WorldWideScience

Sample records for rolling element fatigue

  1. Contact fatigue in rolling-element bearings

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-06-01

    Full Text Available to that encountered along the pitch-line of gear teeth \\[1\\]. In the early stages of damage, pure rolling forms a highly polished surface, as shown in the case of a bearing cup from a large thrust (a) (b) Fig. 1. Schematic... the inner ring of a thrust bearing \\[5\\]. Extensive surface damage, probably resulting from the action of solid particles entrapped in the lubricating fluid, is clearly noticeable, as is the through- crack emanating from...

  2. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  3. A new criterion for predicting rolling-element fatigue lives of through-hardened steels.

    Science.gov (United States)

    Chevalier, J. L.; Zaretsky, E. V.; Parker, R. J.

    1972-01-01

    A carbide factor was derived based upon a statistical analysis which related rolling-element fatigue life to the total number of residual carbide particles per unit area, median residual carbide size, and percent residual carbide area. An equation was empirically determined which predicts material hardness as a function of temperature. The limiting temperatures of all of the materials studied were dependent on initial room temperature hardness and tempering temperature. An equation was derived combining the effects of material hardness, carbide factor, and bearing temperature to predict rolling-element bearing life.

  4. NUMERICAL AND ANALYTICAL PROBLEMS OF FATIGUE STRENGTH IN ROLLING BEARINGS

    Directory of Open Access Journals (Sweden)

    Paweł ROMANOWICZ

    2014-06-01

    Full Text Available The aim of the work is to create an algorithm of fatigue life prediction for typical rolling bearings. The proposed approach makes use of various, well established hypothesis for multiaxial fatigue applied in engineering calculations. In the first part of the work the theoretical solutions for different contact problems are compared with the numerical ones. The respective numerical results are obtained with the use of finite element modelling (ANSYS software. Then, an algorithm for fatigue life prediction is demonstrated. The results of the proposed analysis are compared with those given in rolling bearings catalogue

  5. Fatigue Life Analysis of Rolling Bearings Based on Quasistatic Modeling

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-01-01

    Full Text Available Rolling bearings are widely used in aeroengine, machine tool spindles, locomotive wheelset, and so forth. Rolling bearings are usually the weakest components that influence the remaining life of the whole machine. In this paper, a fatigue life prediction method is proposed based on quasistatic modeling of rolling bearings. With consideration of radial centrifugal expansion and thermal deformations on the geometric displacement in the bearings, the Jones’ bearing model is updated, which can predict the contact angle, deformation, and load between rolling elements and bearing raceways more accurately. Based on Hertz contact theory and contact mechanics, the contact stress field between rolling elements and raceways is calculated. A coupling model of fatigue life and damage for rolling bearings is given and verified through accelerated life test. Afterwards, the variation of bearing life is investigated under different working conditions, that is, axial load, radial load, and rotational speed. The results suggested that the working condition had a great influence on fatigue life of bearing parts and the order in which the damage appears on bearing parts.

  6. Computational stress and damage modelling for rolling contact fatigue

    DEFF Research Database (Denmark)

    Cerullo, Michele

    Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate....... A Hertzian and an elastohydrodynamic lubricated pressure distribution are applied on the bearing raceway to model the contact between the roller and the ring, and the results are compared in light of the Dang Van criterion. The beneficial effects of a hardening treatment of the ring surface...

  7. Rolling contact fatigue of ceramics

    OpenAIRE

    Hadfield, Mark

    1993-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Ceramic/ceramic and ceramic/steel contacts under lubricated rolling conditions are studied. This work is of interest to ball bearing manufacturers as the use of ceramics in the design of these components has some advantages over traditional bearing-steel materials. Low density and increased stiffness are the mechanical properties which gas-turbine and machine tool manufacturers are most likel...

  8. High performance rolling element bearing

    Science.gov (United States)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  9. Experimental and three-dimensional finite element investigation of fatigue

    Science.gov (United States)

    Bomidi, John A. R.

    Materials often fail at cyclic loads that are lower than their ultimate strength or even their yield strength due to progressive internal material degradation; commonly known as fatigue. Moreover, there is a wide scatter in observed fatigue lives of mechanical components operating under identical loading conditions. The randomness of fatigue failure is considered to be linked to basic microstructural effects such as random microstructure topology and the initiation/growth of cracks along inter/transgranular planes. Several modeling approaches have been previously presented ranging from 2D discrete element to 3D Finite Element methods with explicit representation of microstructure topology and continuum damage mechanics to capture dispersion in rolling contact fatigue life and fatigue spalling. There is, however, a need to compare the modeling approach with experimental fatigue test conditions in order to verify and as required enhance the modeling approach to capture observed fatigue failure. This dissertation presents experimental test results and three-dimensional modeling approach that capture fatigue failure. The three-dimensional modeling approach is enhanced according to the experimental observations to consider inter/trans granular failure, different modes of fatigue initiation and propagation and finally for considering effect of plasticity in fatigue of rolling contacts. The following phenomena have been investigated: (1) Fatigue of microbeams: (a )Results of fatigue life and failure from 3D modeling of intergranular fatigue in microbeams are compared with experimental observations reported in literature (2) Tensile fatigue of thin sheets: (a) A test rig with a new grip and alignment system is developed to address the challenges associated with thin sheet testing and conduct fatigue experiments. (b) The 3D fatigue model is enhanced to capture the dominant transgranular fatigue observed in the experiments. The observed and modeled fatigue life and failure

  10. VOLUME DEFECT FATIGUE FAILURE OF CERAMIC BALLS UNDER ROLLING CONDITION

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jingling; WU Guoqing; CHEN Xiaoyang

    2007-01-01

    A newly developed pure rolling fatigue test rig with three contact points is used to test the rolling contact fatigue properties of silicon nitride ceramic balls. Ball surfaces are examined after failure with optical microscopy and scanning electron microscopy. The failure cause, fatigue phenomenon and mechanics are analyzed. The research shows that subsurface cracks play a dominant role in the formation of spalling failure. These cracks originated from volume defects of the material and propagate, to form elliptical fatigue spalls under the action of principal tensile stresses. The principal tensile stress increases with increasing contact load, causing spall formation and reduction of rolling contact life. The greater the principal tensile stress is, the more severe the peeling of near surface is. Under the same condition, the closer volume defects are to the surface, the more likely failure occurs, the shorter the rolling contact life is.

  11. Improved Fatigue Performance of Threaded Drillstring Connections by Cold Rolling

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Steinar

    2002-01-01

    The research work presented in this thesis is concerned with analytical, numerical and experimental studies of the effect of cold rolling on the fatigue behaviour of threaded drillstring connections. A comprehensive literature study is made of the various effects on the fatigue behaviour of residual stresses introduced by mechanical deformation of notched components. Some of the effects studied are cyclic hardening behaviour after prestraining, cyclic creep, fatigue initiation in prestrained materials, short cracks and crack growth models including crack closure. Residual stresses were introduced in the surface of a smooth pipe by a rolling device to simulate a cold rolling process and verify the calculated residual stresses by measurements. Strain hardening and contact algorithm of the two bodies were incorporated in the FE analyses. Two significant errors were found in the commercial software package for residual stress evaluation, Restran v. 3.3.2a also called SINT, when using the Schajer method. The Schajer algorithm is the only hole-drilling algorithm without theoretical shortcomings, and is recommended when measuring large residual stress gradients in the depth direction. Using the Schajer method solved by in-house Matlab-routines good agreement between measured residual stress gradients and residual stress gradients from FE analyses was found. Full scale fatigue tests were performed on pipes cut from used drillstrings with notches of similar geometry as threads used in drillstring connections. The simulated threads consisted of four full depth helix notches with runouts at the surface. The pipe threads were cold rolled and fatigue tested in a full-scale four-point rotating bending fatigue testing rig. The test results showed that cold rolling had an effect on the crack initiation period. A major part of the fatigue life was with cracks observed at the notch root, but due to the increased fatigue crack propagation resistance the final fracture initiated at

  12. Fatigue Strength and Residual Stress Analysis of Deep Rolled Crankshafts

    Directory of Open Access Journals (Sweden)

    Imran M Quraishi

    2012-12-01

    Full Text Available The endurance life of an engine crankshaft is closely related to its fatigue strength, in addition to other material properties and shape parameters. Deep rolling, moreover, enhances the fatigue limit by applying compressive residual stress within the fillet radius area as a major surface hardening technique. The objective of this paper isto maximize fatigue life of engine through crankshaft design optimization by quantifying fatigue strength for microalloyed steels versus Cr-Mo alloy steel, and to examine the effects of deep rolling load and rolled fillet geometry. Fatigue tests have been made with standard rotary bending test samples from both bar and forged blanks. Rig tests for actual crankshafts have been made to show how the fatigue strength correlates with different sample types. A correlation of stress distribution with bending moment was demonstrated by applying a strain gauging technique on crankshaft specimens. Therefore, an analysis of combined stresses could be made by considering the effect of static residual stress in addition to the applied dynamic bending stress. Optimum conditions for rolling load, fillet geometry and material were identified. Consequently, these results will be adapted to CAE analysis database to enable an optimization of safety factors.

  13. Fatigue Behavior of High Speed Steel Roll Materials for Hot Rolling by Laser Impacting

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li; SUN Da-le; LIU Chang-sheng; WU Qiong

    2006-01-01

    The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under water-cooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples were observed by scanning electron microscope. The phase structure was detected by XRD. The morphology of situ oxide scale was observed by optical microscope, and the expansion coefficient was measured by TGA. The experiment results indicate that the cracks come into being at the carbide-matrix interface, but there are no cracks in the matrix after many times of laser impacting treatment, for the situ sample taken from the fractured roll surface, big carbides are more sensitive to the fatigue, and peel off prior to small ones. The relevant fatigue mechanisms are also discussed.

  14. Improved Fatigue Performance of Threaded Drillstring Connections by Cold Rolling

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Steinar

    2002-01-01

    The research work presented in this thesis is concerned with analytical, numerical and experimental studies of the effect of cold rolling on the fatigue behaviour of threaded drillstring connections. A comprehensive literature study is made of the various effects on the fatigue behaviour of residual stresses introduced by mechanical deformation of notched components. Some of the effects studied are cyclic hardening behaviour after prestraining, cyclic creep, fatigue initiation in prestrained materials, short cracks and crack growth models including crack closure. Residual stresses were introduced in the surface of a smooth pipe by a rolling device to simulate a cold rolling process and verify the calculated residual stresses by measurements. Strain hardening and contact algorithm of the two bodies were incorporated in the FE analyses. Two significant errors were found in the commercial software package for residual stress evaluation, Restran v. 3.3.2a also called SINT, when using the Schajer method. The Schajer algorithm is the only hole-drilling algorithm without theoretical shortcomings, and is recommended when measuring large residual stress gradients in the depth direction. Using the Schajer method solved by in-house Matlab-routines good agreement between measured residual stress gradients and residual stress gradients from FE analyses was found. Full scale fatigue tests were performed on pipes cut from used drillstrings with notches of similar geometry as threads used in drillstring connections. The simulated threads consisted of four full depth helix notches with runouts at the surface. The pipe threads were cold rolled and fatigue tested in a full-scale four-point rotating bending fatigue testing rig. The test results showed that cold rolling had an effect on the crack initiation period. A major part of the fatigue life was with cracks observed at the notch root, but due to the increased fatigue crack propagation resistance the final fracture initiated at

  15. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  16. Analysis of bearing steel exposed to rolling contact fatigue

    Science.gov (United States)

    Hansen, K. T.; Fæster, S.; Natarajan, A.; Mishin, O. V.; Danielsen, H. K.; Jensen, D. Juul; Klit, P.

    2017-07-01

    The objective of this work is to characterize fatigue damage in roller bearings under conditions of high load and slippage. A test rig constructed for rolling contact fatigue tests of rings is described, and test results are presented for rings taken from two spherical roller bearings. The preparation of the rings and the loading situation are explained. Test conditions are chosen with the aim of achieving pitting formation at the contacting surfaces. During testing the contact pressure, torque and the rotational speed are monitored and recorded. After testing the tested rings have been characterized using X-ray tomography and scanning electron microscopy. The observations confirm that rolling contact fatigue testing at high loads leads to pitting failure at the contacting surfaces. The pitting mostly appears on one side of the contact, attributed to a non-uniform contact pressure in the axial direction.

  17. Analysis of bearing steel exposed to rolling contact fatigue

    DEFF Research Database (Denmark)

    Hansen, K. T.; Fæster, Søren; Natarajan, Anand

    2017-01-01

    The objective of this work is to characterize fatigue damage in roller bearings under conditions of high load and slippage. A test rig constructed for rolling contact fatigue tests of rings is described, and test results are presented for rings taken from two spherical roller bearings....... The preparation of the rings and the loading situation are explained. Test conditions are chosen with the aim of achieving pitting formation at the contacting surfaces. During testing the contact pressure, torque and the rotational speed are monitored and recorded. After testing the tested rings have been...... characterized using X-ray tomography and scanning electron microscopy. The observations confirm that rolling contact fatigue testing at high loads leads to pitting failure at the contacting surfaces. The pitting mostly appears on one side of the contact, attributed to a non-uniform contact pressure in the axial...

  18. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  19. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in 't Veld, A.J.; Hosson, J.T. de

    1998-01-01

    Titanium-nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  20. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test techniqu

  1. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in 't Veld, A.J.; Hosson, J.T. de

    1998-01-01

    Titanium-nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test techniqu

  2. Rolling contact fatigue testing of peek based composites

    Directory of Open Access Journals (Sweden)

    Petrogalli C.

    2010-06-01

    Full Text Available Rolling contact fatigue phenomenon was investigated on unfilled PEEK and on three different PEEK composites: 10% carbon micro-fiber, graphite and PTFE filled matrix, 30% carbon micro-fiber filled matrix, 30% glass micro-fiber filled matrix. For this aim, roller-shaped specimens were machined from extruded bars of these materials and subjected to rolling contact tests at different contact pressure levels by means of a four roller machine. Contact pressure-life diagrams and wear rates were so obtained and compared, highlighting a relationship with monotonic and hardness materials properties. Microscopic observations of contact surfaces and transversal section of the specimens also allowed observing the damage mechanisms occurred in the materials tested and the effects of the filler. In particular way, deep radial cracks appeared on unfilled PEEK, while spalling and delamination phenomena where found on composites. Diffuse microcracks were found at the filler-matrix interface of the composites specimens, confirming that the fatigue life of these materials is essentially determined by the crack propagation phase, also under rolling contact loading.

  3. Finite Element Analysis for Effect of Roll Radius on Metal Deformation of Hot Rolling Plate

    Institute of Scientific and Technical Information of China (English)

    LUO De-xing; CHEN Qi-an; LIU Li-wen

    2005-01-01

    The deformation of rolling piece in hot rolling by flat roll with different radii is analyzed with three-dimensional large deformation thermo-mechanical coupling finite element method. The distribution laws of stress, strain and strain energy density in deformation zone with rolls of different radii were studied. The result indicated that under the same condition, the larger the roll radius is, the more vigorous the deformation in deformation zone is.

  4. A Cumulative Damage Reliability Model on the Basis of Contact Fatigue of the Rolling Bearing

    Institute of Scientific and Technical Information of China (English)

    HUANG Li

    2006-01-01

    A cumulative damage reliability model of contact fatigue of the rolling bearing is more identical with the actual conditions. It is put forward on the basis of contact fatigue life probability distribution of the rolling bearing that obey Weibull distribution and rest on the Miner cumulative damage theory. Finally a case is given to predict the reliability of bearing roller by using these models.

  5. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W., E-mail: wyman.zhuang@dsto.defence.gov.au [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Liu, Q.; Djugum, R.; Sharp, P.K. [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Paradowska, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2232 (Australia)

    2014-11-30

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  6. Precision instrumentation for rolling element bearing characterization

    Science.gov (United States)

    Marsh, Eric R.; Vigliano, Vincent C.; Weiss, Jeffrey R.; Moerlein, Alex W.; Vallance, R. Ryan

    2007-03-01

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings.

  7. Application of Dang Van criterion to rolling contact fatigue in wind turbine roller bearings under elastohydrodynamic lubrication conditions

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    A 2D plane strain finite element program has been developed to investigate very high cycle fatigue in wind turbine roller bearings due to rolling contact. Focus is on fatigue in the inner ring, where the effect of residual stresses and hardness variation along the depth is accounted for. Both...... classic Hertzian and elastohydrodynamic lubrication theories have been used to model the pressure distribution acting on the inner raceway and results are compared according to the Dang Van multiaxial fatigue criterion. The contact on the bearing raceway is simulated by substituting the roller...... its values to the fatigue limit parameters for the material. It is found that both for Hertzian and elastohydrodynamic lubrication contacts, the Dang Van criterion predicts that fatigue failure will first occur in the subsurface region and that, regardless of the specific pressure distribution used...

  8. Numerical analysis of hydrogen-assisted rolling-contact fatigue of wind turbine bearings

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2014-10-01

    Full Text Available Offshore wind parks at locations further from the shore often involve serious difficulties, e.g. the maintenance. The bearings of offshore wind turbines are prone to suffer hydrogen-assisted rolling-contact fatigue (HA-RCF. Three important aspects linked with bearing failures are being extensively researched: (i rolling contact fatigue (RCF, (ii influence of carbide particles on fatigue life, and (iii local microplastic strain accumulation via ratcheting. However, there is no reference related to bearing failure in harsh environment. This way, this paper helps to gain a better understanding of the influence of hydrogen on the service life of offshore wind turbine bearings through a numerical study. So, the widely used RCF ball-on-rod test was simulated by finite element method in order to obtain the stress-strain state inside the bearings during life in service and, from this, to elucidate the potential places where the hydrogen could be more harmful and, therefore, where the bearing material should be improved.

  9. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  10. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    OpenAIRE

    Carvalho, N. J. M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different sur...

  11. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    OpenAIRE

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different sur...

  12. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  13. New detection method for rolling element and bearing defects

    Science.gov (United States)

    Burchill, R. F.; Frarey, J. L.

    1972-01-01

    Instrument for detecting defects in rolling elements of bearings is described. Detection depends on rate at which rolling elements impact defect and establishes envelope amplitude of ball resonant frequency. Block diagram of instrument is provided and results obtained in conducting tests are reported.

  14. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings

    Science.gov (United States)

    Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2017-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  15. Rolling element bearing diagnostics—A tutorial

    Science.gov (United States)

    Randall, Robert B.; Antoni, Jérôme

    2011-02-01

    This tutorial is intended to guide the reader in the diagnostic analysis of acceleration signals from rolling element bearings, in particular in the presence of strong masking signals from other machine components such as gears. Rather than being a review of all the current literature on bearing diagnostics, its purpose is to explain the background for a very powerful procedure which is successful in the majority of cases. The latter contention is illustrated by the application to a number of very different case histories, from very low speed to very high speed machines. The specific characteristics of rolling element bearing signals are explained in great detail, in particular the fact that they are not periodic, but stochastic, a fact which allows them to be separated from deterministic signals such as from gears. They can be modelled as cyclostationary for some purposes, but are in fact not strictly cyclostationary (at least for localised defects) so the term pseudo-cyclostationary has been coined. An appendix on cyclostationarity is included. A number of techniques are described for the separation, of which the discrete/random separation (DRS) method is usually most efficient. This sometimes requires the effects of small speed fluctuations to be removed in advance, which can be achieved by order tracking, and so this topic is also amplified in an appendix. Signals from localised faults in bearings are impulsive, at least at the source, so techniques are described to identify the frequency bands in which this impulsivity is most marked, using spectral kurtosis. For very high speed bearings, the impulse responses elicited by the sharp impacts in the bearings may have a comparable length to their separation, and the minimum entropy deconvolution technique may be found useful to remove the smearing effects of the (unknown) transmission path. The final diagnosis is based on "envelope analysis" of the optimally filtered signal, but despite the fact that this

  16. Comparison of Life Theories for Rolling-Element Bearings

    Science.gov (United States)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Peters, Steven M.

    1995-01-01

    Nearly five decades have passed since G. Lundberg and A. Palmgren published their life theory in 1947 and 1952 and it was adopted as an ANSI/ABMA and ISO standard in 1950 and 1953. Subsequently, many variations and deviations from their life theory have been proposed, the most recent being that of E. Ioannides and T.A. Harris in 1985. This paper presents a critical analysis comparing the results of different life theories and discussing their implications in the design and analysis of rolling-element bearings. Variations in the stress-life relation and in the critical stress related to bearing life are discussed using stress fields obtained from three-dimensional, finite-element analysis of a ball in a nonconforming race under varying load. The results showed that for a ninth power stress-life exponent the Lundberg-Palmgren theory best predicts life as exhibited by most air-melted bearing steels. For a 12th power relation reflected by modern bearing steels, a Zaretsky-modified Weibull equation is superior. The assumption of a fatigue-limiting stress distorts the stress-life exponent and overpredicts life.

  17. Analysis and Design of Rolling Stock Elements

    Directory of Open Access Journals (Sweden)

    M. V. Chugunov

    2014-01-01

    Full Text Available The work solves the problem of equal-strength design of the rolling stock elements in option of discrete equal-strength. For this purpose, has been developed the software built in SolidWorks and SolidWorks Simulation as an AddIn-application using necessary basic functionality and extending it in the specified part on the basis of API SolidWorks and COM technology.The SolidWorks software is used to develop a 3D-model for general force frame of the wagon as an assembly. As this assembly is quite complicated and includes many elements both standard, and non-standard type, 3D - specification is developed by 3Dvia Composer software, which is included in the article in the form of the gif-animation and via-roller. This means is very useful for the evident analysis of topology and geometrical properties of a design as a whole, facilitates a procedure of adequate formation of the FE model providing accuracy and profitability of computing. From the point of view of profitability and opportunities of definition of concentrators of stresses with a sufficient accuracy for practice the combined model including volume and shell FEM is optimum.In the work the analysis results of stress-strain state of a design are given in two options of static loading in the form of stress diagrams, the main areas of stress concentration are revealed.Results of equal-strength design in the form of thickness distribution on thin-walled elements of a design, considered within FEM as shells, are received. It is shown that the developed software doesn't allow optimum design results, however it is economically viable, simple in use and can be applied to the solution of problems of rational design in design practice.SolidWorks, as well as the majority of similar CADs, possess an open architecture and allow users to apply its functionality. This work continues a series of publications of the author of this paper and other authors concerning the API-based CAD/CAE adaptation and

  18. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  19. Benefits of thread rolling process to the stress corrosion cracking and fatigue resistance of high strength fasteners

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, A.R.; Hayden, S.Z.

    1993-05-01

    Stress corrosion cracking (SCC) behavior of cut (machined) vice thread rolled Alloy X-750 and Alloy 625 fasteners in a simulated high temperature primary water environment has been evaluated. SCC testing at 360 and 338C included 157 small and 40 large 60{degree} Vee thread studs. Thread rolled fasteners had improved resistance relative to cut fasteners. Tests of fatigue resistance in air at room temperature and both air and primary water at 315C were conducted on smaller studs with both cut and rolled threads. Results showed rolled threads can have significantly improved fatigue lives over those of cut threads in both air and primary water. Fasteners produced by two different thread rolling methods, in-feed (radial) and through-feed (axial), revealed similar SCC initiation test results. Testing of thread rolled fasteners revealed no significant SCC or fatigue growth of rolling induced thread crest laps typical of the thread rolling process. While fatigue resistance differed between the two rolled thread supplier`s studs, neither of the suppliers studs showed SCC initiation at exposure times beyond that of cut threads with SCC. In contrast to rolling at room temperature, warm rolled (427C) threads showed no improvement over cut threads in terms of fatigue resistance. The observed improved SCC and fatigue performance of rolled threads is postulated to be due to interactive factors, including beneficial residual stresses in critically stressed thread root region, reduction of plastic strains during loading and formation of favorable microstructure.

  20. MODELS OF FATIGUE LIFE CURVES IN FATIGUE LIFE CALCULATIONS OF MACHINE ELEMENTS – EXAMPLES OF RESEARCH

    Directory of Open Access Journals (Sweden)

    Grzegorz SZALA

    2014-03-01

    Full Text Available In the paper there was attempted to analyse models of fatigue life curves possible to apply in calculations of fatigue life of machine elements. The analysis was limited to fatigue life curves in stress approach enabling cyclic stresses from the range of low cycle fatigue (LCF, high cycle fatigue (HCF, fatigue limit (FL and giga cycle fatigue (GCF appearing in the loading spectrum at the same time. Chosen models of the analysed fatigue live curves will be illustrated with test results of steel and aluminium alloys.

  1. Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods

    Science.gov (United States)

    Yogesha, K. K.; Joshi, Amit; Jayaganthan, R.

    2017-05-01

    In the present study, 5052 Al alloy was processed through different rolling methods to obtain ultrafine grains and its high-cycle fatigue behavior were investigated. The solution-treated Al-Mg alloys (AA 5052) were deformed through different methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW), up to 75% thickness reduction. The deformed samples were subjected to mechanical testing such as hardness, tensile and high-cycle fatigue (HCF) test at stress control mode. The CGW samples exhibit better HCF strength when compared to other conditions. The microstructure of the tested samples was characterized by optical microscopy, SEM fractography and TEM to understand the deformation behavior of deformed Al alloy. The improvement in fatigue life of CR and CGR samples is due to effective grain refinement, subgrain formations, and high dislocation density observed in the heavily deformed samples at cryogenic condition as observed from SEM and TEM analysis. However, in case of CGW samples, formation of nanoshear bands accommodates the applied strain during cyclic loading, thereby facilitating dislocation accumulation along with subgrain formations, leading to the high fatigue life. The deformed or broken impurity phase particles found in the deformed samples along with the precipitates that were formed during warm rolling also play a prominent role in enhancing the fatigue strength. These tiny particles hindered the dislocation movement by effectively pinning it at grain boundaries, thereby improving the resistance of crack propagation under cyclic load.

  2. Optimization of Preventive Grinding of Backup Roll against Contact Fatigue Cracking

    Institute of Scientific and Technical Information of China (English)

    DOU Peng; LI You-guo; LIANG Kai-ming; BAI Bing-zhe

    2005-01-01

    In order to optimize the current grinding procedure of the backup roll of 2050 continuously variable crown (CVC) mills, the behavior of rolling contact fatigue (RCF) cracking was investigated. Two RCF short cracks, including vertical short crack and ratcheting short crack initiated from ratcheting, were observed. The behavior of both RCF cracks was analyzed in detail. Then a modified grinding procedure was proposed according to the behavior of RCF cracks and the preventive grinding strategy.

  3. Fatigue acceptance test limit criterion for larger diameter rolled thread fasteners

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, A.R.

    1997-05-01

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process. This criterion is derived from a stress dependent, room temperature air fatigue database for test studs having a 0.625 inch diameter threads of Alloys X-750 HTH and direct aged 625. Anticipated fatigue lives of larger threads are based on thread root elastic stress concentration factors which increase with increasing thread diameters. Over the thread size range of interest, a 30% increase in notch stress is equivalent to a factor of five (5X) reduction in fatigue life. The resulting diameter dependent fatigue acceptance criterion is normalized to the aerospace rolled thread acceptance standards for a 1.0 inch diameter, 0.125 inch pitch, Unified National thread with a controlled Root radius (UNR). Testing was conducted at a stress of 50% of the minimum specified material ultimate strength, 80 Ksi, and at a stress ratio (R) of 0.10. Limited test data for fastener diameters of 1.00 to 2.25 inches are compared to the acceptance criterion. Sensitivity of fatigue life of threads to test nut geometry variables was also shown to be dependent on notch stress conditions. Bearing surface concavity of the compression nuts and thread flank contact mismatch conditions can significantly affect the fastener fatigue life. Without improved controls these conditions could potentially provide misleading acceptance data. Alternate test nut geometry features are described and implemented in the rolled thread stud specification, MIL-DTL-24789(SH), to mitigate the potential effects on fatigue acceptance data.

  4. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value. To accomod......The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value....... To accomodate non-constant stress or strain, a mode factor may be introduced or the dissipated energy may be used instead of stress or strain.Cracking of asphalt (or other materials) may be described as a process consisting of three phases. In phase one diffuse microcracking is formed in the material...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...

  5. Rolling contact fatigue life of ion-implanted GCr15

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents an experimental research into the rooling contact fatigue life of GCr15 steel with Tix N, TiX N + Ag and Tix N + DLC layers ion-implanted using the plasma ion-implantation technology on a ball-rod style high-speed con tact fatigue tester, and concludes with test results that the fatigue life increases to varying degrees with Tix N, Tix N + Ag, and Tix N + DLC layers implanted, and increases 1.8 times with Tix N + Ag layer implanted, hairline cracks grow continuously into fatigue pits under the action of shear stress in the superficial layer of material, and ion-implantation acts to prevent initiation of cracks and slow down propagation of cracks.

  6. Surface fatigue life of carburized and hardened M50NiL and AISI 9310 spur gears and rolling-contact test bars

    Science.gov (United States)

    Townsend, Dennis P.; Bamberger, Eric N.

    1989-01-01

    Spur gear endurance tests and rolling-element surface tests were conducted to investigate vacuum-induction-melted, vacuum-arc-melted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling-contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm (3.5 in.). Gear test conditions were an inlet oil temperature of 320 K (116 F), and outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench rolling-element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPA (700 ksi). The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling-contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and to have fatigue life far superior to that of both VIM-VAR and VAR AISI 9310 gears and rolling-contact bars.

  7. Rolling Contact Fatigue Life of Steel Rollers Treated by Cavitation Peening and Shot Peening

    Science.gov (United States)

    Seki, Masanori; Soyama, Hitoshi; Kobayashi, Yuji; Gowa, Daisuke; Fujii, Masahiro

    The purpose of this study is to investigate the influence of peening on the rolling contact fatigue (RCF) life of steel rollers. First, steel rollers were treated by three types of peenings to ensure the same surface roughness of peened rollers. One is the cavitation peening (CP) used a cavitating jet in water with an injection pressure of 30 MPa, and the others are the fine particle peening (FPP) with a shot diameter of 0.1 mm and the normal shot peening (NSP) with a shot diameter of 0.3 mm. The surface hardness and the surface compressive residual stress of the steel rollers were increased by all the peenings. In particular, they were most increased by the FPP. On the other hand, the work-hardened depth due to the CP and the NSP was larger than that due to the FPP. As a result of the RCF tests, the RCF lives of the steel rollers were improved by all the peenings, and they were most improved by the NSP. Judging from the pmax - N curves and the [A(σy/√3 HV)]max - N curves, the improvement in RCF lives due to the FPP depended heavily on the increase in surface hardness due to that, and the effects of the CP and the NSP on the RCF were equivalent under the same surface roughness and the same surface hardness. It follows from these that the surface treatment condition should be selected according to the rolling contact conditions and the failure modes of machine elements.

  8. Fatigue resistant carbon coatings for rolling/sliding contacts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harpal; Ramirez, Giovanni; Eryilmaz, Osman; Greco, Aaron; Doll, Gary; Erdemir, Ali

    2016-06-01

    The growing demands for renewable energy production have recently resulted in a significant increase in wind plant installation. Field data from these plants show that wind turbines suffer from costly repair, maintenance and high failure rates. Often times the reliability issues are linked with tribological components used in wind turbine drivetrains. The primary failure modes in bearings and gears are associated with micropitting, wear, brinelling, scuffing, smearing and macropitting all of which occur at or near the surface. Accordingly, a variety of surface engineering approaches are currently being considered to alter the near surface properties of such bearings and gears to prevent these tribological failures. In the present work, we have evaluated the tribological performance of compliant highly hydrogenated diamond like carbon coating developed at Argonne National Laboratory, under mixed rolling/sliding contact conditions for wind turbine drivetrain components. The coating was deposited on AISI 52100 steel specimens using a magnetron sputter deposition system. The experiments were performed on a PCS Micro-Pitting-Rig (MPR) with four material pairs at 1.79 GPa contact stress, 40% slide to roll ratio and in polyalphaolefin (PAO4) basestock oil (to ensure extreme boundary conditions). The post-test analysis was performed using optical microscopy, surface profilometry, and Raman spectroscopy. The results obtained show a potential for these coatings in sliding/rolling contact applications as no failures were observed with coated specimens even after 100 million cycles compared to uncoated pair in which they failed after 32 million cycles, under the given test conditions.

  9. Analysis of Metal Forming in Two-Roll Cross Wedge Rolling Process Using Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    WANG Min-ting; LI Xue-tong; DU Feng-shan

    2009-01-01

    A simulation model for two-roll cross wedge rolling (CWR) was presented by using three-dimensional rigid-plastic finite element method (FEM).The whole forming process of CWR,including knifing zone,guiding zone,stretching zone,and sizing zone,was simulated using the model in which dynamic adaptive remeshing technology for tetrahedral solid elements was used to fix element distortion.Based on the simulation results,the distributions of metal flow field,strain field,and damage field,and the geometry of the workpiece's end were analyzed.These results could provide theoretical guidance for realizing net shaping and reasonable design of tools.

  10. Rolling contact fatigue in a vacuum test equipment and coating analysis

    CERN Document Server

    Danyluk, Michael

    2014-01-01

    This book deals with wear and performance testing of thin solid film lubrication and hard coatings in an ultra-high vacuum (UHV), a process which enables rapid accumulation of stress cycles compared with testing in oil at atmospheric pressure. The authors' lucid and authoritative narrative broadens readers' understanding of the benefits of UHV testing: a cleaner, shorter test is achieved in high vacuum, disturbance rejection by the deposition controller may be optimized for maximum fatigue life of the coating using rolling contact fatigue testing (RCF) in a high vacuum, and RCF testing in UHV

  11. Fatigue and Wear in Rolling and Sliding Contacts

    DEFF Research Database (Denmark)

    Janakiraman, Shravan

    The REWIND project was conceptualized to "perform strategic research at thehighest level in the field of material-manufacturing-properties-performance ofmetallic components in the rotor and drive train in large wind turbines, withthe ultimate aim of enhancing the reliability and arriving at an im......The REWIND project was conceptualized to "perform strategic research at thehighest level in the field of material-manufacturing-properties-performance ofmetallic components in the rotor and drive train in large wind turbines, withthe ultimate aim of enhancing the reliability and arriving...... at an improved lifeexpectancy prediction of such components."One of the focus areas of the REWIND project is to study the failure of themain bearings in a wind turbine and suggest improvements to improve theirlifetime.This PhD project is focused on two areas : Lubrication and rolling contactfatigue.The main...... as reservoirs of lubricant and can emit excess lubricant to increase the filmthickness. However the performance of these grooved surfaces have not beenstudied under EHL loads. So in this Ph.D. project, rolling-sliding, lubricated tests are performed to study the tribologial behaviour of axially grooved...

  12. Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.

  13. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Science.gov (United States)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  14. Experimental and Finite Element Investigation of Roll Drawing Process

    Science.gov (United States)

    Lambiase, F.; di Ilio, A.

    2012-02-01

    In this research, the wire drawing process with flat roller dies is investigated. A prototypal apparatus is developed to conduct experimental tests on such a process and analyze the influence of main roll drawing parameters (e.g., incoming wire diameter, forming rolls diameter, thickness reduction, and friction conditions) on geometrical characteristics of flattened wires. A finite element model (FEM) is developed to simulate the deformation of the wire during the process. Within the entire range of experiments, a good agreement between experimental data and numerical results is found which allows validating the FE model. A further observation from the experimental program and numerical simulations is that a complicated dependence of the lateral spread of wire and width of contact area on process parameters exists during wire drawing with roller dies.

  15. Effects of microstructure on fatigue crack growth behavior in cold-rolled dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengci [School of Materials Science and Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Kang, Yonglin, E-mail: kangylin@ustb.edu.cn [School of Materials Science and Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Kuang, Shuang [Technical Research Institute, Shougang Corporation, Ltd., Beijing 100043 (China)

    2014-08-26

    Fatigue crack growth behaviors of cold-rolled dual phase steels with different microstructures were investigated at room temperature. The ferrite–martensite dual-phase microstructure was obtained by intercritical annealing. Fatigue crack growth (FCG) behaviors were described by both the Paris model and a new exponential model; fatigue fractography and surface morphology near the fracture were arrested by scanning electron microscopy (SEM); the relationship between macroscopic and microcosmic FCG rate was analyzed quantificationally. The results showed that both the models can be used to describe the fatigue crack growth rate of the samples rather well; fatigue striations and secondary cracks were observed in the fracture surface at stable expanding region (II), while the fracture at rapid expanding region (III) combined dimple and quasi-cleavage morphology; the roughness of fracture surface and the degree of secondary cracking increased with an increase in martensite content, leading to a higher threshold value. Moreover, the changes of microcosmic FCG rate were smoother than that of the macroscopic FCG rate.

  16. Use of a finite element method to calculate roll profiles for broad-strip mills

    Science.gov (United States)

    Garber, E. A.; Bolobanova, N. L.; Traino, A. I.

    2012-05-01

    A model is proposed to calculate the polishing profiling of rolls in broad-strip mills using a finite element method, and it is applied to develop new roll profiles. The finite element method is used to determine the polishing profiling of a roll with a complex shape, which substantially decreases the nonuniformity of reduction and drawing over the strip width. This profiling can be executed on numerical control roll grinders.

  17. Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gall, Ken [Department of Materials Science and Engineering, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)], E-mail: ken.gall@mse.gatech.edu; Tyber, Jeff; Wilkesanders, Geneva [Department of Materials Science and Engineering, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Robertson, Scott W.; Ritchie, Robert O. [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); Maier, Hans J. [Lehrstuhl fuer Werkstoffkunde (Materials Science), University of Paderborn, 33095 Paderborn (Germany)

    2008-07-15

    We present results from a systematic study linking material microstructure to monotonic and fatigue properties of NiTi shape memory alloys. We consider Ni-rich materials that are either (1) hot rolled or (2) hot rolled and cold drawn. In addition to the two material processing routes, heat treatments are used to systematically alter material microstructure giving rise to a broad range of thermal, monotonic and cyclic properties. The strength and hardness of the austenite and martensite phases initially increase with mild heat treatment (300 deg. C), and subsequently decrease with increased aging temperature above 300 deg. C. This trend is consistent with transmission electron microscopy observed precipitation hardening in the hot-rolled material and precipitation hardening plus recovery and recrystallization in the cold-drawn materials. The low-cycle pseudoelastic fatigue properties of the NiTi materials generally improve with increasing material strength, although comparison across the two product forms demonstrates that higher measured flow strength does not assure superior resistance to pseudoelastic cyclic degradation. Fatigue crack growth rates in the hot-rolled material are relatively independent of heat treatment and demonstrate similar fatigue crack growth rates to other NiTi product forms; however, the cold-drawn material demonstrates fatigue threshold values some 5 times smaller than the hot-rolled material. The difference in the fatigue performance of hot-rolled and cold-drawn NiTi bars is attributed to significant residual stresses in the cold-drawn material, which amplify fatigue susceptibility despite superior measured monotonic properties.

  18. Rolling Contact Fatigue Properties of SAE 8620 Steel after Case Carburizing

    Institute of Scientific and Technical Information of China (English)

    Yan-guang CAO; Le XU; Gou-qiang ZHANG; Jie SHI; Mao-qiu WANG

    2016-01-01

    Rolling contact fatigue (RCF)properties of SAE 8620 steel after case carburizing have been investigated under two contact stresses of 4·0 and 5·5 GPa.Results show that the RCF life ranges from 2·5×106 to 3×107 cycles un-der the contact stress of 5·5 GPa,while it can be more than 1×108 cycles under the contact stress of 4·0 GPa.The rated fatigue life L10 (lives with the 10% failure)is also drastically shortened from 9·8×106 to 5·4×105 cycles when the contact stress is increased from 4·0 to 5·5 GPa.Theoretical calculations and fractographs show that the maximum shear stress and the contact area increase with increasing the contact stress,making RCF tend to occur earlier.

  19. An investigation of rolling-sliding contact fatigue damage of carburized gear steels

    Science.gov (United States)

    Kramer, Patrick C.

    The goal of this study was to evaluate the differences in RSCF performance between vacuum and gas carburized steels as well as to investigate the evolution of damage (wear and microstructure changes) leading to pitting. Vacuum and gas carburizing was performed on two gear steels (4120 and 4320) at 1010°C. The carburized specimens were tested in the as-carburized condition using a RSCF machine designed and built at the Colorado School of Mines. The tests were conducted at 3.2 GPa nominal Hertzian contact stress, based on pure rolling, 100°C, and using a negative twenty percent slide ratio. Tests were conducted to pitting failure for each condition for a comparison of the average fatigue lives. Pure rolling tests were also conducted, and were suspended at the same number of cycles as the average RSCF life for a comparison of fatigue damage developed by RCF and RSCF. Incremental tests were suspended at 1,000, 10,000, 100,000, and 200,000 cycles for the vacuum carburized steels to evaluate the wear and damage developed during the initial cycles of RSCF testing and to relate the wear and damage to pitting resistance. Incremental damage was not investigated for gas carburizing due to the limited number of available specimens. The vacuum carburized samples showed a decreased pitting fatigue resistance over the gas carburized samples, possibly due to the presence of bainite in the vacuum carburized cases. Pitting was observed to initiate from surface micropitting and microcracking. A microstructural change induced by contact fatigue, butterflies, was shown to contribute to micropitting and microcracking. Incremental testing revealed that the formation of a microcrack preceded and was necessary for the formation of the butterfly features, and that the butterfly features developed between 10,000 and 100,000 cycles. The orientation and depth of butterfly formation was shown to be dependent upon the application of traction stresses from sliding. RSCF butterflies formed

  20. Quantitative Diagnosis of Fault Severity Trend of Rolling Element Bearings

    Institute of Scientific and Technical Information of China (English)

    CUI Lingli; MA Chunqing; ZHANG Feibin; WANG Huaqing

    2015-01-01

    The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.

  1. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  2. Softening Behavior of Hardness and Surface Fatigue of Rolling-Sliding Contact in the Case of Developed Alloy Steels

    Science.gov (United States)

    Redda, Daniel Tilahun; Nakanishi, Tsutomu; Deng, Gang

    To get high performance, downsizing and weight saving of the power transmission systems, the improvement of machine elements has been required. In this study, case-carburized gear materials for a high load-carrying capacity were developed. Low-alloyed steels with 1%Cr-0.2%Mo, 1%Cr-0.2%Mo-1%Si and 1%Cr-0.2%Mo-2%Ni (Cr-Mo steel, Cr-Mo-Si steel and Cr-Mo-Ni steel) were melted in a hypoxia vacuum. Test rollers were made of the developed steels, and they were carburized (Type A and Type B), hardened and tempered. Heating retention tests were carried out to investigate the softening behavior of hardness at high heating temperatures in the case of the developed steels. Roller tests were conducted under the rolling-sliding contact and high-load conditions to study the surface fatigue of the developed steels. From the obtained test results, it was found that the softening behavior of surface hardness at high temperatures in the cases of Cr-Mo-Si steel (Type A) and Cr-Mo-Ni steel (Type B) is lower than that in the cases of Cr-Mo steel (Type A) and Cr-Mo steel (Type B). In the cases of Cr-Mo-Si steel (A) and Cr-Mo-Ni steel (B), micro- and small-pitting area ratios are smaller and large-pitting life is longer than those in the cases of Cr-Mo steel(A) and Cr-Mo steel(B) under the same carburizing treatment method and high-load conditions. Furthermore, the relationship between the softening behavior of surface hardness on the heating pattern and the surface fatigue on the rolling-sliding contact of the developed alloy steels was clarified.

  3. A case study on relation between roughness, lubrication and fatigue life of rolling bearings

    Science.gov (United States)

    Balan, M. R.; Tufescu, A.; Cretu, S. S.

    2016-08-01

    A spherical roller bearing under high radial loading, constant speed and imposed roughness for the contacting surfaces was chosen as case study. Different lubrication regimes were obtained by varying oil viscosity through the operating temperature. For bearings with especially machined contacting surfaces, λ-ratio is firstly determined and its value is used to estimate the particular value of the lubrication parameter κ. Using the λ-ratio approach the paper reveals the relationship between roughness amplitude and the modified rating life of rolling bearings. The roughness values corresponding to good manufacturing practice are possible to be determined for each particular case. Three groups of random Gaussian roughness were generated with the same values for the Ra parameter as used in the modified lives investigations. For medium and especially high radial loads, the contacts between rough surfaces develop, inside the shallow layer, von Mises equivalent stresses higher than the fatigue limit stress. For condition of lack of lubricant or starved lubrication, these findings explain the initiation of the rolling contact fatigue in the shallow layer, close to contacting surfaces.

  4. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validation study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.

  5. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validation study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.

  6. Finite Element Analysis of Symmetric and Asymmetric Three-roll Rolling Process

    Directory of Open Access Journals (Sweden)

    Pesin A.

    2015-01-01

    Full Text Available A three-roll process is a significant technique in the production of wire rod, round bars and hexagonal profiles for structural applications. Better mechanical properties of wire rod, round bars and hexagonal profiles can be achieved due to large plastic deformation by the three-roll process. Asymmetric rolling is a novel technique characterised by a kinematic asymmetry linked to the difference in peripheral speed of the rolls, able to introduce additional shear strains through the bar thickness. In order to achieve this, asymmetrical three-roll rolling process was investigated to better control the deformation compared to the conventional three-roll rolling process in a stand with two three-roll calibers located very close to each other. Simulation of round-triangle-triangle pass rolling was performed. FEM simulations were carried out with using software DEFORM 3D. The influence of the friction coefficient and speed asymmetry on the shear strain and material flow was discussed. The results of simulation can be used to optimize the asymmetric three-roll rolling process to improve the mechanical properties of wire rod, round bars and hexagonal profiles.

