WorldWideScience

Sample records for rolling element fatigue

  1. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  2. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  3. Contact fatigue in rolling-element bearings

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-06-01

    Full Text Available to the "cyclone pitting effect" also observed in gear teeth \\[1\\]. The initiation of surface cracks under rollin~sliding contact can be significantly accelerated by the presence of stress concentration sites on the contact surf... formed by rolling and rollin~sliding contact fatigue may progress to form a more severe form of damage known as flaking \\[3\\]. This results in the formation of large, irregular pits which cause rapid deterioration...

  4. Numerical Analysis of Rolling Contact Fatigue Crack Initiation and Fatigue Life Prediction of the Railway Crossing

    NARCIS (Netherlands)

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact.

  5. Numerical analysis of rolling contact fatigue crack initiation and fatigue life prediction of the railway crossing

    OpenAIRE

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact. Material model accounting for elastic- plastic isotropic and kinematic hardening effects is adopted. The results from FE analysis are combined with J-S fatigue model that is based on critical plan...

  6. Fatigue and Wear in Rolling and Sliding Contacts

    DEFF Research Database (Denmark)

    Janakiraman, Shravan

    bearing supports the main shaft, which connects the rotor to thegearbox. The main bearing is a rolling element bearing containing sphericalrolling elements. The loads on a main bearings are very high, which leads toa lubrication regime called elastohydrodynamic lubrication (EHL). Under theEHL regime...... to increase the film thickness, so as to ensure there is no contactbetween the roller and the raceway. Under lower loads (loads less than EHLloads) it has been observed that axial grooves help to increase the film thicknessat certain optimum operating conditions. It is believed that these groovesact...... the filmthickness. They might improve the film thickness at certain optimum runningconditions, but it is tough to ascertain what those conditions are.The main bearings also undergo rolling contact fatigue failure. The main bearingsexperience premature fatigue failure in both onshore and offshore windturbines...

  7. Computational stress and damage modelling for rolling contact fatigue

    DEFF Research Database (Denmark)

    Cerullo, Michele

    Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate...... and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...

  8. Improved Fatigue Performance of Threaded Drillstring Connections by Cold Rolling

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Steinar

    2002-01-01

    The research work presented in this thesis is concerned with analytical, numerical and experimental studies of the effect of cold rolling on the fatigue behaviour of threaded drillstring connections. A comprehensive literature study is made of the various effects on the fatigue behaviour of residual stresses introduced by mechanical deformation of notched components. Some of the effects studied are cyclic hardening behaviour after prestraining, cyclic creep, fatigue initiation in prestrained materials, short cracks and crack growth models including crack closure. Residual stresses were introduced in the surface of a smooth pipe by a rolling device to simulate a cold rolling process and verify the calculated residual stresses by measurements. Strain hardening and contact algorithm of the two bodies were incorporated in the FE analyses. Two significant errors were found in the commercial software package for residual stress evaluation, Restran v. 3.3.2a also called SINT, when using the Schajer method. The Schajer algorithm is the only hole-drilling algorithm without theoretical shortcomings, and is recommended when measuring large residual stress gradients in the depth direction. Using the Schajer method solved by in-house Matlab-routines good agreement between measured residual stress gradients and residual stress gradients from FE analyses was found. Full scale fatigue tests were performed on pipes cut from used drillstrings with notches of similar geometry as threads used in drillstring connections. The simulated threads consisted of four full depth helix notches with runouts at the surface. The pipe threads were cold rolled and fatigue tested in a full-scale four-point rotating bending fatigue testing rig. The test results showed that cold rolling had an effect on the crack initiation period. A major part of the fatigue life was with cracks observed at the notch root, but due to the increased fatigue crack propagation resistance the final fracture initiated at

  9. Investigation of subsurface fatigue crack in PEEK shaft under one-point rolling contact by using 2.5D layer observation method

    Directory of Open Access Journals (Sweden)

    KOIKE Hitonobu

    2017-01-01

    Full Text Available Subsurface fatigue cracks under rolling contact area of the PEEK shaft against an alumina bearing’s ball were investigated for application of frictional part in mechanical element in special situations such as chemical environments. In order to explore the flaking process of the PEEK shaft, the rolling contact fatigue tests were carried out by using a one-point radial loading rolling contact machine. The flaking occurred on the rolling track of the PEEK shaft at approximate 4⨉105 fatigue cycles. The subsurface fatigue crack propagation was investigated by using 2.5-Dimension layer observation method. The flaking was caused by the propagations of surface cracks and subsurface shear cracks, and the flaking shape was half-ellipse. Moreover, beach marks as fatigue crack propagation in the flaking were observed.

  10. Numerical analysis of hydrogen-assisted rolling-contact fatigue of wind turbine bearings

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2014-10-01

    Full Text Available Offshore wind parks at locations further from the shore often involve serious difficulties, e.g. the maintenance. The bearings of offshore wind turbines are prone to suffer hydrogen-assisted rolling-contact fatigue (HA-RCF. Three important aspects linked with bearing failures are being extensively researched: (i rolling contact fatigue (RCF, (ii influence of carbide particles on fatigue life, and (iii local microplastic strain accumulation via ratcheting. However, there is no reference related to bearing failure in harsh environment. This way, this paper helps to gain a better understanding of the influence of hydrogen on the service life of offshore wind turbine bearings through a numerical study. So, the widely used RCF ball-on-rod test was simulated by finite element method in order to obtain the stress-strain state inside the bearings during life in service and, from this, to elucidate the potential places where the hydrogen could be more harmful and, therefore, where the bearing material should be improved.

  11. Investigation of bending fatigue-life of aluminum sheets based on rolling direction

    Directory of Open Access Journals (Sweden)

    Raif Sakin

    2018-03-01

    Full Text Available High-cycle fatigue (HCF and low-cycle fatigue (LCF fatigue lives of rolled AA1100 and AA1050 aluminum sheets along different directions were evaluated at room temperature. Four types of samples denoted as longitudinal (L and transverse (T to the rolling direction were compared because the samples along the two typical directions show an obvious anisotropy. A cantilever plane-bending and multi-type fatigue testing machine was specially designed for this purpose. Deflection-controlled fatigue tests were conducted under fully reversed loading. The longest fatigue lives in the LCF region were obtained for AA1050 (L while AA1100 (L samples had the longest fatigue lives in the HCF region. Keywords: AA1100, AA1050, Aluminum sheet, Bending fatigue life, Rolling direction

  12. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W., E-mail: wyman.zhuang@dsto.defence.gov.au [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Liu, Q.; Djugum, R.; Sharp, P.K. [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Paradowska, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2232 (Australia)

    2014-11-30

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  13. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    International Nuclear Information System (INIS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P.K.; Paradowska, A.

    2014-01-01

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface

  14. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  15. Analysis of bearing steel exposed to rolling contact fatigue

    DEFF Research Database (Denmark)

    Hansen, K. T.; Fæster, Søren; Natarajan, Anand

    2017-01-01

    The objective of this work is to characterize fatigue damage in roller bearings under conditions of high load and slippage. A test rig constructed for rolling contact fatigue tests of rings is described, and test results are presented for rings taken from two spherical roller bearings. The prepar...

  16. Rolling contact fatigue testing of peek based composites

    Directory of Open Access Journals (Sweden)

    Petrogalli C.

    2010-06-01

    Full Text Available Rolling contact fatigue phenomenon was investigated on unfilled PEEK and on three different PEEK composites: 10% carbon micro-fiber, graphite and PTFE filled matrix, 30% carbon micro-fiber filled matrix, 30% glass micro-fiber filled matrix. For this aim, roller-shaped specimens were machined from extruded bars of these materials and subjected to rolling contact tests at different contact pressure levels by means of a four roller machine. Contact pressure-life diagrams and wear rates were so obtained and compared, highlighting a relationship with monotonic and hardness materials properties. Microscopic observations of contact surfaces and transversal section of the specimens also allowed observing the damage mechanisms occurred in the materials tested and the effects of the filler. In particular way, deep radial cracks appeared on unfilled PEEK, while spalling and delamination phenomena where found on composites. Diffuse microcracks were found at the filler-matrix interface of the composites specimens, confirming that the fatigue life of these materials is essentially determined by the crack propagation phase, also under rolling contact loading.

  17. Rolling Contact Fatigue Workshop July 26-27, 2011

    Science.gov (United States)

    2012-08-01

    In July 2011, the Transportation Technology Center, Inc., coordinated the joint Federal Railroad Association/Association of American Railroads Workshop on Rolling Contact Fatigue (RCF). The workshop was held at the Congress Plaza Hotel in Chicago, IL...

  18. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic Ball Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2016-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  19. Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Jiang, Yanyao, E-mail: yjiang@unr.edu [University of Nevada, Reno, Department of Mechanical Engineering, Reno, NV 89557 (United States)

    2016-11-20

    The effect of material orientation on cyclic deformation and fatigue behavior of rolled AZ80 magnesium (Mg) alloy was experimentally investigated under fully reversed strain-controlled loading in ambient. The testing specimens were taken from a rolled AZ80 Mg plate at four orientations with respect to rolled plane: 0°(ND, normal direction), 30°(ND30), 60°(ND60), and 90°(RD, rolled direction). Fatigue fracture morphologies of specimens along different orientation were analyzed by scanning electron microscopy (SEM). Overall cyclic hardening was observed for the material loaded in different directions. For a given strain amplitude, the ND specimens had the lowest fatigue resistance among the specimens of all material orientations. The fatigue life of an ND30 specimens is similar to that of an ND60 specimen at a given strain amplitude and both are higher than that of an RD specimen when the strain amplitude is higher than 0.4%, whereas an RD specimen exhibits a better fatigue resistance when the strain amplitude is lower than 0.4%. A mixed fracture mode with transgranular and intergranular cracking related to lamellar-like features occurred during stable crack growth, and an intergranular fracture mode related to dimple-like features exhibited in the fast fracture region. A multiaxial fatigue model based on the strain energy density can correlate all the fatigue experiments of the material at different material orientations.

  20. Laboratory Simulation of Rolling Contact Fatigue Cracks in Wind Turbine Bearings Using Hydrogen Infused 100Cr6 Bearing Steel

    DEFF Research Database (Denmark)

    Janakiraman, Shravan; West, Ole; Klit, Peder

    Premature fatigue failure is observed in rolling element bearings used in wind turbine components. It is believed that decomposed hydrogen from the lubricant diffuses into the surface of the bearing inner ring making it susceptible to failure. An attempt is made to simulate the formation of these...

  1. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  2. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings

    Science.gov (United States)

    Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2017-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  3. Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.

  4. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in 't Veld, A.J.; Hosson, J.T. de

    1998-01-01

    Titanium-nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  5. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  6. Control of rolling contact fatigue on premium rails in revenue service.

    Science.gov (United States)

    2014-11-01

    Effective rail maintenance strategies are : essential for controlling rolling contact fatigue : (RCF) and reducing wear of rails under heavy : axle load (HAL) operations. In an effort to : optimize rail maintenance strategies in revenue : service, Tr...

  7. Development of a second generation rolling contact fatigue tester

    Science.gov (United States)

    Deshmukh, Satyam U.

    Contact fatigue failure has been in research since the early twentieth century. The need for a second generation sliding-rolling contact fatigue tester was proposed by Gregory Dvorak and Dr. Marcellin Zahui. The first generation RCF tester was used for testing super finishing processes for gear surfaces. The second generation RCF tester was funded by the Advanced Engineering Materials lab of University of North Dakota. Verification of the second generation Rolling Contact Fatigue Tester will be discussed in this thesis including the design details, assembly and testing procedure and to discuss its different parameters. The tester will have the capability of testing hollow specimens using a bobbin eddy current testing probe. This tester will allow a wide range of experiments and is not built for one specific purpose. An eddy current device is used for detecting cracks. The loading force is applied using hydraulic cylinders and a hydraulic power unit. Before testing began, the machine was run for some time at full speed. A lot of minor problems were detected and fixed. Three specimens of AISI 8620 were tested in this tester. All tests gave results matching with some of the other well-known RCF testers. These tests were performed to evaluate mechanical limits of the tester and to evaluate the software performance of the tester.

  8. Stress-life relation of the rolling-contact fatigue spin rig

    Science.gov (United States)

    Butler, Robert H; Carter, Thomas L

    1957-01-01

    The rolling-contact fatigue spin rig was used to test groups of SAE 52100 9.16-inch-diameter balls lubricated with a mineral oil at 600,000-, 675,000-, and 750,000-psi maximum Hertz stress. Cylinders of AISI M-1 vacuum and commercial melts and MV-1 (AISI M-50) were used as race specimens. Stress-life exponents produced agree closely with values accepted in industry. The type of failure obtained in the spin rig was similar to the subsurface fatigue spells found in bearings.

  9. Fatigue behavior of rolled and forged tungsten at 25°, 280° and 480 °C

    International Nuclear Information System (INIS)

    Habainy, J.; Iyengar, S.; Lee, Y.; Dai, Y.

    2015-01-01

    Pure tungsten has been chosen as the target material at the European Spallation Source facility in Lund. Calculations show that the target temperature can reach 500 °C momentarily during the spallation process, leading to thermal fatigue. Target life estimations require fatigue data at different temperatures and this work focuses on generating such data for pure, unirradiated, rolled and forged tungsten in the range 25°–480 °C. For specimens oriented in the rolling direction, tensile tests at room temperature indicated Young's modulus values in the range 320–390 GPa, low levels of plasticity (<0.23%) and UTS values in the range 397 MPa (unpolished) and 705 MPa (Polished). UTS for forged specimens were around 500 MPa. Stress-controlled fatigue tests were conducted in the tensile regime, with a runout limit of 2 × 10"6 cycles. At 25 °C, unpolished specimens had fatigue limits of 150 MPa (rolling and transverse direction), and 175 MPa (forged). For polished specimens in the rolling direction, fatigue limits were higher at 237.5 MPa (25 °C) and 252.5 MPa (280 °C). The forged specimens showed slightly better fatigue properties and marginal cyclic hardening at 480 °C. - Highlights: • Stress & strain-controlled fatigue tests on pure tungsten at 25°, 280° & 480 °C. • Unirradiated, rolled and forged specimens in polished and unpolished condition. • Min. tensile strength (MPa): 397 (25 °C), 472 (280 °C) and 363 (480 °C). • Min. endurance limit (MPa): 137.5 (25 °C), 250 (280 °C) and 150 (480 °C). • Marginal cyclic hardening observed at 480 °C.

  10. Impact evaluation of rolling contact fatigue life models

    International Nuclear Information System (INIS)

    Choi, Young Sik; Yang, Xiaoping

    2012-01-01

    Since the accurate prediction of fatigue life has a significant value, many researchers have attempted to develop a reliable fatigue life model. Recently, rolling contact fatigue life models incorporating machining impact were developed. These models have contributed to a significant improvement in prediction accuracy as compared with earlier models, thus representing a major step forward in the modeling effort. This paper compares the prediction accuracy of these models with that of the prediction method in International Standards. When α is set to 0.25, the observed improvement of prediction accuracy as measured by variance of prediction errors due to these models over that due to prediction method in International Standards is statistically significant. Impact analyses of such improvement are conducted to illustrate its value. It is further noted that while difference was observed between the variance of prediction errors due to the crack initiation life model based on a dislocation model and that due to the crack initiation life model based on a local stress-life curve, the observed difference is not statistically significant

  11. Rolling contact fatigue in a vacuum test equipment and coating analysis

    CERN Document Server

    Danyluk, Michael

    2014-01-01

    This book deals with wear and performance testing of thin solid film lubrication and hard coatings in an ultra-high vacuum (UHV), a process which enables rapid accumulation of stress cycles compared with testing in oil at atmospheric pressure. The authors' lucid and authoritative narrative broadens readers' understanding of the benefits of UHV testing: a cleaner, shorter test is achieved in high vacuum, disturbance rejection by the deposition controller may be optimized for maximum fatigue life of the coating using rolling contact fatigue testing (RCF) in a high vacuum, and RCF testing in UHV

  12. Preventive and Regenerative Foam Rolling are Equally Effective in Reducing Fatigue-Related Impairments of Muscle Function following Exercise

    Directory of Open Access Journals (Sweden)

    Johannes Fleckenstein, Jan Wilke, Lutz Vogt, Winfried Banzer

    2017-12-01

    Full Text Available Objectives of the study were to compare the effects of a single bout of preventive or regenerative foam rolling (FR on exercise-induced neuromuscular exhaustion. Single-centre randomised-controlled study was designed. Forty-five healthy adults (22 female; 25±2 yrs were allocated to three groups: 1 FR of the lower limb muscles prior to induction of fatigue, 2 FR after induction of fatigue, 3 no-treatment control. Neuromuscular exhaustion was provoked using a standardized and validated functional agility short-term fatigue protocol. Main outcome measure was the maximal isometric voluntary force of the knee extensors (MIVF. Secondary outcomes included pain and reactive strength (RSI. Preventive (-16% and regenerative FR (-12% resulted in a decreased loss in MIVF compared to control (-21%; p 0.8, p < 0.1. Differences over time (p < 0.001 between groups regarding pain and RSI did not turn out to be clinically meaningful. A single bout of foam rolling reduces neuromuscular exhaustion with reference to maximal force production. Regenerative rather than preventive foam rolling seems sufficient to prevent further fatigue.

  13. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  14. Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxin; Yan, Qingzhi, E-mail: qzyan@ustb.edu.cn; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-15

    Highlights: • The potassium doped tungsten grade was achieved via swaging + rolling process. • The cracking threshold of the W–K alloy was in the range of 0.44–0.66 GW/m{sup 2}. • Recrystallization occurred at 0.66–1.1 GW/m{sup 2} during the thermal shock tests. • No cracks emerged during the thermal fatigue tests (0.44 GW/m{sup 2}, 1000 cycles). • Recrystallization occurred after 1000 cycles during the thermal fatigue tests. - Abstract: The potassium doped tungsten (W–K) grade was achieved via swaging + rolling process. The swaged + rolled W–K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W–K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m{sup 2} in a step of 0.22 GW/m{sup 2}. The cracking threshold was in the range of 0.44–0.66 GW/m{sup 2}. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66–1.1 GW/m{sup 2} basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m{sup 2} up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  15. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  16. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    OpenAIRE

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different sur...

  17. Dynamics Modeling and Analysis of Local Fault of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2015-01-01

    Full Text Available This paper presents a nonlinear vibration model of rolling element bearings with 5 degrees of freedom based on Hertz contact theory and relevant bearing knowledge of kinematics and dynamics. The slipping of ball, oil film stiffness, and the nonlinear time-varying stiffness of the bearing are taken into consideration in the model proposed here. The single-point local fault model of rolling element bearing is introduced into the nonlinear model with 5 degrees of freedom according to the loss of the contact deformation of ball when it rolls into and out of the local fault location. The functions of spall depth corresponding to defects of different shapes are discussed separately in this paper. Then the ode solver in Matlab is adopted to perform a numerical solution on the nonlinear vibration model to simulate the vibration response of the rolling elements bearings with local fault. The simulation signals analysis results show a similar behavior and pattern to that observed in the processed experimental signals of rolling element bearings in both time domain and frequency domain which validated the nonlinear vibration model proposed here to generate typical rolling element bearings local fault signals for possible and effective fault diagnostic algorithms research.

  18. FATIGUE BEHAVIOR OF HOT-ROLLED STEEL INTENDED FOR COLD FORMING

    Directory of Open Access Journals (Sweden)

    Gejza Rosenberg

    2011-07-01

    Full Text Available In the work, there are presented measured tension and fatigue properties of eight low-carbon steels moulded in form of 20 kg ingots that were processed by controlled regime of rolling /cooling and then exposed to simulated effect of two coiling temperatures. The experimental results presented in the work show, that steels with ferrite-martensite or ferrite-bainitic microstructure have in comparison to ferrite-pearlitic or ferrite-carbidic microstructure better strength-plastic properties, but worse resistance to cyclic loading.

  19. Assessment of friction between a rolling cylindrical element and a ...

    African Journals Online (AJOL)

    A cost-effective friction coefficient measuring technique was developed and tested. The technique involved the mounting of two sensing elements on the surface of rolls, in a manner that sought to measure simultaneously the normal and the tangential stresses during rolling. The instrumented roll termed “SGRoll” was ...

  20. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Science.gov (United States)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  1. Rolling Bearing Life Prediction, Theory, and Application

    Science.gov (United States)

    Zaretsky, Erwin V.

    2016-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg-Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. (The use of ISO 281:2007 with a fatigue limit in these calculations would result in a bearing life approaching infinity.) Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application. Rules had been developed to distinguish and compare predicted lives with those actually obtained. Based upon field and test results of 51 ball and roller bearing sets, 98 percent of these bearing sets had acceptable

  2. Observation of fracture behavior of 3-D printed specimens under rolling contact fatigue in water

    Directory of Open Access Journals (Sweden)

    Mizobe Koshiro

    2017-01-01

    Full Text Available Polymer bearing was widely used in the corrosive conditions because of its high corrosion durability. The polymer bearing had been formed using molding and machining until the new 3-D printing method was developed. In this study, we performed the rolling contact fatigue tests of the 3-D printed specimens in water and observed the fracture behaviour of the specimens. We found that the surface cracks are related to both the rolling direction and the lamination directions.

  3. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Science.gov (United States)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  4. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    OpenAIRE

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-01-01

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plat...

  5. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  6. Probabilistic finite elements for fracture and fatigue analysis

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.

    1989-01-01

    The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.

  7. Finite-element modeling of soft tissue rolling indentation.

    Science.gov (United States)

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  8. The effect of the changing microstructure on the fatigue behaviour during cyclic rolling contact loading

    International Nuclear Information System (INIS)

    Voskamp, A.P.; Mittemeijer, E.J.

    1997-01-01

    During rolling contact fatigue of the inner rings of ball bearings three stages of material response can be distinguished, in terms of the volume that is plastically deformed upon overrolling. After a first stage of material strengthening during which a decrease occurs for the volume that is deformed plastically, an effectively stationary, second stage is entered which is eventually succeeded by a third stage exhibiting a pronounced increase of the volume that is deformed plastically upon overrolling, which leads to failure. It is suggested that carbon diffusion induced by local temperature peaks occurring at the moment of overrolling is the key mechanism leading to fatigue damage. The amount of decomposed retained austenite is a useful, practical parameter to assess fatigue life. It is shown that published ideas about the role of certain components of residual stress in enhancing fatigue life are not correct and that the so-called Palmgren-Miner rule, as applied in practice, and the risk volume defined by Lundberg and Palmgren are inappropriate for assessing fatigue life. (orig.)

  9. Research and development of optic fiber sensitive elements for fatigue gauges

    International Nuclear Information System (INIS)

    Rakhimov, N.R.; Shamirzaev, S.Kh.

    2004-01-01

    In the work a possibility for using the optic fibers as the sensitive element for the fatigue gauge of mechanical construction elements is investigated. The experimental results are presented on investigation of polymer optic fibers subjected to the fatigue loads using the special tools. It was shown that they have a high sensitivity to fatigue damage of construction elements. (author)

  10. Finite element method analysis of surface roughness transfer in micro flexible rolling

    OpenAIRE

    Qu Feijun; Xie Haibo; Jiang Zhengyi

    2016-01-01

    Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to...

  11. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.

  12. MODELS OF FATIGUE LIFE CURVES IN FATIGUE LIFE CALCULATIONS OF MACHINE ELEMENTS – EXAMPLES OF RESEARCH

    Directory of Open Access Journals (Sweden)

    Grzegorz SZALA

    2014-03-01

    Full Text Available In the paper there was attempted to analyse models of fatigue life curves possible to apply in calculations of fatigue life of machine elements. The analysis was limited to fatigue life curves in stress approach enabling cyclic stresses from the range of low cycle fatigue (LCF, high cycle fatigue (HCF, fatigue limit (FL and giga cycle fatigue (GCF appearing in the loading spectrum at the same time. Chosen models of the analysed fatigue live curves will be illustrated with test results of steel and aluminium alloys.

  13. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  14. Transient thermal stresses of work roll by coupled thermoelasticity

    Science.gov (United States)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  15. Effect of residual stresses induced by prestressing on rolling element fatigue life

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  16. Validation of single ball rolling contact fatigue machine dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Bryan [SKF Aeroengine, Falconer (United States)

    2017-01-15

    Single ball test machines are a common method for accelerated rolling contact fatigue testing of bearing materials. Historically, it has always been assumed that the force applied by the retaining bars is negligible, without any data to support this claim. In this study, strain gauges were placed on the retaining bars to determine the load experienced by the retaining bars. This value was then compared to the applied load. It was found that a load of approximately 4 N was transferred to the retainer by the test ball during steady state operation, when a 8385 N load was applied to the ball via the rings. A simulation of the system was also created and successfully predicted the expected loads with reasonable accuracy. This information, as well as the technique of strain gauging the retaining bars, may be useful in the development of similar testing machinery.

  17. Finite element method analysis of surface roughness transfer in micro flexible rolling

    Directory of Open Access Journals (Sweden)

    Qu Feijun

    2016-01-01

    Full Text Available Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to decrease the surface roughness. Four types of initial workpiece surface roughness are studied in the simulation, and the influences of process parameters, such as friction coefficient, rolling speed and roll gap adjusting speed, on surface asperity flattening of workpieces with different initial surface roughness have been numerically investigated and analysed.

  18. Asymmetric Rolling Process Simulations by Dynamic Explicit Crystallographic Homogenized Finite Element Method

    International Nuclear Information System (INIS)

    Ngoc Tam, Nguyen; Nakamura, Yasunori; Terao, Toshihiro; Kuramae, Hiroyuki; Nakamachi, Eiji; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    Recently, the asymmetric rolling (ASR) has been applied to the material processing of aluminum alloy sheet to control micro-crystal structure and texture in order to improve the mechanical properties. Previously, several studies aimed at high formability sheet generation have been carried out experimentally, but finite element simulations to predict the deformation induced texture evolution of the asymmetrically rolled sheet metals have not been investigated rigorously. In this study, crystallographic homogenized finite element (FE) codes are developed and applied to analyze the asymmetrical rolling processes. The textures of sheet metals were measured by electron back scattering diffraction (EBSD), and compared with FE simulations. The results from the dynamic explicit type Crystallographic homogenization FEM code shows that this type of simulation is a comprehensive tool to predict the plastic induced texture evolution

  19. Predicting the Remaining Useful Life of Rolling Element Bearings

    DEFF Research Database (Denmark)

    Hooghoudt, Jan Otto; Jantunen, E; Yi, Yang

    2018-01-01

    Condition monitoring of rolling element bearings is of vital importance in order to keep the industrial wheels running. In wind industry this is especially important due to the challenges in practical maintenance. The paper presents an attempt to improve the capability of prediction of remaining...

  20. A short summary on finite element modelling of fatigue crack closure

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol(United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-12-15

    This paper presents a short summary pertaining to the finite element modelling of fatigue crack closure. Several key issues related to finite element modelling of fatigue crack closure are highlighted: element type, mesh refinement, stabilization of crack closure, crack-tip node release scheme, constitutive model, specimen geometry, stress-states (i.e., plane stress, plane strain), crack closure monitoring. Reviews are presented for both straight and deflected cracks.

  1. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  2. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel

    International Nuclear Information System (INIS)

    Evans, M.-H.; Walker, J.C.; Ma, C.; Wang, L.; Wood, R.J.K.

    2013-01-01

    Butterflies are microscopic damage features forming at subsurface material imperfections induced during rolling contact fatigue (RCF) in rolling element bearings. Butterflies can lead to degradation of the load bearing capacity of the material by their associated cracks causing premature spalling failures. Recently, butterfly formation has been cited to be related to a premature failure mode in wind turbine gearbox bearings; white structure flaking (WSF). Butterflies consist of cracks with surrounding microstructural change called ‘white etching area’ (WEA) forming wings that revolve around their initiators. The formation mechanisms of butterflies in bearing steels have been studied over the last 50 years, but are still not fully understood. This paper presents a detailed microstructural analysis of a butterfly that has initiated from a void in standard 100Cr6 bearing steel under rolling contact fatigue on a laboratory two-roller test rig under transient operating conditions. Analysis was conducted using focused ion beam (FIB) tomography, 3D reconstruction and transmission electron microscopy (STEM/TEM) methods. FIB tomography revealed an extensive presence of voids/cavities immediately adjacent to the main crack on the non-WEA side and at the crack tip. This provides evidence for a void/cavity coalescence mechanism for the butterfly cracks formation. Spherical M 3 C carbide deformation and dissolution as part of the microstructural change in WEA were observed in both FIB and STEM/TEM analyses, where TEM analyses also revealed the formation of superfine nano-grains (3–15 nm diameter) intersecting a dissolving spherical M 3 C carbide. This is evidence of the early formation of nano-grains associated with the WEA formation mechanism

  3. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.-H., E-mail: martin.evans@soton.ac.uk [National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, SO17 1BJ (United Kingdom); Walker, J.C.; Ma, C.; Wang, L.; Wood, R.J.K. [National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, SO17 1BJ (United Kingdom)

    2013-05-15

    Butterflies are microscopic damage features forming at subsurface material imperfections induced during rolling contact fatigue (RCF) in rolling element bearings. Butterflies can lead to degradation of the load bearing capacity of the material by their associated cracks causing premature spalling failures. Recently, butterfly formation has been cited to be related to a premature failure mode in wind turbine gearbox bearings; white structure flaking (WSF). Butterflies consist of cracks with surrounding microstructural change called ‘white etching area’ (WEA) forming wings that revolve around their initiators. The formation mechanisms of butterflies in bearing steels have been studied over the last 50 years, but are still not fully understood. This paper presents a detailed microstructural analysis of a butterfly that has initiated from a void in standard 100Cr6 bearing steel under rolling contact fatigue on a laboratory two-roller test rig under transient operating conditions. Analysis was conducted using focused ion beam (FIB) tomography, 3D reconstruction and transmission electron microscopy (STEM/TEM) methods. FIB tomography revealed an extensive presence of voids/cavities immediately adjacent to the main crack on the non-WEA side and at the crack tip. This provides evidence for a void/cavity coalescence mechanism for the butterfly cracks formation. Spherical M{sub 3}C carbide deformation and dissolution as part of the microstructural change in WEA were observed in both FIB and STEM/TEM analyses, where TEM analyses also revealed the formation of superfine nano-grains (3–15 nm diameter) intersecting a dissolving spherical M{sub 3}C carbide. This is evidence of the early formation of nano-grains associated with the WEA formation mechanism.

  4. Probabilistic finite elements for fatigue and fracture analysis

    Science.gov (United States)

    Belytschko, Ted; Liu, Wing Kam

    1993-04-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  5. Rolling contact fatigue of low hardness steel for slewing ring application

    Science.gov (United States)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium

  6. Microstructure, Tensile and Fatigue Properties of Al-5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

    Science.gov (United States)

    Heo, Joon-Young; Baek, Min-Seok; Euh, Kwang-Jun; Lee, Kee-Ahn

    2018-04-01

    This study investigated the microstructure, tensile and fatigue properties of Al-5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al-5 wt.%Mg based on the findings.

  7. Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.

    Science.gov (United States)

    Yan, Xiaoan; Jia, Minping; Zhang, Wan; Zhu, Lin

    2018-02-01

    Periodic transient impulses are key indicators of rolling element bearing defects. Efficient acquisition of impact impulses concerned with the defects is of much concern to the precise detection of bearing defects. However, transient features of rolling element bearing are generally immersed in stochastic noise and harmonic interference. Therefore, in this paper, a new optimal scale morphology analysis method, named adaptive multiscale combination morphological filter-hat transform (AMCMFH), is proposed for rolling element bearing fault diagnosis, which can both reduce stochastic noise and reserve signal details. In this method, firstly, an adaptive selection strategy based on the feature energy factor (FEF) is introduced to determine the optimal structuring element (SE) scale of multiscale combination morphological filter-hat transform (MCMFH). Subsequently, MCMFH containing the optimal SE scale is applied to obtain the impulse components from the bearing vibration signal. Finally, fault types of bearing are confirmed by extracting the defective frequency from envelope spectrum of the impulse components. The validity of the proposed method is verified through the simulated analysis and bearing vibration data derived from the laboratory bench. Results indicate that the proposed method has a good capability to recognize localized faults appeared on rolling element bearing from vibration signal. The study supplies a novel technique for the detection of faulty bearing. Copyright © 2018. Published by Elsevier Ltd.

  8. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  9. A hybrid feature selection and health indicator construction scheme for delay-time-based degradation modelling of rolling element bearings

    Science.gov (United States)

    Zhang, Bin; Deng, Congying; Zhang, Yi

    2018-03-01

    Rolling element bearings are mechanical components used frequently in most rotating machinery and they are also vulnerable links representing the main source of failures in such systems. Thus, health condition monitoring and fault diagnosis of rolling element bearings have long been studied to improve operational reliability and maintenance efficiency of rotatory machines. Over the past decade, prognosis that enables forewarning of failure and estimation of residual life attracted increasing attention. To accurately and efficiently predict failure of the rolling element bearing, the degradation requires to be well represented and modelled. For this purpose, degradation of the rolling element bearing is analysed with the delay-time-based model in this paper. Also, a hybrid feature selection and health indicator construction scheme is proposed for extraction of the bearing health relevant information from condition monitoring sensor data. Effectiveness of the presented approach is validated through case studies on rolling element bearing run-to-failure experiments.

  10. Effect of Silicon Nitride Balls and Rollers on Rolling Bearing Life

    Science.gov (United States)

    Zaretsky, Erwin V.; Vlcek, Brian L.; Hendricks, Robert C.

    2005-01-01

    Three decades have passed since the introduction of silicon nitride rollers and balls into conventional rolling-element bearings. For a given applied load, the contact (Hertz) stress in a hybrid bearing will be higher than an all-steel rolling-element bearing. The silicon nitride rolling-element life as well as the lives of the steel races were used to determine the resultant bearing life of both hybrid and all-steel bearings. Life factors were determined and reported for hybrid bearings. Under nominal operating speeds, the resultant calculated lives of the deep-groove, angular-contact, and cylindrical roller hybrid bearings with races made of post-1960 bearing steel increased by factors of 3.7, 3.2, and 5.5, respectively, from those calculated using the Lundberg-Palmgren equations. An all-steel bearing under the same load will have a longer life than the equivalent hybrid bearing under the same conditions. Under these conditions, hybrid bearings are predicted to have a lower fatigue life than all-steel bearings by 58 percent for deep-groove bearings, 41 percent for angular-contact bearings, and 28 percent for cylindrical roller bearings.

