Open Access Journals (Sweden)

    BOHOMAZ V. N.

    2016-04-01

    Full Text Available Formulation of the problem. The size of critical force of bar on the traditional method of calculation is determined in supposition of ideal hinge in the place of fixing of bar. There are both a hinge resistance at the turn of bar ends and their moving in the real hinges. Thus, there is the necessity of influencing character determination of these hinge imperfections on the size of critical force. In the existent scientific labours is devoted the alike problems, influencing of friction in the hinges of bar fastening on the size of critical force was not taken into account. At determination of bars stability with no ideality of hinges friction in them it is possible to take into account by the eccentric appendix of loading or appendix of moment. However at such approach it is difficult enough to define the size of attached force or moment. Purpose. To set influencing of friction in the hinge of bar fastening on of his critical force size in sense of Euler, and also build dependences for determination of bar critical force taking into account mechanical descriptions of hinges materials. Conclusion. For the task of determination the size of bar critical force with the joint fastening on ends are got the dependences which take into account mechanical descriptions of material hinge. The received dependences allow to define more exact meaning of critical force for bars. The examples of calculation of whole bar and bar with undercuting in the middle are resulted that values of critical force, certain on a traditional method are overpriced.

  8. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  9. Manufacturing models permitting roll out/scale out of clinically led autologous cell therapies: regulatory and scientific challenges for comparability.

    Science.gov (United States)

    Hourd, Paul; Ginty, Patrick; Chandra, Amit; Williams, David J

    2014-08-01

    Manufacturing of more-than-minimally manipulated autologous cell therapies presents a number of unique challenges driven by complex supply logistics and the need to scale out production to multiple manufacturing sites or near the patient within hospital settings. The existing regulatory structure in Europe and the United States imposes a requirement to establish and maintain comparability between sites. Under a single market authorization, this is likely to become an unsurmountable burden beyond two or three sites. Unless alternative manufacturing approaches can be found to bridge the regulatory challenge of comparability, realizing a sustainable and investable business model for affordable autologous cell therapy supply is likely to be extremely demanding. Without a proactive approach by the regulators to close this "translational gap," these products may not progress down the development pipeline, threatening patient accessibility to an increasing number of clinician-led autologous cellular therapies that are already demonstrating patient benefits. We propose three prospective manufacturing models for the scale out/roll out of more-than-minimally manipulated clinically led autologous cell therapy products and test their prospects for addressing the challenge of product comparability with a selected expert reference panel of US and UK thought leaders. This paper presents the perspectives and insights of the panel and identifies where operational, technological and scientific improvements should be prioritized. The main purpose of this report is to solicit feedback and seek input from key stakeholders active in the field of autologous cell therapy in establishing a consensus-based manufacturing approach that may permit the roll out of clinically led autologous cell therapies. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. The role of hinges in primary total knee replacement.

    Science.gov (United States)

    Gehrke, T; Kendoff, D; Haasper, C

    2014-11-01

    The use of hinged implants in primary total knee replacement (TKR) should be restricted to selected indications and mainly for elderly patients. Potential indications for a rotating hinge or pure hinge implant in primary TKR include: collateral ligament insufficiency, severe varus or valgus deformity (>20°) with necessary relevant soft-tissue release, relevant bone loss including insertions of collateral ligaments, gross flexion-extension gap imbalance, ankylosis, or hyperlaxity. Although data reported in the literature are inconsistent, clinical results depend on implant design, proper technical use, and adequate indications. We present our experience with a specific implant type that we have used for over 30 years and which has given our elderly patients good mid-term results. Because revision of implants with long cemented stems can be very challenging, an effort should be made in the future to use shorter stems in modular versions of hinged implants. ©2014 The British Editorial Society of Bone & Joint Surgery.

  11. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  12. 78 FR 11555 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Science.gov (United States)

    2013-02-19

    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR...; Design Roll Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  13. New insights into the short pitch corrugation development enigma based on 3D-FE dynamic vehicle-track coupled modelling in frictional rolling contact

    NARCIS (Netherlands)

    Li, S.; Li, Z.; Nunez Vicencio, Alfredo; Dollevoet, R.P.B.J.

    2017-01-01

    A three-dimensional (3D) finite element (FE) dynamic frictional rolling contact model is presented for the study of short pitch corrugation that considers direct and instantaneous coupling between the contact mechanics and the structural dynamics in a vehicle-track system. In this study, we examine

  14. ROLL OUT THE TALENT : Final project report

    OpenAIRE

    Eerola, Tuomas; Tuominen, Pirjo; Hakkarainen, Riitta-Liisa; Laurikainen, Marja; Mero, Niina

    2014-01-01

    The ROLL OUT THE TALENT project was born out of the desire to recognise and support the strengths of vocational students and to develop new and innovative operating models. ROLL OUT THE TALENT promoted regional cooperation between institutes and companies. The project produced operating and study path models that take into consideration the individual strengths of vocational students and the principles of lifelong learning. This is the final report of the ROLL OUT THE TALENT project, and ...

  15. A substitute model of two-dimensional dry friction exposed to dither generated by rolling contact of wheel and rail

    Science.gov (United States)

    Piotrowski, Jerzy

    2012-10-01

    Dither generated by rolling contact of wheel and rail smoothes dry friction damping provided by the primary suspension dampers of freight wagons and it should be taken into account in numerical simulations. But numerically the problem is non-smooth and this leads to long execution time during simulation, especially when the vehicle with friction dampers is modelled in the environment of an multi-body system simulation program, whose solver has to cope with many strong non-linearities. The other difficulty is the necessity of handling within the code a number of big volume files of recorded dither sampled with high frequency. To avoid these difficulties, a substitute model of two-dimensional dry friction exposed to dither is proposed that does not need application of dither during simulation, but it behaves as if dither were applied. Due to this property of the model, the excitation of the vehicle model by track irregularities may be supplied as low-frequency input, which allows fast execution and, the necessity of handling high-volume files of recorded dither is avoided. The substitute model is numerically effective. To identify parameters of the substitute model, a pre-processing employing a sample of the realistic dither is carried-out on a simple two-degrees-of-freedom system. The substitute model is anisotropic, describing anisotropic properties of the two-dimensional friction arising in the presence of one-dimensional dither. The model may be applied in other branches of engineering, for example, in mechatronics and robotics, where application of dither may improve the accuracy of positioning devices.

  16. Optimal design of an extrusion process for a hinge bracket

    International Nuclear Information System (INIS)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong

    2016-01-01

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  17. Optimal design of an extrusion process for a hinge bracket

    Energy Technology Data Exchange (ETDEWEB)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  18. Experimental advances and preliminary mathematical modeling of the Swiss-roll mixed-reactant direct borohydride fuel cell

    Science.gov (United States)

    Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.

    2014-11-01

    The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.

  19. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  20. A fully redundant power hinge for LANDSAT-D appendages

    Science.gov (United States)

    Mamrol, F. E.; Matteo, D. N.

    1981-01-01

    The configuration and testing of a power driven hinge for deployment of the solar array and antenna boom for the LANDSAT-D spacecraft is discussed. The hinge is fully mechanically and electrically redundant and, thereby, can sustain a single point failure of any one motor (or its power supply), speed reducer, or bearing set without loss of its ability to function. This design utilizes the capability of the stepper motor drive to remove the flexibility of the drive train from the joint stiffness equation when the hinge is loaded against its stop. This feature precludes gapping of the joint under spacecraft maneuver loads even in the absence of a latching feature. Thus, retraction is easily accomplished by motor reversal without the need for a solenoid function to remove the latch.

  1. Intra-rater repeatability of the Oxford foot model in healthy children in different stages of the foot roll over process during gait

    DEFF Research Database (Denmark)

    Curtis, D J; Bencke, J; Stebbins, J A

    2009-01-01

    BACKGROUND: The repeatability of the Oxford foot model has been reported, but possible variations in the repeatability during the foot roll over process have not been examined. The aim of this study was to determine the relative and absolute repeatability of the model for each stage of the foot...... roll over process during gait and to compare foot kinematic data from this study with that from another centre as a preliminary examination of the model's inter-centre repeatability and validity. METHOD: Eight healthy children were tested twice at the gait laboratory. Foot kinematics from this study...... were plotted against those from an earlier repeatability study and repeatability statistics calculated for the three rockers of stance phase and swing phase. RESULTS: Foot kinematics from this study and an earlier repeatability study produced similar kinematic patterns and joint angle ranges...

  2. A model for the pilot's use of motion cues in roll-axis tracking tasks

    Science.gov (United States)

    Levison, W. H.; Junker, A. M.

    1977-01-01

    Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.

  3. Robust Rudder Roll Damping Control

    DEFF Research Database (Denmark)

    Yang, C.

    The results of a systematic research to solve a specific ship motion control problem, simultaneous roll damping and course keeping using the rudder are presented in this thesis. The fundamental knowledge a priori is that rudder roll damping is highly sensitive to the model uncertainty, therefore H-infinity...... theory is used to deal with the problem. The necessary mathematical tools and the H-Infinity theory as the basis of controller design are presented in Chapter 2 and 3. The mu synthesis and the D-K iteration are introduced in Chapter 3. The ship dynamics and modeling technology are discussed in Chapter 4...

  4. Mathematical models evaluation of the calculation of the spread in the rolling of ellipsoidal and diamond profiles; Avaliacao de modelos matematicos para calculo do alargamento na laminacao dos perfis oval e losango

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, Lirio; Guedes, Luiz F.M. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica e dos Materiais

    1987-12-31

    In this work, general considerations are initially performed about the spread and the main factors which influence it in the rolling process.It was established a prior analysis of the models in the case of oval and diamond profiles rolling. Afterwards, three mathematical models to calculate the spread are presented. It was notes that for some mathematical models, because their expressions are presented for the rectangular sections rolling, it was necessary to use auxiliary methods, which are also shown in this work. 14 refs., 5 figs., 5 tabs.

  5. Experimental Investigation of Friction Effect on Liner Model Rolling Bearings for Large Diameter Thrust Bearing Design

    Directory of Open Access Journals (Sweden)

    S. Babu

    2012-12-01

    Full Text Available Studying friction coefficient has significant importance, especially when dealing with high load and temperature applications that have frequent starting and stopping points. Towards that, two sets of angular contact Linear Model Mockup Bearings (LMMB were designed and fabricated. This linear model assembly was made up of high precision, grounded raceways (AISI 4140 and commercially purchased balls (AISI 52100. The experimental studies were carried out by placing different number of balls between the raceways under different loads at dry lubricating condition. The static friction coefficients were measured using two different experiments: viz gravitation-based experiment and direct linear force measurement experiment. And Digital Image Correlation (DIC technique was used to find the stiffness of LMMB set.

  6. Axial Force Analysis and Roll Contour Configuration of Four-High CVC Mill

    Directory of Open Access Journals (Sweden)

    Guang-ming Liu

    2018-01-01

    Full Text Available In order to analyze the influence of technical parameters on work roll axial force of four-high continuous variable crown (CVC mill, the deformation analyzing model with top roll system and strip was established based on influence function method. Then a CVC work roll curve designing scheme was proposed and it was carried out on some cold rolling mill considering the requirement of comprehensive work roll axial force minimization. The status of comprehensive work roll axial force is improved considering the rolling schedule that is beneficial to the roller bearing. Corresponding to the newly designed work roll contour, the backup roll end chamfer was designed considering comprehensive performance of interroll stress concentration, comprehensive work roll axial force, and strip shape control ability. The distribution of roll wear with newly designed backup roll contour is more even according to the field application data. The newly established roll configuration scheme is beneficial to four-high CVC mill.

  7. New perspectives on constant-roll inflation

    Science.gov (United States)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  8. 77 FR 70384 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Science.gov (United States)

    2012-11-26

    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR... Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  9. 76 FR 41045 - Special Conditions; Gulfstream Aerospace LP (GALP) Model G250 Airplane, Design Roll-Maneuver...

    Science.gov (United States)

    2011-07-13

    ... issue a finding of regulatory adequacy under Sec. 611 of Public Law 92-574, the ``Noise Control Act of... with electronic flight controls as they relate to design roll-maneuver requirements. The applicable... G250 airplane is equipped with an electronic flight control system that provides control through the...

  10. Finite Element Modeling of an Aircraft Tire Rolling on a Steel Drum: Experimental Investigations and Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Iulian Rosu

    2018-04-01

    Full Text Available The aim of this study is to investigate the thermal evolution of an aircraft tire rolling at high velocities up to take off values. As this kind of experiment is difficult to realize on a real runway, experimental tests were realized on aircraft tires rolling on a steel drum. The rotating drum facility allows to apply variable velocities beyond the take off limits, at fixed skidding angles and loadings. The rolling conditions, vertical loading, velocity and cornering conditions were adopted to correspond to the real conditions of an aircraft tire running or skidding on a flat runway. In the experimental part, the influence of skidding angle, velocity and loading on the thermal evolution of the tire tread were investigated. The thermo-mechanical finite element analysis of a pneumatic radial tire structure was performed taking into account the hyper-viscoelastic rubber behavior, with heating mechanisms developed by the inelastic deformation and by friction. Three-dimensional finite element simulations of an aircraft tire rolling on a steel drum were carried out using Abaqus/Standard finite element solver. The comparison of the temperature distribution on the tire tread between numerical results and the experimental data shows the same overall tendencies. The good correlation between numerical and experimental data shows that numerical simulation could predict the thermal evolution of the tire in critical situations. The authors would like to mention that for confidentiality reason, certain numerical data could not be revealed.

  11. Constant-roll (quasi-)linear inflation

    Science.gov (United States)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  12. Prokurör nägi inimliku jõhkruse piiritust / Hinge Brand ; interv. Tiiu Põld

    Index Scriptorium Estoniae

    Brand, Hinge, 1940-2007

    2006-01-01

    Intervjuu ametist lahkuva prokurör Hinge Brandiga. Lisatud: Hinge Brandi CV; Hinge Brandi osavõtul peetud kõmulisemad mõrvaprotsessid. Kommenteerivad Aivar Pilv, Elmar Vaher, Alar Kirs, Eda Murak, Dilaila Nahkur-Tammiksaar

  13. Lubrication in cold rolling : Numerical simulation using multigrid techniques

    NARCIS (Netherlands)

    Lugt, Pieter Martin

    1992-01-01

    In the cold rolling process a lubricant is applied on the rolls and/or the strip mate­rial. Due to the velocities of the rolls and the strip, part of the lubricant is sheared into the contact causing, amongst others, a reduction of the friction. In this thesis a physical-mathematical model is

  14. Approach to a manufacture-oriented modeling of bent tubes depending on the curvature distribution during three-roll-push-bending

    Science.gov (United States)

    Groth, Sebastian; Engel, Bernd; Frohn, Peter

    2018-05-01

    Kinematic bending processes such as three-roll-push-bending are used to manufacture freeform bent part systems. Due to the kinematic shaping, the bent parts have a characteristic infeed and outfeed area in the transition zone from the straight section into the curved area. These transition zones are currently not considered in the design process, which results in a geometric shape deviation between the CAD model and the bent part. Within this publication, a sensitivity analysis examines the influence of different parameters on the transition zone and the shape deviation. In addition, an approach is presented, which allows a manufacture-oriented modeling of the bending geometry.

  15. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  16. Design method for strut-beam connection in hinged frames

    OpenAIRE

    Cardenal Basté, Joan

    2011-01-01

    Glulam is almost exclusively the chosen material of timber frame structures. Of those, three-hinged (three-pin) portal frames are incomparably the most common type. Being both statically determinate and stable against horizontal forces in its own plane o er both practical (basic constructive details) and economical bene ts. The design of the haunch allows for various solutions: it can be curved with continuous laminates, nger jointed, jointed with steel dowels and slotted-i...

  17. Magnetic Actuation of Self-Assembled DNA Hinges

    Science.gov (United States)

    Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.

    DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.

  18. Dimensional ranges and rolling efficiency in a tandem cold rolling mill

    Energy Technology Data Exchange (ETDEWEB)

    Larkiola, J.

    1997-12-31

    In this work, physical models and a neural network theory have been combined in order to predict the properties of a steel strip and to optimise the process parameters in cold rolling. The prediction of the deformation resistance of the material and the friction parameter is based on the physical model presented by Bland, Ford and Ellis and artificial neural network computing (ANN). The accuracy of these models has been tested and proved by using a large amount of the measured data. With the aid of these models it has been shown that (a) the small change to the relative reduction distribution can have a clear effect upon the rolling efficiency, (b) the dimensional ranges of the tandem cold roll mill can be determined and optimised and (c) the possibility to cold roll a new product of new width, strength or thickness can be determined and the parameters of the tandem cold rolling process can be optimised. (orig.) 43 refs.

  19. Ship Roll Damping Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2012-01-01

    limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance...

  20. Cosmology with rolling tachyon

    Indian Academy of Sciences (India)

    Email: sami@iucaa.ernet.in. Abstract. We examine the possibility of rolling tachyon to play the dual role of inflaton at early epochs and dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon either by invoking the large number of branes or brane world assisted inflation. However ...

  1. Origins of Rolling Friction

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  2. Inflation with a constant rate of roll

    International Nuclear Information System (INIS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-01-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ·· φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime

  3. Study on Utilization of LVL Sengon (Paraserianthes falcataria for Three-Hinged Gable Frame Structures

    Directory of Open Access Journals (Sweden)

    Ali Awaludin

    2016-07-01

    Full Text Available This study focuses on the utilization of non-prismatic LVL members of wood species Sengon (Paraserianthes falcataria for three-hinged gable frame structures. This wood species matures in 6 to 8 years, and the innovative application as LVL product for these structures is evaluated. A full-scale model of a beam-column connection is produced and tested to validate the moment-rotation response predicted by the numerical study using ABAQUS. The FEM results showed a linear-elastic moment-rotation curve response up to a joint rotation of 0.015 radians which is in very good agreement with the experiment. This validated FE model for the beam-column joint was further utilized to generate predictions for the moment-rotation relation using different bolt diameters and configurations. The last part of this study presents an evaluation of the maximum load bearing capacity of three-hinged gable frame timber structures considering a rigid and semi-rigid beam-column joint model. If the load carrying capacity is governed by the yielding of the bolt, the gable frame structure with the rigid beam-column joint overestimates the load bearing capacity by 17% to 25%.

  4. [Localization and registration of the hinge axis in black Africans].

    Science.gov (United States)

    Assi, K D; N'Guessan, K S; N'Dindin, C; Bamba, A

    2003-06-01

    The study of the cinematic method using "SAM" and "Quick Axis of FAG" added to mandibular condyle palpation for the hinge axis limited points, show that the Black Africans mandibular condyle rotation axis position is higher (3.5 mm) and backer (2 mm) than the Caucasians. The axial points are located to between 11 and 12 mm in front of the tragus and between 7 and 8 mm below on the perpendicular line to the furrow defining the tragus superior side to the Ectocanthus.

  5. Characterization of flexure hinges for the French watt balance experiment

    Directory of Open Access Journals (Sweden)

    Pinot Patrick

    2014-01-01

    Full Text Available In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1 an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2 a mass comparator to determine the bending stiffness of unloaded pivots; 3 a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.

  6. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

    Science.gov (United States)

    Shang, Lijun; Tucker, Stephen J

    2008-02-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

  7. AISI/DOE Advanced Process Control Program Vol. 3 of 6: MICROSTRUCTURAL ENGINEERING IN HOT-STRIP MILLS Part 2 of 2: Constitutive Behavior Modeling of Steels Under Hot-Rolling Conditions; FINAL

    International Nuclear Information System (INIS)

    Yi-Wen Cheng; Patrick Purtscher

    1999-01-01

    This report describes the development of models for predicting (1) constitutive behaviors and (2) mechanical properties of hot-rolled steels as functions of chemical composition, microstructural features, and processing variables. The study includes the following eight steels: A36, DQSK, HSLA-V, HSLA-Nb, HSLA-50/Ti-Nb, and two interstitial-free (IF) grades. These developed models have been integrated into the Hot-Strip Mill Model (HSMM), which simulates the hot strip rolling mills and predicts the mechanical properties of hot-rolled products. The HSMM model has been developed by the University of British Columbia-Canada as a part of project on the microstructural engineering in hot-strip mills

  8. Flow over a cylinder with a hinged-splitter plate

    Science.gov (United States)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2009-05-01

    Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate

  9. Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods

    Science.gov (United States)

    Lyle, Karen H.; Horta, Lucas G.

    2012-01-01

    Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.

  10. Integrin activation dynamics between the RGD-binding site and the headpiece hinge.

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-12-25

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII(10)-bound alpha(V)beta(3) integrin headpiece how the binding pocket and interdomain betaA/hybrid domain hinge on the distal end of the betaA domain are allosterically linked via a hydrophobic T-junction between the middle of the alpha1 helix and top of the alpha7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca(2+) in place of Mg(2+) at the site adjacent to the metal ion-dependent adhesion site ("ADMIDAS"). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca(2+) at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated.

  11. Integrin Activation Dynamics between the RGD-binding Site and the Headpiece Hinge*

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-01-01

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII10-bound αVβ3 integrin headpiece how the binding pocket and interdomain βA/hybrid domain hinge on the distal end of the βA domain are allosterically linked via a hydrophobic T-junction between the middle of the α1 helix and top of the α7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca2+ in place of Mg2+ at the site adjacent to the metal ion-dependent adhesion site (“ADMIDAS”). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca2+ at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated. PMID:19762919

  12. Design and Analysis of Wind Turbine Rotors Using Hinged Structures and Rods

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    Light weight and high stiffness are key design factors in ensuring cost effectiveness and reliability of wind turbines, especially for the inboard region of the rotor blades. In this study, several novel designs were developed to improve the mechanical performance of the rotor. Experiments were performed on an isolated blade incorporating the new features of a hinged structure and rods. The results validated the effectiveness of these features at alleviating the root-bending moment of the blade under varying wind loads and enhancing the stiffness of the blade. A numerical investigation was carried out to further examine the bending moment distribution, shear and axial force, and rod tension of these novel rotor designs under uniform loads. Longitudinal geometrical variations of the blade were considered in the model. Results showed that two designs realized a favorable bending moment distribution and improved the modal frequencies of the edgewise modes: bisymmetrical rods on a single-hinged structure and interveined symmetrical rods on a cantilevered structure. However, these designs have different deformation mechanisms. In addition, the first group of edgewise modal frequencies of these two designs were improved compared with the traditional rotor design. Their potential values in the application to the design of a lightweight, high-stiffness, and reliable wind turbine rotor were discussed.

  13. Inflation with a smooth constant-roll to constant-roll era transition

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  14. Deployment Testing of Flexible Composite Hinges in Bi-Material Beams

    Science.gov (United States)

    Sauder, Jonathan F.; Trease, Brian

    2016-01-01

    Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.

  15. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.; (RPI); (IIT); (SDSU); (Vermont)

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  16. Tachyon constant-roll inflation

    Science.gov (United States)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  17. Modeling the Deterioration of Engine and Low Pressure Compressor Performance During a Roll Back Event Due to Ice Accretion

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.

    2014-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating

  18. Computer-aided roll pass design in rolling of airfoil shapes

    Science.gov (United States)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  19. Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose

    Science.gov (United States)

    Behzad, Hamed; Panahi, Roozbeh

    2017-06-01

    In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.

  20. Rolling induced size effects in elastic–viscoplastic sheet metals

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2015-01-01

    sheet rolling, where a non-homogeneous material deformation takes place between the rollers. Large strain gradients develop where the rollers first come in contact with the sheet, and a higher order plasticity model is employed to illustrate their influence at small scales. The study reveals...... presented revolves around the rolling induced effect of visco-plasticity (ranging hot and cold rolling) in combination with strain gradient hardening – including both dissipative and energetic contributions. To bring out first order effects on rolling at small scale, the modeling efforts are limited to flat...

  1. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  2. 75 FR 61343 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG (RRD) Models Tay 620-15, Tay 650-15...

    Science.gov (United States)

    2010-10-05

    ... adopting the AD as proposed. Costs of Compliance Based on the service information, we estimate that this AD... cost about $100,000 per product. Based on these figures, we estimate the cost of the AD on U.S... Rolls-Royce Deutschland Ltd & Co KG (Formerly Rolls-Royce plc): Amendment 39-16457. Docket No. FAA-2010...

  3. New Numerical Solution of von Karman Equation of Lengthwise Rolling

    Directory of Open Access Journals (Sweden)

    Rudolf Pernis

    2015-01-01

    Full Text Available The calculation of average material contact pressure to rolls base on mathematical theory of rolling process given by Karman equation was solved by many authors. The solutions reported by authors are used simplifications for solution of Karman equation. The simplifications are based on two cases for approximation of the circular arch: (a by polygonal curve and (b by parabola. The contribution of the present paper for solution of two-dimensional differential equation of rolling is based on description of the circular arch by equation of a circle. The new term relative stress as nondimensional variable was defined. The result from derived mathematical models can be calculated following variables: normal contact stress distribution, front and back tensions, angle of neutral point, coefficient of the arm of rolling force, rolling force, and rolling torque during rolling process. Laboratory cold rolled experiment of CuZn30 brass material was performed. Work hardening during brass processing was calculated. Comparison of theoretical values of normal contact stress with values of normal contact stress obtained from cold rolling experiment was performed. The calculations were not concluded with roll flattening.

  4. Plastic collapse load of crown-hinged steel circular arches : a theoretical method

    NARCIS (Netherlands)

    Spoorenberg, R.C.; Snijder, H.H.; Hoenderkamp, J.C.D.

    2013-01-01

    For construction purposes and to avoid detrimental influences of foundation settlements arches are not always made from a single arch-rib but are built by connecting two curvilinear elements at the crown with a hinge. These arches are also known as crown-hinged arches. This paper presents an

  5. The use of modal derivatives in determining stroke-dependent frequencies of large stroke flexure hinges

    NARCIS (Netherlands)

    van den Belt, Mieke; Schilder, Jurnan; Valasek, Michael; Sika, Zbynek; Vampola, Tomas

    2017-01-01

    Nowadays, a lot of use is made of large stroke flexure hinges in precision engineering. However, these large stroke flexure hinges typically lose stiffness in supporting direction during deflection. The lowest natural frequency is a commonly used measure for this property. Therefore, in shape and

  6. The effect of klapskate hinge position on push-off performance: a simulation study

    NARCIS (Netherlands)

    Houdijk, J.H.P.; Bobbert, M.F.; de Koning, J.J.; de Groot, G.