  7. In situ observation of rolling contact fatigue cracks by laminography using ultrabright synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Y. Nakai

    2015-10-01

    Full Text Available In rolling contact fatigue (RCF, cracks usually initiate from inclusions beneath the surface and propagate to the contact surface. In the present study, synchrotron radiation computed laminography (SRCL imaging was performed to observe flaking defects during the RCF of a high-strength steel. Specially fabricated inclusion-rich steel plate specimens were employed in the experiments. For the in situ observation of crack propagation, a compact RCF testing machine was developed, and a 4D analysis scheme was applied to the data obtained by SRCL. RCF tests were carried out near the measurement hatch of the beam line used SRCL to enable the successive observation of crack initiation and growth behaviors. Specimens before and after the occurrence of flaking were observed by SRCL, and flaking defects and cracks under the surface were successfully detected. As a result, details of the crack initiation and flaking process in RCF could be discussed. Shear-type horizontal cracks were found to initiate after the initiation and propagation of tensile-type vertical cracks along inclusions, where the face of the vertical cracks was perpendicular to the rolling direction and rolling surface. Therefore, the formation of vertical cracks is considered to affect shear-type crack formation and flaking, where the shape and length of inclusions also affect the initiation and propagation of vertical cracks.

  8. A microstructure sensitive study of rolling contact fatigue in bearing steels: A numerical and experimental approach

    Science.gov (United States)

    Pandkar, Anup Surendra

    Bearings are an integral part of machine components that transmit rotary power such as cars, motors, engines etc. Safe bearing operation is essential to avoid serious failures and accidents, which necessitates their timely replacement. This calls for an accurate bearing life prediction methods. Based on the Lundberg-Palmgen (LP) model, current life models consistently under predict bearings lives. Improvement in life prediction requires understanding of the bearing failure mechanism i.e. Rolling Contact Fatigue (RCF). The goal of this research is to develop a mechanistic framework required for an improved bearing life prediction model. Such model should account for metal plasticity, influence of microstructural features and cyclically evolving stressstrain fields induced during RCF. To achieve this, elastic-plastic finite element (FE) study is undertaken to investigate the response of M50-NiL bearing steel during RCF. Specifically, a microstructure sensitive study of the influence of non-metallic inclusions on RCF response of bearings is presented. M50-NiL microstructure consists of carbides which are orders of magnitude smaller than bearing dimensions. To account for this size difference, a multi-scale FE modeling approach is employed. The FE results reveal that hard carbide particles act as local stress risers, alter surrounding stressstrain fields and cause micro-scale yielding of steel matrix. Moreover, they introduce a shear stress cycle with non-zero mean stress, which promotes micro-plastic strain accumulation via ratcheting mechanism. Localized ratcheting is primarily responsible for cyclic hardening within the RCF affected region. Such evolution of subsurface hardness can be used to quantify RCF induced damage. To investigate this further, cyclic hardening response of the RCF affected region is simulated. The results show good agreement with the experimental observations. The cyclic stress-strain fields obtained from these simulations and the knowledge of

  9. Autoregressive modelling for rolling element bearing fault diagnosis

    Science.gov (United States)

    Al-Bugharbee, H.; Trendafilova, I.

    2015-07-01

    In this study, time series analysis and pattern recognition analysis are used effectively for the purposes of rolling bearing fault diagnosis. The main part of the suggested methodology is the autoregressive (AR) modelling of the measured vibration signals. This study suggests the use of a linear AR model applied to the signals after they are stationarized. The obtained coefficients of the AR model are further used to form pattern vectors which are in turn subjected to pattern recognition for differentiating among different faults and different fault sizes. This study explores the behavior of the AR coefficients and their changes with the introduction and the growth of different faults. The idea is to gain more understanding about the process of AR modelling for roller element bearing signatures and the relation of the coefficients to the vibratory behavior of the bearings and their condition.

  10. Probabilistic finite elements for fatigue and fracture analysis

    Science.gov (United States)

    Belytschko, Ted; Liu, Wing Kam

    1993-01-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  11. Probabilistic finite elements for fatigue and fracture analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Belytschko, T.; Liu, W.K.

    1993-04-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  12. 3D Rigid-Plastic Finite Element Analysis for Skew Rolling Process of the Stepped Part

    Institute of Scientific and Technical Information of China (English)

    Gang FANG; Pan ZENG

    2003-01-01

    Based on rigid-plastic finite element method, a skew rolling process of stepped part is simulated. Considering nodesaving and effective remeshing, the tetrahedron solid elements are used to discrete workpiece. The workpiece material adopts rigid-plastic m

  13. Influence of the Inclusion Shape on the Rolling Contact Fatigue Life of Carburized Steels

    Science.gov (United States)

    Neishi, Yutaka; Makino, Taizo; Matsui, Naoki; Matsumoto, Hitoshi; Higashida, Masashi; Ambai, Hidetaka

    2013-05-01

    It has been well known that the flaking failure in rolling contact fatigue (RCF) originates from nonmetallic inclusions in steels, and their apparent size is one of the important factors affecting RCF life. However, the influence of inclusion shape on the RCF life has not been fully clarified. In this study, attention was paid to the influence of the inclusion shape on the RCF life. This was evaluated by using carburized JIS-SCM420 (SAE4320) steels that contained two different shapes of MnS—stringer type and spheroidized type—as inclusions. Sectional observations were made to investigate the relation between the occurrence of shear crack in the subsurface and the shape of MnS. It was found that the RCF life was well correlated with the length of MnS projected to the load axis, and the initiation of shear crack in subsurface was accelerated as the length of MnS increased.

  14. Finite element modelling of hot rolling of Al-3%Mg and the kinetics of static recrystallisation

    CERN Document Server

    Dauda, T A

    2001-01-01

    rolled slab thickness for all the slab/geometry and rolling conditions considered and that the orientation of microbands developed independent of the rolling reduction. The main conclusions drawn were that (i) geometry had a profound effect on the evolution of microstructure through the rolled slab thickness; (ii) the finite element method can be used as an effective tool in the prediction of through-thickness gradient in microstructure evolved in the post-deformation annealing treatment; and (iii) microband development was an important microstructural feature during hot rolling of AI-3%Mg, acting as potential nucleation sites for subsequent static microstructural transformation processes. The principal objectives of this work were (i) to investigate the effect of geometry on the through-thickness gradient in microstructure evolved during post-deformation annealing treatment of rolled AI-3%Mg slabs and (ii) to employ the finite element method and empirical equations characterising the rate of static recrystal...

  15. Lubricant replacement in rolling element bearings for weapon surety devices

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, R.; Dugger, M.T.; Varga, K.S. [Sandia National Laboratories, Albuquerque, NM (United States)

    1996-05-01

    Stronglink switches are a weapon surety device that is critical to the nuclear safety theme in modem nuclear weapons. These stronglink switches use rolling element bearings which contain a lubricant consisting of low molecular weight polytetrafluoroethylene (PTFE) fragments. Ozone-depleting solvents are used in both the manufacture and application of this lubricant. An alternate bearing lubrication for stronglink switches is needed that will provide long-term chemical stability, low migration and consistent performance. Candidates that were evaluated include bearings with sputtered MoS{sub 2} on the races and retainers, bearings with TiC-coated balls, and bearings with Si{sub 3}N{sub 4} balls and steel races. These candidates were compared to the lubricants currently used which are bearings lubricated with PTFE fragments of low molecular weight in a fluorocarbon solvent. The candidates were also compared to bearings lubricated with a diester oil which is representative of bearing lubricants used in industrial applications. Evaluation consisted of cycling preloaded bearings and subjecting them to 23 gRMS random vibration. All of the candidates are viable substitutes for low load application where bearing preload is approximately 1 pound. For high load applications where the bearing preload is approximately 10 pounds, bearings with sputtered MoS{sub 2} on the races and retainers appear to be the best substitutes. Bearings with TiC-coated balls also appear to be a viable candidate but these bearings did not perform as well as the sputtered MoS{sub 2}.

  16. Local Damages During Rolling And Mechano-Rolling Fatigue For The Mechanical System Shaft – Roller (0.45 Carbon Steel – 25XGT Steel, 20XH3A Steel – 20XH3A Steel

    Directory of Open Access Journals (Sweden)

    Bogdanovich Alexander

    2015-12-01

    Full Text Available The report provides a description of local damages which are formed in the process of wear-fatigue tests. The analysis of local surface wave-like damages during rolling and mechano-rolling fatigue for the shaft-roller mechanical system under steady-state and multi-stage loading conditions is given. It is shown that the study of local wear-fatigue damage was made possible by new methods of testing and measuring wear-fatigue tests and damages, which are described in the report. New characteristics to estimate the parameters of the local wear-fatigue damage are proposed. The concept of local fatigue curves is introduced. The laws of local wear-fatigue damage for the shaft - roller system are analysed.

  17. Rolling contact fatigue strength of successive austempered ductile cast iron; Chikuji austemper shori kyujo kokuen chutetsu no korogari hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering; Ogi, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Sawamoto, A. [Yamaguchi Univ., Yamaguchi (Japan). Faculty of Education

    1998-04-25

    The holding time of austempered spheroidal graphite cast iron material is allowed to vary in heat treatment especially at the lower bainite transformation zone during the process for the preparation of specimens different from each other in the amount of {gamma}-pool, and the specimens are tested for their rolling contact fatigue strength. The effects of the amount of {gamma}-pool, roughness of the bainite structure, and work-hardening, on the rolling fatigue strength are also studied. Findings obtained as the result of experiment are stated below. In the case of an austempered ductile cast iron specimen containing a {gamma}-pool amount that occupies a high rate of 6.52%, the rolling fatigue withstanding limit exhibits a relatively high level of 1310MPa, which becomes approximately 1245MPa when the holding time is extended in the lower bainite transformation zone. The limit rises to approximately 1320MPa at a stage where the {gamma}-pool virtually disappears. In a successive austempering treatment process that aims at improving on machinability and at allowing sufficient fatigue strength to be maintained, it is necessary to allow the holding time in the bainite zone to be long enough for the {gamma}-pool to disappear and for the lower bainite structure to grow sufficiently. 5 refs., 10 figs., 4 tabs.

  18. Rolling contact fatigue of low hardness steel for slewing ring application

    Science.gov (United States)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium

  19. Tribological thin films on steel rolling element bearing surfaces

    Science.gov (United States)

    Evans, Ryan David

    Tribological thin films are of interest to designers and end-users of friction management and load transmission components such as steel rolling element bearings. This study sought to reveal new information about the properties and formation of such films, spanning the scope of their technical evolution from natural oxide films, to antiwear films from lubricant additives, and finally engineered nanocomposite metal carbide/amorphous hydrocarbon (MC/a-C:H) films. Transmission electron microscopy (TEM) was performed on the near-surface material (depth gear oil additives. Site-specific thinning of cross-section cone surface sections for TEM analyses was conducted using the focused ion beam milling technique. Two types of oxide surface films were characterized for the cones tested in mineral oil only, each one corresponding to a different lubrication severity. Continuous and adherent antiwear films were found on the cone surfaces tested with lubricant additives, and their composition depended on the lubrication conditions. A sharp interface separated the antiwear film and base steel. Various TEM analytical techniques were used to study the segregation of elements throughout the film volume. The properties of nanocomposite tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films depend sensitively on reactive magnetron sputtering deposition process conditions. TaC/a-C:H film growth was studied as a function of three deposition parameters in designed experiments: acetylene flow rate, applied d.c. bias voltage, and substrate carousel rotation rate. Empirical models were developed for the following film characteristics to identify process-property trend relationships: Ta/C atomic ratio, hydrogen content, film thickness. TaC crystallite size, Raman spectrum, compressive stress, hardness, and elastic modules. TEM measurements revealed the film base structure consisted of equiaxed cubic B1-TaC crystallites (< 5 nm) suspended in an a-C:H matrix. At the nanometer-scale, the

  20. FATIGUE STRENGTH OF A STRUCTURAL ELEMENT EXPOSED TO ICE LOADING

    Directory of Open Access Journals (Sweden)

    Uvarova Tat'yana Erikovna

    2012-10-01

    Full Text Available The cyclic nature of effects of ice loading contributes to the formation of non-reversible deformations and defects of structural elements that may cause loss of the bearing capacity of the structure due to the accumulation of fatigue damages in dangerous sections. The damages in question are caused by moderate loads of multiple repeatability. In order to assess the number of cycles of ice loading that the structure may be exposed to without any substantial damages, the authors have developed a simulation model of ice load formation that serves as the basis for the analysis of the loading pattern that the structure is exposed to. This loading pattern is the initial one for the purposes of calculation of the fatigue resistance of structural elements to ice load effects. In the research, the authors provide for the joint application of the simulation model of ice load formation and the model of accumulation of fatigue damages to assess the ice resistance of a platform and its reliability from the viewpoint of its failure.

  1. Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis

    Science.gov (United States)

    Li, Yifan; Liang, Xihui; Zuo, Ming J.

    2017-02-01

    This paper presents a novel signal processing scheme, diagonal slice spectrum assisted optimal scale morphological filter (DSS-OSMF), for rolling element fault diagnosis. In this scheme, the concept of quadratic frequency coupling (QFC) is firstly defined and the ability of diagonal slice spectrum (DSS) in detection QFC is derived. The DSS-OSMF possesses the merits of depressing noise and detecting QFC. It can remove fault independent frequency components and give a clear representation of fault symptoms. A simulated vibration signal and experimental vibration signals collected from a bearing test rig are employed to evaluate the effectiveness of the proposed method. Results show that the proposed method has a superior performance in extracting fault features of defective rolling element bearing. In addition, comparisons are performed between a multi-scale morphological filter (MMF) and a DSS-OSMF. DSS-OSMF outperforms MMF in detection of an outer race fault and a rolling element fault of a rolling element bearing.

  2. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. I - Theory

    Science.gov (United States)

    Padovan, Joe

    1987-01-01

    In a three-part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modeled by fractional integrodifferential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating, as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator.

  3. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2016-11-01

    Full Text Available In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  4. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.

    Science.gov (United States)

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-11-25

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  5. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron

    Science.gov (United States)

    Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.

    2017-05-01

    Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.

  6. Finite element simulation of influences of grain interaction on rolling textures of fcc metals

    Institute of Scientific and Technical Information of China (English)

    TANG Jian-guo; ZHANG Xin-ming; CHEN Zhi-yong; DENG Yun-lai

    2006-01-01

    A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orientations to finite elements, i.e. assigning the same set of orientations to all elements or different orientations to different elements, the influences of grain interaction on the formation of rolling textures were numerically simulated with this kind of crystal plasticity finite element model. The simulation results reveal that the grains without considering grain interaction rotate faster than those considering grain interaction, and the rotation of grain boundary is slowed down due to the grain interaction. For a good simulation more elements should be assigned to one grain, in which the effects of both the boundary and interior parts of grain contribute to the formation of rolling textures.

  7. FINITE ELEMENT ANALYSIS OF AXIAL FEED BAR ROLLING

    Institute of Scientific and Technical Information of China (English)

    C.G. Xu; G.H. Liu; G.S. Ren; Z. Shen; C.P. Ma; W. W. Ren

    2007-01-01

    A flexible technique of hot working of bars by axial feed rolling was introduced. The processdeformation, strain field, stress field, and temperature field of the parts are analyzed by finite elementmethod (FEM)-simulation software DEFORM-3D. The material flow rule and tool load have beeninvestigated.

  8. Modeling texture development during cold rolling of IF steel by crystal plasticity finite element method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals,Taylor-type and finite element polycrystai models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finte element modeling,based on the rate dependent crystal constitutive equations.Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the development of rolling texture of interstitial-flee steel (IF steel) at various reductions.The modeled results show a good agreement with the experimental results.With increasing reduction,the predicted and experimental rolling textures tend to sharper,and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.Conclusions are obtained that rolling textures calculated with 48 {110}+{ 112}+{123} slip systems are more approximate to EBSD results.

  9. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.-H., E-mail: martin.evans@soton.ac.uk [National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, SO17 1BJ (United Kingdom); Walker, J.C.; Ma, C.; Wang, L.; Wood, R.J.K. [National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, SO17 1BJ (United Kingdom)

    2013-05-15

    Butterflies are microscopic damage features forming at subsurface material imperfections induced during rolling contact fatigue (RCF) in rolling element bearings. Butterflies can lead to degradation of the load bearing capacity of the material by their associated cracks causing premature spalling failures. Recently, butterfly formation has been cited to be related to a premature failure mode in wind turbine gearbox bearings; white structure flaking (WSF). Butterflies consist of cracks with surrounding microstructural change called ‘white etching area’ (WEA) forming wings that revolve around their initiators. The formation mechanisms of butterflies in bearing steels have been studied over the last 50 years, but are still not fully understood. This paper presents a detailed microstructural analysis of a butterfly that has initiated from a void in standard 100Cr6 bearing steel under rolling contact fatigue on a laboratory two-roller test rig under transient operating conditions. Analysis was conducted using focused ion beam (FIB) tomography, 3D reconstruction and transmission electron microscopy (STEM/TEM) methods. FIB tomography revealed an extensive presence of voids/cavities immediately adjacent to the main crack on the non-WEA side and at the crack tip. This provides evidence for a void/cavity coalescence mechanism for the butterfly cracks formation. Spherical M{sub 3}C carbide deformation and dissolution as part of the microstructural change in WEA were observed in both FIB and STEM/TEM analyses, where TEM analyses also revealed the formation of superfine nano-grains (3–15 nm diameter) intersecting a dissolving spherical M{sub 3}C carbide. This is evidence of the early formation of nano-grains associated with the WEA formation mechanism.

  10. STRESS-STRAIN FINITE ELEMENT ANALYSIS AND FATIGUE LIFE PREDICTION FOR BOLTED CONNECTIONS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A cyclic plasticity model is used into finite element (FE) method to obtain the details of elastic-plastic stress-strain in the bolts under cyclic axial loading. Two criteria in multiaxial fatigue are employed to predict fatigue lives of bolts. The predicted fatigue lives are in favorable agreement with the experimental results for machined bolts.

  11. Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution

    Institute of Scientific and Technical Information of China (English)

    WANG Min-ting; ZANG Xin-liang; LI Xue-tong; DU Feng-shan

    2007-01-01

    Using the nonlinear rigid-viscoplastic finite element method (FEM), a finite element simulation of the hot strip continuous rolling process was done, which completely integrates different phenomena such as the metallurgical behavior of the strip and the thermo-mechanics in the strip based on the physical metallurgical microstructural evolution law. By combining with the process parameters of certain 2 050 mm hot strip rolling, an actual rolling process of low carbon steel SS400 was simulated using the FEM model. Based on the simulation results, the distributions of the strain field, the temperature field, and the microstructure were presented. Meanwhile, the simulated rolling force, temperature, and microstructure are in good agreement with the measured results.

  12. Rolling Contact Fatigue and Wear Behavior of High-Performance Railway Wheel Steels Under Various Rolling-Sliding Contact Conditions

    Science.gov (United States)

    Faccoli, Michela; Petrogalli, Candida; Lancini, Matteo; Ghidini, Andrea; Mazzù, Angelo

    2017-07-01

    An experimental investigation was carried out to study and compare the response to cyclic loading of the high-performance railway wheel steels ER8 EN13262 and SUPERLOS®. Rolling contact tests were performed with the same contact pressure, rolling speed and sliding/rolling ratio, varying the lubrication regime to simulate different climatic conditions. The samples, machined out of wheel rims at two depths within the reprofiling layer, were coupled with UIC 900A rail steel samples. The wear rates, friction coefficients and hardness were correlated with the deformation beneath the contact surface. The crack morphology was studied, and the damage mechanisms were identified. The distribution of crack length and depth at the end of the dry tests was analyzed to quantify the damage. The main difference between the steels lies in the response of the external samples to dry contact: SUPERLOS® is subjected to a higher wear and lower friction coefficient than ER8, and this reduces the density of surface cracks that can propagate under wet contact conditions. The analysis of feedback data from in-service wheels confirmed the experimental results.

  13. Rolling Element Bearing Fault Diagnosis Based on Multiscale General Fractal Features

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2015-01-01

    Full Text Available Nonlinear characteristics are ubiquitous in the vibration signals produced by rolling element bearings. Fractal dimensions are effective tools to illustrate nonlinearity. This paper proposes a new approach based on Multiscale General Fractal Dimensions (MGFDs to realize fault diagnosis of rolling element bearings, which are robust to the effects of variation in operating conditions. The vibration signals of bearing are analyzed to extract the general fractal dimensions in multiscales, which are in turn utilized to construct a feature space to identify fault pattern. Finally, bearing faults are revealed by pattern recognition. Case studies are carried out to evaluate the validity and accuracy of the approach. It is verified that this approach is effective for fault diagnosis of rolling element bearings under various operating conditions via experiment and data analysis.

  14. Fault Early Diagnosis of Rolling Element Bearings Combining Wavelet Filtering and Degree of Cyclostationarity Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Fu-chang; CHEN Jin; HE Jun; BI Guo; LI Fu-cai; ZHANG Gui-cai

    2005-01-01

    The vibration signals of rolling element bearing are produced by a combination of periodic and random processes due to the machine's rotation cycle and interaction with the real world. The combination of such components can give rise to signals, which have periodically time-varying ensemble statistical and are best considered as cyclostationary. When the early fault occurs, the background noise is very heavy, it is difficult to disclose the latent periodic components successfully using cyclostationary analysis alone. In this paper the degree of cyclostationarity is combined with wavelet filtering for detection of rolling element bearing early faults. Using the proposed entropy minimization rule. The parameters of the wavelet filter are optimized. This method is shown to be effective in detecting rolling element bearing early fault when cyclostationary analysis by itself fails.

  15. Development of high-speed rolling-element bearings. A historical and technical perspective

    Science.gov (United States)

    Zaretsky, E. V.

    1982-01-01

    Research on large-bore ball and roller bearings for aircraft engines is described. Tapered roller bearings and small-bore bearings are discussed. Temperature capabilities of rolling element bearings for aircraft engines have moved from 450 to 589 K (350 to 600 F) with increased reliability. High bearing speeds to 3 million DN can be achieved with a reliability exceeding that which was common in commercial aircraft. Capabilities of available bearing steels and lubricants were defined and established. Computer programs for the analysis and design of rolling element bearings were developed and experimentally verified. The reported work is a summary of NASA contributions to high performance engine and transmission bearing capabilities.

  16. Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue

    Science.gov (United States)

    Mobasher Moghaddam, Sina

    Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry. In the current work, an analytical as well as experimental approaches are used to investigate "butterfly wing" formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed damage evolution law matches experimentally observed butterfly orientation, shape, and size successfully. The model is used to obtain S-N results for butterfly formation at different Hertzian load levels. The results corroborate well with the experimental data available in the open literature. The model is used to predict debonding at the inclusion/matrix interface and the most vulnerable regions for crack initiation on butterfly/matrix interface. A new variable called butterfly formation index (BFI) is introduced to manifest the dependence of wing formation on depth. The value of critical damage inside the butterfly wings was obtained experimentally and was then used to simulate damage evolution. Voronoi tessellation was used to develop the FEM domains to capture the effect of microstructural randomness on butterfly wing formation, crack initiation and propagation. Then, the effects of different inclusion characteristics such as size, depth, and stiffness on RCF life are studied. The results show that stiffness of an inclusion and its location has a significant effect on the RCF life: stiffer inclusions and inclusions located at the depth of maximum shear stress reversal are more detrimental to the RCF life. Stress concentrations are not significantly affected by inclusion size for the cases

  17. Determination of rolling tyre modal parameters using Finite Element techniques and Operational Modal Analysis

    Science.gov (United States)

    Palanivelu, Sakthivel; Narasimha Rao, K. V.; Ramarathnam, Krishna Kumar

    2015-12-01

    In order to address various noise generation mechanisms and noise propagation phenomena of a tyre, it is necessary to study the tyre dynamic behaviour in terms of modal parameters. This paper enumerates a novel method of finding the modal parameters of a rolling tyre using an Explicit Finite Element Analysis and Operational Modal Analysis (OMA). ABAQUS Explicit, a commercial Finite Element (FE) software code has been used to simulate the experiment, a tyre rolling over a semi-circular straight and inclined cleat. The acceleration responses obtained from these simulations are used as input to the OMA. LMS test lab has been used for carrying out the Operational Modal Analysis. The modal results are compared with the published results of Kindt [22] and validated. Also, the modal results obtained from OMA are compared with FE modal results of stationary unloaded tyre, stationary loaded tyre and Steady State Transport rolling tyre.

  18. Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network

    Science.gov (United States)

    Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.

    2006-06-01

    The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.

  19. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. Part 1: Theory

    Science.gov (United States)

    Padovan, Joe

    1986-01-01

    In a three part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modelled by fractional integro-differential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator. In the second and third parts of the paper, 3-D extensions are developed along with transient contact strategies enabling the handling of impacts with obstructions. Overall, the various developments are benchmarked via comprehensive 2- and 3-D simulations. These are correlated with experimental data to define modelling capabilities.

  20. A new method for measuring the rotational accuracy of rolling element bearings

    Science.gov (United States)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  1. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  2. Effects of Service Condition on Rolling Contact Fatigue Failure Mechanism and Lifetime of Thermal Spray Coatings-A Review

    Institute of Scientific and Technical Information of China (English)

    CUI Huawei; CUI Xiufang; WANG Haidou; XING Zhiguo; JIN Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable;it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating’s resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings’ contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings’ contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  3. BOUNDARY ELEMENT METHOD FOR MOVING AND ROLLING CONTACT OF 2D ELASTIC BODIES WITH DEFECTS

    Institute of Scientific and Technical Information of China (English)

    姚振汉; 蒲军平; 金哲植

    2001-01-01

    A scheme of boundary element method for moving contact of two dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.

  4. FINITE ELEMENT ANALYSIS FOR MICROSTRUCTURE EVOLUTION IN HOT FINISHING ROLLING OF STEEL STRIPS

    Institute of Scientific and Technical Information of China (English)

    Z.D. Qu; S.H. Zhang; D.Z. Li; Z.T. Wang

    2007-01-01

    A computer model that describes the evolution of microstructures during the hot finishing rolling of SS400 steel has been proposed. It has been found that the microstructure strongly depends on processing of materials and on their parameters, which affected the history of the thermomechanical variables, such as temperature, strain, and strain rate. To investigate the microstructural evolutions during the hot finishing rolling process, the rigid-thermoviscoplastic finite element method (FEM)has been combined with dynamic recrystallization, static recrystallization, and grain growth models.The simulation results show a good agreement with those from the prediction software online.

  5. A Novel Approach of Impulsive Signal Extraction for Early Fault Detection of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Hu Aijun

    2017-01-01

    Full Text Available The fault signals of rolling element bearing are often characterized by the presence of periodic impulses, which are modulated high-frequency harmonic components. The features of early fault in rolling bearing are very weak, which are often masked by background noise. The impulsiveness of the vibration signal has affected the identification of characteristic frequency for the early fault detection of the bearing. In this paper, a novel approach based on morphological operators is presented for impulsive signal extraction of early fault in rolling element bearing. The combination Top-Hat (CTH is proposed to extract the impulsive signal and enhance the impulsiveness of the bearing fault signal, and the envelope analysis is applied to reveal the fault-related signatures. The impulsive extraction performance of the proposed CTH is compared with that of finite impulse response filter (FIR by analyzing the simulated bearing fault signals, and the result indicates that the CTH is more effective in extracting impulsive signals. The method is evaluated using real fault signals from defective bearings with early rolling element fault and early fault located on the outer race. The results show that the proposed method is able to enhance the impulsiveness of early bearing fault signals.

  6. Multi-scale finite element simulation of microstructure response to rolling ratio for ring rolling process based on 42CrMo ingot blank

    Energy Technology Data Exchange (ETDEWEB)

    Guo, L.; Pan, X.; Yang, H. [Northwestern Polytechnical Univ.. State Key Laboratory of Solidification Processing, Xi' an (China); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    Combined casting-rolling of ring parts, such as large wind turbine bearing rings, is a short-process, energy-saving, material-saving and low-cost innovative forming process technology. Eliminating the casting defects in the ingot ring blank, such as uneven coarse grains, loose structure, pinholes, cracks and inclusions, has been the bottleneck for the combined casting-rolling process technology development. Due to the integrated prediction capabilities of macro plastic deformation and microstructure evolution, the multi-scale FE (finite element) modeling and simulation has been a powerful tool for optimal design and control of the geometry and microstructure of the deforming body during metal forming process. This paper addresses the high temperature deformation constitutive equations and dynamic recrystallization model of the as-cast 42CrMo steel, proposes a multi-scale FE model of ring rolling process based on 42CrMo ingot blank, and presents the multi-scale simulation of the geometry and microstructure for the process. With consideration of the significant impact of the rolling ratio (the characteristics of deformation degree in ring rolling) on the microstructure of the rolled ring, the influence rules and mechanism of the rolling ratio on the recrystallized microstructure of 42CrMo ingot ring blank are unfolded. The outcome establishes the foundation for the optimal design and steady control of the ring rolling process based on ingot blank. (Author)

  7. Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available The viscoelastic properties of an ethylene/propylene/diene rubber (EPDM containing 30 parts per hundred parts rubber [phr] carbon black (CB were determined by dynamic mechanical thermal analysis (DMTA measurements. A 15-term Maxwell-model was created to describe the time-dependent material behavior of this rubber. The frictional behavior under dry rolling conditions was studied on a home-built rolling ball (steel-on-plate (rubber (RBOP test rig. Both normal and tangential forces were detected during the measurements. The rolling test was simulated with the MSC.Marc finite element (FE software using the evaluated viscoelastic material properties. Results of the experimental tests and of the simulation were compared and a good agreement was found between them.

  8. Effect of Rare Earth Elements on Thermal Fatigue Property of Low Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    常立民; 刘建华; 张瑞军; 邵利; 于升学; 谌岩

    2003-01-01

    The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi-steel in as-cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.

  9. Acoustic Emission Investigation of Rolling/Sliding Contact Fatigue Failure of NiCr-Cr3C2 Coating

    Science.gov (United States)

    Guolu, Li; Zhonglin, Xu; Tianshun, Dong; Haidou, Wang; Jinhai, Liu; Jiajie, Kang

    2016-08-01

    NiCr-Cr3C2 coating was fabricated using supersonic plasma spraying technology. Subsequently, rolling/sliding contact fatigue (R/SCF) testing was carried out, using acoustic emission (AE) technology to monitor the failure process. The results showed that R/SCF consists of three failure modes, namely abrasion, spalling, and delamination. Abrasion is the main failure mode, but delamination is the most severe. The AE monitoring results indicated that the R/SCF failure process is composed of normal contact, crack initiation, crack propagation, and material removal stages. The frequency of each stage was analyzed by fast Fourier transform, revealing a peak frequency for each stage mainly distributed from 200 to 250 kHz.

  10. Trace Ratio Criterion-Based Kernel Discriminant Analysis for Fault Diagnosis of Rolling Element Bearings Using Binary Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-An Yang

    2016-01-01

    Full Text Available The rolling element bearing is a core component of many systems such as aircraft, train, steamboat, and machine tool, and their failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Due to misoperation, manufacturing deficiencies, or the lack of monitoring and maintenance, it is often found to be the most unreliable component within these systems. Therefore, effective and efficient fault diagnosis of rolling element bearings has an important role in ensuring the continued safe and reliable operation of their host systems. This study presents a trace ratio criterion-based kernel discriminant analysis (TR-KDA for fault diagnosis of rolling element bearings. The binary immune genetic algorithm (BIGA is employed to solve the trace ratio problem in TR-KDA. The numerical results obtained using extensive simulation indicate that the proposed TR-KDA using BIGA (called TR-KDA-BIGA can effectively and efficiently classify different classes of rolling element bearing data, while also providing the capability of real-time visualization that is very useful for the practitioners to monitor the health status of rolling element bearings. Empirical comparisons show that the proposed TR-KDA-BIGA performs better than existing methods in classifying different classes of rolling element bearing data. The proposed TR-KDA-BIGA may be a promising tool for fault diagnosis of rolling element bearings.

  11. METHODS OF THE APPROXIMATE ESTIMATIONS OF FATIGUE DURABILITY OF COMPOSITE AIRFRAME COMPONENT TYPICAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    V. E. Strizhius

    2015-01-01

    Full Text Available Methods of the approximate estimations of fatigue durability of composite airframe component typical elements which can be recommended for application at the stage of outline designing of the airplane are generated and presented.

  12. Fatigue life prediction of casing welded pipes by using the extended finite element method

    National Research Council Canada - National Science Library

    Ljubica Lazi; Aleksandar Raji; Aleksandar Grbovi; Aleksandar Sedmak; e Sarko

    2016-01-01

      The extended finite element (XFEM) method has been used to simulate fatigue crack growth in casing pipe, made of API J55 steel by high-frequency welding, in order estimate its structural integrity and life...

  13. Association of Fatigue With Sarcopenia and its Elements: A Secondary Analysis of SABE-Bogotá

    Science.gov (United States)

    Patino-Hernandez, Daniela; David-Pardo, David Gabriel; Borda, Miguel Germán; Pérez-Zepeda, Mario Ulises; Cano-Gutiérrez, Carlos

    2017-01-01

    Objective: Sarcopenia, fatigue, and depression are associated with higher mortality rates and adverse outcomes in the aging population. Understanding the association among clinical variables, mainly symptoms, is important for screening and appropriately managing these conditions. The aim of this article is to evaluate the association among sarcopenia and its elements with depression and fatigue. Method: We used cross-sectional data from 2012 SABE (Salud, Bienestar y Envejecimiento)-Bogotá study, which included 2,000 participants of ages ≥60 years. Sarcopenia and its elements were taken as the dependent variable, while fatigue and depression were the main independent variables. We tested the association among these through multiple logistic regression models, which were fitted for each dependent variable and adjusted for confounding variables. Results: Our findings showed that gait speed was associated with fatigue (adjusted odds ratio [OR] = 1.41, 95% confidence interval [CI] = [1.05, 1.90], p = .02) as well as abnormal handgrip strength (adjusted OR = 1.40, 95% CI = [1.02, 1.93], p = .04). No other associations were significant. Conclusion: While sarcopenia and fatigue are not associated, two of the sarcopenia-defining variables are associated with fatigue; this suggests that lack of sarcopenia does not exclude undesirable outcomes related to fatigue in aging adults. Also, the lack of association between sarcopenia-defining elements and depression demonstrates that depression and fatigue are different concepts. PMID:28474000

  14. Association of Fatigue With Sarcopenia and its Elements: A Secondary Analysis of SABE-Bogotá.

    Science.gov (United States)

    Patino-Hernandez, Daniela; David-Pardo, David Gabriel; Borda, Miguel Germán; Pérez-Zepeda, Mario Ulises; Cano-Gutiérrez, Carlos

    2017-01-01

    Objective: Sarcopenia, fatigue, and depression are associated with higher mortality rates and adverse outcomes in the aging population. Understanding the association among clinical variables, mainly symptoms, is important for screening and appropriately managing these conditions. The aim of this article is to evaluate the association among sarcopenia and its elements with depression and fatigue. Method: We used cross-sectional data from 2012 SABE (Salud, Bienestar y Envejecimiento)-Bogotá study, which included 2,000 participants of ages ≥60 years. Sarcopenia and its elements were taken as the dependent variable, while fatigue and depression were the main independent variables. We tested the association among these through multiple logistic regression models, which were fitted for each dependent variable and adjusted for confounding variables. Results: Our findings showed that gait speed was associated with fatigue (adjusted odds ratio [OR] = 1.41, 95% confidence interval [CI] = [1.05, 1.90], p = .02) as well as abnormal handgrip strength (adjusted OR = 1.40, 95% CI = [1.02, 1.93], p = .04). No other associations were significant. Conclusion: While sarcopenia and fatigue are not associated, two of the sarcopenia-defining variables are associated with fatigue; this suggests that lack of sarcopenia does not exclude undesirable outcomes related to fatigue in aging adults. Also, the lack of association between sarcopenia-defining elements and depression demonstrates that depression and fatigue are different concepts.

  15. Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling

    Institute of Scientific and Technical Information of China (English)

    LI Chang-sheng; YU Hai-liang; DENG Guan-yu; LIU Xiang-hua; WANG Guo-dong

    2007-01-01

    Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling.

  16. Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls

    Institute of Scientific and Technical Information of China (English)

    曹强; 华林; 钱东升

    2015-01-01

    Due to the complexity of investigating deformation mechanisms in helical rolling (HR) process with traditional analytical method, it is significant to develop a 3D finite element (FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure (positive mean stress) caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.

  17. Performance Degradation Assessment of Rolling Element Bearings Based on an Index Combining SVD and Information Exergy

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2014-10-01

    Full Text Available Performance degradation assessment of rolling element bearings is vital for the reliable and cost-efficient operation and maintenance of rotating machines, especially for the implementation of condition-based maintenance (CBM. For robust degradation assessment of rolling element bearings, uncertainties such as those induced from usage variations or sensor errors must be taken into account. This paper presents an information exergy index for bearing performance degradation assessment that combines singular value decomposition (SVD and the information exergy method. Information exergy integrates condition monitoring information of multiple instants and multiple sensors, and thus performance degradation assessment uncertainties are reduced and robust degradation assessment results can be obtained using the proposed index. The effectiveness and robustness of the proposed information exergy index are validated through experimental case studies.

  18. Vibration transmission through rolling element bearings. III - Geared rotor system studies

    Science.gov (United States)

    Lim, T. C.; Singh, R.

    1991-01-01

    The bearing matrix formulations proposed by Lim and Singh (1990) are extended to analyze the overall dynamics of a geared rotor system which includes a spur gear pair, shafts, rolling-element bearings, a motor, a load, a casing, and flexible or rigid mounts. For this purpose, discrete vibration models are developed and used to predict vibration transmission through the bearings and to investigate the effects of the bearing, casing, and mount dynamics on the dynamic characteristics of the internal rotating system. Analytical predictions show that the theory is capable of predicting the bearing and mount moment transmissibilities in addition to the force transmissibilities. The predicted flexural vibrations of the casing plate are in good agreement with measurements conducted on an experimental set-up that consisted of a high-precision beam and pinion, and four identical rolling element bearings contained in a flexible casing mounted rigidly on a massive foundation.

  19. Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis

    Science.gov (United States)

    Gu, Xiaohui; Yang, Shaopu; Liu, Yongqiang; Hao, Rujiang

    2016-12-01

    Envelope analysis is one of the most useful methods in localized fault diagnosis of rolling element bearings. However, there is a challenge in selecting the optimal resonance band. In this paper, a novel method based on kurtogram and frequency domain correlated kurtosis is proposed. To obtain the correct relationship between the node and frequency band in wavelet packet transform, a vital process named frequency ordering is conducted to solve the frequency folding problem due to down sampling. Correlated kurtosis of envelope spectrum instead of correlated kurtosis of envelope signal or kurtosis of envelope spectrum is utilized to generate the kurtogram, in which the maximum value can indicate the optimal band for envelope analysis. Several cases of experimental bearing fault signals are used to evaluate the immunity of the proposed method to strong noise interference. The improved performance has also been compared with two previous developed methods. The results demonstrate the effectiveness and robustness of the method in fault diagnosis of rolling element bearings.

  20. DEFINITION OF CONDITIONS OF STRIP’S ROLLING IN ROLLS OF UNEQUAL DIAMETER WITH FIXING OF AN ENDING ELEMENT

    Directory of Open Access Journals (Sweden)

    L. A. Isaevich

    2016-01-01

    Full Text Available The scheme of strip’s rolling with variable thickness and with a bend of a trailer site is offered. Conditions of strip’s rolling on the offered scheme at production of a brake shoe pin of railway transport are defined. Expressions for calculation of torsion torque on the leader and a permission rolls are defined. Equations for calculation of a forward tension and the pulling effort on a frame are defined.

  1. THREE DIMENSIONAL ELASTO-PLASTIC CONTACT BOUNDARY ELEMENT ANALYSIS FOR ROLLING WITH CONSIDERATION OF FRICTION

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto-plastic material behavior is taken into account by mean of an initial stress formulation and Von Mises yield criterion. The amount of tangential traction at contact surface is limited by Coulomb's friction law and constant shear rule. From some numerical results of a plate rolling problem, it is demonstrated here that the BEM can be used to efficiently and accurately analyze this class of forming problems.

  2. Fatigue assessment of an existing steel bridge by finite element modelling and field measurements

    Science.gov (United States)

    Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.

    2017-05-01

    The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.

  3. Fatigue strength of welded connections made of very high strength cast and rolled steels

    NARCIS (Netherlands)

    Pijpers, R.J.M.

    2011-01-01

    Although Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years, the use of these steels in the civil engineering industry is still uncommon. The main objective of the research is the determination of the fatigue strength of welded con

  4. Rolling Element Bearing Diagnostics by Combination of Envelope Analysis and Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Rolling element-bearing diagnostics has been studied over the last thirty years, and envelope analysis is widely recognized as being the best approach for detection and diagnosis of rolling element bearing incipient failure. But one of the on-going difficulties with envelope technique is to determine the best frequency band to envelop. Here, wavelet transform technique is introduced into envelope analysis to solve the problem by capturing bearing defects-sensory scales (i.e. frequency bands). A modulated Gaussian function is chosen to be the analytical wavelet because it coincides well with bearing defect-induced vibration signal patterns. Vibration signals measured from railway bearing tests were studied by the proposed method. Cases of bearings with single and multiple defects on inner and outer race under different testing conditions are presented. Experimental results showed that the proposed method allowed a more accurate local description and separation of transient signal part, which were caused by impacts between defects and the mating surfaces in the bearing. The combination method provides an effective signal detection technique for rolling element-bearing diagnostics.

  5. Modeling and finite element analysis of rod and wire steel rolling process

    Institute of Scientific and Technical Information of China (English)

    Shulun Liao; Liwen Zhang; Siyu Yuan; Yu Zhen; Shuqi Guo

    2008-01-01

    Two thermomechanical coupled elastic-plastic finite element (FE) models were developed for predicting the 12-pass continuous rolling process of GCr15 rod and wire steel. The distances between stands in the proposed models were set according to the actual values, and the billets were shortened in the models to reduce the calculation time. To keep the continuity of simulation, a technique was developed to transfer temperature data between the meshes of different models in terms of nodal parameters by interpolation functions. The different process variables related to the rolling process, such as temperature, total equivalent plastic strain,equivalent plastic strain rate, and contact friction force, were analyzed. Also, the proposed models were applied to analyze the reason for the occurrence of an excessive spread in width. Meanwhile, it was also utilized to assess the influence of the roll diameter change on the simulated results such as temperature and rolling force. The simulated results of temperature are found to agree well with the measured results.

  6. Finite Element Simulation of Flexible Roll Forming with Supplemented Material Data and the Experimental Verification

    Institute of Scientific and Technical Information of China (English)

    YAN Yu; WANG Haibo; LI Qiang; GUAN Yanzhi

    2016-01-01

    Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.

  7. Prediction on Rolling Contact Fatigue Crack Initiation Life of Rails%钢轨滚动接触疲劳裂纹萌生寿命预测*

    Institute of Scientific and Technical Information of China (English)

    邓铁松; 李伟; 温泽峰; 金学松

    2013-01-01

    A plain-strain finite element model of the rail was established by finite element software ABAQUS.The con-stitutive relation of 1070 steel was created by Jiang and Sehitoglu’s cyclic plastic constitutive model,and the repeatedly rolling of wheel on the rail was simulated by the moving load.The fatigue crack initiation life was calculated with Jiang’s fatigue model,and the effects of rail material defect (cavity)and friction coefficient on the fatigue crack initiation life were analyzed.The results show that,after the thirtieth pass,stress-strain response of the rail surface becomes stable.The maxi-mum residual stress and strain are located in the subsurface of the rail.The life of normal rail is 17~27 times longer than that of rail with defect (material cavity),and the position of crack initiation around the defect is located at 135°~150°. With the increasing of the friction coefficient,rolling contact fatigue crack initiation life of the rail is decreased,and its im-pacts on the expansion direction of crack and the position of crack are not significant.%利用有限元分析软件ABAQUS建立钢轨平面应变有限元模型,并利用Jiang-Sehitoglu循环塑性本构关系建立1070钢轨钢本构关系,通过移动载荷模拟车轮在钢轨上的反复滚动,并通过Jiang伤损模型计算疲劳裂纹萌生寿命,分析钢轨材料缺陷(空洞)和不同摩擦因数对疲劳裂纹萌生寿命的影响。计算结果表明,当车轮滚动30次时,钢轨表层的应力应变响应趋于稳定,最大残余应力应变发生在次表层,正常钢轨的萌生寿命是含材料缺陷(存在材料空洞)钢轨的17~27倍,且缺陷(材料空洞)处裂纹萌生位置为135°~150°位置,随着摩擦因数增大,钢轨滚动接触疲劳裂纹萌生寿命逐渐减小,对裂纹萌生方向和位置影响不大。

  8. Analysis on Shear Deformation for High Manganese Austenite Steel during Hot Asymmetrical Rolling Process Using Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    Feng-li SUI; Xin WANG; Jun ZHAO; Biao MA; Chang-sheng LI

    2015-01-01

    Based on the rigid-plastic ifnite element method (FEM), the shear stress ifeld of deformation region for high manganese austenite steel during hot asymmetrical rolling process was analyzed. The inlfuences of rolling parameters, such as thevelocity ratio of upper to lower rolls, theinitial temperature of workpiece and the reduction rate, on the shear deformation of three nodes in the upper, center and lower layers were discussed. As the rolling parameters change, distinct shear deformation appears in the up-per and lower layers, but the shear deformation in the center layer appears only when the velocity ratio is more than 1.00, and the absolute value of the shear stress in this layer is changed with rolling parameters. A mathematical model which relfected the change of the maximal absolute shear stress for the center layer was established, by which the maximal absolute shear stress for the center layer can be easily calculated and the appropriate rolling technology can be designed.