  11. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    Guan, Mingfei; Yu, Hao

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  12. Research of Two Different Impulsive Faults of Rolling Element Bearing

    International Nuclear Information System (INIS)

    Jiang Zhinong; Xing Chenghong; Feng Kun; Gao Jinji

    2012-01-01

    Fans and pumps are key machines in process industries such as petrochemical and petroleum industries. Their faults can be catastrophic and result in costly downtime. Bearing fault is almost the most common fault of fans and pumps as rolling element bearings are widely used in these machines. Hence, condition monitoring and diagnosis of bearings are important. Two different impulsive faults of bearings have been observed and studied in previous research. The first fault presents very clear impulsive symptom in envelope spectrum, but the bearing can work for a long time. The other fault shows relatively indistinct symptom, but the bearing will break down in a short time. To overcome the problems of inaccurate diagnosis, a combinational approach based on an impulsive energy indicator and traditional enveloping analysis is proposed in this paper. This approach discriminate these two faults well and can support the maintenance decision for the machines with rolling element bearings.

  13. In situ observation of rolling contact fatigue cracks by laminography using ultrabright synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Y. Nakai

    2015-10-01

    Full Text Available In rolling contact fatigue (RCF, cracks usually initiate from inclusions beneath the surface and propagate to the contact surface. In the present study, synchrotron radiation computed laminography (SRCL imaging was performed to observe flaking defects during the RCF of a high-strength steel. Specially fabricated inclusion-rich steel plate specimens were employed in the experiments. For the in situ observation of crack propagation, a compact RCF testing machine was developed, and a 4D analysis scheme was applied to the data obtained by SRCL. RCF tests were carried out near the measurement hatch of the beam line used SRCL to enable the successive observation of crack initiation and growth behaviors. Specimens before and after the occurrence of flaking were observed by SRCL, and flaking defects and cracks under the surface were successfully detected. As a result, details of the crack initiation and flaking process in RCF could be discussed. Shear-type horizontal cracks were found to initiate after the initiation and propagation of tensile-type vertical cracks along inclusions, where the face of the vertical cracks was perpendicular to the rolling direction and rolling surface. Therefore, the formation of vertical cracks is considered to affect shear-type crack formation and flaking, where the shape and length of inclusions also affect the initiation and propagation of vertical cracks.

  14. On the influence of mechanical surface treatments--deep rolling and laser shock peening--on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures

    International Nuclear Information System (INIS)

    Nalla, R.K.; Altenberger, I.; Noster, U.; Liu, G.Y.; Scholtes, B.; Ritchie, R.O.

    2003-01-01

    It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Deep rolling (DR) is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of DR on the low-cycle fatigue (LCF) and high-cycle fatigue (HCF) behavior of a Ti-6Al-4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures. Preliminary results on laser shock peened Ti-6Al-4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ∼450 deg. C, i.e. at a homologous temperature of ∼0.4T/T m (where T m is the melting temperature). Based on cyclic deformation and stress/life (S/N) fatigue behavior, together with the X-ray diffraction and in situ transmission electron microscopy (TEM) observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti-6Al-4V at such higher temperatures, despite the almost complete relaxation of the near-surface residual stresses. In the absence of such stresses, it is shown that the near-surface microstructures, which in Ti-6Al-4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment

  15. Effects of Loading Frequency on Fatigue Behavior, Residual Stress, and Microstructure of Deep-Rolled Stainless Steel AISI 304 at Elevated Temperatures

    Science.gov (United States)

    Nikitin, I.; Juijerm, P.

    2018-02-01

    The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.

  16. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  17. Numerical analysis of the influence of liquid on propagation of a rolling contact fatigue crack

    Directory of Open Access Journals (Sweden)

    M. Olzak

    2017-10-01

    Full Text Available Numerical investigations of the propagation of rolling contact fatigue crack filled by the liquid have been conducted. Two models of fluid crack interaction have been considered. In the first model called 䖓hydrostatic� the assumption of incompressible, inviscid and weightless liquid was accepted. It was also assumed that due to the wheel load the trapped liquid could not get outside the crack and its volume remained constant until the rising pressure would open up the crack mouth again. On this assumption the analysis has a steady-state character. In the second model it has been assumed that the crack is filled by the viscous, incompressible fluid and the fluid motion as well as the resulting pressure distribution can be represented by one-dimensional form of the Reynolds equation. The method for solving the problem of the coupled motion of liquid and crack faces has been developed and series of calculation were made. The method has been employed for the predicting of crack deformation in the course of wheel rolling

  18. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.

    Science.gov (United States)

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-06-20

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions.

  19. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  20. Efficient Fatigue Analysis of Helix Elements in Umbilicals and Flexible Risers: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Geir Skeie

    2012-01-01

    Full Text Available Fatigue analysis of structural components such as helix tensile armors and steel tubes is a critical design issue for dynamic umbilicals and flexible pipes. The basis for assessment of fatigue damage of such elements is the long-term stress cycle distribution at critical locations on the helix elements caused by long-term environmental loading on the system. The long-term stress cycle distribution will hence require global dynamic time domain analysis followed by a detailed cross-sectional analysis in a large number of irregular sea states. An overall computational consistent and efficient fatigue analysis scheme is outlined with due regard of the cross-sectional analysis technique required for fatigue stress calculation with particular attention to the helix elements. The global cross-section is exposed to pure bending, tensile, torsion, and pressure loading. The state of the different cross-section elements is based on the global response. Special emphasis is placed on assessment of friction stresses caused by the stick-slip behavior of helix elements in bending that are of special importance for fatigue life assessments. The described cross-sectional analysis techniques are based on an extensive literature survey and are hence considered to represent industry consensus. The performance of the described calculation scheme is illustrated by case studies.

  1. Finite element modelling for fatigue stress analysis of large suspension bridges

    Science.gov (United States)

    Chan, Tommy H. T.; Guo, L.; Li, Z. X.

    2003-03-01

    Fatigue is an important failure mode for large suspension bridges under traffic loadings. However, large suspension bridges have so many attributes that it is difficult to analyze their fatigue damage using experimental measurement methods. Numerical simulation is a feasible method of studying such fatigue damage. In British standards, the finite element method is recommended as a rigorous method for steel bridge fatigue analysis. This paper aims at developing a finite element (FE) model of a large suspension steel bridge for fatigue stress analysis. As a case study, a FE model of the Tsing Ma Bridge is presented. The verification of the model is carried out with the help of the measured bridge modal characteristics and the online data measured by the structural health monitoring system installed on the bridge. The results show that the constructed FE model is efficient for bridge dynamic analysis. Global structural analyses using the developed FE model are presented to determine the components of the nominal stress generated by railway loadings and some typical highway loadings. The critical locations in the bridge main span are also identified with the numerical results of the global FE stress analysis. Local stress analysis of a typical weld connection is carried out to obtain the hot-spot stresses in the region. These results provide a basis for evaluating fatigue damage and predicting the remaining life of the bridge.

  2. The effect of roll with passive segment on the planetary rolling process

    Directory of Open Access Journals (Sweden)

    Qing-Ling Zeng

    2015-03-01

    Full Text Available In three-roll planetary rolling process, there is secondary torsion phenomenon that may lead to rolling instability. This article proposed a new idea to alleviate the secondary torsion phenomenon by dividing the secondary torsion segment out of the roll as an independent and passive one. To study the performance of the roll with passive segment, the three-dimensional finite element models of planetary rolling process using actual roll or new roll with passive segment involving elastic–plastic and thermal–mechanical coupling were established by the software ABAQUS/Explicit, and a series of analysis had been done successfully. The rolling temperature and rolling force of planetary mill were in good agreement with the measured results, which indicated that the finite element method would supply important reference merit for three-dimensional thermo-mechanical simulation of the three-roll planetary rolling process. Comparing the simulation results of the two models, the results indicated that the change in the roll structure had just a little influence on the metal deformation, temperature, and rolling force, but it lessened the secondary torsion deformation effectively and improved the outside roundness of the rolled tube slightly. The research provided a new idea for the roll design of three-roll planetary mill (PSW.

  3. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  4. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    Science.gov (United States)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  5. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions

    Directory of Open Access Journals (Sweden)

    Lang Xue

    2017-06-01

    Full Text Available Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions.

  6. Residual analysis applied to S-N data of a surface rolled cast iron

    Directory of Open Access Journals (Sweden)

    Omar Maluf

    2005-09-01

    Full Text Available Surface rolling is a process extensively employed in the manufacture of ductile cast iron crankshafts, specifically in regions containing stress concentrators with the main aim to enhance fatigue strength. Such process hardens and introduces compressive residual stresses to the surface as a result of controlled strains, reducing cyclic tensile stresses near the surface of the part. The main purpose of this work was to apply the residual analysis to check the suitability of the S-N approach to describe the fatigue properties of a surface rolled cast iron. The analysis procedure proved to be very efficient and easy to implement and it can be applied in the verification of any other statistical model used to describe fatigue behavior. Results show that the conventional S-N methodology is able to model the high cycle fatigue behavior of surface rolled notch testpieces of a pearlitic ductile cast iron submitted to rotating bending fatigue tests.

  7. Microstructural heterogeneities and fatigue anisotropy of forged steels

    International Nuclear Information System (INIS)

    Pessard, Etienne; Morel, Franck; Verdu, Catherine; Flaceliere, Laurent; Baudry, Gilles

    2011-01-01

    Highlights: → Tomography result: fibering is composed of non-metallic inclusions bands. → Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. → Cracks initiate from both inclusion clusters and from the bainitic matrix. → The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0 o relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45 o and 90 o , the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  8. Microstructural heterogeneities and fatigue anisotropy of forged steels

    Energy Technology Data Exchange (ETDEWEB)

    Pessard, Etienne, E-mail: etienne.pessard@angers.ensam.fr [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Morel, Franck [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Verdu, Catherine [MATEIS, INSA-Lyon, Universite de Lyon, 25 Av Jean Capelle, 69621 Villeurbanne Cedex (France); Flaceliere, Laurent; Baudry, Gilles [CREAS - ASCOMETAL, BP 70045, 57301 Hagondange (France)

    2011-11-25

    Highlights: {yields} Tomography result: fibering is composed of non-metallic inclusions bands. {yields} Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. {yields} Cracks initiate from both inclusion clusters and from the bainitic matrix. {yields} The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0{sup o} relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45{sup o} and 90{sup o}, the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  9. Wear of rolling element bearings in sodium

    International Nuclear Information System (INIS)

    Campbell, C.S.

    1976-01-01

    Rolling element bearings and related mechanisms are attractive for service in liquid sodium but it is not clear what minimum wear rate can be anticipated. For axially loaded angular contact bearings rotation is incompatible with pure rolling on both races and wear arises from the resulting ball spin. The initial pressure distributions and sizes of the contact ellipses can be calculated but will change with bearing wear. However, the most effective distribution for producing wear would be for the full loads to be borne on the tips of the contact areas, whose maximum length is given by examination of the race wear tracks. A calculation on such a basis should set a lower limit for the wear coefficient. Both the torque and instantaneous wear rate of a bearing will be similar functions of the integral over the contact areas of the product of contact pressure and radius from the ball spin axis. A better estimate of wear coefficient should be obtained by relating the average torque, the average wear, the initial torque and the initial wear where the conditions are known. Analysis of tests in sodium at 400 0 C of high speed steel and Stellite bearings by these methods indicates specific wear rates of the order of 10 -15 m 3 /N-m, not unduly out of line with the range of values found in conventional sliding tests

  10. Association of Fatigue With Sarcopenia and its Elements: A Secondary Analysis of SABE-Bogotá

    Directory of Open Access Journals (Sweden)

    Daniela Patino-Hernandez

    2017-04-01

    Full Text Available Objective: Sarcopenia, fatigue, and depression are associated with higher mortality rates and adverse outcomes in the aging population. Understanding the association among clinical variables, mainly symptoms, is important for screening and appropriately managing these conditions. The aim of this article is to evaluate the association among sarcopenia and its elements with depression and fatigue. Method: We used cross-sectional data from 2012 SABE ( Salud, Bienestar y Envejecimiento -Bogotá study, which included 2,000 participants of ages ≥60 years. Sarcopenia and its elements were taken as the dependent variable, while fatigue and depression were the main independent variables. We tested the association among these through multiple logistic regression models, which were fitted for each dependent variable and adjusted for confounding variables. Results: Our findings showed that gait speed was associated with fatigue (adjusted odds ratio [OR] = 1.41, 95% confidence interval [CI] = [1.05, 1.90], p = .02 as well as abnormal handgrip strength (adjusted OR = 1.40, 95% CI = [1.02, 1.93], p = .04. No other associations were significant. Conclusion: While sarcopenia and fatigue are not associated, two of the sarcopenia-defining variables are associated with fatigue; this suggests that lack of sarcopenia does not exclude undesirable outcomes related to fatigue in aging adults. Also, the lack of association between sarcopenia-defining elements and depression demonstrates that depression and fatigue are different concepts.

  11. Association of Fatigue With Sarcopenia and its Elements: A Secondary Analysis of SABE-Bogotá

    Science.gov (United States)

    Patino-Hernandez, Daniela; David-Pardo, David Gabriel; Borda, Miguel Germán; Pérez-Zepeda, Mario Ulises; Cano-Gutiérrez, Carlos

    2017-01-01

    Objective: Sarcopenia, fatigue, and depression are associated with higher mortality rates and adverse outcomes in the aging population. Understanding the association among clinical variables, mainly symptoms, is important for screening and appropriately managing these conditions. The aim of this article is to evaluate the association among sarcopenia and its elements with depression and fatigue. Method: We used cross-sectional data from 2012 SABE (Salud, Bienestar y Envejecimiento)-Bogotá study, which included 2,000 participants of ages ≥60 years. Sarcopenia and its elements were taken as the dependent variable, while fatigue and depression were the main independent variables. We tested the association among these through multiple logistic regression models, which were fitted for each dependent variable and adjusted for confounding variables. Results: Our findings showed that gait speed was associated with fatigue (adjusted odds ratio [OR] = 1.41, 95% confidence interval [CI] = [1.05, 1.90], p = .02) as well as abnormal handgrip strength (adjusted OR = 1.40, 95% CI = [1.02, 1.93], p = .04). No other associations were significant. Conclusion: While sarcopenia and fatigue are not associated, two of the sarcopenia-defining variables are associated with fatigue; this suggests that lack of sarcopenia does not exclude undesirable outcomes related to fatigue in aging adults. Also, the lack of association between sarcopenia-defining elements and depression demonstrates that depression and fatigue are different concepts. PMID:28474000

  12. Effects of retained austenite and hydrogen on the rolling contact fatigue behaviours of carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chunlei; Dan, Rui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Yan, Zhigang; Shan, Jun; Long, Xiaoyan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-31

    The effects of retained austenite and hydrogen on the rolling contact fatigue (RCF) behaviours of a new carbide-free bainitic steel (CFBS) were studied by means of the RCF testing, electrolytic hydrogen charging, transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the new carbide-free bainitic steels (CFBSs) exhibited very good RCF performance under the high contact stress of 1.7 GPa, and pitting and spalling were the main mode of the RCF failure. The RCF performance of the new CFBS was improved by the retained austenite content increasing, while obviously decreased by hydrogen.

  13. Finite element modelling of process-integrated powder coating by radial axial rolling of rings

    International Nuclear Information System (INIS)

    Frischkorn, J.; Kebriaei, R.; Reese, S.; Moll, H.; Theisen, W.; Husmann, T.; Meier, H.

    2011-01-01

    The process-integrated powder coating by radial axial rolling of rings represents a new hybrid production technique applied in the manufacturing of large ring-shaped work pieces with functional layers. It is thought to break some limitations that come along with the hot isostatic pressing (HIP) which is used nowadays to apply the powdery layer material onto the rolled substrate ring. Within the new process the compaction of the layer material is integrated into the ring rolling and HIP becomes dispensable. Following this approach the rolling of such compound rings brings up some new challenges. The volume of a solid ring stays nearly constant during the rolling. This behaviour can be exploited to determine the infeed of the rollers needed to reach the desired ring shape. Since volume consistency cannot be guaranteed for the rolling of a compound ring the choice of appropriate infeed of the rollers is still an open question. This paper deals with the finite element (FE) simulation of this new process. First, the material model that is used to describe the compaction of the layer material is shortly reviewed. The main focus of the paper is then put on a parameterized FE ring rolling model that incorporates a control system in order to stabilize the process. Also the differences in the behaviour during the rolling stage between a compound and a solid ring will be discussed by means of simulation results.

  14. Some contradictions in contemporary assessment acrobatic elements used in the compositions of category "B-Class" in acrobatic rock'n'roll

    Directory of Open Access Journals (Sweden)

    Larisa Lutsenko

    2015-04-01

    Full Text Available Purpose: determine the impact of an innovative approach to improve the special physical and technical training of qualified athletes in acrobatic rock'n'roll. Material and Methods: theoretical analysis and synthesis of the literature, the competition rules, policy papers and documents catalog acrobatic elements "in class". The basic material for analysis was the changes to the 2014 WRRC, judging changes in their sport. Results: studied the catalog acrobatic elements "B-Class" (version 2 WRRC from 14.09.2014, reviewed and analyzed the results of stronger pairs category "B-class" in acrobatic rock'n'roll (World Cup, Russia, Sochi, Russia. The analysis of the requirements of execution of acrobatic elements. Conclusions: these findings demonstrate the need for an innovative approach to improve the special physical and technical training athletes acrobatic rock and roll category "B-Сlass". The difficulty level of acrobatic elements in acrobatic rock 'n' roll should be differential with respect to each of the age groups in their strict sequence the category "juniors" – "in-class" and "M-class".

  15. Effects of alloying elements on sticking occurring during hot rolling of ferritic stainless steels

    International Nuclear Information System (INIS)

    Ha, Dae Jin; Kim, Yong Jin; Lee, Yong Deuk; Lee, Sung Hak; Lee, Jong Seog

    2008-01-01

    In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content

  16. Failure Diagnosis and Prognosis of Rolling - Element Bearings using Artificial Neural Networks: A Critical Overview

    Science.gov (United States)

    Rao, B. K. N.; Srinivasa Pai, P.; Nagabhushana, T. N.

    2012-05-01

    Rolling - Element Bearings are extensively used in almost all global industries. Any critical failures in these vitally important components would not only affect the overall systems performance but also its reliability, safety, availability and cost-effectiveness. Proactive strategies do exist to minimise impending failures in real time and at a minimum cost. Continuous innovative developments are taking place in the field of Artificial Neural Networks (ANNs) technology. Significant research and development are taking place in many universities, private and public organizations and a wealth of published literature is available highlighting the potential benefits of employing ANNs in intelligently monitoring, diagnosing, prognosing and managing rolling-element bearing failures. This paper attempts to critically review the recent trends in this topical area of interest.

  17. Failure Diagnosis and Prognosis of Rolling - Element Bearings using Artificial Neural Networks: A Critical Overview

    International Nuclear Information System (INIS)

    Rao, B K N; Pai, P Srinivasa; Nagabhushana, T N

    2012-01-01

    Rolling - Element Bearings are extensively used in almost all global industries. Any critical failures in these vitally important components would not only affect the overall systems performance but also its reliability, safety, availability and cost-effectiveness. Proactive strategies do exist to minimise impending failures in real time and at a minimum cost. Continuous innovative developments are taking place in the field of Artificial Neural Networks (ANNs) technology. Significant research and development are taking place in many universities, private and public organizations and a wealth of published literature is available highlighting the potential benefits of employing ANNs in intelligently monitoring, diagnosing, prognosing and managing rolling-element bearing failures. This paper attempts to critically review the recent trends in this topical area of interest.

  18. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    Science.gov (United States)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  19. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2016-11-01

    Full Text Available In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  20. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.

    Science.gov (United States)

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-11-25

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  1. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.

    2011-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.

  2. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    Science.gov (United States)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  3. Finite Element Modeling of an Aircraft Tire Rolling on a Steel Drum: Experimental Investigations and Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Iulian Rosu

    2018-04-01

    Full Text Available The aim of this study is to investigate the thermal evolution of an aircraft tire rolling at high velocities up to take off values. As this kind of experiment is difficult to realize on a real runway, experimental tests were realized on aircraft tires rolling on a steel drum. The rotating drum facility allows to apply variable velocities beyond the take off limits, at fixed skidding angles and loadings. The rolling conditions, vertical loading, velocity and cornering conditions were adopted to correspond to the real conditions of an aircraft tire running or skidding on a flat runway. In the experimental part, the influence of skidding angle, velocity and loading on the thermal evolution of the tire tread were investigated. The thermo-mechanical finite element analysis of a pneumatic radial tire structure was performed taking into account the hyper-viscoelastic rubber behavior, with heating mechanisms developed by the inelastic deformation and by friction. Three-dimensional finite element simulations of an aircraft tire rolling on a steel drum were carried out using Abaqus/Standard finite element solver. The comparison of the temperature distribution on the tire tread between numerical results and the experimental data shows the same overall tendencies. The good correlation between numerical and experimental data shows that numerical simulation could predict the thermal evolution of the tire in critical situations. The authors would like to mention that for confidentiality reason, certain numerical data could not be revealed.

  4. Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints

    Science.gov (United States)

    Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou

    2018-03-01

    The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.

  5. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al 11 RE 3 intermetallic particles which is associated to the reduction of β-(Mg 17 Al 12 ) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10 5 cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy

  6. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, M., E-mail: mehdi-mokhtari@hotmail.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Boutorabi, S.M.A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, M.; Nikravan, M. [Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of)

    2013-12-10

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al{sub 11}RE{sub 3} intermetallic particles which is associated to the reduction of β-(Mg{sub 17}Al{sub 12}) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10{sup 5} cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy.

  7. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron

    Science.gov (United States)

    Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.

    2017-05-01

    Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.

  8. Residual fatigue life evaluation of rail at squats seeds using 3D explicit finite element analysis

    NARCIS (Netherlands)

    Deng, X.; Naeimi, M.; Li, Z.; Qian, Z.

    2014-01-01

    A modeling procedure to predict the residual fatigue life of rail at squats seeds is developed in this article. Two models are involved: a 3D explicit Finite Element (FE) model to compute the stress and strain at squats in rail, and the J-S fatigue damage model to determine the residual fatigue life

  9. Fatigue analysis of CANFLEX-NU fuel elements subjected to power-cyclic loads

    International Nuclear Information System (INIS)

    Sim, Ki Seob; Suk, Ho Chun.

    1997-08-01

    This report describes the fatigue analysis of the CANDU advanced fuel, so-called CANFLEX-NU, subjected to power-cyclic loads more than 1,000. The CANFLEX-NU bundle is composed of 43 elements with natural uranium fuel. As a result, the CANFLEX-NU fuel elements will maintain good integrity under the condition of 1,500 power-cycles. (author). 4 refs., 19 figs

  10. A Study on the Effects of Ball Defects on the Fatigue Life in Hybrid Bearings

    Science.gov (United States)

    Tang, Ching-Yao; Foerster, Chad E.; O'Brien, Michael J.; Hardy, Brian S.; Goyal, Vinay K.; Nelson, Benjamin A.; Robinson, Ernest Y.; Ward, Peter C.; Hilton, Michael R.

    2014-01-01

    Hybrid ball bearings using silicon nitride ceramic balls with steel rings are increasingly being used in space mechanism applications due to their high wear resistance and long rolling contact fatigue life. However, qualitative and quantitative reports of the effects of ball defects that cause early fatigue failure are rare. We report on our approach to study these effects. Our strategy includes characterization of defects encountered in use, generation of similar defects in a laboratory setting, execution of full-scale bearing tests to obtain lifetimes, post-test characterization, and related finite-element modeling to understand the stress concentration of these defects. We have confirmed that at least one type of defect of appropriate size can significantly reduce fatigue life. Our method can be used to evaluate other defects as they occur or are encountered.

  11. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    DEFF Research Database (Denmark)

    Yang, Zhenyu

    2015-01-01

    An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the pot...... characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.......An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated...... is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis...

  12. Fatigue assessment for selected connections of structural steel bridge components using the finite elements method

    Science.gov (United States)

    Śledziewski, Krzysztof

    2018-01-01

    Material fatigue it is one of the most frequent causes of steel bridge failures, particularly the bridges already existing. Thus, the procedure of fatigue life assessment is one of the most relevant procedures in a comprehensive assessment of load-carrying capacity and service life of the structure. A reliable assessment of the fatigue life is predominantly decisive for estimation of the remaining service life. Hitherto, calculation methods of welded joints took into account only stresses occurring in cross sections of whole elements and did not take into account stress concentration occurring in the vicinity of the weld, caused by geometrical aspects of the detail. At present, use of the Finite Element Analysis, makes possible looking for more accurate approach to the fatigue design of steel structures. The method of geometrical stresses is just such approach which is based on definition of stresses which take into account geometry of the detail. The study presents fatigue assessment of a representative type of welded joint in welded bridge structures. The testing covered longitudinal attachments. The main analyses were carried out on the basis of FEM and the method of local stresses, so-called "hot-spot" stresses. The obtained values of stresses were compared with the values obtained in accordance with the method of nominal stress.

  13. Diagnosis of faults in rolling element bearings by using directional spectra of vibration signals

    International Nuclear Information System (INIS)

    Park, Jong Po; Lee, Chong Won

    1999-01-01

    Backward and forward defect frequencies of rolling element bearing are experimentally investigated utilizing the two-sided directional spectra of the complex-valued vibration signals measured from the outer ring of defective bearings. The experimental results show that the directional zoom spectrum is superior to the conventional spectrum in identification of bearing defect frequencies, in particular the inner race defect frequencies

  14. The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis

    Science.gov (United States)

    Moshrefzadeh, Ali; Fasana, Alessandro

    2018-05-01

    Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding a suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this paper is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of second-order cyclostationarity, especially in the presence of localized faults. The autocovariance function of a 2nd order cyclostationary signal is periodic and the proposed method, named Autogram, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased Autocorrelation (AC) of the squared envelope of the demodulated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. A new indicator, Combined Squared Envelope Spectrum, is employed to consider all the frequency bands with valuable diagnostic information and to improve the fault detectability of the Autogram. The proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics.

  15. Using DOProC method in reliability assessment of steel elements exposed to fatigue

    Directory of Open Access Journals (Sweden)

    Krejsa Martin

    2017-01-01

    Full Text Available Fatigue crack damage depends on a number of stress range cycles. This is a time factor in the course of reliability for the entire designed service life. Three sizes are important for the characteristics of the propagation of fatigue cracks - initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression can be based on a linear fracture mechanic. Depending on location of an initial crack, the crack may propagate in structural element e.g. from the edge or from the surface. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability and Bayesian approach, times for subsequent inspections can be determined. For probabilistic modelling of fatigue crack progression was used the original and new probabilistic method - the Direct Optimized Probabilistic Calculation (“DOProC”, which uses a purely numerical approach without any simulation techniques or approximation approach based on optimized numerical integration.

  16. Influence of surface defects on the fatigue crack initiation in pearlitic steel

    Directory of Open Access Journals (Sweden)

    Toribio Jesús

    2014-06-01

    Full Text Available Tensile fatigue tests were performed under load control, with constant stress range Δσ on pearlitic steel wires, from the hot rolled bar to the commercial prestressing steel wire (which has undergone seven cold drawing steps. Results show that fatigue cracks in pearlitic steels initiate at the wire surface starting from small defects, whose size decreases with the drawing process. Fatigue cracks created from defects (initiation phase exhibit a fractographic appearance consisting of ductile microtearing events which can be classified as tearing topography surface or TTS, and exhibit a remarkably lower spacing in the prestressing steel wire than in the hot rolled bar. In addition, some S-N tests were performed in both material forms under a stress range of about half the yield strength. In these tests, the main part of the fatigue life corresponds to the propagation stage in the hot rolled bar whereas such a main part of the life is associated with the initiation stage in the case of the prestressing steel wire.

  17. How severe plastic deformation at cryogenic temperature affects strength, fatigue, and impact behaviour of grade 2 titanium

    International Nuclear Information System (INIS)

    Mendes, Anibal; Kliauga, Andrea M; Ferrante, Maurizio; Sordi, Vitor L

    2014-01-01

    Samples of grade 2 Ti were processed by Equal Channel Angular Pressing (ECAP), either isolated or followed by further deformation by rolling at room temperature and at 170 K. The main interest of the present work was the evaluation of the effect of cryogenic rolling on tensile strength, fatigue limit and Charpy impact absorbed energy. Results show a progressive improvement of strength and endurance limit in the following order: ECAP; ECAP followed by room temperature rolling and ECAP followed by cryogenic rolling. From the examination of the fatigued samples a ductile fracture mode was inferred in all cases; also, the sample processed by cryogenic rolling showed very small and shallow dimples and a small fracture zone, confirming the agency of strength on the fatigue behaviour. The Charpy impact energy followed a similar pattern, with the exception that ECAP produced only a small improvement over the coarse-grained material. Motives for the efficiency of cryogenic deformation by rolling are the reduced grain size and the association of strength and ductility. The production of favourable deformation textures must also be considered

  18. How severe plastic deformation at cryogenic temperature affects strength, fatigue, and impact behaviour of grade 2 titanium

    Science.gov (United States)

    Mendes, Anibal; Kliauga, Andrea M.; Ferrante, Maurizio; Sordi, Vitor L.

    2014-08-01

    Samples of grade 2 Ti were processed by Equal Channel Angular Pressing (ECAP), either isolated or followed by further deformation by rolling at room temperature and at 170 K. The main interest of the present work was the evaluation of the effect of cryogenic rolling on tensile strength, fatigue limit and Charpy impact absorbed energy. Results show a progressive improvement of strength and endurance limit in the following order: ECAP; ECAP followed by room temperature rolling and ECAP followed by cryogenic rolling. From the examination of the fatigued samples a ductile fracture mode was inferred in all cases; also, the sample processed by cryogenic rolling showed very small and shallow dimples and a small fracture zone, confirming the agency of strength on the fatigue behaviour. The Charpy impact energy followed a similar pattern, with the exception that ECAP produced only a small improvement over the coarse-grained material. Motives for the efficiency of cryogenic deformation by rolling are the reduced grain size and the association of strength and ductility. The production of favourable deformation textures must also be considered.

  19. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  20. Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling

    International Nuclear Information System (INIS)

    Baecker, V; Klocke, F; Wegner, H; Timmer, A; Grzhibovskis, R; Rjasanow, S

    2010-01-01

    Highly stressed components of aircraft engines, like turbine blades, have to satisfy stringent requirements regarding durability and reliability. The induction of compressive stresses and strain hardening in their surface layer has proven as a promising method to significantly increase their fatigue resistance. The required surface layer properties can be achieved by deep rolling. The determination of optimal process parameters still requires elaborate experimental set-up and subsequent time- and cost-extensive measurements. In previous works the application of the Finite Element Method (FEM) was proposed as an effective and cost reducing alternative to predict the surface layer state for given process parameters. However, FEM requires very fine mesh in the surface layer to resolve the high stress gradients with sufficient accuracy. The hereby caused high time and memory requirements render an efficient simulation of complete turbine components as impossible. In this article a solution is offered by coupling the FEM with the Boundary Elements Method (BEM). It enables the computing of large scale models at low computational cost and high result accuracy. Different approaches of the FEM/BEM-coupling for the simulation of deep rolling are examined with regard to their stability and required computing time.

  1. Finite element analysis of plate rolling of duplex-layer steels for long-period fast reactor application

    International Nuclear Information System (INIS)

    Lee, Jungki; Kim, Ji Hyun

    2015-01-01

    With same roll speed and same friction coefficient, curvature is formed on rolled product from FEA result. To reduce this curvature and plastic strain which cause reduction in fabricability, two ways are selected; (i) controlling upper/lower roll speed, and (ii) adjusting upper/lower friction coefficient and contacts. Both results shows it can reduce the curvature and equivalent plastic strain of the plate after the rolling. It can be applied in real plate rolling processing and also the next research for pilgering process for tube and pipe production. The FEA results of equivalent stress and plastic deformation distribution are showed in figure 5. The von-Mises equivalent stress distribution showed that the stress is still concentrated on upper Fe-12Cr-2Si layer, however, it also shows that equivalent plastic strain is distributed uniformly comparing with upper and lower roll speed ratio is 1.0. In high temperature liquid metal environment, there are usually two types of corrosion; one is corrosion by dissolution of alloy elements into liquid metal, and another is corrosion by chemical reaction among impurities in liquid metal and structural alloy. There have been some researches to develop new alloys that can form more dense scale on the surface even in wider impurity range and higher temperature range . M.P Short et al. devised functionally graded composite which is composed of two layers . one is a thin corrosion resistant layer and another is thick structural layer which guarantees mechanical strength, creep rupture strength and shows less irradiation swelling

  2. Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system

    International Nuclear Information System (INIS)

    Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor

    2012-01-01

    Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.

  3. Analysis and Design of Rolling Stock Elements

    Directory of Open Access Journals (Sweden)

    M. V. Chugunov

    2014-01-01

    Full Text Available The work solves the problem of equal-strength design of the rolling stock elements in option of discrete equal-strength. For this purpose, has been developed the software built in SolidWorks and SolidWorks Simulation as an AddIn-application using necessary basic functionality and extending it in the specified part on the basis of API SolidWorks and COM technology.The SolidWorks software is used to develop a 3D-model for general force frame of the wagon as an assembly. As this assembly is quite complicated and includes many elements both standard, and non-standard type, 3D - specification is developed by 3Dvia Composer software, which is included in the article in the form of the gif-animation and via-roller. This means is very useful for the evident analysis of topology and geometrical properties of a design as a whole, facilitates a procedure of adequate formation of the FE model providing accuracy and profitability of computing. From the point of view of profitability and opportunities of definition of concentrators of stresses with a sufficient accuracy for practice the combined model including volume and shell FEM is optimum.In the work the analysis results of stress-strain state of a design are given in two options of static loading in the form of stress diagrams, the main areas of stress concentration are revealed.Results of equal-strength design in the form of thickness distribution on thin-walled elements of a design, considered within FEM as shells, are received. It is shown that the developed software doesn't allow optimum design results, however it is economically viable, simple in use and can be applied to the solution of problems of rational design in design practice.SolidWorks, as well as the majority of similar CADs, possess an open architecture and allow users to apply its functionality. This work continues a series of publications of the author of this paper and other authors concerning the API-based CAD/CAE adaptation and

  4. Experimental and Finite Element Analysis of Asymmetric Rolling of 6061 Aluminum Alloy Using Two-Scale Elasto-Plastic Constitutive Relation

    Directory of Open Access Journals (Sweden)

    Wronski M.