    2003-01-01

    Purpose: The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed

  7. Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage

    DEFF Research Database (Denmark)

    Yoon, G. H.; Kim, Y. Y.; Bendsøe, Martin P.

    2004-01-01

    In topology optimization applications for the design of compliant mechanisms, the formation of hinges is typically encountered. Often such hinges are unphysical artifacts that appear due to the choice of discretization spaces for design and analysis. The objective of this work is to present a new...... two-dimensional compliant mechanism design problems....

  8. Person og Rolle

    DEFF Research Database (Denmark)

    Szatkowski, Janek

    2011-01-01

    Distinktionen mellem person og rolle forslås som grundlag for et præcist og anlytisk anvendeligt begreb om performativitet. Begrebet tager sigte på at beskrive enkeltindividers og gruppers kommunikation med henblik på hvordan kommunikation etableres. Performativitet gør det muligt at iagttage den...

  9. Rolling Cylinder Phase 1

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Taraborrelli, Valeria Taraborrelli

    Margheritini and Valeria Taraborrelli(valeria.taraborrelli@hotmail.it) with a total of 3 day visit from the developers. Laboratory tests in irregular waves will be performed by Lucia Margheritini. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes...

  10. Hinged concrete covers protect pipelines. [Protection of submarine pipelines from underscouring, trawlboards, and dragging anchors

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Providing effective protection for oil and gas pipelines is proving to be a difficult and expensive business, particularly in heavily used and environmentally sensitive waters such as the North Sea. The Danish Company Seditech has produced a design for ''hinged'' pipeline covers in concrete which are claimed to offer an effective solution to the problem. Model tests are currently (end of August 1977) being carried out at Trondheim, Norway, and this will be followed by a six-month feasibility study into the design of a suitable underwater installation vehicle. The aim is to produce total costs of the same order as pipe burial. The first step towards this has been achieved, as another Danish company has developed a combined vibration/pressure moulding system which allows individual cover elements to be produced in 3 to 5 min.

  11. Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network

    DEFF Research Database (Denmark)

    Míguez González, M; López Peña, F.; Díaz Casás, V.

    2011-01-01

    Parametric roll resonance is a ship stability related phenomenon that generates sudden large amplitude oscillations up to 30-40 degrees of roll. This can cause severe damage, and it can put the crew in serious danger. The need for a parametric rolling real time prediction system has been acknowle......Parametric roll resonance is a ship stability related phenomenon that generates sudden large amplitude oscillations up to 30-40 degrees of roll. This can cause severe damage, and it can put the crew in serious danger. The need for a parametric rolling real time prediction system has been...... acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...

  12. Early Detection of Parametric Roll Resonance on Container Ships

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2013-01-01

    Parametric roll resonance on ships is a nonlinear phenomenon where waves encountered at twice the natural roll frequency can bring the vessel dynamics into a bifurcation mode and lead to extreme values of roll. Recent years have seen several incidents with dramatic damage to container vessels...... the ship's speed and course, to escape from the bifurcation condition. This paper proposes nonparametric methods to detect the onset of roll resonance and demonstrates their performance. Theoretical conditions for parametric resonance are revisited and are used to develop efficient methods to detect its...... on experimental data from model tests and on data from a container ship crossing the Atlantic during a storm....

  13. Generalized slow roll for noncanonical kinetic terms

    International Nuclear Information System (INIS)

    Hu, Wayne

    2011-01-01

    We show that the generalized slow roll approach for calculating the power spectrum where the inflationary slow roll parameters are neither small nor slowly varying can be readily extended to models with noncanonical kinetic terms in the inflaton action. For example, rapid sound speed variations can arise in Dirac-Born-Infeld models with features in the warp factor leading to features in the power spectrum. Nonetheless there remains a single source function for deviations that is simply related to the power spectrum. Empirical constraints on this source function can be readily interpreted in the context of features in the inflaton potential or sound speed.

  14. Rolling Friction on a Wheeled Laboratory Cart

    Science.gov (United States)

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  15. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.

    Science.gov (United States)

    Mian, Shahzad I; Li, Amy Y; Dutta, Satavisha; Musch, David C; Shtein, Roni M

    2009-12-01

    To determine whether corneal sensation and dry-eye signs and symptoms after myopic laser in situ keratomileusis (LASIK) surgery with a femtosecond laser are affected by varying hinge position, hinge angle, or flap thickness. University-based academic practice, Ann Arbor, Michigan, USA. This prospective randomized contralateral-eye study evaluated eyes after bilateral myopic LASIK with a femtosecond laser (IntraLase). Superior and temporal hinge positions, 45-degree and 90-degree hinge angles, and 100 microm and 130 microm corneal flap thicknesses were compared. Postoperative follow-up at 1 week and 1, 3, 6, and 12 months included central Cochet-Bonnet esthesiometry, the Ocular Surface Disease Index questionnaire, a Schirmer test with anesthesia, tear breakup time (TBUT), corneal fluorescein staining, and conjunctival lissamine green staining. The study evaluated 190 consecutive eyes (95 patients). Corneal sensation was reduced at all postoperative visits, with improvement over 12 months (P<.001). There was no difference in corneal sensation between the different hinge positions, angles, or flap thicknesses at any time point. The overall ocular surface disease index score was increased at 1 week, 1 month, and 3 months (P<.0001, P<.0001, and P = .046, respectively). The percentage of patients with a TBUT longer than 10 seconds was significantly lower at 1 week and 1 month (P<.0001). Dry-eye syndrome after myopic LASIK with a femtosecond laser was mild and improved after 3 months. Corneal flap hinge position, hinge angle, and thickness had no effect on corneal sensation or dry-eye syndrome.

  16. f(R) constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hayato [Universidad de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics, RAS, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation)

    2017-08-15

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f(R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f(R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. (orig.)

  17. Influence of Surge on Extreme Roll Amplitudes

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Rognebakke, Olav; Pedersen, Preben Terndrup

    2008-01-01

    Interference of the wave-induced ship surge motion with roll dynamics has been studied. The surge motion has been included in a previously derived hydrodynamic roll prediction model in order to account for the ship speed variation due to the longitudinal incident wave pressure force. Depending...... balanced in order to determine the added thrust term that would represent actions to maintain speed The resulting forward speed variation affects the frequency of encounter and the parametric roll resonant condition is directly influenced by this speed variation. The analysis procedure is demonstrated...... for an example containership sailing mainly in head sea condition and higher sea states. Sensitivity of the results to the added thrust model and vertical motion calculation is discussed....

  18. A Structurally Variable Hinged Tetrahedron Framework from DNA Origami

    Directory of Open Access Journals (Sweden)

    David M. Smith

    2011-01-01

    Full Text Available Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.

  19. New progress of FEM simulation and AI application in rolling at RAL

    International Nuclear Information System (INIS)

    Liu Xianghua; Wang Guodong; Zhao Kun

    2000-01-01

    New progresses on FEM simulation and AI application in rolling have been achieved at RAL recently. The existence and uniqueness of the extreme point of total functional for rolling problem has been proved. Different rolling processes, such as H-beam rolling, ribbing strip rolling, slab sizing, have been solved by our in-house FEM software package. The simulation results have been put into production use to improve the precision of math models. The Artificial Neural Network has been used to predict rolling force, coiling temperature, microstructure and properties of the rolled products. An expert system for deviation diagnoses of strip thickness has been developed for industry use. Synergetic Artificial Intelligence has also been applied to rolling scheduling. We are making continuous efforts to develop AI applications for rolling line co-operating in China steel industry. (author)

  20. The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins.

    Directory of Open Access Journals (Sweden)

    Glen B Banks

    2010-05-01

    Full Text Available Mutations in dystrophin can lead to Duchenne muscular dystrophy or the more mild form of the disease, Becker muscular dystrophy. The hinge 3 region in the rod domain of dystrophin is particularly prone to deletion mutations. In-frame deletions of hinge 3 are predicted to lead to BMD, however the severity of disease can vary considerably. Here we performed extensive structure-function analyses of truncated dystrophins with modified hinges and spectrin-like repeats in mdx mice. We found that the polyproline site in hinge 2 profoundly influences the functional capacity of a microdystrophin(DeltaR4-R23/DeltaCT with a large deletion in the hinge 3 region. Inclusion of polyproline in microdystrophin(DeltaR4-R23/DeltaCT led to small myofibers (12% smaller than wild-type, Achilles myotendinous disruption, ringed fibers, and aberrant neuromuscular junctions in the mdx gastrocnemius muscles. Replacing hinge 2 of microdystrophin(DeltaR4-R23/DeltaCT with hinge 3 significantly improved the functional capacity to prevent muscle degeneration, increase muscle fiber area, and maintain the junctions. We conclude that the rigid alpha-helical structure of the polyproline site significantly impairs the functional capacity of truncated dystrophins to maintain appropriate connections between the cytoskeleton and extracellular matrix.

  1. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  2. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    Science.gov (United States)

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  3. A Study on the uncertainty and sensitivity in numerical simulation of parametric roll

    DEFF Research Database (Denmark)

    Choi, Ju-hyuck; Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2016-01-01

    Uncertainties related to numerical modelling of parametric roll have been investigated by using a 6-DOFs model with nonlinear damping and roll restoring forces. At first, uncertainty on damping coefficients and its effect on the roll response is evaluated. Secondly, uncertainty due to the “effect...

  4. Rolling bearing analysis

    CERN Document Server

    Harris, Tedric A

    2001-01-01

    One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.

  5. Roll of honour

    Energy Technology Data Exchange (ETDEWEB)

    Moxon, Suzanne

    1999-07-01

    This article gives details of the design and construction of dams selected by members of the dam construction industry for praise as feats of construction. The dams covered in the roll of honour include the dam at the Guri hydroelectric power station in Venezuela on the Caroni river, the Contra dam on the Verzrasca river in Switzerland, and the double curvature arc Ertan dam on the Yalong river in China. (UK)

  6. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  7. Magnon inflation: slow roll with steep potentials

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Blas, Diego [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Burgess, C.P.; Hayman, Peter [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Patil, Subodh P. [Department of Theoretical Physics, University of Geneva,24 Quai Ansermet, Geneva, CH-1211 (Switzerland)

    2016-11-04

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy G{sup ab}∂{sub a}V∂{sub b}V≪V{sup 2}/M{sub p}{sup 2} (where G{sub ab} is the target-space metric). They evade the usual slow-roll conditions on V because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides one particular example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for its background evolution. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, F{sub ab}, whose antisymmetry gives new ways for slow roll to be achieved.

  8. Fluid management in roll-to-roll nanoimprint lithography

    Science.gov (United States)

    Jain, A.; Bonnecaze, R. T.

    2013-06-01

    The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

  9. Disruption Management of Rolling Stock in Passenger Railway Transportation

    NARCIS (Netherlands)

    L.K. Nielsen (Lars Kjaer); G. Maróti (Gábor)

    2009-01-01

    textabstractThis paper deals with real-time disruption management of rolling stock in passenger railway transportation. We present a generic framework for modeling disruptions in railway rolling stock schedules. The framework is presented as an online combinatorial decision problem where the

  10. Estimation of Parametric Roll in a Stochastic Seaway

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Pedersen, Preben Terndrup; Vidic-Perunovic, Jelena

    2008-01-01

    -degree of freedom (roll and heave) time domain model [10]. In the present paper the effect of the increased added resistance when the bow heaves and pitches down in a wave crest is introduced. Due to the resulting forward speed variation the roll resonance condition will be changed. The influence of ship speed...

  11. Burst protection for reactor pressure vessels using a hinged support bearing

    International Nuclear Information System (INIS)

    Michel, E.; Maritsch, F.

    1976-01-01

    The invention deals with a simplification of the design and manufacture and the way of controlling a hinged support bearing used as burst protection. The pure pressure load of the, e.g., 32 hinged supports distributed along the circumference of the pressure vessel head is achieved in the braced state with little control effort by a pure rotating motion caused pneumatically or hydraulically. The hinged supports are inclined by about 45 0 upwards/outwards in the braced state and with their cap-shaped head and foot are selflocking by pivoted between a supporting structure, firmly connected with the building, and a fishing ring. (TK) [de

  12. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy.

    Science.gov (United States)

    Jang, Young Woong; Lim, DoHyung; Seo, Hansol; Lee, Myung Chul; Lee, O-Sung; Lee, Yong Seuk

    2018-07-01

    Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability. A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model. The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block. The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the

  13. A Semi-Empirical Three-Dimensional Model of the Pneumatic Tyre Rolling over Arbitrarily Uneven Road Surfaces

    NARCIS (Netherlands)

    Schmeitz, A.J.C.

    2004-01-01

    Nowadays virtual prototyping tools play an important part in the development of vehicles. For studying the dynamics of a vehicle, complex vehicle models are required that are composed of several accurately modelled components. As the tyre constitutes the only contact between the vehicle and the road

  14. Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.

  15. A modification of the maitland roll top traction table.

    Science.gov (United States)

    Kneipp, K

    1975-03-01

    This modification of the Maitland Roll Top Traction Table (Maitland, 1973) differs from the original as follows: 1. The two weight-bearing leaves are enclosed by a "guide frame" and the "U-piece" of the original is replaced by a hinged "gate" at the foot, which can be opened downwards for lumbar traction, or can be locked to restrain the leaves when the table is required for other purposes. 2. Four rollers of light steel replace the wooden dowels. 3. The modified table in use by the author is held by a floor peg, and is set up be-between two walls 10' 6″ apart which provide purchase points for traction. Alternatively, purchase at the head end can be taken by hooks attached to the table itself. 4. The design permits a six-foot plinth to be used. Copyright © 1975 Australian Physiotherapy Association. Published by . All rights reserved.

  16. Ring rolling process simulation for geometry optimization

    Science.gov (United States)

    Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio

    2017-10-01

    Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.

  17. Roll-to-Roll production of carbon nanotubes based supercapacitors

    Science.gov (United States)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  18. Influence of different kinds of rolling on the crystallographic texture and magnetic induction of a NOG 3 wt% Si steel

    Science.gov (United States)

    Silva, J. M.; Baêta Júnior, E. S.; Moraes, N. R. D. C.; Botelho, R. A.; Felix, R. A. C.; Brandao, L.

    2017-01-01

    The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes.

  19. Functionalisation of the hinge region in receptor molecules for explosive detection

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2003-01-01

    The functionalisation of the hinge region in a molecular tweezer molecule showing a strong binding to explosives is presented. Two versatile functional groups are introduced, a carboxylic acid and a bromine atom. (C) 2003 Elsevier Ltd. All rights reserved....

  20. Good Functional Recovery of Complex Elbow Dislocations Treated With Hinged External Fixation: A Multicenter Prospective Study

    NARCIS (Netherlands)

    Iordens, Gijs I. T.; den Hartog, Dennis; van Lieshout, Esther M. M.; Tuinebreijer, Wim E.; de Haan, Jeroen; Patka, Peter; Verhofstad, Michael H. J.; Schep, Niels W. L.; Bronkhorst, M. W. G. A.; de Vries, M. R.; Goslings, J. C.; Rhemrev, S. J.; Roukema, G. R.; van der Meulen, H. G. W. M.; Verleisdonk, E. J. M. M.; Vroemen, J. P. A. M.; Wittich, Ph

    2015-01-01

    After a complex dislocation, some elbows remain unstable after closed reduction or fracture treatment. Function after treatment with a hinged external fixator theoretically allows collateral ligaments to heal without surgical reconstruction. However, there is a lack of prospective studies that

  1. Good Functional Recovery of Complex Elbow Dislocations Treated With Hinged External Fixation: A Multicenter Prospective Study

    NARCIS (Netherlands)

    G.I.T. Iordens (Gijs); D. den Hartog (Dennis); E.M.M. van Lieshout (Esther); W.E. Tuinebreijer (Wim); J. de Haan (Jeroen); P. Patka (Peter); M.H.J. Verhofstad (Michiel); N.W.L. Schep (Niels)

    2015-01-01

    textabstractBackground: After a complex dislocation, some elbows remain unstable after closed reduction or fracture treatment. Function after treatment with a hinged external fixator theoretically allows collateral ligaments to heal without surgical reconstruction. However, there is a lack of

  2. Inelastic seismic response of precast concrete frames with constructed plastic hinges

    Science.gov (United States)

    Sucuoglu, H.

    1995-07-01

    A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.

  3. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    Science.gov (United States)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  4. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Directory of Open Access Journals (Sweden)

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  5. Energy technology roll-out for climate change mitigation: A multi-model study for Latin America

    Energy Technology Data Exchange (ETDEWEB)

    van der Zwaan, Bob; Kober, Tom; Calderon, Silvia; Clarke, Leon; Daenzer, Katie; Kitous, Alban; Labriet, Maryse; Lucena, André F. P.; Octaviano, Claudia; Di Sbroiavacca, Nicolas

    2016-05-01

    In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, they play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050.Wefind that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of

  6. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor`s extracellular hinge region

    Directory of Open Access Journals (Sweden)

    Paul eGrzesik

    2015-09-01

    Full Text Available The human lutropin/choriogonadotropin receptor (LHCGR can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG - secreted by the placenta, and lutropin (LH - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich repeat domain (LRRD, as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting mutations. These helix preserving modifications showed no effect on hormone induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10 deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region s. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region

  7. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor's Extracellular Hinge Region.

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) - secreted by the placenta, and lutropin (LH) - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge

  8. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor’s Extracellular Hinge Region

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the

  9. Finite element method analysis of surface roughness transfer in micro flexible rolling

    OpenAIRE

    Qu Feijun; Xie Haibo; Jiang Zhengyi

    2016-01-01

    Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to...

  10. Roll back malaria update.

    Science.gov (United States)

    1999-10-01

    This article presents the activities under WHO's Roll Back Malaria (RBM) program in Asia, particularly in Nepal, Indonesia, India, Bangladesh, Sri Lanka and the Philippines. In India, the RBM program will start in 5 districts with a major malaria problem. A national committee has been formed by researchers, which will be able to provide operational and strategic support and research expertise in relation to malaria. In Bangladesh, the RBM program was initiated in the sparsely populated hill tract areas of Banderban and Chittagong where access to health care is very poor. At the district level, effective partnerships with private practitioners, politicians, community leaders, school teachers, the press and district Ministry of Health officials are operating to plan for rolling back malaria. In Myanmar, Cambodia, Lao People's Democratic Republic, Yunnan province of China, Vietnam, and Thailand, the focus of the RBM program was to move health care closer to the malaria-infected communities. WHO¿s Global Health Leadership Fellowship Programme, supported by the UN Foundation and Rockefeller Foundation, enables potential leaders to experience the work of UN agencies and contribute to the work of the organization for 2 years. Three out of four persons appointed to the RBM program received prestigious awards: Dr. Paola Marchesini of Brazil; Dr. Tieman Diarra of Mali; and Dr. Bob Taylor of the UK.

  11. Roll-to-roll UV imprint lithography for flexible electronics

    NARCIS (Netherlands)

    Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Barbu, I.; Meinders, E.R.; Bremen, A. van; Iosad, N.; Werf, R. van der; Onvlee, H.

    2011-01-01

    We propose a roll-to-roll UV imprint lithography tool as a way to pattern flexible PET foil with µm-resolution. As a way to overcome dimensional instability of the foil and its effect on overlay, a self-align approach was investigated, that permits to make several layers in a single lithography

  12. Hinge-deleted IgG4 blocker therapy for acetylcholine receptor myasthenia gravis in rhesus monkeys.

    Science.gov (United States)

    Losen, Mario; Labrijn, Aran F; van Kranen-Mastenbroek, Vivianne H; Janmaat, Maarten L; Haanstra, Krista G; Beurskens, Frank J; Vink, Tom; Jonker, Margreet; 't Hart, Bert A; Mané-Damas, Marina; Molenaar, Peter C; Martinez-Martinez, Pilar; van der Esch, Eline; Schuurman, Janine; de Baets, Marc H; Parren, Paul W H I

    2017-04-20

    Autoantibodies against ion channels are the cause of numerous neurologic autoimmune disorders. Frequently, such pathogenic autoantibodies have a restricted epitope-specificity. In such cases, competing antibody formats devoid of pathogenic effector functions (blocker antibodies) have the potential to treat disease by displacing autoantibodies from their target. Here, we have used a model of the neuromuscular autoimmune disease myasthenia gravis in rhesus monkeys (Macaca mulatta) to test the therapeutic potential of a new blocker antibody: MG was induced by passive transfer of pathogenic acetylcholine receptor-specific monoclonal antibody IgG1-637. The effect of the blocker antibody (IgG4Δhinge-637, the hinge-deleted IgG4 version of IgG1-637) was assessed using decrement measurements and single-fiber electromyography. Three daily doses of 1.7 mg/kg IgG1-637 (cumulative dose 5 mg/kg) induced impairment of neuromuscular transmission, as demonstrated by significantly increased jitter, synaptic transmission failures (blockings) and a decrease in the amplitude of the compound muscle action potentials during repeated stimulations (decrement), without showing overt symptoms of muscle weakness. Treatment with three daily doses of 10 mg/kg IgG4Δhinge-637 significantly reduced the IgG1-637-induced increase in jitter, blockings and decrement. Together, these results represent proof-of principle data for therapy of acetylcholine receptor-myasthenia gravis with a monovalent antibody format that blocks binding of pathogenic autoantibodies.

  13. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  14. Deuterium ingress at rolled joints in Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Ramos Nervi, J. E.; Schroeter, F.

    2013-01-01

    Deuterium ingress model at the Rolled Joint has been extensively used for CANDU Nuclear Power Plants Operators in the Life Management of the Pressure Tubes. The importance of understanding the model is vital to avoid delayed hydride cracking at the Rolled Joint. This work reports the first step on develop the model presented on literature to be used in Argentinean CANDU 6, Embalse Nuclear Power Plant. (author)

  15. RELATIONSHIP BETWEEN ROLLING AND SLIP RESISTANCE IN ROLLING BEARINGS

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2016-06-01

    Full Text Available Purpose. About one of the causes of slip rolling is known from the second half of the 19th century, it was believed that the slip resistance appears at the place of contact due to different speeds on the arc of contact. Only in the mid-20th century it was proved that this resistance is negligible in rolling resistance. However (for some unknown reason it is ignored the fact that in practice in rolling bearings may rotate both the inner ring with a stationary outer one, and vice versa almost in equal relations. It is not taken into account the fact that the ball or roller in the rolling bearings runs the different distance along the roller path of the outer and inner bearing cages in one revolution. This fact is not taken into account in determining the calculated values for the friction coefficient of a rolling bearing reduced to the shaft. Therefore, the aim of this work is to determine the influence of path length on the track riding the outer and inner race of the bearing on the determination of the calculated value of the coefficient of friction of rolling bearings is given to the shaft. Methodology. The solution technique is based on the theory of plane motion of a rigid body, the theory of Hertzian contact deformation and the analytical dependencies for determination of coefficient of rolling friction. Findings. The obtained dependences on determination of rolling resistance of the balls or rollers along the bearing tracks of inner and outer bearing cages as well as path difference metering of the rolling on them allows to analytically obtain the rolling resistance and slipping for any size of bearings and different devices of bearing units. It is also possible at the design stage of rolling nodes to handle not only the design but also the content of the node. Originality. Using the analytical dependences for determination of the rolling resistance of bodies at point and line contacts, and also account for the difference in the path of the

  16. LEDs are on a roll

    NARCIS (Netherlands)

    Blom, P.W.M.; Mol, A.M.B. van

    2011-01-01

    Light-emitting diodes are more efficient than conventional lighting, but high production costs limit their uptake. Organic versions that can be produced using a cheap newspaper-style 'roll-to-roll' printing process are likely to revolutionize our lighting and signage, say Paul Blom and Ton van Mol.

  17. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  18. Rolling up a Graphene Sheet

    NARCIS (Netherlands)

    Calvaresi, Matteo; Quintana, Mildred; Rudolf, Petra; Zerbetto, Francesco; Prato, Maurizio

    2013-01-01

    Carbon Nanotubes, CNTs, have been described as rolled-up graphene layers. Matching this concept to experiments has been a great experimental challenge for it requires a method to exfoliate graphite, generate ordered and stable dangling carbon bonds, and roll up the layer without affecting the

  19. Rudder roll stabilization for ships

    NARCIS (Netherlands)

    van Amerongen, J.; van der Klugt, P.G.M.; van Nauta lemke, H.R.

    1990-01-01

    This paper describes the design of an autopilot for rudder roll stabilization for ships. This autopilot uses the rudder not only for course keeping but also for reduction of the roll. The system has a series of properties which make the controller design far from straightforward: the process has

  20. Influence exerted by the shape of the surfaces of working roll barrels upon the course of the MEFASS (Metal Forming Aided by Shear Stresses rolling process

    Directory of Open Access Journals (Sweden)

    Świątoniowski A.

    2017-03-01

    Full Text Available The essential aspect of the MEFASS rolling process is introducing the cyclic axial counter movement of the rolls transverse to the direction of rolling in the course of a band pass through a rolling gap. The effect of a change in the way of deformation obtained in this manner makes it possible to set in one roll pass a deformation several times larger than it is possible in a conventional process. In this paper, upon the basis of the computer model of the MES process, supported by experimental research, the analysis of the influence exerted by the shape of the surface of roll barrels upon the distribution of the intensity of stresses σi and deformations εi in the section of the band being rolled, and also upon the kinematic and force parameters of the process.

  1. Extended hormone binding site of the human thyroid stimulating hormone receptor: distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation.

    Science.gov (United States)

    Mueller, Sandra; Kleinau, Gunnar; Jaeschke, Holger; Paschke, Ralf; Krause, Gerd

    2008-06-27

    The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.

  2. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.

  3. Force prediction in cold rolling mills by polynomial methods

    Directory of Open Access Journals (Sweden)

    Nicu ROMAN

    2007-12-01

    Full Text Available A method for steel and aluminium strip thickness control is provided including a new technique for predictive rolling force estimation method by statistic model based on polynomial techniques.