  9. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.

    2011-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.

  10. Rolling-contact fatigue resistance of hard coatings on bearing steels.

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.

    1999-08-18

    Ball- and roller-bearings of the 21st Century are expected to perform better and last longer while operating under more stringent conditions than before. To meet these great expectations, researchers have been constantly exploring new bearing designs or refining existing ones, optimizing microstructure and chemistry of bearing materials, and alternatively, they have been considering the use of thin hard coatings for improved bearing performance and durability. Already, some laboratory tests have demonstrated that hard nitride, carbide (such as TiN, TiC, etc.) and diamondlike carbon (DLC) coatings can be very effective in prolonging the fatigue lives of bearing steels. This paper provides an overview of the recent developments in hard coatings for bearing applications. Previous studies have demonstrated that thin, hard coatings can effectively prolong the fatigue lives of bearing steel substrates. In particular, thinner hard coatings (i.e., 0.2 - 1 {micro}m thick) provide exceptional improvements in the fatigue lives of bearing steel substrates. In contrast, thicker hard coatings suffer micro fracture and delamination when tested under high contact stresses, hence are ineffective and may even have a negative effect on bearing life. Overall, it was concluded that thin hard coatings may offer new possibilities for bearing industry in meeting the performance and durability needs of the 21st Century.

  11. A New Method for Rolling Element Bearing Fault Diagnosis Based on Cyclostationary Theory

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The theory of cyclostationary and its application are very important for the analysis and processing of a non-stationary signal. The paper introduces second-order cyclostationary statistics, with emphass on discussion of cyclic periodogram arithmetic. Com-paring the time smoothed cyclic periodogram with the frequency smoothed cyclic perio- dogram, we found that the former is more useful to extract the feature of cyclostationary signals. The method has been applied to analyze the vibration signal of a rolling element bearing measured on a test bench, and proved to be effective. Meanwhile, we have com pared it with traditional power spectral density analysis, and the results prove that the time smoothed cyclic periodogram is more available to diagnose the fault of a rolling ele ment bearing.

  12. On the Adhesive JKR Contact and Rolling Models for Reduced Particle Stiffness Discrete Element Simulations

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Kleinhans, Ulrich; Wieland, Christoph

    2017-01-01

    Discrete Element Method (DEM) simulations are a promising approach to accurately predict agglomeration and deposition of micron-sized adhesive particles. However, the mechanistic models in DEM combined with high particle stiffness for most common materials require time step sizes in the order...... particle stiffness to experimental data. Then two well-defined test cases are investigated to show the applicability of the guidelines. When introducing a reduced particle stiffness in DEM simulations by reducing the effective Young's modulus from E to Emod, the surface energy density γ in the adhesive...... is important, the commonly used adhesive rolling resistance torque model proposed by Dominik and Tielens [2,3], Krijt et al. [4] can be used by modifying the contact radius ratio (a/a0)3/2 to (amod/a0,mod)3/2, while keeping the other terms unaltered in the description of the rolling resistance torque Mr...

  13. Rolling Contact Fatigue Life and Spall Propagation Characteristics of AISI M50, M50 NiL, and AISI 52100. Part 3. Metallurgical Examination (Preprint)

    Science.gov (United States)

    2009-10-01

    life of 52100 compared to M50 based on ‘ cleanliness ’ of the steel. Additional studies of metal ball vs. silicon nitride should be conducted on both...52100 bearings have different internal geometry and metal balls compared to silicon nitride balls used in the M50 and M50 NiL bearings. The mass...difference between a steel rolling element and silicon nitride rolling element will alter the impact stress and it is expected this will affect the

  14. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite-pearlite and ferrite-bainite microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Mingfei [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hao, E-mail: yhzhmr@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite-pearlite steel and ferrite-bainite steel were investigated. The ferrite-bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite-pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F-P steel could become unstable more ealier compared with that in F-B steel. The fatigue cracks in ferrite-pearlite were more tortuous and could propagate more freely than that in ferrite-bainite microstructures. However, frequent crack branching were observed in ferrite-bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range ({Delta}K) for F-P and F-B steels was discussed within the Paris region. It was shown that FCG rate of F-P steel was higher than that of F-B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  15. Fatigue Behaviour of Fastening Joints of Sheet Materials and Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xiaocong He

    2013-01-01

    Full Text Available Some fastening techniques such as self-piercing riveting, mechanical clinching, and structural adhesive bonding are efficient joining methods which are suitable for joining advanced lightweight sheet materials that are hard to weld. The recent literature relating to fatigue behavior of such fastening joints and finite element analysis is reviewed in this paper. The recent development in fatigue behavior analysis of the fastening joints is described with particular reference to some major factors that influence the fatigue behavior of the fastening joints: failure mechanism, environmental effects, and hybrid joining techniques. The main methods used in finite element analysis of fatigue behavior of the fastening joints of sheet materials are discussed and illustrated with brief case studies from the literature.

  16. Use prospect of the of athermic technologies of metal softening for rolling stock elements

    Directory of Open Access Journals (Sweden)

    N.N. Grischenko

    2013-06-01

    Full Text Available Purpose. The purpose of work is the possibility estimation of аthermic technologies use of cold-deformed metal softening for elements of railway car body and wheel. Methodology. The material for research is the carbon steel of the wheel rim fragment containing 0.55%С, 0.74%Mn, 0.33%Si, and the steel 20. The wheel steel is studied after heat strengthening and cold work after operation. Steel 20 is studied after plastic cold work by rolling. Electric pulse treatment (ET is carried out on the special equipment. As the property of metal strength the Vickers hardness number is used. The microstructure research is carried out using the light and electronic microscope. Findings. During operation of the rolling stock elements with different strength level origin of damages on metallic surfaces is caused by a simultaneous load action. Taking into account that forming of breakdown sites is largely determined by the state of metal volumes nearby the places of maximal active voltages, the technology development of defect accumulation slowdown or the level of active voltages development allow one to prolong the operating term of rolling stock elements. After electric pulse treatment of the wheel rim fragment the regular changes of metal internal structure corresponded to the hardness changes. The hardness of low carbon steel increases proportional to the increase of the level of cold work by rolling. Alternating bending of the cold-deformed flat is accompanied by strength decrease, which is caused by the metal substructure changes. Originality. The softening process of the cold-worked steel is accompanied by substructure changes, which to a greater extent correspond to the hardening development from the plastic cold-work: dispersion of the dislocation cellular structure, formation of the new sub boundaries and displacement of the formed sub boundaries. Practical value. Introduction of electric pulse treatment in the conditions of railway depots repair base

  17. SOURCES OF DIFFERENCES IN CALCULATIONS AND EXPERIMENTAL TEST RESULTS OF FATIGUE LIFE OF STRUCTURAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    Józef SZALA

    2014-06-01

    Full Text Available Calculation results are the base for evaluation of fatigue life of structural elements during machine design processes. It results from the fact that there are no material objects in the phase of existence of a product. Reliability of tests results is an essential element in the calculation fatigue life evaluation method and it can be evaluated by comparison of the results with experimental ones. In the paper there was performed an analysis of the chosen factors essentially influencing conformity of calculation results and experimental test ones connected with basic elements of a calculation algorithm including: - elaboration and analysis of service loadings of a structural element, - determination and analysis of cyclic properties of structural elements, - selection of fatigue damage accumulation hypothesis being a description of fatigue life processes. The mentioned analysis was illustrated with examples of fatigue life tests performed in the Machine Design Department of the University of Technology and Agriculture within the research grant no. 2221/B/T02/2010/39 financed by The Ministry of Science and Higher Education and National Science Centre.

  18. Efficient Fatigue Analysis of Helix Elements in Umbilicals and Flexible Risers: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Geir Skeie

    2012-01-01

    Full Text Available Fatigue analysis of structural components such as helix tensile armors and steel tubes is a critical design issue for dynamic umbilicals and flexible pipes. The basis for assessment of fatigue damage of such elements is the long-term stress cycle distribution at critical locations on the helix elements caused by long-term environmental loading on the system. The long-term stress cycle distribution will hence require global dynamic time domain analysis followed by a detailed cross-sectional analysis in a large number of irregular sea states. An overall computational consistent and efficient fatigue analysis scheme is outlined with due regard of the cross-sectional analysis technique required for fatigue stress calculation with particular attention to the helix elements. The global cross-section is exposed to pure bending, tensile, torsion, and pressure loading. The state of the different cross-section elements is based on the global response. Special emphasis is placed on assessment of friction stresses caused by the stick-slip behavior of helix elements in bending that are of special importance for fatigue life assessments. The described cross-sectional analysis techniques are based on an extensive literature survey and are hence considered to represent industry consensus. The performance of the described calculation scheme is illustrated by case studies.

  19. Finite Element Analysis of Cross Rolling on AISI 304 Stainless Steel: Prediction of Stress and Strain Fields

    Science.gov (United States)

    Rout, Matruprasad; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Studies on the effect of strain path during rolling has been carried out for a long time, but the same has not been done using Finite Element Analysis (FEA). Change in strain path affects the state variables in the rolled plate like stress, strain, temperature etc. In the current work, Finite Element Analysis for cross rolling of AISI 304 austenitic stainless steel has been carried out by rotating the plate by 90° in between the passes. To analyze stress and strain fields in the material for cross rolling, a full 3D model of work-roll and plate has been developed using rigid-viscoplastic finite element method. The stress and strain fields, considering von-Mises yield criteria, are calculated by using updated Lagrangian method. In addition to these, the model also calculates the normal pressure and strain rate distribution in the plate during cross rolling. The nature of the variations of stress and strain fields in the plate, predicted by the model, is in good agreement with the previously published works for unidirectional rolling.

  20. Vibration transmission through rolling element bearings. Part III: Geared rotor system studies

    Science.gov (United States)

    Lim, T. C.; Singh, R.

    1991-11-01

    This paper extends the proposed bearing matrix formulation of Parts I and II to analyze the overall dynamics of a geared rotor system which includes a spur gear pair, shafts, rolling element bearing, a prime mover and a load (attached to the geared rotor system through flexible torsional couplings), a rigid or flexible casing, and compliant or massive mounts. Linear time-invariant, discrete dynamic models of a generic geared rotor system with proportional viscous damping are developed, by using lumped parameter and dynamic finite element techniques, which are then used to predict the vibration transmissibility through bearings and mounts, casing vibration motion, and dynamic response of the internal rotating system. Each rotating shaft is modeled as an Euler beam in the lumped parameter model and as a Timoshenko beam in the dynamic finite element model, but the gyroscopic moment is not included. Eigensolution and forced harmonic response studies due to rotating mass unbalance or kinematic transmission error excitation for the following example cases are obtained by using the formulation, and the results are compared with those of simple models currently available in the literature and/or experiment: case I, a single-stage rotor system with flexibly mounted rigid casing consisting of two bearings as a special case of the geared rotor system; case II, a spur gear pair drive supported by four bearings installed in a flexibly mounted rigid casing; and case III, an experimental set-up consisting of a high-precision gear and pinion, and four identical rolling element bearings contained in a flexible casing mounted rigidly on a massive foundation. Analytical predictions show that the theory is indeed capable of predicting bearing and mount moment transmissibilities in addition to the force transmissibilities. Also, flexural vibrations of the casing plate are predicted well as the theory is in good agreement with measurements made on case III; such predictions are not

  1. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate

    Science.gov (United States)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-05-01

    Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1

  2. [Finite Element Analysis of Effect of Key Dimension of Nitinol Stent on Its Fatigue Behaviour].

    Science.gov (United States)

    Li, Jianjun; Wang, Shengzhang

    2015-04-01

    To evaluate the fatigue behavior of nitinol stents, we used the finite element method to simulate the manufacture processes of nitinol stents, including expanding, annealing, crimping, and releasing procedure in applications of the clinical treatments. Meanwhile, we also studied the effect of the crown area dimension of stent on strain distribution. We then applied a fatigue diagram to investigate the fatigue characteristics of nitinol stents. The results showed that the maximum strain of all three stent structures, which had different crown area dimensions under vessel loads, located at the transition area between the crown and the strut, but comparable deformation appeared at the inner side of the crown area center. The cause, of these results was that the difference of the area moment of inertia determined by the crown dimension induced the difference of strain distribution in stent structure. Moreover, it can be drawn from the fatigue diagrams that the fatigue performance got the best result when the crown area dimension equaled to the intermediate value. The above results proved that the fatigue property of nitinol stent had a close relationship with the dimension of stent crown area, but there was no positive correlation.

  3. Fault Detection Enhancement in Rolling Element Bearings via Peak-Based Multiscale Decomposition and Envelope Demodulation

    Directory of Open Access Journals (Sweden)

    Hua-Qing Wang

    2014-01-01

    Full Text Available Vibration signals of rolling element bearings faults are usually immersed in background noise, which makes it difficult to detect the faults. Wavelet-based methods being used commonly can reduce some types of noise, but there is still plenty of room for improvement due to the insufficient sparseness of vibration signals in wavelet domain. In this work, in order to eliminate noise and enhance the weak fault detection, a new kind of peak-based approach combined with multiscale decomposition and envelope demodulation is developed. First, to preserve effective middle-low frequency signals while making high frequency noise more significant, a peak-based piecewise recombination is utilized to convert middle frequency components into low frequency ones. The newly generated signal becomes so smoother that it will have a sparser representation in wavelet domain. Then a noise threshold is applied after wavelet multiscale decomposition, followed by inverse wavelet transform and backward peak-based piecewise transform. Finally, the amplitude of fault characteristic frequency is enhanced by means of envelope demodulation. The effectiveness of the proposed method is validated by rolling bearings faults experiments. Compared with traditional wavelet-based analysis, experimental results show that fault features can be enhanced significantly and detected easily by the proposed method.

  4. Fatigue analysis of CANFLEX-NU fuel elements subjected to power-cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Ki Seob; Suk, Ho Chun

    1997-08-01

    This report describes the fatigue analysis of the CANDU advanced fuel, so-called CANFLEX-NU, subjected to power-cyclic loads more than 1,000. The CANFLEX-NU bundle is composed of 43 elements with natural uranium fuel. As a result, the CANFLEX-NU fuel elements will maintain good integrity under the condition of 1,500 power-cycles. (author). 4 refs., 19 figs.

  5. Stream Surface Strip Element Method and Simulation of Three-Dimensional Deformation of Continuous Hot Rolled Strip

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-min; WANG Ying-rui

    2004-01-01

    A new method, the stream surface strip element method, for simulating the three-dimensional deformation of plate and strip rolling process was proposed. The rolling deformation zone was divided into a number of stream surface (curved surface) strip elements along metal flow traces, and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation. The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve, of which the lateral distributions were expressed as the third-power spline function, and the altitudinal distributions were fitted in the quadratic curve. From the flow theory of plastic mechanics, the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed. Compared with the streamline strip element method proposed by the first author of this paper, the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction, and realizes the precise three-dimensional analysis and computation. The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.

  6. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    Science.gov (United States)

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Vibration transmission through rolling element bearings. I - Bearing stiffness formulation. II - System studies

    Science.gov (United States)

    Lim, T. C.; Singh, R.

    1990-01-01

    How vibratory motion can be transmitted from the rotating shaft to the casing and other connecting structures in rotating mechanical equipment is addressed here by developing a new mathematical model of precision rolling element bearings. A new grating stiffness matrix is proposed in order to demonstrate a coupling between the shaft bending motion and the flexural motion of the casing plate. It is shown that the translational bearing stiffness coefficients currently used in rotor dynamic models are a small subset of the proposed matrix. The theory is validated by examples, and the proposed bearing formulation is then extended to demonstrate its superiority over existing models in vibration transmission analyses. It is shown that the model can easily be incorporated into analytical or numerical models typically used for dynamic analyses.

  8. Two Dimension Finite Element Simulations on the Electromagnetic Containment in Twin-Roll Strip Casting

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Distribution of magnetic field and electromagnetic force in twin-roll casting of steels was studied by the method of numericalsimulation in this paper. Two-dimension finite element model, which includes the regions of melt, stainless collar, coil andmagnetic core, has been constructed. By solving magnetic vector potential formulations of quasi-static electromagnetic field,distribution of magnetic flux density and magnetic force at different molten height is determined. Calculated results showedthat intensity of the distribution of magnetic flux density increased linearly with the increased coil current; and the magneticforce in the melt increased as a quadratic cure with creased coil current. More attention was given to the distribution of eddycurrent and magnetic force in the melt, the confine effect at different molten height was also discussed.

  9. A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling

    Science.gov (United States)

    Al-Bugharbee, Hussein; Trendafilova, Irina

    2016-05-01

    This study proposes a methodology for rolling element bearings fault diagnosis which gives a complete and highly accurate identification of the faults present. It has two main stages: signals pretreatment, which is based on several signal analysis procedures, and diagnosis, which uses a pattern-recognition process. The first stage is principally based on linear time invariant autoregressive modelling. One of the main contributions of this investigation is the development of a pretreatment signal analysis procedure which subjects the signal to noise cleaning by singular spectrum analysis and then stationarisation by differencing. So the signal is transformed to bring it close to a stationary one, rather than complicating the model to bring it closer to the signal. This type of pretreatment allows the use of a linear time invariant autoregressive model and improves its performance when the original signals are non-stationary. This contribution is at the heart of the proposed method, and the high accuracy of the diagnosis is a result of this procedure. The methodology emphasises the importance of preliminary noise cleaning and stationarisation. And it demonstrates that the information needed for fault identification is contained in the stationary part of the measured signal. The methodology is further validated using three different experimental setups, demonstrating very high accuracy for all of the applications. It is able to correctly classify nearly 100 percent of the faults with regard to their type and size. This high accuracy is the other important contribution of this methodology. Thus, this research suggests a highly accurate methodology for rolling element bearing fault diagnosis which is based on relatively simple procedures. This is also an advantage, as the simplicity of the individual processes ensures easy application and the possibility for automation of the entire process.

  10. Using DOProC method in reliability assessment of steel elements exposed to fatigue

    Directory of Open Access Journals (Sweden)

    Krejsa Martin

    2017-01-01

    Full Text Available Fatigue crack damage depends on a number of stress range cycles. This is a time factor in the course of reliability for the entire designed service life. Three sizes are important for the characteristics of the propagation of fatigue cracks - initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression can be based on a linear fracture mechanic. Depending on location of an initial crack, the crack may propagate in structural element e.g. from the edge or from the surface. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability and Bayesian approach, times for subsequent inspections can be determined. For probabilistic modelling of fatigue crack progression was used the original and new probabilistic method - the Direct Optimized Probabilistic Calculation (“DOProC”, which uses a purely numerical approach without any simulation techniques or approximation approach based on optimized numerical integration.

  11. Fatigue and fracture assessment of cracks in steel elements using acoustic emission

    Science.gov (United States)

    Nemati, Navid; Metrovich, Brian; Nanni, Antonio

    2011-04-01

    Single edge notches provide a very well defined load and fatigue crack size and shape environment for estimation of the stress intensity factor K, which is not found in welded elements. ASTM SE(T) specimens do not appear to provide ideal boundary conditions for proper recording of acoustic wave propagation and crack growth behavior observed in steel bridges, but do provide standard fatigue crack growth rate data. A modified versions of the SE(T) specimen has been examined to provide small scale specimens with improved acoustic emission(AE) characteristics while still maintaining accuracy of fatigue crack growth rate (da/dN) versus stress intensity factor (ΔK). The specimens intend to represent a steel beam flange subjected to pure tension, with a surface crack growing transverse to a uniform stress field. Fatigue test is conducted at low R ratio. Analytical and numerical studies of stress intensity factor are developed for single edge notch test specimens consistent with the experimental program. ABAQUS finite element software is utilized for stress analysis of crack tips. Analytical, experimental and numerical analysis were compared to assess the abilities of AE to capture a growing crack.

  12. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings

    Science.gov (United States)

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Lei, Yaguo

    2017-08-01

    The extraction of periodic impulses, which are the important indicators of rolling bearing faults, from vibration signals is considerably significance for fault diagnosis. Maximum correlated kurtosis deconvolution (MCKD) developed from minimum entropy deconvolution (MED) has been proven as an efficient tool for enhancing the periodic impulses in the diagnosis of rolling element bearings and gearboxes. However, challenges still exist when MCKD is applied to the bearings operating under harsh working conditions. The difficulties mainly come from the rigorous requires for the multi-input parameters and the complicated resampling process. To overcome these limitations, an improved MCKD (IMCKD) is presented in this paper. The new method estimates the iterative period by calculating the autocorrelation of the envelope signal rather than relies on the provided prior period. Moreover, the iterative period will gradually approach to the true fault period through updating the iterative period after every iterative step. Since IMCKD is unaffected by the impulse signals with the high kurtosis value, the new method selects the maximum kurtosis filtered signal as the final choice from all candidates in the assigned iterative counts. Compared with MCKD, IMCKD has three advantages. First, without considering prior period and the choice of the order of shift, IMCKD is more efficient and has higher robustness. Second, the resampling process is not necessary for IMCKD, which is greatly convenient for the subsequent frequency spectrum analysis and envelope spectrum analysis without resetting the sampling rate. Third, IMCKD has a significant performance advantage in diagnosing the bearing compound-fault which expands the application range. Finally, the effectiveness and superiority of IMCKD are validated by a number of simulated bearing fault signals and applying to compound faults and single fault diagnosis of a locomotive bearing.

  13. Finite Element Simplified Fatigue Analysis Method for a Non-tubular Joint of an Offshore Jacket Platform

    Institute of Scientific and Technical Information of China (English)

    Qinghua Bao; Heng Feng

    2011-01-01

    This paper proposes the finite element simplified fatigue analysis method for fatigue evaluation of the composite non-tubular joint structure of an offshore jacket subjected to wave loads.The skirt pile sleeve of the offshore jacket,which had been in service,was taken as an example of the non-tubular joint structure.SACS software was used for global analysis of multi-directional wave loads for the jacket platform,and ALGOR software was used to build a finite element model,perform finite element analysis,post-process stress results for acquiring the stress range,and perform fatigue evaluation.The analysis results indicate that the extreme stress range is within the allowable stress range and meets the requirements of DNV code.That means the simplified fatigue analysis method is effective and can be used in fatigue design for the non-tubular joint structure of an offshore jacket.

  14. CISM Course on Rolling Contact Phenomena

    CERN Document Server

    Kalker, Joost

    2000-01-01

    Preface.- Rolling Contact Phenomena - Linear Elasticity.- Finite Element Methods for Rolling Contact.- Plastic Deformation in Rolling Contact.- Non-Steady State Rolling Contact and Corrugations.- Modelling of Tyre Force and Moment Generation.- Rolling Noise.- Lubrication

  15. A numerical approach towards understanding the mechanism of fatigue wear in tread vulcanizates during rolling of tires

    Science.gov (United States)

    Razzaghi-Kashani, Mehdi

    2000-10-01

    Analysis of surface fracture and progress of fatigue wear on the surface of tire tread under road asperity loading is the main objective of this study. Starting with an idealized smooth surface of having precursor flaws, a simple mechanism for formation of wear debris and development of surface patterns is proposed. In this mechanism, step-wise propagation of these micro-flaws under periodic loading by asperities of the road is simulated using Moving Template Finite Element Analysis (MTFEA) in linear geometry and further analyzed using ABAQUS software in non-linear geometry. It is attempted to extend this analysis to heterogeneous rubber compounds where dispersed particles may affect propagation of surface cracks. Mechanical characterization of all existing phases i.e. rubber matrix, filler reinforcing units, and dispersed rubber particles (minor phase in blends) under similar conditions as asperity loading is performed by experimental/numerical methods prior to any stress analysis of such systems. Also, some features of carbon black reinforcement such as stress/strain amplifications in the rubber phase and distribution of stress/strain in constituents of the compound are predicted by combining FEA with experimental observations. Applying mechanical properties of all phases in local FEA models, interactions between ongoing crack tips and dispersed particles are analyzed. Some mechanical mechanisms by which filler reinforcing units and dispersed rubber particles retard propagation of cracks and possibly improving wear resistance are hypothesized.

  16. Static and dynamic finite element analysis of 304 stainless steel rod and wire hot continuous rolling process

    Institute of Scientific and Technical Information of China (English)

    Siyu Yuan; Liwen Zhang; Shulun Liao; Mao Li; Min Qi; Yu Zhen; Shuqi Guo

    2008-01-01

    Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit proce-dure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a rough-ing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.

  17. Rolling element bearings diagnostics using the Symbolic Aggregate approXimation

    Science.gov (United States)

    Georgoulas, George; Karvelis, Petros; Loutas, Theodoros; Stylios, Chrysostomos D.

    2015-08-01

    Rolling element bearings are a very critical component in various engineering assets. Therefore it is of paramount importance the detection of possible faults, especially at an early stage, that may lead to unexpected interruptions of the production or worse, to severe accidents. This research work introduces a novel, in the field of bearing fault detection, method for the extraction of diagnostic representations of vibration recordings using the Symbolic Aggregate approXimation (SAX) framework and the related intelligent icons representation. SAX essentially transforms the original real valued time-series into a discrete one, which is then represented by a simple histogram form summarizing the occurrence of the chosen symbols/words. Vibration signals from healthy bearings and bearings with three different fault locations and with three different severity levels, as well as loading conditions, are analyzed. Considering the diagnostic problem as a classification one, the analyzed vibration signals and the resulting feature vectors feed simple classifiers achieving remarkably high classification accuracies. Moreover a sliding window scheme combined with a simple majority voting filter further increases the reliability and robustness of the diagnostic method. The results encourage the potential use of the proposed methodology for the diagnosis of bearing faults.

  18. Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model

    Science.gov (United States)

    Wang, Guofeng; Liu, Chang; Cui, Yinhu

    2012-09-01

    Feature extraction plays an important role in the clustering analysis. In this paper an integrated Autoregressive (AR)/Autoregressive Conditional Heteroscedasticity (ARCH) model is proposed to characterize the vibration signal and the model coefficients are adopted as feature vectors to realize clustering diagnosis of rolling element bearings. The main characteristic is that the AR item and ARCH item are interrelated with each other so that it can depict the excess kurtosis and volatility clustering information in the vibration signal more accurately in comparison with two-stage AR/ARCH model. To testify the correctness, four kinds of bearing signals are adopted for parametric modeling by using the integrated and two-stage AR/ARCH model. The variance analysis of the model coefficients shows that the integrated AR/ARCH model can get more concentrated distribution. Taking these coefficients as feature vectors, K means based clustering is utilized to realize the automatic classification of bearing fault status. The results show that the proposed method can get more accurate results in comparison with two-stage model and discrete wavelet decomposition.

  19. Adaptive sparsest narrow-band decomposition method and its applications to rolling element bearing fault diagnosis

    Science.gov (United States)

    Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao

    2017-02-01

    Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.

  20. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  1. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  2. Fatigue life prediction of casing welded pipes by using the extended finite element method

    Directory of Open Access Journals (Sweden)

    Ljubica Lazić Vulićević

    2016-03-01

    Full Text Available The extended finite element (XFEM method has been used to simulate fatigue crack growth in casing pipe, made of API J55 steel by high-frequency welding, in order estimate its structural integrity and life. Based on the critical value of stress intensity factor KIc, measured in different regions of welded joint, the crack was located in the base metal as the region with the lowest resistance to crack initiation and propagation. The XFEM was first applied to the 3 point bending specimens to verify numerical results with the experimental ones. After successful verification, the XFEM was used to simulate fatigue crack growth, position axially in the pipe, and estimate its remaining life.

  3. Finite element analysis of plate rolling of duplex-layer steels for long-period fast reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungki; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-10-15

    With same roll speed and same friction coefficient, curvature is formed on rolled product from FEA result. To reduce this curvature and plastic strain which cause reduction in fabricability, two ways are selected; (i) controlling upper/lower roll speed, and (ii) adjusting upper/lower friction coefficient and contacts. Both results shows it can reduce the curvature and equivalent plastic strain of the plate after the rolling. It can be applied in real plate rolling processing and also the next research for pilgering process for tube and pipe production. The FEA results of equivalent stress and plastic deformation distribution are showed in figure 5. The von-Mises equivalent stress distribution showed that the stress is still concentrated on upper Fe-12Cr-2Si layer, however, it also shows that equivalent plastic strain is distributed uniformly comparing with upper and lower roll speed ratio is 1.0. In high temperature liquid metal environment, there are usually two types of corrosion; one is corrosion by dissolution of alloy elements into liquid metal, and another is corrosion by chemical reaction among impurities in liquid metal and structural alloy. There have been some researches to develop new alloys that can form more dense scale on the surface even in wider impurity range and higher temperature range . M.P Short et al. devised functionally graded composite which is composed of two layers . one is a thin corrosion resistant layer and another is thick structural layer which guarantees mechanical strength, creep rupture strength and shows less irradiation swelling.

  4. 滚动体加工工艺技术与装备发展方向%Machining Process Technology and Development Direction of Equipment for Rolling Elements

    Institute of Scientific and Technical Information of China (English)

    张永乾

    2015-01-01

    The machining process technology and equipment are introduced for rolling elements in China,and the cur-rent situation and existing main problems about machining process for rolling elements in China are analyzed.The de-velopment direction of machining process technology for rolling elements is discussed.%通过对国内滚动体加工工艺技术及装备的介绍,分析了我国滚动体加工工艺现状及存在的主要问题,探讨了滚动体加工工艺技术的发展方向。

  5. Effect of Multi-Pass Ultrasonic Surface Rolling on the Mechanical and Fatigue Properties of HIP Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Gang Li

    2017-02-01

    Full Text Available The main purpose of this paper was to investigate the effect of a surface plastic deformation layer introduced by multi-pass ultrasonic surface rolling (MUSR on the mechanical and fatigue properties of HIP Ti-6Al-4V alloys. Some microscopic analysis methods (SEM, TEM and XRD were used to characterize the modified microstructure in the material surface layer. The results indicated that the material surface layer experienced a certain extent plastic deformation, accompanied by some dense dislocations and twin generation. Moreover, surface microhardness, residual stress and roughness values of samples treated by MUSR were also greatly improved compared with that of untreated samples. Surface microhardness and compressive residual stress were increased to 435 HV and −1173 MPa, respectively. The minimum surface roughness was reduced to 0.13 μm. The maximum depth of the surface hardening layer was about 55 μm. However, the practical influence depth was about 450 μm judging from the tensile and fatigue fracture surfaces. The ultimate tensile strength of the MUSR-treated sample increased to 990 MPa from the initial 963 MPa. The fatigue strength of the MUSR-treated sample was increased by about 25% on the base of 107 cycles, and the lifetime was prolonged from two times to two orders of magnitude at the applied stress amplitudes of 650–560 MPa. The improved mechanical and fatigue properties of MUSR-treated samples should be attributed to the combined effects of the increased microhardness and compressive residual stress, low surface roughness, grain refinement and micro-pore healing in the material surface-modified layer.

  6. Dry Rolling Friction and Wear of Elastomer Systems and Their Finite Element Modelling

    OpenAIRE

    Xu, Dan

    2009-01-01

    Elastomers and their various composites, and blends are frequently used as engineering working parts subjected to rolling friction movements. This fact already substantiates the importance of a study addressing the rolling tribological properties of elastomers and their compounds. It is worth noting that until now the research and development works on the friction and wear of rubber materials were mostly focused on abrasion and to lesser extent on sliding type of loading. As the tribological ...

  7. Fatigue life prediction of casing welded pipes by using the extended finite element method

    OpenAIRE

    2016-01-01

    The extended finite element (XFEM) method has been used to simulate fatigue crack growth in casing pipe, made of API J55 steel by high-frequency welding, in order estimate its structural integrity and life. Based on the critical value of stress intensity factor KIc, measured in different regions of welded joint, the crack was located in the base metal as the region with the lowest resistance to crack initiation and propagation. The XFEM was first applied to the 3 point bending specimens to...

  8. ROLLING CONTACT FATIGUE AND WEAR OF CrL AND CrM MODE POWDER METALLURGY STEELS

    Directory of Open Access Journals (Sweden)

    Dušan Rodziňák

    2010-03-01

    Full Text Available Contact fatigue properties of sintered steels type CrM and CrL with addition of 0,3-0,7 %C were examined on the device type „pin on disc“ and confronted with wear tests on the same principle. Achieved outcomes are better for CrM material; the higher carbon content the better they are. Fatigue strength ranges from 925 - 1410 MPa and is consistent with the value of hardness. Dry wear tests show that the wear is dependent on the hardness of carbide particles (microhardness and not on macrohardness of material. These causes wear of indentor. Between values obtained from tests of contact fatigue and wear testing is not possible to find relevant compliance. Both rupture mechanisms are based on breaches of other principles, particularly the PM materials are in the mode of wear that is not sufficiently explored.

  9. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination

    Science.gov (United States)

    Bodini, I.; Sansoni, G.; Lancini, M.; Pasinetti, S.; Docchio, F.

    2016-08-01

    Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens.

  10. Fatigue strength evaluation of self-piercing riveted cold rolled steel joints under mixed mode loading conditions

    Directory of Open Access Journals (Sweden)

    KYUNG-MIN LEE

    2016-08-01

    Full Text Available Fatigue strength of cross-shaped specimens of SPR joints made of SPCC was evaluated at load angles of 0°, 45°, and 90°. For the static strength at load angles of 0°, 45°, and 90°, the maximum loads were determined to be 4890N, 1969N, and 1611N, respectively. Regarding for the relationship between the load amplitude and the number of cycles (Nf, the results were Pamp = 2209.3N−f 0.014 , = 8610.8 −0.199 Pamp N f , and = 3459.3 −0.149 Pamp N f for the load angle of 0°, 45°, and 90°, respectively. On the basis of the lifetime of 106 cycles, the load amplitudes which correspond to the fatigue limit for load angles of 0°, 45°, and 90° were 38%, 28%, and 29% of the static strength, respectively. The effective stress intensity factor was not found to be appropriate in the evaluation of the fatigue lifetime due to the different fatigue fracture behavior of these specimens.

  11. Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore; Ionescu, Drags; Pauna, Eduard [Institute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.

    2012-03-15

    When nuclear power reactors are operated in a load following (LF) mode, the nuclear fuel may be subjected to step changes in power on weekly, daily, or even hourly basis, depending on the grid's needs. Two load following tests performed in TRIGA Research Reactor of Institute for Nuclear Research (INR) Pitesti were simulated with finite elements computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the sheath arising from expansion and contraction of the pellets in the corrosive environment. The 3D finite element analyses show that the cyclic strains give highly multiaxial stresses in the sheath at ridge region. This paper summarizes the results of the analytical assessment for SCF and their relation to CANDU fuel performance in LF tests conditions. (orig.)

  12. A combined eulerian-lagrangian three-dimensional finite-element analysis of edge-rolling

    NARCIS (Netherlands)

    Huisman, H.J.; Huetink, J.

    1985-01-01

    After edge-rolling (heavy width-reduction), the cross-section of a continuously-cast steel slab may be non-rectangular, whereas what is desired is that it should be exactly rectangular. The deformed shape results in an increased number of heavy width- and thickness-reductions having to be imposed on

  13. A combined eulerian-lagrangian three-dimensional finite-element analysis of edge-rolling

    NARCIS (Netherlands)

    Huisman, H.J.; Huetink, Han

    1985-01-01

    After edge-rolling (heavy width-reduction), the cross-section of a continuously-cast steel slab may be non-rectangular, whereas what is desired is that it should be exactly rectangular. The deformed shape results in an increased number of heavy width- and thickness-reductions having to be imposed on

  14. Stress investigation on the rolling tires across the speed bump using finite element method

    Science.gov (United States)

    Hidayat, Royan; Pranoto, Sarwo Edy; Tauviqirrahman, Mohammad; Bayuseno, Athanasius P.

    2016-04-01

    The interaction between road surface and tire on a vehicle may strongly determine the vehicle's stability. This study was conducted to find out the stress distribution as a result of pressure on the tires rolling across the speed bumps. This study used Abaqus software to simulate the movement of the tire, which rolls across the speed bump to determine the stress distribution that may occur. The tire component material used was a full path rubber on a speed bump. For the boundary conditions of the study, it was assumed that the tires had load variations as much as 2 kN, 6 kN, 10 kN, as well as pressure variations as much as 17 Psi, 30 Psi, 40 Psi. The tires were then rolled 8 km/h crossing the speed bump. Modeling speed bumps also varied i.e. the first variation of speed bumps that have a height of 50 mm with a width of 250 mm, the second variation of height 75 mm with a width of 300 mm, and a third variation of height 100 mm with a width of 400 mm. The simulation was done by giving the tire pressures as much as 17 Psi, 30 Psi, 40 Psi and loads as much as 2 kN, 6 kN, 10 kN. Further, the tires were rolled three times. It was rolled crossing the first speed bump, the second, and the third, respectively. Results showed stress distribution's fig and graphs. From the analysis results and simulation, it was shown that the greater the load received by the tires, the higher stress they produced.

  15. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed

    Science.gov (United States)

    Zhao, Dezun; Li, Jianyong; Cheng, Weidong; Wen, Weigang

    2016-09-01

    Multi-fault detection of the rolling element bearing under time-varying rotational speed presents a challenging issue due to its complexity, disproportion and interaction. Computed order analysis (COA) is one of the most effective approaches to remove the influences of speed fluctuation, and detect all the features of multi-fault. However, many interference components in the envelope order spectrum may lead to false diagnosis results, in addition, the deficiencies of computational accuracy and efficiency also cannot be neglected. To address these issues, a novel method for compound faults detection of rolling element bearing based on the generalized demodulation (GD) algorithm is proposed in this paper. The main idea of the proposed method is to exploit the unique property of the generalized demodulation algorithm in transforming an interested instantaneous frequency trajectory of compound faults bearing signal into a line paralleling to the time axis, and then the FFT algorithm can be directly applied to the transformed signal. This novel method does not need angular resampling algorithm which is the key step of the computed order analysis, and is hence free from the deficiencies of computational error and efficiency. On the other hand, it only acts on the instantaneous fault characteristic frequency trends in envelope signal of multi-fault bearing which include rich fault information, and is hence free from irrelevant items interferences. Both simulated and experimental faulty bearing signal analysis validate that the proposed method is effective and reliable on the compound faults detection of rolling element bearing under variable rotational speed conditions. The comprehensive comparison with the computed order analysis further shows that the proposed method produces higher accurate results in less computation time.

  16. Fatigue design of welded joints using the finite element method and the 2007 ASME Div. 2 Master curve

    Directory of Open Access Journals (Sweden)

    G. Nicoletto

    2009-07-01

    Full Text Available Fatigue design of welded structures is primarily based on a nominal stress; hot spot stress methods or local approaches each having several limitations when coupled with finite element modeling. An alternative recent structural stress definition is discussed and implemented in a post-processor. It provides an effective means for the direct coupling of finite element results to the fatigue assessment of welded joints in complex structures. The applications presented in this work confirm the main features of the method: mesh-insensitivity, accurate crack location and life to failure predictions.

  17. Estimation of stiffening effect of shaft and housing material outside projected area of a rolling element bearing

    Science.gov (United States)

    Taylor, C. M.

    1977-01-01

    In the analysis of distortions occurring in rolling-element bearings, it is common to neglect the stiffening effect of shafting outside the bearing region. The magnitude of such an effect will be dependent primarily on the bearing width-to-bore ratio, the shaft geometry, and the location of the bearing on the shaft. An estimate is given of the stiffening effect for a wide range of these variables. In addition, brief consideration is given to the parallel situation existing at the outer ring housing.

  18. Validation of the finite element simulation to estimate the rolling resistance of a non-driving wheel with experimental tests

    Directory of Open Access Journals (Sweden)

    N Dibagar

    2015-09-01

    Full Text Available Introduction: Encountering soil from the viewpoint of management and product manufacturing has always been considered important, and an attempt is always made hat the tools and contrasting methods of soil be designed in such a way that itself prevents, as much as possible, the destructive consequences or energy waste that include economical or environmental limitations. Enhancing the soil encountering methods, quality reformation, and its related equipment, requires performing reliable tests in actual soil conditions. Considering the complexity and variety of variables in soil and machine contrast, this is a hard task. Hence, the numeral simulations are the key of all optimizations that illustrate efficient models by removing the costly farm tests and reducing research time. Tire is one of the main factors engaged with soil, and it is one of those tools that are discussable in both farms, and software environments. Despite the complexities in soil behavior, and tire geometry, modeling, tire movement on the soil has been the researchers’ objective from the past. Materials and methods: A non-linear finite element (FE model of the interaction of a non-driving tire with soil surface was developed to investigate the influence of the forward speed, tire inflation pressure and vertical load on rolling resistance using ABAQUS/Explicit code. In this research numerical and experimental tests were done under different conditions in order to estimate tire rolling resistance. In numerical tests, the soil part was simulated as a one-layer viscous-elastic material with a Drucker-Prager model by considering realistic soil properties. These properties included elastic and plastic properties which were obtained in the soil laboratory using relevant tests. The soil samples were prepared from the soil which was inside the soil bin. The same soil was utilized in experimental tests. Finite strain hyper elasticity model is developed to model nearly incompressible

  19. Validation of the finite element simulation to estimate the rolling resistance of a non-driving wheel with experimental tests

    Directory of Open Access Journals (Sweden)

    N Dibagar

    2015-09-01

    Full Text Available Introduction: Encountering soil from the viewpoint of management and product manufacturing has always been considered important, and an attempt is always made hat the tools and contrasting methods of soil be designed in such a way that itself prevents, as much as possible, the destructive consequences or energy waste that include economical or environmental limitations. Enhancing the soil encountering methods, quality reformation, and its related equipment, requires performing reliable tests in actual soil conditions. Considering the complexity and variety of variables in soil and machine contrast, this is a hard task. Hence, the numeral simulations are the key of all optimizations that illustrate efficient models by removing the costly farm tests and reducing research time. Tire is one of the main factors engaged with soil, and it is one of those tools that are discussable in both farms, and software environments. Despite the complexities in soil behavior, and tire geometry, modeling, tire movement on the soil has been the researchers’ objective from the past. Materials and methods: A non-linear finite element (FE model of the interaction of a non-driving tire with soil surface was developed to investigate the influence of the forward speed, tire inflation pressure and vertical load on rolling resistance using ABAQUS/Explicit code. In this research numerical and experimental tests were done under different conditions in order to estimate tire rolling resistance. In numerical tests, the soil part was simulated as a one-layer viscous-elastic material with a Drucker-Prager model by considering realistic soil properties. These properties included elastic and plastic properties which were obtained in the soil laboratory using relevant tests. The soil samples were prepared from the soil which was inside the soil bin. The same soil was utilized in experimental tests. Finite strain hyper elasticity model is developed to model nearly incompressible

  20. Experimental Study and Finite Element Polycrystal Model Simulation of the Cold Rolling Textures in a Powder Metallurgy Processed Pure Aluminum Plate

    Institute of Scientific and Technical Information of China (English)

    Liqing CHEN; Naoyuki Kanetake

    2005-01-01

    Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however, the textures in powder metallurgy (PM) processed aluminum has been rarely reported. In this article, a pure aluminum plate was prepared via PM route. The starting billet was first produced with uni-axially cold compaction and flat hot-extrusion and then followed by cold rolling processes. The hot-extruded and cold rolling deformation textures of the pure PM aluminum at 50%, 80% and 90% cold rolling reductions were studied by orientation distribution functions (ODFs) analysis. The finite element polycrystal model (FEPM) was finally utilized to simulate the cold rolling textural evolution at various stages of cold rolling. In FEPM simulation, the initial hot-extruded textures were taken into account as inputs. The results showed that typical β-fiber texture formed in pure PM aluminum with the cold rolling reduction increased till 80%, and there was not much change after excessive cold rolling deformation.Homogeneous slip is not the only deformation mode in PM processed pure aluminum plate at over 80% cold rolling reduction. The experimental results were qualitatively in good agreement with the simulated ones.

  1. Two-dimensional finite element simulation of fracture and fatigue behaviours of alumina microstructures for hip prosthesis

    CERN Document Server

    Kim, Kyungmok; Géringer, Jean; 10.1177/0954411911422843

    2012-01-01

    This paper describes a two-dimensional (2D) finite element simulation for fracture and fatigue behaviours of pure alumina microstructures such as those found at hip prostheses. Finite element models are developed using actual Al2O3 microstructures and a bilinear cohesive zone law. Simulation conditions are similar to those found at a slip zone in a dry contact between a femoral head and an acetabular cup of hip prosthesis. Contact stresses are imposed to generate cracks in the models. Magnitudes of imposed stresses are higher than those found at the microscopic scale. Effects of microstructures and contact stresses are investigated in terms of crack formation. In addition, fatigue behaviour of the microstructure is determined by performing simulations under cyclic loading conditions. It is shown that crack density observed in a microstructure increases with increasing magnitude of applied contact stress. Moreover, crack density increases linearly with respect to the number of fatigue cycles within a given con...

  2. Extracting Feature Information and its Visualization Based on the Characteristic Defect Octave Frequencies in a Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Jianyu Lei

    2007-10-01

    Full Text Available Monitoring the condition of rolling element bearings and defect diagnosis has received considerable attention for many years because the majority of problems in rotating machines are caused by defective bearings. In order to monitor conditions and diagnose defects in a rolling element bearing, a new approach is developed, based on the characteristic defect octave frequencies. The characteristic defect frequencies make it possible to detect the presence of a defect and diagnose in what part of the bearing the defect appears. However, because the characteristic defect frequencies vary with rotational speed, it is difficult to extract feature information from data at variable rotational speeds. In this paper, the characteristic defect octave frequencies, which do not vary with rotation speed, are introduced to replace the characteristic defect frequencies. Therefore feature information can be easily extracted. Moreover, based on characteristic defect octave frequencies, an envelope spectrum array, which associates 3-D visualization technology with extremum envelope spectrum technology, is established. This method has great advantages in acquiring the characteristics and trends of the data and achieves a straightforward and creditable result.