    2017-12-01

    Full Text Available The goal of this work was theoretical and experimental study of micro- and macroscopic mechanical fields of 6061 aluminum alloy induced by the asymmetric rolling process. Two-scale constitutive law was used by implementing an elasto-plastic self-consistent scheme into the Finite Element code (ABAQUS/Explicit. The model was applied to study the asymmetric rolling. Such a deformation process induces heterogeneous mechanical fields that were reproduced by the model thanks to the crystallographic nature of constitutive law used. The studied material was processed, at room temperature, in one rolling pass to 36% reduction. The resulting material modifications were compared with predictions of the two-scale model. Namely, the calculated textures were compared with experimental ones determined by X-ray diffraction. Especially, detailed quantitative analysis of texture variation across the sample thickness was done. The influence of this texture variation on plastic anisotropy was studied. The advantages of asymmetric rolling process over symmetric one were identified. The main benefits are a nearly homogeneous crystallographic texture, reduced rolling normal forces and homogenization of plastic anisotropy through the sample thickness.

  5. Deformation in Micro Roll Forming of Bipolar Plate

    Science.gov (United States)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  6. Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings

    International Nuclear Information System (INIS)

    Hao, Rujiang; Chu, Fulei; Peng, Zhike; Feng, Zhipeng

    2011-01-01

    This paper presents a novel pattern classification approach for the fault diagnostics of rolling element bearings, which combines the morphological multi-scale analysis and the 'one to others' support vector machine (SVM) classifiers. The morphological pattern spectrum describes the shape characteristics of the inspected signal based on the morphological opening operation with multi-scale structuring elements. The pattern spectrum entropy and the barycenter scale location of the spectrum curve are extracted as the feature vectors presenting different faults of the bearing, which are more effective and representative than the kurtosis and the enveloping demodulation spectrum. The 'one to others' SVM algorithm is adopted to distinguish six kinds of fault signals which were measured in the experimental test rig under eight different working conditions. The recognition results of the SVM are ideal and more precise than those of the artificial neural network even though the training samples are few. The combination of the morphological pattern spectrum parameters and the 'one to others' multi-class SVM algorithm is suitable for the on-line automated fault diagnosis of the rolling element bearings. This application is promising and worth well exploiting

  7. TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam

    International Nuclear Information System (INIS)

    Grabulov, A.; Ziese, U.; Zandbergen, H.W.

    2007-01-01

    The white etching area (WEA) surrounding the cracks formed under high-cycle rolling contact fatigue was investigated by transmission electron microscopy (TEM) and Dual Beam (scanning electron microscopy (SEM)/focused ion beam). SEM revealed the initiation of cracks formed around artificially introduced Al 2 O 3 inclusions in the model steel (composition similar to SAE 52100). TEM investigations showed a microstructural difference between the WEA (formation of nanocrystalline ferrite) and the steel matrix (tempered martensitic structure). A three-dimensional image of the crack reconstructed from ∼400 Dual Beam cross-section images is reported

  8. METHODS OF THE APPROXIMATE ESTIMATIONS OF FATIGUE DURABILITY OF COMPOSITE AIRFRAME COMPONENT TYPICAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    V. E. Strizhius

    2015-01-01

    Full Text Available Methods of the approximate estimations of fatigue durability of composite airframe component typical elements which can be recommended for application at the stage of outline designing of the airplane are generated and presented.

  9. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  10. Effect of Rolling Resistance in Dem Models With Spherical Bodies

    Directory of Open Access Journals (Sweden)

    Dubina Radek

    2016-12-01

    Full Text Available The rolling resistance is an artificial moment arising on the contact of two discrete elements which mimics resistance of two grains of complex shape in contact rolling relatively to each other. The paper investigates the influence of rolling resistance on behaviour of an assembly of spherical discrete elements. Besides the resistance to rolling, the contacts between spherical particles obey the Hertzian law in normal straining and Coulomb model of friction in shear.

  11. The effect of additional elements on the magnetic properties of hot-rolled Nd-Fe-B alloys

    International Nuclear Information System (INIS)

    Chang, W.C.; Nakamura, H.; Paik, C.R.; Sugimoto, S.; Okada, M.; Homma, M.

    1992-01-01

    The magnetic properties of hot-rolled Nd 16 Fe bal. B 6 M 1.5 (M = Cu, Ga and Al) and Nd 16 Fe 76 B 5.5 Ga 1.5 Al 1 alloys were investigated, in order to study the role of additive elements in improving the magnetic properties in the Nd-Fe-B system. It is found that the original grain size of Cu, Ga or Ga-Al added alloys is much finer than that of the ternary and Al added alloys. But the grain size is almost identical for all the alloys after hot-rolling at 1000degC with 90% reduction in thickness. The coercivity of hot-rolled alloys with Cu, Ga or Ga-Al addition is not improved as was expected, because Nd-rich liquid phase in these alloys is very easily squeezed out during high-reduction-ratio rolling. Less quantity and nonuniform distribution of Nd-rich phase between distributed grains are believed to be the main reasons to depress the effect on the grain boundary smoothing. This effect is not the same as those observed in the Pr-Fe-B system. The highest magnetic properties achieved in this study are B r = 10 kG, i H c = 8.2 kOe, (BH) max = 18.5 MGOe for the Nd 16 Fe 76.5 B 6 Al 1.5 alloy. (orig.)

  12. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Tran Hung Tra

    2016-12-01

    Full Text Available A hybrid element has been fabricated by friction welding, joining two superalloys Inconel 718 and Mar-M247. The high cycle fatigue behavior of this welded element was investigated at 500 °C and 700 °C. The fabrication could obtain excellent fatigue strength in which the fracture is located in the base metal Mar-M247 side and takes place outside the welded zone. The behavior of the joint under loadings is discussed through a simulation by the numerical finite element method.

  13. Above-knee prosthesis design based on fatigue life using finite element method and design of experiment.

    Science.gov (United States)

    Phanphet, Suwattanarwong; Dechjarern, Surangsee; Jomjanyong, Sermkiat

    2017-05-01

    The main objective of this work is to improve the standard of the existing design of knee prosthesis developed by Thailand's Prostheses Foundation of Her Royal Highness The Princess Mother. The experimental structural tests, based on the ISO 10328, of the existing design showed that a few components failed due to fatigue under normal cyclic loading below the required number of cycles. The finite element (FE) simulations of structural tests on the knee prosthesis were carried out. Fatigue life predictions of knee component materials were modeled based on the Morrow's approach. The fatigue life prediction based on the FE model result was validated with the corresponding structural test and the results agreed well. The new designs of the failed components were studied using the design of experimental approach and finite element analysis of the ISO 10328 structural test of knee prostheses under two separated loading cases. Under ultimate loading, knee prosthesis peak von Mises stress must be less than the yield strength of knee component's material and the total knee deflection must be lower than 2.5mm. The fatigue life prediction of all knee components must be higher than 3,000,000 cycles under normal cyclic loading. The design parameters are the thickness of joint bars, the diameter of lower connector and the thickness of absorber-stopper. The optimized knee prosthesis design meeting all the requirements was recommended. Experimental ISO 10328 structural test of the fabricated knee prosthesis based on the optimized design confirmed the finite element prediction. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Effect of cold rolling on fatigue crack propagation of TiNi/A16061 shape memory composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Sang Pill; Park, Young Chul; Lee, Kyu Chang; Cho, Youn Ho; Lee, Joon Hyun

    2005-01-01

    TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 Shape Memory Alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with 0%, 3.2%, 5.2% and 7% volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by this method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied

  15. Finite Element Analysis for Fatigue Damage Reduction in Metallic Riveted Bridges Using Pre-Stressed CFRP Plates

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2014-04-01

    Full Text Available Many old riveted steel bridges remain operational and require retrofit to accommodate ever increasing demands. Complicating retrofit efforts, riveted steel bridges are often considered historical structures where structural modifications that affect the original construction are to be avoided. The presence of rivets along with preservation requirements often prevent the use of traditional retrofit methods, such as bonding of fiber reinforced composites, or the addition of supplementary steel elements. In this paper, an un-bonded post-tensioning retrofit method is numerically investigated using existing railway riveted bridge geometry in Switzerland. The finite element (FE model consists of a global dynamic model for the whole bridge and a more refined sub-model for a riveted joint. The FE model results include dynamic effects from axle loads and are compared with field measurements. Pre-stressed un-bonded carbon fiber reinforced plastic (CFRP plates will be considered for the strengthening elements. Fatigue critical regions of the bridge are identified, and the effects of the un-bonded post-tensioning method with different pre-stress levels on fatigue susceptibility are explored. With an applied 40% CFRP pre-stress, fatigue damage reductions of more than 87% and 85% are achieved at the longitudinal-to-cross beam connections and cross-beam bottom flanges, respectively.

  16. Influences of rolling method on deformation force in cold roll-beating forming process

    Science.gov (United States)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  17. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...

  18. Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

    NARCIS (Netherlands)

    Naeimi, M.; Li, Z.; Petrov, R.H.; Dollevoet, R.P.B.J.; Sietsma, J.; Wu, J.

    2014-01-01

    The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined

  19. Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures

    Science.gov (United States)

    Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.

    2015-01-01

    Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413

  20. The origins of Asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure

    Science.gov (United States)

    Hazeli, Kavan; El Mir, Charles; Papanikolaou, Stefanos; Delbo, Marco; Ramesh, K. T.

    2018-04-01

    The distributions of size and chemical composition in regolith on airless bodies provide clues to the evolution of the solar system. Recently, the regolith on asteroid (25143) Itokawa, visited by the JAXA Hayabusa spacecraft, was observed to contain millimeter to centimeter sized particles. Itokawa boulders commonly display well-rounded profiles and surface textures that appear inconsistent with mechanical fragmentation during meteorite impact; the rounded profiles have been hypothesized to arise from rolling and movement on the surface as a consequence of seismic shaking. This investigation provides a possible explanation of these observations by exploring the primary crack propagation mechanism during thermal fatigue of a chondrite. Herein, we present the evolution of the full-field strains on the surface as a function of temperature and microstructure, and examine the crack growth during thermal cycling. Our experimental results demonstrate that thermal-fatigue-driven fracture occurs under these conditions. The results suggest that the primary fatigue crack path preferentially follows the interfaces between monominerals, leaving the minerals themselves intact after fragmentation. These observations are explained through a microstructure-based finite element model that is quantitatively compared with our experimental results. These results on the interactions of thermal fatigue cracking with the microstructure may ultimately allow us to distinguish between thermally induced fragments and impact products.

  1. Surface Improvement of Shafts by Turn-Assisted Deep Cold Rolling Process

    Directory of Open Access Journals (Sweden)

    Prabhu Raghavendra

    2016-01-01

    Full Text Available It is well recognized that mechanical surface enhancement methods can significantly improve the characteristics of highly-stressed metallic components. Deep cold rolling is one of such technique which is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In this paper, the effect of turn-assisted deep cold rolling on AISI 4140 steel is examined, with emphasis on the residual stress state. Based on the X-ray diffraction measurements, it is found that turn-assisted deep cold rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in AISI 4140 steel.

  2. Design of Experiment as a powerful tool when applying Finite Element Method: a case study on prediction of hot rolling process parameters

    Directory of Open Access Journals (Sweden)

    Giancarlo G. Bordonaro

    2018-04-01

    Full Text Available The ultimate goal in hot roll pass design is to manufacture a rolled product with the required dimensional accuracy, defect free surface, and mechanical properties. The proper selection of process parameters is crucial to meet increasing requirements for desired quality and geometrical properties of rolled products. Due to the complex behavior of the metal flow at high temperatures and the severe plastic deformations in shape rolling, most efforts that have been made so far only rely upon the practical experience gained by operators. The large number of variables involved and the difficulty in investigating the process characteristics, make the use of finite element (FE tools an effective and attractive opportunity towards a thorough understanding of the rolling process. In this work, Design of Experiment (DOE is proposed as a powerful and viable method for the prediction of rolling process parameters while reducing the computational effort. Nonlinear 3D FE models of the hot rolling process are developed for a large set of complex cross-section shapes and validated against experimental evidences provided by real plant products at each stage of the deformation sequence. Based on the accuracy of the validated FE models, DOE is applied to investigate the flat rolling process under a series of many parameters and scenarios. Effects of main roll forming variables are analyzed on material flow behavior and geometrical features of a rolled product. The selected DOE factors are the workpiece temperature, diameter size, diameter reduction (draught, and rolls angular velocity. The selected DOE responses are workpiece spread, effective stresses, contact stresses, and rolls reaction loads. Eventually, the application of Pareto optimality (a Multi-Criteria Decision Making method allows to detect an optimal combination of design factors which respect desired target requirements for the responses.

  3. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  4. Revisiting the reasons for contact fatigue defects in rails

    Directory of Open Access Journals (Sweden)

    Darenskiy Alexander

    2017-01-01

    Full Text Available As it is known rail is one of the most significant elements of the whole railway construction. Operation under alternating loads from wheels of the rolling stock and different ambient temperatures lead to appearance and development of rail defects and damages. A great variety of operational factors (freight traffic density, axial loads, traffic speeds, track layout and profile as well as special features of manufacturing and thermal treatment of rails create certain difficulties while identifying reasons for defects and damages. The article deals with an attempt to estimate influence of track layout and lateral forces on appearance of defects and damages in rails on the base of long-term observations of rail operation in Kharkiv Metro. On the basis of the vehicle/track mathematical model which considers structural features of both rolling stock and permanent way in underground systems, the level of lateral forces in curves was calculated. The coefficients of correlation between the track curvature, the level of forces and the amount of defected rails removed were later obtained, that made it possible to determine the dominant factor which may lead to appearance and development of contact fatigue defects in rails laid in curves.

  5. Mechanical properties of CO2/MIG welded structural rolled steel and stainless steel

    International Nuclear Information System (INIS)

    Lim, Jong Young; Yoon, Myong Jin; Kim, Sang Youn; Kim, Tae Gyu; Shin, Hyeon Seung

    2015-01-01

    To accomplish long-term use of specific parts of steel, welding technology is widely applied. In this study, to compare the efficiency in improving mechanical properties, rolled steel (SS400) was welded with stainless steel (STS304) by both CO 2 welding method and MIG (metal inert gas) welding method, respectively. Multi-tests were conducted on the welded specimen, such as X-ray irradiation, Vickers' Hardness, tensile test, fatigue test and fatigue crack growth test. Based on the fatigue crack growth test performed by two different methods, the relationship of da/dN was analyzed. Although the hardness by the two methods was similar, tensile test and fatigue properties of MIG welded specimen are superior to CO 2 welded one.

  6. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  7. Friction control using ultrasonic oscillation for rolling-element linear-motion guide

    International Nuclear Information System (INIS)

    Oiwa, Takaaki

    2006-01-01

    This article reports a friction-control method for rolling-element linear-motion guides used for precision positioning. In general, static friction greater than dynamic friction generates stick-slip motion and diminishes the positioning accuracy. Two ultrasonic actuators excite both the rail and the carriage of the guide to give relative displacements to bearing surfaces. In order to effectively propagate the vibration over the entire rail without damping, the actuator drives at that frequency with a half wavelength corresponding to the distances between the rail mounting bolts. This also minimizes undesirable vibration of the machine structure. Moreover, the bearing surfaces of the carriage are resonated by a second ultrasonic actuator. The experiments using a force sensor showed that the static and dynamic friction forces were reduced by approximately 25% at any place on the 600-mm-long rail. Moreover, excitation only at very low velocity decreased the static friction peak

  8. MODELING OF THE TRACK AND ROLLING STOCK INTERACTION

    Directory of Open Access Journals (Sweden)

    N. V. Khalipova

    2013-09-01

    Full Text Available Purpose. Interaction of system’s elements of "carriage–track" modelling requires consideration of various criteria, it also requires analysis of many uncertainty and randomness factors’ influence on the basic parameters to ensure optimal or rational parameters of the system. The researching of interactions’ process requires new theoretical approaches to formulation of objectives, based on a generalization of existing modeling approaches. The purpose of this work is development of interaction models between track and rolling stock based on multiple structures of objects. Methodology. Dedicated and formed the main evaluation criteria of dynamic interaction between track and rolling stock optimization - quality assurance and safety of transportation process, improving of their efficiency and reducing of prime cost’s. Based on vector optimization methods, proposed model of rolling stock and track’s elements interaction. For the synthesis of the model used mathematical machine of multiple objects structures. Findings. Generalized approaches to modeling in the interaction of rolling stock and track for different structural elements of the system under different exploitation conditions. This theoretical approach demonstrated on the examples of modeling of passenger and freight cars with track under different exploitation conditions. Originality. Proposed theoretical approach to the problem of track and rolling stock interaction, based on a synthesis of existing models by using of multiple objects structures. Practical value. Using of proposed model allows to structure key data and rational parameters of rolling stock and track interaction’s modeling and to formulate optimal and rational parameters of the system, to determine the effective exploitation parameters and measurement system for rational use of infrastructure.

  9. Dynamic Wheel/Rail Rolling Contact at Singular Defects with Application to Squats

    NARCIS (Netherlands)

    Zhao, X.

    2012-01-01

    Squats, as a kind of short wavelength rail surface defects, have become one of the main rolling contact fatigue problems in railways worldwide. The purpose of this work is to better understand the squatting phenomenon, contribute to reduction and even prevention of squat occurrence, and thereby

  10. Analysis of fatigue resistance of continuous and non-continuous welded rectangular frame intersections by finite element method

    International Nuclear Information System (INIS)

    McCoy, M. L.; Moradi, R.; Lankarani, H. M.

    2011-01-01

    Agricultural and construction equipment are commonly implemented with rectangular tubing in their structural frame designs. A typical joining method to fabricate these frames is by welding and the use of ancillary structural plating at the connections. This aids two continuous members to pass through an intersection point of the frame with some degree of connectivity, but the connections are highly unbalanced as the tubing centroids exhibit asymmetry. Due to the practice of welded continuous member frame intersections in current agricultural equipment designs, a conviction may exist that welded continuous member frames are superior in structural strength over that of structural frame intersections implementing welded non-continuous members where the tubing centroids lie within two planes of symmetry, a connection design that would likely fabricating a more fatigue resistant structural frame. Three types of welded continuous tubing frame intersections currently observed in the designs of agricultural equipment were compared to two non-continuous frame intersection designs. Each design was subjected to the same loading condition and then examined for stress levels using the Finite Element Method to predict fatigue life. Results demonstrated that a lighter weight, non-continuous member frame intersection design was two magnitudes superior in fatigue resistance than some current implemented frame designs when using Stress-Life fatigue prediction methods and empirical fatigue strengths for fillet welds. Stress-Life predictions were also made using theoretical fatigue strength calculations for the fatigue strength at the welds for comparison to the empirical derived weld fatigue strength

  11. Numerical and Experimental Approach to Investigate Plane-view Shape and Crop Loss in Multistage Plate Rolling

    International Nuclear Information System (INIS)

    Byon, Sang Min

    2013-01-01

    A finite element based approach that can be used to investigate the plane-view shape and crop loss of a material during plate rolling is presented. We employed a three-dimensional finite element model to continuously simulate the shape change of the head and tail of a plate as the number of rolling passes increases. The main feature of the proposed model lies in the fact that the multistage rolling can be simulated without a break because the rolling direction of the material is reversibly controlled as the roll gap sequentially decreases. The material constants required in the finite element analysis were experimentally obtained by hot tensile tests. We also performed a pilot hot plate rolling test to verify the usefulness of the proposed finite element model. Results reveal that the computed plane-view shapes as well as crop losses by the proposed finite element model were in good agreement with the measured ones. The crop losses predicted by the proposed model were within 5% of those measured from the pilot hot plate rolling test

  12. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    Science.gov (United States)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  13. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    Science.gov (United States)

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic

  14. Analysis of Residual Stress and Deformation of Rolling Strengthen Crankshaft Fillet

    Directory of Open Access Journals (Sweden)

    Han Shaojun

    2016-01-01

    Full Text Available Based on the analysis of crankshaft fillet rolling process, used ANSYS finite element analysis software to conduct the elastic-plastic mechanical simulation of crankshaft rolling process, and gained the variation law of the residual stress and plastic deformation in the radial path of the fillet under different rolling laps and rolling pressure. Established the relationship between the rolling pressure and the plastic deformation and residual stress of the fillet, and provided theoretical support for the evaluation and detection of the crankshaft rolling quality.

  15. Multi-scale Fatigue Damage Life Assessment of Railroad Wheels

    Science.gov (United States)

    2018-01-01

    This study focused on the presence of a crack in the railway wheels subsurface and how it affects the wheels fatigue life. A 3-D FE-model was constructed to simulate the stress/strain fields that take place under the rolling contact of railway ...

  16. Endurance and failure characteristics of modified Vasco X-2, CBS 600 and AISI 9310 spur gears. [aircraft construction materials

    Science.gov (United States)

    Townsend, D. P.; Zaretsky, E. V.

    1980-01-01

    Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth fracture occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears.

  17. Evaluation of rolling contact fatigue of induction heated 13Cr-2Ni-2Mo Stainless steel bar with Si3N4-ball

    Science.gov (United States)

    Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki

    2018-03-01

    13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.

  18. The effect of external dynamic loads on the lifetime of rolling element bearings: accurate measurement of the bearing behaviour

    International Nuclear Information System (INIS)

    Jacobs, W; Boonen, R; Sas, P; Moens, D

    2012-01-01

    Accurate prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. Recent research emphasizes an important influence of external dynamic loads on the lifetime of bearings. However, most lifetime calculations of bearings are based on the classical ISO 281 standard, neglecting this influence. For bearings subjected to highly varying loads, this leads to inaccurate estimations of the lifetime, and therefore excessive safety factors during the design and unexpected failures during operation. This paper presents a novel test rig, developed to analyse the behaviour of rolling element bearings subjected to highly varying loads. Since bearings are very precise machine components, their motion can only be measured in an accurately controlled environment. Otherwise, noise from other components and external influences such as temperature variations will dominate the measurements. The test rig is optimised to perform accurate measurements of the bearing behaviour. Also, the test bearing is fitted in a modular structure, which guarantees precise mounting and allows testing different types and sizes of bearings. Finally, a fully controlled multi-axial static and dynamic load is imposed on the bearing, while its behaviour is monitored with capacitive proximity probes.

  19. Predictive modelling of fatigue failure in concentrated lubricated contacts.

    Science.gov (United States)

    Evans, H P; Snidle, R W; Sharif, K J; Bryant, M J

    2012-01-01

    Reducing frictional losses in response to the energy agenda will require use of less viscous lubricants causing hydrodynamically-lubricated bearings to operate with thinner films leading to "mixed lubrication" conditions in which a degree of direct interaction occurs between surfaces protected only by boundary tribofilms. The paper considers the consequences of thinner films and mixed lubrication for concentrated contacts such as those occurring between the teeth of power transmission gears and in rolling element bearings. Surface fatigue in gears remains a serious problem in demanding applications, and its solution will become more pressing with the tendency towards thinner oils. The particular form of failure examined here is micropitting, which is identified as a fatigue phenomenon occurring at the scale of the surface roughness asperities. It has emerged recently as a systemic difficulty in the operation of large scale wind turbines where it occurs in both power transmission gears and their support bearings. Predictive physical modelling of these contacts requires a transient mixed lubrication analysis for conditions in which the predicted lubricant film thickness is of the same order or significantly less than the height of surface roughness features. Numerical solvers have therefore been developed which are able to deal with situations in which transient solid contacts occur between surface asperity features under realistic engineering conditions. Results of the analysis, which reveal the detailed time-varying behaviour of pressure and film clearance, have been used to predict fatigue and damage accumulation at the scale of surface asperity features with the aim of improving understanding of the micropitting phenomenon. The possible consequences on fatigue of residual stress fields resulting from plastic deformation of surface asperities is also considered.

  20. Modelling fatigue and the use of fatigue models in work settings.

    Science.gov (United States)

    Dawson, Drew; Ian Noy, Y; Härmä, Mikko; Akerstedt, Torbjorn; Belenky, Gregory

    2011-03-01

    In recent years, theoretical models of the sleep and circadian system developed in laboratory settings have been adapted to predict fatigue and, by inference, performance. This is typically done using the timing of prior sleep and waking or working hours as the primary input and the time course of the predicted variables as the primary output. The aim of these models is to provide employers, unions and regulators with quantitative information on the likely average level of fatigue, or risk, associated with a given pattern of work and sleep with the goal of better managing the risk of fatigue-related errors and accidents/incidents. The first part of this review summarises the variables known to influence workplace fatigue and draws attention to the considerable variability attributable to individual and task variables not included in current models. The second part reviews the current fatigue models described in the scientific and technical literature and classifies them according to whether they predict fatigue directly by using the timing of prior sleep and wake (one-step models) or indirectly by using work schedules to infer an average sleep-wake pattern that is then used to predict fatigue (two-step models). The third part of the review looks at the current use of fatigue models in field settings by organizations and regulators. Given their limitations it is suggested that the current generation of models may be appropriate for use as one element in a fatigue risk management system. The final section of the review looks at the future of these models and recommends a standardised approach for their use as an element of the 'defenses-in-depth' approach to fatigue risk management. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Rolling element bearings diagnostics using the Symbolic Aggregate approXimation

    Science.gov (United States)

    Georgoulas, George; Karvelis, Petros; Loutas, Theodoros; Stylios, Chrysostomos D.

    2015-08-01

    Rolling element bearings are a very critical component in various engineering assets. Therefore it is of paramount importance the detection of possible faults, especially at an early stage, that may lead to unexpected interruptions of the production or worse, to severe accidents. This research work introduces a novel, in the field of bearing fault detection, method for the extraction of diagnostic representations of vibration recordings using the Symbolic Aggregate approXimation (SAX) framework and the related intelligent icons representation. SAX essentially transforms the original real valued time-series into a discrete one, which is then represented by a simple histogram form summarizing the occurrence of the chosen symbols/words. Vibration signals from healthy bearings and bearings with three different fault locations and with three different severity levels, as well as loading conditions, are analyzed. Considering the diagnostic problem as a classification one, the analyzed vibration signals and the resulting feature vectors feed simple classifiers achieving remarkably high classification accuracies. Moreover a sliding window scheme combined with a simple majority voting filter further increases the reliability and robustness of the diagnostic method. The results encourage the potential use of the proposed methodology for the diagnosis of bearing faults.

  2. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels.

    Science.gov (United States)

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-28

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  3. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    Science.gov (United States)

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  4. Reevaluation of the stress-life relation in rolling-element bearings

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    Four groups of 12.7 millimeter diameter vacuum-degassed AISI 52100 balls were tested, each at a maximum Hertz stress in the range of 4.5 times 10 to 9th power to 6.0 times 10 to 9th power N/m2. Tests were run in the five-ball fatigue tester at a contact angle of 30 deg and a shaft speed of 10,000 rpm. The 10 percent fatigue lives at the four stress levels indicated that fatigue life is inversely proportional to maximum Hertz stress raised to the power of 12. This result agrees with a survey of the literature which suggests that a stress-life exponent of approximately 12 is typical of vacuum-processed bearing steels rather than the exponent of 9 which has been generally accepted by the bearing industry.

  5. Correlation of Stress Concentration Factors for T-Welded Connections – Finite Element Simulations and Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Gerardo Terán Méndez

    Full Text Available Abstract The stress concentration factors (SCFs in welded connections usually occur at zones with high stress levels. Stress concentrations reduce the fatigue behavior of welded connections in offshore structures and cracking can develop. By using the grinding technique, cracking can be eliminated. Stress concentration factors are defined as a ratio of maximum stress at the intersection to nominal stress on the brace. Defining the stress concentration factor is an important stage in the fatigue behavior of welded connections. Several approaches have evolved for designing structures with the classical S-N approach for estimating total life. This work correlates to the stress concentration factors of T-welded connections and the fatigue behavior. Stress concentration factors were computed with the finite element employing 3D T-welded connections with intact and grinding depth conditions. Then, T-welded connections were constructed with A36 plate steel and welded with E6013 electrodes to obtain the stress-life (S-N approach. The methodology from previous works was used to compute the SCF and fabricate the T-welded connections. The results indicated that the grinding process could restore the fatigue life of the T-welded connections for SCFs values in the range of 1.29. This value can be considered to be a low SCF value in T-welded connection. However, for higher SCF values, the fatigue life decreased, compromising and reducing the structural integrity of the T-welded connections.

  6. Fault Diagnosis of Rolling Bearings Based on EWT and KDEC

    Directory of Open Access Journals (Sweden)

    Mingtao Ge

    2017-12-01

    Full Text Available This study proposes a novel fault diagnosis method that is based on empirical wavelet transform (EWT and kernel density estimation classifier (KDEC, which can well diagnose fault type of the rolling element bearings. With the proposed fault diagnosis method, the vibration signal of rolling element bearing was firstly decomposed into a series of F modes by EWT, and the root mean square, kurtosis, and skewness of the F modes were computed and combined into the feature vector. According to the characteristics of kernel density estimation, a classifier based on kernel density estimation and mutual information was proposed. Then, the feature vectors were input into the KDEC for training and testing. The experimental results indicated that the proposed method can effectively identify three different operative conditions of rolling element bearings, and the accuracy rates was higher than support vector machine (SVM classifier and back-propagation (BP neural network classifier.

  7. A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2017-04-01

    Full Text Available A classification technique using Support Vector Machine (SVM classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditions. The time-domain vibration signals were divided into 40 segments and simple features such as peaks in time domain and spectrum along with statistical features such as standard deviation, skewness, kurtosis etc. were extracted. Effectiveness of SVM classifier was compared with the performance of Artificial Neural Network (ANN classifier and it was found that the performance of SVM classifier is superior to that of ANN. The effect of pre-processing of the vibration signal by Discreet Wavelet Transform (DWT prior to feature extraction is also studied and it is shown that pre-processing of vibration signal with DWT enhances the effectiveness of both ANN and SVM classifiers. It has been demonstrated from experiment results that performance of SVM classifier is better than ANN in detection of bearing condition and pre-processing the vibration signal with DWT improves the performance of SVM classifier.

  8. An advanced dissymmetric rolling model for online regulation

    Science.gov (United States)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  9. Thermal fatigue behavior of US and Russian grades of beryllium

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 KW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degrees C for each pass of the beam. Large thermal stress in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S-300F-H, Sr-200, I-400, extruded high purity. HIP'd sperical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be(SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  10. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  11. Vibration analysis of paper machine's asymmetric tube roll supported by spherical roller bearings

    Science.gov (United States)

    Heikkinen, Janne E.; Ghalamchi, Behnam; Viitala, Raine; Sopanen, Jussi; Juhanko, Jari; Mikkola, Aki; Kuosmanen, Petri

    2018-05-01

    This paper presents a simulation method that is used to study subcritical vibrations of a tube roll in a paper machine. This study employs asymmetric 3D beam elements based on the Timoshenko beam theory. An asymmetric beam model accounts for varying stiffness and mass distributions. Additionally, a detailed rolling element bearing model defines the excitations arising from the set of spherical roller bearings at both ends of the rotor. The results obtained from the simulation model are compared against the results from the measurements. The results indicate that the waviness of the bearing rolling surfaces contributes significantly to the subcritical vibrations while the asymmetric properties of the tube roll have only a fractional effect on the studied vibrations.

  12. Study of fatigue crack propagation in laminated metal composites alluminium 1100/alluminium 2024

    International Nuclear Information System (INIS)

    Tavares, R.I.

    1984-01-01

    A study has been made of fatigue crack propagation in laminated metal composites with different volume fraction of constituents. The composites were produced by hot rolling, combining 1100 and 2024 aluminum alloys in crack divider orientation. Mechanical and metallurgical properties of the composites and original alloys sheets have been evaluated. Paris type relationship, corresponding to stage II of fatigue crack propagation curves, has been determined by two different methods, wich have shown to be equivalent. A computer software in FORTRAN language was developed for all the mathematical manipulation of fatigue data including statistical analysis and graphics. (Author) [pt

  13. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    Science.gov (United States)

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  14. Roll force prediction of high strength steel using foil rolling theory in cold skin pass rolling

    International Nuclear Information System (INIS)

    Song, Gil Ho; Jung, Jae Chook

    2013-01-01

    Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high strength steel below TS 980 MPa in skin pass rolling

  15. Optical scattering from rough-rolled aluminum surfaces.

    Science.gov (United States)

    Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E

    2001-05-01

    Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.

  16. A study of fatigue life prediction for automotive spot weldment using local strain approach

    International Nuclear Information System (INIS)

    Lee, Song In; Yu, Hyo Sun; Na, Sung Hun; Na, Eui Gyun

    2000-01-01

    The fatigue crack initiation life is studied on automotive spot weldment made from cold rolled carbon steel(SPC) sheet by using DCPDM and local strain approach. It can be found that the fatigue crack initiation behavior in spot weldment can be definitely detected by DCPDM system. The local stresses and strains are estimated by elastic-plastic FEM analysis and the alternative approximate method based on Neuber's rule were applied to predict the fatigue life of spot weldment. A satisfactory correlation between the predicted life and experimental life can be found in spot weldment within a factor of 4

  17. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    Science.gov (United States)

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  18. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace

    Science.gov (United States)

    Dellacorte, Christopher

    2014-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hardened construction materials to minimize wear and attain long life. In such components, loaded contact points (e.g., meshing gear teeth, bearing balls-raceway contacts) experience high contact stresses. The combination of high hardness and high elastic modulus often leads to damaging contact stress and denting, particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this webinar, Dr. DellaCorte will introduce the results of a research project that employs a superelastic alloy, Ni-Ti for rolling element bearing applications. Bearings and components made from such alloys can alleviate many problems encountered in advanced aerospace applications and may solve many terrestrial applications as well

  19. Cement based composites for thin building elements: Fracture and fatigue parameters

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Bílek, V.; Keršner, Z.; Veselý, J.

    2010-01-01

    Roč. 2, č. 1 (2010), s. 911-916 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GA103/08/0963 Institutional research plan: CEZ:AV0Z20410507 Keywords : Cement-based composites * Fatigue concrete * Wöhler curve * Fibers Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  1. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    Science.gov (United States)

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    Science.gov (United States)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  3. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  4. Refinement of the microstructure of steel by cross rolling

    International Nuclear Information System (INIS)

    Tsay, Kira; Arbuz, Alexandr; Gusseynov, Nazim; Nemkaeva, Renata; Ospanov, Nurlan; Krupen'kin, Ivan

    2016-01-01

    One of the most effective ways for refinement of metal microstructure is a severe plastic deformation. The cross rolling is the one of most perspective methods of severe plastic deformation, because it allows to get the long billets, unlike equal angular pressing and other popular methods. This fact provides some industrial expectation for this method. However, deformation and motion path of the metal is very heterogeneous across the section of the rolled piece. This paper presents the finite element modeling of hot cross rolling of steel in the software package DEFORM-3D features implemented and studied the stress-strain state. An experimental study of the effect of the cross rolling on a three-roll mill on the microstructure of structural alloy steel and stainless steel AISI321 in different zones of the bar. Analysis of microsections made after rolling with high total stretch and the final pass temperature 700°C, shows the formation of equiaxial ultrafinegrain structure on the periphery of an elongated rod and “rolling” texture in the central zone. The resulting microstructure corresponds to that obtained in models of stress-strain state. Keywords: cross rolling, ultra-fine grain structure, steel.