  4. Refinement of the microstructure of steel by cross rolling

    International Nuclear Information System (INIS)

    Tsay, Kira; Arbuz, Alexandr; Gusseynov, Nazim; Nemkaeva, Renata; Ospanov, Nurlan; Krupen'kin, Ivan

    2016-01-01

    One of the most effective ways for refinement of metal microstructure is a severe plastic deformation. The cross rolling is the one of most perspective methods of severe plastic deformation, because it allows to get the long billets, unlike equal angular pressing and other popular methods. This fact provides some industrial expectation for this method. However, deformation and motion path of the metal is very heterogeneous across the section of the rolled piece. This paper presents the finite element modeling of hot cross rolling of steel in the software package DEFORM-3D features implemented and studied the stress-strain state. An experimental study of the effect of the cross rolling on a three-roll mill on the microstructure of structural alloy steel and stainless steel AISI321 in different zones of the bar. Analysis of microsections made after rolling with high total stretch and the final pass temperature 700°C, shows the formation of equiaxial ultrafinegrain structure on the periphery of an elongated rod and “rolling” texture in the central zone. The resulting microstructure corresponds to that obtained in models of stress-strain state. Keywords: cross rolling, ultra-fine grain structure, steel.

  5. The three-hinged arch as an example of piezomechanic passive controlled structure

    Science.gov (United States)

    Pagnini, Luisa Carlotta; Piccardo, Giuseppe

    2016-09-01

    Although piezoelectric transducers are employed in a variety of fields, their application for vibration control of civil or industrial structures has not yet been fully developed, at the best of authors' knowledge. Thanks to a new generation of ever more performing piezoceramic materials and to the recent development of scientific proposals based on a very simple technology, this paper presents a step forward to engineering applications for the control of structural systems. A three-hinged arch controlled by piezoelectric stack actuators and passive RL electrical circuits is chosen as a simple structural model that may represent the starting point for a generalization to the most common typologies of civil and industrial engineering structures. Based on the concept of electromechanical analogy, the evolution equations are obtained through a consistent Lagrangian approach. A multimodal vibration suppression is guaranteed by the spectral analogy between the mechanical and electrical components. Preliminary applications related to free oscillations, with one or more actuators on each member, seem to lead to excellent performance in terms of multimodal damping and dissipated energy.

  6. Just Roll with It? Rolling Volumes vs. Discrete Issues in Open Access Library and Information Science Journals

    Directory of Open Access Journals (Sweden)

    Jill Cirasella

    2013-08-01

    Full Text Available INTRODUCTION Articles in open access (OA journals can be published on a rolling basis, as they become ready, or in complete, discrete issues. This study examines the prevalence of and reasons for rolling volumes vs. discrete issues among scholarly OA library and information science (LIS journals based in the United States. METHODS A survey was distributed to journal editors, asking them about their publication model and their reasons for and satisfaction with that model. RESULTS Of the 21 responding journals, 12 publish in discrete issues, eight publish in rolling volumes, and one publishes in rolling volumes with an occasional special issue. Almost all editors, regardless of model, cited ease of workflow as a justification for their chosen publication model, suggesting that there is no single best workflow for all journals. However, while all rolling-volume editors reported being satisfied with their model, satisfaction was less universal among discrete-issue editors. DISCUSSION The unexpectedly high number of rolling-volume journals suggests that LIS journal editors are making forward-looking choices about publication models even though the topic has not been much addressed in the library literature. Further research is warranted; possibilities include expanding the study’s geographic scope, broadening the study to other disciplines, and investigating publication model trends across the entire scholarly OA universe. CONCLUSION Both because satisfaction is high among editors of rolling-volume journals and because readers and authors appreciate quick publication times, the rolling-volume model will likely become even more prevalent in coming years.

  7. Stress and accidental defect detection on rolling mill rolls

    International Nuclear Information System (INIS)

    Auzas, J.-D.

    1999-01-01

    During the rolling mill process, rolls are submitted to high pressures that can lead to local decohesion or metallurgical changes. Both these cracks or softened areas must be detected as soon as they appear because of the risk of spalling, marks on the product, and mill wreck. These defects can be detected using the eddy current method, and particularly sensors specially developed for micro-defects detection. These sensors must be adapted to the environment of a roll grinding machine on which they must be installed. Users' schedule of conditions also require them to be attached to a wide range of eddy current generator and automatic computerized interpretation. Mill requirements for new high tech roll grades and quality lead to continuous development and improvement of the tools that will provide immediate 'go - no go' information. This paper is an update of these developments. (author)

  8. Dynamics and Stability of Rolling Viscoelastic Tires

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Trevor [Univ. of California, Berkeley, CA (United States)

    2013-04-30

    Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.

  9. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  10. Seismic performance of a grout-repaired construction defect in a column plastic hinge

    International Nuclear Information System (INIS)

    Budek, A.

    2006-01-01

    A column built to test the use of high-strength transverse reinforcement in seismically-loaded shear-critical columns was found to have a construction defect. The column was built to be loaded in double bending and as such was expected to develop two plastic hinges, one at each end of column. In the plastic hinge region at the column top, a void was formed because the concrete could not pass through the load stub's reinforcing steel cage. This void was repaired using nonshrink grout placed in a fluid state. The column was tested after repair and performed satisfactorily. The grouted repair was able to support large plastic rotations and allowed the column to reach a high level of ductility. The only effects of the repair were slightly reduced concrete dilation and stiffness in the repaired hinge. (author)

  11. Transient thermal stresses of work roll by coupled thermoelasticity

    Science.gov (United States)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  12. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  13. Construction of a Precursor Model for the Concept of Rolling Friction in the Thought of Preschool Age Children: A Socio-cognitive Teaching Intervention

    Science.gov (United States)

    Ravanis, Konstantinos; Koliopoulos, Dimitris; Boilevin, Jean-Marie

    2008-08-01

    The aim of this study was to explore the extent to which the characteristics of two teaching interventions can bring about cognitive progress in preschoolers with regard to the factors rolling friction depends on, when it is applied to an object that is freely rolling on a horizontal surface. The study was conducted in three phases: pre-test, teaching intervention, and post-test. Two teaching strategies were compared: one inspired by Piaget’s theory (Piagetian approach) and one inspired by post-Piagetian and Vygotkian assumptions (socio-cognitive approach). A statistically significant difference was found between the pre-test and post-test, providing evidence that the socio-cognitive approach allows for the creation of a more appropriate teaching framework compared to the Piagetian one.

  14. Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives.

    Directory of Open Access Journals (Sweden)

    Brian Healy

    Full Text Available Nisin A is the most extensively studied lantibiotic and has been used as a preservative by the food industry since 1953. This 34 amino acid peptide contains three dehydrated amino acids and five thioether rings. These rings, resulting from one lanthionine and four methyllanthionine bridges, confer the peptide with its unique structure. Nisin A has two mechanisms of action, with the N-terminal domain of the peptide inhibiting cell wall synthesis through lipid II binding and the C-terminal domain responsible for pore-formation. The focus of this study is the three amino acid 'hinge' region (N 20, M 21 and K 22 which separates these two domains and allows for conformational flexibility. As all lantibiotics are gene encoded, novel variants can be generated through manipulation of the corresponding gene. A number of derivatives in which the hinge region was altered have previously been shown to possess enhanced antimicrobial activity. Here we take this approach further by employing simultaneous, indiscriminate site-saturation mutagenesis of all three hinge residues to create a novel bank of nisin derivative producers. Screening of this bank revealed that producers of peptides with hinge regions consisting of AAK, NAI and SLS displayed enhanced bioactivity against a variety of targets. These and other results suggested a preference for small, chiral amino acids within the hinge region, leading to the design and creation of producers of peptides with hinges consisting of AAA and SAA. These producers, and the corresponding peptides, exhibited enhanced bioactivity against Lactococcus lactis HP, Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and Staphylococcus aureus RF122 and thus represent the first example of nisin derivatives that possess enhanced activity as a consequence of rational design.

  15. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi.

    1988-02-01

    By means of the stochastic description of inflation, we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on the global scale, both analytically and numerically. A particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form, V(φ) ∼ V 0 - cφ 2n at φ ∼ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find, for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (author)

  16. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi

    1988-01-01

    By means of the stochastic description of inflation we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on a global scale, both analytically and numerically. Particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form V(φ) ≅ V 0 -cφ 2n at φ ≅ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find that for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (orig.)

  17. Hinged and sectional complete dentures for restricted mouth opening: A case report and review

    Directory of Open Access Journals (Sweden)

    Aditi Sharma

    2013-01-01

    Full Text Available Restricted mouth opening is a definite prosthodontic hindrance to carry out treatment successfully. Restricted mouth opening can be due to many reasons such as microstomia, oral submucous fibrosis, some genetic disorder, and as a result of some surgical treatment. In the past, various techniques for prosthetic rehabilitation of limited oral opening have been tried such as surgeries, use of dynamic opening devices, magnetic devices, and modification of denture design. Here we present; a simplified technique and simple design for fabrication of maxillary hinged and mandibular hinged and sectional complete denture for a patient with restricted mouth opening due to oral submucous fibrosis.

  18. Development of an aerostatic bearing system for roll-to-roll printed electronics

    Science.gov (United States)

    Chen, Shasha; Chen, Weihai; Liu, Jingmeng; Chen, Wenjie; Jin, Yan

    2018-06-01

    Roll-to-roll printed electronics is proved to be an effective way to fabricate electrical devices on various substrates. High precision overlay alignment plays a key role to create multi-layer electrical devices. Multiple rollers are adopted to support and transport the substrate web. In order to eliminate the negative effect of the machining error and assembling error of the roller, a whole roll-to-roll system including two aerostatic bearing devices with arrayed restrictors is proposed in this paper. Different to the conventional roller, the aerostatic bearing device can create a layer of air film between the web and the device to realize non-contact support and transport. Based on simplified Navier–Stokes equations, the theoretical model of the air film is established. Moreover, the pressure distribution of the whole flow field and single restrictor in different positions are modeled by conducting numerical simulation with computational fluid dynamics (CFD) software FLUENT. The load capacity curves and stiffness curves are generated to provide guidance for optimizing the structure of the device. A prototype of the aerostatic bearing system is set up and the experiment tests are carried out. For the proposed aerostatic bearing roller with a diameter of 100 mm and length of 200 mm, the experimental results show the aerostatic bearing method can achieve the position accuracy in a range of 1 μm in the vertical direction of the web, which is much better than that using existing methods.

  19. Rapid roll inflation with conformal coupling

    International Nuclear Information System (INIS)

    Kofman, Lev; Mukohyama, Shinji

    2008-01-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1-100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S 3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities

  20. Rapid roll inflation with conformal coupling

    Science.gov (United States)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  1. Two-dimensional flow characteristics of wave interactions with a free-rolling rectangular structure

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Hyo Jung; Kuang-An Chang [Texas A and M University, College Station, TX (United States). Dept. of Civil Engineering; Huang, E.T. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States). Amphibious System Div.

    2005-01-01

    This paper presents laboratory observations of flow characteristics for regular waves passing a rectangular structure in a two-dimensional wave tank. The structure with a draft one-half of its height was hinged at the center of gravity and free to roll (one degree of freedom) by waves. Particle image velocimetry (PIV) was used to measure the velocity field in the vicinity of the structure. The mean velocity and turbulence properties were obtained by phase-averaging the PIV velocity maps from repeated test runs. Since the viscous damping (also called the eddy making damping) in a vortical flow affects the roll motion of a blunt body, the quantitative flow pattern was represented to elucidate the coupled interactions between the body motion and the waves. Additionally, the turbulence properties including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the interactions. The results show that vortices were generated near the structure corners at locations opposing to that of the roll damping effect for waves with a period longer than the roll natural period of the structure. (Author)

  2. Optimal Portfolio Strategy under Rolling Economic Maximum Drawdown Constraints

    Directory of Open Access Journals (Sweden)

    Xiaojian Yu

    2014-01-01

    Full Text Available This paper deals with the problem of optimal portfolio strategy under the constraints of rolling economic maximum drawdown. A more practical strategy is developed by using rolling Sharpe ratio in computing the allocation proportion in contrast to existing models. Besides, another novel strategy named “REDP strategy” is further proposed, which replaces the rolling economic drawdown of the portfolio with the rolling economic drawdown of the risky asset. The simulation tests prove that REDP strategy can ensure the portfolio to satisfy the drawdown constraint and outperforms other strategies significantly. An empirical comparison research on the performances of different strategies is carried out by using the 23-year monthly data of SPTR, DJUBS, and 3-month T-bill. The investment cases of single risky asset and two risky assets are both studied in this paper. Empirical results indicate that the REDP strategy successfully controls the maximum drawdown within the given limit and performs best in both return and risk.

  3. Capillary origami of micro-machined micro-objects: Bi-layer conductive hinges

    NARCIS (Netherlands)

    Legrain, A.B.H.; Berenschot, Johan W.; Tas, Niels Roelof; Abelmann, Leon

    2015-01-01

    Recently, we demonstrated controllable 3D self-folding by means of capillary forces of silicon-nitride micro-objects made of rigid plates connected to each other by flexible hinges (Legrain et al., 2014). In this paper, we introduce platinum electrodes running from the substrate to the plates over

  4. An optimization approach for black-and-white and hinge-removal topology designs

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yongqing; Zhang, Xianmin [South China University of Technology, Guangzhou (China)

    2014-02-15

    An optimization approach for black-and-white and hinge-removal topology designs is studied. To achieve this motive, an optimal topology allowing grey boundaries is found firstly. When a suitable design has been obtained, this solution is then used as a starting point for the follow-up optimization with the goal to free unfavorable intermediate elements. For this purpose, an updated optimality criterion in which a threshold factor is introduced to gradually suppress elements with low density is proposed. The typical optimality method and new technique proposed are applied to the design procedure sequentially. Besides, to circumvent the one-point hinge connection problem producing in the process of freeing intermediate elements, a hinge-removal strategy is also proposed. During the optimization, the binary constraints on design variables are relaxed based on the scheme of solid isotropic material with penalization. Meanwhile, the mesh independency filter is employed to ensure the existence of a solution and remove well-known checkerboards. In this way, a solution that has few intermediate elements and is free of one-point hinge connections is obtained. Finally, different numerical examples including the compliance minimization, compliant mechanisms and vibration problems demonstrate the validity of the proposed approach.

  5. The influence of material properties on plastic hinge rotational capacity and strength

    NARCIS (Netherlands)

    Steenbergen, H.M.G.M.; Bijlaard, F.S.K.; Daniels, B.J.

    1996-01-01

    In this article the effects of standardised material stress-strain behaviours on plastic hinge length, moment and rotational capacity are investigated using a specially developed computer program. Material properties are described using three standard post-yield stress-strain characteristics, as

  6. Solar array deployment analysis considering path-dependent behavior of a tape spring hinge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Won; Park, Young Jin [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Solar array deployment analysis is conducted considering the path-dependent nonlinear behavior of tape spring hinge. Such hinges offer many advantages over rigid hinges; they are self-deployable, self-locking, lightweight, and simple. However, they show strongly nonlinear behavior with respect to rotation angle, making deployment analysis difficult. To accurately consider the characteristics of tape spring hinges for deployment analysis, a path-dependent path identification (PI) method for tracing the previous path of the moment is introduced. To analyze the deployment motion, the governing equation for solar array deployment is derived within the framework of Kane's dynamic equation for three deployable solar panels. The numerical solution is compared with the Recurdyn's multi-body dynamics analysis solution using experimentally measured moment-rotation profiles. Solar array deployment analysis is conducted by considering and not considering the path-dependent PI method. This simulation example shows that the proposed path-dependent PI method is very effective for accurately predicting the deployment motion.

  7. Multi-functional hinge equipped with a magneto-rheological rotary damper for solar array deployment system

    Science.gov (United States)

    Wen, Mingfu; Yu, Miao; Fu, Jie; Wu, Zhengzhong

    2015-02-01

    This article describes the design and simulation of a novel multi-functional hinge equipped with a rotary magnetorheological damper for solar array deployment system, which is comprised of a hinge, an angular sensor, a positioning and locking mechanism and a rotary damper. In order to achieve the compact design in structure, some components were reused in different function modules. It's the first to use magnet-rheological fluid (MRF) to dissipate the energy in solar array deployment system. The main advantage in using MR rotary damper instead of a viscous fluid rotary damper is that the damping force of MR damper can be adjusted according to the external magnetic field environment excited. A mechanic model was built and the structure design was focused on the MR rotary damper, a damping force model of this damper is deduced based on hydromechanics with Bingham plastic constitutive model. A simulation of deployment motion was taken to validate the motion sequence of various components during the unfolding and locking process. It can be obtained that a constant damping coefficient can hardly balance the different performance of solar deployment system, then a simulation of the proposed deployment system equipped with rotary MR damper was carried out. According to the simulation, it can be obtained that the terminal velocity decreased by 75.81% and the deployment time decreased by 72.37% compared with a given constant damping coefficients. Therefore, the proposed new type of rotary damper can reach a compromise with different performance utilizing an on-off control strategy.

  8. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  9. Thermal Characteristics of Plastic Film Tension in Roll-to-Roll Gravure Printed Electronics

    Directory of Open Access Journals (Sweden)

    Kui He

    2018-02-01

    Full Text Available In the printing section of a roll-to-roll gravure printed electronics machine, the plastic film tension is directly associated with the product quality. The temperature distribution of the plastic film in the printing section is non-uniform, because of the higher drying temperature and the lower room temperature. Furthermore, the drying temperature and the room temperature are not constants in industrial production. As the plastic film is sensitive to temperature, the temperature of the plastic film will affects the web tension in the printing section. In this paper, the thermal characteristics of the plastic film tension in roll-to-roll gravure printed electronics are studied in order to help to improve the product quality. First, the tension model including the factor of temperature is derived based on the law of mass conservation. Then, some simulations and experiments are carried out in order to in-depth research the effects of the drying temperature and room temperature based on the relations between system inputs and outputs. The results show that the drying temperature and room temperature have significant influences on the web tension. The research on the thermal characteristics of plastic film tension would benefit the tension control accuracy for further study.

  10. The effect of roll gap geometry on microstructure in cold-rolled aluminum

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bay, B.; Winther, G.

    2004-01-01

    Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling-type tex......Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling...... layers. In these layers, extended planar dislocation boundaries are frequently found to be inclined closely to the rolling direction. The subsurface and central layers of this plate exhibit microstructures similar to those in the plate rolled with intermediate draughts. It is suggested...

  11. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  12. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao

    2012-01-01

    Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on

  13. Rolling Bearing Life Prediction, Theory, and Application

    Science.gov (United States)

    Zaretsky, Erwin V.

    2016-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg-Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. (The use of ISO 281:2007 with a fatigue limit in these calculations would result in a bearing life approaching infinity.) Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application. Rules had been developed to distinguish and compare predicted lives with those actually obtained. Based upon field and test results of 51 ball and roller bearing sets, 98 percent of these bearing sets had acceptable

  14. Wind-Tunnel Investigation at Low Speed of the Rolling Stability Derivatives of a 1/9-Scale Powered Model of the Convair XFY-1 Vertically Rising Airplane, TED No. NACA DE 373

    Science.gov (United States)

    Queijo, M. J.; Wolhart, Walter D.; Fletcher, H. S.

    1953-01-01

    An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the rolling stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.

  15. Roll-up of validation results to a target application.

    Energy Technology Data Exchange (ETDEWEB)

    Hills, Richard Guy

    2013-09-01

    Suites of experiments are preformed over a validation hierarchy to test computational simulation models for complex applications. Experiments within the hierarchy can be performed at different conditions and configurations than those for an intended application, with each experiment testing only part of the physics relevant for the application. The purpose of the present work is to develop methodology to roll-up validation results to an application, and to assess the impact the validation hierarchy design has on the roll-up results. The roll-up is accomplished through the development of a meta-model that relates validation measurements throughout a hierarchy to the desired response quantities for the target application. The meta-model is developed using the computation simulation models for the experiments and the application. The meta-model approach is applied to a series of example transport problems that represent complete and incomplete coverage of the physics of the target application by the validation experiments.

  16. A Gate Hinge Controls the Epithelial Calcium Channel TRPV5

    OpenAIRE

    van der Wijst, Jenny; Leunissen, Elizabeth H.; Blanchard, Maxime G.; Venselaar, Hanka; Verkaart, Sjoerd; Paulsen, Candice E.; Bindels, Ren? J.; Hoenderop, Joost G.

    2017-01-01

    TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonst...

  17. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  18. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Saxena, R; Yoganathan, A P

    1996-11-01

    During recent clinical trials the Medtronic Parallel bileaflet mechanical heart valve was found to have an unacceptable number of valves with thrombus formation when implanted in the mitral position. Thrombi were observed in the hinge region and also in the upstream portion of the valve housing in the vicinity of the hinge. It was hypothesized that the flow conditions inside the hinge may have contributed to the thrombus formation. In order to investigate the flow structures within the hinge, laser Doppler anemometry (LDA) measurements were conducted in both steady and pulsatile flow at approximately 70 predetermined sites within the hinge region of a 27 mm Medtronic Parallel mitral valve with transparent housing. The pulsatile flow velocity measurements were animated in time using a graphical software package to visualize the hinge flow field throughout the cardiac cycle. The LDA measurements revealed that mean forward flow velocities through the hinge region were on the order of 0.10-0.20 m/s. In the inflow channel, a large vortical structure was present during diastole. Upon valve closure, peak reverse velocity reached 3 m/s close to the housing wall in the inflow channel. This area also experienced high turbulent shear stresses (> 6000 dynes/cm2) during the leakage flow phase. A disturbed, vortical flow was again present in the inflow channel after valve closure, while slightly above the leaflet peg and relief the flow was essentially stagnant. The high turbulent stresses near the top of the inflow channel, combined with a persistent vortex, implicate the inflow channel of the hinge as a likely region of thrombus formation. This experimental investigation revealed zones of flow stagnation in the inflow region of the hinge throughout the cardiac cycle and elevated turbulent shear stress levels in the inflow region during the leakage flow phase. These fluid mechanic phenomena are most likely a direct result of the complex geometry of the hinge of this valve

  19. Experimental and theoretical study on natural circulation capacity under rolling motion condition

    International Nuclear Information System (INIS)

    Tan Sichao; Gao Puzhen

    2007-01-01

    Effect of rolling motion on natural circulation capacity was studied experimentally and theoretically. Experiments were conducted under the conditions of rolling and unrolling motions. The experimental results show that natural circulation capacity decreases under rolling motion condition. A mathematic model was developed to calculate the natural circulation capacity under rolling motion condition, considering the characteristics of natural circulation, the model was modified. The calculated results agree with experimental data well. Effect of rolling motion on natural circulation was analyzed through calculation and the following conclusions were obtained: (1) The increase of flow resistance coefficient is the main reason that the natural circulation capacity decreases under rolling motion condition; (2) Non-uniform distribution of fluid mass in the pipe has also influence on natural circulation capacity. (author)

  20. Influence of Variable Acceleration on Parametric Roll Motion of a Container Ship

    Directory of Open Access Journals (Sweden)

    Emre PEŞMAN

    2016-09-01

    Full Text Available Ship operators increase or decrease thrust force of ships to avoid parametric roll motion. These operations cause varying acceleration values. In this study, influence of variable acceleration and deceleration of ships on roll motion is investigated in longitudinal waves. The method which is referred as simple model is utilized for analysis. Simple Model is one degree of freedom nonlinear parametric roll motion equation which contains changing velocity and restoring moment in waves with respect to time. Ship velocities in waves are predicted by XFlow software for various thrust forces. Results indicate that variable acceleration has significant effect on parametric roll phenomenon.

  1. Numerical aspects of U-Mo core covered by Zry-4 miniplates co-rolling

    International Nuclear Information System (INIS)

    Picchetti, B.; Moscarda, M.V.; Taboada, H.

    2013-01-01

    The aim of this work is to support through adequate modeling the development of the co-rolling process of miniplates and plates starting with compacts including a monolithic U-Mo core with Zry-4 frame and cladding, Through relevant parameter identification and specific variables calculation a co rolling process model was set. The goal is to design a co-rolling optimal strategy related to the expected results through the use of such model. To that end the rolling process is depicted and some elements of strain stress theory on metals are employed. Plastic strain depends on deviator components of the stress tensor but no on the hydrostatic one. Metal sheet co-rolling is a plastic strain by planar compression at constant volume. During the co-rolling process the width constancy is assumed, being the piece of metal free to flow along its length. In this work the relationship between constitutive materials shield stresses U-Mo core and Zry-4 cladding under T= 650°C co-rolling is determined. This allows to modeling the reduction that exist in each co-rolling step for each one of phases present, which enables the design of a loop control lace optimizing the co rolling process. (author)

  2. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings

    Directory of Open Access Journals (Sweden)

    Ronja A. Schierjott

    2016-01-01

    Full Text Available Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens (n=3, whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  3. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings.

    Science.gov (United States)

    Schierjott, Ronja A; Giurea, Alexander; Neuhaus, Hans-Joachim; Schwiesau, Jens; Pfaff, Andreas M; Utzschneider, Sandra; Tozzi, Gianluca; Grupp, Thomas M

    2016-01-01

    Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  4. Roll-front uranium occurrences of the South Texas Mineral Belt: Development of a database for mineral potential modelling and quantitative resource assessment

    International Nuclear Information System (INIS)

    Mihalasky, M.

    2014-01-01

    The South Texas Mineral Belt in the United States is a broad curvilinear region of marginal-marine roll-front sandstone uranium occurrences. Located ~130 km inland, the belt parallels the Gulf of Mexico coastline and extends from southeast Texas to Mexico. It trends northeast-southwest and is about 400 km long and 10-50 km wide as delineated by alignments and clusters of occurrences, but ~100 km wide if outlying occurrences are included. The occurrences are hosted in coastal plain sediments and rocks of Tertiary age that dip gently towards the Gulf. These include the Lower Eocene Wilcox Group, Middle Eocene Claiborne Group, Upper Eocene Jackson Group, Upper Oligocene–Miocene Catahoula Tuff, Lower Miocene Oakville Sandstone, and Pliocene Goliad Sand. Older sequences are mixed fluvial-beach facies, whereas younger are dominantly fluvial. Occurrence distribution is controlled by host unit strike and dip, and permeable sequences therein, and by a combination of growth faults and locations of reductants.

  5. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively .... rigid body rotation. The solid body rotation makes sense in the context of small Reynolds. (Re) number flows ...