  3. Finite element analysis on multi-step rolling process and controlling quality defect for steel wheel rim

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2015-07-01

    Full Text Available To conduct an in-depth analysis of the wheel rim forming processes and effectively control rim forming quality defects, three-dimensional elastic–plastic finite element models of flaring and three rolling processes for 22.5 × 9.0-type steel wheel rim were established using ABAQUS software. Some key techniques in establishing models were investigated, such as methods of imposing boundary condition given by side guide wheels and enforcing load curve. The accuracy of the models was verified by comparing the simulation results with the point-cloud model of the actual produced rim in terms of exterior shape and thickness. Distributions and changes in the equivalent stress and equivalent plastic strain were analysed. The results indicate that the rim misalignment defect often occurs when the unequal width of the reserved material at the two ends of the rim is in the first rolling process. An improved die design is proposed. The results of the finite element analysis indicate that the improved dies are conducive to the flow of the material between the gap of the upper roller and the lower roller, and the difference in the rim width is significantly reduced.

  4. Influence of Rare Earth Elements on Microstructure and Mechanical Properties of Cast High-Speed Steel Rolls

    Institute of Scientific and Technical Information of China (English)

    Wang Mingjia; Mu Songmei; Sun Feifei; Wang Yan

    2007-01-01

    The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing long-pole MC carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.

  5. 斜轧中铬半钢磨球的冲击疲劳和磨损性%Impact Fatigue Resistance and Abrasiveness of Cross Rolled Medium Chromium Semi-Steel for Grinding Ball

    Institute of Scientific and Technical Information of China (English)

    李慧

    2001-01-01

    The repeated low-energy impact fatigue resistance and abrasiveness of cross rolled 1.85%C - 5.86%Cr medium chromium semi-steel have been studied. The results indicated that the impact fatigue life of cross rolled medium chromium semi-steel grinding ball is higher than that of casting grinding ball, and the higher impact fatigue resistance and abrasiveness of ball could be got by adequate rolled residual heat treated.%通过落球和冲击磨损试验,研究了斜轧1.85%C、5.86%Cr中铬半钢磨球的抗小能量多冲击破坏能力和耐磨性。结果表明:斜轧中铬半钢磨球的冲击疲劳寿命高于铸造半钢磨球。该球经适当的热轧余热热处理,可获得较高的抗多冲击破坏能力与耐磨性能。

  6. Finite element analysis of sucker rod couplings with guidelines for improving fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.L. [Sandia National Labs., Albuquerque, NM (United States). Engineering and Structural Mechanics Div.

    1997-09-01

    The response of a variety of sucker rod couplings to an applied axial load was simulated using axisymmetric finite element models. The calculations investigated three sucker rod sizes and various combinations of the slimhole, Spiralock, and Flexbar modifications to the coupling. In addition, the effect of various make-ups (assembly tightness) on the performance of coupling was investigated. An axial load was applied to the sucker rod ranging from {minus}5 ksi to 40 ksi, encompassing three load cycles identified on a modified Goodman diagram as acceptable for indefinite service life of the sucker rods. The simulations of the various coupling geometries and make-ups were evaluated with respect to how well they accomplish the two primary objectives of preloading threaded couplings: (1) to lock the threaded coupling together so that it will not loosen and eventually uncouple, and (2) to improve the fatigue resistance of the threaded connection by reducing the stress amplitude in the coupling when subjected to cyclic loading. Perhaps the most significant finding in this study was the characterization of the coupling parameters which affect two stress measures. The mean hydrostatic stress, which determines the permissible effective alternating stress, is a function of the coupling make-up. Whereas, the alternating effective stress is a function of the relative stiffnesses of the pin and box sections of the coupling and, as long as the coupling does not separate, is unaffected by the amount of circumferential displacement applied during make-up. The results of this study suggest approaches for improving the fatigue resistance of sucker rod couplings.

  7. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace

    Science.gov (United States)

    Dellacorte, Christopher

    2014-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hardened construction materials to minimize wear and attain long life. In such components, loaded contact points (e.g., meshing gear teeth, bearing balls-raceway contacts) experience high contact stresses. The combination of high hardness and high elastic modulus often leads to damaging contact stress and denting, particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this webinar, Dr. DellaCorte will introduce the results of a research project that employs a superelastic alloy, Ni-Ti for rolling element bearing applications. Bearings and components made from such alloys can alleviate many problems encountered in advanced aerospace applications and may solve many terrestrial applications as well

  8. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    DEFF Research Database (Denmark)

    Yang, Zhenyu

    2015-01-01

    An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated...... is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis...... by the potential commercialization, the developed system is promoted mainly using off-the-shelf techniques, that is, the high-frequency resonance technique with envelope detection and the average of short-time Fourier transform. In order to test the flexibility and robustness, the monitoring performance...

  9. Finite Element and Experimental Analysis of Closure and Contact Bonding of Pores During Hot Rolling of Steel

    Science.gov (United States)

    Joo, Soo-Hyun; Jung, Jaimyun; Chun, Myung Sik; Moon, Chang Ho; Lee, Sunghak; Kim, Hyoung Seop

    2014-08-01

    The closure and contact bonding behavior of internal pores in steel slabs during hot rolling was studied using experiments and the finite element method (FEM). Effects of pore size and shape were investigated, and three different cases of pore closure results were observed: no closure, partial closure, and full closure. The FEM results well reproduced various closure events. Bonding strengths of unsuccessfully closed pores, measured by tensile tests, showed critical effects. Also, there was a difference in bonding strengths of several fully closed pores. Fracture surfaces showed that welded regions could be divided into three (not, partially, and perfectly) welded regions. The pressure-time curves obtained from the FEM results indicate that pore surface contact time and deformed surface length are important parameters in pore welding. Pore size, pore shape, time of pressure contact, and deformed surface length should be considered to completely eliminate pores in final products.

  10. Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

    Science.gov (United States)

    2015-07-01

    UNCLASSIFIED UNCLASSIFIED Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test...circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis . By...UNCLASSIFIED Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

  11. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    Science.gov (United States)

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y.; Zhu, Y.

    2013-12-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  12. Finite Element Analysis of Residual Stress in Ti-6Al-4V Alloy Plate Induced by Deep Rolling Process under Complex Roller Path

    Directory of Open Access Journals (Sweden)

    J. J. Liou

    2014-01-01

    Full Text Available The kinematics of the deep rolling tool, contact stress, and induced residual stress in the near-surface material of a flat Ti-6Al-4V alloy plate are numerically investigated. The deep rolling tool is under multiaxis nonlinear motion in the process. Unlike available deep rolling simulations in the open literature, the roller motion investigated in this study includes penetrative and slightly translational motions. A three-dimensional finite element model with dynamic explicit technique is developed to simulate the instantaneous complex roller motions during the deep rolling process. The initial motion of the rollers followed by the penetration motion to apply the load and perform the deep rolling process, the load releasing, and material recovery steps is sequentially simulated. This model is able to capture the transient characteristics of the kinematics on the roller and contacts between the roller and the plate due to variations of roller motion. The predictions show that the magnitude of roller reaction force in the penetration direction starts to decrease with time when the roller motion changes to the deep rolling step and the residual stress distributions in the near-surface material after the material recovery step varies considerably along the roller path.

  13. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  14. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  15. Effect of filtration on rolling-element-bearing life in contaminated lubricant environment

    Science.gov (United States)

    Loewenthal, S. H.; Moyer, D. W.; Sherlock, J. J.

    1978-01-01

    Fatigue tests were conducted on groups of 65 millimeter-bore ball bearings under four levels of filtration with and without a contaminated MIL-L-23699 lubricant. The baseline series used noncontaminated oil with 49 micron absolute filtration. In the remaining tests contaminants of the composition found in aircraft engine filters were injected into the filter's supply line at a constant rate of 125 milligrams per bearing-hour. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns (0.45, 10, 30, and 70 microns nominal), respectively. Bearings were tested at 15,000 rpm under 4580 newtons radial load. Bearing life and running tract condition generally improved with finer filtration. The 3 and 30 micron filter bearings in a contaminated lubricant had statistically equivalent lives, approaching those from the baseline tests. The experimental lives of 49 micron bearings were approximately half the baseline bearing's lives. Bearings tested with the 105 micron filter experienced wear failures. The degree of surface distress, weight loss, and probable failure mode were found to be dependent on filtration level, with finer filtration being clearly beneficial.

  16. Some contradictions in contemporary assessment acrobatic elements used in the compositions of category "B-Class" in acrobatic rock'n'roll

    Directory of Open Access Journals (Sweden)

    Larisa Lutsenko

    2015-04-01

    Full Text Available Purpose: determine the impact of an innovative approach to improve the special physical and technical training of qualified athletes in acrobatic rock'n'roll. Material and Methods: theoretical analysis and synthesis of the literature, the competition rules, policy papers and documents catalog acrobatic elements "in class". The basic material for analysis was the changes to the 2014 WRRC, judging changes in their sport. Results: studied the catalog acrobatic elements "B-Class" (version 2 WRRC from 14.09.2014, reviewed and analyzed the results of stronger pairs category "B-class" in acrobatic rock'n'roll (World Cup, Russia, Sochi, Russia. The analysis of the requirements of execution of acrobatic elements. Conclusions: these findings demonstrate the need for an innovative approach to improve the special physical and technical training athletes acrobatic rock and roll category "B-Сlass". The difficulty level of acrobatic elements in acrobatic rock 'n' roll should be differential with respect to each of the age groups in their strict sequence the category "juniors" – "in-class" and "M-class".

  17. Investigation of Gear and Bearing Fatigue Damage Using Debris Particle Distributions

    Science.gov (United States)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to spur gears, spiral bevel gears, and rolling element bearings. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig, Spiral Bevel Gear Test Facility, and the 500hp Helicopter Transmission Test Stand. During each test, data from an online, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results indicate oil debris alone cannot discriminate between bearing and gear fatigue damage.

  18. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y. [State Key Laboratory for Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an (China); Zhu, Y. [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi' an Jiaotong University, Xi' an (China)

    2013-12-15

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  19. Finite Element Analysis for Fatigue Damage Reduction in Metallic Riveted Bridges Using Pre-Stressed CFRP Plates

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2014-04-01

    Full Text Available Many old riveted steel bridges remain operational and require retrofit to accommodate ever increasing demands. Complicating retrofit efforts, riveted steel bridges are often considered historical structures where structural modifications that affect the original construction are to be avoided. The presence of rivets along with preservation requirements often prevent the use of traditional retrofit methods, such as bonding of fiber reinforced composites, or the addition of supplementary steel elements. In this paper, an un-bonded post-tensioning retrofit method is numerically investigated using existing railway riveted bridge geometry in Switzerland. The finite element (FE model consists of a global dynamic model for the whole bridge and a more refined sub-model for a riveted joint. The FE model results include dynamic effects from axle loads and are compared with field measurements. Pre-stressed un-bonded carbon fiber reinforced plastic (CFRP plates will be considered for the strengthening elements. Fatigue critical regions of the bridge are identified, and the effects of the un-bonded post-tensioning method with different pre-stress levels on fatigue susceptibility are explored. With an applied 40% CFRP pre-stress, fatigue damage reductions of more than 87% and 85% are achieved at the longitudinal-to-cross beam connections and cross-beam bottom flanges, respectively.

  20. Above-knee prosthesis design based on fatigue life using finite element method and design of experiment.

    Science.gov (United States)

    Phanphet, Suwattanarwong; Dechjarern, Surangsee; Jomjanyong, Sermkiat

    2017-05-01

    The main objective of this work is to improve the standard of the existing design of knee prosthesis developed by Thailand's Prostheses Foundation of Her Royal Highness The Princess Mother. The experimental structural tests, based on the ISO 10328, of the existing design showed that a few components failed due to fatigue under normal cyclic loading below the required number of cycles. The finite element (FE) simulations of structural tests on the knee prosthesis were carried out. Fatigue life predictions of knee component materials were modeled based on the Morrow's approach. The fatigue life prediction based on the FE model result was validated with the corresponding structural test and the results agreed well. The new designs of the failed components were studied using the design of experimental approach and finite element analysis of the ISO 10328 structural test of knee prostheses under two separated loading cases. Under ultimate loading, knee prosthesis peak von Mises stress must be less than the yield strength of knee component's material and the total knee deflection must be lower than 2.5mm. The fatigue life prediction of all knee components must be higher than 3,000,000 cycles under normal cyclic loading. The design parameters are the thickness of joint bars, the diameter of lower connector and the thickness of absorber-stopper. The optimized knee prosthesis design meeting all the requirements was recommended. Experimental ISO 10328 structural test of the fabricated knee prosthesis based on the optimized design confirmed the finite element prediction. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Analysis of distribution rule of surface stress on cross wedge rolling contact zone by finite element method

    Science.gov (United States)

    Shu, Xuedao; Li, Lianpeng; Hu, Zhenghuan

    2005-12-01

    Contact surface of cross-wedge rolling is a complicated space surface and distribution rule of contact surface stress is very complicated. So far, its analyzed result was still based on slippery line method. Designing mould and actual production mainly depend on experiential factor. Application and development of cross-wedge rolling was baffled seriously. Based on the forming characteristics of cross-wedge rolling with flat wedge-shape, the ANSYS/DYNA software was developed secondly on the basis of itself, and the corresponding command program was compiled. Rolling process of cross-wedge rolling with flat wedge-shape was simulated successfully. Through simulation, space surface shape of contact surface was achieved, and distribution rule of contact surface stress was analyzed detailed and obtained. The results provide important theoretical foundation for avoiding appearing bug on surface of rolled part, instructing to design cross-wedge mould and confirming force and energy parameter.

  2. Finite element analysis on the static and fatigue characteristics of composite multi-leaf spring

    Institute of Scientific and Technical Information of China (English)

    Joo-teck Jeffrey KUEH; Tarlochan FARIS

    2012-01-01

    This paper investigated the static and fatigue behaviors of steel and composite multi-leaf spring using the ANSYS V12 software.The dimensions of an existing conventional leaf spring of a light commercial vehicle were used.The same dimensions were used to design composite multi-leaf spring for the two materials,E-glass fiber/epoxy and E-glass fiber/vinyl ester,which are of great interest to the transportation industry.Main consideration was given to the effects of material composition and its fiber orientation on the static and fatigue behaviors of leaf spring.The design constraints were bending stresses,deflection and fatigue life.Compared to the steel leaf spring,the designed composite spring has much lower bending stresses and deflections and higher fatigue life cycles.

  3. A Signal Based Triangular Structuring Element for Mathematical Morphological Analysis and Its Application in Rolling Element Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhaowen Chen

    2014-01-01

    Full Text Available Mathematical morphology (MM is an efficient nonlinear signal processing tool. It can be adopted to extract fault information from bearing signal according to a structuring element (SE. Since the bearing signal features differ for every unique cause of failure, the SEs should be well tailored to extract the fault feature from a particular signal. In the following, a signal based triangular SE according to the statistics of the magnitude of a vibration signal is proposed, together with associated methodology, which processes the bearing signal by MM analysis based on proposed SE to get the morphology spectrum of a signal. A correlation analysis on morphology spectrum is then employed to obtain the final classification of bearing faults. The classification performance of the proposed method is evaluated by a set of bearing vibration signals with inner race, ball, and outer race faults, respectively. Results show that all faults can be detected clearly and correctly. Compared with a commonly used flat SE, the correlation analysis on morphology spectrum with proposed SE gives better performance at fault diagnosis of bearing, especially the identification of the location of outer race fault and the level of fault severity.

  4. Multifault Diagnosis of Rolling Element Bearings Using a Wavelet Kurtogram and Vector Median-Based Feature Analysis

    Directory of Open Access Journals (Sweden)

    Phuong H. Nguyen

    2015-01-01

    Full Text Available This paper presents a comprehensive multifault diagnosis methodology for incipient rolling element bearing failures. This is done by combining a wavelet packet transform- (WPT- based kurtogram and a new vector median-based feature analysis technique. The proposed approach first extracts useful features that are characteristic of the bearing health condition from the time domain, frequency domain, and envelope power spectrum of incoming acoustic emission (AE signals by using a WPT-based kurtogram. Then, an enhanced feature analysis approach based on the linear discriminant analysis (LDA technique is used to select the most discriminant bearing fault features from the original feature set. These selected fault features are used by a Naïve Bayes (NB classifier to classify the bearing fault conditions. The performance of the proposed methodology is tested and validated under various bearing fault conditions on an experimental test rig and compared with conventional state-of-the-art approaches. The proposed bearing fault diagnosis methodology yields average classification accuracies of 91.11%, 96.67%, 98.89%, 99.44%, and 98.61% at rotational speeds of 300, 350, 400, 450, and 500 rpm, respectively.

  5. Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis.

    Science.gov (United States)

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Li, Xuejun

    2014-10-28

    When operating under harsh condition (e.g., time-varying speed and load, large shocks), the vibration signals of rolling element bearings are always manifested as low signal noise ratio, non-stationary statistical parameters, which cause difficulties for current diagnostic methods. As such, an IMF-based adaptive envelope order analysis (IMF-AEOA) is proposed for bearing fault detection under such conditions. This approach is established through combining the ensemble empirical mode decomposition (EEMD), envelope order tracking and fault sensitive analysis. In this scheme, EEMD provides an effective way to adaptively decompose the raw vibration signal into IMFs with different frequency bands. The envelope order tracking is further employed to transform the envelope of each IMF to angular domain to eliminate the spectral smearing induced by speed variation, which makes the bearing characteristic frequencies more clear and discernible in the envelope order spectrum. Finally, a fault sensitive matrix is established to select the optimal IMF containing the richest diagnostic information for final decision making. The effectiveness of IMF-AEOA is validated by simulated signal and experimental data from locomotive bearings. The result shows that IMF-AEOA could accurately identify both single and multiple faults of bearing even under time-varying rotating speed and large extraneous shocks.

  6. Tacholess Envelope Order Analysis and Its Application to Fault Detection of Rolling Element Bearings with Varying Speeds

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2013-08-01

    Full Text Available Vibration analysis is an effective tool for the condition monitoring and fault diagnosis of rolling element bearings. Conventional diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speed. This constraint limits the bearing diagnosis to the industrial application significantly. In order to extend the conventional diagnostic methods to speed variation cases, a tacholess envelope order analysis technique is proposed in this paper. In the proposed technique, a tacholess order tracking (TLOT method is first introduced to extract the tachometer information from the vibration signal itself. On this basis, an envelope order spectrum (EOS is utilized to recover the bearing characteristic frequencies in the order domain. By combining the advantages of TLOT and EOS, the proposed technique is capable of detecting bearing faults under varying speeds, even without the use of a tachometer. The effectiveness of the proposed method is demonstrated by both simulated signals and real vibration signals collected from locomotive roller bearings with faults on inner race, outer race and rollers, respectively. Analyzed results show that the proposed method could identify different bearing faults effectively and accurately under speed varying conditions.

  7. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    Directory of Open Access Journals (Sweden)

    Zhenyu Yang

    2015-01-01

    Full Text Available An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the potential commercialization, the developed system is promoted mainly using off-the-shelf techniques, that is, the high-frequency resonance technique with envelope detection and the average of short-time Fourier transform. In order to test the flexibility and robustness, the monitoring performance is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis also showed a moderate capability in diagnosis of point defect faults depending on the type of fault, severity of the fault, and the operational condition. The temporal feature indicated a feasibility to detect generalized roughness fault. The practical issues, such as deviations of predicted characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.

  8. Modelling a Skin-Pass Rolling Process by Means of Data Mining Techniques and Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    R Escribano; R Lostado; F J Martlnezde-Pison; A Pernla; E Vergara

    2012-01-01

    An experience is presented using the finite element method (FEM) and data mining (DM) techniques to develop models that can be used to optimieze the skin-pass rolling process based on its operating conditions. A FE model based on a real skin-pass process is built and validated. Based on this model, a group of FE models is simulated with different adjustment parameters and with different materials for the sheet; both variables are chosen from pre-set ranges, From all FE model simulations, a database is generated; this database is made up of the above mentioned adjustment parameters, sheet properties and the variables of the process arising from the simulation of the model. Various types of data mining algorithms are used to develop predictive models for each of the variables of the process.The best predictive models can be used to predict experimentally hard-to-measure variables (internal stresses, internal straine, etc.) which are useful in the optimal design of the process or to be applied in real time control systems of a skin-pass process in -plant.

  9. 车轮滚动接触疲劳与磨耗耦合关系数值模拟%Simulation of Coupling Relationship between Wheel Rolling Contact Fatigue and Wear

    Institute of Scientific and Technical Information of China (English)

    丁军君; 孙树磊; 李芾; 黄运华

    2012-01-01

    Rolling contact fatigue and wear are the main modes of wheel failure. The normal and tangential stresses at contact patch and the maximum shear stresses at different depths of material are calculated according to three dimensional elastic bodies non-hertzian rolling contact theory. In the case of CL60 and bainete steel, LM wheel profile and 75 kg · m-1 rail profile are matched, the effects of wheel/rail contact conditions and wheel materials on competition relationship between rolling contact fatigue and wear is analyzed based on "layer" rolling contact fatigue model and Zobory wheel wear model. The results indicate that, when the friction coefficient is 0.3, the rolling contact fatigue damage occurs in CL60 steel under low creepage condition, while under high creep condition the damage only occurs when axleload is over 301; for bainite steel, only under high creep condition and when axleload is 30 t, the damage occurs before the number of load cycles reaches 1×105; when the friction coefficient is 0.6, there is almost no contact fatigue damage in CL60 and bainite steel under all conditions, because the rates of wear are always higher than the contact fatigue damage.%滚动接触疲劳和磨耗是车轮失效的主要方式.通过三维弹性体非赫兹滚动接触理论得到接触斑内的法向、切向应力和材料上不同深度处的最大切应力分布,以CL60钢和贝氏体车轮钢为例,基于“layer”滚动接触疲劳失效模型和Zobory车轮磨耗模型,分析LM型车轮踏面和75kg·m-1钢轨型面匹配时轮轨接触条件和车轮材质对车轮滚动接触疲劳和磨耗竞争关系的影响.计算结果表明,摩擦因数为0.3时,CL60钢在小蠕滑条件下会发生滚动接触疲劳损伤,在大蠕滑条件下只有轴重大于30t时才会出现滚动接触疲劳损伤,而贝氏体车轮钢只有在大蠕滑条件且轴重为30 t时,载荷循环次数小于1×105的情况下才会出现滚动接触疲劳损伤;摩擦因数为0.6

  10. Rolling Element Bearing Fault Diagnosis Using Integrated Nonlocal Means Denoising with Modified Morphology Filter Operators

    Directory of Open Access Journals (Sweden)

    Mien Van

    2016-01-01

    Full Text Available The impulses in vibration signals are used to identify faults in the bearings of rotating machinery. However, vibration signals are usually contaminated by noise that makes the process of extracting impulse characteristic of localized defect very challenging. In order to effectively diagnose bearing with noise masking vibration signal, a new methodology is proposed using integrated (i nonlocal means- (NLM- based denoising and (ii improved morphological filter operators. NLM based denoising is first employed to eliminate or reduce the background noise with minimal signal distortion. This denoised signal is then analysed by a proposed modified morphological analysis (MMA. The MMA analysis introduces a new morphological operator which is based on Modified-Different (DIF filter to include only fault relevant impulsive characteristics of the vibration signal. To improve further performance of the methodology the length of the structure element (SE used in MMA is optimized using a particle swarm optimization- (PSO- based kurtosis criterion. The results of simulated and real vibration signal show that the integrated NLM with MMA method as well as the MMA method alone yields superior performance in extracting impulsive characteristics of vibrations signals, especially for signal with high level of noise or presence of other sources masking the fault.

  11. 基于损伤函数的钢轨滚动接触疲劳研究%Research on Rail Rolling Contact Fatigue Based on the Damage Function

    Institute of Scientific and Technical Information of China (English)

    丁军君; 张良威; 李芾

    2011-01-01

    Along with the development of high-speed and heavy-haul railways, rail rolling contact fatigue damages affect the safety of railway operation obviously. The damage function of rolling contact fatigue was analyzed, the damage map of the rail face was plotted by statistics of the damage indexes by example of the domestic lines and vehicles, and the fatigue damages from different bogies were compared. The research results show as follows: Rail fatigue damages increase with the increasing of the velocity and axle load of the vehicle; wearing of rails intensifies beyond the inflection point on the fatigue damage curve and this reduces the magnitude of damaging; flange lubricating measures taken on a sharp curve with a radius less than 600 m bring about steep rise of the fatigue damage coefficient of the outer rail and so influence train operation safety seriously; flange lubricating should be made of cautious use and when it is turned to, rail grinding is required in match.%对不同类型的钢轨滚动接触疲劳损伤函数进行分析.采用基于磨耗数的损伤函数对钢轨滚动接触疲劳损伤系数进行测算,得到疲劳损伤在实际线路轨面上的分布和特征,并比较与不同转向架结构形式相关的钢轨疲劳损伤特征.研究结果表明:车辆在速度和轴重增加的情况下均会加剧钢轨的疲劳损伤;疲劳损伤曲线存在一个拐点,超过拐点后由于钢轨磨损加剧而使损伤减小;在半径小于600 m的曲线上采用轮缘润滑措施会使外侧钢轨的疲劳损伤系数急剧增大,严重影响列车行车安全,故对轮缘润滑要慎用,并应与钢轨打磨配合使用.

  12. Fundamentals of Rolling Contact Fatigue

    NARCIS (Netherlands)

    Grabulov, A.

    2010-01-01

    In the mechanical industry there is a need for continuous development towards increasing performance of various types of machinery. Critical components in such machines are exposed to gradually harsher operating environments involving higher cyclic stresses and operating temperatures. Examples of

  13. Fundamentals of Rolling Contact Fatigue

    NARCIS (Netherlands)

    Grabulov, A.

    2010-01-01

    In the mechanical industry there is a need for continuous development towards increasing performance of various types of machinery. Critical components in such machines are exposed to gradually harsher operating environments involving higher cyclic stresses and operating temperatures. Examples of su

  14. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.

  15. 基于变载荷的滚动轴承疲劳寿命强化试验%Fatigue Life Intensification Test for Rolling Bearings Based on Variable Load

    Institute of Scientific and Technical Information of China (English)

    孙守林; 张世飞; 董惠敏; 毛范海; 王德伦

    2015-01-01

    The fatigue life intensification test for rolling bearings based on variable load is studied by using eight-level test load spectrum under multi -operating conditions.The intensification rule is confirmed for eight-level test load spectrum under multi-operating conditions,and the intensification test scheme is formulated.The fatigue life intensifi-cation tests are carried out for rolling bearings under constant load and variable load,and the test data is processed. The results show that the intensification test scheme and data processing method are reasonable and correct.%采用多工况8级试验载荷谱对基于变载荷的滚动轴承疲劳寿命强化试验进行研究,确定强化准则,制定强化试验方案,进行常载和变载滚动轴承疲劳寿命强化试验,并对试验数据进行处理。结果表明,强化试验方案及其数据处理方法是合理和正确的。

  16. A simulation of fatigue crack propagation in a welded T-joint using 3D boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Xiang Zhihai; Lie, S.T.; Wang Bo; Cen Zhangzhi

    2003-02-01

    A general procedure to investigate the fatigue propagation process of a 3D surface crack based on multi-region Boundary Element Method is detailed in this paper. The mesh can be automatically regenerated as the crack propagates. A new formula for estimating the effective stress intensity factor is used to calculate the crack extension. The maximum principal stress criterion is then employed to predict the crack growth direction. Comparison between numerical and experimental results of a welded T-joint shows that the proposed procedure is reliable.

  17. Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice

    Directory of Open Access Journals (Sweden)

    D. Carrella-Payan

    2016-10-01

    Full Text Available The aim of this study is to deal with the simulation of intralaminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The proposed damage model for fatigue is based on stiffness degradation laws from Van Paepegem combined with the ‘damage’ cycle jump approach extended to deal with unidirectional carbon fibres. The parameter identification method is here presented and parameter sensitivities are discussed. The initial static damage of the material is accounted for by using the Ladevèze damage model and the permanent shear strain accumulation based on Van Paepegem’s formulation. This approach is implemented into commercial software (Siemens PLM. The validation case is run on a bending test coupon (with arbitrary stacking sequence and load level in order to minimise the risk of inter-laminar damages. This intra-laminar fatigue damage model combined efficient methods with a low number of tests to identify the parameters of the stiffness degradation law, this overall procedure for fatigue life prediction is demonstrated to be cost efficient at industrial level. This work concludes on the next challenges to be addressed (validation tests, multiple-loadings validation, failure criteria, inter-laminar damages….

  18. Effects of Alloying Elements on Microstructure, Hardness, Wear Resistance, and Surface Roughness of Centrifugally Cast High-Speed Steel Rolls

    Science.gov (United States)

    Ha, Dae Jin; Sung, Hyo Kyung; Park, Joon Wook; Lee, Sunghak

    2009-11-01

    A study was made of the effects of carbon, tungsten, molybdenum, and vanadium on the wear resistance and surface roughness of five high-speed steel (HSS) rolls manufactured by the centrifugal casting method. High-temperature wear tests were conducted on these rolls to experimentally simulate the wear process during hot rolling. The HSS rolls contained a large amount (up to 25 vol pct) of carbides, such as MC, M2C, and M7C3 carbides formed in the tempered martensite matrix. The matrix consisted mainly of tempered lath martensite when the carbon content in the matrix was small, and contained a considerable amount of tempered plate martensite when the carbon content increased. The high-temperature wear test results indicated that the wear resistance and surface roughness of the rolls were enhanced when the amount of hard MC carbides formed inside solidification cells increased and their distribution was homogeneous. The best wear resistance and surface roughness were obtained from a roll in which a large amount of MC carbides were homogeneously distributed in the tempered lath martensite matrix. The appropriate contents of the carbon equivalent, tungsten equivalent, and vanadium were 2.0 to 2.3, 9 to 10, and 5 to 6 pct, respectively.

  19. Rolling Contact Fatigue Life Prediction on Bearing Steel Pre-residual Stress Surfaces Induced by Hard Turning%轴承钢硬切削表面残余应力对滚动接触界面疲劳寿命的影响

    Institute of Scientific and Technical Information of China (English)

    李振; 张相琴; 张雪萍; LIU C Richard

    2011-01-01

    为了预测轴承钢硬切削表面残余应力对滚动接触寿命的影响规律,基于高级非线性有限元分析软件MARC,建立了具有平面应变特征的二维滚动接触寿命预测模型,并在二维有限元模型的表面和次表面对应施加了轴承钢硬切削实验所测残余应力,模拟计算典型服役条件下的滚动接触应力;采用基于S-N寿命理论的Miner法则,计算轴承钢滚动界面的疲劳接触寿命,分析了在不同摩擦系数、滚动接触频率和外加载荷工况下,硬切削残余压应力对疲劳寿命的影响.结果表明,硬切削残余压应力可使轴承钢的滚动接触疲劳寿命提高10%~30%.其中,载荷对滚动接触疲劳寿命影响最大,摩擦系数的影响最小.%To predict the effect of the hard turning-induced residual stress on the rolling fatigue life of bearing steel, 2D rolling contact fatigue life model characteristic with plane strain was developed based on MARC. The residual stress on the machined surface and subsurface from the hard turning bearing steel was applied to surface and subsurface of 2D model correspondingly. The rolling contact stress distribution was simulated under the typical services, and the rolling fatigue life of contact interface was predicted by Miner law based on the S-N life theory under compressive stress. After the analysis of rolling fatigue life under different conditions, the effect of different friction, rolling velocity, load on fatigue life with hard turning-induced residual stress was quantitatively investigated. The investigation shows that the hard turning-induced compressive residual stress increases 10%-30% the rolling fatigue life of bearing steel, and the load has the greatest effect on rolling fatigue life while the fiction coefficient has the minimal effect.

  20. 3-D finite element stress analysis for fatigue design and evaluation: a parametric study of MOV(Motor Operated Valve)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Keun; Lee, Sang Min; Chang, Yoon Suk; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan Univ., Suwon (Korea, Republic of); Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)

    2004-07-01

    In this paper, a new procedure is proposed to accomplish the primary plus secondary stress(P+Q) at the 'structural element' instead of 'transition element'. For the P+Q evaluation, the calculated stresses by FEA are linearized along a stress classification line to extract the stress category, then the stress intensity is calculated to compare with the 3Sm limit. Also, in this paper, the 'design by analysis' criteria, adopted fundamental concepts and a new approach to calculate Ke factors are explained. The new procedure combined with 3-D FEA has been applied to motor operated valve in order to the over conservatism and the rack of margin. The evaluation results show a good applicability and can be utilized for fatigue life evaluation by using P+Q.

  1. Fatigue Assessment of Underwater CFRP-Repaired Steel Panels using Finite Element Analysis

    Science.gov (United States)

    2014-09-01

    Structures, 33: 1491-1502. Liu, H., R. Al-Mahaidi, and X-L Zhao. 2009. Experimental Study of Fatigue Crack Growth Behaviour in Adhesively Reinforced ...findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents...methodologies that are pertinent to SHS is ever- pressing. If properly applied, the use of Carbon Fiber Reinforced Polymer (CFRP) composites for the

  2. INVESTIGATION OF STRESS STATE IN THE ELEMENTS OF RAIL FASTENINGS, TYPE КПП-5 UNDER THE INFLUENCE OF ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    N. P. Nastechik

    2015-03-01

    Full Text Available Purpose. To date, there is a tendency for the implementation of high-speed trains on the territory of the Ukrainian Railways, which requires increasing the strength and stability of the construction of the railway track. At the same time requirements for intermediate rail fastening have increased and widened. It is on trackwork and repair of the rail fastening labor costs during the operation are from 10 to 18%. One of the main types of fastening, which after long operational observations was included in the permanent operation (5 th. km. is an intermediate fastening, type КПП-5. Data from previous theoretical studies reliably prevented clear science-based answers and results of the rail fastening. Therefore, the aim is to develop a methodology and rationale for the theoretical research work of rail fastening, type КПП-5 with a detailed assessment of the appearance of stress state places in its elements from the effects of rolling stock. Methodology. The basis of study methods of theoretical research work of the intermediate rail fastening, type КПП-5 (with a detailed assessment of the state of stress in its intermediate elements from the effects of the rolling stock is the theory of finite elements method (FEM. Findings. Using the FEM it was found that one of the main elements of the intermediate rail fastening, which first perceives share of the value of the lateral force transmitted from the effects of rolling stock are elastic type terminals, type КП-5. Analyzing the data set, the bars in the terminal voltages at the inner side of the rail thread 53,1-56% are greater than the stresses on the outside of rail thread. Originality. A mathematical model of railway track with intermediate rail fastening, type КПП-5 under the action of rolling stock for the study of the stress state in the elements of fastening was developed. This mathematical model let take into account the physical and mechanical properties of the test elements and

  3. The influence of external dynamic loads on the lifetime of rolling element bearings: Experimental analysis of the lubricant film and surface wear

    Science.gov (United States)

    Jacobs, William; Van Hooreweder, Brecht; Boonen, Rene; Sas, Paul; Moens, David

    2016-06-01

    Precise prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. For bearings subjected to highly varying loads, recent research emphasises a strong reduction of the actual bearing lifetime w.r.t. the classically calculated bearing lifetime. This paper experimentally analyses the influence of external dynamic loads on the lifetime of rolling element bearings. A novel bearing test rig is introduced. The test rig is able to apply a fully controlled multi-axial static and dynamic load on a single test bearing. Also, different types and sizes of bearings can be tested. Two separate investigations are conducted. First, the behaviour of the lubricant film between the rolling elements and raceways is analysed. Increased metallic contact or breakdown of the film during dynamic excitation is investigated based on the measured electrical resistance through the bearing. The study shows that the lubricant film thickness follows the imposed variations of the load. Variations of the lubricant film thickness are similar to the variations when the magnitude of the static bearing load is changed. Second, wear of the raceway surfaces is analysed. Surface wear is investigated after a series of accelerated lifetime tests under high dynamic load. Due to sliding motion between asperities of the contacting surfaces in the bearing, polishing of the raceway honing structure occurs. This polishing is clearly observed on SEM images of the inner raceway after a test duration of only 0.5% of the calculated L10 life. Polishing wear of the surfaces, such as surface induced cracks and material delamination, is expected when the bearing is further exposed to the high dynamic load.

  4. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GigaPascals) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 millimeters diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  5. THE REGURIMENTS TO THE DIAGNOSTIC PARAMETERS UNDER NONDESTRUCTIVE FATIGUE TESTING OF THE ELEMENTS OF AVIATION STRUCTURES

    Directory of Open Access Journals (Sweden)

    М. Карускевич

    2011-02-01

    Full Text Available The article is devoted to the analysis of physical-mechanical state of constructional materials under cyclic loading. It has been shown that for the estimation of aircraft structures state under scheduled maintenance check intervals, it is necessary to apply the methods with diagnostic parameters, that are continuously alter according to the service life exhausting. The requirements to diagnostic parameters for nondestructive testing of aircraft components have been defined. The deformation relief formed on the surface of alclad alloys  under cyclic loading meets this requirement. It has been shown the ability of application of deformation relief parameters for the estimation of accumulated fatigue damage.

  6. 一种超高碳钢的滚动接触疲劳研究%ROLLING CONTACT FATIGUE BEHAVIOR OF AN ULTRAHIGH CARBON STEEL

    Institute of Scientific and Technical Information of China (English)

    刘宏基; 孙俊杰; 江涛; 郭生武; 柳永宁; 林鑫

    2014-01-01

    研究了一种C含量为1.29%(质量分数)的超高碳钢在最大Hertzian应力4400 MPa,良好润滑条件下的滚动接触疲劳行为,同时测试了传统GCr15和SKF3高碳铬轴承钢的滚动接触疲劳寿命以作为对比.结果表明,相同条件下,超高碳钢的额定寿命(L10寿命)分别是GCr15钢和SKF3钢的2.14和1.81倍.超高碳钢的原奥氏体平均晶粒尺寸为6.91μm,仅约为GCr15和SKF3钢的一半.同时,淬回火态超高碳钢的硬度为64.5 HRC,高于GCr15和SKF3钢.%With the development of modern industrial equipment and the requirement in energy conservation and emission reduction,the traditional high carbon and high chromium steel which is widely used as bearing material cannot meet these demands.Therefore,it is of paramount importance to exploit novel materials used as bearings with long life.In recent years,some new techniques have been used to improve the bearing life,such as physical vapor deposition (PVD),chemical vapor deposition (CVD) and plasma immersion implantation and so on.All these techniques are attempting to increase the surface hardness of the bearing.Though the bearing life has been extended to some extent,the application range of these techniques is limited by the price factor and the dimensions of components.Ultrahigh-carbon steels (UHCSs) have been studied for many years,and they possess outstanding mechanical properties and wear resistance.Therefore,it is interesting to explore the probability whether UHCSs can be used in the beating application.It is well known that if bearings are well assembled,lubricated and loaded,rolling contact fatigue (RCF) is the main failure form.Accordingly,the evaluation of the resistance to RCF is of paramount importance for bearing materials.The RCF properties of UHCSs have never been studied in the past decades.Therefore,in this work,the RCF behavior of a UHCS with 1.29%C (mass fraction) was investigated in well lubricated conditions,using a flat washer-type RCF

  7. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.

    Science.gov (United States)

    Prinz, Victor Ya; Naumova, Elena V; Golod, Sergey V; Seleznev, Vladimir A; Bocharov, Andrey A; Kubarev, Vitaliy V

    2017-03-03

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis.

  8. Mass production of volume holographic optical elements (vHOEs) using Bayfol® HX photopolymer film in a roll-to-roll copy process

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Grote, Fabian; Hagen, Rainer; Hönel, Dennis; Koch, Eberhard; Rewitz, Christian; Walze, Günther; Wewer, Brita

    2017-03-01

    Volume Holographic Optical Elements (vHOEs) gained wide attention as optical combiners for the use in augmented and virtual reality (AR and VR, respectively) consumer electronics and automotive head-up display applications. The unique characteristics of these diffractive grating structures - being lightweight, thin and flat - make them perfectly suitable for use in integrated optical components like spectacle lenses and car windshields. While being transparent in Off-Bragg condition, they provide full color capability and adjustable diffraction efficiency. The instant developing photopolymer Bayfol® HX film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Important for any commercialization are simple and robust mass production schemes. In this paper, we present an efficient and easy to control one-beam recording scheme to copy a so-called master vHOE in a step-and-repeat process. In this contact-copy scheme, Bayfol® HX film is laminated to a master stack before being exposed by a scanning laser line. Subsequently, the film is delaminated in a controlled fashion and bleached. We explain working principles of the one-beam copy concept and discuss the mechanical construction of the installed vHOE replication line. Moreover, we treat aspects like master design, effects of vibration and suppression of noise gratings. Furthermore, digital vHOEs are introduced as master holograms. They enable new ways of optical design and paths to large scale vHOEs.

  9. Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.

  10. Influencia de la viscosidad en el desgaste por fatiga en contactos de rodadura de lubricantes sintéticos poliglicoles // Influence of the viscosity in the fatigue wear in rolling contacts of synthetic poliglycols lubricants

    Directory of Open Access Journals (Sweden)

    A. Hernández Battez

    2000-10-01

    Full Text Available En este trabajo se evalúa la vida a fatiga en contactos de rodadura de bolas de acero AISI 52100 de tres aceitessintéticos poliglicoles (P.A.G.-9, P.A.G.-12 y BREOX-B-135X con viscosidades de 9, 12 y 21 cSt a 100ºC,respectivamente. La evaluación del mecanismo de fallo se realiza mediante ensayos de rodadura en la máquina decuatro bolas Seta-Shell modificada para ensayos de Extrema Presión. Una vez realizados los ensayos (de acuerdo con lanorma IP-300/82/87, con los aceites descritos, se determinan las gráficas de vida a fatiga utilizando la leyprobabilística de Weibull para mínimos, calculando los valores de L10 (probabilidad de fallo del 10 %, L50(probabilidad de fallo del 50 %, Lm (vida media a fatiga y a (pendiente de Weibull. Se realizan también las gráficasS-T (tensión- tiempo o curvas de probabilidad a fallo constante para L10 y L50. El trabajo evidencia la mejorasignificativa de la vida a fatiga al aumentar la viscosidad de los aceites utilizados. Este efecto también se produce a altascargas.Palabras claves: fatiga, rodadura, máquina de cuatro bolas, aceites sintéticos, poliglicoles, viscosidad,lubricación elastohidrodinámica (EHL.____________________________________________________________________Abstract:In this work is evaluated the fatigue life in rolling contacts of steel balls AISI 52100 of three synthetic polyglicols oils (P.A.G. -9,P.A.G. -12 and BREOX-B-135X with viscosities of 9, 12 and 21 cSt at 100ºC, respectively. The evaluation of the failuremechanism is carried out by means of rolling rehearsals in the four balls Seta-Shell modified machine for rehearsals of extremepressure. Once the rehearsals are carried out (in accordance with the norm IP-300/82/87, with the described oils, the graphs offatigue life are determined by means of the Weibull probabilistic law for minimum, calculating the values of L10 (probability offailure of 10%, L50 (probability of failure of 50%, Lm (half life to fatigue and a (Weibull

  11. Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions

    Science.gov (United States)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-09-01

    Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.

  12. Research on work roll thermal crown in cold rolling mill

    Science.gov (United States)

    Song, Lei; Shen, Mingang; Chen, Xuebo; Wang, Junsheng

    2013-05-01

    The factors which have influence on the work roll thermal crown in cold strip rolling are discussed. The heat transferring in three directions (radial axis and circumference) were considered for calculating the work roll thermal deformation. Therefore, it is a three dimensions unstable system for the work roll temperature calculation. The plastic deformation work and friction heat are calculated by the divided element and digital integration method. The simplified calculation model is built for the heat transferring along work roll. There are four zones for work roll heat transferring: roll gap zone air cooling zone emulsion zone rolls contact zone. The heat transferring between the zones is decided by the temperature difference. The inter temperature field and thermal deformation of work roll can be calculated by two-dimension finite difference method. The work roll temperature and thermal crown of actual application cold rolling mill are analyzed by the model. By the comparison between calculated values and measured values, the work roll thermal calculation model can meet the accuracy requirement of on-line control.

  13. Three-Dimensional Model for Strip Hot Rolling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-min; XIAO Hong; WANG Chun-hua

    2006-01-01

    A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated.

  14. Analysis of rolls deflection of Sendzimir mill by 3D FEM

    Institute of Scientific and Technical Information of China (English)

    YU Hai-liang; LIU Xiang-hua; LEE Gyoo Taek

    2007-01-01

    The deflection of rolls of Sendzimir mill with double AS-U-Roll was simulated by finite element method(FEM). The influences of rolling pressure, strip width and rolls-assignment on rolls deflection were analyzed. The results show that the work roll deflection increases with the increase of rolling pressure and the reduction of work roll radius, but the rigid displacement of work roll slightly changes; the work roll end might appear negative displacement for the narrow strip width and high rolling pressure that might cause the contact of work rolls. The research results are significant for guiding production and theoretical analysis of the rolls system of Sendzimir mill.