  5. Simulation of Bimetallic Bush Hot Rolling Bonding Process

    Directory of Open Access Journals (Sweden)

    Yaqin Tian

    2015-01-01

    Full Text Available Three-dimensional model of bimetallic bush was established including the drive roller and the core roller. The model adopted the appropriate interface assumptions. Based on the bonding properties of bimetallic bush the hot rolling process was analyzed. The optimum reduction ratio of 28% is obtained by using the finite element simulation software MARC on the assumption of the bonding conditions. The stress-strain distribution of three dimensions was research assumptions to interface deformation of rolling. At the same time, based on the numerical simulation, the minimum reduction ratio 20% is obtained by using a double metal composite bush rolling new technology from the experiment research. The simulation error is not more than 8%.

  6. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  7. Numerical analysis for prediction of fatigue crack opening level

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang

    2004-01-01

    Finite Element Analysis (FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials

  8. Fatigue tests and characterization of resulting microstructure by transmission electron microscope on zircaloy 4

    International Nuclear Information System (INIS)

    Di Toma, S.; Bertolino, G.; Tolley, A.

    2012-01-01

    This work reports the results of load controlled tension-tension fatigue tests on Zircaloy 4 (Zy-4). The resulting microstructure, particularly the kind and density of dislocations was characterized using a Transmission Electron Microscope (TEM). Specimens were cut from a rolled plate, with tensile axis parallel and perpendicular to the rolling direction. The results show a significant anisotropy of the mechanical properties due to the strong texture developed during rolling. Mainly type dislocations were observed, only in a longitudinal tensile axis specimen, dislocations were observed with a much lower density. The Schmid factors corresponding to the different glide systems were determined for specific grains in both tensile directions (author)

  9. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications.

    Science.gov (United States)

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-09-22

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.

  10. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degree C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP'd spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  11. NUMERICAL EVALUATION OF TEMPERATURE DISTRIBUTION IN THE ROLLING MILL ROLLS

    Directory of Open Access Journals (Sweden)

    José Claudino de Lira Júnior

    2013-06-01

    Full Text Available In hot rolling processes occur changes in the profile of the rolling mill rolls (expansion and contraction and constant wear due to mechanical stress and continuous thermal cycles of heating/cooling caused by contact rolled material- working roll and the cooling system by water jets in their surface, decreasing their lifetime. This paper presents a computational model to simulate the thermal performance of rolling mill rolls. The model was developed using the finite volume method for a transient two-dimensional system and allows calculating the temperature distribution of the rolling mill rolls under various conditions of service. Here it is investigated the influence of flow rate and temperature of the cooling water on the temperature distribution. The results show that the water temperature has greater influence than the water flow to control the surface temperature of the cylinders.

  12. Analysis of competition program "Аcrobatics" of skilled athletes in acrobatic rock and roll

    Directory of Open Access Journals (Sweden)

    Batieieva N.P.

    2013-06-01

    Full Text Available Reviewed and analyzed the results of the strongest performances of dancing couples in acrobatic rock and roll category "M-class", the competition rules of the World rock 'n' roll confederation. A comparative analysis on the requirements to perform acrobatic competition program "Acrobatics". Selected a number of acrobatic elements that make up the structure of competitive acrobatic programs. Found that a number of sports pairs allow technical errors (involuntary distortion performance techniques acrobatic element when performing acrobatic elements. Proposed grading scale acrobatic elements of the program, using methodical and special terms "related" sports. The recommendations to judges, coaches on the cost of each acrobatic element in assessing and compiling competitive program.

  13. The influence of modifications of a fatigue loading history program on fatigue lifetime

    Science.gov (United States)

    Branger, J.

    1972-01-01

    Rectangular specimens of 7075 and 2014 aluminum alloys with two holes (stress concentration factor of 3.24) have been tested under axial fatigue loading on a six-rod test bed with modifications of the loading program, the surface particulars, and the frequency. The length of the precrack stage was investigated by use of a new crack detector. In most cases the two alloys behaved similarly, with similar life to crack start under the same loading. Some overloads lengthened the life. Truncation by omission of the lowest peak loads should be limited to about 20 percent of the ultimate load. Simplifying counting methods gave misleading results. Very thin surface layers of anodizing, protection by vinyl, dry nitrogen atmosphere, as well as stepwise reaming or grinding the surface of the holes, lengthened the life; thick anodized layers shortened the life. Compressing the hole surface by rolling had no influence. Frequencies at about 210 to 240 cpm produced shorter lives than those at 40 cpm. At 5.4 cpm the life was considerably longer. A model to better understand the precrack-stage fatigue mechanism is discussed.

  14. Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects.

    Science.gov (United States)

    Mönch, Ingolf; Makarov, Denys; Koseva, Radinka; Baraban, Larysa; Karnaushenko, Daniil; Kaiser, Claudia; Arndt, Karl-Friedrich; Schmidt, Oliver G

    2011-09-27

    Detection and analysis of magnetic nanoobjects is a crucial task in modern diagnostic and therapeutic techniques applied to medicine and biology. Accomplishment of this task calls for the development and implementation of electronic elements directly in fluidic channels, which still remains an open and nontrivial issue. Here, we present a novel concept based on rolled-up nanotechnology for fabrication of multifunctional devices, which can be straightforwardly integrated into existing fluidic architectures. We apply strain engineering to roll-up a functional nanomembrane consisting of a magnetic sensor element based on [Py/Cu](30) multilayers, revealing giant magnetoresistance (GMR). The comparison of the sensor's characteristics before and after the roll-up process is found to be similar, allowing for a reliable and predictable method to fabricate high-quality ultracompact GMR devices. The performance of the rolled-up magnetic sensor was optimized to achieve high sensitivity to weak magnetic fields. We demonstrate that the rolled-up tube itself can be efficiently used as a fluidic channel, while the integrated magnetic sensor provides an important functionality to detect and respond to a magnetic field. The performance of the rolled-up magnetic sensor for the in-flow detection of ferromagnetic CrO(2) nanoparticles embedded in a biocompatible polymeric hydrogel shell is highlighted. © 2011 American Chemical Society

  15. RESEARCH OF INFLUENCE OF FRONT TENSION AT ROLLING OF PERIODIC PROFILE IN NON-DRIVE ROLLERS

    Directory of Open Access Journals (Sweden)

    L. A. Isayevich

    2012-01-01

    Full Text Available Influence of a forward tension is theoretically investigated at a rolling of the periodic profiles used as elastic elements of spring suspension brackets. The power balance of rolling process with a tension is analyzed. Dependences for definition of a critical corner and size of its increment are received at a rolling with a forward tension.

  16. A Comparative Experimental Study on Identification of Defect Severity in Rolling Element Bearings using Acoustic Emission and Vibration Analysis

    Directory of Open Access Journals (Sweden)

    V.V. Rao

    2015-06-01

    Full Text Available This paper describes the comparison between Vibration Analysis (VA and Acoustic Emission (AE method to predict the defect severity in rolling element bearings with respect to the gradual increase of defect size. In bearing fault diagnosis vibration based methods are very popular, but the signals acquired by its transducers from the bearings are distorted by other faults and mechanical noise from the equipment. Vibration based methods are effective when the defect in the bearings has already become severe. AE is a non destructive testing (NDT technique used in structural health monitoring and its application for bearing defect diagnosis is gaining momentum as an alternate diagnostic tool because of its inherent high signal-to-noise-ratio (SNR. A bearing test rig was designed and set up to study the various defects in rolling element bearings in real environment. In earlier cases, though the researchers studied on different types of seeded defects with random sizes, they could not ascertain the correlation between their defect sizes and the vibration amplitude. The experimental investigation reported in this paper is centered on seeded defect of same type with gradual increase of its size on outer race of radially loaded cylindrical roller bearings and running the defective bearing at different speeds and loads. Data acquired through AE & vibration probes simultaneously for better diagnosis. Comparisons between AE and VA over a range of speed and load conditions at gradual increase of defect size are presented and from them it is concluded that AE method is superior to identify the severity of defect.

  17. Experimental analysis of two-layered dissimilar metals by roll bonding

    Science.gov (United States)

    Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng

    2018-02-01

    Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.

  18. Effects of the process temperature and rolling speed on the thermal roll-to-roll imprint lithography of flexible polycarbonate film

    International Nuclear Information System (INIS)

    Sohn, Ki-Ju; Lee, Woo Il; Park, Jae Hong; Jang, Hyun-Ik; Lee, Dong-Eon

    2013-01-01

    Thermal roll-to-roll imprint lithography (R2RIL) is a simple and low-cost process for the mass production of micro/nanopatterns. However, in that it relies on highly viscous thermoplastic resists, it is limited in its ability to imprint precise patterns at a high speed. Moreover, the concentrated imprint force applied in R2RIL can damage the resist material which is structurally vulnerable at high process temperatures. Therefore, it is important to understand the temperature- and time-dependent characteristics of the resist material as well as the imprinting mechanism when using thermal R2RIL. In this work, the effects of the process temperature and rolling speed on thermal R2RIL of polycarbonate (PC) films were investigated to improve the process efficiency. Micro-scale line patterns were successfully transferred onto PC films from nickel (Ni) mold stamps. Consequently, line patterns with widths in the range of 5–80 µm were achieved at a traveling speed of 28.6 mm s –1 and process temperature of 150 °C, which is just above the glass transition temperature (T g ). In addition, the patterning performance was investigated for different temperatures, rolling speeds and pattern sizes. The imprinted pattern profiles were measured by an alpha-step surface profiler to investigate the patterning performance. The results show that a much better imprint performance was achieved at 150 °C, compared to the result at temperatures below T g . The physical mechanisms of thermal R2RIL on a PC film were studied by a finite-element analysis and the patterning process was successfully demonstrated by a visco-plastic deformation model. (paper)

  19. The investigation of fatigue load on a PSD using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mood Duck; Cho, Chong Du; Choi, Won June [Inha Univ., Incheon (Korea, Republic of); Kim, Jung Yup [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2008-07-01

    Subway railway systems are being increasingly adopted in metro cities to ease the passenger transportation. But there are some concerns related to the safety of the passengers. Nowadays, PSD(Platform Screen Doors) are commonly used to assure the safety of passengers. PSD is used to prevent the fire disasters, air turbulence, and dust which may pose a threat to the passenger's safety. Moreover the design of PSD itself has to take some parameters into consideration, crowd loading, wind pressure, etc. In our present study we perform a fatigue analysis considering these parameters. Commercial finite element software package ANSYS Workbench 11.0 has been used for the structural analysis. In correlation with this analysis, the structural safety of the testing PSD equipment was confirmed, and the critical load condition was found.

  20. The investigation of fatigue load on a PSD using finite element method

    International Nuclear Information System (INIS)

    Choi, Mood Duck; Cho, Chong Du; Choi, Won June; Kim, Jung Yup

    2008-01-01

    Subway railway systems are being increasingly adopted in metro cities to ease the passenger transportation. But there are some concerns related to the safety of the passengers. Nowadays, PSD(Platform Screen Doors) are commonly used to assure the safety of passengers. PSD is used to prevent the fire disasters, air turbulence, and dust which may pose a threat to the passenger's safety. Moreover the design of PSD itself has to take some parameters into consideration, crowd loading, wind pressure, etc. In our present study we perform a fatigue analysis considering these parameters. Commercial finite element software package ANSYS Workbench 11.0 has been used for the structural analysis. In correlation with this analysis, the structural safety of the testing PSD equipment was confirmed, and the critical load condition was found

  1. A Review on Strengthening Steel Beams Using FRP under Fatigue

    Directory of Open Access Journals (Sweden)

    Mohamed Kamruzzaman

    2014-01-01

    Full Text Available In recent decades, the application of fibre-reinforced polymer (FRP composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

  2. A review on strengthening steel beams using FRP under fatigue.

    Science.gov (United States)

    Kamruzzaman, Mohamed; Jumaat, Mohd Zamin; Sulong, N H Ramli; Islam, A B M Saiful

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

  3. A Review on Strengthening Steel Beams Using FRP under Fatigue

    Science.gov (United States)

    Jumaat, Mohd Zamin; Ramli Sulong, N. H.

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221

  4. Restraint system for core elements of a reactor core

    International Nuclear Information System (INIS)

    Class, G.

    1975-01-01

    In a nuclear reactor, a core element bundle formed of a plurality of side-by-side arranged core elements is surrounded by restraining elements that exert a radially inwardly directly restraining force generating friction forces between the core elements in a restraining plane that is transverse to the core element axes. The adjoining core elements are in rolling contact with one another in the restraining plane by virtue of rolling-type bearing elements supported in the core elements. (Official Gazette)

  5. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  6. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  7. The effect of roll gap geometry on microstructure in cold-rolled aluminum

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bay, B.; Winther, G.

    2004-01-01

    Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling-type tex......Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling...... layers. In these layers, extended planar dislocation boundaries are frequently found to be inclined closely to the rolling direction. The subsurface and central layers of this plate exhibit microstructures similar to those in the plate rolled with intermediate draughts. It is suggested...

  8. Calculation of the Stiffness in the Roll Tensioning of the Circular Saw Blade

    Directory of Open Access Journals (Sweden)

    Linh Vo Tung

    2016-01-01

    Full Text Available The circular blade has been widely used in some projects such as cutting stone, wood and other projects. Owing to its particularity and wide use, it has an important position in cutting industry. Roll tensioning is considered as an effective method which can be used to improve the stiffness and performance of the circular saw blade. The effect of rolling position and width in the roll tensioning is obvious. In this paper the calculation of the maximum stiffness at different rolling position and width in the rolling were carried out through the finite -element. The results show that three ideal points are found. And when rolling position is Ø950mm and rolling width is 20mm, the maximum stiffness of the circular saw blade whose minimum deformation is 0.028mm is found. The roll tensioning can increase the stiffness of the saw blade. It will provide a theoretical basis and guidance for the actual production.

  9. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    Directory of Open Access Journals (Sweden)

    Norio Maruyama, Sachiko Hiromoto, Eiji Akiyama and Morihiko Nakamura

    2013-01-01

    Full Text Available Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-. For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR both in air and in PBS(-. A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR. The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  10. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zuo-peng [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Qiao, Gui-ying [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Tang, Lei [Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Hong-wei; Liao, Bo [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-03-07

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10{sup 5} cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m{sup 1/2}. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  11. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    International Nuclear Information System (INIS)

    Zhao, Zuo-peng; Qiao, Gui-ying; Tang, Lei; Zhu, Hong-wei; Liao, Bo; Xiao, Fu-ren

    2016-01-01

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10"5 cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m"1"/"2. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  12. Fatigue Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress Spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability as well as systems reliability is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  13. Fatigue tests of dowel-socket systems

    International Nuclear Information System (INIS)

    Chiang, D.D.

    1976-01-01

    A test program was conducted to determine the fatigue behavior of LHTGR fuel element dowel/socket systems. Two dowel/socket systems, namely, a four-dowel system and a five-dowel system, were tested to failure under shear loads applied through a fatigue test apparatus to simulate repetitive loading during a seismic event

  14. Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061

    Science.gov (United States)

    Yadollahpour, M.; Hosseini-Toudeshky, H.; Karimzadeh, F.

    2016-05-01

    The effects of cryorolling (rolling at liquid nitrogen temperature) and heat treatment on tensile and high-cycle fatigue properties and fatigue crack growth rate of Al6061 alloy have been investigated in the present work. First, the solid solution-treated bulk Al6061 alloy was subjected to cryorolling with 90% total thickness reduction and subsequent short annealing at 205°C for 5 min and peak aging at 148°C for 39 h to achieve grain refinement and simultaneous improvement of the strength and ductility. Then, hardness measurements, tensile tests, fatigue life, and fatigue crack growth rate tests including fractography analyses using scanning electron microscopy were performed on bulk Al6061 alloy, cryorolled (CR), and cryorolled material followed by peak aging (PA). The PA specimen showed improved yield strength by 24%, ultimate tensile strength by 20%, and ductility by 12% as compared with the bulk Al6061 alloy. It is shown that the fatigue strength of both CR and PA specimens under a high-cycle fatigue regime are larger than that of the bulk Al6061 alloy. Also, fatigue crack growth rates of the CR and PA specimens show significant enhancement in fatigue crack growth resistances as compared with the bulk Al6061 alloy, as a result of grain refinement.

  15. A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory.

    Science.gov (United States)

    Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying

    2016-01-01

    Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately.

  16. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  17. Validation of the finite element simulation to estimate the rolling resistance of a non-driving wheel with experimental tests

    Directory of Open Access Journals (Sweden)

    N Dibagar

    2015-09-01

    Full Text Available Introduction: Encountering soil from the viewpoint of management and product manufacturing has always been considered important, and an attempt is always made hat the tools and contrasting methods of soil be designed in such a way that itself prevents, as much as possible, the destructive consequences or energy waste that include economical or environmental limitations. Enhancing the soil encountering methods, quality reformation, and its related equipment, requires performing reliable tests in actual soil conditions. Considering the complexity and variety of variables in soil and machine contrast, this is a hard task. Hence, the numeral simulations are the key of all optimizations that illustrate efficient models by removing the costly farm tests and reducing research time. Tire is one of the main factors engaged with soil, and it is one of those tools that are discussable in both farms, and software environments. Despite the complexities in soil behavior, and tire geometry, modeling, tire movement on the soil has been the researchers’ objective from the past. Materials and methods: A non-linear finite element (FE model of the interaction of a non-driving tire with soil surface was developed to investigate the influence of the forward speed, tire inflation pressure and vertical load on rolling resistance using ABAQUS/Explicit code. In this research numerical and experimental tests were done under different conditions in order to estimate tire rolling resistance. In numerical tests, the soil part was simulated as a one-layer viscous-elastic material with a Drucker-Prager model by considering realistic soil properties. These properties included elastic and plastic properties which were obtained in the soil laboratory using relevant tests. The soil samples were prepared from the soil which was inside the soil bin. The same soil was utilized in experimental tests. Finite strain hyper elasticity model is developed to model nearly incompressible

  18. RELATIONSHIP BETWEEN ROLLING AND SLIP RESISTANCE IN ROLLING BEARINGS

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2016-06-01

    Full Text Available Purpose. About one of the causes of slip rolling is known from the second half of the 19th century, it was believed that the slip resistance appears at the place of contact due to different speeds on the arc of contact. Only in the mid-20th century it was proved that this resistance is negligible in rolling resistance. However (for some unknown reason it is ignored the fact that in practice in rolling bearings may rotate both the inner ring with a stationary outer one, and vice versa almost in equal relations. It is not taken into account the fact that the ball or roller in the rolling bearings runs the different distance along the roller path of the outer and inner bearing cages in one revolution. This fact is not taken into account in determining the calculated values for the friction coefficient of a rolling bearing reduced to the shaft. Therefore, the aim of this work is to determine the influence of path length on the track riding the outer and inner race of the bearing on the determination of the calculated value of the coefficient of friction of rolling bearings is given to the shaft. Methodology. The solution technique is based on the theory of plane motion of a rigid body, the theory of Hertzian contact deformation and the analytical dependencies for determination of coefficient of rolling friction. Findings. The obtained dependences on determination of rolling resistance of the balls or rollers along the bearing tracks of inner and outer bearing cages as well as path difference metering of the rolling on them allows to analytically obtain the rolling resistance and slipping for any size of bearings and different devices of bearing units. It is also possible at the design stage of rolling nodes to handle not only the design but also the content of the node. Originality. Using the analytical dependences for determination of the rolling resistance of bodies at point and line contacts, and also account for the difference in the path of the

  19. Roll-to-Roll production of carbon nanotubes based supercapacitors

    Science.gov (United States)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  20. Fatigue crack behaviour in mine excavator

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Y.; Grondin, G.Y.; Elwi, A.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2006-05-15

    Fatigue cracking in excavation equipment represents a significant operating cost for oil sands operators. It is caused by high impact loads, the high frequency of load cycles, and large component sizes found in oil sands processing facilities. Monitoring and repair strategies for fatigue cracks are typically based on vendor specifications and the experience of maintenance personnel. This paper provided details of an optimized crack management program applied to a BE 395B shovel boom. The proposed crack management tool uses a chart to predict the remaining life of a corner crack in the shovel boom. Predictions are based on limited field measurements of operating loads as well as on data obtained from fatigue testing of boom material, and a finite element analysis of the shovel boom. Field and laboratory data are used along with fracture mechanics and finite element modelling to predict crack life. It was concluded that the tool will allow inspectors and planners to schedule repairs based on safe service life. The tool is applicable for any components subjected to fatigue loading. 3 refs., 21 tabs., 64 figs.

  1. Numerical simulation research on rolling process of monolithic nuclear fuel plate

    International Nuclear Information System (INIS)

    Wan Jibo; Kong Xiangzhe; Ding Shurong; Xu Hongbin; Huo Yongzhong

    2015-01-01

    For the strain-rate-dependent constitutive relation of zircaloy cladding in UMo monolithic nuclear fuel plates, the three-dimensional stress updating algorithm was derived out, and the corresponding VUMAT subroutine to define its constitutive relation was developed and validated; the finite element model was built to simulate the frame rolling process of UMo monolithic nuclear fuel plates; with the explicit dynamic finite element method, the evolution rules of the deformation and contact pressure during the rolling process within the composite slab were obtained and analyzed. The research results indicate that it is convenient and efficient to define the strain-rate- dependent constitutive relations of materials with the user-defined material subroutine VUMAT; the rolling-induced contact pressure between the fuel meat and the covers varies with time, and the maximum pressure exits at the symmetric plane along the plate width direction. This study supplies a foundation and a computation method for optimizing the processing parameters to manufacture UMo monolithic nuclear fuel plates. (authors)

  2. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  3. Optimization and Simulation of Machining Parameters in Radial-axial Ring Rolling Process

    Directory of Open Access Journals (Sweden)

    Shuiyuan Tang

    2011-05-01

    Full Text Available Ring rolling is a complicated process, in which rolling parameters influence directly the quality of ring. It is a process method with high productivity and few waste of material, widely used in transportation industry including automotive, shipbuilding, aerospace etc. During the rolling process of large-sized parts, crinkle and hollows often appear on surface, due to inconsistence of rolling motions with the deformation of ring part. Based on radial-axial ring rolling system configuration, motions and forces in rolling process are analyzed, and a dynamic model is formulated. Error of ring's end flatness and roundness are defined as the characteristic parameters of ring quality. The relationship between core roller feed speed, drive roller speed, the upper taper roller feed speed, and quality of ring part are analyzed. The stress and strain of the part are simulated in the Finite Element Method by DEFORM software. The simulation results provide a reference for the definition of ring rolling process parameters. It is able to make the deformation of the part be consistent with the process parameters, and improve product quality considerably.

  4. FEM analysis of hollow hub forming in rolling extrusion process

    Directory of Open Access Journals (Sweden)

    J. Bartnicki

    2014-10-01

    Full Text Available In this paper are presented the results of numerical calculations of rolling extrusion process of a hollow hub. As the flanges manufacturing at both sides of the product is required, in the analyzed process of rolling extrusion, a rear bumper was implemented as additional tool limiting axial metal flow. Numerical calculations of the hub forming process were conducted basing on finite element method, applying software Deform3D and Simufact in conditions of three dimensional state of strain. The obtained satisfactory results show that it is possible to conduct the further research works of experimental character, with the application of a modernized aggregate for the rolling extrusion process PO-2.

  5. Fatigue impact on Mod-1 wind turbine design

    Science.gov (United States)

    Stahle, C. V., Jr.

    1978-01-01

    Fatigue is a key consideration in the design of a long-life Wind Turbine Generator (WTG) system. This paper discusses the fatigue aspects of the large Mod-1 horizontal-axis WTG design starting with the characterization of the environment and proceeding through the design. Major sources of fatigue loading are discussed and methods of limiting fatigue loading are described. NASTRAN finite element models are used to determine dynamic loading and internal cyclic stresses. Recent developments in determining the allowable fatigue stress consistent with present construction codes are discussed relative to their application to WTG structural design.

  6. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  7. Fatigue failure of sandwich beams with face sheet wrinkle defects

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Thomsen, Ole Thybo

    2012-01-01

    This paper presents experimental fatigue results for GFRP face sheet/balsa core sandwich beams with face sheet wrinkle defects, subjected to fully reversed in-plane fatigue loading. An estimate of the fatigue design limit is presented, based on static test results, finite element analyses and app...

  8. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  9. A new methodology for fault detection in rolling element bearings using singular spectrum analysis

    Directory of Open Access Journals (Sweden)

    Bugharbee Hussein Al

    2018-01-01

    Full Text Available This paper proposes a vibration-based methodology for fault detection in rolling element bearings, which is based on pure data analysis via singular spectrum method. The method suggests building a baseline space from feature vectors made of the signals measured in the healthy/baseline bearing condition. The feature vectors are made using the Euclidean norms of the first three PC’s found for the signals measured. Then, the lagged version of any new signal corresponding to a new (possibly faulty condition is projected onto this baseline feature space in order to assess its similarity to the baseline condition. The category of a new signal vector is determined based on the Mahalanobis distance (MD of its feature vector to the baseline space. A validation of the methodology is suggested based on the results from an experimental test rig. The results obtained confirm the effective performance of the suggested methodology. It is made of simple steps and is easy to apply with a perspective to make it automatic and suitable for commercial applications.

  10. Analysis of automotive rolling lobe air spring under alternative factors with finite element model

    International Nuclear Information System (INIS)

    Wong, Pak Kin; Xie, Zhengchao; Zhao, Jing; Xu, Tao; He, Feng

    2014-01-01

    Air springs are widely used in automotive suspensions for their superior performance in terms of low friction motion, adjustable load carrying capacity and user-friendly ride height control. However, it has posed great difficulties in constructing an accurate model as well as the analysis of the influence of alternative factors, such as cord angle, cord diameter and initial pressure. In this paper, a numerical model of the rolling lobe air spring (RLAS) is built by using finite element method and compared with an existing analytical model. An experiment with respect to the vertical stiffness of the RLAS is carried out to validate the accuracy of the proposed model. Evaluation result reveals that the existing analytical model cannot represent the performance of the RLAS very well, whereas the accuracy of the numerical model is very good. With the verified numerical model, the impacts of many alternative factors on the characteristics of the RLAS are analyzed. Numerical results show that the newly proposed model is reliable to determine the vertical characteristic and physical dimensions of the RLAS under the alternative factors.

  11. Enhanced friction modeling for steady-state rolling tires

    NARCIS (Netherlands)

    Steen, van der R.

    2010-01-01

    Tire modeling is nowadays a necessary tool in the tire industry. Car manufacturers, governments and consumers demand better traction under all circumstances, less wear and more recently less noise and a lower rolling resistance. Therefore finite element analysis is adopted in the design process of

  12. Microstructure based procedure for process parameter control in rolling of aluminum thin foils

    Science.gov (United States)

    Johannes, Kronsteiner; Kabliman, Evgeniya; Klimek, Philipp-Christoph

    2018-05-01

    In present work, a microstructure based procedure is used for a numerical prediction of strength properties for Al-Mg-Sc thin foils during a hot rolling process. For this purpose, the following techniques were developed and implemented. At first, a toolkit for a numerical analysis of experimental stress-strain curves obtained during a hot compression testing by a deformation dilatometer was developed. The implemented techniques allow for the correction of a temperature increase in samples due to adiabatic heating and for the determination of a yield strength needed for the separation of the elastic and plastic deformation regimes during numerical simulation of multi-pass hot rolling. At the next step, an asymmetric Hot Rolling Simulator (adjustable table inlet/outlet height as well as separate roll infeed) was developed in order to match the exact processing conditions of a semi-industrial rolling procedure. At each element of a finite element mesh the total strength is calculated by in-house Flow Stress Model based on evolution of mean dislocation density. The strength values obtained by numerical modelling were found in a reasonable agreement with results of tensile tests for thin Al-Mg-Sc foils. Thus, the proposed simulation procedure might allow to optimize the processing parameters with respect to the microstructure development.

  13. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    Energy Technology Data Exchange (ETDEWEB)

    Odintsov, S.D. [ICREA, Passeig Luis Companys, 23, 08010 Barcelona (Spain); Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com [Laboratory for Theoretical Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), Lenin Avenue 40, 634050 Tomsk (Russian Federation)

    2017-04-01

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces. In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.

  14. Rolling-Tooth Core Breakoff and Retention Mechanism

    Science.gov (United States)

    Badescu, Mircea; Bickler, Donald B.; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Hudson, Nicolas H.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale that is robust and versatile enough to be used for a variety of core samples. This design consists of a set of tubes (a drill tube and an inner tube) and a rolling element (rolling tooth). An additional tube can be used as a sample tube. The drill tube and the inner tube have longitudinal holes with the axes offset from the axis of each tube. The two eccentricities are equal. The inner tube fits inside the drill tube, and the sample tube fits inside the inner tube. While drilling, the two tubes are positioned relative to each other such that the sample tube is aligned with the drill tube axis and core. The drill tube includes teeth and flutes for cuttings removal. The inner tube includes, at the base, the rolling element implemented as a wheel on a shaft in an eccentric slot. An additional slot in the inner tube and a pin in the drill tube limit the relative motion of the two tubes. While drilling, the drill assembly rotates relative to the core and forces the rolling tooth to stay hidden in the slot along the inner tube wall. When the drilling depth has been reached, the drill bit assembly is rotated in the opposite direction, and the rolling tooth is engaged and penetrates into the core. Depending on the strength of the created core, the rolling tooth can score, lock the inner tube relative to the core, start the eccentric motion of the inner tube, and break the core. The tooth and the relative position of the two tubes can act as a core catcher or core-retention mechanism as well. The design was made to fit the core and hole parameters produced by an existing bit; the parts were fabricated and a series of demonstration tests were performed. This invention is potentially applicable to sample return and in situ missions to planets such as Mars and Venus, to moons such

  15. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  16. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    Science.gov (United States)

    Okazaki, Yoshimitsu

    2012-01-01

    The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.

  17. Application of the Finite Element Method to Reveal the Causes of Loss of Planeness of Hot-Rolled Steel Sheets during Laser Cutting

    Science.gov (United States)

    Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.

    2018-01-01

    A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.

  18. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  19. Computer-aided roll pass design in rolling of airfoil shapes

    Science.gov (United States)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  20. Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue

    Science.gov (United States)

    Mobasher Moghaddam, Sina

    Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry. In the current work, an analytical as well as experimental approaches are used to investigate "butterfly wing" formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed damage evolution law matches experimentally observed butterfly orientation, shape, and size successfully. The model is used to obtain S-N results for butterfly formation at different Hertzian load levels. The results corroborate well with the experimental data available in the open literature. The model is used to predict debonding at the inclusion/matrix interface and the most vulnerable regions for crack initiation on butterfly/matrix interface. A new variable called butterfly formation index (BFI) is introduced to manifest the dependence of wing formation on depth. The value of critical damage inside the butterfly wings was obtained experimentally and was then used to simulate damage evolution. Voronoi tessellation was used to develop the FEM domains to capture the effect of microstructural randomness on butterfly wing formation, crack initiation and propagation. Then, the effects of different inclusion characteristics such as size, depth, and stiffness on RCF life are studied. The results show that stiffness of an inclusion and its location has a significant effect on the RCF life: stiffer inclusions and inclusions located at the depth of maximum shear stress reversal are more detrimental to the RCF life. Stress concentrations are not significantly affected by inclusion size for the cases

  1. A new solution method for wheel/rail rolling contact.

    Science.gov (United States)

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  2. Development of a fatigue analysis software system

    International Nuclear Information System (INIS)

    Choi, B. I.; Lee, H. J.; Han, S. W.; Kim, J. Y.; Hwang, K. H.; Kang, J. Y.

    2001-01-01

    A general purpose fatigue analysis software to predict fatigue lives of mechanical components and structures was developed. This software has some characteristic features including functions of searching weak regions on the free surface in order to reduce computing time significantly, a database of fatigue properties for various materials, and an expert system which can assist any users to get more proper results. This software can be used in the environment consists of commercial finite element packages. Using the software developed fatigue analyses for a SAE keyhole specimen and an automobile knuckle were carried out. It was observed that the results were agree well with those from commercial packages

  3. Numerical aspects of U-Mo core covered by Zry-4 miniplates co-rolling

    International Nuclear Information System (INIS)

    Picchetti, B.; Moscarda, M.V.; Taboada, H.

    2013-01-01

    The aim of this work is to support through adequate modeling the development of the co-rolling process of miniplates and plates starting with compacts including a monolithic U-Mo core with Zry-4 frame and cladding, Through relevant parameter identification and specific variables calculation a co rolling process model was set. The goal is to design a co-rolling optimal strategy related to the expected results through the use of such model. To that end the rolling process is depicted and some elements of strain stress theory on metals are employed. Plastic strain depends on deviator components of the stress tensor but no on the hydrostatic one. Metal sheet co-rolling is a plastic strain by planar compression at constant volume. During the co-rolling process the width constancy is assumed, being the piece of metal free to flow along its length. In this work the relationship between constitutive materials shield stresses U-Mo core and Zry-4 cladding under T= 650°C co-rolling is determined. This allows to modeling the reduction that exist in each co-rolling step for each one of phases present, which enables the design of a loop control lace optimizing the co rolling process. (author)

  4. Ring rolling process simulation for geometry optimization

    Science.gov (United States)

    Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio

    2017-10-01

    Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.

  5. A study of residual stress and plastic deformation of a bar with gap size changes between rolls in a two cross roll straightener

    International Nuclear Information System (INIS)

    Cho, Hyun Soo; Hahm, Ju Hee; Lee Young Ho

    2012-01-01

    Cold drawn(CD) bars feature superb surface roughness, dimensional precision, and straightness. They are used in the manufacture of automotive parts and home electrical appliances. Two cross roll straighteners have been used to manufacture of automotive parts and home electrical appliances. Two cross roll straighteners have been used to manufacture CD bars for these industries. This study investigated the variation of the gap size between the two cross rolls. It was found that changes in the gap size have a large influence on the residual stress and plastic deformation. Finite element method(FEM) simulations were performed to study the influence of the gap size on the residual stress in CD bars, and experiments were performed to verify the FEM results. The residual stresses were measured with X ray diffraction in both the axial and the hoop directions

  6. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models.

    Science.gov (United States)

    Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi

    2018-01-01

    The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (pimplant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Improving fatigue performance of rail thermite welds

    Science.gov (United States)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  8. Experimental investigation on the electrical contact behavior of rolling contact connector

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junxing; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.