  6. Berth Allocation Problem with Quay Crane Assignment for Container Terminals Based on Rolling-Horizon Strategy

    Directory of Open Access Journals (Sweden)

    Ling Xiao

    2014-01-01

    Full Text Available In order to solve the large-scale integral dynamic scheduling of continuous berths and quay cranes problem, a method based on rolling-horizon strategy is proposed. A multiobjective optimization model that is established minimizes the total penalty costs considering vessels’ deviations to their preferred berthing positions, delayed times for berthing comparing to their estimated arrival times, and delayed times for departure comparing to their estimated departure times. Then, the scheduling process was divided into a set of continual scheduling interval according to the dynamic arrival sequences. Meanwhile, rolling-horizon strategies for setting rolling and frozen windows and the parameter updating strategy are designed. The input parameters of the model in the next rolling window are updated according to the optimal results of each time window which have been obtained. The model is solved by choosing appropriate rolling and freezing window lengths that represents the numbers of adjacent vessels in the sequence of calling vessels. The holistic optimal solution is obtained by gradually rolling and combining the results of each window. Finally, a case study indicated that the rolling schedule can solve large-scale scheduling problems, and the efficiency of the proposed approach relates to the size of rolling window, freeze ship quantity, and rolling frequency.

  7. Reconstruction of palatal defect using mucoperiosteal hinge flap and pushback palatoplasty.

    Science.gov (United States)

    Lee, S I; Lee, H S; Hwang, K

    2001-11-01

    This article describes a simple, new surgical technique to provide a complete two-layer closure of palatal defect resulting from a surgical complication of trans palatal resection of skull base chordoma. The nasal layer was reconstructed with triangular shape oral mucoperiosteal turn over hinge flap based on anterior margin of palatal defect and rectangular shaped lateral nasal mucosal hinge flaps. The oral layer was reconstructed with conventional pushback V-Y advancement 2-flaps palatoplasty. Each layer of the flaps were secured with two key mattress suture for flap coaptation. This technique has some advantages: simple, short operation time, one-stage procedure, no need of osteotomy. It can close small- to medium-sized palatal defect of palate or wide cleft palate and can prevent common complication of oronasal fistula, which could be caused by tension.

  8. DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER

    Directory of Open Access Journals (Sweden)

    Gagarin Vladimir Gennad'evich

    2015-03-01

    Full Text Available Enveloping structures with hinged façade systems are nowadays widely used for moisture control of enveloping structures, prevention of overheating of the structures by insolation, saving the constructions from atmospheric moisture and also for correspondence with the raised requirements to thermal protection of the enveloping structures, aimed also at reducing energy consumption. In the winter conditions the influence of air layer on the thermal insulation parameters is usually neglected. In the article the thermal resistance of an air gap and is considered and its effect in the calculation of the heat resistance of a building envelope with hinged facade system is analyzed in the conditions of cold weather. The thermal resistance of the air layer determines how the heat losses decrease.

  9. CERN: A hinge between LEP and the LHC

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Later this year, if all goes well, the beam energy of CERN's LEP electron-positron collider should be increased to around 70 GeV per beam (collision energy 140 GeV), giving a foretaste of things to come. Since 1989, the 27-kilometre ring has been operating around 45 GeV per beam to feed its four physics experiments with a steady diet of Z particles, the electrically neutral carriers of the weak nuclear force. This has given precision results on vital parameters of the Standard Model. Meanwhile work has been steadily pushing ahead to upgrade LEP to LEP2, installing superconducting radiofrequency cavities (January 1994, page 6) and ancillary cryogenics equipment to boost the machine's energy and reach new areas of physics interest. The initial goal is to produce pairs of W particles, the electrically charged counterparts of the Z. As far as the machine is concerned, at these higher energies, the 'beambeam' interaction between the contra-rotating electrons and positrons is reduced, so more particles can be pumped into the ring. To achieve this, LEP has switched to the new 'bunch train' scheme (see page 14) each train containing several 'carriages' (bunches) of particles. To attain its physics objectives, LEP2's target is 500 inverse picobarns of integrated luminosity over the next few years. This is a challenge as LEP's integrated luminosity to date (since the machine was commissioned in 1989) is some 160 inverse picobarns, itself viewed as no mean achievement. To reach higher energies, the accelerating power at LEP is being increased with installation of superconducting radiofrequency cavities. After initial trials with solid niobium, LEP2 relies on the more reliable performance provided by copper, with its better heat conduction properties, coated with a superconducting film of niobium. Even so heroic preprocessing is required to ensure optimal performance. After initial trials revealed welding weaknesses, the

  10. Finite element method analysis of surface roughness transfer in micro flexible rolling

    Directory of Open Access Journals (Sweden)

    Qu Feijun

    2016-01-01

    Full Text Available Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to decrease the surface roughness. Four types of initial workpiece surface roughness are studied in the simulation, and the influences of process parameters, such as friction coefficient, rolling speed and roll gap adjusting speed, on surface asperity flattening of workpieces with different initial surface roughness have been numerically investigated and analysed.

  11. Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase

    Energy Technology Data Exchange (ETDEWEB)

    Bacot-Davis, Valjean R., E-mail: bacotdavis@wisc.edu [Institute for Molecular Virology, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States); Palmenberg, Ann C., E-mail: acpalmen@wisc.edu [Institute for Molecular Virology, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States); Department of Biochemistry, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States)

    2013-08-15

    Encephalomyocarditis virus (EMCV), a Cardiovirus, initiates its polyprotein with a short 67 amino acid Leader (L) sequence. The protein acts as a unique pathogenicity factor, with anti-host activities which include the triggering of nuclear pore complex hyperphosphorylation and direct binding inhibition of the active cellular transport protein, Ran GTPase. Chemical modifications and protein mutagenesis now map the Ran binding domain to the L hinge-linker region, and in particular, to amino acids 35–40. Large deletions affecting this region were shown previously to diminish Ran binding. New point mutations, especially K35Q, D37A and W40A, preserve the intact L structure, abolish Ran binding and are deficient for nucleoporin (Nup) hyperphosphorylation. Ran itself morphs through multiple configurations, but reacts most effectively with L when in the GDP format, preferably with an empty nucleotide binding pocket. Therefore, L:Ran binding, mediated by the linker-hinge, is a required step in L-induced nuclear transport inhibition. - Highlights: • The hinge domain provides critical residues in Cardiovirus L:Ran complex formation. • Leader prefers to bind Ran in a nucleotide free, GDP-conformation. • L-induced Nup62 phosphorylation is reduced with Ran-deficient binding mutations.

  12. Treatment of neglected elbow dislocations with the help of hinged external fixator: Report of two cases

    Directory of Open Access Journals (Sweden)

    Özgür Karakoyun

    2014-06-01

    Full Text Available Elbow dislocations are cases that have to be treated in emergency conditions. Neglected elbow dislocations are seen very rarely and the treatment of such cases are more complicated than acute cases. We present two cases of neglected elbow dislocations treated with open reduction and hinged external fixators. Case 1: 23 year old female patient had a neglected posterior dislocation of left elbow with ipsilateral humeral shaft fracture caused by car accident. The patient was treated after 3 months of initial trauma. We have performed open reduction for the joint. After that we fixed the joint whit a hinged external fixator. The humeral shaft fracture was also fixed with the components of the external fixator. Case 2: 33 year male patient had a large bone and soft tissue defect around the left elbow accompanying with neglected medial elbow dislocation. He presented to our clinic with a delay of 2 months. The patient was treated with open reduction and hinged external fixator after reconstruction of bone defect of distal humerus. Conclusion: The treatment of neglected cases is quite challenging. Open reduction and external fixation has satisfactory results in treatment of late cases of elbow dislocation with the possibility of early rehabilitation. This method can be considered as an option for such cases. J Clin Exp Invest 2014; 5 (2: 443-446

  13. Maintenance Appointments in Railway Rolling Stock Rescheduling

    NARCIS (Netherlands)

    J.C. Wagenaar (Joris); L.G. Kroon (Leo); M.E. Schmidt (Marie)

    2016-01-01

    textabstractThis paper addresses the Rolling Stock Rescheduling Problem (RSRP), while taking maintenance appointments into account. After a disruption, the rolling stock of the disrupted passenger trains has to be rescheduled in order to restore a feasible rolling stock circulation. Usually, a

  14. Rolling block mazes are PSPACE-complete

    NARCIS (Netherlands)

    Buchin, K.; Buchin, M.

    2012-01-01

    In a rolling block maze, one or more blocks lie on a rectangular board with square cells. In most mazes, the blocks have size k × m × n where k, m, n are integers that determine the size of the block in terms of units of the size of the board cells. The task of a rolling block maze is to roll a

  15. Efficient Circulation of Railway Rolling Stock

    NARCIS (Netherlands)

    Alfieri, A.; Groot, R.; Kroon, L.G.; Schrijver, A.

    2006-01-01

    Railway rolling stock (locomotives, carriages, and train units) is one of the most significant cost sources for operatorsof passenger trains, both public and private. Rolling stock costsare due to material acquisition, power supply, and material maintenance. The efficient circulation of rolling

  16. Influence of different kinds of rolling on the crystallographic texture and magnetic induction of a NOG 3 wt% Si steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.M.; Baêta Júnior, E.S.; Moraes, N.R.D.C.; Botelho, R.A. [Department of Mechanical and Materials Engineering, Military Institute of Engineering (IME), Praça General Tibúrcio, 80,Urca, Rio de Janeiro/RJ (Brazil); Felix, R.A.C. [Scientific Instrumentation and Mechanical Technology Laboratory, Brazilian Center for Physics Research (CBPF), Rua Dr. Xavier Sigaud, 150-Urca, Rio de Janeiro-RJ (Brazil); Brandao, L., E-mail: brandao@ime.eb.br [Department of Mechanical and Materials Engineering, Military Institute of Engineering (IME), Praça General Tibúrcio, 80,Urca, Rio de Janeiro/RJ (Brazil)

    2017-01-01

    The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes. - Highlights: • The B{sub 50} of NOG steels was evaluated via texture for different rolling processes. • On comparison to all processes used, the cross-rolling led to highest average B{sub 50}. • Cross-rolling enhances Goss and γ-fiber after annealing. • The better B{sub 50} values were obtained for symmetrical and cross-rolling processes. • For asymmetric rolling process, cylinder diameter ratio changed slightly the texture.

  17. Bubble departure diameter in narrow rectangular channel under rolling condition

    Energy Technology Data Exchange (ETDEWEB)

    Xie, T.; Chen, B.; Yan, X.; Xu, J.; Huang, Y.; Xiao, Z. [Nuclear Power Inst. of China, Chengdu, Sichuan (China)

    2014-07-01

    Forced convective subcooled boiling flow experiments were conducted in a vertical upward narrow rectangular channel under rolling motion. A high-speed digital video camera was used to capture the dynamics of the bubble nucleation process. Bubble departure diameters were obtained from the images. A bubble departure model based on force balance analysis was proposed to predict the bubble departure size under rolling condition by considering the additional centrifugal, tangential and Coriolis force. The proposed model agreed well with the experimental data within the averaged relative deviation of 5%. (author)

  18. Nonlinear roll damping of a barge with and without liquid cargo in spherical tanks

    Directory of Open Access Journals (Sweden)

    Wenhua Zhao

    2016-01-01

    Full Text Available Damping plays a significant role on the maximum amplitude of a vessel's roll motion, in particular near the resonant frequency. It is a common practice to predict roll damping using a linear radiation–diffraction code and add that to a linearized viscous damping component, which can be obtained through empirical, semi-empirical equations or free decay tests in calm water. However, it is evident that the viscous roll damping is nonlinear with roll velocity and amplitude. Nonlinear liquid cargo motions inside cargo tanks also contribute to roll damping, which when ignored impedes the accurate prediction of maximum roll motions. In this study, a series of free decay model tests is conducted on a barge-like vessel with two spherical tanks, which allows a better understanding of the nonlinear roll damping components considering the effects of the liquid cargo motion. To examine the effects of the cargo motion on the damping levels, a nonlinear model is adopted to calculate the damping coefficients. The liquid cargo motion is observed to affect both the linear and the quadratic components of the roll damping. The flow memory effect on the roll damping is also studied. The nonlinear damping coefficients of the vessel with liquid cargo motions in spherical tanks are obtained, which are expected to contribute in configurations involving spherical tanks.

  19. Simulation of Bimetallic Bush Hot Rolling Bonding Process

    Directory of Open Access Journals (Sweden)

    Yaqin Tian

    2015-01-01

    Full Text Available Three-dimensional model of bimetallic bush was established including the drive roller and the core roller. The model adopted the appropriate interface assumptions. Based on the bonding properties of bimetallic bush the hot rolling process was analyzed. The optimum reduction ratio of 28% is obtained by using the finite element simulation software MARC on the assumption of the bonding conditions. The stress-strain distribution of three dimensions was research assumptions to interface deformation of rolling. At the same time, based on the numerical simulation, the minimum reduction ratio 20% is obtained by using a double metal composite bush rolling new technology from the experiment research. The simulation error is not more than 8%.

  20. Towards roll-to-roll manufacturing of polymer photonic devices

    Science.gov (United States)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  1. Design of a Small Scale Roll to Roll Device

    OpenAIRE

    Pereira, Amon A; White, Edward; Kramer, Rebecca Krone

    2014-01-01

    In the soft robotics field, hyperelastic polymer films are used in conjunction with eutectic gallium indium to create flexible strain gages. However, rapid large scale manufacturing methods of such sensors have yet to be developed. Developing new manufacturing methods will allow for researchers to build and test new soft sensor concepts faster but also pave the way for future mass-production of these sensors for consumer or industrial consumption. One of those methods would be a Roll to...

  2. Perovskite solar cells for roll-to-roll fabrication

    Directory of Open Access Journals (Sweden)

    Uddin Ashraf

    2017-01-01

    Full Text Available Perovskite solar cell (PSCs is considered as the game changer in emerging photovoltaics technology. The highest certified efficiency is 22% with high temperature processed (∼500 °C TiO2 based electron transport layer (ETL. High temperature process is a rudimentary hindrance towards roll-to-roll processing of PSCs on flexible substrates. Low temperature solution process (<150 °C ZnO based ETL is one of the most promising candidate for large scale roll-to-roll fabrication of cells as it has nearly identical electron affinity (4.2 eV of TiO2. The mixed organic perovskite (MA0.6FA0.4PbI3 devices with Al doped ZnO (AZO ETL demonstrate average cell efficiency over 16%, which is the highest ever reported efficiency for this device configuration. The energy level alignment and related interfacial charge transport dynamics at the interface of ZnO and perovskite films and the adjacent charge transport layers are investigated. Significantly improved device stability, hysteresis free device photocurrent have been observed in MA0.6FA0.4PbI3 cells. A systematic electrochemical impedance spectroscopy, frequency dependent capacitance spectra, surface morphology and topography characterization have been conducted to understand the role of interfacial electronic properties between perovskite and neighbouring layers in perovskite device. A standardized degradation study, interfacial electronic property and capacitive spectra analysis of aged device, have been measured to understand the enhanced device stability in mixed MA0.6FA0.4PbI3 cells. Slow perovskite material decomposition rate and augmented device lifetime with AZO based devices have been found to be correlated with the more hydrophobic and acidic nature of AZO surface compared to pristine ZnO film.

  3. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge

    NARCIS (Netherlands)

    Schellart, Wouter P.

    2005-01-01

    Geological observations indicate that along two active continental margins (East Asia and Mediterranean) major phases of overriding plate extension, resulting from subduction hinge-retreat, occurred synchronously with a reduction in subducting plate velocity. In this paper, results of fluid

  4. On the constant-roll inflation

    Science.gov (United States)

    Yi, Zhu; Gong, Yungui

    2018-03-01

    The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approximation may be invalid. We compare the numerical results with the analytical results derived from the Bessel function approximation, and we find that they differ significantly on super-horizon scales if the constant slow-roll parameter ηH is not small. More accurate method is needed for calculating the primordial power spectrum for constant-roll inflation.

  5. Improved Dutch Roll Approximation for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Liang-Liang Yin

    2014-06-01

    Full Text Available An improved dutch roll approximation for hypersonic vehicle is presented. From the new approximations, the dutch roll frequency is shown to be a function of the stability axis yaw stability and the dutch roll damping is mainly effected by the roll damping ratio. In additional, an important parameter called roll-to-yaw ratio is obtained to describe the dutch roll mode. Solution shows that large-roll-to-yaw ratio is the generate character of hypersonic vehicle, which results the large error for the practical approximation. Predictions from the literal approximations derived in this paper are compared with actual numerical values for s example hypersonic vehicle, results show the approximations work well and the error is below 10 %.

  6. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    Science.gov (United States)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  7. Effects of alignment on the roll-over shapes of prosthetic feet.

    Science.gov (United States)

    Hansen, Andrew

    2008-12-01

    Recent work suggests that a prosthetic ankle-foot component's roll-over shape - the effective rocker it conforms to between initial contact and opposite initial contact (the 'roll-over' interval of walking) - is closely linked to its final alignment in the prosthesis (as determined by a skilled prosthetist using heuristic techniques). If true, this information may help to determine the appropriate alignment for a lower limb prosthesis before it is built, or a priori. Knowledge is needed for future models that will incorporate the roll-over shape including the relative effect of alignment on the roll-over shape's radius of curvature and arc length. The purpose of this study was to evaluate the hypotheses that: (i) Changes in prosthesis alignment alter the position and orientation of a foot's roll-over shape in prosthesis-based coordinates, and (ii) these changes occur without changing the radius of curvature or arc length of the roll-over shape. To examine the hypotheses, this study examined the effects of nine alignment settings on the roll-over shapes of two prosthetic feet. The idea that alignment changes move and rotate roll-over shapes of prosthetic feet in prosthesis coordinates is supported by this work, but the hypothesis that the radius of curvature and arc length do not change for different alignments is not strongly supported by the data. A revised approach is presented that explains some of the changes to the roll-over shape parameters due to changes in rotational alignment.

  8. Variation of the Friction Coefficient for a Cylinder Rolling down an Inclined Board

    Science.gov (United States)

    Yan, Zixiang; Xia, Heming; Lan, Yueheng; Xiao, Jinghua

    2018-01-01

    A cylinder rolling down an inclined board is a commonly seen and interesting object to study and it is also easy to experiment with and model. Following what has become a popular practice, we use smartphones to measure the angular acceleration of a cylinder rolling down a plane of different inclining angles. The friction force deviates from the…

  9. 78 FR 6749 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-01-31

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Rolls-Royce plc (RR) models RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines... 772B-60 turbofan engines. (d) Reason This AD was prompted by low-pressure (LP) compressor blade partial...

  10. 78 FR 17079 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-03-20

    ... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... certain Rolls-Royce Deutschland Ltd & Co KG (RRD) models Tay 620-15 and Tay 650-15 turbofan engines. This... Tay 620-15 and Tay 650-15 turbofan engines with a low-pressure compressor (LPC) rotor disc assembly...

  11. 78 FR 35574 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-06-13

    ... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for all Rolls-Royce Deutschland Ltd & Co KG (RRD) model Tay 650-15 turbofan engines... Compliance We estimate that this proposed AD affects 52 Tay turbofan engines installed on airplanes of U.S...

  12. Numerical Analysis of Rolling Contact Fatigue Crack Initiation and Fatigue Life Prediction of the Railway Crossing

    NARCIS (Netherlands)

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact.

  13. Numerical analysis of viscous effect on ship rolling motions based on CFD

    Directory of Open Access Journals (Sweden)

    LUO Tian

    2017-03-01

    Full Text Available During the ship design procedure, the analysis of ship rolling motions is of great significance because the rolling motions have extraordinary effects on the sea-keeping, maneuverability and stability of a ship. It is difficult to simulate rolling motions due to the effect of viscosity, which causes many nonlinear components in computation. As such, the potential theory used for other ship motions cannot be used for rolling motions. This paper simulates the rolling motions of the DTMB 5512 ship model and the ship transverse section of the S60 ship model with a naoe-FOAM-SJTU solver using the Reynolds Averaged Navier Stokes(RANSmethod based on the OpenFOAM. The results of rolling motions are compared with the experimental data, which confirms the reliability of the meshes and results. For the ship transverse section of the S60 ship model, the damping coefficient is divided into three parts with the Euler and RANS methods:friction, vorticity and wave parts. For the DTMB 5512 ship model, the damping coefficient is also respectively analyzed, including the friction, vorticity, wave and bilge keel parts. The results in this paper show that the vorticity part accounts for the greatest proportion, while the friction part accounts for the least, and the bilge keels reduces the damping moment to a certain extent which shows the effect of rolling parameters on rolling motions and moments.

  14. Progress in cold roll bonding of metals

    International Nuclear Information System (INIS)

    Li Long; Nagai, Kotobu; Yin Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version. (topical review)

  15. Quantitative comparison between simulated and experimental FCC rolling textures

    DEFF Research Database (Denmark)

    Wronski, M.; Wierzbanowski, K.; Leffers, Torben

    2015-01-01

    The degree of similarity between simulated and experimental fcc rolling textures is characterized by a single scalar parameter. The textures are simulated with a relatively simple and efficient 1-point model which allows us to vary the strength of the interaction between the grains and the surrou...

  16. Rolling-horizon replenishment : Policies and performance analysis

    NARCIS (Netherlands)

    Lian, Z.; Liu, L.; Zhu, Stuart X.

    We consider a rolling-horizon (RH) replenishment modeling framework under which a buyer can update demand information and inventory status, modify order quantities committed previously, place an advanced order for a new period at the end of the RH, and move along in time seamlessly. We show that the

  17. Effects of aluminum hinged shoes on the structure of contracted feet in Thoroughbred yearlings.

    Science.gov (United States)

    Tanaka, Kousuke; Hiraga, Atsushi; Takahashi, Toshiyuki; Kuwano, Atsutoshi; Morrison, Scott Edward

    2015-01-01

    We applied aluminum hinged shoes (AHSs) to the club foot-associated contracted feet of 11 Thoroughbred yearlings to examine the effects of the shoes on the shape of the hoof and third phalanx (P III). After 3 months of AHS use, the size of the affected hooves increased significantly, reaching the approximate size of the healthy contralateral hooves with respect to the maximum lateral width of the foot, the mean ratio of the bearing border width to the coronary band width, and the mean ratio of the solar surface width to the articular surface width. These results suggest that the AHSs corrected the contracted feet in these yearling horses.

  18. Effects of aluminum hinged shoes on the structure of contracted feet in Thoroughbred yearlings

    OpenAIRE

    TANAKA, Kousuke; HIRAGA, Atsushi; TAKAHASHI, Toshiyuki; KUWANO, Atsutoshi; MORRISON, Scott Edward

    2015-01-01

    ABSTRACT We applied aluminum hinged shoes (AHSs) to the club foot-associated contracted feet of 11 Thoroughbred yearlings to examine the effects of the shoes on the shape of the hoof and third phalanx (P III). After 3 months of AHS use, the size of the affected hooves increased significantly, reaching the approximate size of the healthy contralateral hooves with respect to the maximum lateral width of the foot, the mean ratio of the bearing border width to the coronary band width, and the mea...

  19. A new solution method for wheel/rail rolling contact.

    Science.gov (United States)

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  20. The real time rolling shutter

    OpenAIRE

    Monaghan, David; O'Connor, Noel E.; Cleary, Anne; Connolly, Denis

    2015-01-01

    From an early age children are often told either, you are creative you should do art but stay away from science and maths. Or that you are mathematical you should do science but you're not that creative. Compounding this there also exist some traditional barriers of artistic rhetoric that say, "don't touch, don't think and don't be creative, we've already done that for you, you can just look...". The Real Time Rolling Shutter is part of a collaborative Art/Science partnership whose core tenet...

  1. Grooved tube plug rolls in

    International Nuclear Information System (INIS)

    Krausser, P.

    1991-01-01

    The removable plugs used to date by the Power Generation Group (KWU) of Siemens to seal defective steam generator tubes have a good track record. Their sealing principle is based on the elastic tensioning of three seal disks against the inside wall of the tube. Now a further removable plug is available -a roll-in plug with a metal-coated surface. It is particularly suitable for use in the roller-expanded zone of the tubes at the tube sheet. The plugs can be used in both Siemens-KWU steam generators and in steam generators manufactured in compliance with the guidelines of the ASME Code. (author)

  2. Process Monitoring and Fault Diagnosis for Shell Rolling Production of Seamless Tube

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2015-01-01

    Full Text Available Continuous rolling production process of seamless tube has many characteristics, including multiperiod and strong nonlinearity, and quickly changing dynamic characteristics. It is difficult to build its mechanism model. In this paper we divide production data into several subperiods by K-means clustering algorithm combined with production process; then we establish a continuous rolling production monitoring and fault diagnosis model based on multistage MPCA method. Simulation experiments show that the rolling production process monitoring and fault diagnosis model based on multistage MPCA method is effective, and it has a good real-time performance, high reliability, and precision.

  3. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C.; Dauskardt, Reinhold H.

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven

  4. Radiometric study of creep in ingot rolling

    International Nuclear Information System (INIS)

    Kubicek, P.; Zamyslovsky, Z.; Uherek, J.

    The radiometric study of creep during ingot rolling performed in the rolling mill of the Vitkovice Iron and Steel Works and the first results are described. Selected sites in 3 to 8 ton ingots were labelled with 2 to 3.7x10 5 Bq of 60 Co and after rolling into blocks, the transposition of the labelled sites of the ingots was investigated. The results indicate creep during rolling, local extension in certain sites under study and help to determine the inevitable bottom crop incurred in the forming. Finally, the requirements put on the radiometric apparatus for the next stages of technological research are presented. (author)

  5. METHOD OF HOT ROLLING URANIUM METAL

    Science.gov (United States)

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  6. Effects of opioids in the formalin test in the Speke's hinged tortoise (Kinixy's spekii)

    DEFF Research Database (Denmark)

    Wambugu, SN; Towett, PK; Kiama, SG

    2010-01-01

    decrease in the duration of limb retraction in the formalin test. The anti-nociceptive effects were naloxone (5 mg/kg) reversible. The data suggest that the formalin test is a good test for studying nociception and anti-nociception in tortoises and that the opioidergic system plays a role in the control......Little is known about analgesia in lower vertebrates such as the Speke's hinged tortoise (Kinixy's spekii), yet of late they are increasingly being adopted as pets. The effects of morphine (5, 7.5, 10 and 20 mg/kg), pethidine (10, 20, and 50 mg/kg) and naloxone (5 mg/kg) on nociception induced...... by the formalin test (12.5%, 100 microL) were studied in the Speke's hinged tortoise. Formalin induced a monophasic limb retraction behavioural response and its duration was recorded. The behaviour lasted for 16.4 +/- 0.8 min. Morphine (7.5, 10 and 20 mg/kg) and pethidine (20 and 50 mg/kg) induced significant...