  15. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    Science.gov (United States)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  16. The Effect of Melt Conditioning on Segregation of Solute Elements and Nucleation of Aluminum Grains in a Twin Roll Cast Aluminum Alloy

    Science.gov (United States)

    Kim, KeeHyun

    2014-09-01

    An aluminum alloy was cast by a laboratory scale horizontal twin roll caster with or without melt conditioning by the intensive shearing prior to solidification and then examined by high-resolution electron microscopy. The combined twin roll casting process with solidification formed channels and induced centerline segregation without the conditioning. In comparison, the melt conditioning minimized the severe segregation on the surface as well as at the centerline. Furthermore, large amounts of solute elements were uniformly distributed along grain boundaries or interdendritic regions. Analytical electron microscopy detected a fine oxide particle or a fragmented aluminum particle particularly at the center region of one nucleated aluminum grain. In addition, large oxide particles of about 1 to 5 μm nucleated aluminum grains easily due to low undercooling necessary for the heterogeneous nucleation, whereas small oxides with the size of about 100 to 200 nm requiring large undercooling were pushed along the grain boundaries instead of contributing to the nucleation. The enhanced nucleation of aluminum grains and well-distributed solute atoms in the melt by the melt conditioning resulted in the minimization of macro- and micro-segregations and the formation of a uniform microstructure.

  17. The effect of roll with passive segment on the planetary rolling process

    Directory of Open Access Journals (Sweden)

    Qing-Ling Zeng

    2015-03-01

    Full Text Available In three-roll planetary rolling process, there is secondary torsion phenomenon that may lead to rolling instability. This article proposed a new idea to alleviate the secondary torsion phenomenon by dividing the secondary torsion segment out of the roll as an independent and passive one. To study the performance of the roll with passive segment, the three-dimensional finite element models of planetary rolling process using actual roll or new roll with passive segment involving elastic–plastic and thermal–mechanical coupling were established by the software ABAQUS/Explicit, and a series of analysis had been done successfully. The rolling temperature and rolling force of planetary mill were in good agreement with the measured results, which indicated that the finite element method would supply important reference merit for three-dimensional thermo-mechanical simulation of the three-roll planetary rolling process. Comparing the simulation results of the two models, the results indicated that the change in the roll structure had just a little influence on the metal deformation, temperature, and rolling force, but it lessened the secondary torsion deformation effectively and improved the outside roundness of the rolled tube slightly. The research provided a new idea for the roll design of three-roll planetary mill (PSW.

  18. 氮碳共渗45钢的滚动接触疲劳失效机理%Rolling contact fatigue mechanism of nitrocarburized 45 steel

    Institute of Scientific and Technical Information of China (English)

    王军威; 李国禄; 王海斗; 徐滨士; 康嘉杰

    2012-01-01

    Modified layer was prepared on surface of a 45 steel by nitroearburizing in salt bath. The microstructure of the modified layer were investigated by means of scanning electric microscopy ( SEM ) , X-ray diffraction (XRD) and optical microscope ( OM ). Contact fatigue property of the modified layer in different conditions were researched on a ball-on-disk tester and the failure mechanism was discussed. The results indicate that the failures initiated at surface and sub-surface,and the failure modes of the nitroearburized steel are mainly spalling off abrasion. The compound layer with typical porous structure can reduce the anti-fatigue property of the modified layer, however,removing the porous compound layer and reserving the dense compound layer of 5 -8 μm above the diffusion layer, the anti- fatigue property of the modified layer is increased significantly.%利用盐浴氮碳共渗对45钢进行表面改性,采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和光学显微镜(OM)等测试手段对改性层的显微结构和组织性能进行了表征。基于球盘式接触疲劳试验机研究了改性层在不同状态下的接触疲劳性能,并采用扫描电子显微镜(SEM)对失效形貌进行了分析。结果表明:45钢氮碳共渗改性层的疲劳裂纹萌生于表面和次表面,失效形式以剥落和表面磨损为主;疏松的白亮层降低了改性层的抗接触疲劳性能,扩散层上保留的5~8μm致密白亮层能有效提高改性层的抗接触疲劳性能。

  19. Elasto-Plastic 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

    Science.gov (United States)

    2015-08-01

    Aeronautical Research Laboratory, Defence Science and Technology Organisation , Department of Defence, Australia, January 1988. 5. D Duprat, D Campassens...Containing a Circular Insert in a Fatigue Test Coupon Witold Waldman AUSTRALIA DEFENCE ORGANISATION No. of Copies Task Sponsor OIC-ASI-DGTA...UNCLASSIFIED DEFENCE SCIENCE AND TECHNOLOGY GROUP DOCUMENT CONTROL DATA 1. DLM/CAVEAT (OF DOCUMENT) 2. TITLE Elasto–Plastic 3D Finite Element

  20. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    Science.gov (United States)

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic

  1. Influence of rare earth elements on solidification behavior of a high speed steel for roll using differential scanning calorimetry

    Institute of Scientific and Technical Information of China (English)

    WANG Mingjia; CHEN Lei; WANG Zixi; BAO Er

    2011-01-01

    The influence of rare earths (RE) on solidification behavior of a high speed steel for roll was investigated by using differential scanning calorimetry (DSC) in combination of microstructure analysis.It was found that the sequence of solidification was L→γ,L→γ+MC,L→γ+M2C,L→γ+M6C,respectively.The start temperature and the latent heat liberated by unit mass of L→γ and L→γ+MC increased with increase of RE addition,indicating that RE could trigger the crystallization of the primary γ and the MC carbide more effectively.The promoting effect of RE on the heterogeneous nucleation was believed to be an important cause of this effect.Grain refinement,discontinuous network of eutectic carbides and disperse and finer MC were observed in the samples with RE addition,moreover,RES could act as the heterogeneous nucleus of the MC.RE addition was favorable for stable M6C at the expense of the metastable M2C.

  2. CVC轧辊横移轧制钨板过程的有限元分析%Finite element analysis of tungsten sheet rolling process by CVC shifting roll

    Institute of Scientific and Technical Information of China (English)

    吴利明; 沈宏

    2012-01-01

    Concerning the roll damaged and more detective tungsten sheet in traditional rolling pro-cess ,a CVC roll is adopted in it to build a FEM model according the requirement after referring to relatea literature at home and abroad to roll the tungsten sheet by CVC shifting based on FEM software DEFORM. In view of roller shape ,stress and damage, the process of rolling tungsten sheet is analyzedAnd the stress of rolled tungsten sheet by CVC roller shifting is found to be 3/4 of the traditional craft under same rolling condition.The results show that tungsten sheet rolled by CVC shifting roller in new craft was better than thai rolled by traditional roller in the traditional craft.%针对传统轧制工艺轧制钨板过程中,轧辊易损坏、钨板轧废严重等现象,查阅国内外相关文献,基于有限元分析软件DEFORM,研究利用CVC轧辊横移轧制钨板,根据要求选择了一款CVC轧辊,并建立了有限元分析模型,从辊形、应力以及破坏方面,分析钨板轧制过程情况,发现同等轧制条件下,CVC轧辊横移轧制钨板轧制应力是传统工艺的3/4左右,对轧机的负荷较轻.结果表明:CVC轧辊横移轧制钨板的新工艺优于传统直线辊形轧辊轧制钨板的工艺.

  3. Influence of Alloying Elements Corrosion Resistance of Cold on Mechanical Properties and Rolled C-Mn-Si TRIP Steels

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling-yun; WU Di; LI Zhuang

    2012-01-01

    The rust layer plays an important role in the corrosion of steel in chlorinated environments. Salt spray, po- tentiodynamic polarization curve and tensile test were conducted in laboratory for the specimens after two-stage heat treatment. The influence of the alloying elements on mechanical properties and corrosion resistance of three kinds of steels was investigated by observing the microstructure and the morphologies of rust layer. The results show that the highest value (29%) of total elongation for steel A is obtained. The mechanical property of the specimen for steel C exhibits best strength ductility balance (21 384 MPa ·%) because of the presence of the multiphase microstructures after a two-stage heat treatment and the addition of the alloying elements. The corrosion products are known to be a complex mixture of Fe3O4 , Fe2O3 and α-FeOOH for steel C. The presence of the alloying elements results in the for mation of compact and dense rust layers in steel B and C. Passive film protects the substrate of TRIP (transformation induced plasticity) steel containing a complex mix of multiphase. Superior corrosion performance is exhibited for steel C with low alloying contents due to the enrichment of alloying elements within the rust layers.

  4. Condition Monitoring of Rolling Element Bearings Using Optimal Gabor Filters%采用Gabor滤波器的轴承状态监控方法

    Institute of Scientific and Technical Information of China (English)

    张丹; 隋文涛; 郭前建

    2016-01-01

    针对滚动轴承状态监控中最优共振频带难确定的问题,提出一种新的寻优方法和目标函数,可快速准确地定位共振频带,提取状态信息。通过两步网格搜索法,以包络稀疏性为目标函数,对Gabor滤波器参数寻优;然后对振动信号进行滤波并得到信号包络;最后运用包络自相关谱抑制噪声,突出运行状态信息。用仿真信号和实际信号对该方法进行了验证,结果表明,该方法能准确判明轴承运行状态。%Aiming to the difficulty in finding the resonant frequency band in condition monitoring of roll-ing element bearings, a new optimization method and objective function was proposed. The resonant fre-quency band can be located through this proposed method. Firstly, the parameters of Gabor filter are op-timized through the two-step grid search method, in which the envelope sparseness is as objective func-tion. The vibration signal was filtered through the optimal filter and the envelop signal was calculated. The envelop autocorrelation spectrum was adopted to restrain noise and highlight operation condition infor-mation. The effectiveness and advantages of the proposed method were proved through the simulation sig-nal and experimental signals. It is shown that the bearing operation condition can be recognized accurate-ly by the proposed method.

  5. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    Science.gov (United States)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  6. Estimation of Fatigue Crack Growth Rate for 7% Nickel Steel under Room and Cryogenic Temperatures Using Damage-Coupled Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Seul-Kee Kim

    2015-04-01

    Full Text Available In this study, fatigue crack growth rates (FCGR of 7% nickel steel at room and cryogenic temperatures were evaluated using damage-coupled finite element analysis (FEA. In order to perform the computational fatigue analysis effectively, methods for coupling damage to FEA are introduced and adopted. A hybrid method including the damage-coupled constitutive model and jump-in-cycles procedure was implemented into the ABAQUS user-defined material subroutine. Finally, the represented method was validated by comparing its results with the FCGR test results for 7% nickel steel under room and cryogenic temperatures. In particular, da/dN versus ∆K and the crack length versus the number of cycles were compared.

  7. Influence of Edge Rolling Reduction on Plate-Edge Stress Distribution During Finish Rolling

    Institute of Scientific and Technical Information of China (English)

    YU Hai-liang; LIU Xiang-hua; CHEN Li-qing; LI Chang-sheng; ZHI Ying; LI Xin-wen

    2009-01-01

    Dimensions of one kind of stainless steel plate before finish rolling were obtained through analysis of the rough rolling processes by finite element method and updated geometrical method.The FE models of finish rolling process with a front edge roll were built,and influences of the edge rolling reduction on-the stress change in the plate edge during finish roiling were analyzed.The results show that when the edge rolling reduction is increased from 0 mm to 2 ram,the compressive stress in plate corner clearly increases in edge rolling process,and the zone of tensile stress during whole rolling decreases;when the edge rolling reduction is increased from 2 mm to 5 mm,the compressive stress in the plate corner seldom changes,and the compressive stress decreases after the horizontal rolling.

  8. Effect of Rare Earth Element on Formation and Propagation of Thermal Fatigue Crack in Low-Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    XU Tao; LI Feng; CHEN Hua; YU Cui-yan

    2005-01-01

    The formation and growth of thermal fatigue crack in low-chromium semi-steel were investigated by means of optical microscope and scanning electron microscope, and the function of RE in low-chromium semi-steel was analyzed. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides, and the cracks not only grow and spread but also join each other. RE can improve the eutectic carbide′s morphology, inhibit the generation and propagation of thermal fatigue cracks, and therefore promote the activation energy for the crack′s propagation, which is especially more noticeable in case of the RE modification in combination with heat treatment. The mathematical model of the crack propagation is put forward.

  9. FEM Calculation of Work Roll Temperature and Thermal Crown

    Institute of Scientific and Technical Information of China (English)

    KONG Xiang-wei; XU Jian-zhong; YE He-zhou; WANG Guo-dong; LIU Xiang-hua; HE Xiao-ming; BA Li-ying

    2004-01-01

    The simulation of the work roll temperature field was carried out by means of ANSYS software, and the thermal crown of the roll along its axis was obtained. The thermal-structural coupled element and contact element were introduced. In the simulation of work roll temperature field, the convert boundary condition and the transient thermal contact between the roll and strip were studied. Besides, the dynamic variation of the work roll temperature and the transient temperature distribution of the work roll during hot rolling were investigated. The calculated results were in good agreement with the measured data.

  10. Rolling Mill Work Roll Stress Analysis and Strain Measurement

    Energy Technology Data Exchange (ETDEWEB)

    R. K. Jones

    1999-03-01

    This study of a rolling mill work roll failure consisted of (a) a review of related published materials, (b) measuring strain on the spindles with strain gages, (c) performing finite element analyses (FEA) modeling of the work roll thrust groove section (using the measured spindle loading), (d) fabricating and testing an physical model of the work roll, using the good end of a broken work roll, (e) recording motor voltage and current, and (f) processing, analyzing, and comparing the results. A methodical approach was taken to determine the causes of the failures. The actual loading to which the work rolls were subjected was determined, then these loads were used in a FEA of the thrust groove sections of three work roll designs: failed, current, and proposed. To verify the FEA results, a physical model was fabricated, built, and subjected to instrumented tests. The study offered the following recommendations: remove the undercut groove in the thrust groove section on future procurements; investigate possible methods of removing the transverse keyway; forego the larger drive train upgrades proposed by the mill manufacturer; continue frequent thrust groove inspections; require chemical and mechanical property certifications on all future procurements; and immediately scrap any work rolls that exhibit surface cracking.

  11. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications

    Directory of Open Access Journals (Sweden)

    David K. Matlock

    2005-12-01

    Full Text Available With the development of new steels and processing techniques, there have been corresponding advances in the fatigue performance of automotive components. These advances have led to increased component life and smaller power transfer systems. New processing approaches to enhance the fatigue performance of steels are reviewed with an emphasis on carburizing and deep rolling. Selected examples are presented to illustrate the importance of the base steel properties on the final performance of surface modified materials. Results on carburized gear steels illustrate the dependence of the fatigue behavior on carburizing process control (gas and vacuum carburizing, alloy additions and microstructure. The importance of retained austenite content, case and core grain size as controlled by processing and microalloy additions, extent of intergranular oxidation, and the residual stress profile on fatigue performance is also illustrated. Specific recent results on the use of microalloying elements (e.g. Nb and process history control to limit austenite grain growth at the higher carburizing temperatures associated with vacuum carburizing are highlighted. For crankshaft applications, deep rolling is highlighted, a process to mechanically work fillet surfaces to improve fatigue resistance. The influence of the deformation behavior of the substrate, as characterized by standard tensile and compression tests, on the ability to create desired surface properties and residual stress profiles will be illustrated with data on several new steels of current and future interest for crankshaft applications.

  12. Research on Thermal Characteristics of Double-decker Rolling-element Bearing%双层滚动轴承热学特性研究

    Institute of Scientific and Technical Information of China (English)

    郑衍通; 徐龙祥

    2011-01-01

    磁悬浮轴承系统通常采用滚动轴承作为保护轴承.基于传热学、滚动轴承摩擦学以及转子动力学等理论,建立一种用两个滚动轴承组成的双层保护轴承(Double-decker auxiliary bearing,DDAB)的热学模型,通过建立热传递方程,计算轴承的摩擦热和温度分布,研究DDAB的热学特性.研究内容如下:建立双层滚动轴承(Double-decker rolling bearing,DDRB)的热传递模型,推导热传递阻抗和热传递方程,计算DDRB在普通运转条件下达到热平衡时的温度分布;研究不同结构、载荷、转速、润滑剂粘度、材料属性等参数对轴承温升的影响,并对比其与普通轴承在相同工况下的热学特性;建立试验台,实际测量轴承的温升,研究不同结构形式和润滑参数条件对于轴承热学特性的影响,探讨可以降低发热的主要措施.研究结果表明:DDRB的径向载荷和内圈转速直接影响轴承摩擦力矩的大小进而影响轴承的发热,在相同工况下DDRB比普通滚动轴承的内圈温升要小5%~20%,外圈温升要小10%~30%;结构、润滑剂粘度、材料的热学性能对轴承内外圈温度分布影响较大,润滑剂的填装量在轴承空间的1/3,采用Z形结构、铝制中圈、陶瓷滚动体等可以使轴承在高速运转下获得较好的热学特性和较低的温升.%Rolling-element bearings are commonly used to protect the magnetic bearing system as auxiliary bearings. On the basis of the thermal transfer theory, tribology of rolling-element bearing and rotor dynamics, a new thermal structure of double-decker auxiliary bearing (DDAB) is established, and then the thermal characteristics are analyzed through building the heat transfer equations and computing the friction heat and temperature. Details of studies are as follows: after the establishment of the heat transfer model of double-decker rolling bearing (DDRB) and the derivation of heat transfer resistance and equations

  13. Rolling Uphill

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    In a recent letter to this journal, Mungan noted that translational energy can be converted into gravitational potential energy when an object is projected vertically, but rotational energy is not usually converted in this manner. As an exception, he gave an example where "a ball initially rolling without slipping will travel higher up a…

  14. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    Science.gov (United States)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  15. Solid Lubricated Rolling Element Bearings

    Science.gov (United States)

    1980-02-15

    Metal, X is the chalco -en atom and x is the relative amount of the intercalated species. In the alkali intercalated species, 0< x <l and the alkali...stabilize them at the stoichiometric 1.X2 coi.inositlon. Also, intercalation of alkali metal atoms into chalco . enides already oossessin:; the

  16. Fatigue modelling for gas nitriding

    Directory of Open Access Journals (Sweden)

    H. Weil

    2016-10-01

    Full Text Available The present study aims to develop an algorithm able to predict the fatigue lifetime of nitrided steels. Linear multi-axial fatigue criteria are used to take into account the gradients of mechanical properties provided by the nitriding process. Simulations on rotating bending fatigue specimens are made in order to test the nitrided surfaces. The fatigue model is applied to the cyclic loading of a gear from a simulation using the finite element software Ansys. Results show the positive contributions of nitriding on the fatigue strength

  17. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    Energy Technology Data Exchange (ETDEWEB)

    You, Jeong-Ha, E-mail: you@ipp.mpg.de

    2014-04-15

    Highlights: • The surface heat flux load of 3.5 MW/m{sup 2} produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m{sup 2}) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different

  18. Fatigue Performance of Microalloyed High-strength Rebar and Analysis of Fracture Mechanism

    Institute of Scientific and Technical Information of China (English)

    Peng-yan LU; Yu LIU; Hua-jie WU; Gang LIU; Xiang MENG; Yang XU

    2015-01-01

    Fatigue performance of hot-rolled ribbed-steel bar with the yield strength of 500 MPa (HRB500)was stud-ied with bend-rotating fatigue test at a stress ratio of R=-1 .It is determined by staircase method that its fatigue strength for 107 cycles is 451 MPa,which is higher than that of common carbon structural steel.This should be at-tributed to the fine-grain strengthening resulting from the high content of alloy element V and Thermo-Mechanical Control Process (TMCP).The S-N curve function is also obtained by nonlinear regression with three parameters power function.The fatigue fractures of the specimen were further analyzed with Scanning Electron Microscopy (SEM)and Energy Disperse Spectroscopy (EDS)to study the fracture mechanism.Taking into account microstruc-ture,hardness and cleanliness of the material,it implies that the fatigue fractures of HRB500 rebar all arise from surface substrates in which many brittle inclusions are contained,and that the fatigue crack propagation is principally based on the mechanism of quasi-cleavage fracture,because of the intracrystalline hard spots leading to stress con-centration and thus to the cracks.Moreover,the transient breaking area exhibits microvoid coalescence of ductile fracture due to the existing abundant inclusions.

  19. THE EXTENDED FINITE ELEMENT METHOD IN FATIGUE LIFE PREDICTIONS OF OIL WELL WELDED PIPES MADE OF API J55 STEEL

    National Research Council Canada - National Science Library

    Ljubica Lazic Vulicevic; Aleksandar Grbovic; Aleksandar Sedmak; Aleksandar Rajic

    2015-01-01

      This paper presents an application of the extended finite element method (XFEM) in the modeling and analysis of simultaneous cracks propagations in a seam casing pipe made of API J55 steel by high-frequency...

  20. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  1. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...... of irreversible fatigue cohesive elements. Different orientations of the cracks and different matrix-inclusion bonding conditions are analyzed and compared....

  2. Fatigue Analysis and Life Prediction of Dumpers with Cumulative Fatigue Damage Approach

    Institute of Scientific and Technical Information of China (English)

    LI Shouju; LIU Yingxi; SUN Huiling

    2004-01-01

    A fatigue damage model is developed for evaluating accumulative fatigue damage of dumpers. The loading spectrums acted on dumpers are created according to measured strain data in field. The finite element analysis is carried out for assessing stress distribution and strength characteristics of dumpers. Fatigue damage indexes and service life are calculated by a modified Palmgren-Miner rule. The investigation shows that fatigue notch factor has a significant influence on the calculation of fatigue damage of dumpers.

  3. Explicit-Explicit Sequence Calculation Method for the Wheel/rail Rolling Contact Problem Based on ANSYS/LS-DYNA

    Directory of Open Access Journals (Sweden)

    Song Hua

    2015-01-01

    Full Text Available The wheel/rail rolling contact can not only lead to rail fatigue damage but also bring rail corrugation. According to the wheel/rail rolling contact problem, based on the ANSYS/LS-DYNA explicit analysis software, this paper established the finite element model of wheel/rail rolling contact in non-linear steady-state curve negotiation, and proposed the explicit-explicit sequence calculation method that can be used to solve this model. The explicit-explicit sequence calculation method uses explicit solver in calculating the rail pre-stressing force and the process of wheel/rail rolling contact. Compared with the implicit-explicit sequence calculation method that has been widely applied, the explicit-explicit sequence calculation method including similar precision in calculation with faster speed and higher efficiency, make it more applicable to solve the wheel/rail rolling contact problem of non-linear steady-state curving with a large solving model or a high non-linear degree.

  4. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  5. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  6. Investigation of Contact Fatigue of High Strength Steel Gears Subjected to Surface Treatment

    Science.gov (United States)

    Dimitrov, L.; Michalopoulos, D.; Apostolopoulos, Ch. Alk.; Neshkov, T. D.

    2009-10-01

    In this paper the contact fatigue resistance of gearwheel teeth, subjected to shot-peening treatment, was investigated experimentally and analytically. The main objective was the evaluation and prediction of fatigue crack initiation, propagation, direction, and rate. A specially designed experimental rig was used to test a number of spur gears with the following characteristics: (a) unhardened, thermally untreated unpeened surfaces, (b) thermally treated unpeened surfaces, (c) unhardened peened surfaces, and (d) thermally treated peened surfaces. The theoretical model assumed initiation and propagation of surface cracks of gears operating in the elastohydrodynamic lubrication regime while loading was due to simultaneous rolling and sliding. Finite element modeling was used for the calculation of the stress field at the gear teeth. Comparison of the experimental and analytical results showed considerable improvement in the contact fatigue strength of thermally treated gear teeth and especially those that underwent shot peening, which increased surface durability. The residual stresses induced by shot peening are mainly effective in stopping microcrack propagation. When shot peening is applied on thermally untreated gear teeth surface, it increases the contact fatigue life of the material by 17% at 7 × 105 loading cycles. If shot peening is applied on carburized gear teeth surfaces, it increases the surface fatigue life by approximately 8% at 106 cycles. Contact fatigue and eventual pitting are treated as a normal consequence of the operation of machine elements. To study this failure process different types of testing machines have been designed. The purpose of this paper is the presentation and evaluation of a new design experimental rig for studying contact fatigue damage of gear teeth subjected to different load patterns.

  7. Definitory characteristics validation of the caregiver role fatigue diagnosis in Primary Care

    OpenAIRE

    2012-01-01

    Introduction: The nursing diagnostic "Fatigue in the performance of the roll of caregiver "have thirty and three definitories characteristics. The test of Zarit is not including between these definitories characteristics but an indicating faithful of the fatigue of the caretaker has demonstrate To analyze as they are the characteristics definitorias, including the Zarit, that better they predict the diagnostic "Fatigue in the performance roll del caregiver" in primary attention. Material and ...

  8. Role of Friction in Cold Ring Rolling

    Institute of Scientific and Technical Information of China (English)

    He YANG; Lianggang GUO; Mei ZHAN

    2005-01-01

    Cold ring rolling is an advanced but complex metal forming process under coupled effects with multi-factors, such as geometry sizes of rolls and ring blank, material, forming process parameters and friction, etc. Among these factors,friction between rolls and ring blank plays animportant role in keeping the stable forming of cold ring rolling. An analytical method was firstly presented for proximately determining the critical friction coefficient of stable forming and then a method was proposed to determine thecritical friction coefficient by combining analytical method with numerical simulation. And the influence of friction coefficient on the quality of end-plane and side spread of ring,rolling force, rolling moment and metal flow characteristic in the cold ring rolling process have been explored using the three dimensional (3D) numerical simulation based on the elastic-plastic dynamic finite element method (FEM)under the ABAQUS software environment, and the results show that increasing the friction on the contact surfaces between rolls and ring blank is useful not only for improving the stability of cold ring rolling but also for improving the geometry and dimension precision of deformed ring.

  9. A method to generate conformal finite-element meshes from 3D measurements of microstructurally small fatigue-crack propagation: 3D Meshes of Microstructurally Small Crack Growth

    Energy Technology Data Exchange (ETDEWEB)

    Spear, A. D. [Department of Mechanical Engineering, University of Utah, Salt Lake City UT USA; Hochhalter, J. D. [NASA Langley Research Center, Hampton VA USA; Cerrone, A. R. [GE Global Research Center, Niskayuna NY USA; Li, S. F. [Lawrence Livermore National Laboratory, Livermore CA USA; Lind, J. F. [Lawrence Livermore National Laboratory, Livermore CA USA; Suter, R. M. [Department of Physics, Carnegie Mellon University, Pittsburgh PA USA; Ingraffea, A. R. [School of Civil & Environmental Engineering, Cornell University, Ithaca NY USA

    2016-04-27

    In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulations for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.

  10. Analysis and design of rolling-contact joints for evaluating bone plate performance.

    Science.gov (United States)

    Slocum, Alexander H; Cervantes, Thomas M; Seldin, Edward B; Varanasi, Kripa K

    2012-09-01

    An apparatus for testing maxillofacial bone plates has been designed using a rolling contact joint. First, a free-body representation of the fracture fixation techniques utilizing bone plates is used to illustrate how rolling contact joints accurately simulate in vivo biomechanics. Next, a deterministic description of machine functional requirements is given, and is then used to drive the subsequent selection and design of machine elements. Hertz contact stress and fatigue analysis for two elements are used to ensure that the machine will both withstand loads required to deform different plates, and maintain a high cycle lifetime for testing large numbers of plates. Additionally, clinically relevant deformations are presented to illustrate how stiffness is affected after a deformation is applied, and to highlight improvements made by the machine over current testing standards, which do not adequately re-create in vivo loading conditions. The machine performed as expected and allowed for analysis of bone plates in both deformed and un-deformed configurations to be conducted. Data for deformation experiments is presented to show that the rolling-contact testing machine leads to improved loading configurations, and thus a more accurate description of plate performance. A machine for evaluation of maxillofacial bone plates has been designed, manufactured, and used to accurately simulate in vivo loading conditions to more effectively evaluate the performance of both new and existing bone plates.

  11. Analysis of Temperature Field and Thermal Crown of Roll During Hot Rolling by Simplified FEM

    Institute of Scientific and Technical Information of China (English)

    GUO Zhong-feng; LI Chang-sheng; XU Jian-zhong; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    Thermal crown of roll is an important factor, which affects strip profile. It is necessary to analyze the temperature field and thermal crown of roll for hot strip mill. A new simplified finite element method (FEM) was used to analyze the temperature field and thermal crown of roll, and corresponding models were built according to the practical boundary conditions. Transient roll temperature field and thermal crown were simulated by ANSYS FEM software with considering transient thermal contact and complex boundary condition. Temperature and thermal crown variations on roll surface nodes were obtained. The thermal crown results of roll obtained by FEM simulation were in good agreement with the measured data, indicating that simplified FEM models and results were correct.

  12. Backup roll contour of a SmartCrown tandem cold rolling mill

    Institute of Scientific and Technical Information of China (English)

    Guanghui Yang; Jianguo Cao; Jie Zhang; Shenghui Jia; Renwei Tan

    2008-01-01

    SmartCrown was a new system developed by VAI for improving the strip profile and flatness control first applied in 1700mm tandem cold rolling mills at Wuhan Iron & Steel (Group) Corporation (WISCO). After tracing and testing, the application of the conventional crown backup roll matching the SmartCrown work roll of the production mill led to heavy and nonuniform wear, and the edge spalling of the backup roll often occurred. A 3-dimension finite element model of roll stacks was established, which was used to analyze the above-mentioned problems, and it was found that the main reason was the highly nonuniform contact pressure distribution between the work roll and the backup roll. A new FSR (flexible shape backup roll) was developed and applied in 1700mm tandem cold rolling mills. A lot of good actual effects of FSR, such as evident improvement in profile and flatness of strips,non-occurring edge spalling, wear uniform, and remarkable decrease in roll consumption were validated by long-term industrial applications.

  13. Tribological Testing of Anti-Adhesive coatings for Cold Rolling Mill Rolls—Application to TiN-Coated Rolls

    Science.gov (United States)

    Ould, Choumad; Gachon, Yves; Montmitonnet, Pierre; Badiche, Xavier

    2011-05-01

    Roll life is a major issue in cold strip rolling. Roll wear may result either in too low roll roughness, bringing friction below the minimum requested for strip entrainment; or it may degrade strip surface quality. On the contrary, adhesive wear and transfer ("roll coating", "pick up") may form a thick metallic deposits on the roll which increases friction excessively and degrades strip surface again [1]. The roll surface, with the help of a materials-adapted lubricant, must therefore possess anti-wear and anti-adhesive properties. Thus, High Speed Steeel (HSS) rolls show superior properties compared with standard Cr-steel rolls due to their high carbide surface coverage. Another way to improve wear and adhesion properties of surfaces is to apply hard metallic (hard-Cr) or ceramic coatings. Chromium is renowned for its excellent anti-wear and anti-adhesive properties and may serve as a reference. Here, as a first step towards alternative, optimised coatings, a PVD TiN coating has been deposited on tool steels, as previous attempts have proved TiN to be rather successful in cold rolling experiments [2,3]. Different tribological tests are reported here, giving insight in both anti-adhesive properties and fatigue life improvement.

  14. Analysis of CVC roll contour and determination of roll crown

    Institute of Scientific and Technical Information of China (English)

    Guang Xu; Xianjun Liu; Jiarong Zhao; Junwei Xiong

    2007-01-01

    Mathematical analysis of continuous variable crown (CVC) roll contour used in CSP production line was conducted and the roll contour function of CVC roll was obtained. The validation with actual CVC roll contour shows that the calculation values of the roll contour function and the actual roll contour parameters given by equipment provider are the same, which proves that the roll contour function of CVC rolls given in this article is correct. The nonlinear relationship between the roll crown of CVC rolls and roll shift amounts was deduced. The concept of crown extremum was given.

  15. 75 FR 64254 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil; Final Results of...

    Science.gov (United States)

    2010-10-19

    ... degassed, fully stabilized (commonly referred to as interstitial-free (IF)) steels, high strength low alloy... and nitrogen elements. HSLA steels are recognized as steels with micro- alloying levels of elements... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From...

  16. 基于LMD和MED的滚动轴承故障特征提取方法%Fault feature extraction method for rolling element bearings based on LMD and MED

    Institute of Scientific and Technical Information of China (English)

    周士帅; 窦东阳; 薛斌

    2016-01-01

    机械系统所拾取的振动信号包含着许多复杂的信息成分,微弱故障信号的提取往往会受到这些成分的影响,故障识别非常困难,尤其是滚动体故障识别,往往比内圈和外圈故障识别更困难。提出局域均值分解(local mean decomposition, LMD)与最小熵反褶积(minimum entropy deconvolution, MED)结合的方式,提取强噪声、强确定性成分下微弱故障信号的特征。先用LMD对信号做预处理,自适应地分解为若干个乘积函数(product function, PF)分量,再对前4个PF分量做MED处理以放大故障脉冲特征,最后对MED处理后的信号进行包络分析。通过对强噪声背景下滚动轴承滚动体的故障实例分析,该方法得到的输出频谱故障特征频率处峰值与200 Hz内所有峰值均值的比值较原信号的增加了96.4%,同时信噪比提高了18.3%,成功地提取了故障特征,取得了良好的效果,该研究可为强噪声环境下轴承故障识别和诊断提供参考。%The vibration signals collected from mechanical systems consist of cyclic impulse response, deterministic component and noise. The rolling bearing’s fault features are usually so weak that they are overwhelmed by these components, leading difficulty for fault diagnosis. Compared with the inner race and outer race defects of rolling bearing, recognizing the rolling element defects are much more challenging. Therefore, the key problem of fault diagnosis of rolling bears is to exactly extract the weak fault features from a strong noisy background. In this paper, we developed a method based on the minimum entropy deconvolution (MED) and local mean decomposition (LMD) for diagnosing fault features. First, the LMD was used to decompose the original signals into a set of production functions(PFs) adaptively. Each PF was a product of an amplitude envelope signal and a frequency-modulated signal. By doing so, we aimed to obtaining different

  17. Thermal fatigue of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  18. Explicit Dynamic FEM Analysis of Multipass Vertical-Horizontal Rolling

    Institute of Scientific and Technical Information of China (English)

    YU Hai-liang; LIU Xiang-hua; ZHAO Xian-ming; WU Di; Y.Kusaba

    2006-01-01

    Three passes of plate rolling during vertical-horizontal rolling process are simulated with explicit dynamic finite element method and updating geometric method. The equivalent strain and stress fields, and shape change at the head and tail of slab during rolling are obtained. The calculated result of the shape at the head and tail of slab is in good agreement with the measured one. The explicit dynamic finite element method and updating geometric method can be used effectively to analyze the multipass vertical-horizontal (V-H) rolling process.

  19. Fatigue (PDQ)

    Science.gov (United States)

    ... of daily living . Better quality of life . More satisfaction with life. A greater sense of well-being. ... and decrease fatigue. The importance of eating enough food and drinking enough fluids. Physical therapy for patients ...

  20. NBCM with Flat Roll in the Finish Stand

    Institute of Scientific and Technical Information of China (English)

    Xiangwei KONG; Hezhou YE; Jianzhong XU; Guodong WANG; Xianghua LIU; Junwei ZHANG

    2004-01-01

    With the development of the market, it becomes a demanding task for producers to make flexible production schedules to shorten production cycle. Schedule-free rolling is needed. If the CVC work roll of the F6 and F7 stands in certain 2050 mm hot rolled strip mill are substituted by flat roll (aim to SFR) and the strip profile is controlled by the existing bending force, the control ability is not adequate. This fact has been tested through on-line experiment and has been given in this article. The NBCM (new backup roll crowning method) is recommended to improve the profile control ability. Finally the plastic deformation of the strip and the elastic deformation of the roll are analyzed by employing coupled calculation of rigid-plastic finite element method and G-function method, and the optimal range of the crown of backup roll is given theoretically.

  1. Speed Distribution Ratio of Double-Decker Rolling-Element Bearings%双层滚动轴承转速分配比

    Institute of Scientific and Technical Information of China (English)

    俞成涛; 徐龙祥; 蒋鹏; 金超武; 朱益利

    2012-01-01

    针时双层滚动轴承,分别采用纯滚动理论和摩擦力矩理论推导出转速分配比的理论计算公式,并对不同结构和不同润滑方式下的转速分配比进行了试验研究.研究结果表明:根据摩擦力矩理论计算得到的转速分配比比根据纯滚动理论计算得到的转速分配比更接近于试验测得的结果.双层滚动轴承的转速分配比与内、外层轴承的节径比有关,节径比越大,转速分配比越好.当工作转速为10 000 r/min时:节径比为0.59时,转速分配比为0.038;节径比为0.75时,转速分配比可达0.17.转速分配比还与内、外层轴承的润滑方式和润滑粘度有关,内、外层轴承都采用油润滑比都采用脂润滑得到的转速分配比更加稳定.%The speed distribution ratio formulas of double-decker ball bearings (DDBB) are respectively derived based on pure rolling theory and friction torque theory. And then the speed distribution ratio for different structures and lubricating methods are experimentally studied. The results show that the ratio calculated using friction torque theory is closer to the experimental results. The speed distribution ratio is mainly determined by the pitch diameter ratio of the inner and outer bearings. Better speed distribution ratio performance can be obtained from bigger pitch diameter ratio. When the rotor rotates at the speed of 10 000 r/min, the speed distribution ratio equals 0. 038 for relatively smaller pitch diameter ratio 0. 59. while the distribution ratio becomes 0. 17 for larger pitch diameter ratio 0. 75. The speed distribution is also influenced by lubricating methods and lubricant viscosity. Adopting oil to lubricate both inner and outer bearings is more stably than grease lubrication.

  2. Design and application of a new kind of rolling coupling

    Institute of Scientific and Technical Information of China (English)

    XU Hai-liang; HE Qing-hua

    2005-01-01

    Based on Hertz theory of elastic contact and the design theory of ball bearings, a new type of rolling coupling was designed. The two halves of the rolling coupling can be moved relatively by a small axial force when a great moment is exerted on it. The rolling coupling was used to connect the principal axis and the decelerator of continuous extrusion machine and it can greatly decrease the harmful axial forces on the continuous machine. The engineering formulas for the contact stress and distance of apporach of the rolling elements were deduced and the method for designing the rolling couplings was proposed. The formulas for the forces exerted on the rolling element were verified by the experiment.

  3. Effect of Flaw Removal on Billets in Rolling

    Science.gov (United States)

    Yoshida, Kazunari; Shinohara, Tetsuo

    2007-05-01

    High-quality wires, which are used for components such as valve springs of automobiles, are fabricated by rolling and drawing. Even a minute flaw on the surface of the wire leads to a significant decrease in fatigue strength. It is possible to decrease the number of surface flaws during some of the rolling processes; however in most cases, it is difficult to remove flaws. Under such circumstances, high-quality wires are fabricated, at many wire manufacturing factories, by rolling and drawing after removing surface flaws on the raw material. However, the flaw removal process is carried out relying on the experience of onsite workers; many of the mechanisms underlying flaw removal have not been clarified. In this study, billet and wire that have traces formed during flaw removal were subjected to rolling to investigate the behavior of deformation and the recovery of the flaw-removal traces. When flaw-removal traces exist on a billet surface that comes into contact with the roll used in rolling, the traces are removed without difficulty. However, when the flaw-removal traces exist on a surface that does not come into contact with the roll, the traces tend to become wrinkles due to compression from the upper and lower directions. Therefore, when removing the surface flaw on billet before rolling, it is important to remove flaw part thinly.

  4. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  5. Analytical study on web deformation by tension in roll-to-roll printing process

    Science.gov (United States)

    Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.

    2017-08-01

    Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out

  6. a Numerical Simulation of Strip Profile in a 6-HIGH Cold Rolling Mill

    Science.gov (United States)

    Du, Xiaozhong; Yang, Quan; Lu, Cheng; Tieu, Anh Kiet; Kim, Shinil

    Shape control is always a key issue in the six-high rolling mill, in which the shifting of the intermediate roll and the work roll have been used to enhance the shape control capability. In this paper, a finite element method (FEM) model has been developed to simultaneously simulate the strip deformation and the roll stack deformation for the six-high rolling mill. The effects of the work-roll bending, the shifting of the intermediate roll and the work roll on the strip crown and edge drop are discussed in details. Results have shown that both higher bending force and more roll shifting will significantly reduce the strip crown. The edge drop is also reduced with the bending force and the roll shifting.

  7. Practice of Improving Roll Deformation Theory in Strip Rolling Process Based on Boundary Integral Equation Method

    Science.gov (United States)

    Yuan, Zhengwen; Xiao, Hong; Xie, Hongbiao

    2014-02-01

    Precise strip-shape control theory is significant to improve rolled strip quality, and roll flattening theory is a primary part of the strip-shape theory. To improve the accuracy of roll flattening calculation based on semi-infinite body model, a new and more accurate roll flattening model is proposed in this paper, which is derived based on boundary integral equation method. The displacement fields of the finite length semi-infinite body on left and right sides are simulated by using finite element method (FEM) and displacement decay functions on left and right sides are established. Based on the new roll flattening model, a new 4Hi mill deformation model is established and verified by FEM. The new model is compared with Foppl formula and semi-infinite body model in different strip width, roll shifting value and bending force. The results show that the pressure and flattening between rolls calculated by the new model are more precise than other two models, especially near the two roll barrel edges.

  8. Chronic Fatigue Syndrome

    Science.gov (United States)

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  9. Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Watanabe Yasuyoshi

    2004-10-01

    Full Text Available Abstract Background Fatigue is a crucial sensation that triggers rest, yet its underlying neuronal mechanisms remain unclear. Intense long-term fatigue is a symptom of chronic fatigue syndrome, which is used as a model to study the mechanisms underlying fatigue. Methods Using magnetic resonance imaging, we conducted voxel-based morphometry of 16 patients and 49 age-matched healthy control subjects. Results We found that patients with chronic fatigue syndrome had reduced gray-matter volume in the bilateral prefrontal cortex. Within these areas, the volume reduction in the right prefrontal cortex paralleled the severity of the fatigue of the subjects. Conclusion These results are consistent with previous reports of an abnormal distribution of acetyl-L-carnitine uptake, which is one of the biochemical markers of chronic fatigue syndrome, in the prefrontal cortex. Thus, the prefrontal cortex might be an important element of the neural system that regulates sensations of fatigue.

  10. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  11. INFLUENCES OF EDGING ROLL SHAPE ON THE PLASTIC STRAIN DISTRIBUTION OF SLAB DURING MULTI-PASS V-H ROLLING PROCESS

    Institute of Scientific and Technical Information of China (English)

    H.L. Yu; X.H. Liu; C.S. Li; X.M. Zhao; Y. Kusaba

    2006-01-01

    Multi-pass slab vertical-horizontal (V-H) rolling process with variable edging roll shape have been simulated with explicit dynamic finite element method and updating geometric method. The distributions of plastic strain contour in slab during rolling process with different edging roll and under different rolling stage have been obtained. The results show that there exist two thin strain assembling zones in slab when the flat edging roll is used, and there just exist one strain assembling zone in slab when the edging roll with groove is used. And compared the deformation equality between flat edging roll and edging rollwith groove, the lateris better than the former, which supplies the theory prove to the slab deformation distribution during V-H rolling process and is helpful for predicting the slab texture.

  12. 3D FEM Simulations of a shape rolling process

    NARCIS (Netherlands)

    Wisselink, H.H.; Huetink, J.; Dijk, van M.H.H.; Leeuwen, van A.J.

    2001-01-01

    A finite element model has been developed for the simulation of the shape rolling of stator vanes. These simulations should support the design of rolling tools for new vane types. For the time being only straight vanes (vanes with a constant cross-section over the length) are studied. In that case t

  13. Joining of composite shafts and workpieces by rolling-in; Fuegen von gebauten Wellen und Verbundbauteilen durch Einwalzen

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, M. [MHP Mannesmann Praezisrohr GmbH, Muelheim (Germany). Bereich Automobilindustrie; Kessler, N.; Weinert, K. [Dortmund Univ. (Germany). Inst. fuer Spanende Fertigung; Wilcke, G.; Roettger, K. [Ecoroll AG, Celle (Germany)

    2006-07-01

    The roller burnishing and deep rolling of drill holes or other profiles is a well established process for achieving a very high surface quality and for enhancing the fatigue strength significantly. With the development of the rolling-in process for manufacturing composite workpieces like e.g. composite shafts and camshafts the possible fields of application of the rolling process can be extended by an interesting aspect. For rolling0in specially adapted tools were used with a higher rolling oversize to join by expanding an inner component inside an outer part, both optimised for special requirements.

  14. HRB400螺纹钢中钒的强化作用研究%The research of v element strengthening mechanisms in HRB400 hot rolled ribbed bars

    Institute of Scientific and Technical Information of China (English)

    刘强; 张炯明; 王博; 尹延斌; 曹一飞

    2016-01-01

    通过对含钒螺纹钢的性能进行研究,发现钒在细化晶粒方面效果较好。由各种强化机制对屈服强度的贡献计算结果不难发现钒能够加强析出强化的作用。文章对HRB400螺纹钢中钒的析出情况进行热力学计算,并分析了不同钒含量对析出温度的影响。%The properties of hot rolled ribbed bars with different V contents are investigated. It is found that V can promote gain refinement. Contributions of different strengthening mechanisms to yield strength of bars are computed. The results show that V has a good effect on bar precipitation strength. Through thermodynamic calculations of V element precipitation in HRB400, the influence of V contents on the precipitating temperatures of V( CN) is demonstrated.