  9. Low-cycle fatigue behaviors of pre-hardening Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Fei [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2017-05-17

    Low-cycle fatigue behaviors of the pre-hardening (PH) and the water-quenching (WQ) Hadfield steel were studied using optical microscopy, transmission electron microscopy, and electron backscatter diffraction technique. The effect of the PH treatment on low-cycle fatigue behavior of the Hadfield steel was analyzed through comparing the cyclic hardening/softening behaviors and the changing regulations of stress amplitude, internal stress, and effective stress at different total strain amplitudes. Results showed obvious differences in fatigue behaviors between the PH (with a cold rolling deformation degree of 40%) and the WQ Hadfield steels. Transient hardening followed by cyclic stability behavior occurred in the PH Hadfield steel under cyclic loading, whereas cyclic softening behavior was barely observed. The fatigue life of the PH Hadfield steel was higher than that of the WQ Hadfield steel at relatively low strain amplitudes, while a contrary result was obtained at relatively high strain amplitudes. At low strain amplitudes, the deformation twins induced in the PH Hadfield steel could enhance the multiplication and slip process of dislocations, which actually improved the deformation uniformity. The long-range motion of dislocations was intensified at high strain amplitudes. However, the dislocation motion was also blocked by twin boundaries. As a result, the interactions between dislocations and deformation twins enhanced, finally causing severe dislocation accumulation. These two effects of deformation twins on dislocation motion eventually resulted in different low-cycle fatigue behaviors of the PH Hadfield steel.

  10. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue

    Science.gov (United States)

    Bower, Julienne E.; Ganz, Patricia A.; Irwin, Michael R.; Arevalo, Jesusa M.G.; Cole, Steve W.

    2013-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n = 11) and non-fatigued controls (n = 10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p < .05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. PMID:20854893

  11. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  12. Analysis of Fatigue Crack Growth in Ship Structural Details

    Directory of Open Access Journals (Sweden)

    Leheta Heba W.

    2016-04-01

    Full Text Available Fatigue failure avoidance is a goal that can be achieved only if the fatigue design is an integral part of the original design program. The purpose of fatigue design is to ensure that the structure has adequate fatigue life. Calculated fatigue life can form the basis for meaningful and efficient inspection programs during fabrication and throughout the life of the ship. The main objective of this paper is to develop an add-on program for the analysis of fatigue crack growth in ship structural details. The developed program will be an add-on script in a pre-existing package. A crack propagation in a tanker side connection is analyzed by using the developed program based on linear elastic fracture mechanics (LEFM and finite element method (FEM. The basic idea of the developed application is that a finite element model of this side connection will be first analyzed by using ABAQUS and from the results of this analysis the location of the highest stresses will be revealed. At this location, an initial crack will be introduced to the finite element model and from the results of the new crack model the direction of the crack propagation and the values of the stress intensity factors, will be known. By using the calculated direction of propagation a new segment will be added to the crack and then the model is analyzed again. The last step will be repeated until the calculated stress intensity factors reach the critical value.

  13. Parameters Studies on Surface Initiated Rolling Contact Fatigue of Turnout Rails by Three-Level Unreplicated Saturated Factorial Design

    Directory of Open Access Journals (Sweden)

    Xiaochuan Ma

    2018-03-01

    Full Text Available Surface initiated rolling contact fatigue (RCF, mainly characterized by cracks and material stripping, is a common type of damage to turnout rails, which can not only shorten service life of turnout but also lead to poor running safety of vehicle. The rail surface initiated RCF of turnouts is caused by a long-term accumulation, the size and distribution of which are related to the dynamic parameters of the complicated vehicle-turnout system. In order to simulate the accumulation of rail damage, some random samples of dynamic parameters significantly influencing it should be input. Based on the three-level unreplicated saturated factorial design, according to the evaluation methods of H, P and B statistic values, six dynamic parameters that influence the rail surface initiated RCF in turnouts, namely running speed of vehicle, axle load, wheel-rail profiles, integral vertical track stiffness and wheel-rail friction coefficient, are obtained by selecting 13 dynamic parameters significantly influencing the dynamic vehicle-turnout interaction as the analysis factors, considering four dynamic response results, i.e., the normal wheel-rail contact force, longitudinal creep force, lateral creep force and wheel-rail contact patch area as the observed parameters. In addition, the rail surface initiated RCF behavior in turnouts under different wheel-rail creep conditions is analyzed, considering the relative motion of stock/switch rails. The results show that the rail surface initiated RCF is mainly caused by the tangential stress being high under small creep conditions, the normal and tangential stresses being high under large creep conditions, and the normal stress being high under pure spin creep conditions.

  14. Inflation with a smooth constant-roll to constant-roll era transition

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  15. Solid Lubricated Rolling Element Bearings

    Science.gov (United States)

    1979-02-15

    lubricant into uneven patches of varnish . This varnish , along with the file-like action of the exposed ball carbides on the relatively softer races, can...its structure. Fluorine , one of the most reactive elements, reacts with graphite without combustion from about 790’F to 1022°F, forming a grey-colored...to allow for molding and machining after molding. 0 Method 2 (Hughes) Impregnating these dense weaves with a Thermid 600 polyimide varnish

  16. Method and procedure of fatigue analysis for nuclear equipment

    International Nuclear Information System (INIS)

    Wen Jing; Fang Yonggang; Lu Yan; Zhang Yue; Sun Zaozhan; Zou Mingzhong

    2014-01-01

    As an example, the fatigue analysis for the upper head of the pressurizer in one NPP was carried out by using ANSYS, a finite element method analysis software. According to RCC-M code, only two kinds of typical transients of temperature and pressure were considered in the fatigue analysis. Meanwhile, the influence of earthquake was taken into account. The method and procedure of fatigue analysis for nuclear safety equipment were described in detail. This paper provides a reference for fatigue analysis and assessment of nuclear safety grade equipment and pipe. (authors)

  17. The evolution of texture in aluminum alloy sheet during asymmetric rolling

    International Nuclear Information System (INIS)

    Kim, K-H.; Lee, D.N.

    2000-01-01

    Asymmetric rolling, in which the upper and lower roll radii are different, imposes shear deformation on sheets through the thickness, which in turn gives rise to shear deformation textures in the sheets through the thickness. A component of ND// in the shear deformation textures can improve the plastic strain ratios of aluminum sheets. In order to understand the evolution of ND// , the strain histories and distributions in the sheets during the asymmetric rolling are calculated by the finite element method. The strain history and distribution are used to calculate crystallographic orientations and stable orientations based on the Taylor-Bishop-Hill theory and the Renouward-Wintenberger theory. The shear deformation texture can vary with the ratio of shear to normal strain increments. As the ratio increases from zero to infinity, the texture moves from the plane strain compression texture (β fiber) to the ideal shear deformation texture consisting of {001} , {111} , and {111} . The ratio increases with rolling reduction per pass in asymmetric rolling. However, it is practically difficult to the rolling reduction per pass high enough to obtain the ideal shear deformation texture. Imposing the positive and negative shear deformations on the sheet by reversing the shearing direction can give rise to the ideal shear deformation texture. This has been discussed. (author)

  18. Functional parameter screening for predicting durability of rolling sliding contacts with different surface finishes

    Science.gov (United States)

    Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.

    2018-06-01

    The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.

  19. A discrete element model for damage and fracture of geomaterials under fatigue loading

    Science.gov (United States)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  20. Efficient rolling texture predictions and texture-sensitive thermomechanical properties of α-uranium foils

    Science.gov (United States)

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.

    2017-11-01

    Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.

  1. A mesh density study for application to large deformation rolling process evaluation

    International Nuclear Information System (INIS)

    Martin, J.A.

    1997-12-01

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated

  2. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings

    Science.gov (United States)

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Lei, Yaguo

    2017-08-01

    The extraction of periodic impulses, which are the important indicators of rolling bearing faults, from vibration signals is considerably significance for fault diagnosis. Maximum correlated kurtosis deconvolution (MCKD) developed from minimum entropy deconvolution (MED) has been proven as an efficient tool for enhancing the periodic impulses in the diagnosis of rolling element bearings and gearboxes. However, challenges still exist when MCKD is applied to the bearings operating under harsh working conditions. The difficulties mainly come from the rigorous requires for the multi-input parameters and the complicated resampling process. To overcome these limitations, an improved MCKD (IMCKD) is presented in this paper. The new method estimates the iterative period by calculating the autocorrelation of the envelope signal rather than relies on the provided prior period. Moreover, the iterative period will gradually approach to the true fault period through updating the iterative period after every iterative step. Since IMCKD is unaffected by the impulse signals with the high kurtosis value, the new method selects the maximum kurtosis filtered signal as the final choice from all candidates in the assigned iterative counts. Compared with MCKD, IMCKD has three advantages. First, without considering prior period and the choice of the order of shift, IMCKD is more efficient and has higher robustness. Second, the resampling process is not necessary for IMCKD, which is greatly convenient for the subsequent frequency spectrum analysis and envelope spectrum analysis without resetting the sampling rate. Third, IMCKD has a significant performance advantage in diagnosing the bearing compound-fault which expands the application range. Finally, the effectiveness and superiority of IMCKD are validated by a number of simulated bearing fault signals and applying to compound faults and single fault diagnosis of a locomotive bearing.

  3. Effect of the fabrication process on fatigue performance of U3Si2 fuel plate with sandwich structure

    International Nuclear Information System (INIS)

    Wang Xishu; Li Shuangshou; Wang Qingyuan; Xu Yong

    2005-01-01

    U 3 Si 2 -Al fuel plate is one of the dispersion fuel structure materials recently developed and widely used in research reactors. The mechanical properties of this structural material, especially the fatigue performance, are strongly dependent on its fabrication process. To investigate the effects of these processing technologies, the fatigue tests for the different specimens were carried out. The S-N curves indicate that the fabrication processing technologies of U 3 Si 2 fuel plate, such as the addition of U 3 Si 2 particles into aluminum powder to form the fuel meat, holding and rolling the processes of meat and cladding of 6061-Al alloy, plays an important role in improving the mechanical properties and fatigue performance of this fuel plate. In addition, some factors that influence the crack initiation and propagation are summarized based on the fatigue images that are in situ observations with SEM. The critical criterion for fatigue damage is proposed based on the fatigue data of the structural material, which were obtained at the different conditions

  4. Upscaling of polymer solar cell fabrication using full roll-to-roll processing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Tromholt, Thomas; Jørgensen, Mikkel

    2010-01-01

    factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated...... with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator...... to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies due to the inferior operational lifetime. The presented devices are thus competitive for consumer electronics but ill-suited for on...

  5. 3-D finite element stress analysis for fatigue design and evaluation: a parametric study of MOV(Motor Operated Valve)

    International Nuclear Information System (INIS)

    Kim, Hyeong Keun; Lee, Sang Min; Chang, Yoon Suk; Choi, Jae Boong; Kim, Young Jin; Kim, Yun Jae

    2004-01-01

    In this paper, a new procedure is proposed to accomplish the primary plus secondary stress(P+Q) at the 'structural element' instead of 'transition element'. For the P+Q evaluation, the calculated stresses by FEA are linearized along a stress classification line to extract the stress category, then the stress intensity is calculated to compare with the 3Sm limit. Also, in this paper, the 'design by analysis' criteria, adopted fundamental concepts and a new approach to calculate Ke factors are explained. The new procedure combined with 3-D FEA has been applied to motor operated valve in order to the over conservatism and the rack of margin. The evaluation results show a good applicability and can be utilized for fatigue life evaluation by using P+Q

  6. Simulation and Measurement of Wheel on Rail Fatigue and Wear

    OpenAIRE

    Dirks, Babette

    2015-01-01

    The life of railway wheels and rails has been decreasing in recent years. This is mainly caused by more traffic and running at higher vehicle speed. A higher speed usually generates higher forces, unless compensated by improved track and vehicle designs, in the wheel-rail contact, resulting in more wear and rolling contact fatigue (RCF) damage to the wheels and rails. As recently as 15 years ago, RCF was not recognised as a serious problem. Nowadays it is a serious problem in many countries a...

  7. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  8. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Feidenhans'l, Nikolaj Agentoft

    2017-01-01

    Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness....... In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having...... 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits...

  9. Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading

    International Nuclear Information System (INIS)

    Lee, Myeong-Woo; Kim, Yun-Jae; Park, Jun-Hyub

    2014-01-01

    In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product s welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment

  10. Fabrication of cold-rolled bands of the alloy-ehi 702 in rolls

    International Nuclear Information System (INIS)

    Zhuchin, V.N.; Gindin, A.Sh.; Shaburov, V.E.; Vladimirov, S.M.; Sokolov, V.A.; Shavkun, V.V.; Perepelitsa, I.V.; Markov, V.V.; Naymov, E.P.; Evstaf'ev, P.P.

    1977-01-01

    The questions are discussed, connected with the manufacture of cold-rolled strip of alloy EI702 in reels from strip blanks. It has been established that in the manufacture of hot-rolled stock from EI702 slabs it is necessary to use powerful rolling equipment because of high resistance to deformation. The reel method for manufacturing EI702 alloy improves the rolled stock and increases percentage of serviceable stock, as well as the output

  11. Stress and accidental defect detection on rolling mill rolls

    International Nuclear Information System (INIS)

    Auzas, J.-D.

    1999-01-01

    During the rolling mill process, rolls are submitted to high pressures that can lead to local decohesion or metallurgical changes. Both these cracks or softened areas must be detected as soon as they appear because of the risk of spalling, marks on the product, and mill wreck. These defects can be detected using the eddy current method, and particularly sensors specially developed for micro-defects detection. These sensors must be adapted to the environment of a roll grinding machine on which they must be installed. Users' schedule of conditions also require them to be attached to a wide range of eddy current generator and automatic computerized interpretation. Mill requirements for new high tech roll grades and quality lead to continuous development and improvement of the tools that will provide immediate 'go - no go' information. This paper is an update of these developments. (author)

  12. Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints

    International Nuclear Information System (INIS)

    Shanmugam, K.; Lakshminarayanan, A.K.; Balasubramanian, V.

    2009-01-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on fatigue crack growth behaviour of the gas tungsten arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single 'V' butt welded joints. Centre cracked tensile (CCT) specimens were prepared to evaluate fatigue crack growth behaviour. Servo hydraulic controlled fatigue testing machine was used to evaluate the fatigue crack growth behaviour of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength, hardness and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  13. Recalibrated Equations for Determining Effect of Oil Filtration on Rolling Bearing Life

    Science.gov (United States)

    Needelman, William M.; Zaretsky, Erwin V.

    2014-01-01

    In 1991, Needelman and Zaretsky presented a set of empirically derived equations for bearing fatigue life (adjustment) factors (LFs) as a function of oil filter ratings. These equations for life factors were incorporated into the reference book, "STLE Life Factors for Rolling Bearings." These equations were normalized (LF = 1) to a 10-micrometer filter rating at Beta(sub x) = 200 (normal cleanliness) as it was then defined. Over the past 20 years, these life factors based on oil filtration have been used in conjunction with ANSI/ABMA standards and bearing computer codes to predict rolling bearing life. Also, additional experimental studies have been made by other investigators into the relationship between rolling bearing life and the size, number, and type of particle contamination. During this time period filter ratings have also been revised and improved, and they now use particle counting calibrated to a new National Institute of Standards and Technology (NIST) reference material, NIST SRM 2806, 1997. This paper reviews the relevant bearing life studies and describes the new filter ratings. New filter ratings, Beta(sub x(c)) = 200 and Beta(sub x(c)) = 1000, are benchmarked to old filter ratings, Beta(sub x) = 200, and vice versa. Two separate sets of filter LF values were derived based on the new filter ratings for roller bearings and ball bearings, respectively. Filter LFs can be calculated for the new filter ratings.

  14. Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2016-01-01

    Full Text Available Fatigue crack initiation and propagation involve plastic strains that require some work to be done on the material. Most of this irreversible energy is dissipated as heat and consequently the material temperature increases. The heat being an indicator of the intense plastic strains occurring at the tip of a propagating fatigue crack, when combined with the Neuber’s structural volume concept, it might be used as an experimentally measurable parameter to assess the fatigue damage accumulation rate of cracked components. On the basis of a theoretical model published previously, in this work the heat energy dissipated in a volume surrounding the crack tip is estimated experimentally on the basis of the radial temperature profiles measured by means of an infrared camera. The definition of the structural volume in a fatigue sense is beyond the scope of the present paper. The experimental crack propagation tests were carried out on hot-rolled, 6-mm-thick AISI 304L stainless steel specimens subject to completely reversed axial fatigue loading.

  15. To study the mechanical properties of unidirectionally and cross rolled Ni-Cu alloy produced in VIM

    International Nuclear Information System (INIS)

    Afzal, M.; Ajmal, M.; Butt, Z.T.

    2009-01-01

    Ni-Cu alloy was developed by melting in a vacuum induction furnace using pure elements i.e., Ni, Cu, Fe, Si, Mn and Cr. Four heats of approximately 4 kg each were prepared. All the heats have been casted in an ingot of 10 cm long and 5 cm in diameter in vacuum. These ingots were hot forged at a temperature of 900 deg. C to break down the cast dendritic structure. All forged plates were cut into two halve. One half was rolled in unidirectional while other was rolled in multiple directions (cross rolling). During rolling after every 25 % reduction, the cold rolled samples were annealed at a temperature of 900 deg. C for one hour. Each plate was cold rolled to a final thickness of 0.345 mm. Half of these rolled plate produced either by cross rolling or unidirectional rolling were annealed at 900 deg. C for 20 minutes. The mechanical properties of each rolled plate in cold reduction and in annealed were also measured. Unidirectional rolling and cross rolling has almost similar mechanical properties. The annealing of cross rolled and unidirectional rolling drastically reduced the yield strength. It was observed that the Ni-Cu alloy produced has slightly lower yield and ultimate tensile strength compared to the values reported in standards of Monel-400. However, it is within the acceptable range to be used for the various applications. (author)

  16. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  17. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  18. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  19. Damage development in woven fabric composites during tension-tension fatigue

    DEFF Research Database (Denmark)

    Hansen, U.

    1999-01-01

    of the operating fatigue damage mechanism(s). Fatigue leads to a degradation of material properties. Consequently, in connection with impact induced local stress raisers, fatigue produces continuously changing non-uniform stress fields because of stress redistribution effects. Other models addressing evolution...... of fatigue damage in composite materials have not been able to simulate evolving nonuniform stress fields. Therefore. in the second part of this paper, an analytical/numerical approach capable of addressing these issues is also proposed.......Impacted woven fabric composites were tested in tension-tension fatigue. In contrast to results from static testing, the effects of low energy impact damage in a fatigue environment were found to be the critical element leading to failure of the specimen. This difference emphasizes the need...

  20. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  1. Integral finite element analysis of turntable bearing with flexible rings

    Science.gov (United States)

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  2. Fatigue crack growth behaviour of the aluminium-lithium alloy 2090

    International Nuclear Information System (INIS)

    Tabrett, C.P.; McKeighan, P.C.; Smith, D.J.

    1993-01-01

    The fatigue crack growth (FCG) behavior of the aluminum lithium (Al-Li) alloy 2090-T84 has been investigated from a series of constant amplitude FCG tests. The influence of in plane orientation (L-T, T-L+45) and sheet thickness (1.6 and 6 mm) on the FCG rates for the rolled product has been examined. In general, the T-L orientation possess superior FCG resistance for both thicknesses and the 6 mm thick sheet material showed improved FCG resistance when compared to the 1.6 mm thick material for all orientations. It is believed this trend is related to the greater roughness and larger asperities found on the fatigue crack surfaces for the 6 mm thick material. Closure corrected FCG data suggests that much of the difference between the L-T and T-L orientation for the 6 mm thick sheet arise from variations in crack closure levels. (author)

  3. Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Pedersen, Henrik Chresten

    2016-01-01

    This paper investigates a novel, very high throughput, roll-to-roll (R2R) process for nanostructuring of polymer foils, called R2R extrusion coating. It has the potential to accelerate the integration of nanostructured materials in consumer products for a variety of applications, including optical....../height of 100 nm. The best replication was achieved in polypropylene, by running at high roller line-speed of 60 m/min, and high cooling roller temperature of 70°C. Replication in other common polymers like polyethylene and polystyrene was not possible for the parameter range used for the investigation......., technical, and functional surfaces and devices. In roll-to-roll extrusion coating, a molten polymer film is extruded through a flat die forming a melt curtain, and then laminated onto a carrier foil. The lamination occurs as the melt curtain is pressed between a cooling roller and a counter roller...

  4. A Study on Surface Modification of Al7075-T6 Alloy against Fretting Fatigue Phenomenon

    Directory of Open Access Journals (Sweden)

    E. Mohseni

    2014-01-01

    Full Text Available Aircraft engines, fuselage, automobile parts, and energy saving strategies in general have promoted the interest and research in the field of lightweight materials, typically on alloys based on aluminum. Aluminum alloy itself does not have suitable wear resistance; therefore, it is necessary to enhance surface properties for practical applications, particularly when aluminum is in contact with other parts. Fretting fatigue phenomenon occurs when two surfaces are in contact with each other and one or both parts are subjected to cyclic load. Fretting drastically decreases the fatigue life of materials. Therefore, investigating the fretting fatigue life of materials is an important subject. Applying surface modification methods is anticipated to be a supreme solution to gradually decreasing fretting damage. In this paper, the authors would like to review methods employed so far to diminish the effect of fretting on the fatigue life of Al7075-T6 alloy. The methods include deep rolling, shot peening, laser shock peening, and thin film hard coatings. The surface coatings techniques are comprising physical vapor deposition (PVD, hard anodizing, ion-beam-enhanced deposition (IBED, and nitriding.

  5. A Theoretical and Experimental Analysis of Post-Compression Water Injection in a Rolls-Royce M250 Gas Turbine Engine

    Science.gov (United States)

    2015-05-18

    ROLLS-ROYCE M250 GAS TURBINE ENGINE by Midshipman 1/C Brian R. He United States Naval Academy Annapolis, Maryland...Injection in a Rolls- Royce M250 Gas Turbine Engine 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) He...output, efficiency, operating conditions, and emissions of injecting water at the compressor discharge of a Rolls-Royce M250 . The results

  6. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  7. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    Science.gov (United States)

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  8. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    Science.gov (United States)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  9. Rolling into spatial disorientation: Simulator demonstration of the post-roll (Gillingham) illusion

    NARCIS (Netherlands)

    Nooij, S.A.E.; Groen, E.L.

    2011-01-01

    Introduction: Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn)

  10. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    Science.gov (United States)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  11. Fatigue Crack Propagation Simulation in Plane Stress Constraint

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes; Spinelli, Dirceu

    2010-01-01

    Nowadays, structural and materials engineers develop structures and materials properties using finite element method. This work presents a numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen. Two different standard variable spectrum loadings...... are utilized, Mini-Falstaff and Wisper. The effects in two-dimensional (2D) small scale yielding models of fatigue crack growth were studied considering plane stress constraint....

  12. Physical Analysis of Cross-Wedge Rolling Process of a Stepped Shaft

    Directory of Open Access Journals (Sweden)

    Łukasz Wójcik

    2017-12-01

    Full Text Available The paper presents experimental- model research results on the process of cross-wedge rolling of an axially-symmetrical element (stepped shaft. During research was used plastic mass on the basis of waxes in black and white colour. The aim of this experimental research was to determine the best option of forming in terms of values obtained and the course of forces. Physical examination was carried out using specialist machines, that is model and laboratory cross-wedge rolling mill. Experimental analysis was carried out using billets with the temperature of 15°C, whereas the actual process was carried out for billet from C45 carbon steel of temperature 1150°C. The study compared the dimensions of the components obtained during rolling tests and forming forces obtained in the result of physical modeling with forces obtained during real tests.

  13. Rock’n’Roll as a Local Musical Phenomenon

    Directory of Open Access Journals (Sweden)

    Marija Ristivojević

    2016-02-01

    Full Text Available The paper considers the process of localization of a pop cultural and musical phenomenon – rock ’n’ roll. My basic premise is that rock ’n’ roll as a global music genre can be perceived as local, and hence represents a recognizable identification element for the local population. In this case the label r ’n’ r pertain to the phenomenon of Belgrade "new wave" music, which was popular during the 1980’s. Based on the analysis of narratives from relevant documentary films, it is my intention to find out whether "new wave" was initially perceived as a local phenomenon, and what the means of constructing this image are, as well as what it is that gives this phenomenon local legitimacy and credibility.

  14. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  15. Fatigue analysis of welding seams in automotive structures

    International Nuclear Information System (INIS)

    Halaszi, C.; Gaier, C.; Dannbauer, H.; Hofwimmer, K.

    2006-01-01

    For lightweight automotive structures, the stiffness and the fatigue behavior is greatly influenced by the properties of the joints. The joining technology used and the number and locations of the joints are of high importance for both engineers and cost accountants. An overview of common computational procedures including European and national standards is given for the assessments of the fatigue behavior of thin sheet structures with arc welds. The influence of the quality and size of finite shell elements on the fatigue results are investigated and it is shown how this influence can be minimized. (author)

  16. Numerical modeling of thermal fatigue cracks from the viewpoint of eddy current testing

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Virkkunen, Iikka; Kemppainen, Mika

    2012-01-01

    This study discusses a suitable numerical modeling of a thermal fatigue crack from the viewpoint of eddy current testing. Five artificial thermal fatigue cracks, introduced into type 304L austenitic stainless steel plates with a thickness of 25 mm, are prepared; and eddy current inspections are carried out to gather signals using an absolute type pancake probe and a differential type plus point probe. Finite element simulations are then carried out to evaluate a proper numerical model of the thermal fatigue cracks. In the finite element simulations, the thermal fatigue cracks are modeled as a semi-elliptic planar region on the basis of the results of the destructive tests. The width and internal conductivity are evaluated by the simulations. The results of the simulations reveal that the thermal fatigue cracks are regarded as almost nonconductive when the internal conductivity is assumed to be uniform inside. (author)

  17. Dimensional ranges and rolling efficiency in a tandem cold rolling mill

    Energy Technology Data Exchange (ETDEWEB)

    Larkiola, J.

    1997-12-31

    In this work, physical models and a neural network theory have been combined in order to predict the properties of a steel strip and to optimise the process parameters in cold rolling. The prediction of the deformation resistance of the material and the friction parameter is based on the physical model presented by Bland, Ford and Ellis and artificial neural network computing (ANN). The accuracy of these models has been tested and proved by using a large amount of the measured data. With the aid of these models it has been shown that (a) the small change to the relative reduction distribution can have a clear effect upon the rolling efficiency, (b) the dimensional ranges of the tandem cold roll mill can be determined and optimised and (c) the possibility to cold roll a new product of new width, strength or thickness can be determined and the parameters of the tandem cold rolling process can be optimised. (orig.) 43 refs.

  18. Finite element analysis of fatigue crack closure under plane strain state

    International Nuclear Information System (INIS)

    Lee, Hak Joo; Kang, Jae Youn; Song, Ji Ho

    2004-01-01

    An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested

  19. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    Science.gov (United States)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  20. Computer simulation of fatigue under diametrical compression

    OpenAIRE

    Carmona, H. A.; Kun, F.; Andrade Jr., J. S.; Herrmann, H. J.

    2006-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue, and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows to follow the development of the fracture process on the macro- and micro-level varying the relative influence of the mechanisms of damage accumulation over the ...

  1. Analysis of fatigue crack initiation in cycled austempered ductile cast irons

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Beran, Přemysl; Dluhoš, J.; Zouhar, Michal; Ševčík, Martin

    2010-01-01

    Roč. 2, č. 1 (2010), s. 2337-2346 E-ISSN 1877-7058. [ Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ADI * Finite element modelling * Neutron diffraction Subject RIV: JL - Materials Fatigue , Friction Mechanics

  2. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  3. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  4. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.

    Science.gov (United States)

    Huang, Wen; Koric, Seid; Yu, Xin; Hsia, K Jimmy; Li, Xiuling

    2014-11-12

    Micro- and nanoscale tubular structures can be formed by strain-induced self-rolled-up nanomembranes. Precision engineering of the shape and dimension determines the performance of devices based on this platform for electronic, optical, and biological applications. A transient quasi-static finite element method (FEM) with moving boundary conditions is proposed as a general approach to design diverse types of three-dimensional (3D) rolled-up geometries. This method captures the dynamic release process of membranes through etching driven by mismatch strain and accurately predicts the final dimensions of rolled-up structures. Guided by the FEM modeling, experimental demonstration using silicon nitride membranes was achieved with unprecedented precision including controlling fractional turns of a rolled-up membrane, anisotropic rolling to form helical structures, and local stress control for 3D hierarchical architectures.

  5. Experimental and numerical study of the effect of rolling parameters on shaft deformation during the longitudinal rolling process

    Science.gov (United States)

    Kowalik, Marek; Trzepiecinski, Tomasz

    2018-05-01

    This paper presents the characteristics of the process of longitudinal rolling of shafts and the geometry of the working section of forming rollers with a secant profile. In addition, the analytical formulae defining the geometry of a roller profile were determined. The experiments were carried out on shafts made of S235JR and C45 structural steels and the MSC.Marc + Mentat program was used for the numerical analysis of the rolling process based on the finite element method. The paper analyses the effect of roller geometry on the changes in value of the widening coefficient and the diameter reduction coefficient for the first forming passage. It was found that the mechanical properties of the shaft material have a slight influence on the widening coefficient. The value of the widening coefficient of the shaft increases with increase in the initial diameter of the shaft. Increasing shaft diameter causes an increase of strain gradient on the cross-section of the shaft.

  6. Roll-to-roll UV imprint lithography for flexible electronics

    NARCIS (Netherlands)

    Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Barbu, I.; Meinders, E.R.; Bremen, A. van; Iosad, N.; Werf, R. van der; Onvlee, H.

    2011-01-01

    We propose a roll-to-roll UV imprint lithography tool as a way to pattern flexible PET foil with µm-resolution. As a way to overcome dimensional instability of the foil and its effect on overlay, a self-align approach was investigated, that permits to make several layers in a single lithography

  7. Rotor Rolling over a Water-Lubricated Bearing

    Science.gov (United States)

    Shatokhin, V. F.

    2018-02-01

    The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the

  8. Fatigue life estimation of MD36 and MD523 bogies based on damage accumulation and random fatigue theory

    International Nuclear Information System (INIS)

    Younesian, Davood; Solhmirzaei, Ali; Gachloo, Alireza

    2009-01-01

    Bogies are one of the multifunctional parts of trains which are extremely subjected to random loads. This type of oscillating and random excitation arises from irregularities of the track including rail surface vertical roughness, rail joints, variance in super-elevation, and also wheel imperfections like wheel flats and unbalancy. Since most of the prementioned sources have random nature, a random based theory should be applied for fatigue life estimation of the bogie frame. Two methods of fatigue life estimation are investigated in this paper. The first approach which is being implemented in time domain is based on the damage accumulation (DA) approach. Using Monte-Carlo simulation algorithm, the rail surface roughness is generated. Finite element (FE) model of the bogie is subjected to the generated random excitation in the first approach and the stress time histories are obtained, and consequently the fatigue life is estimated by using the rain-flow algorithm. In the second approach, the fatigue life is estimated in frequency domain. Power spectral density (PSD) of the stress is obtained by using the FE model of the bogie frame and the fatigue life is estimated using Rayleigh technique in random fatigue theory. A comprehensive parametric study is carried out and effects of different parameters like the train speeds and level of the rail surface vertical roughness on the estimated fatigue life are investigated

  9. Thermomechanical fatigue life prediction of high temperature components

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Thomas; Hartrott, Philipp von; Riedel, Hermann; Siegele, Dieter [Fraunhofer-Inst. fuer Werkstoffmechanik (IWM), Freiburg (Germany)

    2009-07-01

    The aim of the work described in this paper is to provide a computational method for fatigue life prediction of high temperature components, in which the time and temperature dependent fatigue crack growth is a relevant damage mechanism. The fatigue life prediction is based on a law for microcrack growth and a fracture mechanics estimate of the cyclic crack tip opening displacement. In addition, a powerful model for nonisothermal cyclic plasticity is employed, and an efficient laboratory test procedure is proposed for the determination of the model parameters. The models are efficiently implemented into finite element programs and are used to predict the fatigue life of a cast iron exhaust manifold and a notch in the perimeter of a turbine rotor made of a ferritic/martensitic 10%-chromium steel. (orig.)

  10. Effect of rolling reduction on the development of rolling and recrystallization textures in Al-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Endou, S; Inagaki, H [Shonan Inst. of Tech., Fujisawashi (Japan)

    2002-07-01

    In order to investigate the effect of Mg content on the development of the rolling textures in Al pure Al, Al-3% Mg alloy and Al-5% Mg alloy were cold rolled by varying rolling reductions up to 97%. Their rolling textures were investigated by the orientation distribution function analysis. The extent of work hardening introduced by cold rolling was estimated by the hardness measurements. It was found that, at all rolling reductions, the main orientations of the rolling textures depended strongly on the Mg content. In pure Al, {l_brace}123{r_brace} left angle 634 right angle was always the main orientation, whereas {l_brace}112{r_brace} left angle 111 right angle was most strong in the Al-3%Mg alloy. In the Al-5% Mg alloy, the development of both {l_brace}123{r_brace} left angle 634 right angle and {l_brace}112{r_brace} left angle 111 right angle were strongly suppressed, whereas {l_brace}110{r_brace} left angle 112 right angle developed remarkably. In pure Al, most of the texture development occurred at the later half of work hardening, i.e. at rolling reductions above 70%. With increasing Mg content, rolling texture tended to develop already at lower rolling reductions. Dynamic recovery, which occurred at very high rolling reductions, suppressed the development of the rolling textures. All these results strongly suggested that the formation of dislocation cell structures and shear banding are origins of the formation of these rolling textures. On annealing these specimens at 450 C for 30 min, recrystallization textures developed only in specimens having strong rolling textures, i. e. in the specimens cold rolled more than 70%. {l_brace}100{r_brace} left angle 001 right angle developed only in pure Al and in the Al-3% Mg ally, in which {l_brace}123{r_brace} left angle 634 right angle and {l_brace}112{r_brace} left angle 111 right angle were strong in the rolling textures. Recrystallization textures of the Al-5% Mg alloy was wather random. Its main orientation, {l

  11. An Improved Method Based on CEEMD for Fault Diagnosis of Rolling Bearing

    Directory of Open Access Journals (Sweden)

    Meijiao Li

    2014-11-01

    Full Text Available In order to improve the effectiveness for identifying rolling bearing faults at an early stage, the present paper proposed a method that combined the so-called complementary ensemble empirical mode decomposition (CEEMD method with a correlation theory for fault diagnosis of rolling element bearing. The cross-correlation coefficient between the original signal and each intrinsic mode function (IMF was calculated in order to reduce noise and select an effective IMF. Using the present method, a rolling bearing fault experiment with vibration signals measured by acceleration sensors was carried out, and bearing inner race and outer race defect at a varying rotating speed with different degrees of defect were analyzed. And the proposed method was compared with several algorithms of empirical mode decomposition (EMD to verify its effectiveness. Experimental results showed that the proposed method was available for detecting the bearing faults and able to detect the fault at an early stage. It has higher computational efficiency and is capable of overcoming modal mixing and aliasing. Therefore, the proposed method is more suitable for rolling bearing diagnosis.