  7. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-01-01

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor γ-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses

  8. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity

    Directory of Open Access Journals (Sweden)

    Liang eZhou

    2015-01-01

    Full Text Available Lantibiotics are ribosomally synthesized (methyllanthionine containing peptides which can efficiently inhibit the growth of Gram-positive bacteria. As lantibiotics kill bacteria efficiently and resistance to them is difficult to be obtained, they have the potential to be used in many applications, e.g. in pharmaceutical industry or food industry. Nisin can inhibit the growth of Gram-positive bacteria by binding to lipid II and by making pores in their membrane. The C-terminal part of nisin is known to play an important role during translocation over the membrane and forming pore complexes. However, as the thickness of bacterial membranes varies between different species and environmental conditions, this property could have an influence on the pore forming activity of nisin. To investigate this, the so-called hinge region of nisin (residues NMK was engineered to vary from one to six amino acid residues and specific activity against different indicators was compared. Antimicrobial activity in liquid culture assays showed that wild type nisin is most active, while truncation of the hinge region dramatically reduced the activity of the peptide. However, one or two amino acids extensions showed only slightly reduced activity against most indicator strains. Notably, some variants (+2, +1, -1, -2 exhibited higher antimicrobial activity than nisin in agar well diffusion assays against Lactococcus lactis MG1363, Listeria monocytogenes, Enterococcus faecalis VE14089, Bacillus sporothermodurans IC4 and Bacillus cereus 4153 at certain temperatures.

  9. Formation of vortex pairs with hinged rigid flaps at the nozzle exit

    Science.gov (United States)

    Das, Prashant; Govardhan, Raghuraman; Arakeri, Jaywant

    2013-11-01

    Biological flows related to aquatic propulsion using pulsed jets, or flow through the valves in a human heart, have received considerable attention in the last two decades. Both these flows are associated with starting jets that occur through biological tissue/membranes that are flexible. Motivated by these flows, we explore in the present work, the effect of passive flexibility of the nozzle exit on vortex generation from a starting jet. The starting jet is generated using a two-dimensional piston cylinder mechanism, the cross-section of the cylinder being rectangular with large aspect ratio. The fluid is pushed out of this cylinder or channel using a computer controlled piston. We introduce flexibility at the channel exit by hinging rigid flaps, which are initially parallel to the channel. The hinge used is such that it provides negligible stiffness or damping, thus allowing for the maximum opening of the flaps due to fluid forces. Using this system, we study both the flap kinematics and the vorticity dynamics downstream of the channel exit. Visualizations show large flap motions as the piston starts and this dramatically changes the vorticity distribution downstream of the flaps, with the formation of up to three different kinds of vortex pairs. This idealized configuration opens new opportunities to look at the effect of flexibility in such biological flows.

  10. Fabrication of cold-rolled bands of the alloy-ehi 702 in rolls

    International Nuclear Information System (INIS)

    Zhuchin, V.N.; Gindin, A.Sh.; Shaburov, V.E.; Vladimirov, S.M.; Sokolov, V.A.; Shavkun, V.V.; Perepelitsa, I.V.; Markov, V.V.; Naymov, E.P.; Evstaf'ev, P.P.

    1977-01-01

    The questions are discussed, connected with the manufacture of cold-rolled strip of alloy EI702 in reels from strip blanks. It has been established that in the manufacture of hot-rolled stock from EI702 slabs it is necessary to use powerful rolling equipment because of high resistance to deformation. The reel method for manufacturing EI702 alloy improves the rolled stock and increases percentage of serviceable stock, as well as the output

  11. Negative density dependence of sympatric Hinge-back Tortoises (Kinixys erosa and K. homeana in West Africa

    Directory of Open Access Journals (Sweden)

    Luca Luiselli

    2008-05-01

    Full Text Available A series of 59 transect surveys was conducted in selected wet forest habitats, along the coast of West Africa, to estimate the density distribution of African Hinge-back tortoises (Kinixys homeana and K. erosa. Line transect data were fed into a simple model to derive a detection function. The parameters estimated by the model produced an elaborate characterisation of tortoise distribution, which proved to be useful in the formulation of hypotheses about tortoise densities. Line transect data were analysed by DISTANCE, with a series of key and the series adjustment: the uniform function, the 1-parameter half-normal function, and the 2-parameter hazard-rate function were considered as key functions; the cosine series, simple polynomials, and Hermite polynomials were considered as series expansions. The detection function was estimated separately for Kinixys homeana and K. erosa, and for transects grouped for each study area by considering all the combinations of the above key functions and series expansions. The Akaike Information Criterion (AIC was computed for each candidate model and used for model selection. The best model of the detection function, for both the tortoise species was the uniform function with no series expansion. Model results indicated that the density of the two species was inversely related at the local scale, and complementary across the region; such that the density of one species increases from West to East while the other one declines. Overall, the comparison of density estimates between the two tortoises is consistent with a former hypothesis suggesting inter-specific competition and consequent resource partitioning. Other causes may contribute to explain the observed patterns, including the low productivity of rainforest habitats and long-term human perturbation.

  12. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    International Nuclear Information System (INIS)

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-01-01

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  13. Detection of Parametric Roll Resonance on Ships from Indication of Nonlinear Energy Flow

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2009-01-01

    The detection of the onset of parametric roll resonance on ships is of a central importance in order to activate specific control strategies able to counteract the large roll motion. One of the main priorities is to have detectors with a small detection time, such that warnings can be issued when...... the roll oscillations are about 5◦. This paper proposes two different detection approaches: the first one based on sinusoidal detection in white gaussian noise; the second one utilizes an energy flow indicator in order to catch the onset of parametric roll based upon the transfer of energy from heave...... and pitch to roll. Both detectors have been validated against experimental data of a scale model of a container vessel excited with both regular and irregular waves. The detector based on the energy flow indicator proved to be very robust to different scenarios (regular/irregular waves) since it does...

  14. Computational study of the Risoe-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    Energy Technology Data Exchange (ETDEWEB)

    Troldborg, N.

    2005-03-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risoe-B1-18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decrease fatigue-inducing oscillations on the blades. The computations were conducted using a 2D incompressible RANS solver with a k-w turbulence model under the assumption of a fully developed turbulent flow. The investigations were conducted at a Reynolds number of Re = 1.6 - 10{sup 6}. Calculations conducted on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice. (author)

  15. Rolling into spatial disorientation: Simulator demonstration of the post-roll (Gillingham) illusion

    NARCIS (Netherlands)

    Nooij, S.A.E.; Groen, E.L.

    2011-01-01

    Introduction: Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn)

  16. Effects of False Tilt Cues on the Training of Manual Roll Control Skills

    Science.gov (United States)

    Zaal, Peter M. T.; Popovici, Alexandru; Zavala, Melinda A.

    2015-01-01

    This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.

  17. Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper

    Science.gov (United States)

    Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin

    2017-12-01

    LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.

  18. Rolling process simulation of a pair-crossed hot strip mill

    International Nuclear Information System (INIS)

    Chen Shaojie; Xu Jianzhong; Liu Xianghua; Wang Guodong

    2000-01-01

    Process simulation can help optimize the operating parameters aiming to improve the quality of rolled products. In this paper, software in Visual Basic language is developed to simulate the hot rolling process of a pair-crossed mill. The strip temperature is calculated by considering air cooling, water cooling, heat generation and conduction.The production parameters including rolling speeds, resistance to deformation, rolling forces, drive torques and powers are evaluated by mathematical models and their parameter identification support tools. The deformation of roll stack is calculated by influential function method. The roll temperature and expansion are calculated by finite differential method, and the roll wear is described by empirical formula. Based on these calculations as well as the effect of heredity is taken into account, the strip crown and flatness then can be obtained. The results show that the simulation software has friendly user interface, high accuracy and practicability. It can be served as a basis for the mill design and optimization of process parameters to acquire high quality of hot rolled strip. (author)

  19. Rolling motions in an inner spiral arm

    International Nuclear Information System (INIS)

    Strauss, F.M.; Poeppel, W.

    1976-01-01

    Hydrogen line observations made at low galactic latitudes for l=318degree, 326degree, 334degree, and 337degree show the presence of velocity gradients in latitude in the nearest inner spiral arm, similar to those found by other observations in different regions. Maximum velocity change is about 10 km s -1 for l=337degree. By generating synthetic line profiles constructed from a model spiral arm, several possible causes of these ''rolling motions'' were studied, such as a vertical displacement or a tilt of the arm (which failed to account for the observations) and rotation or shearing in the arm. It was futher shown that a typical arm can maintain such a motion (approx. =75 km s -1 kpc -1 ) with its own gravitational potential. The results are used to study the origin and tilt of Gould's Belt

  20. Annealing texture of rolled nickel alloys

    International Nuclear Information System (INIS)

    Meshchaninov, I.V.; Khayutin, S.G.

    1976-01-01

    A texture of pure nickel and binary alloys after the 95% rolling and annealing has been studied. Insoluble additives (Mg, Zr) slacken the cubic texture in nickel and neral slackening of the texture (Zr). In the case of alloying with silicium (up to 2%) the texture practically coinsides with that of a technical-grade nickel. The remaining soluble additives either do not change the texture of pure nickel (C, Nb) or enhance the sharpness and intensity of the cubic compontnt (Al, Cu, Mn, Cr, Mo, W, Co -at their content 0.5 to 2.0%). A model is proposed by which variation of the annealing texture upon alloying is caused by dissimilar effect of the alloying elements on the mobility of high- and low-angle grain boundaries

  1. Numerical analysis of rolling contact fatigue crack initiation and fatigue life prediction of the railway crossing

    OpenAIRE

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact. Material model accounting for elastic- plastic isotropic and kinematic hardening effects is adopted. The results from FE analysis are combined with J-S fatigue model that is based on critical plan...

  2. Roll forming of eco-friendly stud

    Science.gov (United States)

    Keum, Y. T.; Lee, S. Y.; Lee, T. H.; Sim, J. K.

    2013-12-01

    In order to manufacture an eco-friendly stud, the sheared pattern is designed by the Taguchi method and expanded by the side rolls. The seven geometrical shape of sheared pattern are considered in the structural and thermal analyses to select the best functional one in terms of the durability and fire resistance of dry wall. For optimizing the size of the sheared pattern chosen, the L9 orthogonal array and smaller-the-better characteristics of the Taguchi method are used. As the roll gap causes forming defects when the upper-and-lower roll type is adopted for expanding the sheared pattern, the side roll type is introduced. The stress and strain distributions obtained by the FEM simulation of roll-forming processes are utilized for the design of expanding process. The expanding process by side rolls shortens the length of expanding process and minimizes the cost of dies. Furthermore, the stud manufactured by expanding the sheared pattern of the web is an eco-friend because of the scrapless roll-forming process. In addition, compared to the conventionally roll-formed stud, the material cost is lessened about 13.6% and the weight is lightened about 15.5%.

  3. Pipe Rolling from Continuous Cast Metal

    International Nuclear Information System (INIS)

    Zhordania, I.; Chkhartishvili, I.; Lordkipanidze, J.; Melashvili, Z.; Papava, K.; Khundadze, K.

    2007-01-01

    The approach to manufacturing of high quality pipes as a result of solid and hollow billet rolling from continuous cast metal is shown. Optimal parameters of piercing, temperature of piercing and piercing rolling mill rollers speed have been experimentally established. (author)

  4. Numerical analysis of Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  5. Efficient Circulation of Railway Rolling Stock

    NARCIS (Netherlands)

    A. Alfieri (Arianna); R. Groot (Rutger); L.G. Kroon (Leo); A. Schrijver (Lex)

    2002-01-01

    textabstractRailway rolling stock (locomotives, carriages, and train units) is one of the most significant cost sources for operatorsof passenger trains, both public and private. Rolling stock costsare due to material acquisition, power supply, and material maintenance. The efficient circulation of

  6. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength

    Directory of Open Access Journals (Sweden)

    Diana Campelo

    2017-10-01

    Full Text Available NADPH-cytochrome P450 reductase (CPR is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction, a linker (hinge, and a connecting/FAD domain (NADPH oxidation. It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state to an ensemble of open conformations (unlocked state, the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.

  7. Quantitative metrics for evaluating the phased roll-out of clinical information systems.

    Science.gov (United States)

    Wong, David; Wu, Nicolas; Watkinson, Peter

    2017-09-01

    We introduce a novel quantitative approach for evaluating the order of roll-out during phased introduction of clinical information systems. Such roll-outs are associated with unavoidable risk due to patients transferring between clinical areas using both the old and new systems. We proposed a simple graphical model of patient flow through a hospital. Using a simple instance of the model, we showed how a roll-out order can be generated by minimising the flow of patients from the new system to the old system. The model was applied to admission and discharge data acquired from 37,080 patient journeys at the Churchill Hospital, Oxford between April 2013 and April 2014. The resulting order was evaluated empirically and produced acceptable orders. The development of data-driven approaches to clinical Information system roll-out provides insights that may not necessarily be ascertained through clinical judgment alone. Such methods could make a significant contribution to the smooth running of an organisation during the roll-out of a potentially disruptive technology. Unlike previous approaches, which are based on clinical opinion, the approach described here quantitatively assesses the appropriateness of competing roll-out strategies. The data-driven approach was shown to produce strategies that matched clinical intuition and provides a flexible framework that may be used to plan and monitor Clinical Information System roll-out. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Magnetoresistance of rolled-up Fe3Si nanomembranes.

    Science.gov (United States)

    Schumann, J; Lisunov, K G; Escoffier, W; Raquet, B; Broto, J M; Arushanov, E; Mönch, I; Makarov, D; Deneke, C; Schmidt, O G

    2012-06-29

    Magnetotransport of individual rolled-up Fe(3)Si nanomembranes is investigated in a broad temperature range from 4.2 K up to 300 K in pulsed magnetic fields up to 55 T. The observed magnetoresistance (MR) has the following pronounced features: (i) MR is negative in the investigated intervals of temperature and magnetic field; (ii) its magnitude increases linearly with the magnetic field in a low-field region and reveals a gradual trend to saturation when the magnetic field increases; (iii) the MR effect becomes more pronounced with increasing temperature. These dependences of MR on the magnetic field and temperature are in line with predictions of the spin-disorder model of the spin-flip s-d interaction assisted with creation or annihilation of magnons, which is expected above a certain critical temperature. Comparison of the MR features in rolled-up and planar samples reveals a substantial increase of the critical temperature in the rolled-up tube, which is attributed to a new geometry and internal strain arising in the rolled-up nanomembranes, influencing the electronic and magnetic properties of the material.

  9. Deformation in Micro Roll Forming of Bipolar Plate

    Science.gov (United States)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  10. Analytical method for establishing indentation rolling resistance

    Directory of Open Access Journals (Sweden)

    Gładysiewicz Lech

    2018-01-01

    Full Text Available Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  11. Analytical method for establishing indentation rolling resistance

    Science.gov (United States)

    Gładysiewicz, Lech; Konieczna, Martyna

    2018-01-01

    Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  12. Upscaling of polymer solar cell fabrication using full roll-to-roll processing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Tromholt, Thomas; Jørgensen, Mikkel

    2010-01-01

    factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated...... with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator...... to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies due to the inferior operational lifetime. The presented devices are thus competitive for consumer electronics but ill-suited for on...

  13. A model for the roll-out of comprehensive adult male circumcision services in African low-income settings of high HIV incidence: the ANRS 12126 Bophelo Pele Project.

    Science.gov (United States)

    Lissouba, Pascale; Taljaard, Dirk; Rech, Dino; Doyle, Sean; Shabangu, Daniel; Nhlapo, Cynthia; Otchere-Darko, Josephine; Mashigo, Thabo; Matson, Caitlin; Lewis, David; Billy, Scott; Auvert, Bertran

    2010-07-20

    World Health Organization (WHO)/Joint United Nations Programme on AIDS (UNAIDS) has recommended adult male circumcision (AMC) for the prevention of heterosexually acquired HIV infection in men from communities where HIV is hyperendemic and AMC prevalence is low. The objective of this study was to investigate the feasibility of the roll-out of medicalized AMC according to UNAIDS/WHO operational guidelines in a targeted African setting. The ANRS 12126 "Bophelo Pele" project was implemented in 2008 in the township of Orange Farm (South Africa). It became functional in 5 mo once local and ethical authorizations were obtained. Project activities involved community mobilization and outreach, as well as communication approaches aimed at both men and women incorporating broader HIV prevention strategies and promoting sexual health. Free medicalized AMC was offered to male residents aged 15 y and over at the project's main center, which had been designed for low-income settings. Through the establishment of an innovative surgical organization, up to 150 AMCs under local anesthesia, with sterilized circumcision disposable kits and electrocautery, could be performed per day by three task-sharing teams of one medical circumciser and five nurses. Community support for the project was high. As of November 2009, 14,011 men had been circumcised, averaging 740 per month in the past 12 mo, and 27.5% of project participants agreed to be tested for HIV. The rate of adverse events, none of which resulted in permanent damage or death, was 1.8%. Most of the men surveyed (92%) rated the services provided positively. An estimated 39.1% of adult uncircumcised male residents have undergone surgery and uptake is steadily increasing. This study demonstrates that a quality AMC roll-out adapted to African low-income settings is feasible and can be implemented quickly and safely according to international guidelines. The project can be a model for the scale-up of comprehensive AMC services, which

  14. A model for the roll-out of comprehensive adult male circumcision services in African low-income settings of high HIV incidence: the ANRS 12126 Bophelo Pele Project.

    Directory of Open Access Journals (Sweden)

    Pascale Lissouba

    2010-07-01

    Full Text Available BACKGROUND: World Health Organization (WHO/Joint United Nations Programme on AIDS (UNAIDS has recommended adult male circumcision (AMC for the prevention of heterosexually acquired HIV infection in men from communities where HIV is hyperendemic and AMC prevalence is low. The objective of this study was to investigate the feasibility of the roll-out of medicalized AMC according to UNAIDS/WHO operational guidelines in a targeted African setting. METHODS AND FINDINGS: The ANRS 12126 "Bophelo Pele" project was implemented in 2008 in the township of Orange Farm (South Africa. It became functional in 5 mo once local and ethical authorizations were obtained. Project activities involved community mobilization and outreach, as well as communication approaches aimed at both men and women incorporating broader HIV prevention strategies and promoting sexual health. Free medicalized AMC was offered to male residents aged 15 y and over at the project's main center, which had been designed for low-income settings. Through the establishment of an innovative surgical organization, up to 150 AMCs under local anesthesia, with sterilized circumcision disposable kits and electrocautery, could be performed per day by three task-sharing teams of one medical circumciser and five nurses. Community support for the project was high. As of November 2009, 14,011 men had been circumcised, averaging 740 per month in the past 12 mo, and 27.5% of project participants agreed to be tested for HIV. The rate of adverse events, none of which resulted in permanent damage or death, was 1.8%. Most of the men surveyed (92% rated the services provided positively. An estimated 39.1% of adult uncircumcised male residents have undergone surgery and uptake is steadily increasing. CONCLUSION: This study demonstrates that a quality AMC roll-out adapted to African low-income settings is feasible and can be implemented quickly and safely according to international guidelines. The project can be

  15. The record of iceberg roll generated waves from sediments and seismics

    Science.gov (United States)

    Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.

    2013-12-01

    Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant

  16. Large Negative Linear Compressibility in InH(BDC)₂ from Framework Hinging.

    Science.gov (United States)

    Zeng, Qingxin; Wang, Kai; Zou, Bo

    2017-11-08

    Materials with negative linear compressibility (NLC) counterintuitively expand along one specific direction coupled to the volume reduction when compressed uniformly. NLC with a large value is desired for compression and materials science. However, NLC is generally smaller than -20 TPa -1 . High-pressure X-ray diffraction experiments reveal that the β-quartz-like InH(BDC) 2 generates an extreme NLC (-62.4 TPa -1 ) by framework hinging. InH(BDC) 2 is much safer and lower-cost than Au + /Ag + and CN - -containing materials that dominated the fields of large NLC. This work reconfirms that a negative thermal expansion flexible framework could likely exhibit large NLC. Moreover, a large NLC could be anticipated to arise from β-quartz-like or related frameworks composed of rigid linear ligands and flexible framework angles.

  17. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  18. Vibration analysis of paper machine's asymmetric tube roll supported by spherical roller bearings

    Science.gov (United States)

    Heikkinen, Janne E.; Ghalamchi, Behnam; Viitala, Raine; Sopanen, Jussi; Juhanko, Jari; Mikkola, Aki; Kuosmanen, Petri

    2018-05-01

    This paper presents a simulation method that is used to study subcritical vibrations of a tube roll in a paper machine. This study employs asymmetric 3D beam elements based on the Timoshenko beam theory. An asymmetric beam model accounts for varying stiffness and mass distributions. Additionally, a detailed rolling element bearing model defines the excitations arising from the set of spherical roller bearings at both ends of the rotor. The results obtained from the simulation model are compared against the results from the measurements. The results indicate that the waviness of the bearing rolling surfaces contributes significantly to the subcritical vibrations while the asymmetric properties of the tube roll have only a fractional effect on the studied vibrations.

  19. MATHEMATICAL MODELING OF TRANSIENT EMERGENCY ELECTROMAGNETIC PROCESSES IN THE SYSTEM OF THE ELECTROMAGNETIC TRACTION DC. 2. SHORT CIRCUIT WITH ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    P. E. Mihalichenko

    2010-04-01

    Full Text Available The article deals with the description of mathematical model of the system of traction electric power supply with load in the short circuit condition as well as the calculation results of this emergency process. The transition values as well as the character of their change, which can be used for detection of emergency processes, have been determined.

  20. Design and analysis of roll cage

    Science.gov (United States)

    Angadi, Gurusangappa; Chetan, S.

    2018-04-01

    Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.

  1. Lunar surface engineering properties experiment definition. Volume 2: Mechanics of rolling sphere-soil slope interaction

    Science.gov (United States)

    Hovland, H. J.; Mitchell, J. K.

    1971-01-01

    The soil deformation mode under the action of a rolling sphere (boulder) was determined, and a theory based on actual soil failure mechanism was developed which provides a remote reconnaissance technique for study of soil conditions using boulder track observations. The failure mechanism was investigated by using models and by testing an instrumented spherical wheel. The wheel was specifically designed to measure contact pressure, but it also provided information on the failure mechanism. Further tests included rolling some 200 spheres down sand slopes. Films were taken of the rolling spheres, and the tracks were measured. Implications of the results and reevaluation of the lunar boulder tracks are discussed.

  2. Rudder Based Roll Control via host-computer of A Robotic Boat

    Directory of Open Access Journals (Sweden)

    Xinping Bao

    2009-03-01

    Full Text Available Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H control method design is selected since yaw and roll motion are posed in different frequency domains. Computer simulations and experiments carried out show that successful results are achieved.

  3. Rudder Based Roll Control via Host-Computer of a Robotic Boat

    Directory of Open Access Journals (Sweden)

    Xinping Bao

    2009-03-01

    Full Text Available Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H∞ control method design is selected since yaw and roll motion are posed in different frequency domains. Computer simulations and experiments carried out show that successful results are achieved.

  4. Theoretical research on laminar friction resistance in tubes in rolling motion

    International Nuclear Information System (INIS)

    Yan Binghuo; Yu Lei; Yang Yanhua

    2010-01-01

    The model of laminar flow in tubes in rolling motion is established. The dimensionless correlation of velocity is derived, and the correlation of frictional resistance coefficient is also obtained. Of all the additional forces, only the tangential force effects on the flow. The effect of centrifugal and Coriolis forces on the flow is counteracted. The correlation of average frictional resistance coefficient is the same with that of no rolling motion. The effect of rolling motion on frictional resistance coefficient of laminar flow diminishes with the increase of Reynolds number. (authors)

  5. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    Energy Technology Data Exchange (ETDEWEB)

    Odintsov, S.D. [ICREA, Passeig Luis Companys, 23, 08010 Barcelona (Spain); Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com [Laboratory for Theoretical Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), Lenin Avenue 40, 634050 Tomsk (Russian Federation)

    2017-04-01

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces. In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.

  6. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis

    International Nuclear Information System (INIS)

    Qin, B; Sun, G D; Zhang L Y; Wang J G; HU, J

    2017-01-01

    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability. (paper)

  7. THE ESSENTIAL DYNAMICS OF THERMOLYSIN - CONFIRMATION OF THE HINGE-BENDING MOTION AND COMPARISON OF SIMULATIONS IN VACUUM AND WATER

    NARCIS (Netherlands)

    van Aalten, D.M.F.; Amadei, A; Linssen, A.B M; Eijsink, V.G.H.; Vriend, G.; Berendsen, H.J.C.

    Comparisons of the crystal structures of thermolysin and the thermolysin-like protease produced by B. cereus have recently led to the hypothesis that neutral proteases undergo a hinge-bending motion. We have investigated this hypothesis by analyzing molecular dynamics simulations of thermolysin in

  8. Can power spectrum observations rule out slow-roll inflation?

    Science.gov (United States)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2018-01-01

    The spectral index of scalar perturbations is an important observable that allows us to learn about inflationary physics. In particular, a detection of a significant deviation from a constant spectral index could enable us to rule out the simplest class of inflation models. We investigate whether future observations could rule out canonical single-field slow-roll inflation given the parameters allowed by current observational constraints. We find that future measurements of a constant running (or running of the running) of the spectral index over currently available scales are unlikely to achieve this. However, there remains a large region of parameter space (especially when considering the running of the running) for falsifying the assumed class of slow-roll models if future observations accurately constrain a much wider range of scales.

  9. Look! It's Rock'n'roll!

    DEFF Research Database (Denmark)

    Lindelof, Anja

    2007-01-01

    , and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- Anja Mølle Lindelof. (2007). Look! it's rock'n'roll! how television participated in shaping the visual genre conventions of popular music...... to personal names, capitalization, and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- Anja Mølle Lindelof. "Look! It's Rock'n'roll! How television participated in shaping the visual genre....... Pay special attention to personal names, capitalization, and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- TY - JOUR T1 - Look! It's Rock'n'roll! How television participated in shaping...