  15. Hertz理论与有限元法分析轮轨接触疲劳的差异性研究%Research of the Differences between Hertz Theory and Finite Element Method to Analyze the Fatigue of Wheel/Rail Contact

    Institute of Scientific and Technical Information of China (English)

    曹世豪; 李煦; 张四放; 良华; 江晓禹

    2015-01-01

    The Hertz theory and finite element software ANSYS are used to analyze the contact fatigue problem of wheel/rail with surface crack. Under the condition of different axle loads and operating states, the stress intensity factors of crack tip at different locations are obtained. The results show that, the stress intensity factorKI increases with the increase of axle load, but the variation of KI differs greatly for different operating states. The stress intensity factorKI andKI increase significantly with the effect of the friction, and it changes the variation trend ofKI. In the state of fraction free,KI accounts for 5% ofKI. In the pure rolling state,KI accounts for 20% ofKI. In the full sliding state,KI accounts for 55% ofKI. It means that theKI cannot be ignored when analyzing the fatigue and fracture mechanism of rail. Hertz theory has the following defects, narrow scope of application, larger result and error accumulation because of the Hertz theory does not consider the plasticity of material and the friction between wheel and rail. The finite element method is an effective method to solve the complex contact fatigue problem of wheel/rail.%采用 Hertz 理论和有限元分析软件 ANSYS,对钢轨表面存在微裂纹的轮轨接触疲劳问题进行研究,在不同轴重和运行状态下,获得不同位置的裂纹尖端应力强度因子。结果表明,随着轴重的增加,应力强度因子KI增加,而KI 的变化趋势因车轮运行状态的不同而不尽相同。摩擦力的存在,使得KI、KI 明显增加,且明显改变KI 的变化趋势;在无摩擦力时,KI所占KI的比例约为6%,纯滚动时,KI 所占KI的比例达到将近20%,全滑动时,KI 所占KI的比例接近50%,因此,对钢轨进行疲劳断裂机理分析时,KI 明显不可忽略。由于Hertz理论不考虑材料的塑性和轮轨间的摩擦力,使得Hertz理论分析轮轨接触疲劳时有适用范围小、计算结果偏大、误差累计等

  16. Martensitic transformation during fatigue testing of an AISI 301LN steel

    OpenAIRE

    Mateo García, Antonio Manuel; Fargas Ribas, Gemma

    2012-01-01

    The plastic deformation accumulated during fatigue testing can induce the transformation of austenite to martensite in metastable austenitic stainless steels. To analyze this issue, a metastable austenitic stainless steel grade AISI 301 LN was studied in two different conditions, i.e. annealed and cold rolled. In the first case, the steel was fully austenitic, whereas cold rolled material had almost 30% of martensite. High cycle fatigue tests at a stress ratio of 0.8 were carried out on flat ...

  17. Revisiting the reasons for contact fatigue defects in rails

    Directory of Open Access Journals (Sweden)

    Darenskiy Alexander

    2017-01-01

    Full Text Available As it is known rail is one of the most significant elements of the whole railway construction. Operation under alternating loads from wheels of the rolling stock and different ambient temperatures lead to appearance and development of rail defects and damages. A great variety of operational factors (freight traffic density, axial loads, traffic speeds, track layout and profile as well as special features of manufacturing and thermal treatment of rails create certain difficulties while identifying reasons for defects and damages. The article deals with an attempt to estimate influence of track layout and lateral forces on appearance of defects and damages in rails on the base of long-term observations of rail operation in Kharkiv Metro. On the basis of the vehicle/track mathematical model which considers structural features of both rolling stock and permanent way in underground systems, the level of lateral forces in curves was calculated. The coefficients of correlation between the track curvature, the level of forces and the amount of defected rails removed were later obtained, that made it possible to determine the dominant factor which may lead to appearance and development of contact fatigue defects in rails laid in curves.

  18. Steel balls forming by cross rolling with upsetting

    Directory of Open Access Journals (Sweden)

    Z. Pater

    2013-01-01

    Full Text Available The paper describes a process of forming four balls with a diameter of 22 mm by means of cross rolling with upsetting. The paper also presents the tool used to form semi-finished balls. Owing to the application of the finite element method (FEM, the course of the rolling process as well as temperature and strain distributions in the obtained balls could be presented. The rolling tests conducted in laboratory conditions at the Lublin University of Technology have proved that the balls produced with the developed rolling method meet the demands for grinding media used in ball mills.

  19. 75 FR 43931 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Preliminary Results of...

    Science.gov (United States)

    2010-07-27

    ... (``IF'')) steels, high strength low alloy (``HSLA'') steels, and the substrate for motor lamination... titanium and/or niobium added to stabilize carbon and nitrogen elements. HSLA steels are recognized as... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from...

  20. 76 FR 22868 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of...

    Science.gov (United States)

    2011-04-25

    ... (``IF'')) steels, high strength low alloy (``HSLA'') steels, and the substrate for motor lamination... titanium and/or niobium added to stabilize carbon and nitrogen elements. HSLA steels are recognized as... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From...

  1. Fatigue reliability for LNG carrier

    Institute of Scientific and Technical Information of China (English)

    Xiao Taoyun; Zhang Qin; Jin Wulei; Xu Shuai

    2011-01-01

    The procedure of reliability-based fatigue analysis of liquefied natural gas (LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method (FEM). Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis, Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory, fatigue damage is characterized by an S-N relationship, and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.

  2. Partition Decomposition for Roll Call Data

    CERN Document Server

    Leibon, Greg; Rockmore, Daniel N; Savell, Robert

    2011-01-01

    In this paper we bring to bear some new tools from statistical learning on the analysis of roll call data. We present a new data-driven model for roll call voting that is geometric in nature. We construct the model by adapting the "Partition Decoupling Method," an unsupervised learning technique originally developed for the analysis of families of time series, to produce a multiscale geometric description of a weighted network associated to a set of roll call votes. Central to this approach is the quantitative notion of a "motivation," a cluster-based and learned basis element that serves as a building block in the representation of roll call data. Motivations enable the formulation of a quantitative description of ideology and their data-dependent nature makes possible a quantitative analysis of the evolution of ideological factors. This approach is generally applicable to roll call data and we apply it in particular to the historical roll call voting of the U.S. House and Senate. This methodology provides a...

  3. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...

  4. Thermal Fatigue Analysis of Takeover Pipeline

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This article uses the finite element analysis software ANSYS to analyze the fatigue life of the three links pipeline with different angles in the first level pipe of experimental fast reactor. The fatigue analysis is operated following the startup and shutdown process which has two load step,

  5. Fatigue Damage Mechanism of Oil Film Bearing Sleeve

    Institute of Scientific and Technical Information of China (English)

    HUANG Qing-xue; WANG Jian-mei; MA Li-feng; ZHAO Chun-jiang

    2007-01-01

    With the rapid development of the steel industry, to keep pace with the current trend of high speed, continuous, and large-scale production that focuses on automation and high levels of efficiency, many state-owned steel companies are being equipped with oil film bearings. Through long-term on-spot inspection and research on the fatigue failure of oil film bearing, three segments of annulated fatigue breakage were found axially along the inner surface of the bearing sleeve. In order to elucidate the reason for the three-segment annulated damage under rolling load, numerical boundary element method was adopted to analyze the contact behaviors between the sleeve and rollneck. Failure mechanism was discussed in detail, the distributions of contact stress were analyzed, and the service lives of the sleeve for different positions on the inner surface were quantitatively described, which provided an effective means to decrease wear and adhesive damage of the sleeve and to increase the load capacity of oil film bearing and its service life as well.

  6. Mechanics of Thin Strip Steering in Hot Rolling

    Science.gov (United States)

    Jiang, Zhengyi; Tieu, Kiet A.

    2004-06-01

    The hot rolling of thin strip can result in several problems in hot rolling, for instance, the control of strip steering, strip shape and flatness and surface roughness etc. Therefore, the hot rolling of thin strip brings out a requirement of innovative technologies such as the extended control of shape and flatness, steering control and reduction of load by roll gap lubrication. In this paper, the authors focus on the analysis of thin strip snaking movement, as well as solve the related problems such as the shape and flatness due to a larger reduction applied when the strip is thinner. A finite element method was used to simulate this nonsymmetricity rolling considering the non-uniform reduction along the strip width. The calculated spread is compared with the measured values obtained from the rolling mill in laboratory and the friction effect is also discussed.

  7. Multi-stage FE simulation of hot ring rolling

    Science.gov (United States)

    Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.

    2013-05-01

    As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.

  8. Roll-to-roll deposition of TCO films for solar cells and other applications; Roll-to-roll-Abscheideverfahren von TCO-Schichten fuer Solarzellen und andere Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlatmann, R.; Stannowski, B. [Akzo Nobel Chemicals, Arnheim (Netherlands). Research and Technology Center

    2005-07-01

    In the Helianthos project, a production process is developed which is to reduce the KWh cost of solar systems. In this process, flexible silicon wafers are produced in a continuous roll-to-roll process which is to reduce the per module production cost. The rolls can be integrated in prefabricated elements (e.g. roof elements), thus reducing the installation cost. The two improvements together reduce the kWh cost. The module efficiency need not be as high as for today's crystalline Si modules. (orig.) [German] Im Helianthos-Projekt wird ein Produktionsverfahren entwickelt, um die kWh-Kosten von Solaranlagen zu senken. In diesem Prozess werden flexible Duennschicht-Silizium-Solarmodule in einem kontinuierlichen Roll-to-Roll-Verfahren gefertigt, wodurch die Modul-Produktionskosten reduziert werden. Des Weiteren sind diese Rollen geeignet, um z. B. in fertige Bauelemente (etwa Dachelemente) integriert zu werden, um die Installationskosten senken zu koennen. Beides zusammen ermoeglicht niedrige kWh-Kosten, wobei der Wirkungsgrad der Module nicht so hoch sein muss wie der von heutigen kristallinen Si-Modulen.

  9. Analysis of Residual Stress and Deformation of Rolling Strengthen Crankshaft Fillet

    Directory of Open Access Journals (Sweden)

    Han Shaojun

    2016-01-01

    Full Text Available Based on the analysis of crankshaft fillet rolling process, used ANSYS finite element analysis software to conduct the elastic-plastic mechanical simulation of crankshaft rolling process, and gained the variation law of the residual stress and plastic deformation in the radial path of the fillet under different rolling laps and rolling pressure. Established the relationship between the rolling pressure and the plastic deformation and residual stress of the fillet, and provided theoretical support for the evaluation and detection of the crankshaft rolling quality.

  10. RESEARCH OF INFLUENCE OF FRONT TENSION AT ROLLING OF PERIODIC PROFILE IN NON-DRIVE ROLLERS

    Directory of Open Access Journals (Sweden)

    L. A. Isayevich

    2012-01-01

    Full Text Available Influence of a forward tension is theoretically investigated at a rolling of the periodic profiles used as elastic elements of spring suspension brackets. The power balance of rolling process with a tension is analyzed. Dependences for definition of a critical corner and size of its increment are received at a rolling with a forward tension.

  11. 3D FEM Simulation of shape rolling using an ALE method

    NARCIS (Netherlands)

    Wisselink, H.H.; Huetink, J.

    2003-01-01

    The shape rolling of stator vanes has been modelled in 3D using the finite element method. Till now only the rolling of straight vanes, which have a constant cross section, is studied. Therefore this rolling process can be considered as a stationary process. Such processes can be described as a flow

  12. Fatigue failure of sandwich beams with face sheet wrinkle defects

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Thomsen, Ole Thybo

    2012-01-01

    This paper presents experimental fatigue results for GFRP face sheet/balsa core sandwich beams with face sheet wrinkle defects, subjected to fully reversed in-plane fatigue loading. An estimate of the fatigue design limit is presented, based on static test results, finite element analyses...

  13. Improvement on strip flatness of cold temper mills by modifying roll contour shape

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Li; Jie Zhang; Xianlin Chen; Jianguo Cao; Haixia Li

    2004-01-01

    A study on roll gap profile (strip profile) control was accomplished in a 1700 mm single-stand temper mill. Some critical problems such as the deviation of work roll contour caused by grinding and wear, the effectiveness of work roll bending were discussed. Using a finite element model, the effects of roll contours (ground and wear) on strip profile were investigated. The roll bending effect on strip thickness was also analyzed. It is pointed out that there are some special features of flatness control in the temper mill: during temper rolling, roll deformation is slight due to small rolling load, and the loaded roll gap profile mainly depends on work roll contour, while the backup roll has a little effect on gap crown; the effect of bending force on gauge can not be ignored due to the coupling between flatness control and gauge control. A new roll contour arrangement adaptable to the mill was presented and has been put into practical production. The application of the new set of rolls showed some good results: larger crown control range of work roll bender, higher rolling stability, better strip profile and flatness quality.

  14. Study on Influence of Initial Rolling Temperature for Rolling Process Based on Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    YANG Licheng; LIU Bo; XING Sufang; ZHANG Runli

    2006-01-01

    Wire rolling is a typical large deformation process and its principle is very complex, which includes material non-linearity, geometry non-linearity and boundary non-linearity. It is difficult to obtain theory analytical results by trying to roll or physical experiment because they will induce many problems such as high cost, waste time and venture. With the rapid advancement of computing technology and numerical method, the finite element method is regarded as the best one, which can account for the large plastic deformation, thermo-mechanical coupling and complex boundary conditions of the rollers and the workpiece interactions in the rolling process. Under the different initial rolling temperature, the two-pass hot continuous rolling process of high-speed wire has been simulated accurately for the pre-finishing rolling section. The metal fluxion law and the deformation field have been obtained. Strain, temperature, rolling force and torque also have been simulated and discussed. The results of simulation are useful for practical manufacture and the optimization of process-parameters.

  15. An FE Based On-line Model for the Prediction of Work Roll Thermal Profile in Hot Strip Rolling

    Science.gov (United States)

    Choi, Ji Won; Lee, Jung Hyeung; Sun, Cheng Gang; Hwang, Sang Moo

    2010-06-01

    Prediction and control of the thermal deformation of the work roll is vital for enhancing product quality in hot strip and plate rolling. In this paper, we present an on-line model for the prediction of the work roll thermal profile. The model is developed on the basis of an integrated finite element model for the coupled analysis of heat transfer and deformation occurring at the bite zone, to rigorously take into account the effect of various rolling parameters on the thermal behavior of the work roll. The validity of the model is demonstrated through comparison with measurements made in an industrial hot strip mill. Also, an emphasis is given to the examination the effect of some selected rolling parameters in an actual production environment.

  16. High-speed steel rolls used for cold rolling

    Institute of Scientific and Technical Information of China (English)

    QU Haixia; WU Qiong; SUN Dale

    2015-01-01

    During cold rolled production of steel,each change of rolls causes a halt in production and affects the roll’s grinding maintenance and consumption.Consequently,rolls are very critical to the costs of steel production. Besides the rolling accidents,surface quality problems,including inhomogeneous wear and a decrease of the surface roughness of the rolls are other main reasons for outage and a change of the rolls.Therefore,safe rolls,with superior wear resistance and roughness retentivity will be a future trend in the cold rolling steel industry.In this study,the property characteristics and in-service performance of high-speed steel(HSS)cold rolling work rolls at Baosteel are discussed.The results of this study indicate that in-service performance of HSS cold work rolls has an improvement over conventional rolls.Implementation of HSS work rolls will prolong the rolling campaign and improve the rolling stability,thus,the cost of cold rolling production can be better controlled.

  17. Quantum dice rolling

    OpenAIRE

    Aharon, N.; Silman, J.

    2009-01-01

    A coin is just a two sided dice. Recently, Mochon proved that quantum weak coin flipping with an arbitrarily small bias is possible. However, the use of quantum resources to allow N remote distrustful parties to roll an N-sided dice has yet to be addressed. In this paper we show that contrary to the classical case, N-sided dice rolling with arbitrarily small bias is possible for any N. In addition, we present a six-round three-sided dice rolling protocol, achieving a bias of 0.181, which inco...

  18. EVAPRED - A CODE FOR FATIGUE ANALYSIS OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Dorin LOZICI-BRÎNZEI

    2010-03-01

    Full Text Available The fatigue can be, in fact, defined as: “failure under a repeated or otherwise varying load, which never reaches a level sufficient to cause failure in a single application”.Physical testing is clearly unrealistic for every design component. In most applications, fatigue-safe life design requires the prediction of the component fatigue life that accounts for predicted service loads and materials. The primary tool for both understanding and being able to predict and avoid fatigue has proven to be the finite element analysis (FEA. Computer-aided engineering (CAE programs use three major methods to determine the total fatigue life: Stress life (SN, Strain life (EN and Fracture Mechanics (FM. FEA can predict stress concentration areas and can help design engineers to predict how long their designs are likely to last before experiencing the onset of fatigue.

  19. Corrosion Fatigue

    Science.gov (United States)

    1981-10-01

    the applied protection systems, (2) crevices for moisture entrapment, (3) galvanic couples when steel or titanium fasteners are used, and (4) fatigue...Activ Material Structure Exposed Normal Environment* Unexposed Atmosphere Aluminum alloys Steel 1.25 2.0 4.0 Titanium " Magnesium " (4.0) (8.0) (10.0...APPRNDIX - Chromic Acid Anodizing The surface treatment consists in the following process : D egreasing with trichlorethylene vapor, * Pickling , Composition

  20. Rolled-Up Metamaterials

    Directory of Open Access Journals (Sweden)

    Stephan Schwaiger

    2012-01-01

    Full Text Available In this paper we review metamaterials fabricated from self-rolling strained metal-semiconductor layer systems. These systems relax their strain upon release from the substrate by rolling up into microtubes with a cross-section similar to a rolled-up carpet. We show that the walls of these microtubes represent three-dimensional optical metamaterials which so far could be used, for example, for the realization of broadband hyperlenses, fishnet metamaterials, or optically active three-dimensional metamaterials utilizing the unique possibility to stack optically active semiconductor heterostructures and metallic nanostructures. Furthermore, we discuss THz metamaterials based on arrays of rolled-up metal semiconductor microtubes and helices.

  1. Rolling at small scales

    DEFF Research Database (Denmark)

    Nielsen, Kim L.; Niordson, Christian F.; Hutchinson, John W.

    2016-01-01

    The rolling process is widely used in the metal forming industry and has been so for many years. However, the process has attracted renewed interest as it recently has been adapted to very small scales where conventional plasticity theory cannot accurately predict the material response. It is well....... Metals are known to be stronger when large strain gradients appear over a few microns; hence, the forces involved in the rolling process are expected to increase relatively at these smaller scales. In the present numerical analysis, a steady-state modeling technique that enables convergence without...... dealing with the transient response period is employed. This allows for a comprehensive parameter study. Coulomb friction, including a stick-slip condition, is used as a first approximation. It is found that length scale effects increase both the forces applied to the roll, the roll torque, and thus...

  2. Rolling Regressions with Stata

    OpenAIRE

    Kit Baum

    2004-01-01

    This talk will describe some work underway to add a "rolling regression" capability to Stata's suite of time series features. Although commands such as "statsby" permit analysis of non-overlapping subsamples in the time domain, they are not suited to the analysis of overlapping (e.g. "moving window") samples. Both moving-window and widening-window techniques are often used to judge the stability of time series regression relationships. We will present an implementation of a rolling regression...

  3. Rolling resistance of tires

    Energy Technology Data Exchange (ETDEWEB)

    Junio, M.; Roesgen, A.; Corvasce, F. [Goodyear Technical Center Luxembourg, Colmar-Berg (Luxembourg)

    1999-07-01

    After a review of the contribution of tire rolling resistance to fuel economy, the tire rolling resistance is defined and measurement methods discussed. The significant effects of the 'external' factors such as load, inflation, temperature, speed, etc. that are not controlled by the tire developers, are reviewed. Tire construction changes that reduce deformations and compound changes reducing hysteresis are discussed and information is provided on what has been achieved so far and what might be done in the future. (orig.)

  4. Improving the technology of surfacing heterogeneous working layer on hot rolling bulky rolls

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Iванов

    2016-07-01

    Full Text Available Ways to increase efficiency of rolls by enhancing resistance to the formation and development of cracks due to the anisotropy of the working layer properties were explored. The destruction mechanisms of such materials were considered. The possibility of cracks deceleration, due to the layer ruptures or abrupt change of its properties has been marked. It has been shown that the optimum combination of the means braking dislocations provides for a rational metal alloying. The analysis of the rolls of rolling mills service conditions as well as the analysis of types of wear and destruction of products made it possible to formulate requirements on the surface layer of the rolls properties. However increase in strength decreases ductility and toughness of the steel. The solution of the problem of the strength and plasticity increase necessitates either methods of metal deep cleaning of contaminants development or significant grain refinement. The part played by structural formations, such as non-metallic inclusions, carbide particles, grain boundaries, etc.in the kinetics of crack propagation has been studied. Since sharp contrast of the properties at the grain boundaries is inconsistent with the requirements of welding technology, the determining factor for making up the working layer is the service conditions. The durability of the roll is determined by allowable wear out of the layer between resharpenings. The correct choice of optimum parameters for the twq adjacent layers - operating and the layer to be maintained is the reserve to improve performance of the roll. The paper has proposed welding-up compositions making it possible to extend the durability due to the optimum ratio of the mechanical and thermal properties of adjacent layers. This approach can improve the durability of the deposited products both at the stage of nucleation and at the stage of thermal fatigue cracks growth

  5. Fatigue life finite element analysis of output gear pair of wind turbine speed-increase gearbox%风电增速箱输出级齿轮副疲劳寿命有限元分析

    Institute of Scientific and Technical Information of China (English)

    林腾蛟; 沈亮; 赵俊渝

    2012-01-01

    3D contact finite element model of output helical gear pair of wind turbine speed-increase gearbox is built to calculate stress-strain of gear pair under static load. S-N curves of gear pair materials are calculated based on fatigue test constants of materials. After carrying out rain-flow counting for load histories of real load spectrum in 20 working conditions of the gearbox, the relation of load cycles, mean value and amplitude of the load are obtained. Fatigue life of helical gear pair is analyzed with FE-SAFE to study the influence of magnitude of load, residual stress, tooth surface roughness and profile modification to fatigue life of gear pair. The results indicate that there are a few short life points at places where stress concentrates; the life of gear pair extends with the decrease of load or tooth surface roughness; residual tensile stress leads to a reduction of fatigue life while residual pressure stress leads to extension;the life of gear pair extends with proper tooth modification.%建立了风电增速箱输出级斜齿轮副的三维接触有限元模型,计算了静载荷作用下齿轮副的应力应变;基于齿轮材料的疲劳试验常数,计算了材料的近似S-N曲线;对风电增速箱真实载荷谱20种工况的载荷历程进行雨流计数,得到载荷循环数、均值与幅值的关系。在FE-SAFE软件中,对斜齿轮副接触模型进行疲劳寿命分析,研究了载荷、表面粗糙度、残余应力以及轮齿修形量对齿轮副疲劳寿命的影响规律。结果表明,齿轮副应力集中处有少数低寿命点,齿轮副寿命随载荷及齿面粗糙度的增大而减小,残余拉应力使疲劳寿命减小,而残余压应力可使疲劳寿命增大,适度修形可提高齿轮的疲劳寿命。

  6. Evaluation of roll-extruded Alloy 718 tubing

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, G R; Korth, G E

    1978-05-01

    A sample of roll-extruded Alloy 718 tubing, a product identified for use in the Clinch River Breeder Reactor, was evaluated. The tubing satisfied AMS 5589 requirements for seamless tubing, and had tensile and fatigue properties comparable to plate for the conventional 955/sup 0/C (1750/sup 0/F) heat treatment. Recrystallization was retarded in this product and bands of very small grains resulted from the conventional heat treatment. Both as-roll-extruded and directly aged material showed the results of thermomechanical processing in high strengths and reductions in area. It is recommended that work continue toward realizing improved fatigue and stress rupture properties in this product by means of ''Minigrain'' and thermomechanical processing. 10 figures, 6 tables.

  7. MEMS For Rolling-Element Bearings

    Science.gov (United States)

    2010-01-01

    the main disadvantage of using platinum as temperature sensing material is its poor adhesion to silicon nitride (Si3N4) passivation surface . For this...set of thermocouples placed at specific locations along the steel beam (Figure RB5). Surface cleanliness plays an important role in coating...temperatures. These lower temperatures and friction/wear surfaces will increase the life of the seals, which in-turn can increase the life of the

  8. Prediction of temperature distribution in the hot rolling of slabs

    Science.gov (United States)

    Serajzadeh, S.; Karimi Taheri, A.; Mucciardi, F.

    2002-03-01

    In the process of continuous hot slab rolling, it is vital to know the temperature distribution within the slab along the length of the rolling mill because temperature is the dominant parameter controlling the kinetics of metallurgical transformations and the flow stress of the rolled metal. In other words, the microstructural changes, the mechanical properties as well as the final dimensions of the product and roll-force depend on the temperature distribution within the metal being rolled. In this paper, a mathematical model based on the finite element method is utilized to predict the temperature distribution and microstructural changes during the continuous hot slab rolling process. The effects of various parameters such as the heat of deformation, the work-roll temperature, the rolling speed, and the heat transfer coefficient between the work-roll and the metal are all taken into account in the analyses. To verify the validity of the model and the generated computer code, a comparison is carried out between the theoretical and plant-recorded results.

  9. NUMERICAL EVALUATION OF TEMPERATURE DISTRIBUTION IN THE ROLLING MILL ROLLS

    Directory of Open Access Journals (Sweden)

    José Claudino de Lira Júnior

    2013-06-01

    Full Text Available In hot rolling processes occur changes in the profile of the rolling mill rolls (expansion and contraction and constant wear due to mechanical stress and continuous thermal cycles of heating/cooling caused by contact rolled material- working roll and the cooling system by water jets in their surface, decreasing their lifetime. This paper presents a computational model to simulate the thermal performance of rolling mill rolls. The model was developed using the finite volume method for a transient two-dimensional system and allows calculating the temperature distribution of the rolling mill rolls under various conditions of service. Here it is investigated the influence of flow rate and temperature of the cooling water on the temperature distribution. The results show that the water temperature has greater influence than the water flow to control the surface temperature of the cylinders.

  10. The effects of myofascial release with foam rolling on performance.

    Science.gov (United States)

    Healey, Kellie C; Hatfield, Disa L; Blanpied, Peter; Dorfman, Leah R; Riebe, Deborah

    2014-01-01

    In the last decade, self-myofascial release has become an increasingly common modality to supplement traditional methods of massage, so a masseuse is not necessary. However, there are limited clinical data demonstrating the efficacy or mechanism of this treatment on athletic performance. The purpose of this study was to determine whether the use of myofascial rollers before athletic tests can enhance performance. Twenty-six (13 men and 13 women) healthy college-aged individuals (21.56 ± 2.04 years, 23.97 ± 3.98 body mass index, 20.57 ± 12.21 percent body fat) were recruited. The study design was a randomized crossover design in which subject performed a series of planking exercises or foam rolling exercises and then performed a series of athletic performance tests (vertical jump height and power, isometric force, and agility). Fatigue, soreness, and exertion were also measured. A 2 × 2 (trial × gender) analysis of variance with repeated measures and appropriate post hoc was used to analyze the data. There were no significant differences between foam rolling and planking for all 4 of the athletic tests. However, there was a significant difference between genders on all the athletic tests (p ≤ 0.001). As expected, there were significant increases from pre to post exercise during both trials for fatigue, soreness, and exertion (p ≤ 0.01). Postexercise fatigue after foam rolling was significantly less than after the subjects performed planking (p ≤ 0.05). The reduced feeling of fatigue may allow participants to extend acute workout time and volume, which can lead to chronic performance enhancements. However, foam rolling had no effect on performance.

  11. Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dawei; LI Yongtang; FU Jianhua; ZHENG Quangang

    2009-01-01

    Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that:the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable;in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process;the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.

  12. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  13. MANAGING FATIGUE IN SPORTS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Fatigue is a multifactorial process. Depletion of energy sources, including adenosine triphosphate (ATP), phosphocreatine (PCr), plus carbohydrates (CHO) like muscle glycogen and blood glucose can contribute to fatigue.

  14. Establishment of mathematical moment model in twin casting rolling rolls

    Institute of Scientific and Technical Information of China (English)

    孙斌煜; 苑世剑; 张洪; 杜艳平; 张芳萍

    2002-01-01

    In continuous casting rolling process, the deformed body is different from the hot rolling strip. The metal in casting rolling zone is first assumed to be viscous fluid and the mathematical model of casting rolling force is established, then the calculating formula for casting rolling torque is derived. In addition, considering the effects of deforming cone and appendant torque of rotary junctions sealing ring, the calculating model which accords with casting rolling condition is found out. Theoretical formula is proved by experiment.

  15. Rolling Bearing Diagnosis Based on LMD and Neural Network

    Directory of Open Access Journals (Sweden)

    Baoshan Huang

    2013-01-01

    Full Text Available Inner ring pitting, the outer indentation and rolling element wear are typical faults of rolling bearing. In order to diagnose these faults rapidly and accurately, the paper proposes a novel diagnosis method of rolling bearing based on the energy characteristics of PF component and neural network by the vibration signal of local mean decomposition(Local mean decomposition, LMD. The vibration signal is decomposed into several PF components by the local mean decomposition, the calculated energy characteristics of the PF component are inputted to the neural network to identify the type of rolling bearing faults. At the same time, the genetic algorithm is introduced to optimize the structure parameters of neural network, which improves diagnostic rate and accuracy of faults. The results show that this method has a higher diagnosis and recognition rate for the typical faults of rolling bearing.

  16. COLD ROLLING ORTHODONTIC WIRES OF AUSTENITIC STAINLESS STEEL AISI 304

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Messner

    2013-03-01

    Full Text Available Austenitic stainless steels wires are widely used in the final stages of orthodontic treatment. The objective of this paper is to study the process of conformation of rectangular wires from round wires commercial austenitic stainless steel AISI 304 by the process of cold rolling. The wire quality is evaluated by means of dimensional analysis, microhardness measurements, tensile strength and fractographic analysis of the wires subjected to tensile tests. Also a study on the application of finite element method to simulate the process, comparing the force and rolling stress obtained in the rolling is done. The simulation results are consistent with those obtained in the actual process and the rolled wires show ductile fracture, tensile strength and dimensional variations appropriate to orthodontic standards. The fracture morphology shows the model cup-cone type besides the high deformation and hardness inherent in the cold rolling process.

  17. Ship Roll Damping Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2012-01-01

    The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of difficulties associated with control system designs, which have proven to be far from trivial due to fundamental performance...... limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance...... and the applicability of different mathematical models, and it surveys the control methods that have been implemented and validated with full scale experiments. The paper also presents an outlook on what are believed to be potential areas of research within this topic....

  18. Sliding and Rolling: The Physics of a Rolling Ball.

    Science.gov (United States)

    Hierrezuelo, J.; Carnero, C.

    1995-01-01

    Presents an approach that provides a simple and adequate procedure for introducing the concept of rolling friction. Discusses some aspects related to rolling motion that are the source of students' misconceptions. Presents several didactic suggestions. (JRH)

  19. Stochastic disks that roll

    Science.gov (United States)

    Holmes-Cerfon, Miranda

    2016-11-01

    We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.

  20. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  1. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  2. Offensive Rolling in Sambo

    Directory of Open Access Journals (Sweden)

    Stephen Koepfer

    2012-07-01

    Full Text Available In recent years the Soviet born martial art of sambo has become increasingly well known in martial art circles. This is largely due to the success of sambo fighters in various mixed martial art venues. Offered here is a brief description of sambo’s development as well as a delineation of one of sambo’s hallmark strategies: offensive rolling. Examples of proper forward rolling and three related offensive techniques are presented. This paper provides a brief introduction to sambo’s history and one of its key tactical philosophies.

  3. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2015-11-01

    Full Text Available In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing, so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire. These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel.

  4. 中医五行音乐对恶性肿瘤化疗患者癌因性疲乏的影响%Effect of traditional Chinese medicine five elements music on cancer-related fatigue of chemotherapy patients

    Institute of Scientific and Technical Information of China (English)

    黄云娜; 杨曦; 杨秋敏

    2012-01-01

    Objective To study the effect of traditional Chinese medicine (TCM) five elements music on cancer-related fatigue CRF of chemotherapy patients.Methods 80 patients were randomly divided into the experimental group and the control group equally.The experimental group was given the TCM five elements music intervention on the basis of routine care at the start of chemotherapy for 60 min,once a day for three cycles,each cycle and chemotherapy cycle were synchronic.The control group was given routine care with emphasis on psychological care.The two groups were given the CRF assessment of Brief Fatigue Inventory developed by the pain research team of the U.S.Adorson Cancer Center before and after the treatment,and the quality of life of patients was evaluated by Quality of Life Questionnaire (EORTC-QLQ-C30) by the European Cancer Treatment and Research Organization.Results CRF levels of the experimental group were markedly reduced after the intervention of TCM five elements music,among which slight fatigue accounted for 37.5%,moderate fatigue accounted for 10% and serious fatigue accounted for 2.5%.There was significant difference between the two groups ( U =6.062 3,P < 0.0 1 ).The proportion of moderate and serious fatigue was 12.5% in the experimental group and 40% in the control group after treatment,and there was significant difference between the two groups (U=3.282 8,P<0.01 ).The total score of quality of life was (43.12±6.21) in the experimental group and (52.30 ± 7.28 ) in the control group after treatment.The difference was statistically significant (t =4.683 0,P<0.05).Conclusions Application of TCM Five Elements music intervention on chemotherapy patients can eliminate or alleviate CRF and improve the quality of life of patients.%目的 探讨中医五行音乐对恶性肿瘤化疗患者癌因性疲乏和生活质量的影响.方法 将80例恶性肿瘤化疗患者随机分为试验组40例和对照组40例.试验组在常规治疗护理的基

  5. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    Science.gov (United States)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  6. Damage identity in fatigue assessment of structures

    Directory of Open Access Journals (Sweden)

    S.V. Petinov

    2016-04-01

    Full Text Available The modified strain criterion-based method for fatigue assessment of structures is discussed. The damage is estimated based on the specified parameters of the criterion and the damage summation procedure by employing the finite-element method. With a reasonably fine mesh of the finiteelement model of the ‘critical location’ structure, the condition of the identity of damage in the material of the test specimen and the structure is provided and, respectively, the effect of uncertainty on the fatigue life assessment of the structure is reduced. The implementation of this version of the method is using the example of the fatigue life evaluation of a ship hull and superstructure detail at expansion joint. For comparison, the fatigue life of the detail is estimated using the standard S-N approach. The results are in approximate agreement; however, reducing the computational uncertainties with the help of the deformation criterion shows more physically reasonable fatigue properties of the detail.

  7. Fatigue life extension

    Science.gov (United States)

    Matejczyk, D. E.; Lin, J.

    1985-01-01

    Potential fatigue rejuvenation processes were carried out on fatigue-damaged material both with and without observable surface-connected fatigue cracks. The fatigue life of fatigue-damaged MAR-M246(Hf)(DS), a directionally solidified nickel-base superalloy used in turbine airfoils, was extended by reheat treatment. The fatigue life of fatigue-cracked Inconel 718, a wrought nickel-base superalloy used in a wide variety of advanced rocket engine components, was extended by electron-beam welding to close off the surface-connected crack, followed by hot isostatic pressing and reheat treatment.

  8. 复合疲劳对大鼠不同组织矿物质代谢影响研究%Effects of Induced Fatigue on the Levels of Selected Essential Elements in the Blood and Tissues of Rats

    Institute of Scientific and Technical Information of China (English)

    宫献文; 常耀明; 赵鑫; 李娅; 王文岚; 张学思; 郭庆军; 谢小萍; 任杰; 李金声

    2012-01-01

    目的:研究复合疲劳大鼠血液、肌肉、肝脏和脑中矿物元素代谢变化的影响.方法:将30只大鼠随机分为正常对照组、食物限制组和复合疲劳组.经过5天的实验干预后,提取动物的血液、腓肠肌、肝脏和脑,并利用原子吸收分光光度法测量各组织中的钾(K)、钙(Ca)、镁(Mg)、铁(Fe)、锌(Zn)和铜(Cu).结果:相对正常对照组和食物限制组,复合疲劳大鼠的肌肉、肝脏和脑中的K(P<0.01)和肝脏中的Fe(P<005)明显升高,血液中的Cu(与正常对照组比较P<0.01,与食物限制组比较P<0.05)明显下降;与对照组相比,复合疲劳大鼠的血液中的K明显升高(P<0.05),血液中的Mg和Zn(P<0.05),肌肉中的Ca、Mg和Zn (PCa<0.05,PMg<0.05,PZn<0.01),肝脏中的Ca和Zn(PCa<0.01,PZn<0.05),以及脑中的Fe、Mg和Zn(PFe<0.05,PMg<0.05,PZn<0.01)明显降低.结论:在复合疲劳状态下,大鼠血液、肌肉、肝脏和脑中的K、Ca、Mg、Fe、Zn和Cu代谢发生变化,可能在疲劳的发生与缓解中发挥作用.%Objective:To identify the changes of some selected elements in blood,skeletal muscle,liver,and brain in a rat model with complex fatigue.Methods:30 rats in the experiment were randomly divided into three groups:the control group,the food-restricted group,the complex fatigued group.Blood and tissue samples were collected at the end of the 5-day and Objective:levels of potassium (K),calcium (Ca),magnesium (Mg),iron (Fe),zinc (Zn),and copper (Cu) were measured with atomic absorption spectrophotometer.Results:Compared with that in the control and food-restricted group,the concentrations of potassium in the skeletal muscle,liver,and brain (P<0.01),the concentration of iron in the liver (P<005),were increased in the complex fatigued group,and the concentration of copper in the blood (P<0.01,to the control,P<0.05,to the food-restricted) decreased in animals with complex fatigue; compared with that in the control

  9. Rolling Cylinder Phase 1

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Taraborrelli, Valeria Taraborrelli

    Margheritini and Valeria Taraborrelli(valeria.taraborrelli@hotmail.it) with a total of 3 day visit from the developers. Laboratory tests in irregular waves will be performed by Lucia Margheritini. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes...

  10. Constraint Cooling of Hot Rolled Coil

    Institute of Scientific and Technical Information of China (English)

    WANG Li-juan; ZHANG Chun-li

    2004-01-01

    The layer thermal conductivity during constraint cooling of hot rolled coil was described by using equivalent thermal conductivity model and finite element method. Two radial stress concentration zones in constraint cooled coil were shown by numerical analysis, and the tension stress was assumed to be the main factor to induce stress corrosion. The experimental results show that the longer the water cooling time is, the smaller the grain size and the more uniform the grains are.

  11. 汽车钢圈疲劳寿命的有限元分析%The finite element analysis of steel wheel fatigue life

    Institute of Scientific and Technical Information of China (English)

    李冰; 耿雪霄; 黄位健

    2011-01-01

    Steel rim is one of the most important opponents of automobile ,which is located at revolving components between tire and sedan for mounting tires and bearing various forces and moments.Therefore it plays an essential role in the safety,stability,and ride comfort as well as traction property for a running automobile.Based on the analyzing process of the nominal stress approach and FEM software ,the methods for estimating fatigue life and structural strength of steel rim under bending condition is discussed in it.Comparing with theoretical computation result and practical application,the method has been proved correctly which may estimate the service life and structure features during designing and provide reference for the design and optimization of steel rim.%钢圈是位于轮胎和车轿之间承受负荷的旋转部件,其作用是安装轮胎,承受轮胎与车轿之间各种作用力和力矩,对汽车行驶的安全性、稳定性、平顺性和牵引性均起着重要的作用.基于名义应力法的分析过程及有限元分析软件,探讨了钢圈弯曲工况下结构强度及疲劳寿命预估的方法.通过理论计算、实际使用情况及弯曲疲劳试验的结果验证了所提方法的正确性,所提方法可在产品设计阶段就预测设计产品的使用寿命及结构特点,为钢圈的设计及优化提供依据.

  12. Application of laser interferometry to the evaluation of the dynamic characteristics of rolling bearings and comparison with piezoelectric device measurements

    Science.gov (United States)

    Vela Arvizo, Dagoberto; Rodríguez Lelis, José Maria; Vargas Treviño, Marciano; Flores Gil, Aarón; May Alarcón, Manuel; Villanueva Luna, Adrián E.

    2007-03-01

    Bearings are elements of rotating machinery that are widely used as low friction joint elements between other machine elements. Like any other machine element they posses a finite life which is dependent on a number of factors, among them manufacture, assembling, maintenances, load, etc. Bearing failures are amongst the principal causes of machinery overhaul. They by themselves are a source of vibration which is a function of surface conditions, clearances, misalignment, etc. Each of these defects present a specific dynamic signature, and can be analyzed by a number of techniques already in used, among them the laser vibrometry. This is a non-contact, non-disturbing method commonly used for measurements of vibrations on static objects. The technique offers the possibility to measure vibrations on thin-walled (light), and rotating objects as well as sound fields. Common vibration signal analysis in rotating machinery are restricted to low frequencies, up to 3000 Hz, and in some cases when analyzing contact problems and fatigue at 7000 up to 15000 Hz. In this work, are presented the primary results to employ laser interferometry to study the dynamic signals generated by rolling bearings, and the feasibility to employ it to study high frequency problems of these machine elements.

  13. 3D characterization of rolling contact fatigue crack networks

    DEFF Research Database (Denmark)

    Jessop, Casey; Ahlström, Johan; Hammar, Lars;

    2016-01-01

    analysis method for geometrical reconstruction, and a 3D representation of the complex crack network was achieved. This was compared with measurements on cross-sections after repeated metallographic sectioning to determine the accuracy of prediction of the geometrical reconstruction. A second squat...... was investigated by X-ray tomography after extraction of a section of the rail head. A third squat was opened by careful cutting, which gave full access to the crack faces, and the topography was measured by stylus profilometry. The high-energy X-ray, 3D reconstruction method showed accurate main crack geometry...... to the crack face. However this time-consuming method requires destruction of the specimen investigated. The X-ray tomography revealed the 3D crack network including side branches in a 10×10×30mm3 sample, and provided topographic information without completely opening the squat. Topography measurements...

  14. Preform design of large sized profile ring rolling using main roll

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J. [PSM Inc., Busan (Korea, Republic of); Kang, J. H. [Jac coupling, Busan (Korea, Republic of); Kang, S. S. [Busan Nat' l Univ., Busan (Korea, Republic of)

    2014-01-15

    This paper introduces a preform design method for a ring rolling process with an outer step. Underfilling is one of the general defects of the profile ring rolling process. It occurs when the deformation amount is small or step depth of the profiled region is large. To prevent underfilling, increasing the deformation amount or using a preform of size similar to that of the final product are required. Furthermore, the filling limit equation is suggested based on the shape factor and deformation ratio for preventing defects in the products. The filling limit equation has been derived through finite element analyses and production tests for four different cases. For verifying the suggested method, realsized profile rolling tests were performed, and test results were compared with the predictions of the equation.

  15. Roll Eccentricity Control Using Identified Eccentricity of Top/Bottom Rolls by Roll Force

    Science.gov (United States)

    Imanari, Hiroyuki; Koshinuma, Kazuyoshi

    Roll eccentricity is a periodic disturbance caused by a structure of back up rolls in rolling mills, and it affects product thickness accuracy. It cannot be measured directly by sensors, so it should be identified by measured thickness or measured roll force. When there is a large difference of diameters between top and bottom back up roll, the performance of roll eccentricity control using feedback signals of roll force or thickness has not been so good. Also it has been difficult for the control to be applied from the most head end because it is necessary to identify the roll eccentricity during rolling. A new roll eccentricity control has been developed to improve these disadvantages and to get better performance. The method identifies top and bottom roll eccentricity respectively from one signal of roll force and it can start the control from head end. In this paper the new control method is introduced and actual application results to a hot strip mill are shown.

  16. Assessment of the microstructure and torsional fatigue performance of an induction hardened vanadium microalloyed medium-carbon steel

    Science.gov (United States)

    Rothleutner, Lee M.

    Vanadium microalloying of medium-carbon bar steels is a common practice in industry for a number of hot rolled as well as forged and controlled-cooled components. However, use of vanadium microalloyed steels has expanded into applications beyond their originally designed controlled-cooled processing scheme. Applications such as transmission shafts often require additional heat-treatments such as quench and tempering and/or induction hardening to meet packaging or performance requirements. As a result, there is uncertainty regarding the influence of vanadium on the properties of heat-treated components, specifically the effect of rapid heat-treating such as induction hardening. In the current study, the microstructural evolution and torsional fatigue behavior of induction hardened 1045 and 10V45 (0.08 wt pct V) steels were examined. Torsional fatigue specimens specifically designed for this research were machined from the as-received, hot rolled bars and induction hardened using both scanning (96 kHz/72 kW) and single-shot (31 kHz/128 kW) methods. Four conditions were evaluated, three scan hardened to 25, 32, and 44 pct nominal effective case depths and one single-shot hardened to 44 pct. Torsional fatigue tests were conducted at a stress ratio of 0.1 and shear stress amplitudes of 550, 600, and 650 MPa. Physical simulations using the thermal profiles from select induction hardened conditions were conducted in the GleebleRTM 3500 to augment microstructural analysis of torsional fatigue specimens. Thermal profiles were calculated by a collaborating private company using electro-thermal finite element analysis. Residual stresses were evaluated for all conditions using a strain gage hole drilling technique. The results showed that vanadium microalloying has an influence on the microstructure in the highest hardness region of the induction-hardened case as well as the total case region. Vanadium microalloyed conditions consistently exhibited a greater amount of non

  17. Fatigue in Rheumatoid Arthritis.

    Science.gov (United States)

    Katz, Patricia

    2017-05-01

    The purpose of this study was to review the current information on fatigue in rheumatoid arthritis (RA). Severe fatigue is common among individuals with RA and has a significant impact on quality of life (QOL). RA-related factors (e.g., inflammation, pain) are associated with greater fatigue, but other factors, such as obesity, physical inactivity, sleep disturbance, and depression, explain the majority of variation in fatigue. Medications targeting RA have little effect on fatigue. Instead, the most effective interventions seem to address non-RA-specific factors such as physical inactivity or use cognitive behavioral approaches. No recommendations have been made for tools to measure fatigue in RA, leading to potential difficulty comparing studies. Although fatigue has great impact on patients' QOL, effective interventions that are feasible for broad dissemination remain elusive. Additional multi-faceted research is needed to identify modifiable sources of fatigue. Such research would be enhanced by harmonization of fatigue measurement across studies.

  18. Tuned rolling-ball dampers for vibration control in wind turbines

    DEFF Research Database (Denmark)

    Chen, Junling; Georgakis, Christos T.

    2013-01-01

    With wind turbines growing in size and cost, it is necessary to reduce their dynamic responses and improve their fatigue lifetime. A passive tuned-mass damper (TMD) is a very efficient solution for vibration control in structures subjected to wind excitations. In this study, a tuned rolling-ball ...