  12. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    Directory of Open Access Journals (Sweden)

    Zhenyu Yang

    2015-01-01

    Full Text Available An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the potential commercialization, the developed system is promoted mainly using off-the-shelf techniques, that is, the high-frequency resonance technique with envelope detection and the average of short-time Fourier transform. In order to test the flexibility and robustness, the monitoring performance is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis also showed a moderate capability in diagnosis of point defect faults depending on the type of fault, severity of the fault, and the operational condition. The temporal feature indicated a feasibility to detect generalized roughness fault. The practical issues, such as deviations of predicted characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.

  13. Effects of microalloying on hot-rolled and cold-rolled Q&P steels

    Science.gov (United States)

    Azevedo de Araujo, Ana Luiza

    Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in

  14. Unsupervised Learning —A Novel Clustering Method for Rolling Bearing Faults Identification

    Science.gov (United States)

    Kai, Li; Bo, Luo; Tao, Ma; Xuefeng, Yang; Guangming, Wang

    2017-12-01

    To promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rolling bearing. Among these studies, such as artificial neural networks, support vector machines, decision trees and other supervised learning methods are used commonly. These methods can detect the failure of rolling bearing effectively, but to achieve better detection results, it often requires a lot of training samples. Based on above, a novel clustering method is proposed in this paper. This novel method is able to find the correct number of clusters automatically the effectiveness of the proposed method is validated using datasets from rolling element bearings. The diagnosis results show that the proposed method can accurately detect the fault types of small samples. Meanwhile, the diagnosis results are also relative high accuracy even for massive samples.

  15. On the constant-roll inflation

    Science.gov (United States)

    Yi, Zhu; Gong, Yungui

    2018-03-01

    The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approximation may be invalid. We compare the numerical results with the analytical results derived from the Bessel function approximation, and we find that they differ significantly on super-horizon scales if the constant slow-roll parameter ηH is not small. More accurate method is needed for calculating the primordial power spectrum for constant-roll inflation.

  16. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  17. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    Science.gov (United States)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  18. Technology development for roll-to-roll production of organic photovoltaics

    NARCIS (Netherlands)

    Galagan, Y.O.; Vries, I.G. de; Langen, A.P.; Andriessen, H.A.J.M.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.

    2011-01-01

    In order to reach the objective of low-cost, large area organic photovoltaic systems, we build up a knowledge base concerning the influence of process conditions on the performance of polymer solar cells. A large area solar cell module, with roll-to-roll coated PEDOT:PSS and photoactive layers

  19. Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.

  20. Effects of processing on the transverse fatigue properties of low-sulfur AISI 4140 steel

    Science.gov (United States)

    Collins, Sunniva R.; Michal, Gary M.

    1993-12-01

    The effects of inclusions due to steelmaking processes on the fatigue life of AISI 4140 have been investigated. The test matrix consisted of three commercially produced heats of AISI 4140 of comparable cleanliness: one was conventionally cast (CC), and two were inert gas-shielded/ bottom-poured (IGS). One of the IGS heats was calcium-treated to explore the effects of inclusion shape control (IGS/SC). All heats were hot-rolled and reduced over 95 pct to produce bar stock of 127 to 152 mm (5 to 6 in.) in diameter. Transverse axial specimens conforming to ASTM E466 were machined, quenched, and tempered to approximately 40 HRC, and they were fatigue tested in tension-tension cycling ( R = 0.1). Test results and statistical analyses of the stress-life data show that the IGS grade has several times the fatigue strength of the CC grade at 107 cycles. Lower-limit fatigue strengths calculated at a 99.9 pct probability were 518.5 MPa (75.2 ksi) for IGS vs 55.6 MPa (8.1 ksi) for the CC grade. The IGS/SC grade had the best performance at all stress and life levels. The results obtained indicate that fatigue performance can be improved by choosing a processing method that reduces the incidence of exogenous oxides and by controlling the shape of the sulfides.

  1. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    Science.gov (United States)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  2. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  3. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-10-12

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...

  4. Computer simulation of fatigue under diametrical compression

    International Nuclear Information System (INIS)

    Carmona, H. A.; Kun, F.; Andrade, J. S. Jr.; Herrmann, H. J.

    2007-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings

  5. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  6. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    Science.gov (United States)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  7. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  8. Lengthening the lifetime of roll-to-roll produced polymer solar cells

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager

    the knowledge of the degradation mechanisms involved in roll-to-roll coated polymer solar cells. While only a part of the experiments have directly involved roll-to-roll coated devices, most of the work is applicable to coated devices. The first part of the dissertation is devoted to the study of in......The field of polymer solar cells is a field with an exponential growth in the number of published papers. It is a field defined by a set of challenges including; efficiency, stability and processability. Before all of these challenges have been addressed; polymer solar cells...... will not be a commercial success. This dissertation is devoted primarily to the study of the stability of polymer solar cells, and more specifically to designing and verifying experimental techniques, procedures, and automated solutions to stability tests and characterization. The goal of the project was to expand...

  9. 75 FR 64246 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of...

    Science.gov (United States)

    2010-10-19

    ...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...

  10. Shape optimization considering fatigue life of pulley in power-steering pulley

    International Nuclear Information System (INIS)

    Shim, Hee Jin; Kim, Jung Kyu

    2006-01-01

    The pulley is one of core mechanical elements in the power steering system for vehicles. The pulley operates under both the compressive loading and the torque. Therefore, to assure the safety of the power steering system, it is very important to investigate the durability and the optimization of the pulley. In this study, the applied stress distribution of the pulley under high tension and torsion loads was obtained by using finite element analysis. Based on these results, the fatigue life of the pulley with the variation of the fatigue strength was evaluated by a durability analysis simulator. The results at 50% and 1% for the failure probability were compared with respect to the fatigue life. In addition to the optimum design for the fatigue life is obtained by the response surface method. The response function utilizes the function of the life and weight factors. Within range for design life condition, the minimization of the weight, one of the formulation, is obtained by the optimal design. Moreover, the optimum design by considering its durability and validity is verified by the durability test

  11. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  12. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2015-07-01

    Full Text Available This article describes an investigation into interface bonding research of 316L/Q345R stainless clad plate. A three-dimensional thermal–elastic–plastic model has been established using finite element analysis to model the multi-pass hot rolling process. Results of the model have been compared with those obtained from a rolling experiment of stainless clad plate. The comparisons of temperature and profile of the rolled stainless clad plate have indicated a satisfactory accuracy of finite element analysis simulation. Effects on interface bonding by different parameters including pre-heating temperature, multi-pass thickness reduction rules, rolling speed, covering rate, and different assemble patterns were analyzed systematically. The results show that higher temperature and larger thickness reduction are beneficial to achieve the bonding in vacuum hot rolling process. The critical reduction in the bond at the temperature of 1200 °C is 28%, and the critical thickness reduction reduces by about 2% when the temperature increases by 50 °C during the range from 1000 °C to 1250 °C. And the relationship between the minimum pass number and thickness reduction has been suggested. The results also indicate that large covering rate in the assemble pattern of outer soft and inner hard is beneficial to achieve the bond of stainless clad plate.

  13. Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress

    International Nuclear Information System (INIS)

    Baek, Seung Yeb; Bae, Dong Ho

    2011-01-01

    Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ΔP-N f relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints

  14. Role of microstructure in the mean stress dependence of fatigue strength in Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, S.G.; Cohen, F.S.; Biederman, R.R.; Sisson, R.D. Jr.

    1999-07-01

    The high cycle fatigue properties of Ti-6Al-4V alloy with six different microstructure/texture combinations were investigated. Only materials with lamellar and fine bimodal microstructures exhibited linear Goodman relationship on the constant fatigue life diagram. Materials with coarse bimodal and equiaxed microstructures had anomalous mean stress dependency, with HCF strength at intermediate mean stresses being significantly lower than predicted by Goodman relationship, regardless of whether material was forged or cross-rolled. The role of microstructure in mean stress sensitivity behavior of Ti-6Al-4V is studied. Cyclic strain tests were conducted for all microstructures, and the results of strain-controlled and stress-controlled cyclic tests are compared and discussed.

  15. Investigation of the Microstructure Evolution and Deformation Mechanisms of a Mg-Zn-Zr-RE Twin-Roll-Cast Magnesium Sheet by In-Situ Experimental Techniques

    Czech Academy of Sciences Publication Activity Database

    Máthis, K.; Horváth, Klaudia; Farkas, Gergely; Choe, H.; Shin, K. S.; Vinogradov, A.

    2018-01-01

    Roč. 11, č. 2 (2018), č. článku 200. ISSN 1996-1944 R&D Projects: GA ČR GB14-36566G; GA MŠk EF16_013/0001794 Institutional support: RVO:61389005 Keywords : magnesium * twin roll casting * neutron diffraction * acoustic emission * twinning * yield strength Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.654, year: 2016

  16. Determination of Residual Forces in Mechanisms Assembled by Edge-Form Rolling

    Directory of Open Access Journals (Sweden)

    K. Turgut Gürsel

    2011-03-01

    Full Text Available Steering and suspension systems are components that supply driving safety in vehicles. For a correct working the mechanisms of these systems consist of many ball-joints that have different functions. Generally the ball-joints are assembled to systems in press-fit without any gaps, but even with residual forces. On the other hand excessive tightness causes high moments, which requires additional processes of manufacturing. But low tightness also creates gaps in joints. None of these conditions are desired. Manufacturing a ball-race that has long-life, low-friction and provides required working angles in every road condition, can be designed after long test processes and sample productions including lots of improvements. An important element of steering systems in vehicles is suspension ball-race that can be manufactured by assembling with plastic deformation after designing the ball-joint. In this study, during the manufacturing of the suspension ball-race supplying the motion transmission, the edge-form rolling process that is a subsection of rolling process of manufacturing methods based on plastic deformation was examined. Effects of pressure forces occurring after edge-form rolling in bearing systems at different values were studied by changing operation pressure of edge form rolling by means of specific numerical simulations.

  17. Areva fatigue concept. Fast fatigue evaluation, a new method for fatigue analysis

    International Nuclear Information System (INIS)

    Heinz, Benedikt; Bergholz, Steffen; Rudolph, Juergen

    2011-01-01

    Within the discussions on the long term operation (LTO) of nuclear power plants the ageing management is on the focus of that analysis. The knowledge of the operational thermal cyclic load data on components of the power plants and their evaluation in the fatigue analysis is a central concern. The changes in fatigue requirements (e.g. the consideration of environmentally assisted fatigue - EAF) recently discussed and LTO efforts are a strong motivation for the identification of margins in the existing fatigue analysis approaches. These margins should be considered within new approaches in order to obtain realistic (or more accurate) analysis results. Of course, these new analysis approaches have to be manageable and efficient. The Areva Fatigue Concept (AFC) offers the comprehensive conceptual basis for the consideration of fatigue on different levels and depths. The combination of data logging and automated fatigue evaluation are important modules of the AFC. Besides the established simplified stress based fatigue estimation Areva develops a further automated fatigue analysis method called Fast Fatigue Evaluation (FFE). This method comprises highly automated stress analyses at the fatigue relevant locations of the component. Hence, a component specific course of stress as a function of time is determined based on FAMOS or similar temperature measurement systems. The subsequent application of the rain flow cycle counting algorithm allows for the determination of the usage factor following the rules of the design code requirements. The new FFE approach constitutes a cycle counting method based on the real stresses in the component, and determined as result a rule-conformity cumulative usage factor. (orig.)

  18. Atomistic origin of size effects in fatigue behavior of metallic glasses

    Science.gov (United States)

    Sha, Zhendong; Wong, Wei Hin; Pei, Qingxiang; Branicio, Paulo Sergio; Liu, Zishun; Wang, Tiejun; Guo, Tianfu; Gao, Huajian

    2017-07-01

    While many experiments and simulations on metallic glasses (MGs) have focused on their tensile ductility under monotonic loading, the fatigue mechanisms of MGs under cyclic loading still remain largely elusive. Here we perform molecular dynamics (MD) and finite element simulations of tension-compression fatigue tests in MGs to elucidate their fatigue mechanisms with focus on the sample size effect. Shear band (SB) thickening is found to be the inherent fatigue mechanism for nanoscale MGs. The difference in fatigue mechanisms between macroscopic and nanoscale MGs originates from whether the SB forms partially or fully through the cross-section of the specimen. Furthermore, a qualitative investigation of the sample size effect suggests that small sample size increases the fatigue life while large sample size promotes cyclic softening and necking. Our observations on the size-dependent fatigue behavior can be rationalized by the Gurson model and the concept of surface tension of the nanovoids. The present study sheds light on the fatigue mechanisms of MGs and can be useful in interpreting previous experimental results.

  19. Fatigue cycles evaluation of 500 MWe PHWR coolant channel sealdisc

    International Nuclear Information System (INIS)

    Chawla, D.S.; Vaze, K.K.; Kushwaha, H.S.; Gupta, K.S.; Bhambra, H.S.

    1998-07-01

    At each end of coolant channel there is one sealing plug assembly. The sealdisc is a part of sealing plug assembly. The sealdisc is used to avoid leakage of heavy water. The importance of sealdisc can be understood by the fact that there are 784 sealdiscs in one 500 MWe PHWR unit. During the life time of reactor the sealdisc will be subjected to cyclic loads due to reactor startup, shutdown, power setback and also due to refuelling operations. Excessive reversal of stresses may lead to fatigue failure. The sealdisc failure may cause loss of coolant accidents. Since sealdisc is safety class 1 component, it has to be qualified according to ASME Section III Division 1 NB. For cyclic loads, the fatigue analysis is essential to assess the allowable number of cycles and also to check the total usage factor due to different cyclic loads. To evaluate the allowable fatigue cycles, the analysis is carried out using finite element method. The present report deals with the fatigue cycles evaluation of 500 MWe PHWR sealdisc. The finite element model having eight noded axisymmetric elements is used for the analysis. The various loads considered in the analysis are mechanical loads arising due to refuelling operations and number of temperature-pressure transients. During refuelling, the sealdisc is removed and reinstalled back by use of fuelling machine ram which applies load at centre as well as at rocker point of sealdisc. The stress analysis is carried out for each stage of loading during refuelling and fatigue cycles are evaluated. For temperature transient, decoupled thermal analysis is carried out. At various instants of time, the stresses are computed using temperatures calculated in thermal analysis. The pressure variation is also considered along with temperature variation. The fatigue cycles are evaluated for each transient using maximum alternating stress intensities. The usage factors are calculated for various temperature/pressure transients and refuelling loads

  20. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C.; Dauskardt, Reinhold H.

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven

  1. Automated local line rolling forming and simplified deformation simulation method for complex curvature plate of ships

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Local line rolling forming is a common forming approach for the complex curvature plate of ships. However, the processing mode based on artificial experience is still applied at present, because it is difficult to integrally determine relational data for the forming shape, processing path, and process parameters used to drive automation equipment. Numerical simulation is currently the major approach for generating such complex relational data. Therefore, a highly precise and effective numerical computation method becomes crucial in the development of the automated local line rolling forming system for producing complex curvature plates used in ships. In this study, a three-dimensional elastoplastic finite element method was first employed to perform numerical computations for local line rolling forming, and the corresponding deformation and strain distribution features were acquired. In addition, according to the characteristics of strain distributions, a simplified deformation simulation method, based on the deformation obtained by applying strain was presented. Compared to the results of the three-dimensional elastoplastic finite element method, this simplified deformation simulation method was verified to provide high computational accuracy, and this could result in a substantial reduction in calculation time. Thus, the application of the simplified deformation simulation method was further explored in the case of multiple rolling loading paths. Moreover, it was also utilized to calculate the local line rolling forming for the typical complex curvature plate of ships. Research findings indicated that the simplified deformation simulation method was an effective tool for rapidly obtaining relationships between the forming shape, processing path, and process parameters.

  2. A Coupled Model for Work Roll Thermal Contour with Subsectional Cooling in Aluminum Strip Cold Rolling

    Directory of Open Access Journals (Sweden)

    Shao Jian

    2014-10-01

    Full Text Available Little attention had been given to the evaluation of subsectional cooling control ability under complicated working conditions. In this paper, heat generation was calculated by using finite difference method. Strip hardening, work roll elastic deformation and elastic recovery of strip were taken into account. The mean coefficient of convective heat transfer on work roll surface was simulated by FLUENT. Calculation model had used the alternative finite difference scheme, which improved the model stability and computing speed. The simulation result shows that subsectional cooling control ability is different between different rolling passes. Positive and negative control abilities are roughly the same in the same pass. The increase of rolled length, working pressure of header and friction coefficient has positive effect on subsectional cooling control ability, and the rolling speed is on the contrary. On the beginning of the pass, when work roll surface has not reached the stable temperature, control ability of subsectional cooling is mainly affected by rolled length. The effect of mean coefficient of convective heat transfer and coefficient of friction is linear. When rolling speed is over 500 m/min, control ability of subsectional cooling becomes stable.

  3. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    Science.gov (United States)

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-01-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis. PMID:28256587

  4. Setup of a Parameterized FE Model for the Die Roll Prediction in Fine Blanking using Artificial Neural Networks

    Science.gov (United States)

    Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.

    2017-09-01

    Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.

  5. Fatigue Failure of Sandwich Beams with Wrinkle Defects Used for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Lund, Erik

    2012-01-01

    Glass fiber face sheet/balsa wood core sandwich beams with out-of-plane fiber misalignments/wrinkle defects were subjected to in-plane fully reversed fatigue loading and the failure modes were documented. A fatigue life design limit was estimated using finite element analyses and the Northwestern...

  6. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Corazza, Michael

    2016-01-01

    We report the use of roll-to-roll printed silver nanowire networks as front electrodes for fully roll-to-roll processed flexible indium-tin-oxide (ITO) free OPV modules. We prepared devices with two types of back electrodes, a simple PEDOT:PSS back electrode and a PEDOT:PSS back electrode...

  7. Fabrication of Superhydrophobic Metallic Surface by Wire Electrical Discharge Machining for Seamless Roll-to-Roll Printing

    Directory of Open Access Journals (Sweden)

    Jin-Young So

    2018-04-01

    Full Text Available This paper presents a proposal of a direct one-step method to fabricate a multi-scale superhydrophobic metallic seamless roll mold. The mold was fabricated using the wire electrical discharge machining (WEDM technique for a roll-to-roll imprinting application to produce a large superhydrophobic surface. Taking advantage of the exfoliating characteristic of the metallic surface, nano-sized surface roughness was spontaneously formed while manufacturing the micro-sized structure: that is, a dual-scale hierarchical structure was easily produced in a simple one-step fabrication with a large area on the aluminum metal surface. This hierarchical structure showed superhydrophobicity without chemical coating. A roll-type seamless mold for the roll-to-roll process was fabricated through engraving the patterns on the cylindrical substrate, thereby enabling to make a continuous film with superhydrophobicity.

  8. Influence of the Radiation Shield on the Temperature of Rails Rolled in the Reversing Mill

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2015-04-01

    Full Text Available The paper presents a mathematical model of heat transfer during cooling of hot-rolled rails in the reversing mill. The influence of the radiation shield on the temperature of rolled rails has been analyzed. The heat transfer model for cooling a strip covered by the thermal shield has been presented. The two types of shields build of steel and aluminum sheets separated with insulating layer have been studded. Calculations have been performed with self developed software which utilizes the finite element method.

  9. Rolling Element Bearing Performance Degradation Assessment Using Variational Mode Decomposition and Gath-Geva Clustering Time Series Segmentation

    Directory of Open Access Journals (Sweden)

    Yaolong Li

    2017-01-01

    Full Text Available By focusing on the issue of rolling element bearing (REB performance degradation assessment (PDA, a solution based on variational mode decomposition (VMD and Gath-Geva clustering time series segmentation (GGCTSS has been proposed. VMD is a new decomposition method. Since it is different from the recursive decomposition method, for example, empirical mode decomposition (EMD, local mean decomposition (LMD, and local characteristic-scale decomposition (LCD, VMD needs a priori parameters. In this paper, we will propose a method to optimize the parameters in VMD, namely, the number of decomposition modes and moderate bandwidth constraint, based on genetic algorithm. Executing VMD with the acquired parameters, the BLIMFs are obtained. By taking the envelope of the BLIMFs, the sensitive BLIMFs are selected. And then we take the amplitude of the defect frequency (ADF as a degradative feature. To get the performance degradation assessment, we are going to use the method called Gath-Geva clustering time series segmentation. Afterwards, the method is carried out by two pieces of run-to-failure data. The results indicate that the extracted feature could depict the process of degradation precisely.

  10. Fatigue qualification of high thickness composite rotor components

    Science.gov (United States)

    Raggi, M.; Mariani, U.; Zaffaroni, G.

    Fatigue qualification aspects of composite rotor components are presented according with the safe life procedure usually applied by helicopter manufacturers. Test activities are identified at three levels of specimen complexity: coupon, structural element and full scale component. Particular attention is given to high thickness laminates qualification as far as environmental exposure is concerned. A practical approach for an accelerated conditioning procedure is described. The application to a main rotor tension link is presented showing the negligible effect of the moisture absorption on its fatigue strength.

  11. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    Science.gov (United States)

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  12. A cohesive zone framework for environmentally assisted fatigue

    DEFF Research Database (Denmark)

    del Busto, Susana; Betegón, Covadonga; Martínez Pañeda, Emilio

    2017-01-01

    We present a compelling finite element framework to model hydrogen assisted fatigue by means of a hydrogen- and cycle-dependent cohesive zone formulation. The model builds upon: (i) appropriate environmental boundary conditions, (ii) a coupled mechanical and hydrogen diffusion response, driven...... by chemical potential gradients, (iii) a mechanical behavior characterized by finite deformation J2 plasticity, (iv) a phenomenological trapping model, (v) an irreversible cohesive zone formulation for fatigue, grounded on continuum damage mechanics, and (vi) a traction-separation law dependent on hydrogen...... coverage calculated from first principles. The computations show that the present scheme appropriately captures the main experimental trends; namely, the sensitivity of fatigue crack growth rates to the loading frequency and the environment. The role of yield strength, work hardening, and constraint...

  13. Rolling Resistance Measurement and Model Development

    DEFF Research Database (Denmark)

    Andersen, Lasse Grinderslev; Larsen, Jesper; Fraser, Elsje Sophia

    2015-01-01

    There is an increased focus worldwide on understanding and modeling rolling resistance because reducing the rolling resistance by just a few percent will lead to substantial energy savings. This paper reviews the state of the art of rolling resistance research, focusing on measuring techniques, s......, surface and texture modeling, contact models, tire models, and macro-modeling of rolling resistance...

  14. Slip-rolling resistance of novel Zr(C,N) thin film coatings under high Hertzian contact pressures

    Energy Technology Data Exchange (ETDEWEB)

    Manier, Charles-Alix

    2010-08-24

    Today, coatings are used in many applications ranging from the decoration purposes to the improvement of efficiency such as in machining tools, medical tools, computer devices (hard disks) and many more. Especially the automotive industry anticipates a benefit in using coatings for example in powertrains and gears where the mechanical components are stressed under slip-rolling motion. A cost effective option to increase efficiency is based on the increase of the load carrying capacity by thin film coatings. It would also represent a way towards downsizing. In the work presented here, a small review concerning rolling contact fatigue of coatings was performed. Experimentally it is then shown, that crystalline Zr(C,N) coatings can be slip-rolling resistant at 120 C in factory fill engine oil up to ten million cycles under average Hertzian contact pressures up to P{sub 0mean} = 1.94 GPa (P{sub 0max} = 2.91 GPa). Basically, it represents here the doubling of the normal force acting on the surface compared to uncoated steel traditionally lubricated with fully formulated oil. Typically, the coated substrates are made of the quenched and tempered bearing steel Cronidur 30. The Zr(C,N) coatings were fully characterized using different characterisation techniques in order to understand the difference in slip-rolling resistance under those high tribological demands. Effectively, the slip-rolling resistance of different batches of the Zr(C,N) coatings is evaluated using a defined and powerful testing procedure. Different results of lifetime were achieved without fundamental changes of the deposition procedure. The characterisation achieved permits the identification of microstructural disparities which should affect the load carrying capacity of the coating. Moreover, the efficiency of the high slip-rolling resistant Zr(C,N) coating was considered not only with respect to the improvement of the load carrying capacity of the substrate but also in terms of tribological

  15. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  16. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    DEFF Research Database (Denmark)

    Gamstedt, Kristofer; Andersen, Svend Ib Smidt

    2001-01-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage,marine and aeronautical propellers, and rolls...... for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies,which would allow more reliable and slender structures, improved test methods are necessary. Furthermore...

  17. Fatigue crack growth in fiber-metal laminates

    Science.gov (United States)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  18. Microstructural and mechanical responses to various rolling speeds determined in multi-pass break-down rolling of AZ31B alloy

    Science.gov (United States)

    Jia, Weitao; Tang, Yan; Ning, Fangkun; Le, Qichi; Cui, Jianzhong

    2018-04-01

    Different rolling operations of as-cast AZ31B alloy were performed under different rolling speed (18 ∼ 72 m min‑1) and rolling pass conditions at 400 °C. Microstructural studies, tensile testing and formability evaluation relevant to each rolling operation were investigated. For 1-pass rolling, coarse average grain size (CAGS) region gradually approached the center layer as the rolling speed increased. Moreover, twins, shear bands and coarse-grain structures were the dominant components in the microstructure of plates rolled at 18, 48 and 72 m min‑1, respectively, indicating the severe deformation inhomogeneity under the high reduction per pass condition. For 2-pass rolling and 4-pass rolling, dynamic recrystallization was observed to be well and CAGS region has substantially disappeared, indicating the significant improvement in deformation uniformity and further the grain homogenization under the conditions. Microstructure uniformity degree of 2-pass rolled plates did not vary much as the rolling speed varied. On this basis, shear band distribution dominated the deformation behavior during the uniaxial tension of the 2-pass rolled plates. However, microstructure uniformity accompanied by twin distribution played a leading role in stretching the 4-pass rolled plates.

  19. Observations of the effect of varying Hoop stress on fatigue failure and the formation of white etching areas in hydrogen infused 100Cr6 steel rings

    DEFF Research Database (Denmark)

    Janakiraman, Shravan; West, Ole; Klit, Peder

    2015-01-01

    White etching cracks (WECs) in wind turbine gearbox bearings have been studied previously. Rolling contact fatigue (RCF) tests are conducted on 100Cr6 bearing steel rings, in this study, to generate WECs like those found in wind turbine bearings. This research studies the effect of two different...

  20. Seismic Behavior of Fatigue-Retrofitted Steel Frame Piers

    Directory of Open Access Journals (Sweden)

    Kinoshita K.

    2013-01-01

    Full Text Available Fatigue retrofit works have been conducted on severely fatigue damaged beam-to-column connections of existing steel frame bridge piers in Japan. It is clear that retrofit works provides additional stiffness but the significance on the seismic behavior of steel frame piers is not clear. Since fatigue retrofit works have become prevalent, the effect of fatigue retrofit works on the seismic behavior of steel frame piers need to be understood. The objective of this study is therefore to investigate these effects of the retrofit work, especially installation of bolted splices, which is the most common technique. Elasto-plastic finite element earthquake response analyses were carried out. It is shown that the existence of bolted splices may increase seismic demand on the piers when plastic hinge zone is located on the beam. In addition, longer bolted splices using low yield strength steel are proposed to overcome this problem and are shown to give beneficial effects.

  1. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-12-14

    ...-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit for Final Results of...-Rolled Carbon Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...

  2. Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography.

    Science.gov (United States)

    Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara

    2016-05-24

    Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.

  3. Roll forming of eco-friendly stud

    Science.gov (United States)

    Keum, Y. T.; Lee, S. Y.; Lee, T. H.; Sim, J. K.

    2013-12-01

    In order to manufacture an eco-friendly stud, the sheared pattern is designed by the Taguchi method and expanded by the side rolls. The seven geometrical shape of sheared pattern are considered in the structural and thermal analyses to select the best functional one in terms of the durability and fire resistance of dry wall. For optimizing the size of the sheared pattern chosen, the L9 orthogonal array and smaller-the-better characteristics of the Taguchi method are used. As the roll gap causes forming defects when the upper-and-lower roll type is adopted for expanding the sheared pattern, the side roll type is introduced. The stress and strain distributions obtained by the FEM simulation of roll-forming processes are utilized for the design of expanding process. The expanding process by side rolls shortens the length of expanding process and minimizes the cost of dies. Furthermore, the stud manufactured by expanding the sheared pattern of the web is an eco-friend because of the scrapless roll-forming process. In addition, compared to the conventionally roll-formed stud, the material cost is lessened about 13.6% and the weight is lightened about 15.5%.

  4. Mechanism of Fatigue Crack Growth of Bridge Steel Structures

    Directory of Open Access Journals (Sweden)

    Zhu H.

    2016-12-01

    Full Text Available This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.

  5. Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan; Ulsh, Michael; More, Karren; Wood, David

    2017-04-26

    Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.

  6. Cycle counting procedure for fatigue failure preditions for complicated multi-axial stress histories

    International Nuclear Information System (INIS)

    Jones, D.P.; Friedrich, C.M.; Hoppe, R.G.

    1977-12-01

    A procedure has been developed to determine the cumulative fatigue damage in structures experiencing complicated multi-axial stress histories. The procedure is a generalization of the rainflow method developed by Matsuishi and Endo for one-dimensional situations. It provides a consistent treatment of three-dimensional stress states that is especially suited to computer programming applications for the post-processing of finite element stress data. The procedure includes a unique method to account for the rotation of principal stresses with time during the stress history and for the cumulative fatigue damage resulting from partial stress reversals within a stress cycle. The general procedure and necessary equations for programming are presented. Comparisons are made with life predictions using Section III of the ASME Boiler and Pressure Vessel Code for two hypothetical multi-axial stress histories for which the principal stresses are rotating with time. These comparisons show that the cycle counting method provides a consistent unambiguous interpretation of the fatigue design procedure in the ASME Code for these cases. Finally, the fatigue life of a perforated plate, as analyzed by finite elements, is computed for the combination of several hypothetical stress histories. This example demonstrates the utility of the proposed method when used in conjunction with finite element programs

  7. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  8. Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2016-04-01

    Full Text Available For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.

  9. Constant-roll (quasi-)linear inflation

    Science.gov (United States)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  10. Rolling of molybdenum and niobium tubes on cold-rolling mill with high stiff stand

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, I N; Shejkh-Ali, A D; Filimonov, G V; Lunev, A G

    1984-03-01

    To develop the technique of tube production the process of rolling is studied and comparative evaluation of the structure formed is carried out. It is shown that billets of rods deformed by screw rolling have the improved plastic properties and are deformed on cold-rolling mill (CRM) with a high degree of reduction without defect formation. High stiff stand of the CRM permits to produce high-quality molybdenum tubes.

  11. Effect of tungsten and tantalum on the low cycle fatigue behavior of reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Vani, E-mail: vani@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mariappan, K.; Nagesha, A.; Prasad Reddy, G.V.; Sandhya, R.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Effect of tungsten and tantalum on low cycle fatigue behavior of RAFM steels. Black-Right-Pointing-Pointer Both alloying elements W and Ta improved fatigue life. Black-Right-Pointing-Pointer Increase in Ta content improved fatigue life more than W. Black-Right-Pointing-Pointer Optimization of W content at 1.4 wt.%. Black-Right-Pointing-Pointer Softening behavior closely related to W and Ta content. - Abstract: Reduced activation ferritic/martensitic (RAFM) steels are candidate materials for the test blanket modules of International Thermonuclear Experimental Reactor (ITER). Several degradation mechanisms such as thermal fatigue, low cycle fatigue, creep fatigue interaction, creep, irradiation hardening, swelling and phase instability associated irradiation embrittlement must be understood in order to estimate the component lifetime and issues concerning the structural integrity of components. The current work focuses on the effect of tungsten and tantalum on the low cycle fatigue (LCF) behavior of RAFM steels. Both alloying elements tungsten and tantalum improved the fatigue life. Influence of Ta on increasing fatigue life was an order of magnitude higher than the influence of W on improving the fatigue life. Based on the present study, the W content was optimized at 1.4 wt.%. Softening behavior of RAFM steels showed a strong dependence on W and Ta content in RAFM steels.

  12. The Fatigue Life Prediction of Train Wheel Rims Containing Spherical Inclusions

    Science.gov (United States)

    Li, Yajie; Chen, Huanguo; Cai, Li; Chen, Pei; Qian, Jiacheng; Wu, Jianwei

    2018-03-01

    It is a common phenomenon that fatigue crack initiation occurs frequently in the inclusions of wheel rims. Research on the fatigue life of wheel rims with spherical inclusions is of great significance on the reliability of wheels. To find the danger point and working condition of a wheel, the stress state of the wheel rim with spherical inclusions was analyzed using the finite element method. Results revealed that curve conditions are dangerous. The critical plane method, based on the cumulative fatigue damage theory, was used to predict the fatigue life of the wheel rim and whether it contained spherical inclusions or not under curve conditions. It was found that the fatigue life of the wheel rim is significantly shorter when the wheel rim contains spherical inclusions. Analysis of the results can provide a theoretical basis and technical support for train operations and maintenance.

  13. A model for prediction of profile and flatness of hot and cold rolled flat products in four-high mills

    Science.gov (United States)

    Overhagen, Christian; Mauk, Paul Josef

    2018-05-01

    For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.

  14. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  15. Kulturens rolle

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2007-01-01

    Kulturens rolle. Herunder kulturens betydning for psykologisk teori og forskning set i lyset af den stigende globalisering og væksten i kulturmøder. Der gives eksempler fra hverdagssituationer, den pædagogiske praksis, fra indvandrerforskning, turister men også fra avisernes referater af kulturmø......Kulturens rolle. Herunder kulturens betydning for psykologisk teori og forskning set i lyset af den stigende globalisering og væksten i kulturmøder. Der gives eksempler fra hverdagssituationer, den pædagogiske praksis, fra indvandrerforskning, turister men også fra avisernes referater af...

  16. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  17. Fatigue cracking in road pavement

    Science.gov (United States)

    Mackiewicz, P.

    2018-05-01

    The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.

  18. Irradiation effect on fatigue behaviour of zircaloy-4 cladding tubes

    International Nuclear Information System (INIS)

    Soniak, A.; Lansiart, S.; Royer, J.; Waeckel, N.