  10. Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Pedersen, Henrik Chresten

    2016-01-01

    This paper investigates a novel, very high throughput, roll-to-roll (R2R) process for nanostructuring of polymer foils, called R2R extrusion coating. It has the potential to accelerate the integration of nanostructured materials in consumer products for a variety of applications, including optical....../height of 100 nm. The best replication was achieved in polypropylene, by running at high roller line-speed of 60 m/min, and high cooling roller temperature of 70°C. Replication in other common polymers like polyethylene and polystyrene was not possible for the parameter range used for the investigation......., technical, and functional surfaces and devices. In roll-to-roll extrusion coating, a molten polymer film is extruded through a flat die forming a melt curtain, and then laminated onto a carrier foil. The lamination occurs as the melt curtain is pressed between a cooling roller and a counter roller...

  11. Improved Fatigue Performance of Threaded Drillstring Connections by Cold Rolling

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Steinar

    2002-01-01

    The research work presented in this thesis is concerned with analytical, numerical and experimental studies of the effect of cold rolling on the fatigue behaviour of threaded drillstring connections. A comprehensive literature study is made of the various effects on the fatigue behaviour of residual stresses introduced by mechanical deformation of notched components. Some of the effects studied are cyclic hardening behaviour after prestraining, cyclic creep, fatigue initiation in prestrained materials, short cracks and crack growth models including crack closure. Residual stresses were introduced in the surface of a smooth pipe by a rolling device to simulate a cold rolling process and verify the calculated residual stresses by measurements. Strain hardening and contact algorithm of the two bodies were incorporated in the FE analyses. Two significant errors were found in the commercial software package for residual stress evaluation, Restran v. 3.3.2a also called SINT, when using the Schajer method. The Schajer algorithm is the only hole-drilling algorithm without theoretical shortcomings, and is recommended when measuring large residual stress gradients in the depth direction. Using the Schajer method solved by in-house Matlab-routines good agreement between measured residual stress gradients and residual stress gradients from FE analyses was found. Full scale fatigue tests were performed on pipes cut from used drillstrings with notches of similar geometry as threads used in drillstring connections. The simulated threads consisted of four full depth helix notches with runouts at the surface. The pipe threads were cold rolled and fatigue tested in a full-scale four-point rotating bending fatigue testing rig. The test results showed that cold rolling had an effect on the crack initiation period. A major part of the fatigue life was with cracks observed at the notch root, but due to the increased fatigue crack propagation resistance the final fracture initiated at

  12. Orientation effect on recovery and recrystallization of cold rolled niobium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, R. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)], E-mail: rajagopalan.5@osu.edu; Viswanathan, G.B.; Levit, V.I.; Fraser, H.L. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2009-05-15

    Single crystal sheets of niobium with initial orientations of (0 0 1) [11-bar0], (1 1 0) [11-bar 0] and (1 1 1) [11-bar0] were rolled at room temperature in the strain range of 25-50%. The deformed specimens were vacuum annealed at temperatures of 800 deg. C, 1000 deg. C, and 1200 deg. C for 3 h. TEM, SEM-OIM and optical microscopy revealed orientation stability in (0 0 1) and (1 1 0) rolled samples with no recrystallization observed after annealing. Samples rolled along (1 1 1) partially recrystallized after annealing at 1000 deg. C and 1200 deg. C. A relatively small increase was observed in hardness of (0 0 1) rolled crystals between 25% and 50% strain, implying low work hardening rates. (1 1 1) rolled samples showed higher hardening rates, and enhanced recovery in hardness values after annealing, due to partial recrystallization. Conditions have been identified for the deformation and annealing of niobium single crystals, enabling the preservation of single crystal structure and near-complete recovery of mechanical properties. A simple crystallographic model is proposed, giving an explanation for the observed orientation stability in (0 0 1) and (1 1 0) rolled samples, and the tendency towards instability and recrystallization in (1 1 1) rolled samples.

  13. Optimization and Simulation of Machining Parameters in Radial-axial Ring Rolling Process

    Directory of Open Access Journals (Sweden)

    Shuiyuan Tang

    2011-05-01

    Full Text Available Ring rolling is a complicated process, in which rolling parameters influence directly the quality of ring. It is a process method with high productivity and few waste of material, widely used in transportation industry including automotive, shipbuilding, aerospace etc. During the rolling process of large-sized parts, crinkle and hollows often appear on surface, due to inconsistence of rolling motions with the deformation of ring part. Based on radial-axial ring rolling system configuration, motions and forces in rolling process are analyzed, and a dynamic model is formulated. Error of ring's end flatness and roundness are defined as the characteristic parameters of ring quality. The relationship between core roller feed speed, drive roller speed, the upper taper roller feed speed, and quality of ring part are analyzed. The stress and strain of the part are simulated in the Finite Element Method by DEFORM software. The simulation results provide a reference for the definition of ring rolling process parameters. It is able to make the deformation of the part be consistent with the process parameters, and improve product quality considerably.

  14. Effects of the process temperature and rolling speed on the thermal roll-to-roll imprint lithography of flexible polycarbonate film

    International Nuclear Information System (INIS)

    Sohn, Ki-Ju; Lee, Woo Il; Park, Jae Hong; Jang, Hyun-Ik; Lee, Dong-Eon

    2013-01-01

    Thermal roll-to-roll imprint lithography (R2RIL) is a simple and low-cost process for the mass production of micro/nanopatterns. However, in that it relies on highly viscous thermoplastic resists, it is limited in its ability to imprint precise patterns at a high speed. Moreover, the concentrated imprint force applied in R2RIL can damage the resist material which is structurally vulnerable at high process temperatures. Therefore, it is important to understand the temperature- and time-dependent characteristics of the resist material as well as the imprinting mechanism when using thermal R2RIL. In this work, the effects of the process temperature and rolling speed on thermal R2RIL of polycarbonate (PC) films were investigated to improve the process efficiency. Micro-scale line patterns were successfully transferred onto PC films from nickel (Ni) mold stamps. Consequently, line patterns with widths in the range of 5–80 µm were achieved at a traveling speed of 28.6 mm s –1 and process temperature of 150 °C, which is just above the glass transition temperature (T g ). In addition, the patterning performance was investigated for different temperatures, rolling speeds and pattern sizes. The imprinted pattern profiles were measured by an alpha-step surface profiler to investigate the patterning performance. The results show that a much better imprint performance was achieved at 150 °C, compared to the result at temperatures below T g . The physical mechanisms of thermal R2RIL on a PC film were studied by a finite-element analysis and the patterning process was successfully demonstrated by a visco-plastic deformation model. (paper)

  15. Can power spectrum observations rule out slow-roll inflation?

    OpenAIRE

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2017-01-01

    The spectral index of scalar perturbations is an important observable that allows us to learn about inflationary physics. In particular, a detection of a significant deviation from a constant spectral index could enable us to rule out the simplest class of inflation models. We investigate whether future observations could rule out canonical single-field slow-roll inflation given the parameters allowed by current observational constraints. We find that future measurements of a constant running...

  16. A stepwise approach for the management of capsular contraction syndrome in hinge-based accommodative intraocular lenses.

    Science.gov (United States)

    Page, Timothy P; Whitman, Jeffrey

    2016-01-01

    The aims of this study are to define the various stages of capsular contraction syndrome (CCS) and its effect on refractive error with hinge-based accommodating intraocular lenses (IOLs) and to describe a systematic approach for the management of the different stages of CCS. Hinge-based accommodative IOLs function via flexible hinges that vault the optic forward during accommodation. However, it is the flexibility of the IOL that makes it prone to deformation in the event of CCS. The signs of CCS are identified and described as posterior capsular striae, fibrotic bands across the anterior or posterior capsule, and capsule opacification. Various degrees of CCS may affect hinge-based accommodating IOLs in a spectrum from subtle changes in IOL appearance to significant increases in refractive error and loss of uncorrected visual acuity. The signs of CCS and its effect on IOL position and the resulting changes in refractive error are matched to appropriate treatment plans. A surgeon can avoid CCS and manage the condition if familiar with the early signs of CCS. If CCS is identified, yttrium-aluminum-garnet laser capsulotomy should be considered. If moderate CCS occurs, it may be effectively treated with insertion of a capsular tension ring. If CCS is allowed to progress to advanced stages, an IOL exchange may be necessary. Surgeons should be familiar with the stages of CCS and subsequent interventions. The steps outlined in this article help to guide surgeons in the prevention and management of CCS with hinge-based accommodative IOLs in order to provide improved refractive outcomes for patients.

  17. A stepwise approach for the management of capsular contraction syndrome in hinge-based accommodative intraocular lenses

    Directory of Open Access Journals (Sweden)

    Page TP

    2016-06-01

    Full Text Available Timothy P Page,1 Jeffrey Whitman2 1Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, 2Key-Whitman Eye Center, Dallas, TX, USA Purpose: The aims of this study are to define the various stages of capsular contraction syndrome (CCS and its effect on refractive error with hinge-based accommodating intraocular lenses (IOLs and to describe a systematic approach for the management of the different stages of CCS. Methods: Hinge-based accommodative IOLs function via flexible hinges that vault the optic forward during accommodation. However, it is the flexibility of the IOL that makes it prone to deformation in the event of CCS. The signs of CCS are identified and described as posterior capsular striae, fibrotic bands across the anterior or posterior capsule, and capsule opacification. Various degrees of CCS may affect hinge-based accommodating IOLs in a spectrum from subtle changes in IOL appearance to significant increases in refractive error and loss of uncorrected visual acuity. The signs of CCS and its effect on IOL position and the resulting changes in refractive error are matched to appropriate treatment plans. Results: A surgeon can avoid CCS and manage the condition if familiar with the early signs of CCS. If CCS is identified, yttrium–aluminum–garnet laser capsulotomy should be considered. If moderate CCS occurs, it may be effectively treated with insertion of a capsular tension ring. If CCS is allowed to progress to advanced stages, an IOL exchange may be necessary. Conclusion: Surgeons should be familiar with the stages of CCS and subsequent interventions. The steps outlined in this article help to guide surgeons in the prevention and management of CCS with hinge-based accommodative IOLs in order to provide improved refractive outcomes for patients. Keywords: z-syndrome, pseudophakic tilt, IOL subluxation, CTR, capsular tension ring, capsular fibrosis

  18. An adaptive deep convolutional neural network for rolling bearing fault diagnosis

    International Nuclear Information System (INIS)

    Fuan, Wang; Hongkai, Jiang; Haidong, Shao; Wenjing, Duan; Shuaipeng, Wu

    2017-01-01

    The working conditions of rolling bearings usually is very complex, which makes it difficult to diagnose rolling bearing faults. In this paper, a novel method called the adaptive deep convolutional neural network (CNN) is proposed for rolling bearing fault diagnosis. Firstly, to get rid of manual feature extraction, the deep CNN model is initialized for automatic feature learning. Secondly, to adapt to different signal characteristics, the main parameters of the deep CNN model are determined with a particle swarm optimization method. Thirdly, to evaluate the feature learning ability of the proposed method, t-distributed stochastic neighbor embedding (t-SNE) is further adopted to visualize the hierarchical feature learning process. The proposed method is applied to diagnose rolling bearing faults, and the results confirm that the proposed method is more effective and robust than other intelligent methods. (paper)

  19. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Feidenhans'l, Nikolaj Agentoft

    2017-01-01

    Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness....... In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having...... 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits...

  20. Calculation of locomotive traction force in transient rolling contact

    Directory of Open Access Journals (Sweden)

    Voltr P.

    2017-06-01

    Full Text Available To represent thewheel-rail contact in numerical simulations of rail vehicles, simplified models (Fastsim, Pola´ch etc. are usually employed. These models are designed for steady rolling only, which is perfectly suitable in many cases. However, it is shown to be limiting for simulations at very low vehicle speeds, and therefore it does not actually allow simulation of vehicle running at arbitrarily variable speed. The simplified model of transient rolling, which involves calculation of the stress distribution in the discretised contact area, overcomes this disadvantage but might be unnecessarily complex for more simple simulations. In this paper, an approximative creep force computation method for transient rolling is presented. Its purpose is not to study the transient phenomena themselves but provide a simple and readily available way to prevent incorrect results of the numerical simulation when the vehicle speed approaches zero. The proper function of the proposed method is demonstrated by a simulation of start-up and interrupted sliding of a four-axle locomotive.

  1. Rolling of molybdenum and niobium tubes on cold-rolling mill with high stiff stand

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, I N; Shejkh-Ali, A D; Filimonov, G V; Lunev, A G

    1984-03-01

    To develop the technique of tube production the process of rolling is studied and comparative evaluation of the structure formed is carried out. It is shown that billets of rods deformed by screw rolling have the improved plastic properties and are deformed on cold-rolling mill (CRM) with a high degree of reduction without defect formation. High stiff stand of the CRM permits to produce high-quality molybdenum tubes.

  2. Rotor Rolling over a Water-Lubricated Bearing

    Science.gov (United States)

    Shatokhin, V. F.

    2018-02-01

    The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the

  3. Decision Support for the Rolling Stock Dispatcher

    DEFF Research Database (Denmark)

    Groth, Julie Jespersen

    Real-time recovery is receiving a fast growing interest in an increasingly competitive railway operation market. This thesis considers the area of rolling stock dispatching which is one of the typical real-time railway dispatching problems. All work of the thesis is based on the network...... and planning processes of the railway operator DSB S-tog a/s. In the thesis the problems existing in the railway planning process from the strategic to real-time level are briefly sketched. Network planning, line planning, timetabling, crew and rolling stock planning is outlined and relevant references...... are given. Specifically the thesis references the operation research studies based on the railway operation of DSB S-tog a/s. Subsequently the process of dispatching is outlined with a specific emphasis on rolling stock. The rolling stock recovery problem is the problem of assigning train units to train...

  4. Terras: NATO õppuste roll Euroopas kasvab

    Index Scriptorium Estoniae

    2013-01-01

    Kaitseväe juhataja kindralmajor Riho Terrase sõnul suureneb lähiaastatel NATO õppuste roll Euroopas, sest Afganistanis sõdides saadud kogemust on vaja säilitada ning kasutada seda kollektiivkaitse tugevdamiseks

  5. A Hybrid Multi-Step Rolling Forecasting Model Based on SSA and Simulated Annealing—Adaptive Particle Swarm Optimization for Wind Speed

    Directory of Open Access Journals (Sweden)

    Pei Du

    2016-08-01

    Full Text Available With the limitations of conventional energy becoming increasing distinct, wind energy is emerging as a promising renewable energy source that plays a critical role in the modern electric and economic fields. However, how to select optimization algorithms to forecast wind speed series and improve prediction performance is still a highly challenging problem. Traditional single algorithms are widely utilized to select and optimize parameters of neural network algorithms, but these algorithms usually ignore the significance of parameter optimization, precise searching, and the application of accurate data, which results in poor forecasting performance. With the aim of overcoming the weaknesses of individual algorithms, a novel hybrid algorithm was created, which can not only easily obtain the real and effective wind speed series by using singular spectrum analysis, but also possesses stronger adaptive search and optimization capabilities than the other algorithms: it is faster, has fewer parameters, and is less expensive. For the purpose of estimating the forecasting ability of the proposed combined model, 10-min wind speed series from three wind farms in Shandong Province, eastern China, are employed as a case study. The experimental results were considerably more accurately predicted by the presented algorithm than the comparison algorithms.

  6. Roles of the β subunit hinge domain in ATP synthase F1 sector: Hydrophobic network formed by introduced βPhe174 inhibits subunit rotation

    International Nuclear Information System (INIS)

    Nakanishi-Matsui, Mayumi; Kashiwagi, Sachiko; Kojima, Masaki; Nonaka, Takamasa; Futai, Masamitsu

    2010-01-01

    The ATP synthase β subunit hinge domain (βPhe148 ∼ βGly186, P-loop/α-helixB/loop/β-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F 1 with the βSer174 to Phe mutation in the domain lowered the γ subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F 1 sector. Stochastic fluctuation and a key domain of the β subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the βMet159, βIle163, and βAla167 residues of the β subunit are involved together with the mutant βPhe174. The network is expected to stabilize the conformation of β DP (nucleotide-bound form of the β subunit), resulting in increased activation energy for transition to β E (empty β subunit). The modeling further predicts that replacement of βMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of βS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the β subunit hinge domain is pertinent for the rotational catalysis.

  7. Estimates of the effectiveness of automatic control in alleviating wake vortex induced roll excursions

    Science.gov (United States)

    Tinling, B. E.

    1977-01-01

    Estimates of the effectiveness of a model following type control system in reducing the roll excursion due to a wake vortex encounter were obtained from single degree of freedom computations with inputs derived from the results of wind tunnel, flight, and simulation experiments. The analysis indicates that the control power commanded by the automatic system must be roughly equal to the vortex induced roll acceleration if effective limiting of the maximum bank angle is to be achieved.

  8. Rudder Based Roll Control via host-computer of A Robotic Boat

    OpenAIRE

    Bao, Xinping; Yu, Zhenyu; Nonami, Kenzo

    2009-01-01

    Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H control method design is sele...

  9. Disk partition function and oscillatory rolling tachyons

    International Nuclear Information System (INIS)

    Jokela, Niko; Jaervinen, Matti; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2008-01-01

    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et al and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same

  10. Maintenance in Railway Rolling Stock Rescheduling for Passenger Railways

    NARCIS (Netherlands)

    J.C. Wagenaar (Joris); L.G. Kroon (Leo)

    2015-01-01

    textabstractThis paper addresses the Rolling Stock Rescheduling Problem (RSRP), while taking maintenance appointments into account. After a disruption, the rolling stock of passenger trains has to be rescheduled in order to maintain a feasible rolling stock circulation. A limited number of rolling

  11. Covalent protein modification with ISG15 via a conserved cysteine in the hinge region.

    Directory of Open Access Journals (Sweden)

    Veronika N Bade

    Full Text Available The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls, ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation. ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no

  12. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs.

    Science.gov (United States)

    Lee, Jong Kook; Gopal, Ramamourthy; Park, Seong-Cheol; Ko, Hyun Sook; Kim, Yangmee; Hahm, Kyung-Soo; Park, Yoonkyung

    2013-01-01

    HP (2-20) is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20) by substituting Trp for Gln(17) and Asp(19) (Anal 3) increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and an extended helical region (residues 6-20). To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9) (Anal 3-Pro) and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE) and sodium dodecyl sulfate (SDS). NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10) was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly bound to DNA. These results indicate that the bending region of Anal 3- Pro peptide is prerequisite for effective

  13. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs.

    Directory of Open Access Journals (Sweden)

    Jong Kook Lee

    Full Text Available HP (2-20 is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20 by substituting Trp for Gln(17 and Asp(19 (Anal 3 increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5 and an extended helical region (residues 6-20. To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9 (Anal 3-Pro and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE and sodium dodecyl sulfate (SDS. NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10 was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore <1.8 nm in diameter, which is similar to buforin II. Notably, scanning electron microscopic observation of Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly

  14. An Evaluation of the Roll-Rate Stabilization System of the Sidewinder Missile at Mach Numbers from 0.9 to 2.3

    Science.gov (United States)

    Nason, Martin L.; Brown, Clarence A., Jr.; Rock, Rupert S.

    1955-01-01

    A linear stability analysis and flight-test investigation has been performed on a rolleron-type roll-rate stabilization system for a canard-type missile configuration through a Mach number range from 0.9 to 2.3. This type damper provides roll damping by the action of gyro-actuated uncoupled wing-tip ailerons. A dynamic roll instability predicted by the analysis was confirmed by flight testing and was subsequently eliminated by the introduction of control-surface damping about the rolleron hinge line. The control-surface damping was provided by an orifice-type damper contained within the control surface. Steady-state rolling velocities were at all times less than 1 radian per second between the Mach numbers of 0.9 to 2.3 on the configurations tested. No adverse longitudinal effects were experienced in flight because of the tendency of the free-floating rollerons to couple into the pitching motion at the low angles of attack and disturbance levels investigated herein after the introduction of control-surface damping.

  15. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Corazza, Michael

    2016-01-01

    We report the use of roll-to-roll printed silver nanowire networks as front electrodes for fully roll-to-roll processed flexible indium-tin-oxide (ITO) free OPV modules. We prepared devices with two types of back electrodes, a simple PEDOT:PSS back electrode and a PEDOT:PSS back electrode...

  16. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  17. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-10-12

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...

  18. Flow behavior of polymers during the roll-to-roll hot embossing process

    International Nuclear Information System (INIS)

    Deng, Yujun; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Lin, Zhongqin

    2015-01-01

    The roll-to-roll (R2R) hot embossing process is a recent advancement in the micro hot embossing process and is capable of continuously fabricating micro/nano-structures on polymers, with a high efficiency and a high throughput. However, the fast forming of the R2R hot embossing process limits the time for material flow and results in complicated flow behavior in the polymers. This study presents a fundamental investigation into the flow behavior of polymers and aims towards the comprehensive understanding of the R2R hot embossing process. A three-dimensional (3D) finite element (FE) model based on the viscoelastic model of polymers is established and validated for the fabrication of micro-pyramids using the R2R hot embossing process. The deformation and recovery of micro-pyramids on poly(vinyl chloride) (PVC) film are analyzed in the filling stage and the demolding stage, respectively. Firstly, in the analysis of the filling stage, the temperature distribution on the PVC film is discussed. A large temperature gradient is observed along the thickness direction of the PVC film and the temperature of the top surface is found to be higher than that of the bottom surface, due to the poor thermal conductivity of PVC. In addition, creep strains are demonstrated to depend highly on the temperature and are also observed to concentrate on the top layer of the PVC film because of high local temperature. In the demolding stage, the recovery of the embossed micro-pyramids is obvious. The cooling process is shown to be efficient for the reduction of recovery, especially when the mold temperature is high. In conclusion, this research advances the understanding of the flow behavior of polymers in the R2R hot embossing process and might help in the development of the highly accurate and highly efficient fabrication of microstructures on polymers. (paper)

  19. Custom rotating hinge total knee arthroplasty in patients with poliomyelitis affected limbs.

    Science.gov (United States)

    Rahman, Jeeshan; Hanna, Sammy A; Kayani, Babar; Miles, Jonathan; Pollock, Robin C; Skinner, John A; Briggs, Timothy W; Carrington, Richard W

    2015-05-01

    Total knee arthroplasty (TKA) in limbs affected by poliomyelitis is a technically challenging procedure. These patients often demonstrate acquired articular and metaphyseal angular deformities, bone loss, narrowness of the intramedullary canals, impaired quadriceps strength, flexion contractures and ligamentous laxity producing painful hyperextension. Thus, using condylar knee designs in these patients will likely result in early failure because of instability and abnormal load distribution. The aim of this study was to assess the outcomes associated with use of the customised (SMILES) rotating-hinge knee system at our institution for TKA in poliomyelitis-affected limbs. We retrospectively reviewed the outcome of 14 TKAs using the (SMILES) prosthesis in 13 patients with limbs affected by poliomyelitis. All patients had painful unstable knees with hyperextension. There were ten females and three males with a mean age of 66 years (range 51-84) at time of surgery. Patients were followed up clinically, radiologically and functionally with the Oxford knee score (OKS). Mean follow-up was 72 months (16-156). There were no immediate or early complications. One patient fell and sustained a peri-prosthetic fracture at seven months requiring revision to a longer stem. Radiological evaluation showed satisfactory alignment with no signs of loosening in all cases. Mean OKS improved from 11.6 (4-18) to 31.5 (18-40) postoperatively (p poliomyelitis. The device compensates well for ligamentous insufficiency as well as for any associated bony deformity.

  20. Customized Hinged Covered Metallic Stents for the Treatment of Benign Main Bronchial Stenosis.

    Science.gov (United States)

    Han, Xinwei; Al-Tariq, Quazi; Zhao, Yanle; Li, Lei; Cheng, Zhe; Wang, Huaqi; Liu, Chao; Jiao, Dechao; Wu, Gang

    2017-08-01

    To address the limitations of silicone stents, we designed a hinged self-expandable covered metallic stent. The aim of this study was to evaluate the safety and efficacy of the customized stents in clinical applications. This was a retrospective analysis. Under conscious sedation and local anesthesia, the stents were implanted or removed by interventional radiologists, with fluoroscopic guidance. Of 24 patients with benign main bronchial stenosis, stents were successfully placed in 21 (87.5%). The low-pressure balloon before dilation failed in 1 case (4.17%) of left main bronchial cicatricial stenosis. In 2 other cases (8.33%), stent placement was abandoned. Stents were successfully removed between 29 and 103 days after the procedure. After stent removal, the follow-up lasted for at least 12 months. Restenosis occurred only in 1 case (4.55%) owing to bronchial collapse 3 days after stent removal. Dyspnea occurred in another case (4.55%) at 2 months after retrieval; recurrence was confirmed using bronchoscopy, leading to a left pneumonectomy. The described procedure is safe and easy to be performed and avoids the use of intubation, bronchoscopy, and general anesthesia. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  2. Investigation of the rolling motion of a hollow cylinder using a smartphone

    Science.gov (United States)

    Puttharugsa, Chokchai; Khemmani, Supitch; Utayarat, Patipan; Luangtip, Wasutep

    2016-09-01

    This paper describes the use of smartphone’s gyroscope sensor to analyse a hollow cylinder rolling down an inclined plane. The smartphone (iPhone 4s) was attached to the end of hollow cylinder and was equipped with the Sensorlog application (Sensorlog app) to record the angular speed of rolling down an inclined plane. The experimental results agree with the theoretical model that is familiar to students for the rolling motion on an inclined plane. Moreover, the coefficients of static friction and kinetic friction were determined to be 0.205 ± 0.011 and 0.178 ± 0.003 from the measurements, respectively. This experiment demonstrated an alternative way to teach the rolling motion in a physics laboratory.