  19. Dynamic Wheel/Rail Rolling Contact at Singular Defects with Application to Squats

    NARCIS (Netherlands)

    Zhao , X.

    2012-01-01

    Squats, as a kind of short wavelength rail surface defects, have become one of the main rolling contact fatigue problems in railways worldwide. The purpose of this work is to better understand the squatting phenomenon, contribute to reduction and even prevention of squat occurrence, and thereby redu

  20. Walk and roll robot

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.

  1. Rolling bearing analysis

    CERN Document Server

    Harris, Tedric A

    2001-01-01

    One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.

  2. Roll of honour

    Energy Technology Data Exchange (ETDEWEB)

    Moxon, Suzanne

    1999-07-01

    This article gives details of the design and construction of dams selected by members of the dam construction industry for praise as feats of construction. The dams covered in the roll of honour include the dam at the Guri hydroelectric power station in Venezuela on the Caroni river, the Contra dam on the Verzrasca river in Switzerland, and the double curvature arc Ertan dam on the Yalong river in China. (UK)

  3. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    accommodate a trial run of inert single base pellet feed for use in a twin screw extruder. 15. SUBJECT TERMS INIT248, Advanced Propellant Technology...Bldg. 4909-5 – Shear Roll Mill Pilot Plant at the Radford Army Ammunition Plant (RFAAP) in order to produce pellet feed for a twin screw extruder used...propellant to simulate feed for a twin screw extruder. Preventive maintenance procedures were in progress in final preparation for running with

  4. 75 FR 75455 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full...

    Science.gov (United States)

    2010-12-03

    ... (``IF'')) steels, high strength low alloy (``HSLA'') steels, and the substrate for motor lamination... titanium and/or niobium added to stabilize carbon and nitrogen elements. HSLA steels are recognized as... International Trade Administration Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From...

  5. 基于离散元颗粒抗转模型的平移刚性挡墙被动土压力分析%Distinct element simulation of passive earth pressure against a translating rigid wall using a rolling resistance contact model

    Institute of Scientific and Technical Information of China (English)

    蒋明镜; 贺洁; 刘芳

    2012-01-01

    A model considering rolling resistance in particles is introduced into the distinct element method (DEM) for analyzing the earth pressure against a rigid wall subjected to translation movements in the passive state. The evolution of earth pressure with the wall displacement is analyzed together with micro mechanical parameters by comparing the cases with and without considering the rolling resistance of particles in the granular backfill. Results show that the earth pressure increases linearly with the increase of the wall depth regardless of the effect of rolling resistance; and the total thrust acts at approximately one third of the wall height from the base of the wall in both cases. The increase of the resultant earth pressure with displacement is more prominent in the case considering rolling resistance than that neglecting the rolling resistance. The result considering rolling resistance is more close to the classic Coulomb's solution. According to the field of average pure rotation rate, the velocity of soil particles adjacent to the base of the rigid wall is larger, implying a quick energy dissipation taking place at that region, and it becomes even larger in the case considering the rolling resistance than that in the case without considering the rolling resistance.%将颗粒抗转动模型引入离散元程序中,模拟了砂性填土刚性挡土墙平移过程中的被动土压力发展过程,对比分析了考虑和不考虑抗转两种情况下墙后土压力随位移的变化规律及墙后填土微观物理量的变化规律,揭示了颗粒抗转动能力对墙后土压力大小和分布的影响.研究结果表明,不管是否考虑颗粒抗转动作用,被动土压力沿墙深基本呈线性分布,且合力作用点维持在距墙底1/3墙高处,但考虑颗粒抗转动作用时总土压力随位移量增大的幅度更加明显,且模拟结果更接近Coulomb 理论解.平均纯转动率的分析结果表明,挡墙平移时墙底处颗粒转动

  6. Plasmid Rolling-Circle Replication.

    Science.gov (United States)

    Ruiz-Masó, J A; MachóN, C; Bordanaba-Ruiseco, L; Espinosa, M; Coll, M; Del Solar, G

    2015-02-01

    Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.

  7. Roll-to-Roll production of carbon nanotubes based supercapacitors

    Science.gov (United States)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  8. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  9. Influence of rolling friction on single spout fluidized bed simulation

    Institute of Scientific and Technical Information of China (English)

    Christoph Goniva; Christoph Kloss; Niels G. Deen; Johannes A. M. Kuipers; Stefan Pirker

    2012-01-01

    In this paper we study the effect of rolling friction on the dynamics in a single spout fluidized bed using Discrete Element Method (DEM) coupled to Computational Fluid Dynamics (CFD).In a first step we neglect rolling friction and show that the results delivered by the open source CFD-DEM framework applied in this study agree with previous simulations documented in literature.In a second step we include a rolling friction sub-model in order to investigate the effect of particle non-sphericity.The influence of particle-particle as well as particle-wall rolling friction on the flow in single spout fluidized bed is studied separately.Adequate rolling friction model parameters are obtained using first principle DEM simulations and data from literature.Finally,we demonstrate the importance of correct modelling of rolling friction for coupled CFD-DEM simulations of spout fluidized beds.We show that simulation results can be improved significantly when applying a rolling friction model,and that experimental data from literature obtained with Positron Emission Particle Tracking (PEPT) technique can be satisfactorily reproduced.

  10. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  11. Insomnia and Fatigue

    Science.gov (United States)

    ... Styles Common Yoga Poses Special Situations Yoga and Lymphedema Risk Yoga and Metastatic Breast Cancer Side Effects ... Insomnia and Fatigue Treatment for Insomnia and Fatigue Lymphedema Lymphedema Risk Treating Lymphedema Menopausal Symptoms Mouth Sores ...

  12. Grooved roll for a high speed twin roll caster

    OpenAIRE

    T. Haga; HIROOKA, K.; H. Watari; S. Kumai

    2008-01-01

    Purpose: Purpose of this paper is investigation of the effect of roll-surface on the strip-surface. Improvement ofsmall cracks on the strip-surface was tried and effect of groove at the roll surface on the strip surface was shown.Design/methodology/approach: Method used in the present study was high speed twin roll caster withgrooved roll. Two kinds of grooves were used: one was parallel groove and the other was cross groove machinedby knurling and bite attached to a lathe.Findings: Findings ...

  13. Control Strategies of Asymmetric Strip Shape in Six-High Cold Rolling Mill%Control Strategies of Asymmetric Strip Shape in Six-High Cold Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun; YANG Quan; WANG Xiao-chen

    2011-01-01

    It is a complicated problem for cold-rolled strip to improve asymmetric strip shape in strip production. A roll system and strip coupled model of six-high cold rolling mill was established with finite element method to estimate the effect of intermediate roll shifting, tilting, symmetric and asymmetric bending technologies on strip profile. To reduce asymmetric defects of strip shape as much as possible, some control strategies were proposed, including tilting and asymmetric bending of intermediate roll and work roll. The combinations of these three control strategies can effectively eliminate asymmetric strip shape defects. Finally, the closed-loop control model of asymmetric flat- ness at the last stand was given, and the flatness control system with the function of asymmetric strip shape control was also designed for cold tandem mill.

  14. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    Sumesh P Thampi; Rama Govindarajan

    2015-03-01

    Drops moving on a substrate under the action of gravity display both rolling and sliding motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively studied. We are interested in intermediate shapes. We quantify the contribution of rolling motion for any intermediate shape, and recently obtained a universal curve for the amount of roll as a function of a shape parameter using hybrid lattice Boltzmann simulations. In this paper, we discuss the linear relationship which is expected between the Capillary and Bond numbers, and provide detailed confirmation by simulations. We also show that the viscosity of the surrounding medium can qualitatively affect dynamics. Our results provide an answer to a natural question of whether drops roll or slide on a surface and carry implications for various applications where rolling motion may or may not be preferred.

  15. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, M. H.; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue ...

  16. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  17. On high-cycle fatigue of 316L stents.

    Science.gov (United States)

    Barrera, Olga; Makradi, Ahmed; Abbadi, Mohammed; Azaouzi, Mohamed; Belouettar, Salim

    2014-01-01

    This paper deals with fatigue life prediction of 316L stainless steel cardiac stents. Stents are biomedical devices used to reopen narrowed vessels. Fatigue life is dominated by the cyclic loading due to the systolic and diastolic pressure and the design against premature mechanical failure is of extreme importance. Here, a life assessment approach based on the Dang Van high cycle fatigue criterion and on finite element analysis is applied to explore the fatigue reliability of 316L stents subjected to multiaxial fatigue loading. A finite element analysis of the stent vessel subjected to cyclic pressure is performed to carry out fluctuating stresses and strain at some critical elements of the stent where cracks or complete fracture may occur. The obtained results show that the loading path of the analysed stent subjected to a pulsatile load pressure is located in the safe region concerning infinite lifetime.

  18. Fatigue Reliability Assessment of Correlated Welded Web-frame Joints

    Institute of Scientific and Technical Information of China (English)

    W. Huang; Y. Garbatov; C. Guedes Soares

    2014-01-01

    The objective of this work is to analyze the fatigue reliability of complex welded structures composed of multiple web-frame joints, accounting for correlation effects. A three-dimensional finite element model using the 20-node solid elements is generated. A linear elastic finite element analysis was performed, hotspot stresses in a web-frame joint were analyzed and fatigue damage was quantified employing the S-N approach. The statistical descriptors of the fatigue life of a non-correlated web-frame joint containing several critical hotspots were estimated. The fatigue reliability of a web-frame joint wasmodeled as a series system of correlated components using the Ditlevsen bounds. The fatigue reliability of the entire welded structure with multiple web-frame joints, modeled as a parallel system of non-correlated web-frame joints was also calculated.

  19. Behavior of Transversal Crack on Slab Corner During V-H Rolling Process

    Institute of Scientific and Technical Information of China (English)

    YU Hai-liang; LIU Xiang-hua; LI Chang-sheng; Y. Kusaba

    2006-01-01

    The behavior of transversal cracks on the surface of the slab corner during vertical and horizontal (V-H) rolling process with flat vertical roll and groove vertical roll was simulated by explicit dynamic finite element method. The closure and growth of crack and the contact pressure on surfaces of the crack in contacting zone between slab and roll during rolling process were analyzed. The results showed that during vertical rolling process, when the groove vertical roll is used, the maximum contact pressure on surfaces of the crack is 115 MPa, and the closure of crack is stable; when the flat vertical roll is used, the maximum contact pressure on surfaces of the crack is 70 MPa, and it fluctuates greatly. During horizontal rolling process, when groove vertical roll is used, the contact pressure becomes zero which may accelerate the growth of crack; when flat vertical roll is used, there is still contact pressure. The calculated results are in good agreement with the results of test.

  20. FATIGUE PROPERTIES OF SPRING REINFORCES POLYMER GEARS

    Directory of Open Access Journals (Sweden)

    Hilal CAN

    2005-03-01

    Full Text Available Failure of gears, occur surface pressure stress and fracture at base of teeth. For steel gears, it is known that process of carburizing increases fatigue strength. Internal stress on the surface increases of fracture fatigue strength. In this study fatigue properties of polypropylene gear reinforced with 1.2 mm wire diameter metallic springs was investigated. Extension springs were used as reinforcement element and placed into the mould and stretched before injection of polypropylene material into the mould. After injection of polypropylene, stretched springs were loosened in order to obtain pre-stressing. Fatigue tests were performed on the produced gear. Reinforcement increased the strength of gears. At result of experiments, pre-stressing increase in service life 12 times more than that of specimens without reinforcement.

  1. Characterisation of Fatigue Crack Growth in Silicone for Deap Technology

    DEFF Research Database (Denmark)

    Thorup, Thor

    2012-01-01

    In this paper, the fatigue crack growth characteristics of Elastosil R RT 625 are determined by performing fatigue crack experiments based on ISO 27727. Elastosil R RT 625 is a silicone rubber used by Danfoss PolyPower A/S as the dielectric material in their DEAP elements. Cracks were characteris...

  2. Fatigue damage accumulation of details in cars according to criterion of specific energy of total strain

    Directory of Open Access Journals (Sweden)

    L.I. Vakulenko

    2013-08-01

    Full Text Available Purpose. Modern ideas about the accumulation of fatigue damages in the details of railway vehicles are based on models that estimate the durability of metal systems and depend on the number of cycles and the magnitude of deformations or stresses. These models allow one to assess with a sufficient degree of adequacy the weakening of metal systems in polycyclic fatigue and at the presence of the elastic strain only in the details of rolling stock. However, the possibility of plastic deformation appearing during operation of rail transport structures is not taken into account. The aim of this work is a construction of a mathematical model that allows estimating the durability of metal systems with regard to the appearing of the plastic component in the process of deformation of parts of railway vehicles. Methodology. With the use of modern methods of solid mechanics the influence of the parameters of plastic deformation on the durability of highly loaded structural elements was analyzed. Findings. The effect of elastic and plastic deformation on the energy dissipation under cyclic loading was studied. Originality. It was shown analytically that the softening parameters of metal systems are related to the total energy of deformation, which characterizes features of the degradation processes in the metal structures under external loads. Practical value. Ratios were proposed, they allow estimating residual life of details in a sequential multilevel cyclic loading.

  3. Roll-to-roll UV imprint lithography for flexible electronics

    NARCIS (Netherlands)

    Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Barbu, I.; Meinders, E.R.; Bremen, A. van; Iosad, N.; Werf, R. van der; Onvlee, H.

    2011-01-01

    We propose a roll-to-roll UV imprint lithography tool as a way to pattern flexible PET foil with µm-resolution. As a way to overcome dimensional instability of the foil and its effect on overlay, a self-align approach was investigated, that permits to make several layers in a single lithography step

  4. Definitory characteristics validation of the caregiver role fatigue diagnosis in Primary Care

    Directory of Open Access Journals (Sweden)

    Beatriz Álvarez Embarba

    2012-01-01

    Full Text Available Introduction: The nursing diagnostic "Fatigue in the performance of the roll of caregiver "have thirty and three definitories characteristics. The test of Zarit is not including between these definitories characteristics but an indicating faithful of the fatigue of the caretaker has demonstrate To analyze as they are the characteristics definitorias, including the Zarit, that better they predict the diagnostic "Fatigue in the performance roll del caregiver" in primary attention. Material and methods: Cross-sectional descriptive study Population: the total of the 57 caregivers of the immobilized patients. The collection of data was made by means of interview structured to the caretakers with the Zarit and the definitories characteristics of I diagnose fatigue roll of the caregiver. Descriptive, unvaried and multivariate statistical analysis was made with the statistical package Spss.10.0. Results: The final model of the logistic regression to value the variable predictors of the fatigue caregiver roll was the made up of positive the Zarit variables and the distintive characteristic preocupation by the cares with exactitude of 95.6% with one p> =0,001. Conclusions: These results could suggest the implantation of the Zarit like distintive characteristic as well as reduce to the number of characteristics definitorias.

  5. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben;

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... failure explanation under fatigue and static load conditions is observed. In the present study small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four frequencies ranging from 0.01 Hz...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  6. Fatigue behaviour FEM modeling of deep groove ball bearing mounted in automotive alternator submitted to variable loading

    Directory of Open Access Journals (Sweden)

    Azianou Ayao. E.

    2014-06-01

    Full Text Available Ball bearings subsurface materials are subjected to rolling contact fatigue with multiaxial stress state during loading cycle. The complex operating conditions of automotive bearings are different from classic operating conditions their fatigue crack initiation predicted by standards can be seen underestimated. This work presents a numerical approach of ball bearings to evaluate its fatigue behaviour in order to predict the life. A preliminary study has been done to evaluate the load distribution in the bearings. The results are integrated in a numerical dynamic model to study the bearing material rolling fatigue behaviour in constant and variable loading cases. By using fatigue criteria and damage laws, the analysis of stress state in bearing material leads to life prediction or the number of cycles before crack initiations. These results are compared to current standard methods used for ball bearing life prediction.

  7. Roll System and Stock's Multi-parameter Coupling Dynamic Modeling Based on the Shape Control of Steel Strip

    Science.gov (United States)

    Zhang, Yang; Peng, Yan; Sun, Jianliang; Zang, Yong

    2017-05-01

    The existence of rolling deformation area in the rolling mill system is the main characteristic which distinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simultaneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through introducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the coupled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural deformation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment of dynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.

  8. Roll System and Stock's Multi-parameter Coupling Dynamic Modeling Based on the Shape Control of Steel Strip

    Science.gov (United States)

    Zhang, Yang; Peng, Yan; Sun, Jianliang; Zang, Yong

    2017-03-01

    The existence of rolling deformation area in the rolling mill system is the main characteristic which distinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simultaneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through introducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the coupled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural deformation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment of dynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.

  9. FE SIMULATION OF CENTER CRACK OCCURRENCE IN TUBE ROUNDS DURING TWO-ROLL ROTARY ROLLING PROCESS

    Institute of Scientific and Technical Information of China (English)

    S.Z. Li; J. Xu; Y.D. Yin; J.G. Xue; F. Pan; J.M. Zheng; J.H. Yoon

    2007-01-01

    With the aid of FE(finite element) code MSC.Superform 2005, 2-D coupled thermo-mechanical simulation of center-crack occurrence in round billet during 2-roll rotary rolling process was presented using Oyane ductile fracture criteria. A simple modeling is put forward based on the spiral motion of the workpiece as an essential characteristic in movement. The influence of the feed angle and the entry cone angle of the main roll on the process was taken into account in the modeling. The soundness for simplifying the 3-D rotary rolling into a 2-D problem was discussed. By adopting the parameters of Diescher piercer in 140mm mandrel mill of Bao Steel, the distribution and development of strain/stress were analyzed, and the eigen value of ductile fracture as well. The critical percentage of diameter reduction was obtained from the simulation. The result showed a good agreement with the experimental value, and therefore was of widely guiding significance to the practical process for rationally formulating the deformation parameters of steel tube piercing.

  10. Rolling up a Graphene Sheet

    NARCIS (Netherlands)

    Calvaresi, Matteo; Quintana, Mildred; Rudolf, Petra; Zerbetto, Francesco; Prato, Maurizio

    2013-01-01

    Carbon Nanotubes, CNTs, have been described as rolled-up graphene layers. Matching this concept to experiments has been a great experimental challenge for it requires a method to exfoliate graphite, generate ordered and stable dangling carbon bonds, and roll up the layer without affecting the

  11. LEDs are on a roll

    NARCIS (Netherlands)

    Blom, P.W.M.; Mol, A.M.B. van

    2011-01-01

    Light-emitting diodes are more efficient than conventional lighting, but high production costs limit their uptake. Organic versions that can be produced using a cheap newspaper-style 'roll-to-roll' printing process are likely to revolutionize our lighting and signage, say Paul Blom and Ton van Mol.

  12. Rudder roll stabilization for ships

    NARCIS (Netherlands)

    Amerongen, van J.; Klugt, van der P.G.M.; Nauta Lemke, van H.R.

    1990-01-01

    This paper describes the design of an autopilot for rudder roll stabilization for ships. This autopilot uses the rudder not only for course keeping but also for reduction of the roll. The system has a series of properties which make the controller design far from straightforward: the process has onl

  13. Computer Simulations of the Fatigue Crack Propagation

    Directory of Open Access Journals (Sweden)

    A. Materna

    2000-01-01

    Full Text Available The following hypothesis for design of structures based on the damage tolerance philosophy is laid down: the perpendicular fatigue crack growth rate v in a certain point of a curved crack front is given by the local value of stress intensity factor per unit of nominal stress K' and the local triaxiality T which describes the constraint. The relationship v = f (K', T is supposed to be typical for a given loading spectrum and material. Such relationship for a 2024 Al alloy and the flight-simulation spectrum was derived from the fatigue test of the rectangular panel with the central hole and used for three-dimensional simulation of the corner fatigue crack propagation in the model of the wing spar flangeplate. Finite element and boundary element methods were used for these computations. The results of the simulation are in good agreement with the experiment.

  14. Multiaxial fatigue low cycle fatigue testing

    Science.gov (United States)

    Zamrik, S. Y.

    1985-01-01

    Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.

  15. Prediction of mechanical properties of hot rolled steel products

    Directory of Open Access Journals (Sweden)

    P. Šimeček

    2007-01-01

    Full Text Available Purpose: Model for prediction of mechanical properties of rolled steel products after final cooling from exitrolling temperature is one of the basic component of any software for complex computer simulation of rollingtechnologies. Theoretical background and implementation of such software tool is described.Design/methodology/approach: After calculation of cooling curves by any technology dependent Shell thesoftware tool MECHP can be called to predict CCT Diagram from current chemical composition of steel andinitial properties of deformed austenite first than structure shares (percentage of ferrite, pearlite, bainite andmartensite resulting from austenite decomposition process for given cooling curve and finally mechanicalproperties of final product after cooling (hardness, yield stress, tensile strength are calculated. Implementationof MECHP tool into the software RollFEM3D for 3D Finite Elements Method simulation of rolling processesis presented.Findings: Comparison of MECHP calculations with measured process data (water cooling and subsequent aircooling of hot rolled narrow plate and wire shows correspondence that is satisfactory for using in control ofprocess cooling technology.Practical implications: Results of verification showed that the software tool MECHP is implementable asa postprocessor into off-line rolling process simulation software or can be used as a mechanical propertiespredictor in software for on-line control of cooling.Originality/value: Developing of technology independent Library solving the problem of final mechanicalproperties prediction for various kinds of rolling technologies.

  16. Fractographic analysis of fatigue damage in 7000 aluminium alloys.

    Science.gov (United States)

    Cvijović, Z; Vratnica, M; Gerić, K

    2008-12-01

    In this paper, an attempt is made to correlate the fatigue damage in 7000 aluminium alloys with different impurity contents to the microstructural features and to explain their interdependence through fractographic observations. The Paris constants of these alloys in the form of hot-forged plates subjected to the overaged T73 temper are evaluated and differences in the fatigue crack growth rate described by striation spacing measurements. Scanning electron microscopy analysis of fatigue fracture surfaces revealed that the type and morphological parameters of coarse intermetallic particles play a critical role in fatigue crack growth behaviour. The elemental distribution determined by means of energy-dispersive spectroscopy analysis showed that the fractured particles accelerating the crack advances are larger particles of Fe-rich phases. The fatigue crack growth rate increases considerably with increasing amounts of these particles. The smaller eta, S and Mg(2)Si particles contribute beneficially to fatigue life.

  17. Numerical analysis of cross shear plate rolling

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1997-01-01

    The rolling process is widely applied for industrial production of metal plates. In conventional plate rolling the two work rolls are rotating at the same peripheral speed. By introducing a specific difference in the speed of the two work rolls, cross shear rolling is introduced forming a central...... are in the roll gap, the position and the size of the shear zone and the rolling load are calculated. Experimental results are presented verifying the calculations. The numerical analysis facilitates a better understanding of the mechanics in cross shear plate rolling....

  18. The effect of roll gap geometry on microstructure in cold-rolled aluminum

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bay, B.; Winther, G.

    2004-01-01

    Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling-type tex......Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling...

  19. Copper foils with gradient structure in thickness direction and diff erent roughnesses on two surfaces fabricated by double rolling

    Institute of Scientific and Technical Information of China (English)

    Xi-yong Wang; Xue-feng Liu; Wen-jiang Zou; Jian-xin Xie

    2013-01-01

    Copper foils with gradient structure in thickness direction and diff erent roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite diff erent, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment;the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 µm and then decreases to 3.6 µm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

  20. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    Directory of Open Access Journals (Sweden)

    Yoshimitsu Okazaki

    2012-12-01

    Full Text Available The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P. grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK than Ti alloy.

  1. Avoiding the parametric roll

    Science.gov (United States)

    Acomi, Nicoleta; Ancuţa, Cristian; Andrei, Cristian; Boştinǎ, Alina; Boştinǎ, Aurel

    2016-12-01

    Ships are mainly built to sail and transport cargo at sea. Environmental conditions and state of the sea are communicated to vessels through periodic weather forecasts. Despite officers being aware of the sea state, their sea time experience is a decisive factor when the vessel encounters severe environmental conditions. Another important factor is the loading condition of the vessel, which triggers different behaviour in similar marine environmental conditions. This paper aims to analyse the behaviour of a port container vessel in severe environmental conditions and to estimate the potential conditions of parametric roll resonance. Octopus software simulation is employed to simulate vessel motions under certain conditions of the sea, with possibility to analyse the behaviour of ships and the impact of high waves on ships due to specific wave encounter situations. The study should be regarded as a supporting tool during the decision making process.

  2. Deep rolling of titanium rods for application in modular total hip arthroplasty.

    Science.gov (United States)

    Schuh, Alexander; Zeller, Christian; Holzwarth, Ulrich; Kachler, Werner; Wilcke, Gerhard; Zeiler, Günther; Eigenmann, Bernd; Bigoney, Jean

    2007-05-01

    Compressive residual stresses are commonly introduced into the near-surface regions of morse taper junctions of modular hip endoprostheses to prolong fatigue life. An increasing number of publications report that contamination of shot-peened surfaces can lead to enhanced corrosion and third body wear. This study evaluates deep rolling of titanium alloy rods as a possible alternative to shot peening. Ten rods of Ti6Al7Nb alloy with a diameter of 15 mm were deep rolled with various rolling parameters. The resulting surface topography and residual contamination was analyzed using a scanning electron microscope (SEM). The near-surface residual stress states after deep rolling were characterized by means of X-ray diffraction. The roughness of the surfaces before deep rolling was about R(z) = 14 microm, and after deep rolling surface roughness values of R(z) 0.4-7.5 microm were achieved. The results of the SEM and EDAX analyses of the sample surface showed no evidence of surface contamination by particles or abrasion products caused by any process. At a pressure of 300 bar, compressive stress reached the maximum of -1150 MPa at a depth of 0.1 mm. Deep rolling thus allows a smooth and particle-free surface to be obtained and therefore shows promise as a surface treatment for mating surfaces of morse tapers in modular hip endoprostheses.

  3. Improvement of 3-D FEM Coupled Model on Strip Crown in Hot Rolling

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In order to simulate and analyze hot strip crown and flatness accurately and efficiently, the 3-D (three-di- mensional) coupled model involved in RPFEM (rigid-plastic finite element method) is improved based on the analyti- cal model of forecasting rolling force distribution. In the analytical model, variational method is employed to solve the lateral flow of metal and influential function method is employed to calculate roll deflection, the lateral distribution of rolling force can be obtained rapidly by iterative strategy. Then the 3-D coupled model uses the result as initial distri- bution of rolling force to calculate roll deflection and makes the initial on-load roll gap profile close to the final value, so as to reduce iterations and increase efficiency. Compared with previous algorithms, the improved model can reduce the iterations by about 50% and shorten the computing time by about 60% on the basis of the calculation accuracy.

  4. MECHANICS ANALYSIS ON PRECISE FORMING PROCESS OF EXTERNAL SPLINE COLD ROLLING

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dawei; LI Yongtang; FU Jianhua; ZHENG Quangang

    2007-01-01

    According to the suitable assumption, the deformation process of external spline cold rolling is analyzed. By the graphing method, the slip-line field of plastically deforming area in process of external spline cold rolling is set up. Different friction-conditions are used in different contact areas in order to realistically reflect the actual situation. The unit average pressure on contact surface of the rolling process is solved according to the stress filed theory of slip-line. And the formulae of the rolling-force and rolling-moment are established. The theoretical result is well consistent with the finite element analysis. A theoretical basis is provided for the precise forming process of spline cold rolling and the production of external splined shafts.

  5. FE Analysis on Shear Deformation for Asymmetrically Hot-Rolled High-Manganese Steel Strip

    Science.gov (United States)

    Sui, Feng-Li; Wang, Xin; Li, Chang-Sheng; Zhao, Jun

    2016-09-01

    Shear deformation along the longitudinal cross section of the high-manganese steel strip has been analyzed in hot asymmetrical rolling process using rigid-plastic finite element model. The friction coefficient between the rolls and the strip surfaces, the diameter of the work rolls, the speed ratio for the lower/upper rolls, the reduction rate and the initial temperature of the billet were all taken into account. Influence of these process parameters on the shear stress, the shear strain and the related shear strain energy in the center layer of the hot-rolled strip was analyzed. It is indicated that increasing the speed ratio, the reduction rate and the work roll diameter is an effective way to accumulate more shear strain energy in the strip center. A mathematical model reflecting the relationship between the shear strain energy and the process parameters has been established.

  6. Geometry effect on the strain-induced self-rolling of semiconductor membranes.

    Science.gov (United States)

    Chun, Ik Su; Challa, Archana; Derickson, Brad; Hsia, K Jimmy; Li, Xiuling

    2010-10-13

    Semiconductor micro- and nanotubes can be formed by strain-induced self-rolling of membranes. The effect of geometrical dimensions on the self-rolling behavior of epitaxial mismatch-strained In(x)Ga(1-x)As-GaAs membranes are systematically studied both experimentally and theoretically using the finite element method. The final rolling direction depends on the length and width of the membrane as well as the diameter of the rolled-up tube. The energetics of the final states, the history of rolling process, and the kinetic control of the etching anisotropy ultimately determine the rolling behavior. Results reported here provide critical information for precise positioning and uniform large area assembly of semiconducting micro- and nanotubes for applications in photonics, microelectromechanical systems, etc.

  7. Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy

    Science.gov (United States)

    Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan

    2017-09-01

    Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.

  8. Strip shape control capability of hot wide strip rolling mills

    Institute of Scientific and Technical Information of China (English)

    Renzhong Wang; Quan Yang; Anrui He; Jian Shao; Haitao Bian

    2008-01-01

    The elasticity deformation of rolls was analyzed by means of two-dimensional f'mite element method (FEM) with vari-able thickness. Three typical mills were used as objects for analysis. A thorough study was done on the control capabilities of these mills on the strip shape. Then the strip shape control capabilities of the three mills was compared synthetically.

  9. Comparative roll-over analysis of prosthetic feet

    NARCIS (Netherlands)

    Curtze, Carolin; Hof, At L.; van Keeken, Helco G.; Halbertsma, Jan P. K.; Postema, Klaas; Otten, Bert

    2009-01-01

    A prosthetic foot is a key element of a prosthetic leg, literally forming the basis for a stable and efficient amputee gait. We determined the roll-over characteristics of a broad range of prosthetic feet and examined the effect of a variety of shoes on these characteristics. The body weight of a pe

  10. Rolling of microalloyed magnesium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sotirov, N.; Riemelmoser, F.O.; Kuhlein, M.; Kettner, M. [ARC Leichmetallkompetenzzentrum GmbH, Ranshofen (Austria); Uggowitzer, P.J. [ETH Zurich, Zurich (Switzerland). Dept. of Materials, Laboratory of Metal Physics and Technology; Spencer, K. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2007-07-01

    This paper described a rolling process for a micro-alloyed zinc-manganese (Zn-Ca-Ag-Mn) magnesium alloy. The micro-alloyed magnesium alloy L1 was investigated in order to achieve a finer grain structure and to avoid normal grain growth during rolling. Rolling parameters included billet temperature; rolls temperature and rolls radius; rolling speed; and lubrication. Standard tensile tests were conducted with the rolled alloy L1 flat specimens at room temperature with a test length of 50 mm and a test width of 12.5 mm. Specimens heat treated at 100 degrees C and 200 degrees C showed good balance of strength and elongation. Elongation increased with increasing heat treatment times. Results of the tests demonstrated that the Zn-Ca-Ag-Mn alloy L1 showed exceptionally high elongations to fracture at room temperatures. A pronounced work hardening regime was also observed. It was concluded that the grain structure of the L1 alloy was not influenced after heat treatments until temperatures reached 350 degrees C for 20 minutes. Significant grain coarsening occurred after preliminary heat treatments of 400 degrees C. 7 refs., 1 tab., 6 figs.

  11. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zuo-peng [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Qiao, Gui-ying [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Tang, Lei [Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Hong-wei; Liao, Bo [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-03-07

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10{sup 5} cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m{sup 1/2}. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  12. Compassion fatigue in nurses.

    Science.gov (United States)

    Yoder, Elizabeth A

    2010-11-01

    Compassion fatigue, trigger situations, and coping strategies were investigated in hospital and home care nurses. The Professional Quality of Life Scale measured compassion fatigue, compassion satisfaction, and burnout. Narrative questions elicited trigger situations and coping strategies. Compassion fatigue scores were significantly different between nurses who worked 8- or 12-hour shifts. Fifteen percent of the participants had scores indicating risk of the compassion fatigue. There were significant differences in compassion satisfaction, depending on the unit worked and time as a nurse. The most common category of trigger situations was caring for the patient. Work-related and personal coping strategies were identified. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Rolling mill optimization using an accurate and rapid new model for mill deflection and strip thickness profile

    Science.gov (United States)

    Malik, Arif Sultan

    This work presents improved technology for attaining high-quality rolled metal strip. The new technology is based on an innovative method to model both the static and dynamic characteristics of rolling mill deflection, and it applies equally to both cluster-type and non cluster-type rolling mill configurations. By effectively combining numerical Finite Element Analysis (FEA) with analytical solid mechanics, the devised approach delivers a rapid, accurate, flexible, high-fidelity model useful for optimizing many important rolling parameters. The associated static deflection model enables computation of the thickness profile and corresponding flatness of the rolled strip. Accurate methods of predicting the strip thickness profile and strip flatness are important in rolling mill design, rolling schedule set-up, control of mill flatness actuators, and optimization of ground roll profiles. The corresponding dynamic deflection model enables solution of the standard eigenvalue problem to determine natural frequencies and modes of vibration. The presented method for solving the roll-stack deflection problem offers several important advantages over traditional methods. In particular, it includes continuity of elastic foundations, non-iterative solution when using pre-determined elastic foundation moduli, continuous third-order displacement fields, simple stress-field determination, the ability to calculate dynamic characteristics, and a comparatively faster solution time. Consistent with the most advanced existing methods, the presented method accommodates loading conditions that represent roll crowning, roll bending, roll shifting, and roll crossing mechanisms. Validation of the static model is provided by comparing results and solution time with large-scale, commercial finite element simulations. In addition to examples with the common 4-high vertical stand rolling mill, application of the presented method to the most complex of rolling mill configurations is demonstrated

  14. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  15. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  16. Roll Control in Fruit Flies

    CERN Document Server

    Beatus, Tsevi; Cohen, Itai

    2014-01-01

    Due to aerodynamic instabilities, stabilizing flapping flight requires ever-present fast corrective actions. Here we investigate how flies control body roll angle, their most susceptible degree of freedom. We glue a magnet to each fly, apply a short magnetic pulse that rolls it in mid-air, and film the corrective maneuver. Flies correct perturbations of up to $100^{\\circ}$ within $30\\pm7\\mathrm{ms}$ by applying a stroke-amplitude asymmetry that is well described by a linear PI controller. The response latency is $\\sim5\\mathrm{ms}$, making the roll correction reflex one of the fastest in the animal kingdom.

  17. Myth vs. Fact: Adrenal Fatigue

    Science.gov (United States)

    ... unlikely to cover the costs. What is the theory behind adrenal fatigue? Supporters of adrenal fatigue believe ... by producing hormones like cortisol. According to the theory of adrenal fatigue, when people are faced with ...

  18. Chronic Fatigue Syndrome (CFS): Symptoms

    Science.gov (United States)

    ... CDC.gov . Chronic Fatigue Syndrome (CFS) Share Compartir Symptoms On this Page Primary Symptoms Other Symptoms What's ... a doctor distinguish CFS from other illnesses. Primary Symptoms As the name chronic fatigue syndrome suggests , fatigue ...

  19. Control Method for Steel Strip Roughness in Two-stand Temper Mill Rolling

    Institute of Scientific and Technical Information of China (English)

    LI Rui; ZHANG Qingdong; ZHANG Xiaofeng; YU Meng; WANG Bo

    2015-01-01

    How to control surface roughness of steel strip in a narrow range for a long time has become an important question because surface roughness would significantly influence the appearance of the products. However, there are few effective solutions to solve the problem currently. In this paper, considering both asperities of work roll pressing in and squeezing the steel strip, two asperity contact models including squeezing model and pressing in model in a two-stand temper mill rolling are established by using finite element method (FEM). The simulation investigates the influences of multiple process parameters, such as work roll surface roughness, roll radius and roll force on the surface roughness of steel strip. The simulation results indicate that work rolls surface roughness and roll force play important roles in the products;furthermore, the effect of roll force in the first stand is opposite to the second. According to the analysis, a control method for steel strip surface roughness in a narrow range for a long time is proposed, which applies higher work roll roughness in the first stand and lower roll roughness in the second to make the steel strip roughness in a required narrow range. In the later stage of the production, decreasing the roll force in the first stand and increasing the roll force in the second stand guarantee the steel strip roughness relatively stable in a long time. The following experimental measurements on the surface topography and roughness of the steel strips during the whole process are also conducted. The results validate the simulation conclusions and prove the effect of the control method. The application of the proposed method in the steel strip production shows excellent performance including long service life of work roll and high finished product rate.

  20. Control method for steel strip roughness in Two-stand temper mill rolling

    Science.gov (United States)

    Li, Rui; Zhang, Qingdong; Zhang, Xiaofeng; Yu, Meng; Wang, Bo

    2015-05-01

    How to control surface roughness of steel strip in a narrow range for a long time has become an important question because surface roughness would significantly influence the appearance of the products. However, there are few effective solutions to solve the problem currently. In this paper, considering both asperities of work roll pressing in and squeezing the steel strip, two asperity contact models including squeezing model and pressing in model in a two-stand temper mill rolling are established by using finite element method (FEM). The simulation investigates the influences of multiple process parameters, such as work roll surface roughness, roll radius and roll force on the surface roughness of steel strip. The simulation results indicate that work rolls surface roughness and roll force play important roles in the products; furthermore, the effect of roll force in the first stand is opposite to the second. According to the analysis, a control method for steel strip surface roughness in a narrow range for a long time is proposed, which applies higher work roll roughness in the first stand and lower roll roughness in the second to make the steel strip roughness in a required narrow range. In the later stage of the production, decreasing the roll force in the first stand and increasing the roll force in the second stand guarantee the steel strip roughness relatively stable in a long time. The following experimental measurements on the surface topography and roughness of the steel strips during the whole process are also conducted. The results validate the simulation conclusions and prove the effect of the control method. The application of the proposed method in the steel strip production shows excellent performance including long service life of work roll and high finished product rate.

  1. MODELING OF THE TRACK AND ROLLING STOCK INTERACTION

    Directory of Open Access Journals (Sweden)

    N. V. Khalipova

    2013-09-01

    Full Text Available Purpose. Interaction of system’s elements of "carriage–track" modelling requires consideration of various criteria, it also requires analysis of many uncertainty and randomness factors’ influence on the basic parameters to ensure optimal or rational parameters of the system. The researching of interactions’ process requires new theoretical approaches to formulation of objectives, based on a generalization of existing modeling approaches. The purpose of this work is development of interaction models between track and rolling stock based on multiple structures of objects. Methodology. Dedicated and formed the main evaluation criteria of dynamic interaction between track and rolling stock optimization - quality assurance and safety of transportation process, improving of their efficiency and reducing of prime cost’s. Based on vector optimization methods, proposed model of rolling stock and track’s elements interaction. For the synthesis of the model used mathematical machine of multiple objects structures. Findings. Generalized approaches to modeling in the interaction of rolling stock and track for different structural elements of the system under different exploitation conditions. This theoretical approach demonstrated on the examples of modeling of passenger and freight cars with track under different exploitation conditions. Originality. Proposed theoretical approach to the problem of track and rolling stock interaction, based on a synthesis of existing models by using of multiple objects structures. Practical value. Using of proposed model allows to structure key data and rational parameters of rolling stock and track interaction’s modeling and to formulate optimal and rational parameters of the system, to determine the effective exploitation parameters and measurement system for rational use of infrastructure.

  2. Rolling contact deformation of 1100 aluminum disks

    Science.gov (United States)

    Hahn, G. T.; Huang, Q.

    1986-09-01

    The plastic deformation produced by pure, two dimensional, rolling contacts has been studied by subjecting 1100 aluminum disks to repeated contacts with well-defined relative peak contact pressures in the range 2 ≤ P 0/ k c ≤ 6.8. Two microstructural conditions are examined: as-received (warm worked) and annealed, displaying cyclic softening and cyclic hardening, respectively. Measurements of the distortion of wire markers imbedded in the rims, microhardness values of the plastically deformed layer, and changes in disk radius and width are reported. These are used to evaluate the plastic circumferential, radial, and axial displacements of the rim surface and the depth of the plastically deformed layer. These features are compared with the classical, elastic-quasi plastic analysis of rolling, and with recent elastic-plastic finite element calculations. The results show that the rim deformation state approaches plane strain when the disk width-to-Hertzian half contact width-ratio B/w ≥ 200. The presence of a solid lubricant has no detectable influence on the character of the plane strain deformation. The measurements of the per cycle forward (circumferential) displacements for the two conditions are self-consistent and agree with the finite element calculations when the resistance to plastic deformation is attributed to the instantaneous cyclic yield stress, but not when the resistance is identified with the initial monotonie yield stress. At the same time, the extent of the plastic zone is 5× greater than predicted by the analyses. These and other results can be rationalized by drawing on the special features of the resistance to cyclic deformation. They support the view that the deformation produced by the N th rolling contact is governed by the shape of the stress-strain hysteresis loop after the corresponding number of stress-strain cycles which depends on the cycle strain amplitude, degree of reversibility, and the strain path imposed by the contact

  3. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  4. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    Institute of Scientific and Technical Information of China (English)

    ukasz Pejkowski; Dariusz Skibicki

    2016-01-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The cri-terion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S–N curves: tension–compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promis-ing. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  5. FORMATION OF SHAFT SPLINES USING ROLLING METHOD

    Directory of Open Access Journals (Sweden)

    M. Sidorenko

    2012-01-01

    Full Text Available The paper describes design of rolling heads used for cold rolling of straight-sided splines on shafts and presents theoretical principles of this process. These principles make it possible to calculate an effort which is required for pushing billet through rolling-on rolls with due account of metal hardening during deformation.

  6. Rolling Resistance Measurement and Model Development

    DEFF Research Database (Denmark)

    Andersen, Lasse Grinderslev; Larsen, Jesper; Fraser, Elsje Sophia;

    2015-01-01

    There is an increased focus worldwide on understanding and modeling rolling resistance because reducing the rolling resistance by just a few percent will lead to substantial energy savings. This paper reviews the state of the art of rolling resistance research, focusing on measuring techniques, s......, surface and texture modeling, contact models, tire models, and macro-modeling of rolling resistance...

  7. FEM Analysis of Rolling Pressure Along Strip Width in Cold Rolling Process

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-hua; SHI Xu; LI Shan-qing; XU Jian-yong; WANG Guo-dong

    2007-01-01

    Using 3-D elastic-plastic FEM, the cold strip rolling process in a 4-high mill was simulated. The elastic deformation of rolls, the plastic deformation of the strip, and the pressure between the work roll and the backup roll were taken into account. The distribution of rolling pressure along the strip width was obtained. Based on the simulation results, the peak value of rolling pressure and the location of the peak were analyzed under different rolling conditions. The effects of the roll bending force and the strip width on the distribution of rolling pressure along the width direction were determined.

  8. Numerical analysis of cross shear plate rolling

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1997-01-01

    The rolling process is widely applied for industrial production of metal plates. In conventional plate rolling the two work rolls are rotating at the same peripheral speed. By introducing a specific difference in the speed of the two work rolls, cross shear rolling is introduced forming a central...... shear zone between the forward and backward slip zones in the deformation zone thus lowering the rolling load. A numerical analysis of the cross shear rolling process is carried out based on the slab method adopting Wanheim and Bay's general friction model. The pressure distribution along the contact...

  9. Analysis of Roll Gap Pressure in Sendzimir Mill by FEM

    Institute of Scientific and Technical Information of China (English)

    YU Hai-liang; LIU Xiang-hua; WANG Chao; Park Hae-doo

    2008-01-01

    The acting force on the roll system of Sendzimir mill was analyzed using 3D FEM. The roll gap pressure distribution and the acting force between rolls S and O, rolls O and I, rolls O and J, rolls I and A, rolls I and B, as well as rolls J and B were analyzed. The results showed that the roll gap pressure mainly affected the roll surface layer, 50 mm for backup roll; the roll gap pressure distribution is of double peaks among the work roll, the 1st intermediate roll (IMR), and the 2nd IMR; the maximum value of the roll gap pressure between the backup roll and the second IMR appears on the edge of the barrel of rolls; the component force presents the in-para-curve distribution. These are important for reducing the wear of rolls and the break of the backup roll and guiding for production.

  10. Compassion fatigue in military healthcare teams.

    Science.gov (United States)

    Owen, Regina Peterson; Wanzer, Linda

    2014-02-01

    Since the onset of the Iraq war and Afghanistan conflicts, military healthcare teams have had increasing exposure to the traumatic effects of caring for wounded warriors, leading to a phenomenon termed compassion fatigue. The purpose of this integrative review was to develop a proposed definition for compassion fatigue in support of these teams. There is no current standardized formal definition, and this lack of clarity can inhibit intervention. Seven main themes evolved from the literature review and were integrated with the core elements of the Bandura Social Cognitive Theory Model as the first step in developing a uniformed definition.

  11. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  12. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    DEFF Research Database (Denmark)

    Gamstedt, Kristofer; Andersen, Svend Ib Smidt

    2001-01-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage,marine and aeronautical propellers, and rolls...