    1993-01-01

    Since nuclear electricity has a predominant share in French generating capacity, PWR's are required to fit grid load following and frequency control operating conditions. Consequently cyclic stresses appear in the fuel element cladding. In order to characterize the possible resulting clad damage, fatigue tests were performed at 350 deg C on unirradiated material or irradiated stress relieved Zircaloy-4 tube portions, using a special device for tube fatigue by repeated pressurization. It appears that, for high stress levels, the material fatigue life is not affected by irradiation. But the endurance fatigue limit undergoes a decrease from the 350 MPa value for unirradiated material to the 210 MPa value for the material irradiated for four cycles in a PWR. However, this effect seems to saturate with irradiation dose: no difference could be detected between the two cycles results and the corresponding four cycles results. The corrosion effect and the load following influence were also investigated: they do not appear to modify the fatigue behaviour in our experimental conditions

  19. A methodology for on-line fatigue life monitoring of Indian nuclear power plant components

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushawaha, H.S.

    1992-01-01

    Fatigue is one of the most important aging effects of nuclear power plant components. Information about accumulation of fatigue helps in assessing structural degradation of the components. This assists in-service inspection and maintenance and may also support future life extension program of a plant. In the present report a methodology is being proposed for monitoring on line fatigue life of nuclear power plant components using available plant instrumentations. Major factors affecting fatigue life of a nuclear power plant components are the fluctuations of temperature, pressure and flow rate. Green's function technique is used in on line fatigue monitoring as computation time is much less than finite element method. A code has been developed which computes temperature and stress Green's functions in 2-D and axisymmetric structure by finite element method due to unit change in various fluid parameters. A post processor has also been developed which computes the temperature and stress responses using corresponding Green's functions and actual fluctuation in fluid parameters. In this post processor, the multiple site problem is solved by superimposing single site Green's function technique. It is also shown that Green's function technique is best suited for on line fatigue life monitoring of nuclear power plant components. (author). 6 refs., 43 figs

  20. Compassion Satisfaction and Compassion Fatigue Among Critical Care Nurses.

    Science.gov (United States)

    Sacco, Tara L; Ciurzynski, Susan M; Harvey, Megan Elizabeth; Ingersoll, Gail L

    2015-08-01

    Although critical care nurses gain satisfaction from providing compassionate care to patients and patients' families, the nurses are also at risk for fatigue. The balance between satisfaction and fatigue is considered professional quality of life. To establish the prevalence of compassion satisfaction and compassion fatigue in adult, pediatric, and neonatal critical care nurses and to describe potential contributing demographic, unit, and organizational characteristics. In a cross-sectional design, nurses were surveyed by using a demographic questionnaire and the Professional Quality of Life Scale to measure levels of compassion fatigue and compassion satisfaction. Nurses (n = 221) reported significant differences in compassion satisfaction and compassion fatigue on the basis of sex, age, educational level, unit, acuity, change in nursing management, and major systems change. Understanding the elements of professional quality of life can have a positive effect on work environment. The relationship between professional quality of life and the standards for a healthy work environment requires further investigation. Once this relationship is fully understood, interventions to improve this balance can be developed and tested. ©2015 American Association of Critical-Care Nurses.

  1. Effect of residual stresses on the reliability of components under fatigue

    International Nuclear Information System (INIS)

    Ruestenberg, I.

    1995-01-01

    The assurance of the reliability of mechanical components relative to a variety of failure mechanisms is of decisive technical, industrial, and economic importance. In this dissertation, the reliability, i.e. the probability that the lifetime does not fall below a given value, is examined with respect to the particularly important failure mechanisms of fracture and fatigue. The general problem of uniaxial fatigue is studied on the basis of both continuum damage mechanics and crack mechanics. In particular, the mechanisms of crack initiation, as characterized by the Coffin-Manson-Neuber local strain-life equations for notched components as well as the mechanism of crack growth, as governed by the Paris-Erdogang relation, are taken into account. The nonlinear fatigue damage accumulation process for components subjected to general, cyclic loading histories is modeled by a multilinear damage law which allows, in principle, to characterize the subsequent activation of different fatigue mechanisms. Explicit equations are developed for quintuple-, quadruple-, and triple-linear damage accumulation. Particularly promising appears the triple-linear damage approach which allows, in principle, the identification of a nucleation, an initiation, and a final growth stage up to rupture of fatigue cracks. The beneficial effect of intentionally induced compressive residual stresses on the lifetime of the component is investigated. To this end, an elasto-plastic contact problem, based on Prandtl-Reuss' constitutive equations, is numerically solved, and the residual stress field, as it is typically produced by the mechanical process of cold rolling, is established. Assessments of the effect of adaptation, i.e. the subsequent reduction of the residual stresses due to cyclic in-service loading as well as of the effect of unavoidable surface roughness, introduced by manufacturing processes like forging, are carried out. (author) figs., tabs., refs

  2. Ship Roll Damping Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2012-01-01

    limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance...

  3. Improved Dutch Roll Approximation for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Liang-Liang Yin

    2014-06-01

    Full Text Available An improved dutch roll approximation for hypersonic vehicle is presented. From the new approximations, the dutch roll frequency is shown to be a function of the stability axis yaw stability and the dutch roll damping is mainly effected by the roll damping ratio. In additional, an important parameter called roll-to-yaw ratio is obtained to describe the dutch roll mode. Solution shows that large-roll-to-yaw ratio is the generate character of hypersonic vehicle, which results the large error for the practical approximation. Predictions from the literal approximations derived in this paper are compared with actual numerical values for s example hypersonic vehicle, results show the approximations work well and the error is below 10 %.

  4. Combined simulation of fatigue crack nucleation and propagation based on a damage indicator

    Directory of Open Access Journals (Sweden)

    M. Springer

    2016-10-01

    Full Text Available Fatigue considerations often distinguish between fatigue crack nucleation and fatigue crack propagation. The current work presents a modeling approach utilizing one Fatigue Damage Indicator to treat both in a unified way. The approach is implemented within the framework of the Finite Element Method. Multiaxial critical plane models with an extended damage accumulation are employed as Fatigue Indicators. Locations of fatigue crack emergence are predicted by these indicators and material degradation is utilized to model local material failure. The cyclic loading is continued on the now degraded structure and the next location prone to material failure is identified and degradation modeled. This way, fatigue crack propagation is represented by an evolving spatial zone of material failure. This propagating damage zone leads to a changing structural response of the pristine structure. By recourse to the Fatigue Damage Indicator a correlation between the number of applied load cycles and the changing structural behavior is established. Finally, the proposed approach is exemplified by cyclic bending experiments in the Low Cycle Fatigue regime

  5. Fatigue damage assessment under multi-axial non-proportional cyclic loading

    International Nuclear Information System (INIS)

    Mohta, Keshav; Gupta, Suneel K.; Jadhav, P.A.; Bhasin, V.; Vijayan, P.K.

    2016-01-01

    Detailed fatigue analysis is carried out for class I Nuclear Power Plant (NPP) components to rule out the fatigue failure during their design lifetime. ASME Boiler and Pressure Vessel code Section III NB, has provided two schemes for fatigue assessment, one for fixed principal directions (proportional) loading and the other for varying principal directions (non-proportional) loading conditions. Recent literature on multi-axial fatigue tests has revealed lower fatigue lives under nonproportional loading conditions. In an attempt to understand the loading parameter lowering the fatigue life, a finite element based study has been carried out. Here, fatigue damage in a tube has been correlated with the applied axial to shear strain ratio and phase difference between them. The FE analysis has used Chaboche nonlinear kinematic hardening rule to model material's realistic cyclic plastic deformation behavior. The ASME alternating stress intensity (based on linear elastic FEA) and the plastic strain energy dissipation (based on elastic-plastic FEA) have been considered to assess the per cycle fatigue damage. The study has revealed that ASME criteria predicts lower alternating stress intensity (fatigue damage parameter S alt ) for some cases of non-proportional loading than that predicted for corresponding proportional loading case. However, the actual fatigue damage is higher in non-proportional loading than that in corresponding proportional loading case. Further the fatigue damage of an NPP component under realistic multi-axial cyclic loading conditions has been assessed using some popular critical plane based models vis-à-vis ASME Sec. III criteria. (author)

  6. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  7. Efficient Circulation of Railway Rolling Stock

    NARCIS (Netherlands)

    Alfieri, A.; Groot, R.; Kroon, L.G.; Schrijver, A.

    2006-01-01

    Railway rolling stock (locomotives, carriages, and train units) is one of the most significant cost sources for operatorsof passenger trains, both public and private. Rolling stock costsare due to material acquisition, power supply, and material maintenance. The efficient circulation of rolling

  8. Mesoscopic scale thermal fatigue damage

    International Nuclear Information System (INIS)

    Robertson, C.; Fissolo, A.; Fivel, M.

    2001-01-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  9. Mesoscopic scale thermal fatigue damage

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.; Fissolo, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Fivel, M. [Centre National de la Recherche Scientifique, CNRS-GPM2, 38 - Saint Martin d' Heres (France)

    2001-07-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  10. Influence of Pavement on Fatigue Performance of Urban Steel Box Girder Deck

    Directory of Open Access Journals (Sweden)

    Zheng Zhongyue

    2016-01-01

    Full Text Available Based on spatial finite element analysis method, the Influence of pavement on fatigue performance of orthotropic steel deck was analyzed in terms of pavement system, asphalt pavement stiffness. The result shows that compared with asphalt pavement system, RPC pavement system can not only obviously improve the stress condition of steel bridge deck, but also significantly extend the fatigue life of steel bridge panel; Increasing the stiffness of pavement layer can obviously reduce the stress amplitude of fatigue details, especially for direct contact with the pavement.

  11. Attempts to improve the fatigue characteristics of the austenitic steel X5CrNi18-10 in the temperature range of 25-600 C by mechanical boundary layer hardening; Zur Verbesserung des Ermuedungsverhaltens des austenitischen Stahls X5CrNi18-10 im Temperaturbereich 25-600 C durch mechanische Randschichtverfestigungsverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Ivan

    2007-01-31

    Pieces of the austenitic steel X5CrNi18-10 whose boundary layers had been hardened by different methods were investigated with a view to their fatigue deformation characteristics in the temperature range of 25-600 degC. Parallel to this, microstructural and X-ray analyses provided deeper understanding of fatigue deformation. The microstructure was characterized, among others, by TEM. Boundary layers were solidified by rolling, by a combination of mechanical and thermal processes, by high-temperature rolling, and by laser shock solidification. The analyses focused on microstructural processes and on the intrinsic stress stability and provided important information on the fabrication of structural components with optimised life. (orig.)

  12. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    Science.gov (United States)

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  13. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gamstedt, E K; Andersen, S I

    2001-03-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage, marine and aeronautical propellers, and rolls for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies, which would allow more reliable and slender structures, improved test methods are necessary. Furthermore, the relation between structural, component and specimen test results should be better understood than what is presently the case. Improved predictive methods rely on a better understanding of the underlying damage mechanisms. With mechanism-based models, the component substructure or even the material microstructure could be optimised for best possible fatigue resistance. These issues are addressed in the present report, with special emphasis on test methods, and scaling from damage mechanisms to relevant material properties. (au)

  14. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  15. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  16. Multi-level approach for parametric roll analysis

    Science.gov (United States)

    Kim, Taeyoung; Kim, Yonghwan

    2011-03-01

    The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude- Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

  17. Preorganization of Nanostructured Inks for Roll-to-Roll-Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Senkovskyy, Volodymyr; Kiriy, Anton

    2010-01-01

    , a preorganized ink was obtained that was used to make polymer solar cell modules in a full roll-to-roll coating and printing process operating in ambient air. The polymer solar cells were thus prepared by a mixture of slot die and flat-bed screen printing. Various polymer solar cell modules were prepared ranging...

  18. Self-Aligned Metal Electrodes in Fully Roll-to-Roll Processed Organic Transistors

    Directory of Open Access Journals (Sweden)

    Marja Vilkman

    2016-01-01

    Full Text Available We demonstrate the production of organic bottom gate transistors with self-aligned electrodes, using only continuous roll-to-roll (R2R techniques. The self-alignment allows accurate <5 µm layer-to-layer registration, which is usually a challenge in high-speed R2R environments as the standard registration methods are limited to the millimeter range—or, at best, to tens of µm if online cameras and automatic web control are utilized. The improved registration enables minimizing the overlap between the source/drain electrodes and the gate electrode, which is essential for minimizing the parasitic capacitance. The complete process is a combination of several techniques, including evaporation, reverse gravure, flexography, lift-off, UV exposure and development methods—all transferred to a continuous R2R pilot line. Altogether, approximately 80 meters of devices consisting of thousands of transistors were manufactured in a roll-to-roll fashion. Finally, a cost analysis is presented in order to ascertain the main costs and to predict whether the process would be feasible for the industrial production of organic transistors.

  19. Roll-to-Roll fabrication of large area functional organic materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar R.; Hösel, Markus; Krebs, Frederik C

    2013-01-01

    With the prospect of extremely fast manufacture of very low cost devices, organic electronics prepared by thin film processing techniques that are compatible with roll-to-roll (R2R) methods are presently receiving an increasing interest. Several technologies using organic thin films...... research fields such as organic photovoltaics, organic thin film transistors, light-emitting diodes, polymer electrolyte membrane fuel cells, and electrochromic devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 000: 000–000, 2012...

  20. Perovskite solar cells for roll-to-roll fabrication

    Directory of Open Access Journals (Sweden)

    Uddin Ashraf

    2017-01-01

    Full Text Available Perovskite solar cell (PSCs is considered as the game changer in emerging photovoltaics technology. The highest certified efficiency is 22% with high temperature processed (∼500 °C TiO2 based electron transport layer (ETL. High temperature process is a rudimentary hindrance towards roll-to-roll processing of PSCs on flexible substrates. Low temperature solution process (<150 °C ZnO based ETL is one of the most promising candidate for large scale roll-to-roll fabrication of cells as it has nearly identical electron affinity (4.2 eV of TiO2. The mixed organic perovskite (MA0.6FA0.4PbI3 devices with Al doped ZnO (AZO ETL demonstrate average cell efficiency over 16%, which is the highest ever reported efficiency for this device configuration. The energy level alignment and related interfacial charge transport dynamics at the interface of ZnO and perovskite films and the adjacent charge transport layers are investigated. Significantly improved device stability, hysteresis free device photocurrent have been observed in MA0.6FA0.4PbI3 cells. A systematic electrochemical impedance spectroscopy, frequency dependent capacitance spectra, surface morphology and topography characterization have been conducted to understand the role of interfacial electronic properties between perovskite and neighbouring layers in perovskite device. A standardized degradation study, interfacial electronic property and capacitive spectra analysis of aged device, have been measured to understand the enhanced device stability in mixed MA0.6FA0.4PbI3 cells. Slow perovskite material decomposition rate and augmented device lifetime with AZO based devices have been found to be correlated with the more hydrophobic and acidic nature of AZO surface compared to pristine ZnO film.

  1. Roll-to-roll coated PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Hjuler, Hans Aage; Terkelsen, Carina

    2012-01-01

    We employed roll-to-roll coating in the preparation of 40 μm thick poly[2,2′(m-phenylene)-5,5′bibenzimidazole] (PBI) films for fuel cells using both knife-coating (KC) and slot-die (SD) coating. The films were coated directly from a 9% (w/w) solution of PBI in dimethylacetamide onto a sacrificial...

  2. Troll, a Language for specifying Dice-rolls

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2009-01-01

    Dice are used in many games, and often in fairly complex ways that make it difficult to unambiguously describe the dice-roll mechanism in plain language. Many role-playing games, such as Dungeons & Dragons, use a formalised notation for some instances of dice-rolls. This notation, once explained...... natural language to describe rolls. Even Dungeons & Dragons use formal notation only for some of the dice-roll methods used in the game. Hence, a more complete notation is in this paper proposed, and a tool for pseudo-random rolls and (nearly) exact probability calculations is described. The notation...... is called "Troll", combining the initial of the Danish word for dice ("terninger") with the English word "roll". It is a development of the language Roll described in an earlier paper. The present paper describes the most important features of Troll and its implementation....

  3. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    International Nuclear Information System (INIS)

    Schmidtchen, M; Kawalla, R; Rimnac, A; Bragin, S; Linzer, B; Warczok, P; Kozeschnik, E; Bernhard, C

    2016-01-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness. (paper)

  4. Autonomous Supervision and Control of Parametric Roll Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto

    therefore two objectives. The first is to develop methods for detection of the inception of parametric roll resonance. The second is to develop control strategies to stabilize the motion after parametric roll has started. Stabilisation of parametric roll resonance points to two possible courses of action...... strategies are then combined to stabilise parametric roll resonance within few roll cycles. Limitations on the maximum stabilisable roll angle are analysed and linked to the ii slew rate saturation and hydrodynamic stall characteristics of the fin stabilisers. The study on maximum stabilisable roll angle...... leads to the requirements for early detection. Two novel detectors are proposed, which work within a shorttime prediction horizon, and issue early warnings of parametric roll inception within few roll cycles from its onset. The main idea behind these detection schemes is that of exploiting the link...

  5. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models...... the number of forming cycles is calculated first to crack initiation and then during crack growth to fatal failure. An investigation of a critical die insert in an industrial cold-forging tool as regards the influence of notch radius, the amount and method of pre-stressing and the selected tool material...

  6. The Nature of Fatigue in Chronic Fatigue Syndrome.

    Science.gov (United States)

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life. © The Author(s) 2015.

  7. New perspectives on constant-roll inflation

    Science.gov (United States)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  8. Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling

    Science.gov (United States)

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie

    2018-06-01

    The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.

  9. The Rolling Transition in a Granular Flow along a Rotating Wall

    Directory of Open Access Journals (Sweden)

    Aurélie Le Quiniou

    2011-11-01

    Full Text Available The flow of a dry granular material composed of spherical particles along a rotating boundary has been studied by the discrete element method (DEM. This type of flow is used, among others, as a process to spread particles. The flow consists of several phases. A compression phase along the rotating wall is followed by an elongation of the flow along the same boundary. Eventually, the particles slide or roll independently along the boundary. We show that the main motion of the flow can be characterized by a complex deformation rate of traction/compression and shear. We define numerically an effective friction coefficient of the flow on the scale of the continuum and show a strong decrease of this effective friction beyond a certain critical friction coefficient μ*. We correlate this phenomenon with the apparition of a new transition from a sliding regime to a rolling without sliding regime that we called the rolling transition; this dynamic transition is controlled by the value of the friction coefficient between the particle and the wall. We show that the spherical shape for the particles may represent an optimum for the flow in terms of energetic.

  10. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  11. Rock and roll and neofolk music in Yugoslavia and Serbia

    Directory of Open Access Journals (Sweden)

    Đurković Miša

    2013-01-01

    Full Text Available Rock and roll (including pop-rock and neo-folk are two the most dominant popular music genres of this region in the last half century. Five decades of living together have brought the different relationships between them and the different perceptions of these relationships. Unfortunately reflection of ideological discourse dominated in relation to objective and professional research and monitoring of the evolution of both genres, which would necessarily include the analysis of cross-overing, lending and other forms of proliferation that certainly marked their evolution. This kind of topic deserves serious monographic study. But since there are no neither sketches of this process, we intend to offer in the form of article one such analysis, to demonstrate how this proliferation flowed and led to a convergence of some of the main trends within both genres. The author first displays tradition of integrating of folk elements in domestic rock and roll, and then presents the evolution of neo-folk toward modern expressions which includes many loans from the Rock and Roll. In this regard, there are also various other methodological issues that are partially dis­cussed by the end of the text. As for example. question of how to distinguish between neo-folk and World music.

  12. Mechanical properties of roll extruded nuclear reactor piping

    International Nuclear Information System (INIS)

    Steichen, J.M.; Knecht, R.L.

    1975-01-01

    The elevated temperature mechanical properties of large diameter (28 inches) seamless pipe produced by roll extrusion for use as primary piping for sodium coolant in the Fast Flux Test Facility (FFTF) have been characterized. The three heats of Type 316H stainless steel piping material used exhibited consistent mechanical properties and chemical compositions. Tensile and creep-rupture properties exceeded values on which the allowable stresses for ASME Code Case 1592 on Nuclear Components in Elevated Temperature Service were based. Tensile strength and ductility were essentially unchanged by aging in static sodium at 1050 0 F for times to 10,000 hours. High strain rate tensile tests showed that tensile properties were insensitive to strain rate at temperatures to 900 0 F and that for temperatures of 1050 0 F and above both strength and ductility significantly increased with increasing strain rate. Fatigue-crack propagation properties were comparable to results obtained on plate material and no differences in crack propagation were found between axial and circumferential orientations. (U.S.)

  13. The radial hardness-profile and the microstructure of railroad car axle materials treated by surface rolling, determined by novel examination methods

    International Nuclear Information System (INIS)

    Berecz, Tibor; Balogh, Levente; Mészáros, István; Steinbach, Ágoston

    2014-01-01

    Surface rolling is a cold-working technique used for hardening the surface of steel and ductile cast iron components. This process increases the surface hardness and improves the fatigue properties of components, so it is commonly used to treat railroad car wheel axles. The present paper examines the influence of this surface strengthening technique on the microstructure of the railroad car wheel axle material by hardness tests, optical microscopy (OM), and other novel examination methods, such as scanning electron microscopy (SEM), X-ray line profile analysis (XLPA), non-destructive magnetic evaluation (NDE) and automated electron backscatter diffraction (EBSD). The results show that surface rolling causes an increase in hardness down to a depth of ∼10 mm. It is also shown, that the increase in hardness is not due to grain refinement or change in grain morphology; thus it is likely to be caused by an increase in dislocation density

  14. The radial hardness-profile and the microstructure of railroad car axle materials treated by surface rolling, determined by novel examination methods

    Energy Technology Data Exchange (ETDEWEB)

    Berecz, Tibor, E-mail: berecz@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, 1111 Budapest, Bertalan Lajos utca 7 (Hungary); Balogh, Levente, E-mail: levente@metal.elte.hu [Department of Materials Physics, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/a (Hungary); Mészáros, István, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, 1111 Budapest, Bertalan Lajos utca 7 (Hungary); Steinbach, Ágoston, E-mail: sa984@hszk.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, 1111 Budapest, Bertalan Lajos utca 7 (Hungary)

    2014-01-13

    Surface rolling is a cold-working technique used for hardening the surface of steel and ductile cast iron components. This process increases the surface hardness and improves the fatigue properties of components, so it is commonly used to treat railroad car wheel axles. The present paper examines the influence of this surface strengthening technique on the microstructure of the railroad car wheel axle material by hardness tests, optical microscopy (OM), and other novel examination methods, such as scanning electron microscopy (SEM), X-ray line profile analysis (XLPA), non-destructive magnetic evaluation (NDE) and automated electron backscatter diffraction (EBSD). The results show that surface rolling causes an increase in hardness down to a depth of ∼10 mm. It is also shown, that the increase in hardness is not due to grain refinement or change in grain morphology; thus it is likely to be caused by an increase in dislocation density.

  15. Recycle of valuable products from oily cold rolling mill sludge

    Science.gov (United States)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Liu, Yang; Volinsky, Alex A.

    2013-10-01

    Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of "vacuum distillation + oxidizing roasting" and "vacuum distillation + hydrogen reduction" were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600°C for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.

  16. Calculation and experimental technique of determination of rolling procedure for cold-rolling tube mills

    International Nuclear Information System (INIS)

    Igoshin, V.F.; Aleshin, V.A.; Khoroshikh, Yu.G.; Bogatov, A.A.; Mizhiritskij, O.I.

    1983-01-01

    Calculation and experimental technique of determination of tube cold rolling procedure has been developed. Rolling procedure based on the usage of regression equation epsilon=1.24 psi, where psi is the relative reduction of area, delta-permissible reduction during rolling, has been tested on 08Kh18N10T steel. The effect of tube geometry, tool calibration parameters, lubrication conditions etc. on metal deformability in taking into account experimentally. The use of the technique proposed has allowed to shorten the time of mastering of the production of tubes from different steels

  17. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  18. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  19. Fatigue analysis through automated cycle counting using ThermAND

    International Nuclear Information System (INIS)

    Burton, G.R.; Ding, Y.; Scovil, A.; Yetisir, M.

    2008-01-01

    The potential for fatigue damage due to thermal transients is one of the degradation mechanisms that needs to be managed for plant components. The original design of CANDU stations accounts for projected fatigue usage for specific components over a specified design lifetime. Fatigue design calculations were based on estimates of the number and severity of expected transients for 30 years operation at 80% power. Many CANDU plants are now approaching the end of their design lives and are being considered for extended operation. Industry practice is to have a comprehensive fatigue management program in place for extended operation beyond the original design life. A CANDU-specific framework for fatigue management has recently been developed to identify the options for implementation, and the critical components and locations requiring long-term fatigue monitoring. An essential element of fatigue monitoring is to identify, count and monitor the number of plant transients to ensure that the number assumed in the original design is not exceeded. The number and severity of actual CANDU station thermal transients at key locations in critical systems have been assessed using ThermAND, AECL's health monitor for systems and components, based on archived station operational data. The automated cycle counting has demonstrated that actual transients are generally less numerous than the quantity assumed in the design basis, and are almost always significantly less severe. This paper will discuss the methodology to adapt ThermAND for automated cycle counting of specific system transients, illustrate and test this capability for cycle-based fatigue monitoring using CANDU station data, report the results, and provide data for stress-based fatigue calculations. (author)

  20. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  1. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Hösel, Markus

    2014-01-01

    the manufacture of completely functional devices in exceptionally high yields. Critical to the ink and process development is a carefully chosen technology transfer to industry method where first a roll coater is employed enabling contactless stack build up, followed by a small roll-to-roll coater fitted to an X...

  2. Improved methods of creep-fatigue life assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred; Berger, Christina [Inst. fuer Werkstoffkunde (IfW), Technische Univ. Darmstadt (Germany)

    2009-07-01

    The improvement of life assessment methods contributes to a reduction of efforts at design and an effective long term operation of high temperature components, reduces technical risk and increases high economical advantages. Creep-fatigue at multi-stage loading, covering cold start, warm start and hot start cycles in typical loading sequences e.g. for medium loaded power plants, was investigated here. At hold times creep and stress relaxation, respectively, lead to an acceleration of crack initiation. Creep fatigue life time can be calculated by a modified damage accumulation rule, which considers the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage. Mean stress effects, internal stress and interaction effects of creep and fatigue are considered. Along with the generation of advanced creep data, fatigue data and creep fatigue data as well scatter band analyses are necessary in order to generate design curves and lower bound properties inclusive. Besides, in order to improve lifing methods the enhancement of modelling activities for deformation and life time are important. For verification purposes, complex experiments at variable creep conditions as well as at creep fatigue interaction under multi-stage loading are of interest. Generally, the development of methods to transfer uniaxial material properties to multiaxial loading situations is a current challenge. For specific design purposes, a constitutive material model is introduced which is implemented as an user subroutine for Finite Element applications due to start-up and shut-down phases of components. Identification of material parameters have been performed by Neural Networks. (orig.)

  3. Theoretical modeling and experimental study on fatigue initiation life of 16MnR notched components

    International Nuclear Information System (INIS)

    Wang Xiaogui; Gao Zengliang; Qiu Baoxiang; Jiang Yanrao

    2010-01-01

    In order to investigate the effects of notch geometry and loading conditions on the fatigue initiation life and fatigue fracture life of 16MnR material, fatigue experiments were conducted for both smooth rod specimens and notched rod specimens. The detailed elastic-plastic stress and strain responses were computed by the finite element software (ABAQUS) incorporating a robust cyclic plasticity model via a user subroutine UMAT. The obtained stresses and strains were applied to the multiaxial fatigue damage criterion to compute the fatigue damage induced by a loading cycle on the critical material plane. The fatigue initiation life was then obtained by the proposed theoretical model. The well agreement between the predicted results and the experiment data indicated that the fatigue initiation of notched components in the multiaxial stress state related to all the nonzero stress and strain quantities. (authors)

  4. Influence of specimen thickness on the fatigue behavior of notched steel plates subjected to laser shock peening

    Science.gov (United States)

    Granados-Alejo, V.; Rubio-González, C.; Vázquez-Jiménez, C. A.; Banderas, J. A.; Gómez-Rosas, G.

    2018-05-01

    The influence of specimen thickness on the fatigue crack initiation of 2205 duplex stainless steel notched specimens subjected to laser shock peening (LSP) was investigated. The purpose was to examine the effectiveness of LSP on flat components with different thicknesses. For the LSP treatment a Nd:YAG pulsed laser operating at 10 Hz with 1064 nm of wavelength was used; pulse density was 2500 pulses/cm2. The LSP setup was the waterjet arrangement without sample coating. Residual stress distribution as a function of depth was determined by the hole drilling method. Notched specimens 2, 3 and 4 mm thick were LSP treated on both faces and then fatigue loading was applied with R = 0.1. Experimental fatigue lives were compared with life predictions from finite element simulation. A good comparison of the predicted and experimental fatigue lives was observed. LSP finite element simulation helps in explaining the influence of thickness on fatigue lives in terms of equivalent plastic strain distribution variations associated with the change in thickness. It is demonstrated that specimen size effect is an important issue in applying LSP on real components. Reducing the specimen thickness, the fatigue life improvement induced by LSP is significantly increased. Fatigue life extension up to 300% is observed on thin specimens with LSP.

  5. Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice

    Directory of Open Access Journals (Sweden)

    D. Carrella-Payan

    2016-10-01

    Full Text Available The aim of this study is to deal with the simulation of intralaminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The proposed damage model for fatigue is based on stiffness degradation laws from Van Paepegem combined with the ‘damage’ cycle jump approach extended to deal with unidirectional carbon fibres. The parameter identification method is here presented and parameter sensitivities are discussed. The initial static damage of the material is accounted for by using the Ladevèze damage model and the permanent shear strain accumulation based on Van Paepegem’s formulation. This approach is implemented into commercial software (Siemens PLM. The validation case is run on a bending test coupon (with arbitrary stacking sequence and load level in order to minimise the risk of inter-laminar damages. This intra-laminar fatigue damage model combined efficient methods with a low number of tests to identify the parameters of the stiffness degradation law, this overall procedure for fatigue life prediction is demonstrated to be cost efficient at industrial level. This work concludes on the next challenges to be addressed (validation tests, multiple-loadings validation, failure criteria, inter-laminar damages….

  6. Fault diagnosis of rolling bearing based on second generation wavelet denoising and morphological filter

    International Nuclear Information System (INIS)

    Meng, Lingjie; Xiang, Jiawei; Zhong, Yongteng; Song, Wenlei

    2015-01-01

    Defective rolling bearing response is often characterized by the presence of periodic impulses. However, the in-situ sampled vibration signal is ordinarily mixed with ambient noises and easy to be interfered even submerged. The hybrid approach combining the second generation wavelet denoising with morphological filter is presented. The raw signal is purified using the second generation wavelet. The difference between the closing and opening operator is employed as the morphology filter to extract the periodicity impulsive features from the purified signal and the defect information is easily to be extracted from the corresponding frequency spectrum. The proposed approach is evaluated by simulations and vibration signals from defective bearings with inner race fault, outer race fault, rolling element fault and compound faults, espectively. Results show that the ambient noises can be fully restrained and the defect information of the above defective bearings is well extracted, which demonstrates that the approach is feasible and effective for the fault detection of rolling bearing.

  7. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  8. Constant-roll tachyon inflation and observational constraints

    Science.gov (United States)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  9. Application of Dang Van criterion to rolling contact fatigue in wind turbine roller bearings under elastohydrodynamic lubrication conditions

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    classic Hertzian and elastohydrodynamic lubrication theories have been used to model the pressure distribution acting on the inner raceway and results are compared according to the Dang Van multiaxial fatigue criterion. The contact on the bearing raceway is simulated by substituting the roller...

  10. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  11. Cosmology with rolling tachyon

    Indian Academy of Sciences (India)

    Email: sami@iucaa.ernet.in. Abstract. We examine the possibility of rolling tachyon to play the dual role of inflaton at early epochs and dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon either by invoking the large number of branes or brane world assisted inflation. However ...

  12. The effect of residual stresses induced by prestraining on fatigue life of notched specimens

    Science.gov (United States)

    Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.

    2005-06-01

    The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.

  13. METHOD OF HOT ROLLING URANIUM METAL

    Science.gov (United States)

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  14. Microstructure formation via roll-to-roll UV embossing using a flexible mould made from a laminated polymer–copper film

    International Nuclear Information System (INIS)

    Zhong, Z W; Shan, X C

    2012-01-01

    Roll-to-roll large format UV embossing processes aim to revolutionize the manufacturing of functional films, with the ability to process a large area at one time, resulting in high throughput and cost reduction. In this paper, we present the experimental results obtained during the process development for roll-to-roll large format UV embossing. Flexible moulds were fabricated from a hybrid film substrate made of a liquid crystal polymer with clad copper foils laminated on both sides of it. The effective pattern area of the fabricated flexible mould was 400 mm × 300 mm with a minimal feature size of 50 µm. The results show that the roll-to-roll embossing processes are capable of producing micro-scale structures and functional devices over a large area at one time. Large-area roll-to-roll embossing was demonstrated by using the hybrid flexible mould, and micro-features and structures such as micro-channels and dot arrays were replicated on thermoplastic substrates. In addition to its ease and low cost in fabrication, the hybrid flexible moulds demonstrated to have acceptable fidelity and durability. The hybrid flexible mould is a novel solution for large-area embossing. (paper)

  15. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-06-07

    ...-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit for Preliminary Results of...-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot... duty order on certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Initiation...

  16. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  17. Just Roll with It? Rolling Volumes vs. Discrete Issues in Open Access Library and Information Science Journals

    Directory of Open Access Journals (Sweden)

    Jill Cirasella

    2013-08-01

    Full Text Available INTRODUCTION Articles in open access (OA journals can be published on a rolling basis, as they become ready, or in complete, discrete issues. This study examines the prevalence of and reasons for rolling volumes vs. discrete issues among scholarly OA library and information science (LIS journals based in the United States. METHODS A survey was distributed to journal editors, asking them about their publication model and their reasons for and satisfaction with that model. RESULTS Of the 21 responding journals, 12 publish in discrete issues, eight publish in rolling volumes, and one publishes in rolling volumes with an occasional special issue. Almost all editors, regardless of model, cited ease of workflow as a justification for their chosen publication model, suggesting that there is no single best workflow for all journals. However, while all rolling-volume editors reported being satisfied with their model, satisfaction was less universal among discrete-issue editors. DISCUSSION The unexpectedly high number of rolling-volume journals suggests that LIS journal editors are making forward-looking choices about publication models even though the topic has not been much addressed in the library literature. Further research is warranted; possibilities include expanding the study’s geographic scope, broadening the study to other disciplines, and investigating publication model trends across the entire scholarly OA universe. CONCLUSION Both because satisfaction is high among editors of rolling-volume journals and because readers and authors appreciate quick publication times, the rolling-volume model will likely become even more prevalent in coming years.