  3. Detection of Noncircularity and Eccentricity of a Rolling Winder by Artificial Vision

    Directory of Open Access Journals (Sweden)

    Dominique Knittel

    2002-07-01

    Full Text Available A common objective in the web transport industry is to increase the velocity as much as possible. Some disturbances drastically limit this velocity. Time-varying eccentricity of the rolling winder is one of the major disturbances which affect the quality of the rolling winder. This unsuitable factor can lead to a web break for a high-speed winding process. The main contribution of this work is to offer a new measurement technique that is able to provide on-line the estimation of the roll radius and its variations with a subpixel accuracy. A key feature within this work is the contour curvature classification by means of wavelets decomposition of the edge orientation function. We also propose a new model accounting for the increasing radius of the rolling winder, which confirms the experimental results and the reliability of the proposed approach.

  4. Conveyor technology rolls ahead to keep pace with industry demands

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2007-11-15

    New drives, belts and rolling components maintain capacity but require less energy and maintenance. Computer-assisted component design and system modelling are becoming standard in improving conveyors for transporting ores, pellets or coal in open-cast mines. Continental Conveyor, for example, uses Statix modelling software to analyze existing conveyor systems and design new ones. Sandvik Materials Handling uses discrete element modelling. Developments by the major manufacturers including Veyance Technologies, Hagglunds Drives, and TPKL complings in drives, complings, conveyors, monitoring systems etc. are described in this article. 2 photos.

  5. Experiments on Spray from a Rolling Tire

    Science.gov (United States)

    Radovich, Charles; Browand, Fred

    2010-11-01

    A novel laboratory apparatus has been built to understand the mechanisms and statistics of droplet production for spray emerging from a rolling tire. Using high-speed imaging, water passing through a single circumferential groove was observed to leave the tire contact patch in the form of a liquid sheet of non-uniform thickness. The sheet breaks into droplets as a result of several, organized instabilities. Measurements for the breakup length of the liquid sheet showed a dependence on Weber number proportional to We-1/6, for Weber numbers of 2700, 10900 and 24400. A technique to identify and size water droplets was developed and the distribution of droplet sizes was determined as a function of Weber number. At We = 2700, droplet sizes between 80 and 9000μm were detected, with a mean diameter near 800μm. Both the range of droplet sizes and the mean diameter were found to decrease with increasing Weber number as (approximately) We-1/2. Correlation Image Velocimetry (CIV) was used to estimate the distribution of droplet velocities as a function of droplet size. The spread of droplet velocities about the tire peripheral speed is strongly correlated with droplet size. The spread can be estimated by a simple physical model incorporating rigid droplets subject to gravity and drag.

  6. Multivariable control of a rolling spider drone

    Science.gov (United States)

    Lyu, Haifeng

    The research and application of Unmanned Aerial Vehicles (UAVs) has been a hot topic recently. A UAV is dened as an aircraft which is designed not to carry a human pilot or operated with remote electronic input by the flight controller. In this thesis, the design of a control system for a quadcopter named Rolling Spider Drone is conducted. The thesis work presents the design of two kinds of controllers that can control the Drone to keep it balanced and track different kinds of input trajectories. The nonlinear mathematical model for the Drone is derived by the Newton-Euler method. The rotational subsystem and translational system are derived to describe the attitude and position motion of Drone. Techniques from linear control theory are employed to linearize the highly coupled and nonlinear quadcopter plant around equilibrium points and apply the linear feedback controller to stabilize the system. The controller is a digital tracking system that deploys LQR for system stability design. Fixed gain and adaptive gain scheduled controllers are developed and compared with different LQR weights. Step references and reference trajectories involving signicant variation for the yaw angle in the xy-plane and three-dimensional spaces are tracked in the simulation. The physical implementation and an output feedback controller are considered for future work.

  7. Control of surface thermal scratch of strip in tandem cold rolling

    Science.gov (United States)

    Chen, Jinshan; Li, Changsheng

    2014-07-01

    The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.

  8. Using GM (1,1 Optimized by MFO with Rolling Mechanism to Forecast the Electricity Consumption of Inner Mongolia

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2016-01-01

    Full Text Available Accurate and reliable forecasting on annual electricity consumption will be valuable for social projectors and power grid operators. With the acceleration of electricity market reformation and the development of smart grid and the energy Internet, the modern electric power system is becoming increasingly complex in terms of structure and function. Therefore, electricity consumption forecasting has become a more difficult and challenging task. In this paper, a new hybrid electricity consumption forecasting method, namely grey model (1,1 (GM (1,1, optimized by moth-flame optimization (MFO algorithm with rolling mechanism (Rolling-MFO-GM (1,1, was put forward. The parameters a and b of GM (1,1 were optimized by employing moth-flame optimization algorithm (MFO, which is the latest natured-inspired meta-heuristic algorithm proposed in 2015. Furthermore, the rolling mechanism was also introduced to improve the precision of prediction. The Inner Mongolia case discussion shows the superiority of proposed Rolling-MFO-GM (1,1 for annual electricity consumption prediction when compared with least square regression (LSR, GM (1,1, FOA (fruit fly optimization-GM (1,1, MFO-GM (1,1, Rolling-LSR, Rolling-GM (1,1 and Rolling-FOA-GM (1,1. The grey forecasting model optimized by MFO with rolling mechanism can improve the forecasting performance of annual electricity consumption significantly.

  9. Preorganization of Nanostructured Inks for Roll-to-Roll-Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Senkovskyy, Volodymyr; Kiriy, Anton

    2010-01-01

    , a preorganized ink was obtained that was used to make polymer solar cell modules in a full roll-to-roll coating and printing process operating in ambient air. The polymer solar cells were thus prepared by a mixture of slot die and flat-bed screen printing. Various polymer solar cell modules were prepared ranging...

  10. Technology development for roll-to-roll production of organic photovoltaics

    NARCIS (Netherlands)

    Galagan, Y.O.; Vries, I.G. de; Langen, A.P.; Andriessen, H.A.J.M.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.

    2011-01-01

    In order to reach the objective of low-cost, large area organic photovoltaic systems, we build up a knowledge base concerning the influence of process conditions on the performance of polymer solar cells. A large area solar cell module, with roll-to-roll coated PEDOT:PSS and photoactive layers

  11. Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan; Ulsh, Michael; More, Karren; Wood, David

    2017-04-26

    Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.

  12. Roll-to-roll paper sensors (ROPAS); Wireless communicating sensors on paper in the logistic chain

    NARCIS (Netherlands)

    Rentrop, C.; Rubingh, J.E.J.M.; Lelieveld, R.; Sandberg, H.

    2014-01-01

    The ROPAS project (Roll-to-roll paper sensors) combines high end electronics and wireless sensors with low cost paper substrates and processing techniques that can be applied on a large scale. Paper is the next step in the printed electronics roadmap of utilising cheaper substrate materials as a

  13. Study of the influence between the strength of antibending of working rolls on the widening during hot rolling of thin sheet metal

    Directory of Open Access Journals (Sweden)

    U. Muhin

    2016-07-01

    Full Text Available Based on the variation principle of Jourdan was developed a mathematical model of the process of widening freely in hot rolling of thin sheet metal. The principle applies to rigid-plastic materials and for the cinematically admissible area of speeds. The developed model allows to study the distribution of the widening on the length of the deformation zone depending on the parameters of the rolling process and sheet metal. Results are obtained, characterizing the size of the widening and effectiveness of the process control on tension at the entrance and exit from the stand. The widening is dependent on the strength of anti bending.

  14. Influences of rolling method on deformation force in cold roll-beating forming process

    Science.gov (United States)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  15. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    Science.gov (United States)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  16. Optimization of elastic elements of a damping devices for cylindrical hinges in crane-manipulating installations of mobile machines

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-03-01

    Full Text Available The article considers the problems of designing an original damping devices worn for cylindrical hinges in crane-manipulating installations of mobile machines. These devices can significantly reduce the additional impact load on a steel structure manipulators due to the presence of increased gaps in the hinges. Formulated the general formulation of nonlinear constrained optimization of the sizes of the elastic elements of the damping devices. Considered a promising design variants of elastic elements. For circular and arc elastic elements with circular and rectangular cross-section for-mulated the problems of optimal design including criterion functions and systems of geometric, technological, stiffness and strength penalty constraints. Analysis of the impact of various operating and design parameters on the results of optimal design of elastic elements was performed. Were set to the recommended the use of the constructive types of elastic elements to generate the required stiffness of the damper devices.

  17. The Effect of Rolling As-Cast and Homogenized U-10Mo Samples on the Microstructure Development and Recovery Curves

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-30

    microstructure. However, annealing the samples led to quick recovery in hardness as evidenced by a drop in Vickers hardness of 20%. Hot rolling was performed at 650 and 800°C. The hot-rolling mill loads (load separation force) were approximately 40 to 50% less than the cold-rolling for the same reduction and thickness. It was observed that hot rolling the samples with 50% or more reduction in thickness were responsible for dynamic recrystallization in the hot-rolled samples and led to grain refinement. Unlike the cold-rolled samples, the hot-rolled samples did not fracture the carbides and appeared to heal the casting defects. The recovery phenomenon was similar to the cold-rolled samples above the eutectoid temperatures, but owing to the refined grain size, the precipitation of the lamellar phase was far more rapid in these samples and the hardness increased more rapidly than in the cold rolled sample when heated below the eutectoid temperature. The data generated from these rolling efforts has been used to make the process modeling efforts more robust and applicable to all USHPRR partner rolling mills. The flow stress for cold rolling the samples was determined to be between 170-190 ksi, with frictional forces between 0.2 and 0.4 for the PNNL mill. The measured roll separation forces and those simulated using finite element methods for hot and cold rolling for the PNNL rolling mill were in good agreement.

  18. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  19. Magnon Inflation: Slow Roll with Steep Potentials

    CERN Document Server

    Adshead, Peter; Burgess, C P; Hayman, Peter; Patil, Subodh P

    2016-01-01

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy the usual slow-roll condition (d V)^2 << V^2/Mp^2. They evade the usual slow-roll conditions on $V$ because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides an example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for the background evolution for Chromo-natural inflation. We also show that our EFT can be understood as a multi-field generalization ...

  20. Synthetic study on cystinyl peptides using solution and solid phase metodology: human IgG1 hinge region

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Gut, Vladimír; Ježek, Jan; Buděšínský, Miloš; Kašička, Václav; Wünsch, Erich; Hlaváček, Jan

    2010-01-01

    Roč. 39, č. 3 (2010), s. 641-650 ISSN 0939-4451 R&D Projects: GA ČR GA203/03/1362; GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : hinge region * immunoglobulin * prion protein * solution synthesis * solid phase synthesis Subject RIV: CC - Organic Chemistry Impact factor: 4.106, year: 2010

  1. Numerical and Experimental Approach to Investigate Plane-view Shape and Crop Loss in Multistage Plate Rolling

    International Nuclear Information System (INIS)

    Byon, Sang Min

    2013-01-01

    A finite element based approach that can be used to investigate the plane-view shape and crop loss of a material during plate rolling is presented. We employed a three-dimensional finite element model to continuously simulate the shape change of the head and tail of a plate as the number of rolling passes increases. The main feature of the proposed model lies in the fact that the multistage rolling can be simulated without a break because the rolling direction of the material is reversibly controlled as the roll gap sequentially decreases. The material constants required in the finite element analysis were experimentally obtained by hot tensile tests. We also performed a pilot hot plate rolling test to verify the usefulness of the proposed finite element model. Results reveal that the computed plane-view shapes as well as crop losses by the proposed finite element model were in good agreement with the measured ones. The crop losses predicted by the proposed model were within 5% of those measured from the pilot hot plate rolling test

  2. Autonomous Supervision and Control of Parametric Roll Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto

    therefore two objectives. The first is to develop methods for detection of the inception of parametric roll resonance. The second is to develop control strategies to stabilize the motion after parametric roll has started. Stabilisation of parametric roll resonance points to two possible courses of action...... strategies are then combined to stabilise parametric roll resonance within few roll cycles. Limitations on the maximum stabilisable roll angle are analysed and linked to the ii slew rate saturation and hydrodynamic stall characteristics of the fin stabilisers. The study on maximum stabilisable roll angle...... leads to the requirements for early detection. Two novel detectors are proposed, which work within a shorttime prediction horizon, and issue early warnings of parametric roll inception within few roll cycles from its onset. The main idea behind these detection schemes is that of exploiting the link...

  3. Predicting the wheel rolling resistance regarding important motion parameters using the artificial neural network

    Directory of Open Access Journals (Sweden)

    F Gheshlaghi

    2016-04-01

    Full Text Available Introduction: Rolling resistance is one of the most substantial energy losses when the wheel moves on soft soil. Rolling resistance value optimization will help to improve energy efficiency. Accurate modeling of the interaction soil-tire is an important key to this optimization and has eliminated the need for costly field tests and has reduced the time required to test. Rolling resistance will change because of the tire and wheel motion parameters and characteristics of the ground surface. Some tire design parameters are more important such as the tire diameter, width, tire aspect ratio, lugs form, inflation pressure and mechanical properties of tire structure. On the other hand, the soil or ground surface characteristics include soil type; moisture content and bulk density have an important role in this phenomenon. In addition, the vertical load and the wheel motion parameters such as velocity and tire slip are the other factors which impact on tire rolling resistance. According to same studies about the rolling resistance of the wheel, the wheel is significantly affected by the dynamic load. Tire inflation pressure impacted on rolling resistance of tires that were moving on hard surfaces. Studies showed that the rolling resistance of tires with low inflation pressure (less than 100 kPa was too high. According to Zoz and Griss researches, increasing the tire pressure increases rolling resistance on soft soil but reduces the rolling resistance of on-road tires and tire-hard surface interaction. Based on these reports, the effect of velocity on tire rolling resistance for tractors and vehicles with low velocity (less than 5 meters per second is usually insignificant. According to Self and Summers studies, rolling resistance of the wheel is dramatically affected by dynamic load on the wheel. Artificial Neural Network is one of the best computational methods capable of complex regression estimation which is an advantage of this method compared with

  4. Investigation of the Three-Dimensional Hinge Moment Characteristics Generated by the ONERA-M6 Wing with an Aileron

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The hinge moment characteristics for ONERA-M6 wing with aileron configuration have been investigated numerically based on the different gaps and deflecting angles. The results show that the effects on the wing made by the deflecting aileron are notable. Comparing with the nonaileron case, the chordwise pressure coefficient distribution for the wing with aileron has shown the totally different trends. The small gap can force the air flow through and form the extremely strong spraying flow. It can directly destroy the previously formed leading edge vortex (LEV. Due to the presence of the positive deflecting angle, the trailing edge vortex (TEV will begin to generate at the trailing edge of the aileron. The induced secondary LEV will be mixed with the developing TEVs and form the stronger TEVs at the downstream position. Comparing with the subsonic flow, the curve for the supersonic flow has shown a good linear. The corresponding hinge moments are also extremely sensitive to the changing angle of attack, and the slope of curves is also bigger than that of the subsonic flow. The bigger gap and deflecting angle can result in the curve of hinge moment bending upward at high angle of attack. The corresponding pressure cloud and streamlines have also been obtained computationally and analyzed in detail.

  5. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion

    International Nuclear Information System (INIS)

    Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.; Erb, Steven M.; Luy, Betty E.; Calvert, Amanda E.; Blair, Carol D.; Roehrig, John T.; Huang, Claire Y.-H.

    2011-01-01

    Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, but only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.

  6. Modified random hinge transport mechanics and multiple scattering step-size selection in EGS5

    International Nuclear Information System (INIS)

    Wilderman, S.J.; Bielajew, A.F.

    2005-01-01

    The new transport mechanics in EGS5 allows for significantly longer electron transport step sizes and hence shorter computation times than required for identical problems in EGS4. But as with all Monte Carlo electron transport algorithms, certain classes of problems exhibit step-size dependencies even when operating within recommended ranges, sometimes making selection of step-sizes a daunting task for novice users. Further contributing to this problem, because of the decoupling of multiple scattering and continuous energy loss in the dual random hinge transport mechanics of EGS5, there are two independent step sizes in EGS5, one for multiple scattering and one for continuous energy loss, each of which influences speed and accuracy in a different manner. Further, whereas EGS4 used a single value of fractional energy loss (ESTEPE) to determine step sizes at all energies, to increase performance by decreasing the amount of effort expended simulating lower energy particles, EGS5 permits the fractional energy loss values which are used to determine both the multiple scattering and continuous energy loss step sizes to vary with energy. This results in requiring the user to specify four fractional energy loss values when optimizing computations for speed. Thus, in order to simplify step-size selection and to mitigate step-size dependencies, a method has been devised to automatically optimize step-size selection based on a single material dependent input related to the size of problem tally region. In this paper we discuss the new transport mechanics in EGS5 and describe the automatic step-size optimization algorithm. (author)

  7. High-Speed Rolling of AZ31 Magnesium Alloy Having Different Initial Textures

    Science.gov (United States)

    Onuki, Yusuke; Hara, Kenichiro; Utsunomiya, Hiroshi; Szpunar, Jerzy A.

    2015-02-01

    It is known that magnesium alloys can be rolled up to a large thickness reduction and develop a unique texture when the rolling speed is high (>1000 m/min). In order to understand the texture formation mechanism during high-strain-rate deformation, high-speed rolling of AZ31 magnesium alloy samples having different initial textures was conducted. The main components of the textures after the rolling were the RD-split basal, which consisted of 10°-20° inclining basal poles from the normal direction toward the rolling direction of the sheet, regardless of the different initial textures. With preheating at 473 K, all the samples were rolled without cracking while all were cracked when preheating was not applied. The optical micrographs and EBSD measurements showed a significant amount of twins and the cracks that developed along the shear bands consisted with laminated twins. Based on the texture simulation using the visco-plastic self-consistent model, it is concluded that the rapid development of the RD-split basal component from the initial basal alignment along the transverse direction was attributable to the tension twinning, The effect of the initial texture on the crack formation can be explained by the activation of the twinning system.

  8. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters

    International Nuclear Information System (INIS)

    Carretero Olalla, V.; Bliznuk, V.; Sanchez, N.; Thibaux, P.; Kestens, L.A.I.; Petrov, R.H.

    2014-01-01

    The yield strength of different pipeline steel grades, rolled under four different conditions, was correlated with calculated strengthening contributions. Slabs with the same composition were rolled under identical roughing conditions but varied finish rolling temperature (FRT). Two cooling routes, consisting of accelerated water cooling condition (ACC) followed by slow cooling in an oven to simulate coiling and air cooling were applied after the last rolling pass. The microstructures obtained after each thermo mechanical controlled process (TMCP) schedule, were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Electron backscatter diffraction (EBSD). The mechanical properties of the plates were determined by means of tensile tests and Charpy V-notch impact test. It was confirmed that a combination of fast cooling rate and low finish rolling temperature produces higher strength than the slow cooling rate and high finish rolling temperature. Contributions to the strengthening arising from the various microstructural features like solid solution strengthening, grain size, dislocation density and precipitation hardening, were analyzed using Taylor, Hall–Petch and Ashby–Orowan approaches. The root of the sum of the squares method was applied to link the experimental with the model-predicted strength. It is believed that this approach provides a better understanding of the effect of TMCP parameters on the microstructure and strengthening mechanisms in pipeline steels

  9. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  10. Aplicación del modelo hidrológico-swat-en una microcuenca agrícola de La Pampa ondulada Application of the hydrologic model - swat - on a micro agricultural basin of the rolling Pampa

    Directory of Open Access Journals (Sweden)

    Felipe Behrends Kraemer

    2011-07-01

    Full Text Available El modelado hidrológico es a menudo el primer paso en el desarrollo de sistemas de decisión espacial para identificaráreas vulnerables a la contaminación por nutrientes, pesticidas así como también a contaminantes biológicos. En este sentido el SWAT (Soil and Water Assesment Tool fue desarrollado para predecir impactos de las prácticas de manejo de las tierras en las aguas, sedimentos y agroquímicos en cuencas hidrográficas con diferentes suelos, usos y prácticas en largos períodos de tiempo. Aunque el mismo está siendo aplicado en todo el mundo, todavía no esta difundido su uso en la Argentina, no encontrándose al momento reportes al respecto. Este modelo se utilizó en una microcuenca agrícola de la Pampa Ondulada (Argentina y fue calibrado y validado utilizando los valores de escurrimientos medidos in situ. Se encontraron buenas eficiencias a escala diaria (R²: 0,55; R² ENS: 0,52 y pobres a escala mensual (R²: 0,34; R² ENS: 0,04. En la calibración, los escurrimientos fueron sobreestimados en un 31,8% y 32,6% para la escala mensual y diaria respectivamente, mientras que en la validación se sobreestimó un 42,5% para los valores mensuales y un 41,2% para los diarios. La aplicación del SWAT en esta microcuenca agrícola resultó auspiciosa y conduce a la inclusión de dicho modelo en futuros trabajos.A hydrological model is often the first step for the development of spatial decision systems in order to identify vulnerable areas to the pollution by nutrients, pesticides as well as biological contaminants. The SWAT model was developed to predict the impact of land management on water, agrochemicals and sediments in hydrographical basins with different soils, land uses and practices for long time periods. This model is being used all over the world but it has not been applied in Argentina until present. The SWAT model was used in an agricultural microbasin in the Rolling Pampa (Argentina and was calibrated and validated

  11. A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2014-01-01

    Full Text Available Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR. The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

  12. Study of rolled uranium annealing process

    International Nuclear Information System (INIS)

    Cabane, G.

    1954-06-01

    The dilatometric study of rolled uranium clearly shows not only the expansions or contractions induced by stress relief or diffusion of vacancies, but also the slope variations of the cooling curves, which are the best evidence of a texture change. Under the microscope, hard-rolled sheets appear as a mixture of two distinct structures; it is also possible by intermediate annealing to prepare homogeneous sheets of either structure, i.e. twinned or untwinned. All these sheets which have similar textures, undergo at first a primary recrystallization beginning at 320 deg C, then a texture change without any apparent crystal growth, at about 430 deg C. (author) [fr

  13. Floating Characteristics of Rudders and Elevators in Spinning Attitudes as Determined From Hinge-Moment-Coefficient Data With Application to Personal-Owner-Type Airplanes

    National Research Council Canada - National Science Library

    Bihrle, William

    1950-01-01

    A study was made of available rudder and elevator hinge-moment-coefficient-coefficient data in order to determine the floating characteristics of various types of rudders and elevators in spinning attitudes...

  14. Calculation and experimental technique of determination of rolling procedure for cold-rolling tube mills

    International Nuclear Information System (INIS)

    Igoshin, V.F.; Aleshin, V.A.; Khoroshikh, Yu.G.; Bogatov, A.A.; Mizhiritskij, O.I.

    1983-01-01

    Calculation and experimental technique of determination of tube cold rolling procedure has been developed. Rolling procedure based on the usage of regression equation epsilon=1.24 psi, where psi is the relative reduction of area, delta-permissible reduction during rolling, has been tested on 08Kh18N10T steel. The effect of tube geometry, tool calibration parameters, lubrication conditions etc. on metal deformability in taking into account experimentally. The use of the technique proposed has allowed to shorten the time of mastering of the production of tubes from different steels

  15. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing.

    Directory of Open Access Journals (Sweden)

    Conor M Bolger

    Full Text Available The purposes of the current study were to 1 test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2 investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding's hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA. Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05. The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants.

  16. Celtic Stone Dynamics Revisited Using Dry Friction and Rolling Resistance

    Directory of Open Access Journals (Sweden)

    J. Awrejcewicz

    2012-01-01

    Full Text Available The integral model of dry friction components is built with assumption of classical Coulomb friction law and with specially developed model of normal stress distribution coupled with rolling resistance for elliptic contact shape. In order to avoid a necessity of numerical integration over the contact area at each the numerical simulation step, few versions of approximate model are developed and then tested numerically. In the numerical experiments the simulation results of the Celtic stone with the friction forces modelled by the use of approximants of different complexity (from no coupling between friction force and torque to the second order Padé approximation are compared to results obtained from model with friction approximated in the form of piecewise polynomial functions (based on the Taylor series with hertzian stress distribution. The coefficients of the corresponding approximate models are found by the use of optimization methods, like as in identification process using the real experiment data.

  17. Physical Analysis of Cross-Wedge Rolling Process of a Stepped Shaft

    Directory of Open Access Journals (Sweden)

    Łukasz Wójcik

    2017-12-01

    Full Text Available The paper presents experimental- model research results on the process of cross-wedge rolling of an axially-symmetrical element (stepped shaft. During research was used plastic mass on the basis of waxes in black and white colour. The aim of this experimental research was to determine the best option of forming in terms of values obtained and the course of forces. Physical examination was carried out using specialist machines, that is model and laboratory cross-wedge rolling mill. Experimental analysis was carried out using billets with the temperature of 15°C, whereas the actual process was carried out for billet from C45 carbon steel of temperature 1150°C. The study compared the dimensions of the components obtained during rolling tests and forming forces obtained in the result of physical modeling with forces obtained during real tests.

  18. Rolling scheduling of electric power system with wind power based on improved NNIA algorithm

    Science.gov (United States)

    Xu, Q. S.; Luo, C. J.; Yang, D. J.; Fan, Y. H.; Sang, Z. X.; Lei, H.

    2017-11-01

    This paper puts forth a rolling modification strategy for day-ahead scheduling of electric power system with wind power, which takes the operation cost increment of unit and curtailed wind power of power grid as double modification functions. Additionally, an improved Nondominated Neighbor Immune Algorithm (NNIA) is proposed for solution. The proposed rolling scheduling model has further improved the operation cost of system in the intra-day generation process, enhanced the system’s accommodation capacity of wind power, and modified the key transmission section power flow in a rolling manner to satisfy the security constraint of power grid. The improved NNIA algorithm has defined an antibody preference relation model based on equal incremental rate, regulation deviation constraints and maximum & minimum technical outputs of units. The model can noticeably guide the direction of antibody evolution, and significantly speed up the process of algorithm convergence to final solution, and enhance the local search capability.

  19. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling....... In a narrow area in the deformation zone, the velocity of the de-formed material is equal to the velocity of the rolls. This area or line is named “neutral line”. The posi-tion of the neutral line depends on friction, reduc-tion ratio, diameter of the rolls, and width of the sheet....

  20. NON-CENTRAL ROLLING OF FLAT WORKS WITH TAPERED THICKNESS

    Directory of Open Access Journals (Sweden)

    I. A. Isaevich

    2010-01-01

    Full Text Available The way of forming of variable shape strips with rolling in non-drive waves with rounding by the movable arbor strip is analyzed. The way of rolling with derivation of speeds of deforming instruments is offered.