  13. Fatigue Performance of Friction-Stir-Welded Al-Mg-Sc Alloy

    Science.gov (United States)

    Zhemchuzhnikova, Daria; Mironov, Sergey; Kaibyshev, Rustam

    2017-01-01

    Fatigue behavior of a friction-stir-welded Al-Mg-Sc alloy was examined in cast and hot-rolled conditions. In both cases, the joints failed in the base material region and therefore the joint efficiency was 100 pct. The specimens machined entirely from the stir zone demonstrated fatigue strength superior to that of the base material in both preprocessed tempers. It was shown that the excellent fatigue performance of friction-stir joints was attributable to the ultra-fine-grained microstructure, the low dislocation density evolved in the stir zone, and the preservation of Al3Sc coherent dispersoids during welding. The formation of such structure hinders the initiation and growth of fatigue microcracks that provides superior fatigue performance of friction-stir welds.

  14. Examining fatigue in COPD

    DEFF Research Database (Denmark)

    Al-Shair, Khaled; Muellerova, Hana; Yorke, Janelle

    2012-01-01

    ABSTRACT: INTRODUCTION: Fatigue is a disruptive symptom that inhibits normal functional performance of COPD patients in daily activities. The availability of a short, simple, reliable and valid scale would improve assessment of the characteristics and influence of fatigue in COPD. METHODS......: At baseline, 2107 COPD patients from the ECLIPSE cohort completed the Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F) scale. We used well-structured classic method, the principal components analysis (PCA) and Rasch analysis for structurally examining the 13-item FACIT-F. RESULTS: Four items...... were less able to capture fatigue characteristics in COPD and were deleted. PCA was applied to the remaining 9 items of the modified FACIT-F and resulted in three interpretable dimensions: i) general (5 items); ii) functional ability (2 items); and iii) psychosocial fatigue (2 items). The modified...

  15. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben;

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...... is observed between stiffness reduction and accumulated creep. A failure model based on the total work during the fatigue life is rejected, and a modified work model based on elastic, viscous and non-recovered viscoelastic work is experimentally supported, and an explanation at a microstructural level...

  16. Rolling bearing fault detection using an adaptive lifting multiwavelet packet with a {1\\frac{1}{2}} dimension spectrum

    Science.gov (United States)

    Jiang, Hongkai; Xia, Yong; Wang, Xiaodong

    2013-12-01

    Defect faults on the surface of rolling bearing elements are the most frequent cause of malfunctions and breakages of electrical machines. Due to increasing demands for quality and reliability, extracting fault features in vibration signals is an important topic for fault detection in rolling bearings. In this paper, a novel adaptive lifting multiwavelet packet with {1\\frac{1}{2}} dimension spectrum to detect defects in rolling bearing elements is developed. The adaptive lifting multiwavelet packet is constructed to match vibration signal properties based on the minimum singular value decomposition (SVD) entropy using a genetic algorithm. A {1\\frac{1}{2}} dimension spectrum is further employed to extract rolling bearing fault characteristic frequencies from background noise. The proposed method is applied to analyze the vibration signal collected from electric locomotive rolling bearings with outer raceway and inner raceway defects. The experimental investigation shows that the method is accurate and robust in rolling bearing fault detection.

  17. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-03-01

    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  18. A subregional model for delamination prediction of rubber composite under fatigue loading

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhen-hui; TAN Hui-feng

    2005-01-01

    Results from fatigue experiments of cross-laminated steel cord-rubber composites (SCRC) indicate that fatigue damage life can be categorized into three regimes. In terms of fatigue modes, a subregional fatigue model is developed to describe the damages evolution of SCRC under fatigue loads. Firstly, finite element analysis is introduced to determine interply stress distribution of the specimen. Then, based on the experimental fatigue data, subregional models are introduced to simulate relations between maximum strain, effective stiffness,delamination shear stress and fatigue cycles. Relations between crack density, delamination length growth rate,macro crack density and cycles are modeled by two semi-empirical models. A reasonable prediction result was achieved by the current model, where model parameters can be determined by basic outputs of fatigue testing.

  19. Fault tree analysis of most common rolling bearing tribological failures

    Science.gov (United States)

    Vencl, Aleksandar; Gašić, Vlada; Stojanović, Blaža

    2017-02-01

    Wear as a tribological process has a major influence on the reliability and life of rolling bearings. Field examinations of bearing failures due to wear indicate possible causes and point to the necessary measurements for wear reduction or elimination. Wear itself is a very complex process initiated by the action of different mechanisms, and can be manifested by different wear types which are often related. However, the dominant type of wear can be approximately determined. The paper presents the classification of most common bearing damages according to the dominant wear type, i.e. abrasive wear, adhesive wear, surface fatigue wear, erosive wear, fretting wear and corrosive wear. The wear types are correlated with the terms used in ISO 15243 standard. Each wear type is illustrated with an appropriate photograph, and for each wear type, appropriate description of causes and manifestations is presented. Possible causes of rolling bearing failure are used for the fault tree analysis (FTA). It was performed to determine the root causes for bearing failures. The constructed fault tree diagram for rolling bearing failure can be useful tool for maintenance engineers.

  20. Effect of Rolling Parameters on Plate Curvature during Snake Rolling

    Institute of Scientific and Technical Information of China (English)

    FU Yao; XIE Shuisheng; XIONG Baiqing; HUANG Guojie; CHENG Lei

    2012-01-01

    In order to predict the plate curvature during snake rolling,FE model was constructed based on plane strain assumption.The accuracy of the FE model was verified by the comparison between the plate curvature conducted by FE model and experiment respectively.By using FE model,the effect of offset distance,speed ratio,reduction,roll radius and initial plate thickness on the plate curvature during snake rolling was investigated.The experimental results show that,a proper offsetting distance can efficiently decrease plate curvature,however an excessive offsetting distance will increase plate curvature.A larger speed ratio,reduction will cause a large plate curvature,however a larger roll radius has effect to reduce plate curvature.Plate which undergoes a larger reduction and plate with a larger initial thickness always need a larger offset distance to keep the plate the minimum plate curvature,but for a larger roll radius a smaller offset distance is needed.

  1. Memory for Fatigue in Chronic Fatigue Syndrome: Relationships to Fatigue Variability, Catastrophizing, and Negative Affect

    Science.gov (United States)

    Sohl, Stephanie J.; Friedberg, Fred

    2008-01-01

    Fatigue in chronic fatigue syndrome (CFS) is usually assessed with retrospective measures rather than real-time momentary symptom assessments. In this study, the authors hypothesized that in participants with CFS, discrepancies between recalled and momentary fatigue would be related to catastrophizing, anxiety, and depression and to variability of momentary fatigue. They also expected that catastrophizing, anxiety, and depression would be associated with momentary fatigue. The authors asked 53 adults with CFS to carry electronic diaries for 3 weeks and record their experiences of momentary fatigue. The authors assessed participants' fatigue recall with weekly ratings and administered questionnaires for catastrophizing, depression, and anxiety. Recall discrepancy was significantly related to the variability of momentary fatigue. In addition, catastrophizing, depression, and momentary fatigue were all significantly related to recall discrepancy. Catastrophizing, depression, anxiety, and momentary negative affect were all significantly associated with momentary fatigue. The findings suggest that momentary fatigue in patients with CFS is related to modifiable psychological factors. PMID:18400687

  2. Bending analysis and control of rolled plate during snake hot rolling

    Institute of Scientific and Technical Information of China (English)

    张涛; 吴运新; 龚海; 郑细昭; 蒋绍松

    2015-01-01

    In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element (FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate’ and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.

  3. Fatigue Management (La Gestion de la Fatigue)

    Science.gov (United States)

    1991-12-01

    Management Pre’face Etant donne la tenidance de plus en plus marque ~e vets le maintien en service des aironefs au-delak des dates lintites...transport aircraft designed prototype sade its first flight one year about 20 years ago; from the fatigue point later. The results of the flight testing

  4. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  5. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T-test t...

  6. Prolonged unexplained fatigue in paediatrics

    NARCIS (Netherlands)

    Bakker, R.J.

    2010-01-01

    Prolonged Unexplained Fatigue in Paediatrics. Fatigue, as the result of mental or physical exertion, will disappear after rest, drinks and food. Fatigue as a symptom of illness will recover with the recovering of the illness. But when fatigue is ongoing for a long time, and not the result of exertio

  7. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong;

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T...

  8. Study on Spectral Fatigue Assessment of Trimaran Structure

    Directory of Open Access Journals (Sweden)

    Ren Huilong

    2013-01-01

    Full Text Available This study presents fatigue strength assessment of the trimaran platform by the spectral approach. Spectral fatigue calculations are based on complex stress transfer functions established through direct wave load analysis combined with stress response analysis. In this study, ANSYS software with 3 dimensional linear sea-keeping code AQWA is used to compute frequency response functions of the vessel at zero forward speed. Finite element analysis of global trimaran structure is performed in ANSYS software utilizing hydrodynamic wave loads. Hot spot stress approach is used to compute stress transfer functions of the selected critical details. A MATLAB program, based on direct calculation procedure of spectral fatigue is developed to calculate total fatigue damage using wave scatter data of North Atlantic. Damage incurred during individual heading direction is also calculated and presented by means of polar diagrams to study its contribution towards cumulative fatigue damage.

  9. 高速线材轧制全程温度曲线有限元模拟%Finite element simulation of the temperature curve of wire rods during the whole process of rolling

    Institute of Scientific and Technical Information of China (English)

    邸全康; 王福明; 王晓晨; 杨子森; 邓素怀; 郑福印

    2016-01-01

    The temperature distribution of billets in a heating furnace is simulated by Deform software and is verified by the"black box". When the heating time is 70 min the temperature difference between surface and center is about 66℃, but it reduces to 15℃ after 80 min. The core and surface temperatures of wire rods in rolling and cooling are calculated and testified by thermometric indicator, and afterwards, the accurate friction heat, plastic deformation heat and heat transfer coefficient of water cooling are obtained. The wind field of fans is computed by Fluent software and is confirmed by anemometer. A temperature model of the lapping point is built and used to calculate the forced convection, natural and radiation heat transfer coefficients and the latent heat of phase transformation on the air-cooling line, which are validated by thermal imager. All the numerical simulation results agree well with the test data.%采用Deform模拟计算加热炉铸坯温度分布,并通过"黑匣子"试验验证,当加热时间为70 min时,铸坯心部与表面温差约66℃,80 min时降到15℃. 模拟计算轧制和水冷过程心部和表面温度曲线,并通过测温仪验证,得出准确的摩擦热、塑性变形热以及水冷换热系数模型. 采用Fluent模拟计算风机的风场,使用手持测风仪验证,再建立盘条搭接点温度模型,计算出风冷线上强迫对流换热、自然换热和辐射换热系数以及相变潜热,使用热成像仪测温验证. 模拟与试验结果十分吻合.

  10. Ambient roll-to-roll fabrication of flexible solar cells based on small molecules

    DEFF Research Database (Denmark)

    Lin, Yuze; Dam, Henrik Friis; Andersen, Thomas Rieks

    2013-01-01

    All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells.......All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells....

  11. Fatigue Failure of Sandwich Beams with Wrinkle Defects Used for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Lund, Erik

    2012-01-01

    Glass fiber face sheet/balsa wood core sandwich beams with out-of-plane fiber misalignments/wrinkle defects were subjected to in-plane fully reversed fatigue loading and the failure modes were documented. A fatigue life design limit was estimated using finite element analyses and the Northwestern...... University failure theory. The presence of the wrinkle defect significantly lowered the fatigue strength, but it was found that the test specimens could reach a pre-defined fatigue life with no signs of damage, by applying a fatigue load below 80% of the estimated design limit....

  12. Fatigue Induced Alteration of the Superficial Strength Properties of 2024 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    K.-D. Bouzakis; I. Mirisidis; Sp. G. Pantelakis; A.N. Chamos

    2011-01-01

    aluminum alloy 2024 T3 specimens have been subjected to constant amplitude fatigue loading at R=0.1. During fatigue, an appreciable increase of the surface hardness of the material at the meso-scale can be observed and captured by means of nanoindentations. Surface hardness increases with increasing fatigue stress amplitude and advancing number of applied fatigue cycles. Observed increase of specimen surface hardening degree during fatigue causes an evolution of superficial mechanical strength properties of the alloy. Stress-strain curves associated with the evoluting superficial mechanical properties are derived, employing a developed finite element method (FEM)-supported evaluation procedure of nanoindentation experimental results.

  13. Metabolic Factors in Fatigue

    Institute of Scientific and Technical Information of China (English)

    Mark Hargreaves

    2006-01-01

    Increased non-oxidative and oxidative ATP production via metabolic pathways in skeletal muscle is essential for the maintenance of force and power production during exercise. However, substrate depletion and accumulation of metabolic byproducts are potential causes of fatigue. Reduced PCr availability can limit power production during sprint exercise, whereas carbohydrate depletion is a major limitation to endurance performance. During sprint exercise increased Pi and H+ may contribute to fatigue, and during prolonged strenuous exercise, the accumulation of NH3, reactive oxygen species, and heat can limit performance. Appropriate training programs and nutritional interventions are potential strategies to enhance fatigue resistance and exercise performance.

  14. Fatigue 󈨛. Volume 2,

    Science.gov (United States)

    1987-06-01

    fatigue cracks grown in a nominally elastic field. EXPERIMENTAL DETAILS A low alloy steel (QIN) with a composition closely similar to HY80 , i.e. 2.5...Prediction of Steel Cords - A. PRAKASH, 645 G.A. COSTELLO, R.M. SHEMENSKI AND D.K. KIM Effect of Hold Time on Fatigue of Lead Rich 655 PbSn Solder...S. VAYNMAN, M.E. FINE AND D.A. JEANNOTTE On Cleavage in Fatigue for Rail Steels - 667 ZHU DONG, CAI QIGONG and YAO HENG Influence of Cleavage on

  15. Surface Improvement of Shafts by Turn-Assisted Deep Cold Rolling Process

    Directory of Open Access Journals (Sweden)

    Prabhu Raghavendra

    2016-01-01

    Full Text Available It is well recognized that mechanical surface enhancement methods can significantly improve the characteristics of highly-stressed metallic components. Deep cold rolling is one of such technique which is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In this paper, the effect of turn-assisted deep cold rolling on AISI 4140 steel is examined, with emphasis on the residual stress state. Based on the X-ray diffraction measurements, it is found that turn-assisted deep cold rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in AISI 4140 steel.

  16. Evolution of domain structure being the determinant in the mechanical fatigue process of railway wheelset wheel material

    Directory of Open Access Journals (Sweden)

    Zbigniew H. ŻUREK

    2007-01-01

    Full Text Available Investigation of fatigue processes on the basis of domain structure imaging makes possible identification of material zones and fatigue degree and will permit the introduction of changes in the wheel construction at the design stage. Investigation results of domain structure of wheelset’s rolling surface subjected to contact loads and material samples subjected to cyclic loads have been presented in this paper.

  17. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  18. Lubrication in strip cold rolling process

    Institute of Scientific and Technical Information of China (English)

    Jianlin Sun; Yonglin Kang; Tianguo Xiao; Jianze Wang

    2004-01-01

    A lubrication model was developed for explaining how to form an oil film in the deformation zone, predicting the film thickness and determining the characteristics of lubrication in the strip rolling process, combined with the knowledge of hydrodythicknesses in the strip cold rolling. Results from the experiment and calculation show that the oil film forming in hydrodynamic lubrication is up to the bit angle and a higher rolling speed or a higher rolling oil viscosity. The mechanism of mechanical entrainment always affects the film thickness that increases with the rolling oil viscosity increasing or the reduction rate decreasing in rolling.

  19. Overlay welding for corrugating roll

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of chemical compositions and microstructures on wearability properties of overlaid corrugating roll were studied, and the factors governing the hardness and the wearability of overlaid layer were explored.The results show that the hardness and wearability of the overlaid layer significantly rise with the increase of the mass fraction of various types of eutectic, but the crack-resistance falls. The chief factor governing the hardness of overlaid layer is the matrix microstructure, especially the amount of austenite; and the second is the amount of carbide. The principal factor governing the wearability of overlaid layer is the amount of special carbide, particularly the amount of eutectic; and the second is the hardness of overlaid layer. Meanwhile, high alloying electrodes may cause the gear-surface hardness of corrugating roll to be higher than 63HRc, and may enhance the wearability of the gear-surface of corrugating roll by a factor of 5.63 and 9.08.

  20. Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco

    Science.gov (United States)

    Pujiyanto, Hamdani

    2017-01-01

    A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.

  1. Residual stresses and fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Johan

    1999-05-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  2. Hyperthermia and fatigue

    DEFF Research Database (Denmark)

    Nybo, Lars

    2008-01-01

    of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise......The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation...... of the dopaminergic system, but may primarily relate to inhibitory signals from the hypothalamus arising secondary to an increase in brain temperature. Fatigue is an integrated phenomenon, and psychological factors, including the anticipation of fatigue, should not be neglected and the interaction between central...

  3. Fatigue Evaluation Algorithms: Review

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Brøndsted, Povl

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck......, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time...... blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects...

  4. Fatigue in soccer

    DEFF Research Database (Denmark)

    Mohr, Magni; Krustrup, Peter; Bangsbo, Jens

    2005-01-01

    This review describes when fatigue may develop during soccer games and the potential physiological mechanisms that cause fatigue in soccer. According to time?-?motion analyses and performance measures during match-play, fatigue or reduced performance seems to occur at three different stages......, acidity or the breakdown of creatine phosphate. Instead, it may be related to disturbances in muscle ion homeostasis and an impaired excitation of the sarcolemma. Soccer players' ability to perform maximally is inhibited in the initial phase of the second half, which may be due to lower muscle...... concentrations in a considerable number of individual muscle fibres. In a hot and humid environment, dehydration and a reduced cerebral function may also contribute to the deterioration in performance. In conclusion, fatigue or impaired performance in soccer occurs during various phases in a game, and different...

  5. DEFECTS SIMULATION OF ROLLING STRIP

    Directory of Open Access Journals (Sweden)

    Rudolf Mišičko

    2009-06-01

    Full Text Available The defects in the continuous casting slabs can be developed or kept down in principle by rolling technology, especially depend to sort, size and distribution of primary defects, as well as used of rolling parameters. Scope of the article is on observation behavior artificial surface and undersurface defects (scores without filler (surface defects and filling by oxides and casting powder (subsurface defects. First phase of hot rolling process have been done by software simulation DEFORM 3D setting to the limited condition for samples with surface defects. Samples of material with low-carbon steel of sizes h x b x l have been chosen and the surface defects shape „U” and „V” of scores have been injected artificially by software. The process of rolling have been simulated on the deformation temperatures 1200°C and 900°C, whereas on the both of this deformation temperatures have been applied amount of deformation 10 and 50 %. With respect to the process of computer simulation, it is not possible to truthful real oxidation condition (physical – chemical process during heat of metal, in the second phase of our investigation have been observed influence of oxides and casting powders inside the scores for a defect behavior in plastic deformation process (hot and cold rolling process in laboratory condition. The basic material was STN steel class 11 375, cladding material was steel on the bases C-Mn-Nb-V. Scores have been filled by scales to get from the heating temperatures (1100°C a 1250°C, varied types of casting powders, if you like mixture of scale and casting powders in the rate 1:4. The joint of the basic and cladding material have been done by peripheral welded joint. Experiment results from both phases are pointed on the evolution of original typology defects in rolling process.

  6. 基于ANSYS的碳纤维连续抽油杆作业车侧翻稳定性的有限元分析%Finite Element Analysis of the Roll Stability for Continuous Carbon Fiber Sucker Rod Busywork Unit Based on ANSYS

    Institute of Scientific and Technical Information of China (English)

    孙新国; 孙亮; 王二化

    2014-01-01

    The application of the continuous carbon fiber sucker rod pumping system is successful preliminarily in the oilfields of our country,and has shown great economic value to promote to large area. A continuous carbon fiber sucker rod busywork unit is devel-oped in which the sucker rod lifting (setting down)and the sucker rod coiling are driven separately. In order to prevent the busywork unit to roll,a math-model which included 242 nodes and 228 elements was set up for the finite element analysis (FEA),and solved by using ANSYS FEA software. By calculation and analysis,it is proved that the vehicle will not roll over in routine operation,and its o-verall structural design is reasonable. And this designed model has certain value to further research.%碳纤维连续抽油杆采油系统在我国油田的应用获得了初步的成功,并显示出其大面积推广的巨大经济价值。一种将杆柱起升(下放)与杆柱缠绕分别驱动的新型碳纤维连续抽油杆作业车被研制出来。为了防止该作业车侧翻,建立了由242个节点和228个单元组成的有限元分析数学模型,并用ANSYS通用有限元软件进行求解。经过计算和分析,得出该作业车正常工作时不会侧翻,该车整体结构设计是合理的。另外,所设计的数学模型有一定的使用价值和更深入研究的参考价值。

  7. Size effects in winding roll formed profiles: A study of carcass production for flexible pipes in offshore industry

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Storgaard; Bay, Niels

    2013-01-01

    neutral plane. Other parameters such as profile entry angle on the mandrel and spiral pitch are likely to have significant importance. Proper dividing point position is shown to be obtainable by adjusting the profile in the roll forming stage. The profile rolling is successfully modeled by Finite Element...

  8. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    evaluating ciack initiation time and crack propagation, prgram I was used for performing the major fatigue test with the aircraft structure. In...advantage to begin with the end of the fracture, this is especially so in the case of the quantitative evaluation of striations. The overload fracture...Select the Measuring Line for Quantitative Evaluation Actually, the fatigue fracture should be inspected completely from the point of origin to the

  9. The Recognition Of Fatigue

    DEFF Research Database (Denmark)

    Elsass, Peter; Jensen, Bodil; Mørup, Rikke;

    2007-01-01

    Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87......Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87...

  10. Fatigue related changes in electromyographic coherence between synergistic hand muscles.

    Science.gov (United States)

    Kattla, Shashikala; Lowery, Madeleine M

    2010-04-01

    The aim of this study was to examine coherence between surface electromyographic (EMG) signals from two index finger flexor muscles, the first dorsal interosseous (FDI) and flexor digitorum superficialis (FDS), during and immediately following sustained, fatiguing isometric contraction. Coherence was observed between the FDI and FDS EMG signals in the tremor (8-12 Hz), beta (15-35 Hz) and gamma (35-60 Hz) bands in all subjects. A significant increase in EMG-EMG coherence in the beta and gamma frequency bands was observed immediately following the fatiguing contraction. No significant difference was observed in the tremor band coherence before and after fatigue. Coherence was observed between EMG and force in the tremor band during both the pre- and post-fatigue contractions and a significant increase in the FDI EMG-force coherence post-fatigue was observed. It is suggested that the increase in beta and gamma band coherence with fatigue may be due to increased levels of corticomotoneuronal drive to both muscles. Alternatively, the increased EMG-EMG coherence may reflect an increased contribution of peripheral afferents to coupling across the muscle with fatigue. Although the functional significance is not clear, the increase in coherence may help to overcome reduced motoneuron excitability with fatigue, to bind together different sensorimotor elements or to coordinate force generation across muscles in a more synergistic manner as the force generating capacity of the muscle is decreased.

  11. Probabilistic prediction of fatigue damage based on linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    M. Krejsa

    2017-01-01

    Full Text Available Paper describes in detail and gives example of the probabilistic assessment of a steel structural element subject to fatigue load, particular attention being paid to cracks from the edge and those from surface. Fatigue crack damage depends on a number of stress range cycles. Three sizes are important for the characteristics of the propagation of fatigue cracks - the initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression in paper is based on a linear fracture mechanics. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability, times for subsequent inspections can be determined. For probabilistic calculation of fatigue crack progression was used the original and new probabilistic methods - the Direct Optimized Probabilistic Calculation (“DOProC”, which is based on optimized numerical integration. The algorithm of the probabilistic calculation was applied in the FCProbCalc code (“Fatigue Crack Probabilistic Calculation”, using which is possible to carry out the probabilistic modelling of propagation of fatigue cracks in a user friendly environment very effectively.

  12. Dynamic Correction Algorithm of Rolling Force in Plate Rolling

    Institute of Scientific and Technical Information of China (English)

    QIU Hong-lei; WANG Jun; HU Xian-lei; WANG Zhao-dong; WANG Guo-dong

    2005-01-01

    Based on the Shougang plat mill project, an on-line dynamic correction algorithm was analyzed. This algorithm can adjust model coefficients better because the reasonable correction is based on the measured and calculated rolling force. The results of application on site show that this on-line dynamic correction algorithm is effective.

  13. Driver Fatigue Features Extraction

    Directory of Open Access Journals (Sweden)

    Gengtian Niu

    2014-01-01

    Full Text Available Driver fatigue is the main cause of traffic accidents. How to extract the effective features of fatigue is important for recognition accuracy and traffic safety. To solve the problem, this paper proposes a new method of driver fatigue features extraction based on the facial image sequence. In this method, first, each facial image in the sequence is divided into nonoverlapping blocks of the same size, and Gabor wavelets are employed to extract multiscale and multiorientation features. Then the mean value and standard deviation of each block’s features are calculated, respectively. Considering the facial performance of human fatigue is a dynamic process that developed over time, each block’s features are analyzed in the sequence. Finally, Adaboost algorithm is applied to select the most discriminating fatigue features. The proposed method was tested on a self-built database which includes a wide range of human subjects of different genders, poses, and illuminations in real-life fatigue conditions. Experimental results show the effectiveness of the proposed method.

  14. Analysis of the Method of Finite Element about Oil Tanks′Fatigue Based on HCSR and CSR-OT%基于 HCSR 和 CSR-OT 的油船疲劳有限元法对比分析

    Institute of Scientific and Technical Information of China (English)

    刘亮; 李辉; 周广喜; 邓进宁

    2013-01-01

    For comparing the two fatigue assessment system of oil tanks given by HCSR and CSR -OT, two oil tanks with hor-izontal stringer and corrugated bulkhead were selected as research objects .The hot spot stress FEA was carried out with two kind of different applied loads according to HCSR and CSR-OT respectively so as to calculate the fatigue life .The results of fatigue life of the hopper knuckle were compared , showing that HCSR has more reasonable loads and more strict assessment system .%为了对比新的散货船、油船协调共同规范和旧的双壳油船结构共同规范,选取两艘具有水平桁结构和两艘具有槽型舱壁油船作为研究对象,对这两种不同结构形式的油船,分别按HCSR和CSR规范的要求,进行加载分析计算疲劳寿命,并基于CSR规定,比较底边舱下折角位置处的疲劳寿命。认为HCSR疲劳载荷选取更加合理,评估体系更加严格。

  15. Heat pipes made of roll bond panels

    Science.gov (United States)

    Moeller, M.; Heil, K.

    1983-06-01

    The use of large surfaced aluminum roll bond panels with an integral flow system as heat pipes is studied. With a suitable flow system e.g., parallel passages with a cross-connection, one single filling procedure is required for the operating medium. Adequate materials for the manufacture of heat pipes are Al 99,3; AlMn1, 5 and AlMn1, 5Sil,5. Peel, creep and burst tests as well as corrosion tests were made on specimens and structural elements of these materials. Results show that the use of such panels for heat pipe manufacturing is appropriate for limited maximum temperature applications. Prototypes of heat pipes and their characteristic features are described in view of their use as absorbers in solar collectors. Good heat exchange performances obtained.

  16. Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061

    Science.gov (United States)

    Yadollahpour, M.; Hosseini-Toudeshky, H.; Karimzadeh, F.

    2016-05-01

    The effects of cryorolling (rolling at liquid nitrogen temperature) and heat treatment on tensile and high-cycle fatigue properties and fatigue crack growth rate of Al6061 alloy have been investigated in the present work. First, the solid solution-treated bulk Al6061 alloy was subjected to cryorolling with 90% total thickness reduction and subsequent short annealing at 205°C for 5 min and peak aging at 148°C for 39 h to achieve grain refinement and simultaneous improvement of the strength and ductility. Then, hardness measurements, tensile tests, fatigue life, and fatigue crack growth rate tests including fractography analyses using scanning electron microscopy were performed on bulk Al6061 alloy, cryorolled (CR), and cryorolled material followed by peak aging (PA). The PA specimen showed improved yield strength by 24%, ultimate tensile strength by 20%, and ductility by 12% as compared with the bulk Al6061 alloy. It is shown that the fatigue strength of both CR and PA specimens under a high-cycle fatigue regime are larger than that of the bulk Al6061 alloy. Also, fatigue crack growth rates of the CR and PA specimens show significant enhancement in fatigue crack growth resistances as compared with the bulk Al6061 alloy, as a result of grain refinement.

  17. Analysis of Fatigue Crack Growth in Ship Structural Details

    Directory of Open Access Journals (Sweden)

    Leheta Heba W.

    2016-04-01

    Full Text Available Fatigue failure avoidance is a goal that can be achieved only if the fatigue design is an integral part of the original design program. The purpose of fatigue design is to ensure that the structure has adequate fatigue life. Calculated fatigue life can form the basis for meaningful and efficient inspection programs during fabrication and throughout the life of the ship. The main objective of this paper is to develop an add-on program for the analysis of fatigue crack growth in ship structural details. The developed program will be an add-on script in a pre-existing package. A crack propagation in a tanker side connection is analyzed by using the developed program based on linear elastic fracture mechanics (LEFM and finite element method (FEM. The basic idea of the developed application is that a finite element model of this side connection will be first analyzed by using ABAQUS and from the results of this analysis the location of the highest stresses will be revealed. At this location, an initial crack will be introduced to the finite element model and from the results of the new crack model the direction of the crack propagation and the values of the stress intensity factors, will be known. By using the calculated direction of propagation a new segment will be added to the crack and then the model is analyzed again. The last step will be repeated until the calculated stress intensity factors reach the critical value.

  18. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Deevi, S.C.; Lilly, A.C. Jr.; Sikka, V.K.; Hajaligol, M.R.

    2000-03-07

    A powder metallurgical process is dislosed for preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as {<=}1% Cr, {>=}05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1 % rare earth metal, {<=}1% oxygen, and/or {<=}3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  19. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Deevi, Seetharama C. (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); Sikka, Vinod K. (Oak Ridge, TN); Hajaligol, Mohammed R. (Richmond, VA)

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  20. Rolling Cylinder Phase 1bis

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    Cylinder Phase 1: proof of concept and first optimization”, DCE report 115, ISSN 1901-726X, and it is recommended that the two are consulted together as they were firstly agreed to be in one document. The present report aims at estimate the efficiency of the Rolling Cylinder long model (previously...

  1. Theoretical Analysis of the Influence of Longitudinal Stress Changes on Band Dimensions During Continuous Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-03-01

    Full Text Available The paper presents the results of studies on the effect of nonuniform temperature distribution over the length of feedstock on the variation of longitudinal stresses in the rolling direction and band dimension change during the continuous rolling process. The studies were performed based on actual engineering data for a 160x160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge 2008®, a finite-element based computer program. Thermovision measurements and bars geometrical dimension changes were carried out in a domestic steelworks.

  2. Rolling and Forming of Thorium Metal

    Energy Technology Data Exchange (ETDEWEB)

    Calabra, A. E.

    1961-05-02

    One vacuum induction melted and cast nuclear grade thorium ingot was satisfactorily rolled and formed into a hemispherical shape. Attempts to roll and form two vacuum induction melted and cast alloy grade thorium ingots were not successful. Rolling and forming procedures are described and metallurgical evaluation is reported.

  3. Influence of Roll Elastic Deformation on Gaugemeter Equation for Plate Rolling

    Institute of Scientific and Technical Information of China (English)

    HU Xian-lei; WANG Jun; WANG Zhao-dong; LIU Xiang-hua; WANG Guo-dong

    2004-01-01

    The error of gaugemeter equation decreases the gap setting precision. The precision of gaugemeter equation is strongly influenced by plate width, work roll radius, backup roll radius, work roll crown, backup roll crown and rolling force. And these influences are hard to measure. All these factors are converted to roll deflection deformation and roll flattening deformation for calculation. In order to calculate the deformation, the theory of influence function method was adopted. By using simulation program, the influence of these factors on deformation was obtained. Then a simple model can be built. With this model, it is convenient to analyze the influence of different factors on gaugemeter equation.

  4. Numerical Simulation and Sensitivity Analysis of Parameters for Multistand Roll Forming of Channel Section With Outer Edge

    Institute of Scientific and Technical Information of China (English)

    ZENG Guo; LAI Xin-min; YU Zhong-qi; LIN Zhong-qin

    2009-01-01

    Cold roll forming is a high production but complex metal forming process under the conditions of coupled effects with multi-factor.A new booting finite element method (FEM) model using the updated Lagrangian (UL) method for multistand roll forming process is developed and validated.Compared with most of the literatures related to roll forming simulation,the new model can take the roll rotation into account and is well suited for simulating multistand roll forming.Based on the model,the process of a channel section with outer edge formed with twelve passes is simulated and the sensitivity analysis of parameters is conducted with orthogonal design combined FEM model.It is found that the multiatand roll forming process can he efficiently analyzed by the new booting model,and sensitivity analysis shows that the yield strength plays an important role in controlling the quality of the products.

  5. Design of a novel 5-DOF flexure-based compound alignment stage for Roll-to-Roll Printed Electronics

    Science.gov (United States)

    Chen, Weihai; Yang, Shang; Liu, Jingmeng; Chen, Wenjie; Jin, Yan

    2017-02-01

    Alignment stage is a pivotal component for Roll-to-Roll Printed Electronic (R2RPE), especially for Roll-to-Roll inkjet printing. This paper presents the design, modeling, and testing of a new flexure-based compound alignment stage for R2RPE. In this design, the alignment stage has 5-DOF (Degree of Freedom) motions for compensating the alignment errors and only the rotation motion about the y-axis is redundant. The stage is constructed in series by four key parts and adopts a compounded flexure structure to achieve a great performance. Each part is driven by a piezoelectric actuator or voice coil motor actuator to obtain one or two DOF motion. In order to enlarge the travel range of the alignment stage, a Scott-Russell mechanism and a lever mechanism are arranged in series for forming a two-grade displacement amplifier to overcome the small displacement of the actuator. Based on the pseudo-rigid-body simplification method, alignment models are developed. Kinematic and static analyses are conducted to evaluate the performance of the stage in terms of travel range and input stiffness. Finite element simulation is carried out to examine the mechanical performance and the theoretical models. A prototype is fabricated and experiments are conducted. Results show that the proposed alignment stage possesses an error compensation workspace of 148.11 μ m ×149.73 μ m × 813.61 μ m × 1.558 mrad × 3.501 mrad with output coupling errors of 0.693% and 0.637% between the x- and y-axis, which meets the requirements of Roll-to-Roll inkjet printing.

  6. A new transducer for roll gap measurements of the roll pressure distribution and the friction condition in cold flat rolling

    DEFF Research Database (Denmark)

    Lagergren, Jonas; Wanheim, Tarras; Presz, W.

    2005-01-01

    . Conclusions The new transducer works very well, it was seen to be robust and able to avoid signal disturbance. The pressure and friction stress distribution results was as expected by the authors and a good reproducibility, together with a proven agreement between recorded signals and signals simulated....... Keywords Friction stress, normal pressure distribution, roll bite measurements, cold flat rolling of metals......Background/purpose The only way to establish the true rolling pressure and the true friction condition in cold rolling is to conduct measurements in the roll bite. A new transducer design is therefore proposed, this to overcome problems in previous measurements in the past 70 years. Method The new...

  7. Prediction of Rolling Force Using AN Adaptive Neural Network Model during Cold Rolling of Thin Strip

    Science.gov (United States)

    Xie, H. B.; Jiang, Z. Y.; Tieu, A. K.; Liu, X. H.; Wang, G. D.

    Customers for cold rolled strip products expect the good flatness and surface finish, consistent metallurgical properties and accurate strip thickness. These requirements demand accurate prediction model for rolling parameters. This paper presents a set-up optimization system developed to predict the rolling force during cold strip rolling. As the rolling force has the very nonlinear and time-varying characteristics, conventional methods with simple mathematical models and a coarse learning scheme are not sufficient to achieve a good prediction for rolling force. In this work, all the factors that influence the rolling force are analyzed. A hybrid mathematical roll force model and an adaptive neural network have been improved by adjusting the adaptive learning algorithm. A good agreement between the calculated results and measured values verifies that the approach is applicable in the prediction of rolling force during cold rolling of thin strips, and the developed model is efficient and stable.

  8. CHARACTERIZATION OF THERMO-MECHANICAL FATIGUE PROPERTIES FOR PARTICULATE REINFORCED COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    H.J. Shi; H.X. Mei; R. Guo; G. Mesmacque

    2004-01-01

    A Voronoi cell element, formulated with creep, thermal and plastic strain was applied for investigation of thermo-mechanical fatigue behavior for particulate reinforced composites. Under the in-phase fatigue loading, the maximum of tensile deformation at the maximum given loading are larger than that at the same maximum under the out-phase fatigue. The stiffness decreases nonlinearly with the increasing of the phase angle, which results in increasing of the area of fatigue loop curve and the decrease in fatigue life. The spatially centralizing of inclusions results in decreasing of the plastic strain amplitude and the area of fatigue loop curve, which will also reduce the consumption of single-circle plastic strain energy and prolong the fatigue life.

  9. Influence of surface defects on the fatigue crack initiation in pearlitic steel

    Directory of Open Access Journals (Sweden)

    Toribio Jesús

    2014-06-01

    Full Text Available Tensile fatigue tests were performed under load control, with constant stress range Δσ on pearlitic steel wires, from the hot rolled bar to the commercial prestressing steel wire (which has undergone seven cold drawing steps. Results show that fatigue cracks in pearlitic steels initiate at the wire surface starting from small defects, whose size decreases with the drawing process. Fatigue cracks created from defects (initiation phase exhibit a fractographic appearance consisting of ductile microtearing events which can be classified as tearing topography surface or TTS, and exhibit a remarkably lower spacing in the prestressing steel wire than in the hot rolled bar. In addition, some S-N tests were performed in both material forms under a stress range of about half the yield strength. In these tests, the main part of the fatigue life corresponds to the propagation stage in the hot rolled bar whereas such a main part of the life is associated with the initiation stage in the case of the prestressing steel wire.

  10. Determination a static limiting load curves for slewing bearing with application of the finite element methods

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2013-02-01

    Full Text Available In slewing bearings, a great number of contact pairs are present on the contact surfaces between the rolling elements and raceways of the bearing. Computations to determine the load of the individual rolling elements, taking into account the flexibility of the bearing ring, are most often carried out using the finite element method. Construction of a FEM full model of the bearing, taking into account the shape of the rolling elements and the determination of the contact problem for every rolling element, leads to a singularity of stiffness matrix, which in turn makes the problem impossible to solve. In FEM models the rolling elements are replaced by one-dimensional finite elements (linear elements to simplify the computation procedure and to obtain an optimal time for computations. replaced by truss elements with a material non-linear characteristic located between the raceway centres of the curvatures in their axial section, are presented in the paper

  11. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  12. Variation in Texture and Lankford Value of 1070 Aluminum Sheet Rolled by Cone-shaped Roll

    Institute of Scientific and Technical Information of China (English)

    Yasumasa Chino; Xinsheng Huang; Kazutaka Suzuki; Mamoru Mabuchi

    2013-01-01

    A rolling with cone-shaped roll,the diameter of which continuously varies along the axial direction,has been proposed as a new shear rolling for controlling the texture of an aluminum alloy sheet.In this study,variations in the texture and Lankford value of a 1070 aluminum sheet rolled by the cone-shaped roll were investigated.Rolling with the cone-shaped roll was found to impose intense shear strain at the edges of the specimen,specifically near the surface.The shear directions in the left and right portions of the specimen were opposite to each other.The surface and middle layer of the specimen rolled by the cone-shaped roll and the reference specimen were characterized by a shear texture and typical recrystallization texture components,respectively.Notably,the specimen rolled by the cone-shaped roll exhibited smaller texture intensity than the reference specimen,especially at the surface,and the shear texture-components were observed at relatively deeper positions.As a result of Lankford value measurements,the specimen rolled with the cone-shape roll exhibited a smaller planar anisotropy than the reference specimen and an average Lankford value close to unity,which are likely due to the texture modifications introduced during rolling with the cone-shaped roll.

  13. A review of roll-to-roll nanoimprint lithography.

    Science.gov (United States)

    Kooy, Nazrin; Mohamed, Khairudin; Pin, Lee Tze; Guan, Ooi Su

    2014-01-01

    Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments. 81.16.Nd.

  14. Roll-to-roll fabrication of polymer solar cells

    Directory of Open Access Journals (Sweden)

    Roar Søndergaard

    2012-01-01

    Full Text Available As the performance in terms of power conversion efficiency and operational stability for polymer and organic solar cells is rapidly approaching the key 10–10 targets (10 % efficiency and 10 years of stability the quest for efficient, scalable, and rational processing methods has begun. The 10–10 targets are being approached through consistent laboratory research efforts, which coupled with early commercial efforts have resulted in a fast moving research field and the dawning of a new industry. We review the roll-to-roll processing techniques required to bring the magnificent 10–10 targets into reality, using quick methods with low environmental impact and low cost. We also highlight some new targets related to processing speed, materials, and environmental impact.

  15. A rolling 3-UPU parallel mechanism

    Science.gov (United States)

    Miao, Zhihuai; Yao, Yan'an; Kong, Xianwen

    2013-12-01

    A novel rolling mechanism is proposed based on a 3-UPU parallel mechanism in this paper. The rolling mechanism is composed of two platforms connected by three UPU (universal-prismatic-universal) serial-chain type limbs. The degree-of-freedom of the mechanism is analyzed using screw theory. Gait analysis and stability analysis are presented in detail. Four rolling modes of the mechanism are discussed and simulated. The feasibility of the rolling mechanism is verified by means of a physical prototype. Finally, its terrain adaptability is enhanced through planning the rolling gaits.

  16. A new solution method for wheel/rail rolling contact.

    Science.gov (United States)

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  17. Perovskite solar cells for roll-to-roll fabrication

    Directory of Open Access Journals (Sweden)

    Uddin Ashraf

    2017-01-01

    Full Text Available Perovskite solar cell (PSCs is considered as the game changer in emerging photovoltaics technology. The highest certified efficiency is 22% with high temperature processed (∼500 °C TiO2 based electron transport layer (ETL. High temperature process is a rudimentary hindrance towards roll-to-roll processing of PSCs on flexible substrates. Low temperature solution process (<150 °C ZnO based ETL is one of the most promising candidate for large scale roll-to-roll fabrication of cells as it has nearly identical electron affinity (4.2 eV of TiO2. The mixed organic perovskite (MA0.6FA0.4PbI3 devices with Al doped ZnO (AZO ETL demonstrate average cell efficiency over 16%, which is the highest ever reported efficiency for this device configuration. The energy level alignment and related interfacial charge transport dynamics at the interface of ZnO and perovskite films and the adjacent charge transport layers are investigated. Significantly improved device stability, hysteresis free device photocurrent have been observed in MA0.6FA0.4PbI3 cells. A systematic electrochemical impedance spectroscopy, frequency dependent capacitance spectra, surface morphology and topography characterization have been conducted to understand the role of interfacial electronic properties between perovskite and neighbouring layers in perovskite device. A standardized degradation study, interfacial electronic property and capacitive spectra analysis of aged device, have been measured to understand the enhanced device stability in mixed MA0.6FA0.4PbI3 cells. Slow perovskite material decomposition rate and augmented device lifetime with AZO based devices have been found to be correlated with the more hydrophobic and acidic nature of AZO surface compared to pristine ZnO film.

  18. Fatigue life prediction in composites

    CSIR Research Space (South Africa)

    Huston, RJ

    1994-01-01

    Full Text Available as the modulus is measured accurately. Its main disadvantage is that it can be applied only to constant amplitude fatigue loadings. REFERENCES 1. Mandell, J. F., Huang, D. D. & McGarry, F. J., Tensile fatigue performance...

  19. Precision forming machine with rolling plate cross wedge rolling

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Roller cross wedge rolling(CWR)machines have high rigidity, but sector dies are difficult to process. Plate CWR machines have low rigidity and need large floor space, but plate dies are easy to process. Neither roller CWR machine nor plate CWR machine can produce larger workpieces. Based on the above conclusions, this paper presents the mechanical principle of the precision forming machine with rolling plate CWR. Then, its design principle and machine construction are presented. There are a top press roller above the upper sliding plate and a bottom press roller under the lower sliding plate. The press rollers make rolling contact with the sliding plates. The plate dies are mounted on the upper and lower sliding plates, respectively. Furthermore, the axes of both press rollers and centerline of work-piece always keep in the identical vertical plane during forming process. These make the machine retain advantages of high rigidity for roller CWR machine and simpleness of manufacturing dies for plate CWR machine, and abandon defects of poor rigidity for plate CWR machine and difficulty of manufac-turing dies for roller CWR machine. Moreover, the machine can produce larger workpieces.

  20. Precision forming machine with rolling plate cross wedge rolling

    Institute of Scientific and Technical Information of China (English)

    SONG YuQuan; LI ZhiGang; WANG MingHui; GUAN XiaoFang

    2009-01-01

    Roller cross wedge rolling (CWR) machines have high rigidity, but sector dies are difficult to process.Plate CWR machines have low rigidity and need large floor space, but plate dies are easy to process.Neither roller CWR machine nor plate CWR machine can produce larger workpieces.Based on the above conclusions, this paper presents the mechanical principle of the precision forming machine with rolling plate CWR.Then, its design principle and machine construction are presented.There are a top press roller above the upper sliding plate and a bottom press roller under the lower sliding plate.The press rollers make rolling contact with the sliding plates.The plate dies are mounted on the upper and lower sliding plates, respectively.Furthermore, the axes of both press rollers and centerline of work-piece always keep in the identical vertical plane during forming process.These make the machine re-tain advantages of high rigidity for roller CWR machine and simpleness of manufacturing dies for plate CWR machine, and abandon defects of poor rigidity for plate CWR machine and difficulty of manufac-turing dies for roller CWR machine.Moreover, the machine can produce larger workpieces.