  18. Effect of Si content on fatigue fracture behavior of hot-rolled high-silicon steels

    Science.gov (United States)

    Umezawa, Osamu; Kanda, Jyunichi; Yamazaki, Takao

    2017-05-01

    As the Si content was increased from 1.5 to 5 mass%, both the yield stress and ultimate tensile strength were increased, respectively. The work hardening rate was also increased as the increase of Si content. On the contrary, the elongation was decreased as the increase of Si content, and the fracture manner was shifted from ductile to brittle. The 107 cycles fatigue strength was higher as the increase of Si content. The small misorientation distribution as ladder-like was detected in the grains of 1.5 mass%Si steel. Around the grain boundary, the strain incompatibility was detected in the steels containing over 3 mass%Si. The lattice rotation was locally detected in the vicinity of grain boundaries.

  19. Effect of additional holes on transient thermal fatigue life of gas turbine casing

    Directory of Open Access Journals (Sweden)

    H. Bazvandi

    2017-10-01

    Full Text Available Gas turbines casings are susceptible to cracking at the edge of eccentric pin hole, which is the most likely position for crack initiation and propagation. This paper describes the improvement of transient thermal fatigue crack propagation life of gas turbines casings through the application of additional holes. The crack position and direction was determined using non-destructive tests. A series of finite element patterns were developed and tested in ASTM-A395 elastic perfectly-plastic ductile cast iron. The effect of arrangement of additional holes on transient thermal fatigue behavior of gas turbines casings containing hole edge cracks was investigated. ABAQUS finite element package and Zencrack fracture mechanics code were used for modeling. The effect of the reduction of transient thermal stress distribution around the eccentric pin hole on the transient thermal fatigue crack propagation life of the gas turbines casings was discussed. The result shows that transient thermal fatigue crack propagation life could be extended by applying additional holes of larger diameter and decreased by increasing the vertical distance, angle, and distance between the eccentric pin hole and the additional holes. The results from the numerical predictions were compared with experimental data.

  20. Roll-to-roll compatible organic thin film transistor manufacturing technique by printing, lamination, and laser ablation

    International Nuclear Information System (INIS)

    Hassinen, Tomi; Ruotsalainen, Teemu; Laakso, Petri; Penttilä, Raimo; Sandberg, Henrik G.O.

    2014-01-01

    We present roll-to-roll printing compatible techniques for manufacturing organic thin film transistors using two separately processed foils that are laminated together. The introduction of heat-assisted lamination opens up possibilities for material and processing combinations. The lamination of two separately processed substrates together will allow usage of pre-patterned electrodes on both substrates and materials with non-compatible solvents. Also, the surface microstructure is formed differently when laminating dry films together compared to film formation from liquid phase. Demonstrator transistors, inverters and ring oscillators were produced using lamination techniques. Finally, a roll-to-roll compatible lamination concept is proposed where also the source and drain electrodes are patterned by laser ablation. The demonstrator transistors have shown very good lifetime in air, which is contributed partly to the good material combination and partly to the enhanced interface formation in heat-assisted lamination process. - Highlights: • A roll-to-roll compatible lamination technique for printed electronics is proposed. • Laser ablation allows highly defined metal top and bottom electrodes. • Method opens up processing possibilities for incompatible materials and solvents. • Shearing forces may enhance molecular orientation and packing. • An air stable polymer transistor is demonstrated with a lifetime of years

  1. Inflation with a constant rate of roll

    International Nuclear Information System (INIS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-01-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ·· φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime

  2. High-throughput roll-to-roll X-ray characterization of polymer solar cell active layers

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.; Jørgensen, Mikkel; Menzel, Andreas

    2012-01-01

    Synchrotron-based X-rays were used to probe active materials for polymer solar cells on flexible polyester foil. The active material was coated onto a flexible 130 micron thick polyester foil using roll-to-roll differentially pumped slot-die coating and presented variation in composition, thickness...

  3. An efficient approach to the analysis of rail surface irregularities accounting for dynamic train-track interaction and inelastic deformations

    Science.gov (United States)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-11-01

    A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle-track interaction accounting for transient non-Hertzian wheel-rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang-Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.

  4. Analysis of Space Station Centrifuge Rotor Bearing Systems: A Case Study

    Science.gov (United States)

    Poplawski, Joseph V.; Loewenthal, Stuart H.; Oswald, Fred B.; Zaretsky, Erwin V.; Morales, Wilfredo; Street, Kenneth W., Jr.

    2014-01-01

    A team of NASA bearing and lubrication experts was assembled to assess the risk for the rolling-element bearings used in the International Space Station (ISS) centrifuge rotor (CR) to seize or otherwise fail to survive for the required 10-year life. The CR was designed by the Japan Aerospace Exploration Agency and their subcontractor, NEC Toshiba Space Systems, Ltd. (NTSpace). The NASA team performed a design audit for the most critical rolling-element bearing systems and reviewed the lubricant selected. There is uncertainty regarding the ability of the Braycote 601 grease (Castrol Limited) to reliably provide the 10-year continuous life required without relubrication of the system. The fatigue life of the Rotor Shaft Assembly (RSA) spring loaded face-to-face mount at a 99-percent probability of survival (L1 life) for the ball bearing set was estimated at 700 million hours and the single ball bearing (Row 3) at 58 million hours. These lives satisfy the mission requirements for fatigue. Rolling-element seizure tests on the RSA and fluid slip joint bearings were found unlikely to stop the centrifuge, which can cause damage to the ISS structure. The spin motor encoder duplex angular-contact ball bearings have a hard preload and a large number of small balls have the highest risk of failure. These bearings were not tested for seizure even though they are less tolerant to debris or internal clearance reductions.

  5. Origins of Rolling Friction

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  6. Towards roll-to-roll manufacturing of polymer photonic devices

    Science.gov (United States)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  7. Rolling block mazes are PSPACE-complete

    NARCIS (Netherlands)

    Buchin, K.; Buchin, M.

    2012-01-01

    In a rolling block maze, one or more blocks lie on a rectangular board with square cells. In most mazes, the blocks have size k × m × n where k, m, n are integers that determine the size of the block in terms of units of the size of the board cells. The task of a rolling block maze is to roll a

  8. Study on determination of durability analysis process and fatigue damage parameter for rubber component

    International Nuclear Information System (INIS)

    Moon, Seong In; Cho, Il Je; Woo, Chang Su; Kim, Wan Doo

    2011-01-01

    Rubber components, which have been widely used in the automotive industry as anti-vibration components for many years, are subjected to fluctuating loads, often failing due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop a durability analysis process for vulcanized rubber components, that can predict fatigue life at the initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. Also, to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and normal and shear strain was proposed as the fatigue damage parameter for rubber components. Fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed

  9. Design and development of LH2 cooled rolling element radial bearings for the NERVA engine turbopump. Volume 3: Phase 2: Tests on build-ups 16, 17, and 18 at NRDS, Jackass Flats, Nevada, December 1971 - March 1972

    Science.gov (United States)

    Accinelli, J. B.; Koch, D. A.; Reuter, F.

    1972-01-01

    The use of liquid hydrogen to cool the rolling element radial bearings in the nuclear engine for rocket vehicles is discussed. The fifteen hour service life goal was obtained during the tests. The increase in bearing life was also considered to be produced by: (1) improvements in bearing material, (2) bearing retainer configuration and manufacturing changes, and (3) better control of operating parameters.

  10. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors.

    Science.gov (United States)

    Hall, Daniel L; Antoni, Michael H; Lattie, Emily G; Jutagir, Devika R; Czaja, Sara J; Perdomo, Dolores; Lechner, Suzanne C; Stagl, Jamie M; Bouchard, Laura C; Gudenkauf, Lisa M; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G

    Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one's daily functioning in both patient populations to better understand their relationships with depressed mood. Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants' fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p's fatigued breast cancer survivors (β=.18, p =.19). CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed.

  11. Environmental Assisted Fatigue Evaluation of Direct Vessel Injection Piping Considering Thermal Stratification

    International Nuclear Information System (INIS)

    Kim, Taesoon; Lee, Dohwan

    2016-01-01

    As the environmentally assisted fatigue (EAF) due to the primary water conditions is to be a critical issue, the fatigue evaluation for the components and pipes exposed to light water reactor coolant conditions has become increasingly important. Therefore, many studies to evaluate the fatigue life of the components and pipes in LWR coolant environments on fatigue life of materials have been conducted. Among many components and pipes of nuclear power plants, the direct vessel injection piping is known to one of the most vulnerable pipe systems because of thermal stratification occurred in that systems. Thermal stratification occurs because the density of water changes significantly with temperature. In this study, fatigue analysis for DVI piping using finite element analysis has been conducted and those results showed that the results met design conditions related with the environmental fatigue evaluation of safety class 1 pipes in nuclear power plants. Structural and fatigue integrity for the DVI piping system that thermal stratification occurred during the plant operation has conducted. First of all, thermal distribution of the piping system is calculated by computational fluid dynamic analysis to analyze the structural integrity of that piping system. And the fatigue life evaluation considering environmental effects was carried out. Our results showed that the DVI piping system had enough structural integrity and fatigue life during the design lifetime of 60 years

  12. Maintenance Appointments in Railway Rolling Stock Rescheduling

    NARCIS (Netherlands)

    J.C. Wagenaar (Joris); L.G. Kroon (Leo); M.E. Schmidt (Marie)

    2016-01-01

    textabstractThis paper addresses the Rolling Stock Rescheduling Problem (RSRP), while taking maintenance appointments into account. After a disruption, the rolling stock of the disrupted passenger trains has to be rescheduled in order to restore a feasible rolling stock circulation. Usually, a

  13. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang, E-mail: lppmchenqiang@hotmail.com

    2016-12-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm{sup 3}/m{sup 2} day for Al-coated original PE to 138 cm{sup 3}/m{sup 2} day for Al-coated allyamine (C{sub 3}H{sub 7}N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  14. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    International Nuclear Information System (INIS)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2016-01-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm 3 /m 2 day for Al-coated original PE to 138 cm 3 /m 2 day for Al-coated allyamine (C 3 H 7 N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  15. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    National Research Council Canada - National Science Library

    Harrison, Richard; Chaiken, Scott; Harville, Donald; Fischer, Joseph; Fisher, Dion; Whitmore, Jeff

    2008-01-01

    The present study was designed to target two specific areas regarding fatigue. The primary purpose was to begin investigations into possible genetic markers linked to fatigue resistance and fatigue susceptibility...

  16. Design and analysis of roll cage

    Science.gov (United States)

    Angadi, Gurusangappa; Chetan, S.

    2018-04-01

    Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.

  17. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2016-01-01

    failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial...... knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained.......Thickness transitions in load carrying elements lead to improved geometries and efficient material utilization. However, these transitions may introduce localized areas with high stress concentrations and may act as crack initiators that could potentially cause delamination and further catastrophic...

  18. Annealing texture of rolled nickel alloys

    International Nuclear Information System (INIS)

    Meshchaninov, I.V.; Khayutin, S.G.

    1976-01-01

    A texture of pure nickel and binary alloys after the 95% rolling and annealing has been studied. Insoluble additives (Mg, Zr) slacken the cubic texture in nickel and neral slackening of the texture (Zr). In the case of alloying with silicium (up to 2%) the texture practically coinsides with that of a technical-grade nickel. The remaining soluble additives either do not change the texture of pure nickel (C, Nb) or enhance the sharpness and intensity of the cubic compontnt (Al, Cu, Mn, Cr, Mo, W, Co -at their content 0.5 to 2.0%). A model is proposed by which variation of the annealing texture upon alloying is caused by dissimilar effect of the alloying elements on the mobility of high- and low-angle grain boundaries

  19. Interference-Fit Life Factors for Ball Bearings

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2010-01-01

    The effect of hoop stresses on the rolling-element fatigue life of angular-contact and deep-groove ball bearings was determined for common inner-ring interference fits at the ABEC-5 tolerance level. The analysis was applied to over 1150 bearing configurations and load cases. Hoop stresses were superimposed on the Hertzian principal stresses created by the applied bearing load to calculate the inner-race maximum shearing stress. The resulting fatigue life of the bearing was recalculated through a series of equations. The reduction in the fatigue life is presented as life factors that are applied to the unfactored bearing life. The life factors found in this study ranged from 1.00 (no life reduction)--where there was no net interface pressure--to a worst case of 0.38 (a 62-percent life reduction). For a given interference fit, the reduction in life is different for angular-contact and deep-groove ball bearings. Interference fits also affect the maximum Hertz stress-life relation. Experimental data of Czyzewski, showing the effect of interference fit on rolling-element fatigue life, were reanalyzed to determine the shear stress-life exponent. The Czyzewski data shear stress-life exponent c equals 8.77, compared with the assumed value of 9. Results are presented as tables and charts of life factors for angular-contact and deep-groove ball bearings with light, normal, and heavy loads and interference fits ranging from extremely light to extremely heavy.

  20. A combined wear-fatigue design methodology for fretting in the pressure armour layer of flexible marine risers

    OpenAIRE

    O'Halloran, S.M.; Shipway, P.H.; Connaire, A.D.; Leen, Sean B.; Harte, A.M.

    2017-01-01

    This paper presents a combined experimental and computational methodology for fretting wear-fatigue prediction of pressure armour wire in flexible marine risers. Fretting wear, friction and fatigue parameters of pressure armour material have been characterised experimentally. A combined fretting wear-fatigue finite element model has been developed using an adaptive meshing technique and the effect of bending-induced tangential slip has been characterised. It has been shown that a surface dama...

  1. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    Science.gov (United States)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  2. Flow behavior of polymers during the roll-to-roll hot embossing process

    International Nuclear Information System (INIS)

    Deng, Yujun; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Lin, Zhongqin

    2015-01-01

    The roll-to-roll (R2R) hot embossing process is a recent advancement in the micro hot embossing process and is capable of continuously fabricating micro/nano-structures on polymers, with a high efficiency and a high throughput. However, the fast forming of the R2R hot embossing process limits the time for material flow and results in complicated flow behavior in the polymers. This study presents a fundamental investigation into the flow behavior of polymers and aims towards the comprehensive understanding of the R2R hot embossing process. A three-dimensional (3D) finite element (FE) model based on the viscoelastic model of polymers is established and validated for the fabrication of micro-pyramids using the R2R hot embossing process. The deformation and recovery of micro-pyramids on poly(vinyl chloride) (PVC) film are analyzed in the filling stage and the demolding stage, respectively. Firstly, in the analysis of the filling stage, the temperature distribution on the PVC film is discussed. A large temperature gradient is observed along the thickness direction of the PVC film and the temperature of the top surface is found to be higher than that of the bottom surface, due to the poor thermal conductivity of PVC. In addition, creep strains are demonstrated to depend highly on the temperature and are also observed to concentrate on the top layer of the PVC film because of high local temperature. In the demolding stage, the recovery of the embossed micro-pyramids is obvious. The cooling process is shown to be efficient for the reduction of recovery, especially when the mold temperature is high. In conclusion, this research advances the understanding of the flow behavior of polymers in the R2R hot embossing process and might help in the development of the highly accurate and highly efficient fabrication of microstructures on polymers. (paper)

  3. Hot Roll Bonding of Aluminum to Twin-Roll Cast (TRC) Magnesium and Its Subsequent Deformation Behavior

    Science.gov (United States)

    Saleh, H.; Schmidtchen, M.; Kawalla, R.

    2018-02-01

    In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.

  4. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  5. Rolling up a Graphene Sheet

    NARCIS (Netherlands)

    Calvaresi, Matteo; Quintana, Mildred; Rudolf, Petra; Zerbetto, Francesco; Prato, Maurizio

    2013-01-01

    Carbon Nanotubes, CNTs, have been described as rolled-up graphene layers. Matching this concept to experiments has been a great experimental challenge for it requires a method to exfoliate graphite, generate ordered and stable dangling carbon bonds, and roll up the layer without affecting the

  6. Low cycle fatigue analysis of a last stage steam turbine blade

    Directory of Open Access Journals (Sweden)

    Měšťánek P.

    2008-11-01

    Full Text Available The present paper deals with the low cycle fatigue analysis of the low pressure (LP steam turbine blade. The blade is cyclically loaded by the centrifugal force because of the repeated startups of the turbine. The goal of the research is to develop a technique to assess fatigue life of the blade and to determine the number of startups to the crack initiation. Two approaches were employed. First approach is based on the elastic finite element analysis. Fictive 'elastic' results are recalculated using Neuber's rule and the equivalent energy method. Triaxial state of stress is reduced using von Mises theory. Strain amplitude is calculated employing the cyclic deformation curve. Second approach is based on elastic-plastic FE analysis. Strain amplitude is determined directly from the FE analysis by reducing the triaxial state of strain. Fatigue life was assessed using uniaxial damage parameters. Both approaches are compared and their applicability is discussed. Factors that can influence the fatigue life are introduced. Experimental low cycle fatigue testing is shortly described.

  7. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  8. 14 CFR 23.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 23.493 Section 23.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....493 Braked roll conditions. Under braked roll conditions, with the shock absorbers and tires in their...

  9. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors

    Science.gov (United States)

    Hall, Daniel L.; Antoni, Michael H.; Lattie, Emily G.; Jutagir, Devika R.; Czaja, Sara J.; Perdomo, Dolores; Lechner, Suzanne C.; Stagl, Jamie M.; Bouchard, Laura C.; Gudenkauf, Lisa M.; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G.

    2015-01-01

    Objective Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one’s daily functioning in both patient populations to better understand their relationships with depressed mood. Methods Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants’ fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. Results CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p’sfatigued breast cancer survivors (β=.18, p=.19). Conclusions CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed. PMID:26180660

  10. LEDs are on a roll

    NARCIS (Netherlands)

    Blom, P.W.M.; Mol, A.M.B. van

    2011-01-01

    Light-emitting diodes are more efficient than conventional lighting, but high production costs limit their uptake. Organic versions that can be produced using a cheap newspaper-style 'roll-to-roll' printing process are likely to revolutionize our lighting and signage, say Paul Blom and Ton van Mol.

  11. A damage mechanics based general purpose interface/contact element

    Science.gov (United States)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  12. 14 CFR 27.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 27.493 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.493 Braked roll conditions. Under braked roll conditions with the shock absorbers in their static positions— (a) The limit...

  13. 14 CFR 29.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 29.493 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.493 Braked roll conditions. Under braked roll conditions with the shock absorbers in their static positions— (a) The limit...

  14. Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves

    International Nuclear Information System (INIS)

    Kostson, E; Fromme, P

    2009-01-01

    This contribution investigates the application of low frequency guided ultrasonic waves for monitoring fatigue crack growth at fastener holes in the 2nd layer of multi-layered plate structures, a common problem in aerospace industry. The model multi-layered structure investigated consists of two aluminum plate-strips adhesively bonded using a structural paste adhesive. Guided ultrasonic waves were excited using multiple piezoelectric discs bonded to the surface of the multi-layered structure. The wave propagation in the tensile specimen was measured using a laser interferometer and compared to numerical simulations. Thickness and width mode shapes of the excited flexural waves were identified from Semi-Analytical Finite Element (SAFE) calculations. Experiments and 3D Finite Element (FE) simulations show a change in the scattered field around fastener holes caused by a defect in the 2nd layer. The amplitude of the guided ultrasonic wave was monitored during fatigue experiments at a single point. The measured changes in the amplitude of the ultrasonic signal due to fatigue crack growth agree well with FE simulations.

  15. Application of a Cycle Jump Technique for Acceleration of Fatigue Crack Growth Simulation

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Karlsson, A.M.

    2010-01-01

    A method for accelerated simulation of fatigue crack growth in a bimaterial interface is proposed. To simulate fatigue crack growth in a bimaterial interface a routine is developed in the commercial finite element code ANSYS and a method to accelerate the simulation is implemented. The proposed m...... of the simulation show that with fair accuracy, using the cycle jump method, more than 70% reduction in computation time can be achieved....

  16. Roll-to-Roll Slot–Die Coated Organic Photovoltaic (OPV) Modules with High Geometrical Fill Factors

    NARCIS (Netherlands)

    Galagan, Y.; Fledderus, H.; Gorter, H.; Mannetje, H.H. 't; Shanmugam, S.; Mandamparambil, R.; Bosman, J.; Rubingh, J.M.; Teunissen, J.P.; Salem, A.; Vries, I.G. de; Andriessen, R.; Groen, W.A.

    2015-01-01

    Flexible semi-transparent organic photovoltaic (OPV) modules were manufactured by roll-to-roll slot–die coating of three functional layers [ZnO, photoactive layer, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)] and either the screen printing or inkjet printing of the top

  17. Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mehdi [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada); He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Hilinski, Erik J. [Tempel Steel Co., Chicago, IL 60640-1020 (United States); Edrisy, Afsaneh [Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada)

    2017-05-01

    In order to promote the magnetically favourable <001>//ND texture (θ-fibre) and minimize the unfavourable <111>//ND fibre (γ-fibre) in non-oriented electrical steel, an unconventional cold rolling scheme was employed in this study, in which the cold rolling was carried out at an angle (i.e. 30°, 45°, 60°, and 90°) to the hot rolling direction (HRD). After annealing, two steel sheets (i.e. those after cold rolling at 60° and 45° to the HRD) were found to have considerably different textures from other sheets, i.e. showing the strongest and the weakest θ-fibre textures, respectively. These two sheets were then subjected to skin pass rolling to various reduction rates from 5–20% to investigate the effect of rolling reduction on the evolution of texture. It was found that during skin pass rolling, the cube texture ({001}<100>) was gradually weakened and the rotated cube orientation ({001}<110>) was strengthened. With the increase of the reduction rate, the {112}<110> orientation on the α-fibre became a major component. Upon final annealing, the cube texture was slightly restored, but the volume fraction was considerably lower than that before skin pass rolling. - Highlights: • Inclined cold rolling optimizes the textures of non-oriented electrical steels. • A 60° angle to the hot rolling direction results in the largest improvement of the favorable texture. • Skin pass rolling weakens the cube texture and promotes the {112}<110> texture. • Final annealing restores some of the cube texture and strengthens the rotated cube texture. • Low Taylor factor of the cube orientation leads to its easy deformation in skin pass rolling.

  18. Size effects in winding roll formed profiles: A study of carcass production for flexible pipes in offshore industry

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Storgaard; Bay, Niels

    2013-01-01

    neutral plane. Other parameters such as profile entry angle on the mandrel and spiral pitch are likely to have significant importance. Proper dividing point position is shown to be obtainable by adjusting the profile in the roll forming stage. The profile rolling is successfully modeled by Finite Element......Carcass production of flexible offshore oil and gas pipes implies winding and interlocking of a roll formed stainless steel profile around a mandrel in a spiral shape. The location of the dividing point between the left and right half of the s-shaped profile in the finished carcass is very...... Analysis (FEA), whereas a simplified FE-model of the subsequent winding operation shows that full interlock modeling is required for proper prediction of profile deformation. © (2013) Trans Tech Publications....

  19. Study of deformation texture in an AZ31 magnesium alloy rolled at wide range of rolling speed and reductions

    International Nuclear Information System (INIS)

    Sanjari, M; Su, J; Kabir, A S; Yue, S; Tamimi, S; Hara, K; Utsunomiya, H; Petrov, R; Kestens, L

    2015-01-01

    The plasticity of Mg is restricted at low temperatures because: (a) only a small number of deformation mechanisms can be activated, and (b) a preferred crystallographic orientation (texture) develops in wrought alloys, especially in flat-rolled sheets. This causes problems in thin sheet processing as well as component manufacturing from the sheet. In this study, different rolling speeds from 15 to 1000 m/min were employed to warm-roll AZ31B magnesium alloy to different reductions. The results show that AZ31B sheets rolled at 15 m/min and 100 °C has fractured for reductions of more than 30% per pass. However, by increasing the rolling speed to 1000 m/min the rollability was improved significantly and the material can be rolled to reductions of more than 70% per pass. The results show that with increasing strain rate at 100°C, the splitting of basal poles was observed, indicating the activation of more contraction twins and secondary twins. (paper)

  20. The effect of microstructure and geometry on the fatigue behaviour of bundle assembly welds

    International Nuclear Information System (INIS)

    Surette, B.A.; Gabbani, M.

    1997-01-01

    Cracking of end plates, in the Darlington NGS, was attributed to high-cycle fatigue resulting from flow-induced vibrations. Because the cracks were predominantly associated with the bundle assembly welds and with certain element positions, a program was initiated to study whether the microstructure and geometry of the weld zone affected the fatigue behaviour of the assembly welds. Assembly weld samples were subjected to different heat treatments, resulting in different microstructures of the weld zone. Results of fatigue testing suggest that heat treatment of the welds (i.e., microstructure) had little effect on the fatigue life. Assembly welds were also produced with different weld notch geometries, and compared with samples having notches produced by machining (instead of welding). The results of these tests showed that geometry of the weld had a significant effect on fatigue life. However, the geometry of the weld notch required to significantly improve fatigue life is not achievable using the current assembly welding process. A small improvement in fatigue life of welded samples appears possible by increasing the weld diameter. (author)

  1. Rudder roll stabilization for ships

    NARCIS (Netherlands)

    van Amerongen, J.; van der Klugt, P.G.M.; van Nauta lemke, H.R.

    1990-01-01

    This paper describes the design of an autopilot for rudder roll stabilization for ships. This autopilot uses the rudder not only for course keeping but also for reduction of the roll. The system has a series of properties which make the controller design far from straightforward: the process has

  2. Fatigue data compilation and evaluation of fatigue on design

    International Nuclear Information System (INIS)

    Nyilas, A.

    1985-05-01

    The aim of this report is a review of the available fatigue data of various materials necessary for the design of large superconducting magnets for fusion. One of the primary objectives of this work is to present a broad outline of the low temperature fatigue data of relevant materials within the scope of available data. Besides the classical fatigue data of materials the fatigue crack propagation measurements are outlined widely. The existing recommendations for the design of cryogenic structures are described. A brief introduction of fracture mechanics as well as a historical background of the development of our present day understanding of fatigue has been done. (orig.) [de

  3. Study of the Fatigue Life and Weight Optimization of an Automobile Aluminium Alloy Part under Random Road Excitation

    Directory of Open Access Journals (Sweden)

    A. Saoudi

    2010-01-01

    Full Text Available Weight optimization of aluminium alloy automobile parts reduces their weight while maintaining their natural frequency away from the frequency range of the power spectral density (PSD that describes the roadway profile. We present our algorithm developed to optimize the weight of an aluminium alloy sample relative to its fatigue life. This new method reduces calculation time; It takes into account the multipoint excitation signal shifted in time, giving a tangle of the constraint signals of the material mesh elements; It also reduces programming costs. We model an aluminium alloy lower vehicle suspension arm under real conditions. The natural frequencies of the part are inversely proportional to the mass and proportional to flexural stiffness, and assumed to be invariable during the process of optimization. The objective function developed in this study is linked directly to the notion of fatigue. The method identifies elements that have less than 10% of the fatigue life of the part's critical element. We achieved a weight loss of 5 to 11% by removing the identified elements following the first iteration.

  4. The Influence of Wagon Structure Part Shape Optimization on Ultimate Fatigue Strength

    OpenAIRE

    Milovanović, Vladimir; Živković, Miroslav; Jovičić, Gordana; Živković, Jelena; Kozak, Dražan

    2016-01-01

    This study investigates how shape optimisation affects the ultimate fatigue strength of a mechanical part. The mechanical part chosen for this investigation is an axle guard of running gear elements of the Hccrrs 2x2 axle car-carrying wagon. The static and fatigue strength analysis procedure according to the UIC 517 standard and numerical methods have been applied. Material properties were determined experimentally and the necessary numerical calculations were performed by using the finite el...

  5. Computational predictive methods for fracture and fatigue

    Science.gov (United States)

    Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.

    1994-09-01

    The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.

  6. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  7. Multi-cracking in uniaxial and biaxial fatigue of 304L stainless steel

    International Nuclear Information System (INIS)

    Rupil, J.

    2012-01-01

    When a mechanical part is subjected to a repeated mechanical stress, it may be damaged after a number of cycles by several cracks initiation and propagation of a main crack. This is the phenomenon of fatigue damage. The thesis deals specifically with possible damage to some components of nuclear plants due to thermal fatigue. Unlike conventional mechanical fatigue damage where a main crack breaks the part, the thermal fatigue damage usually results in the appearance of a surface crack network. Two aspects are discussed in the thesis. The first is the experimental study of fatigue multiple cracking stage also called multi-cracking. Two mechanical test campaigns with multi-cracking detection by digital image correlation were conducted. These campaigns involve uniaxial and equi-biaxial mechanical loads in tension/compression without mean stress. This work allows to monitor and to observe the evolution of different networks of cracks through mechanical solicitations. The second is the numerical simulation of the phenomenon of fatigue damage. Several types of model are used (stochastic, probabilistic, cohesive finite elements). The experimental results have led to identify a multiple crack initiation law in fatigue which is faced with the numerical results. This comparison shows the relevance of the use of an analytical probabilistic model to find statistical results on the density of cracks that can be initiated with thermal and mechanical fatigue loadings. (author) [fr

  8. Look! It's Rock'n'roll!

    DEFF Research Database (Denmark)

    Lindelof, Anja

    2007-01-01

    , and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- Anja Mølle Lindelof. (2007). Look! it's rock'n'roll! how television participated in shaping the visual genre conventions of popular music...... to personal names, capitalization, and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- Anja Mølle Lindelof. "Look! It's Rock'n'roll! How television participated in shaping the visual genre....... Pay special attention to personal names, capitalization, and dates. Consult your library or click here for more information on citing sources. -------------------------------------------------------------------------------- TY - JOUR T1 - Look! It's Rock'n'roll! How television participated in shaping...

  9. f(R) constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hayato [Universidad de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics, RAS, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation)

    2017-08-15

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f(R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f(R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. (orig.)

  10. Research upon the quality assurance of the rolling-mill rolls and the variation boundaries of the chemical composition

    Directory of Open Access Journals (Sweden)

    Kiss, I.

    2008-08-01

    Full Text Available The cast-iron rolls must present higher hardness at the rolling surface and lower in the core and the necks, adequate with mechanical resistance and in the high work temperature. If in the zone of the rolling surface, the hardness is guarantied by the irons structure, through the cementite quantities, the core of rolls must contain graphite, to assure this property. Starting from the lamination equipments aspects, from the form of rolls, of the technological interest zones and the structure, which assures the exploitation property, it was establish, through modeling, to the mathematical description of a direct influences, and in final, through successive determinations, to an optimum. One of the parameters, which are determined the structure of the irons destined for rolls casting, is the chemical composition, which guaranties the exploitation properties of the each roll in the stand of rolling mill. The realization of optimum chemical compositions of the cast-iron can constitute a technical efficient way to assure the exploitation properties, the material from which the rolling mills rolls are manufactured having an important role in this sense. Although the manufacture of rolls is in continuously perfecting, the requirements for superior quality rolls are not yet completely satisfied, in many cases, the absence of quality rolls preventing the realization of quality laminates or the realization of productivities of which rolling mills are capable. This paper presents an analysis of the main alloying elements from chemical composition, the influences upon the mechanical properties of the cast-iron rolls, and presents also some graphical addenda. Using the Matlab calculation and graphical programs we determinate some correlations between the hardness (on the working surface and on necks and the chemical composition. Using the double and triple correlations is really helpful in the foundry practice, as it allows us to determine variation

  11. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures.

    Science.gov (United States)

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Roll-to-roll paper sensors (ROPAS); Wireless communicating sensors on paper in the logistic chain

    NARCIS (Netherlands)

    Rentrop, C.; Rubingh, J.E.J.M.; Lelieveld, R.; Sandberg, H.

    2014-01-01

    The ROPAS project (Roll-to-roll paper sensors) combines high end electronics and wireless sensors with low cost paper substrates and processing techniques that can be applied on a large scale. Paper is the next step in the printed electronics roadmap of utilising cheaper substrate materials as a

  13. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  14. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  15. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    Science.gov (United States)

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  16. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  17. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    Directory of Open Access Journals (Sweden)

    J.A.F.O. Correia

    2015-01-01

    Full Text Available A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force assessment, allowing mean stresses and loading sequential effects to be modelled. An extension of the fatigue crack propagation model originally proposed by Noroozi et al. (2005 to derive probabilistic fatigue crack propagation data is proposed, in particular concerning the derivation of probabilistic da/dN-ΔK-R fields. The elastic-plastic stresses at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using an elasticplastic finite element analyses for specimens considered in the experimental program proposed to derive the fatigue crack propagation data. Using probabilistic strain-life data available for the S355 structural mild steel, probabilistic crack propagation fields are generated, for several stress ratios, and compared with experimental fatigue crack propagation data. A satisfactory agreement between the predicted probabilistic fields and experimental data is observed.

  18. Thermal Characteristics of Plastic Film Tension in Roll-to-Roll Gravure Printed Electronics

    Directory of Open Access Journals (Sweden)

    Kui He

    2018-02-01

    Full Text Available In the printing section of a roll-to-roll gravure printed electronics machine, the plastic film tension is directly associated with the product quality. The temperature distribution of the plastic film in the printing section is non-uniform, because of the higher drying temperature and the lower room temperature. Furthermore, the drying temperature and the room temperature are not constants in industrial production. As the plastic film is sensitive to temperature, the temperature of the plastic film will affects the web tension in the printing section. In this paper, the thermal characteristics of the plastic film tension in roll-to-roll gravure printed electronics are studied in order to help to improve the product quality. First, the tension model including the factor of temperature is derived based on the law of mass conservation. Then, some simulations and experiments are carried out in order to in-depth research the effects of the drying temperature and room temperature based on the relations between system inputs and outputs. The results show that the drying temperature and room temperature have significant influences on the web tension. The research on the thermal characteristics of plastic film tension would benefit the tension control accuracy for further study.

  19. A conductive grating sensor for online quantitative monitoring of fatigue crack

    Science.gov (United States)

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  20. The theory and technique of yamuna body rolling.

    Science.gov (United States)

    Suzuki, Satoshi

    2013-09-01

    [Purpose] This paper provides information about the theory and technique of Yamuna Body Rolling. In order to treat physical problems, using the specialized Yamuna Body Rolling balls, people can target superficial skin, fasciae, muscle fibers, tendons, ligaments, bones, internal organs, and the nervous system by themselves. The extraordinary effect of Yamuna Body Rolling is its multidimensional elongation of muscle fibers. In addition to the regular longitudinal elongation by the conventional stretch method, Yamuna Body Rolling enables the transversal and diagonal expansion of muscle fibers in order to move the body more dynamically. Hamstring, abdominal, and sideline routines are presented as examples for techniques of Yamuna Body Rolling. Yamuna Body Rolling can be applied to functional evaluation and therapeutic uses; therefore, it could provide many benefits in the treatment of different conditions in the medical field.