  1. Wire Finishing Mill Rolling Bearing Fault Diagnosis Based on Feature Extraction and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Rolling bearing is main part of rotary machine. It is frail section of rotary machine. Its running status affects entire mechanical equipment system performance directly. Vibration acceleration signals of the third finishing mill of Anshan Steel and Iron Group wire plant were collected in this paper. Fourier analysis, power spectrum analysis and wavelet transform were made on collected signals. Frequency domain feature extraction and wavelet transform feature extraction were made on collected signals. BP neural network fault diagnosis model was adopted. Frequency domain feature values and wavelet transform feature values were treated as neural network input values. Various typical fault models were treated as neural network output values. Corresponding relations between feature vector and fault omen were utilized. BP neural network model of typical wire plant finishing mill rolling bearing fault was constructed by training many groups sample data. After inputting sample needed to be diagnosed, wire plant finishing mill rolling bearing fault can be diagnosed. This research has important practical significance on enhancing rolling bearing fault diagnosis precision, repairing rolling bearing duly, decreasing stop time, enhancing equipment running efficiency and enhancing economic benefits.

  2. 9 CFR 381.159 - Poultry rolls.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Poultry rolls. 381.159 Section 381.159... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Definitions and Standards of Identity or Composition § 381...

  3. The riddles of rock and roll

    NARCIS (Netherlands)

    L.J.M. d' Anjou (Leo)

    2003-01-01

    textabstractRock and roll has often been equated with rebellion. The genre, though, is just a form of popular music and many of the important players in the game of promoting it were, like the saying goes, only in it for the money. As a rule, music like that will be supportive of the social order

  4. Statistical prediction of parametric roll using FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Choi, Ju-hyuck; Nielsen, Ulrik Dam

    2017-01-01

    Previous research has shown that the First Order Reliability Method (FORM) can be an efficient method for estimation of outcrossing rates and extreme value statistics for stationary stochastic processes. This is so also for bifurcation type of processes like parametric roll of ships. The present...

  5. Crowdsourcing rock n' roll multimedia retrieval

    NARCIS (Netherlands)

    Snoek, Cees G.M.; Freiburg, Bauke; Oomen, Johan; Ordelman, Roeland J.F.

    2010-01-01

    In this technical demonstration, we showcase a multimedia search engine that facilitates semantic access to archival rock n' roll concert video. The key novelty is the crowdsourcing mechanism, which relies on online users to improve, extend, and share, automatically detected results in video

  6. Detection of Parametric Roll on Ships

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2012-01-01

    phenomenon could make the navigator change ship’s speed and heading, and these remedial actions could make the vessel escape the bifurcation. This chapter proposes non-parametric methods to detect the onset of parametric roll resonance. Theoretical conditions for parametric resonance are re...... on experimental data from towing tank tests and data from a container ship passing an Atlantic storm....

  7. Research upon the quality assurance of the rolling-mill rolls and the variation boundaries of the chemical composition

    Directory of Open Access Journals (Sweden)

    Kiss, I.

    2008-08-01

    Full Text Available The cast-iron rolls must present higher hardness at the rolling surface and lower in the core and the necks, adequate with mechanical resistance and in the high work temperature. If in the zone of the rolling surface, the hardness is guarantied by the irons structure, through the cementite quantities, the core of rolls must contain graphite, to assure this property. Starting from the lamination equipments aspects, from the form of rolls, of the technological interest zones and the structure, which assures the exploitation property, it was establish, through modeling, to the mathematical description of a direct influences, and in final, through successive determinations, to an optimum. One of the parameters, which are determined the structure of the irons destined for rolls casting, is the chemical composition, which guaranties the exploitation properties of the each roll in the stand of rolling mill. The realization of optimum chemical compositions of the cast-iron can constitute a technical efficient way to assure the exploitation properties, the material from which the rolling mills rolls are manufactured having an important role in this sense. Although the manufacture of rolls is in continuously perfecting, the requirements for superior quality rolls are not yet completely satisfied, in many cases, the absence of quality rolls preventing the realization of quality laminates or the realization of productivities of which rolling mills are capable. This paper presents an analysis of the main alloying elements from chemical composition, the influences upon the mechanical properties of the cast-iron rolls, and presents also some graphical addenda. Using the Matlab calculation and graphical programs we determinate some correlations between the hardness (on the working surface and on necks and the chemical composition. Using the double and triple correlations is really helpful in the foundry practice, as it allows us to determine variation

  8. Rolling cylinder phase 1: proof of concept and first optimization

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, L.; Taraborrelli, V.

    2011-07-15

    The Rolling Cylinder is an innovative wave energy device at first stage of development at the time this report is created. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes tests in regular waves and irregular waves, realized in two different set of tests. The optimized short model for the rolling cylinder resulted to have 7 sets of fins with relative distance between two consecutive sets = 0.20 m, 6 fins par set with a thickness of 0.75 mm and a draft d = 0.36 m that features half blade emerging from mean water level. In this case the maximum efficiencies were: 1) 8.7% for RW3. 2) 7.3% for RW4. 3) 6.3% for RW5. These results under typical regular waves (RW3-5) were very close to the results with 4 sets of fins with relative distance between two consecutive sets = 0.40 m, 6 fins par set, 0.75 mm thickness and draft = 0.36 m: 1) 7.2% for RW3. 2) 6.9% for RW4. 3) 6.2% for RW5. It must be noticed that the short model does not have the necessary length to perform optimally under the target wave conditions. The optimal device length has been calculated to be comparable to the wave length of the most energetic/probable wave conditions, i.e. RW3 and RW4. Under this consideration, the short model is only 1/3 of the total length of a complete device that should then be = 4.2 m (105 m in full scale). A first rough estimation of the power production for the rolling cylinder has been conducted using the results from regular wave tests. It has been concluded that for a fixed device (not floating), 105 m long with 23 sets of fins, 6 fins par set, draft of 9 m, similar geometry and fin's elasticity than the model tested in the present report, as well as possibility of adjusting the load to the incoming wave condition (gearing), the yearly energy production of 241 MWh/y (minus the losses in the power take off system), corresponding to a mechanic efficiency of 19%. Result must be validated with irregular wave tests

  9. Integrated Rolling Stock Planning for Suburban Passenger Trains

    DEFF Research Database (Denmark)

    Thorlacius, Per

    used, the result being the loss of optimality. The talk will present a new, integrated rolling stock planning model in which the many requirements are handled all at the same time. Preliminary results from DSB S-tog, the suburban train operator of the City of Copenhagen will also be presented.......A central issue for operators of passenger trains is providing sufficient number of seats while minimising operating costs. This process must be conducted taking a large number of practical, railway oriented requirements into account. Because of this complexity, a stepwise solution was previously...

  10. Lengthening the lifetime of roll-to-roll produced polymer solar cells

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager

    the knowledge of the degradation mechanisms involved in roll-to-roll coated polymer solar cells. While only a part of the experiments have directly involved roll-to-roll coated devices, most of the work is applicable to coated devices. The first part of the dissertation is devoted to the study of in......The field of polymer solar cells is a field with an exponential growth in the number of published papers. It is a field defined by a set of challenges including; efficiency, stability and processability. Before all of these challenges have been addressed; polymer solar cells...... will not be a commercial success. This dissertation is devoted primarily to the study of the stability of polymer solar cells, and more specifically to designing and verifying experimental techniques, procedures, and automated solutions to stability tests and characterization. The goal of the project was to expand...

  11. Roll-to-Roll fabrication of large area functional organic materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar R.; Hösel, Markus; Krebs, Frederik C

    2013-01-01

    With the prospect of extremely fast manufacture of very low cost devices, organic electronics prepared by thin film processing techniques that are compatible with roll-to-roll (R2R) methods are presently receiving an increasing interest. Several technologies using organic thin films...... research fields such as organic photovoltaics, organic thin film transistors, light-emitting diodes, polymer electrolyte membrane fuel cells, and electrochromic devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 000: 000–000, 2012...

  12. Using Light-Induced Thermocleavage in a Roll-to-Roll Process for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Norrman, Kion

    2010-01-01

    We report on the use of intense visible light with a narrow spectral distribution matched to the region where the conjugated polymer material absorbs to selectively heat the active material and induce thermocleavage. We show a full roll-to-roll process, leading to complete large-area polymer solar...... ion mass spectrometry, attenuated total reflectance infrared, and transmission/reflection UV−vis techniques....

  13. Roll-to-roll coated PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Hjuler, Hans Aage; Terkelsen, Carina

    2012-01-01

    We employed roll-to-roll coating in the preparation of 40 μm thick poly[2,2′(m-phenylene)-5,5′bibenzimidazole] (PBI) films for fuel cells using both knife-coating (KC) and slot-die (SD) coating. The films were coated directly from a 9% (w/w) solution of PBI in dimethylacetamide onto a sacrificial...

  14. Analysis and Design of Rolling Stock Elements

    Directory of Open Access Journals (Sweden)

    M. V. Chugunov

    2014-01-01

    Full Text Available The work solves the problem of equal-strength design of the rolling stock elements in option of discrete equal-strength. For this purpose, has been developed the software built in SolidWorks and SolidWorks Simulation as an AddIn-application using necessary basic functionality and extending it in the specified part on the basis of API SolidWorks and COM technology.The SolidWorks software is used to develop a 3D-model for general force frame of the wagon as an assembly. As this assembly is quite complicated and includes many elements both standard, and non-standard type, 3D - specification is developed by 3Dvia Composer software, which is included in the article in the form of the gif-animation and via-roller. This means is very useful for the evident analysis of topology and geometrical properties of a design as a whole, facilitates a procedure of adequate formation of the FE model providing accuracy and profitability of computing. From the point of view of profitability and opportunities of definition of concentrators of stresses with a sufficient accuracy for practice the combined model including volume and shell FEM is optimum.In the work the analysis results of stress-strain state of a design are given in two options of static loading in the form of stress diagrams, the main areas of stress concentration are revealed.Results of equal-strength design in the form of thickness distribution on thin-walled elements of a design, considered within FEM as shells, are received. It is shown that the developed software doesn't allow optimum design results, however it is economically viable, simple in use and can be applied to the solution of problems of rational design in design practice.SolidWorks, as well as the majority of similar CADs, possess an open architecture and allow users to apply its functionality. This work continues a series of publications of the author of this paper and other authors concerning the API-based CAD/CAE adaptation and

  15. Fluid-structure interaction of a rolling restrained body of revolution at high angles of attack

    Science.gov (United States)

    Degani, D.; Ishay, M.; Gottlieb, O.

    2017-03-01

    The current work investigates numerically rolling instabilities of a free-to-roll slender rigid-body of revolution placed in a wind tunnel at a high angle of attack. The resistance to the roll moment is represented by a linear torsion spring and equivalent linear damping representing friction in the bearings of a simulated wind tunnel model. The body is subjected to a three-dimensional, compressible, laminar flow. The full Navier-Stokes equations are solved using the second-order implicit finite difference Beam-Warming scheme, adapted to a curvilinear coordinate system, whereas the coupled structural second order equation of motion for roll is solved by a fourth-order Runge-Kutta method. The body consists of a 3.5-diameter tangent ogive forebody with a 7.0-diameter long cylindrical afterbody extending aft of the nose-body junction to x/D = 10.5. We describe in detail the investigation of three angles of attack 20°, 40°, and 65°, at a Reynolds number of 30 000 (based on body diameter) and a Mach number of 0.2. Three distinct configurations are investigated as follows: a fixed body, a free-to-roll body with a weak torsion spring, and a free-to-roll body with a strong torsion spring. For each angle of attack the free-to-roll configuration portrays a distinct and different behavior pattern, including bi-stable limit-cycle oscillations. The bifurcation structure incorporates both large and small amplitude periodic roll oscillations where the latter lose their periodicity with increasing stiffness of the restraining spring culminating with distinct quasiperiodic oscillations. We note that removal of an applied upstream disturbance for a restrained body does not change the magnitude or complexity of the oscillations or of the flow patterns along the body. Depending on structure characteristics and flow conditions even a small rolling moment coefficient at the relatively low angle of attack of 20° may lead to large amplitude resonant roll oscillations.

  16. Assessment of friction between a rolling cylindrical element and a ...

    African Journals Online (AJOL)

    A cost-effective friction coefficient measuring technique was developed and tested. The technique involved the mounting of two sensing elements on the surface of rolls, in a manner that sought to measure simultaneously the normal and the tangential stresses during rolling. The instrumented roll termed “SGRoll” was ...

  17. 21 CFR 136.130 - Milk bread, rolls, and buns.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Milk bread, rolls, and buns. 136.130 Section 136.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....130 Milk bread, rolls, and buns. (a) Each of the foods milk bread, milk rolls, and milk buns conforms...

  18. Metallurgical analysis of spalled work roll of hot strip mill

    International Nuclear Information System (INIS)

    Khan, M.M.; Khan, M.A.

    1993-01-01

    In this study failure analysis of four work roll of the Hot Strip Mill is carried out. The microstructure is correlated with the chemical composition of shell and roll-life. It was concluded that for the longer service of the roll, cementite, graphite and martensite should be balanced (as per working requirement of the mill). (author)

  19. Roll compaction and granulation system for nuclear fuel material

    International Nuclear Information System (INIS)

    Goldmann, L.H. Jr.; Holley, C.C.

    1981-01-01

    A roll compaction and roll granulation system has been designed and fabricated to replace conventional preslugging and crushing operations typically used in the fabrication of mixed oxide nuclear fuel pellets. This equipment will be of maintenance advantage with only the compaction and granulation rolls inside containment. The prototype is being tested and the results will be reported within a year

  20. Chaotic travelling rolls in Rayleigh–Bénard convection

    Indian Academy of Sciences (India)

    The lateral shift of the rolls may lead to a global flow reversal of the convective motion. The chaotic travelling rolls are observed in simulations with free-slip as well as no-slip boundary conditions on the velocity field. We show that the travelling rolls and the flow reversal are due to an interplay between the real and imaginary ...

  1. 14 CFR 27.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 27.493 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.493 Braked roll conditions. Under braked roll conditions with the shock absorbers in their static positions— (a) The limit...

  2. 14 CFR 23.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 23.493 Section 23.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....493 Braked roll conditions. Under braked roll conditions, with the shock absorbers and tires in their...

  3. 14 CFR 29.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 29.493 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.493 Braked roll conditions. Under braked roll conditions with the shock absorbers in their static positions— (a) The limit...

  4. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    Science.gov (United States)

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  5. Influence of the Radiation Shield on the Temperature of Rails Rolled in the Reversing Mill

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2015-04-01

    Full Text Available The paper presents a mathematical model of heat transfer during cooling of hot-rolled rails in the reversing mill. The influence of the radiation shield on the temperature of rolled rails has been analyzed. The heat transfer model for cooling a strip covered by the thermal shield has been presented. The two types of shields build of steel and aluminum sheets separated with insulating layer have been studded. Calculations have been performed with self developed software which utilizes the finite element method.

  6. 78 FR 37703 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-06-24

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (RR) model RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines. This AD was prompted by low...) model RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines. (d) Reason This AD was prompted by low...

  7. Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel

    Science.gov (United States)

    Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.

    2017-09-01

    Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.

  8. Motion characteristic between die and workpiece in spline rolling process with round dies

    Directory of Open Access Journals (Sweden)

    Da-Wei Zhang

    2016-06-01

    Full Text Available In the spline rolling process with round dies, additional kinematic compensation is an essential mechanism for improving the division of teeth and pitch accuracy as well as surface quality. The motion characteristic between the die and workpiece under varied center distance in the spline rolling process was investigated. Mathematical models of the instantaneous center of rotation, transmission ratio, and centrodes in the rolling process were established. The models were used to analyze the rolling process of the involute spline with circular dedendum, and the results indicated that (1 with the reduction in the center distance, the instantaneous center moves toward workpiece, and the transmission ratio increases at first and then decreases; (2 the variations in the instantaneous center and transmission ratio are discontinuous, presenting an interruption when the involute flank begins to be formed; (3 the change in transmission ratio at the forming stage of the workpiece with the involute flank can be negligible; and (4 the centrode of the workpiece is an Archimedes line whose polar radius reduces, and the centrode of the rolling die is similar to Archimedes line when the workpiece is with the involute flank.

  9. Study on natural circulation characteristics of an IPWR under inclined and rolling condition

    Energy Technology Data Exchange (ETDEWEB)

    He, Lihui [College of Computer Science and Information Technology, Harbin Normal University, Harbin (China); Wang, Bing [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China); Xia, Genglei, E-mail: xiagenglei@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China); Peng, Minjun [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-06-15

    Highlights: • An ocean-based thermal-hydraulic analysis code was developed based on RELAP5 codes. • The inclination condition can reduce the mass flow rate of reactor core. • The system parameters asymmetry increases with the increasing inclination angle. • Flow oscillation of different loops cancel each other due to the symmetrical arrangement of the reactor. • The off-center roll axis location can break the symmetry and enlarge fluctuation amplitude of the core flow rate. - Abstract: An ocean-based thermal-hydraulic system analysis code was developed based on RELAP5/MOD3 code by adding additional force model of ocean condition and control volume coordinate solver model. The natural circulation operation characteristics of integrated pressurized water reactor (IPWR) under ocean conditions were studied and the effects of inclination and rolling motions were analyzed. The results conclude that, the inclination condition can reduce the mass flow rate of reactor core and lead to inconsistent coolant flow rates of the left and right loops, furthermore, it affects the heat transfer of once-through steam generators (OTSGs). In the case of rolling motion, the additional pressure drop of the loop is dominated by tangential force, and flow oscillation of different loops cancel each other due to the symmetrical arrangement of the reactor. The off-center roll axis location, the combination of the inclination and rolling motion, both can break the thermal-hydraulic symmetry among different loops and enlarge fluctuation amplitude of the core flow rate.

  10. A Feeding Strategy in Inner L-Shape Ring Hot Rolling Process

    Directory of Open Access Journals (Sweden)

    Wen Meng

    2017-01-01

    Full Text Available In order to make the inner L-shape ring polling process with a closed die structure (ILRRCDS on the top and bottom of the driven roll stable, at first, this paper established the mathematical model for ILRRCDS. Then, the plastic penetration and biting-in conditions for ILRRCDS were deduced based on plain ring rolling theory. Moreover, a feeding strategy that can realize a constant growth of the ring’s outer radius was proposed and the reasonable value ranges of the feed rate of the mandrel were determined. The numerical simulation model for ILRRCDS is established based on ABAQUS software. Finally, the equivalent plastic strain (PEEQ and temperature distributions of rolled ring were obtained. The results indicated that the proposed feeding strategy can realize a stable ILRRCDS. At the end of ILRRCDS, the PEEQ at the inner radius surface of the ring is maximum, the PEEQ at the outer radius surface of the ring takes the second place, and the PEEQ at the middle part of ring is minimum. With the increase of rolling time, the higher temperature zone of the rolled ring gradually moves from the center part of the ring to the “inner corner zone” of the ring.

  11. Microstructure based procedure for process parameter control in rolling of aluminum thin foils

    Science.gov (United States)

    Johannes, Kronsteiner; Kabliman, Evgeniya; Klimek, Philipp-Christoph

    2018-05-01

    In present work, a microstructure based procedure is used for a numerical prediction of strength properties for Al-Mg-Sc thin foils during a hot rolling process. For this purpose, the following techniques were developed and implemented. At first, a toolkit for a numerical analysis of experimental stress-strain curves obtained during a hot compression testing by a deformation dilatometer was developed. The implemented techniques allow for the correction of a temperature increase in samples due to adiabatic heating and for the determination of a yield strength needed for the separation of the elastic and plastic deformation regimes during numerical simulation of multi-pass hot rolling. At the next step, an asymmetric Hot Rolling Simulator (adjustable table inlet/outlet height as well as separate roll infeed) was developed in order to match the exact processing conditions of a semi-industrial rolling procedure. At each element of a finite element mesh the total strength is calculated by in-house Flow Stress Model based on evolution of mean dislocation density. The strength values obtained by numerical modelling were found in a reasonable agreement with results of tensile tests for thin Al-Mg-Sc foils. Thus, the proposed simulation procedure might allow to optimize the processing parameters with respect to the microstructure development.

  12. Design of Experiment as a powerful tool when applying Finite Element Method: a case study on prediction of hot rolling process parameters

    Directory of Open Access Journals (Sweden)

    Giancarlo G. Bordonaro

    2018-04-01

    Full Text Available The ultimate goal in hot roll pass design is to manufacture a rolled product with the required dimensional accuracy, defect free surface, and mechanical properties. The proper selection of process parameters is crucial to meet increasing requirements for desired quality and geometrical properties of rolled products. Due to the complex behavior of the metal flow at high temperatures and the severe plastic deformations in shape rolling, most efforts that have been made so far only rely upon the practical experience gained by operators. The large number of variables involved and the difficulty in investigating the process characteristics, make the use of finite element (FE tools an effective and attractive opportunity towards a thorough understanding of the rolling process. In this work, Design of Experiment (DOE is proposed as a powerful and viable method for the prediction of rolling process parameters while reducing the computational effort. Nonlinear 3D FE models of the hot rolling process are developed for a large set of complex cross-section shapes and validated against experimental evidences provided by real plant products at each stage of the deformation sequence. Based on the accuracy of the validated FE models, DOE is applied to investigate the flat rolling process under a series of many parameters and scenarios. Effects of main roll forming variables are analyzed on material flow behavior and geometrical features of a rolled product. The selected DOE factors are the workpiece temperature, diameter size, diameter reduction (draught, and rolls angular velocity. The selected DOE responses are workpiece spread, effective stresses, contact stresses, and rolls reaction loads. Eventually, the application of Pareto optimality (a Multi-Criteria Decision Making method allows to detect an optimal combination of design factors which respect desired target requirements for the responses.

  13. Residual analysis applied to S-N data of a surface rolled cast iron

    Directory of Open Access Journals (Sweden)

    Omar Maluf

    2005-09-01

    Full Text Available Surface rolling is a process extensively employed in the manufacture of ductile cast iron crankshafts, specifically in regions containing stress concentrators with the main aim to enhance fatigue strength. Such process hardens and introduces compressive residual stresses to the surface as a result of controlled strains, reducing cyclic tensile stresses near the surface of the part. The main purpose of this work was to apply the residual analysis to check the suitability of the S-N approach to describe the fatigue properties of a surface rolled cast iron. The analysis procedure proved to be very efficient and easy to implement and it can be applied in the verification of any other statistical model used to describe fatigue behavior. Results show that the conventional S-N methodology is able to model the high cycle fatigue behavior of surface rolled notch testpieces of a pearlitic ductile cast iron submitted to rotating bending fatigue tests.

  14. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Zhang, Haizhou; Duan, Wenjing; Liang, Tianchen; Wu, Shuaipeng

    2018-02-01

    The vibration signals collected from rolling bearing are usually complex and non-stationary with heavy background noise. Therefore, it is a great challenge to efficiently learn the representative fault features of the collected vibration signals. In this paper, a novel method called improved convolutional deep belief network (CDBN) with compressed sensing (CS) is developed for feature learning and fault diagnosis of rolling bearing. Firstly, CS is adopted for reducing the vibration data amount to improve analysis efficiency. Secondly, a new CDBN model is constructed with Gaussian visible units to enhance the feature learning ability for the compressed data. Finally, exponential moving average (EMA) technique is employed to improve the generalization performance of the constructed deep model. The developed method is applied to analyze the experimental rolling bearing vibration signals. The results confirm that the developed method is more effective than the traditional methods.

  15. Enhancing power generation of floating wave power generators by utilization of nonlinear roll-pitch coupling

    Science.gov (United States)

    Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin

    2017-09-01

    We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.

  16. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Hösel, Markus

    2014-01-01

    the manufacture of completely functional devices in exceptionally high yields. Critical to the ink and process development is a carefully chosen technology transfer to industry method where first a roll coater is employed enabling contactless stack build up, followed by a small roll-to-roll coater fitted to an X...

  17. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.

  18. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  19. Constant-roll tachyon inflation and observational constraints

    Science.gov (United States)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  20. Translating Comprehensive Conservative Care for Chronic Knee Pain Into a Digital Care Pathway: 12-Week and 6-Month Outcomes for the Hinge Health Program

    Science.gov (United States)

    Erhart-Hledik, Jennifer C; Kinsella, Rose; Hunter, Simon; Mecklenburg, Gabriel; Perez, Daniel

    2017-01-01

    Background Chronic knee pain (CKP) affects a large number of adults, many of whom do not receive best-practice care and are at high risk for unnecessary surgery. Objective The aim of this study was to investigate the effect of the Hinge Health 12-week digital care program (DCP) for CKP on knee pain and function, with secondary outcomes of surgery interest and satisfaction, at 12 weeks and 6 months after starting the program. Methods Individuals with CKP were recruited onto the 12-week program, comprising sensor-guided physical exercises, weekly education, activity tracking, and psychosocial support such as personal coaching and cognitive behavioral therapy (CBT). We used a single-arm design with assessment of outcomes at baseline, 12 weeks, and 6 months after starting the program. We used a linear mixed effects model with Tukey contrasts to compare timepoints and report intention-to-treat statistics with last observation carried forward. Results The cohort consisted of 41 individuals (32 female, mean age 52 years, SD 9 years). Between baseline and week 12, participants reported clinically significant improvements in the Knee Injury and Osteoarthritis Outcome Score (KOOS) pain and Knee Injury and Osteoarthritis Outcome Score-Physical Function Short Form (KOOS-PS) function scales of 16 points (95% CI 12-21, P<.001) and 10 points (95% CI 6-14, P<.001), respectively. Significant reductions of 57% (mean difference 30, 95% CI 21-38, P<.001) and 51% (mean difference 25, 95% CI 16-33, P<.001) in visual analog scale (VAS) knee pain and stiffness, respectively, were observed at 12 weeks, as well as a 67% reduction in surgery interest (mean reduction 2.3 out of 10, 95% CI 1.5-3.1, P<.001). Average satisfaction at week 12 was 9.2 out of 10. Critically, all improvements were maintained at 6 months at similar or greater magnitude. Conclusions Participants on the Hinge Health DCP for CKP showed substantial clinical improvements that were maintained 6 months after enrolling in the